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Chapter 1

Foreword

A possible de�nition of computer science is that of the �eld of activity about the encoding and

automatic processing of information. The interest of this de�nition is that it does not place the

modern computer as an unsurpassable pinnacle. On the contrary, it puts on the same level any

automaton capable of processing information, in any form whatsoever. Whether electronic or

mechanical, based on electricity or water, complex or rudimentary, a computer is only a calculating

machine. Based on that it is easier to consider quantum computing as only a di�erent way of

encoding and processing information. It is not an extension of “classical” computing but a new

paradigm, with its new rules governed by quantum mechanics. In quantum computing, the unit of

information is the quantum bit, also called a qubit, and the information processing operations are

quantum operators.
In the early 1980s, Richard Feynman and Yuri Manin conceptualized the idea of using a quantum

system to process information. Their purpose was to simulate quantum systems that are intractable

for classical computers [59, 128]. Until the mid-90s, quantum computing remained a promising

theoretical paradigm capable of surpassing a classical computer on contrived problems but with few

experimental results or concrete applications. Then the �rst practical algorithms outclassing the

classical computer were found: factorization of integers [178] and simulations of systems [123] with

an exponential speedup, research in an unstructured database [71] with a quadratic speedup. The

three aforementioned articles have contributed to the development of the �eld. This is particularly

noticeable if we look at the number of papers on quantum computing published every year in

Fig 1.1.

Since then, quantum computing has developed in a similar way to classical computing with

the creation of compilers [80, 188], the development of programming languages [89, 186, 192], er-

ror correction methods [62, 68, 111, 182], the improvement of the hardware [16, 162, 168, 170], the

studies of new classes of complexity [1, 21], etc. With more than 70 years of classical computing

behind us, the roadmap for the development of quantum computing seems drawn. Yet everything

remains to be invented because the rules which govern quantum computing are fundamentally

di�erent from classical computing. We can cite the no-cloning theorem which prevents duplicating

information [207], or the impossibility of “probing” the state of the system during the current cal-

culation otherwise you destructively interfere with the quantum memory. This singularity speci�c

to quantum computing leads for example to consider new complexity classes like the BQP class [21]

— where BQP stands for Bounded-error Quantum Polynomial time, the class of problems solvable

in polynomial time by a quantum computer — whose inclusion rules are not yet fully known with

other classic complexity classes like NP.

In this thesis we focus on the compilation problem, i.e., the translation of a high-level algorithm
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Figure 1.1: Number of papers referenced in Google Scholar using the term "quantum computing"

per year.

into a sequence of instructions executable on a given quantum machine, a quantum circuit, which

is the equivalent of the assembly language on a classical computer. This compilation step is cru-

cial because it determines the quantity of quantum resources necessary for the execution of the

algorithm. Yet, quantum resources are currently extremely limited despite the constant progress

of experimenters to build a large-scale quantum computer. The number of qubits, the computing

time on the quantum machine, the number of instructions, are all precious resources that should be

used optimally. Therefore, it is necessary to optimize the compilation process as much as possible

to allow the use of practical quantum algorithms despite the hardware constraints. A quantum

processor is likely to have the same functionality than other computational modules like GPUs

(Graphics Processing Unit) or FPGAs (Field-Programmable Gate Array): it will be a computational

core attached to a classical machine — probably via some cloud computing — to speed up some

speci�c tasks. Thus, in the same way that GPUs or FPGAs are very e�cient computational mod-

ules but with limited resources (memory for a GPU for example), a quantum processor will be able

to perform certain tasks much faster but with limited resources that will have to be optimized.

This thesis is part of the quantum computing �eld but is not reserved to scientists initiated in

the domain. For example, it does not suppose any particular understanding of quantum mechanics

and its unintuitive mathematical formalism. The laws of quantum mechanics dictate the rules of

operation of a quantum computer but, once these rules are accepted, the content of this thesis

falls within the �elds of optimization, high-performance computing, but ultimately little of what

one could imagine as “quantum”. The same goes for the physical details of building a quantum

computer: they will impose constraints on our problems but they will impose themselves as axioms

rather than necessary steps in reasoning. Chapter 2 of this introductory part will introduce these

axioms of the functioning of the quantum computer and will mathematically de�ne the problems
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that have been addressed during this Ph.D. thesis.

The manuscript is divided into four parts. Part A introduces the main notions in quantum circuit

synthesis and our contributions. The work of this Ph.D. thesis is then developed in Parts B and C,

each of them corresponding to the compilation of a quantum circuit from a precise representation

of the quantum algorithm. In Part B we focus on algorithms given in the form of a so-called

unitary matrix. Any algorithm has such a matrix representation and, moreover, this representation

is unique. During the compilation, one essential problem is to minimize the quantum resources

necessary for the execution of the quantum algorithm. We add the question of the minimization of

the classical resources and what tradeo� is possible between these two types of resources. Part C

deals with the compilation of a subclass of quantum algorithms, applying so-called linear reversible
operators. In this part, it will only be a question of minimizing the quantum resources. Part D

concludes the manuscript and proposes possible research tracks.
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Chapter 2

Background and Contributions

Contents
2.1 From Quantum Mechanics to Quantum Computation . . . . . . . . . . . . . . . 19
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2.2.1 Quantum States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Quantum Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Quantum Gates and Quantum Circuits . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Quantum Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Quantum Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Universality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.4 Hardware Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Synthesis and Optimization of Quantum Circuits . . . . . . . . . . . . . . . . . 27

2.5 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Synthesis of Generic U(2n) Operators . . . . . . . . . . . . . . . . . . 30

2.5.2 Synthesis of CNOT Circuits and Related Classes of Circuits . . . . . . 33

2.5.3 Synthesis of CNOT+T Circuits . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.4 Other References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Problems Tackled in this Ph.D. thesis . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1 From Quantum Mechanics to Quantum Computation

In quantum computing, information is encoded on the quantum state of elementary particles.

The basic unit of information in classical computing, the bit, is therefore replaced in quantum

computing by its quantum version: the quantum bit, or qubit. For instance, the spin of a photon

can be "up" or "down" and encode an elementary 2-level system with values "true" and "false".

This system obeys the laws of quantum mechanics and a quantum computer exploits these laws

to perform computation. Thereby, by the quantum superposition principle, the value of the spin

can be a linear combination of "up" and "down". Any classical operation that would usually take as

input either the value true or false will be done “on both values simultaneously” with a quantum

computer.
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Several models of quantum computation coexist: quantum circuit model [210], adiabatic com-

putation [58], measurement-based [33, 160], etc., and for each model there are several possible

technologies for the physical realization of a quantum computer. For example, in the quantum

circuit model, we can mention the technologies based on superconducting qubits [16], trapped-

ions [74], linear optical [112], etc. Each model corresponds to a speci�c formalism of computation,

with some variations among the di�erent technologies in one model. In this Ph.D. thesis, we focus

on the quantum circuit model for quantum computing. Indeed, this model is the dominant model

used in, e.g., the description of most quantum algorithms. The purpose of this chapter is to present

the tools that formalize this model and alleviate with getting into the details of the physical imple-

mentation... up to a certain point. Within the quantum circuit model, we will take a closer look at

some candidate technologies and take into account the speci�cities of the hardware.

We start this chapter by presenting the basic notions about quantum computation and the quan-

tum circuit model:

• In Section 2.2 we �rst present the way quantum states are represented and how they are

modi�ed by operators.

• In Section 2.3 we present the quantum circuit model.

Then we will focus on the main theme of the thesis, namely the synthesis of quantum circuits:

• In Section 2.4 we formally de�ne the quantum circuit synthesis problem.

• In Section 2.5 we present the main results in the state-of-the-art regarding quantum circuits

synthesis.

• In Section 2.6 we �nally present the di�erent problems we address during this thesis.

Section 2.7 speci�es some notations that will be used throughout this manuscript.

2.2 Quantum States and Quantum Operators

2.2.1 Quantum States

In classical computation, the value of a bit is binary: true or false, 1 or 0. In quantum computa-

tion, the value of a qubit is a linear, complex, and normalized superposition of true and false. We

use the Dirac notation and we write

|0〉 =

(
1
0

)
; |1〉 =

(
0
1

)
to represent the basis states of computation. Then any qubit is in a quantum state

|x〉 = α |0〉+ β |1〉 =

(
α
β

)
∈ C2

with |α|2 + |β|2 = 1. In other words, we identify the states of a qubit with the normalized complex

vectors of size 2 modulo a global phase eiθ for some real angle θ.

Similarly, the state |x〉 of an n-qubit system is a linear, complex, and normalized superposition

of the 2n classical states of an n-bit system. We write

|x〉 =
∑

x1,...,xn∈{0,1}
αx1x2...xn |x1x2...xn〉 ;

∑
x1,...,xn∈{0,1}

|αx1x2...xn |2 = 1
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where x1x2...xn stands for the string of bits made of the concatenation of x1, ..., xn. Again we

identify the states of an n-qubit system with the normalized vectors of size 2n. The usual ordering

of the basis states corresponds to the lexicographic order. For example, in the case of two qubits,

the basis states are

|00〉 =

(
1
0
0
0

)
, |01〉 =

(
0
1
0
0

)
, |10〉 =

(
0
0
1
0

)
, |11〉 =

(
0
0
0
1

)
.

Given one n-qubit system in a state |ψ〉 and one m-qubit system in a state |ϕ〉, the n + m-

qubit system given by the combination of the two systems is in the state |ψ〉 ⊗ |ϕ〉 where ⊗ is the

Kronecker product, or tensor product, and is de�ned by

|ψ〉 ⊗ |ϕ〉 =


ψ1 |ϕ〉
ψ2 |ϕ〉
...

ψ2n |ϕ〉

 ∈ C2n+m .

One can check that the basis states of the n-qubit systems are the tensor product of the basis states

of n 1-qubit systems combined together. In our example with two qubits, the basis states are

|00〉 = |0〉 ⊗ |0〉 , |01〉 = |0〉 ⊗ |1〉 , |10〉 = |1〉 ⊗ |0〉 , |11〉 = |1〉 ⊗ |1〉 .

We simplify the notations by identifying a classical state on n qubits with its integer represen-

tation. We write indi�erently

|x〉 =
∑

x1,...,xn∈{0,1}
αx1x2...xn |x1x2...xn〉

or

|x〉 =

2n−1∑
i=0

αi |i〉

depending on the context.

If two independent systems can always be combined into one global state using the tensor prod-

uct — the state is then said to be separable —, it is not always possible to separate the state of a

combined system into two independent states. When a quantum state cannot be written as the

tensor product of two smaller states the state is said to be entangled. The Bell states are simple

examples of entangled states on two qubits. One of them is de�ned by

|Φ〉 =
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

and one can check that it cannot be expressed as the tensor product of two one-qubit states. Entan-

glement is believed to be a key aspect in the quantum supremacy over classical computation [92]

and research is still ongoing to better understand its role, for example by giving a measure of how

entangled a state is [198].

2.2.2 Quantum Operators

Given a quantum state |φ〉 on n qubits, the allowed transformations one can perform on |φ〉 can

be derived from the Schrödinger equation. They are of the form

|φt+1〉 = eiH |φt〉
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with i the standard unit imaginary number and H a Hermitian matrix, i.e., it satis�es the relation

H = H† where † stands for the conjugate transpose operator. The set

{eiH | H ∈ C2n , H = H†}

is mathematically equivalent to the set of unitary matrices

U(2n) = {U ∈ C2n | UU † = I}.

Therefore the evolution of a quantum state is driven by left-multiplications with unitary matrices.

Three essential properties of quantum computation are direct consequences of how quantum

states evolve:

1. The sequential application of two operators A and B on |φ〉 yields the state B(A |φ〉) =
(BA) |φ〉 and is equivalent to the application of the operator BA. Sequential application

corresponds to matrix multiplication.

2. To combine operators acting on distinct subsystems, we again use the tensor product. If |ψ〉
is an (n+m)-qubit state and one applies an operator A on the �rst n qubits (resp. B on the

last m qubits) then using the global system on n+m qubits it is equivalent to applying the

operator A⊗B on the state |ψ〉 with

A⊗B =


a11B a12B . . . a1pB
a21B a22B . . . a2pB
...

...
...

aq1B aq2B . . . aqpB

 ∈ U(2n+m)

for any A ∈ U(2n), B ∈ U(2m).

3. Quantum computation is reversible. Namely, if one performs

|φ2〉 = A |φ〉

then one can recover the state |φ〉 by applying the inverse operator

|φ〉 = A† |φ2〉 .

Therefore classical reversible computation is a subset of quantum computation.

Besides sequential composition, tensoring, and inverse, a fourth operation is usually considered:

an operator can be controlled, meaning that the operator is applied on so-called target qubits de-

pending on the logical value of a qubit so-called controlled qubit. In other words, ifM ∈ U(2n) is an

operator acting on n qubits controlled by an additional qubit given without loss of generality as the

most signi�cant qubit, there are two canonical operations onn+1 qubits: the positively-controlled-

M de�ned as the block matrix ( I 0
0 M ) and the negatively-controlled-M , de�ned as (M 0

0 I ). Both

block-matrices are operators in U(2n+1). The former sends |0〉 ⊗ |φ〉 to |0〉 ⊗ |φ〉 and |1〉 ⊗ |φ〉
to |1〉 ⊗ (M |φ〉). The latter does the opposite: it sends |0〉 ⊗ |φ〉 to |0〉 ⊗ (M |φ〉) and |1〉 ⊗ |φ〉
to |1〉 ⊗ |φ〉. This generalizes to multiple controls where an operator is applied depending on the

logical values of several control qubits. This also generalizes to the so-called quantum multiplexors
where a speci�c operator is applied for each logical value of the control qubits. So, for example, an

operator A positively-controlled by p control qubits is a multiplexor where the identity operator

is applied for all values of the p control qubits except |1〉⊗p where A is applied. More information

about quantum multiplexors are given in Section 4.1.1.
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2.3 Quantum Gates and Quantum Circuits

2.3.1 Quantum Gates

Basically, any quantum algorithm takes as input a quantum state, applies a speci�c unitary oper-

ation, and performs some measurements on the output state. However it is impossible to perform

an arbitrary unitary operation given the current technology, i.e., the number of di�erent instruc-

tions the hardware can perform is limited. In the quantum circuit model, a given technology —

related to the hardware used for its physical implementation — provides only a set of elementary
operations that can be done natively. Generally acting on one or two qubits, these elementary

operators are called quantum gates, and we can mention the following (see Table 2.1):

• the Pauli operators X,Y, Z (the X gate is equivalent to the classical NOT gate),

• the Hadamard gate H which enables us to transform a pure state (|0〉 or |1〉) into an equal

superposition of |0〉 and |1〉, i.e.,

H |0〉 =
1√
2

(|0〉+ |1〉) ; H |1〉 =
1√
2

(|0〉 − |1〉) ,

• the continuous set of elementary rotations RX , RY , RZ de�ned by

RG(α) = cos(α/2)I2 − i sin(α/2)G with G ∈ {X,Y, Z}

whereX,Y, Z are the Pauli operators and i is the unit imaginary number. We can also write

Rx, Ry, Rz with lowercase subscripts: it is this notation we will use throughout this Ph.D.

thesis.

• the continuous set of phase gates de�ned by

Ph(θ) =

(
1 0
0 eiθ

)
adding a phase to the state |1〉 ; among this set two gates are of particular use: the gate T
(θ = π/4) and the gate S (θ = π/2). Note that Ph(θ) is simplyRz(θ) modulo a global phase

e−i
θ
2 .

Amongst the frequently used 2-qubit gates, one can name the CNOT-gate, which is the positively-

controlled X-gate, and the SWAP gate, �ipping the state of two qubits. Other examples of com-

monly encountered gates are controlled-rotations with arbitrary angles and the Mølmer–Sørensen

(MS) gate used in trapped-ions based quantum computers de�ned by:

MS(θ) = e−iθ(
∑n
i=1 σ

i
x)2/4

where σix is the operator X applied to the i-th qubit.

2.3.2 Quantum Circuits

Given a set of elementary quantum gates, more complex operations can be computed by ex-

ploiting the laws of composition and combination. The usual graphical language for representing
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(
0 1
1 0

)
X

(
0 −i
i 0

)
Y

(
1 0
0 −1

)
Z

1√
2

(
1 1
1 −1

)
H

(
1 0
0 i

)
S

(
1 0

0 eiπ/4

)
T


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


CNOT


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


SWAP

Table 2.1: Usual elementary unitary matrices for representing quantum gates.

q0

q1

q2

q3

H S T Ph(π8 )

H S T

H S

H

Figure 2.1: Quantum circuit for the Quantum Fourier Transform.

composition and combination of operators is the equivalent of the Boolean circuit for classical com-

puting: the quantum circuit. A quantum circuit consists of a series of parallel, horizontal wires on

which are attached boxes. Each wire corresponds to a qubit, and vertical combination corresponds

to the Kronecker (tensor) product. The circuit is read from left to right and each box corresponds

to a quantum gate (i.e., a unitary operator) applied to the corresponding qubits. Controlled-gates

have a special representation: the controlling qubit is represented with a bullet (•) if the control

is positive and a circle (◦) if the control is negative. A vertical line then connects the controlling

qubit to the gate to be controlled. The notation easily extends to multiple controls. As an exam-

ple of a quantum circuit combining several gates, the so-called Quantum Fourier Transform on 4

qubits [148] is represented in Figure 2.1. It enables us to visualize the use of elementary gates: H, S,

T, phase-gate, and positive controls. Given a quantum circuit C , we write UC the associated quan-

tum operator implemented by C . If a quantum circuit represents a single quantum operator, one

operator can be synthesized with several quantum circuits. In other words, for two circuits C and

C ′ we may have UC = UC′ . In this case, we say that C and C ′ are functionally equivalent because

they result in the same action on the quantum system. A trivial example is given in Fig 2.2 where

one can check that two successive Hadamard gates are equivalent to the empty circuit. Therefore,

among a set of equivalent circuits, it is possible to search for a circuit that "is better" than the others.

This is the central theme of this thesis and more details are given in Section 2.4.

2.3.3 Universality

Given a set of gates S , we write =(S) the set of quantum operators that can be implemented

by a quantum circuit containing solely gates from S . We say that a set of gates is universal if any

H H

Figure 2.2: Two equivalent circuits. The corresponding matrix equation is HH = I2.
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quantum operator, acting on any number of qubits, can be implemented as a sequence of gates from

this set (see e.g. [148, Sec. 4.5] for a complete discussion on the matter). For instance, a fundamental

(theoretical) result claims that it is possible to realize any operator only with the set of one-qubit

gates and one “su�ciently entangling” multi-qubit gate. To be able to implement any quantum

algorithm with a given piece of hardware, it is therefore necessary to �rst �nd a universal set of

technologically implementable gates. The native universal set of gates is di�erent depending on

the technology used. We now review some of the gate sets we will consider in this Ph.D. thesis,

some being universal, others not.

CNOT + SU(2)

This universal gate set [32] is probably the most common one in quantum compilation. Hence,

=({CNOT,SU(2)}) =
⋃
n≥1

U(2n).

It is used, e.g., in superconducting quantum computers (IBM [7], Google [16], Rigetti [162] etc.)
and in linear quantum optics [112].

The { CNOT + SU(2) } gate set will be used in Chapters 4 and 5.

Cli�ord or {H, CNOT, S, Pauli}

The Cli�ord gate set is composed of the Hadamard gate, the CNOT gate, the phase gate S and

the Pauli operators. This gate set is known to be e�ciently simulable by a quantum computer [69]

and therefore is not universal. Any operator that can be implemented with the Cli�ord gate set

is said to be a Cli�ord operator. More details about this group are given later in this chapter, see

Section 2.5.2.

Part C of this Ph.D. thesis will focus on a subclass of the Cli�ord operators: the linear reversible

operators, i.e., operators generated by purely CNOT circuits.

Cli�ord + T

For fault-tolerant quantum computation, a discrete version of the { CNOT + SU(2) } gate set is

usually considered: the { CNOT, H, T } gate set or Cli�ord+T gate set. Indeed, up to a global phase,

any one-qubit gate can be approximated at any desired precision with only H and T gates [103]

(see Section 2.5.4 for more details). The gates from the set { CNOT, H, T } can be implemented fault-

tolerantly in many error-correcting protocols, notably the magic state distillation routines [29,30].

Our works in Part C have some applications in the optimization of Cli�ord+T quantum circuits,

see Section 12.4 for more details.

MS + Rx + Rz

A technology using trapped ions has other gates available like the Mølmer–Sørensen gate (MS

gate) [129, 170] de�ned by

MS(θ) = e−iθ(
∑n
i=1 σ

i
x)2/4.

where σix is the operator X applied to the i-th qubit and θ is an arbitrary angle. The MS gate is a

global gate, acting on all qubits. The available one-qubit gates are the localRz rotations and global
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Figure 2.3: Qubit connectivity graphs from existing architectures.

Rx rotations, i.e., an Rx gate is simultaneously applied to every qubit with the same angle. Any

one-qubit gate U can be expressed as

U = eiαRz(β)Ry(γ)Rz(δ)

where α, β, γ, δ are the so-called Euler angles of U in the ZY Z basis [148]. As

Ry(γ) = Rx(−π/2)×Rz(γ)×Rx(π/2)

one can see that any one-qubit gate can be implemented with the available gates for trapped-ions

quantum computers. Finally, any CNOT gate can be synthesized with two MS gates and local

one-qubit gates [133]. Hence the set of gates for trapped-ions quantum circuits is also universal.

The native gate set for trapped-ions quantum computers will be used in Chapter 5.

2.3.4 Hardware Constraints

The hardware technology used for the implementation of a quantum computer determines not

only the kind of elementary gates that one can apply but also the possible interactions that can be

performed between the qubits. The physical position of the qubits in the hardware plays a role and

limits the interactions between pairs of qubits. In some architectures, the qubits can only interact

with their direct neighbors. In other words, the 2-qubit gates can only be performed between

qubits that are neighbors in the hardware. This is the case for superconducting technologies where

full connectivity between the qubits cannot be achieved. The connections between the qubits

are usually given by a connectivity graph, i.e., an undirected, unweighted graph where 2-qubit

operations, such as the CNOT gate, can be performed only between neighbors in the graph. In our

setting we include the graph into the set S . Provided that the graph is connected, the universality

of S is preserved. Examples of connectivity graphs from current physical architectures are given

in Fig 2.3. Note that the architectures presented in Fig 2.3 all rely on superconducting qubits with

a speci�c notion of locality. With some processors based on neutral atoms, the qubits have an

interaction radius and their interaction area is given by spheres in 2D or 3D [79].
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2.4 Synthesis and Optimization of Quantum Circuits

Having an implementable universal set of gates is not enough: if we are given a quantum opera-

tor as a unitary matrix, or any other abstract representation non-understandable by the hardware,

one also has to �nd a way to turn the desired operator acting on a potentially large number of qubits

into a quantum circuit made of local, elementary gates. This problem is known as circuit synthesis,
or equivalently, the compilation of the operator into a circuit. The synthesis can be exact or ap-
proximate with a certain precision ε, i.e., given an operator U to synthesize we authorize ourselves

any circuit C such that ‖UC − U‖ ≤ ε. We also de�ne the state preparation problem as a special

case of circuit synthesis where we want to synthesize only the �rst column of a unitary matrix.

This corresponds to the case where we have the basis state |00..0〉 = |0〉⊗n as input and we want

the state |ψ〉 as output, i.e., we want to implement an operator U such that U |0〉⊗n = |ψ〉. State

preparation is a less constrained synthesis problem and more e�cient solutions can be computed.

Many di�erent circuits can synthesize a given operator. This means that we can choose, or at

least search for the best circuit that minimizes a precise criterion. We evaluate this way the quality

of the synthesis with the properties of the computed circuit. Two criteria are widely considered:

• The size of the circuit given by the number of elementary gates. Each gate needs computa-

tional resources to be executed and one cannot avoid some noise in the physical realization

of the gate. This results in interferences that can alter the output of the quantum algorithm

and potentially return a wrong result. The shorter the circuit generated is, the less noisy will

be the execution of the algorithm.

• The depth of the circuit represents the number of time-steps needed to execute the circuit

provided that two non-overlapping gates can be executed simultaneously. The depth of the

circuit is closely related to the time needed for the execution of the quantum circuit. A major

problem faced by the physicists when designing a quantum computer is the decoherence
time. This time gives the maximum time available to execute a quantum algorithm before

the qubits involved in the computation interact enough with the outside environment to lose

all the information they carry. A shallow circuit is of interest to ensure that the quantum

algorithm will be able to terminate.

The synthesis can also be done with the help of extra quantum memory, i.e., with the use of

ancillary qubits. There are generally two types of ancillae:

• the clean ancillae whose initial values are known, generally |0〉, and, after the execution of

the quantum circuit, the ancillae have to return to their initial values.

• the dirty ancillae whose initial values are unknown and there is no condition on their output

values.

Ancillary qubits are useful in many quantum compilation procedures and often help with the par-

allelization of the circuit.

Overall we give the following de�nition of the quantum circuit synthesis problem:
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�antum circuit synthesis problem

Input • An abstract representation U of an n-qubit quantum operator,

• A set of gates S such that U ∈ =(S),

• ε > 0,

•m ancillary qubits,

• t > 0,

• a cost function f and c > 0.

Problem Find a quantum circuit C such that:

• C contains only gates from S ,

• C acts on n+m qubits with m ancillary qubits,

• ‖U − UC‖ < ε for a given norm ‖ · ‖,
• f(C) < c,

• the classical time to compute C , T (UC), does not exceed t.

This rather general de�nition makes it possible to encode many problems of the literature as in-

stances of the quantum circuit synthesis problem. A variety of examples are given Table 2.2. Now

a few remarks about the quantum circuit synthesis problem:

• The cost function f can embed any metric of importance to evaluate the quality of the circuit

solution. It can be either the size of the circuit or its depth or any custom function like the

total noise or the execution time. For simplicity, we assume that f outputs a real value but

one can imagine a vector of costs with a multi-objective optimization problem.

• One can expect di�erent algorithms to solve the quantum circuit synthesis problem depend-

ing on the available universal set of gates. The multiplicity of candidates for the physical

implementation of a scalable quantum computer represents, in fact, a challenging task in

quantum circuit synthesis. On the other hand, looking for e�cient algorithms for any pos-

sible hardware will give insights on what technology should be preferred depending on its

"compilation friendly" features.

• Any algorithm has a range of validity, for instance in some cases it cannot return a circuit

with a su�ciently good approximation error or the classical time to compute the circuit is

too long. Or else, some methods may perform better on speci�c operators but will perform

poorly on other cases. Besides proposing new algorithms for the synthesis of quantum cir-

cuits, an essential work consists in determining the range of validity of the synthesis meth-

ods.

Circuit synthesis should not be confused with circuit optimization. Circuit optimization is closely

related to circuit synthesis but, in this case, the input of the problem is already a quantum circuit.

The goal is to return an optimized circuit — a shorter one, a shallower one, etc. — that is function-

ally equivalent. Despite the di�erence between the two problems, it is still possible to establish a

link between the two with the help of the classical simulation of a quantum circuit. The classical

simulation of a quantum circuit C consists in computing the output state UC |0〉⊗n with a classical

computer. Doing so for every classical input state and one can recover the whole unitary UC on

which a synthesis algorithm can be applied. The other way around, one can still use circuit op-

timization methods to further optimize a circuit produced by a synthesis algorithm. We illustrate

the relationships between circuit simulation, optimization, and synthesis in Fig 2.4.
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Table 2.2: Examples of quantum circuits synthesis problems. Each problem is associated to a spe-

ci�c abstract representation of the quantum operator, the set of gates with which we want to

implement the operator, the desired error and the metric to optimize. By the generic term "circuit

size", we mean that there is not a particular metric to optimize except the number of gates in the

circuit.

Representation Set of gates Error Cost function

Generic circuits synthesis U ∈ SU(2n) CNOT + SU(2) ε = 0 Circuit size

State preparation |ψ〉 ∈ C2n
CNOT + SU(2) ε = 0 Circuit size

Diagonal synthesis D = diag(eiθ1 , . . . , eiθ2n ) CNOT + SU(2) ε = 0 Circuit size

(H,T) synthesis U ∈ SU(2) {H,T} Arbitrary T-count

Multiqubit (H,T) synthesis U ∈ SU(2n) {CNOT,H,T} Arbitrary T-count

Hamiltonian simulation U = eiHt Arbitrary Arbitrary Circuit size

CNOT circuit synthesis A ∈ Fn×n2 {CNOT} ε = 0 CNOT count

Cli�ord synthesis A ∈ Sp(2n, F ) {CNOT, H, S} ε = 0 Circuit size

Phase polynomial synthesis U |x〉 = ei
π
4

∑
c,f c·f(x) |g(x)〉 {CNOT, T} ε = 0 T-count/CNOT count

Oracle synthesis O |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 {To�oli, CNOT, X} ε = 0 Circuit size

Reversible synthesis P ∈ S2n {To�oli, CNOT, X} ε = 0 Circuit size

U(2n)

U = 1√
2

(
1 1
1 −1

)

U =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Quantum circuits
Circuit classical simulation

Circuit classical simulation

Circuit optimization

Circuit synthesis

H

H H

H

H HT T

Figure 2.4: Relationships between quantum circuit synthesis, optimization and simulation.
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2.5 State of the Art

Synthesis methods can change radically depending on the abstract representation of the quan-

tum operator. We give a general review of the state of the art in the following cases:

• the synthesis of generic operators given by their matrix representation U ∈ U(2n),

• the synthesis of CNOT circuits given by their matrix representation A ∈ Fn×n2 ,

• the synthesis of CNOT+T and CNOT+Rz circuits given by their phase polynomial represen-

tation.

2.5.1 Synthesis of Generic U(2n) Operators
In this synthesis problem, we deal with unitary matrices of size 2n without any particular struc-

ture. This highlights an important feature about generic quantum circuit synthesis: the problem

is exponentially hard by nature. Having complete knowledge of the operator requires an expo-

nentially sized memory and an equivalently exponential amount of time to be able to access each

component of the matrix. Therefore the use of heuristic methods or optimization frameworks is

limited to problems de�ned on a very limited number of qubits. However, the state of the art is

rich in algebraic methods with theoretical results and we give a historical overview.

Two works in 1995 laid the foundations of quantum circuit synthesis: in [17] several identities

for decomposing multi-controlled operators into circuits of one and two-qubit gates were given.

Combining these results with a QR decomposition formula from [161] the authors showed that

any operator on n qubits can be synthesized with a circuit containing O(n34n) elementary one

and two-qubit gates. They also conjectured a lower bound on the number of elementary two-qubit

gates required to synthesize an arbitrary n-qubit operator:

Ω(n) =
1

9
4n − 1

3
n− 1

9
. (2.1)

By lower bound we mean that almost all operators need at least this number of two-qubit gates to

be synthesized. Some operators can be implemented with fewer gates, take for instance the identity

operator that needs 0 gates to be implemented, but they represent a negligible fraction of operators.

This lower bound shows that almost every operator needs an exponential number of gates for their

execution on a quantum computer. More details about the lower bounds are given in Chapter 5.

Later in 1995 Knill improved the result from [17] and reduced the number of elementary two-qubit

gates to O(n4n) [110]. He also formalized the lower bound Eq. (2.1) and studied the case where

an approximation of the operator is allowed. This does not change the exponential complexity

required for most of the operators. To illustrate it, we quote one remark Knill made about state

preparation:

“ if b log(b) = o(k2n), then for most |u〉 the circuits with less than b gates can do essentially no

better at mapping |0〉 to |u〉 than a random unitary operator.” [110]

Therefore the future works about circuits synthesis focused on improving the asymptotic com-

plexity of exact methods. By combining other works in the literature it is possible to recover the

same complexity in O(n4n) [3, 43] but the complexity remained a factor of n from the theoretical

lower bound for almost 10 years. A breakthrough happened in the years 2004-2006 when a series

of papers signi�cantly improved the number of CNOT gates and one-qubit gates required for the
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synthesis of general quantum operators [143, 174, 176, 194]. First Shende et al. improved the lower

bound for CNOT based quantum circuits [176]:

Ω(n) =

⌈
1

4
(4n − 3n− 1)

⌉
. (2.2)

Then an improvement over the initial QR decomposition was proposed in [194] and reached a

complexity of O(4n). Using Givens rotations, the method has a complexity evaluated at approx-

imately 8.7 × 4n while the upper bound is 11 × 4n, still a factor 44 away from the theoretical

lower bound. With the use of the Cosine-Sine Decomposition (CSD) [66] — whose use was al-

ready sketched in [188] — and uniformly-controlled one-qubit rotations the same authors �rst

reached a complexity of 4n − 2n+1
CNOTs [143] before improving their result by introducing an

e�cient decomposition for uniformly-controlled general one-qubit gates. This led to a complexity

of
1
24n − 1

22n − 2 CNOTs and 4n − 1 Rz or Ry rotations.

At the same time, another research team used another quantum circuit decomposition also based

on the CSD, the NQ decomposition, to produce circuits of similar complexity, namely
1
24n− 3

22n+1
CNOTs and

9
84n− 3

22n+3Ry orRz rotations [175]. They also used uniformly-controlled one-qubit

rotations but under the name of quantum multiplexors.
Finally, both teams improved their results to reach a �nal CNOT complexity of

23
484n − 3

22n + 4
3

[142, 174]. The global quantum circuit decomposition used in [174] is the Quantum Shannon De-

composition (QSD). For more details about the CSD, QSD, and quantum multiplexors see Chapter 4.

To our knowledge, no method improving the CNOT complexity of the QSD and the method

from [142] has been proposed since. In [165] a method combining the QSD and the CSD was

used to reduce the total number of gates in the circuits. They managed to produce circuits with

better tradeo�s between the number of CNOTs and the number of one-qubit gates but they did not

improve the asymptotic complexity of the CNOT count.

More recently, in [50] another decomposition was proposed: the block-ZXZ decomposition. This

new decomposition relies on a block version of Sinkhorn’s decomposition of unitary matrices [64,

82]. It does not improve the gate count but shows new theoretical relationships between di�erent

groups of unitaries. Moreover, this decomposition is more suitable for the synthesis of classical

reversible circuits as it preserves the structure of the permutation matrices encoding the reversible

functions.

Synthesis of Generic Quantum States, Isometries, Diagonal Operators

State Preparation. The history of algorithms on state preparation is similar to that on quantum

circuits synthesis. Initially, Knill proved an upper bound of O(n2n) on the number of gates [110].

Then e�cient methods for the synthesis of quantum states were provided in [142, 174]. Those

methods rely on the use of quantum multiplexors. The best circuit that transforms a state |a〉 to a

state |b〉 requires 2× 2n − 2n− 2 CNOTs and 2× 2n − n− 2 one-qubit gates. For standard state

preparation, a = |0〉⊗n and the gate count is roughly divided by 2, giving a leading complexity of

2n−1
CNOTs and 2n one-qubit gates [142].

In 2011, the highest known lower bound on the number of CNOTs for state preparation was

derived:

Ω(n) =

⌈
1

4
(2n+1 − 2n− 2)

⌉
(2.3)

and a new method for state preparation was designed [155]. The method relies on the use of

Schmidt’s decomposition [153] to reformulate state preparation on n qubits as quantum circuits
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synthesis on bn/2c and dn/2e qubits. Those unitaries can be synthesized with the QSD method

and the circuits produced have asymptotically
23
242n CNOTs if n is even, slightly improving the

previous best method from [142].

For some families of quantum states, e�cient algorithms are known. A series of papers proposed

polynomial sized quantum circuits for preparing a state |ψ〉 [70, 97, 180] up to an arbitrary error

providing some information on the amplitudes and phases of the components of |ψ〉 is classically

computable e�ciently.

Isometries. In [86] the concept of isometries was introduced as a generalization of quantum

circuit synthesis and quantum state preparation. Isometries are notably useful for the design of

quantum channels [85]. An m to n isometry can be thought as a unitary operator acting on a set

of n qubits with n−m of them being in a �xed state, |0〉 for instance. When m = n the isometry

is a complete unitary operator. When m = 0 the isometry is equivalent to state preparation. For

arbitrary m ≤ n an m to n isometry is given by a 2n × 2m complex matrix V such that

V †V = I2m×2m .

All the concepts related to quantum circuit synthesis and state preparation apply. In [86] the

authors show that

Ω(n,m) =
1

4
(2n+m+1 − 22m − 2n−m− 1) (2.4)

is a lower bound on the number of CNOTs needed to implement m to n isometries. They also

give several constructions for arbitrary isometries. Their methods rely on multiplexors, the QSD,

and Knill’s decomposition from [110]. For each method, an estimation of the number of CNOTs

required is given. These methods form the basis of an open-source software package UniversalQ-
Compiler written in Mathematica. Additional details, notably about the classical run time, are given

in [87].

Diagonal Operators. Diagonal operators are of the form

D =

e
iθ1

. . .

eiθ2n


and are completely speci�ed by the angles of each entry. Standard techniques for decomposing a

diagonal operator to a circuit with 2n − 1 Rz rotations and 2n − 2 CNOTs are known [36, 174].

Recent works optimized the approximate synthesis of diagonal operators in the Cli�ord+T gate

set [201] or the standard CNOT+SU(2) gate set [202]. The former work proposes di�erent circuits

constructions based on cascaded entanglers while the latter expands diagonal operators in the

speci�c basis of Walsh functions [199]. When either the number of distinct phases is low (in [201])

or the diagonal operator is sparse in the Walsh basis (in [202]) then the constructions provide

more optimized circuits. Diagonal operators are also well understood as part of the CNOT+Rz
framework, see Section 2.5.3 for more details.

Synthesis of Operators on a Small Number of Qubits

For quantum operators of arbitrary size, the improvements in the synthesis methods are essen-

tially done for a worst-case scenario. With operators of �xed small size, one can expect to use

more optimized routines. For instance, the problem can be considered to be solved when n = 2.
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It has been shown that at most 3 CNOTs and 15 elementary rotations are su�cient in the worst

case, with explicit constructions given in [176]. Moreover, circuits with 3 CNOTs are proven to be

necessary in some cases — the SWAP gate, for instance, cannot be implemented with less than 3
CNOTs [195]. A characterization of the 2-qubit operators that can be implemented with 2 CNOTs

has also been provided [197]. Given the fact that operators implementable with 0 or 1 CNOT are

easily identi�able, the implementation of any two-qubit operator can be made optimally. All these

methods rely on an algebraic decomposition called Cartan’s KAK decomposition, more details are

given in Section 2.5.1.

For n = 3, a decomposition with 40 CNOTs and 98 elementary Ry and Rz rotations has been

�rst presented in 2004 [196]. To our knowledge, the best algebraic construction for n = 3 is now

given by the QSD with 20 CNOTs. The theoretical lower bound is 14. As far as we know, no speci�c

construction has been proposed for n > 3.

Besides custom circuit decompositions, non-algebraic methods turn out to be useful for small

problem sizes. For instance, brute-force search (with some optimization) remains feasible and guar-

antees optimality in the results. A meet-in-the-middle algorithm was proposed in [11] to synthesize

circuits of optimal depth in the Cli�ord+T set. Optimal synthesis of all 4-bit reversible functions is

reported in [67].

The use of heuristics also provides interesting results. In [121] genetic algorithms were used

for an approximate synthesis of adders with experiments on a 5-qubit chip from IBM. Genetic

algorithms were also used for the synthesis of classical reversible gates [125, 126].

Theoretical Insights

Decompositions of unitary matrices are part of the theory of Lie groups and Lie algebras. More

precisely, this is the use of Cartan’s KAK decompositions that have found great utility for the

synthesis of quantum circuits. The �rst application of KAK decompositions can be found in [98].

The authors gave a decomposition of any U ∈ SU(2n) into a product of unitary matrices in

SU(2n−1) ⊗ SU(2) and exponentials of elements from some Cartan subalgebras. They also ex-

plained the case SU(4) which served as a basis to other works in the literature that provide e�cient

decompositions of 2-qubit operators [35, 195, 197, 212].

Since then much progress has been made. This results in a deeper understanding of the role KAK

decompositions can play in the decomposition of unitary matrices and the synthesis of quantum

circuits [189]. For example, we now know that the QSD is, in fact, a special case of KAK decom-

position [34, 53]. New decompositions and generalizations of existing decompositions have also

been provided [44, 54, 144]. Yet, in the realm of quantum circuit synthesis, the QSD remains the

preferred decomposition and KAK based methods seem con�ned to theoretical results.

2.5.2 Synthesis of CNOT Circuits and Related Classes of Circuits

CNOT circuits implement a subclass of classical reversible operators called linear reversible oper-
ators. Linear irreversible circuits have a much longer and richer history than its reversible counter-

part [6, 28, 191]. In both irreversible and reversible cases, it is known that a linear operator acting

on n (qu)bits is encoded into a boolean matrixA ∈ Fn×n2 where the i-th row ofA gives the output

of the i-th bit as a linear combination of the inputs. In our case, the sum is given by the XOR

operation but other models of linear circuits exist, for example with the OR operation [94]. In the

reversible case, A needs to be invertible and the basic linear gate used is the CNOT gate. In the

irreversible case, no assumption is made on A and there are fewer constraints, notably on the use

of garbage bits, making it di�cult to transpose techniques to the quantum case.
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In the literature, it was �rst shown that n2
CNOT gates are su�cient to synthesize any linear

reversible operator with a Gaussian elimination algorithm [177]. Then Patel et al. derived a lower

bound ofO(n2/ log2(n)) CNOT gates and proposed a block version of the Gaussian elimination al-

gorithm [152]. By lower bound we mean that at least one n-qubit operator requiresO(n2/ log2(n))
CNOT gates to be implemented. [152, Algo. 1] reaches circuits of size O(n2/ log2(n)). This algo-

rithm is asymptotically optimal: its worst-case complexity can only be improved by a constant

factor. To our knowledge [152, Algo. 1] is the best algorithm for the synthesis of CNOT circuits

when the metric to optimize is the size of the circuits and when there is full qubit connectivity. It

is notably used in recent quantum compilers [9, 10].

When the qubit connectivity is restricted, the �rst proposed approach has been to transform the

circuits given by an unrestricted algorithm with swap insertion algorithms to match the connectiv-

ity constraints [120,154,204]. To produce more e�cient circuits, two concomitant papers proposed

a modi�cation of the Gaussian elimination algorithm with the use of Steiner trees [102, 146]. This

new method outperforms swap insertion techniques and produces circuits of size at most O(n2).

Algorithms producing shallow circuits were also proposed. First, it was shown that any n-qubit

CNOT circuit can be parallelized toO(log2(n)) depth with the help of n2
ancillary qubits [141]. In

2007 an ancilla-free algorithm producing circuits of linear depth was proposed with an extension

to restricted connectivities [130]. At the same time, Kutin et al. proposed an algorithm with linear

depth complexity for the Linear Nearest Neighbor (LNN) architecture [117]. During a decade the

best ancilla-free methods produced circuits of linear depth while the theoretical optimal bound

is O(n/ log2(n)) in a fully connected architecture. A major question was therefore whether this

bound could be reached. The answer was given very recently in [90] with a theoretical algorithm

producing circuits of depth O(n/ log 2(n)), matching the theoretical bound. The authors also

improve the case where ancillary qubits are available. They notably show that O(n2/ log2
2(n))

ancillae are su�cient to reduce the depth to O(log2(n)).

Synthesis of Stabilizer Circuits

Stabilizer circuits are a subclass of quantum circuits containing solely Hadamard gates, Phase

gates, and CNOT gates. They implement quantum operators belonging to the so-called Cli�ord

groups Cn and any Cli�ord operator can be implemented by a stabilizer circuit. In other words

=({H,S,CNOT}) =
⋃
n≥1

Cn

up to a global phase. H,S,CNOT are said to be Cli�ord gates. Stabilizer circuits over n qubits

are in a one-to-one equivalence with matrices from the binary symplectic group SP (2n, F2) and

are known to be e�ciently simulable by a classical computer [2, 69]. Therefore the set of Cli�ord

gates is not universal for quantum computation and stabilizer circuits o�er no computational ad-

vantage compared to classical computation. However, they play an important role in the design of

error-correcting codes — the so-called stabilizer codes [38,68] —, quantum tomography, randomized

benchmarking, etc.

Cli�ord operators are implemented via canonical forms of stabilizer circuits. Canonical forms

are given as a series of layers containing only one type of Cli�ord gate. For instance, in [2] it was

shown that any stabilizer circuit can be written as -H-C-P-C-P-C-H-P-C-P-C- where -H- stands for

a layer of Hadamard gates, -P- is a layer of Phase gates and -C- a layer of CNOT gates, namely linear

reversible circuits. The size of the -H- and -P-layers can only be O(n) as H2 = I and P 4 = I ,

therefore the size of stabilizer circuits is dominated by the size of the -C- stages. To our knowledge,
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this 11-stage decomposition was the reference decomposition until Maslov and Roetteler provided

a shorter canonical form [134]. This new decomposition was then improved very recently in [31].

Linear reversible circuits and stabilizer circuits are closely related, one is a subclass of the other.

Any improvement in the synthesis of CNOT circuits also improves the synthesis of stabilizer cir-

cuits. It turns out that the converse may be true. In [31] the authors discuss the computational

advantage of using other Cli�ord gates to implement CNOT circuits to reach lower CNOT counts.

They exhibit a concrete example where the use of Hadamard gates enables to implement a CNOT

circuit of size 8 with only 7 CNOTs. Yet they also show that the size can only be improved by a

constant factor.

2.5.3 Synthesis of CNOT+T Circuits

CNOT+T circuits (and its extension CNOT+Rz) represent another non-universal subclass of

quantum circuits. The action of a CNOT+T circuit can be summarized with its phase polynomial

representation. This structure is of polynomial size in the number of qubits and the number of T
gates in the circuit [10,11]. This compact representation makes it easier to design e�cient methods

to optimize several metrics like the T-count, the T-depth, or the CNOT count.

In [172] a method for minimizing the T-depth was presented but it focused on the class of circuits

that can be parallelized to T-depth one with the help of ancillae. This work has been extended,

improved in [10] with the CNOT+T formalism. The proposed algorithm, Tpar, optimizes both T-

count and T-depth. Much progress has been made since with better theoretical understandings

on the T-count optimization of CNOT+T circuits but also with e�cient optimization algorithms

[12, 80, 138].

Recent quantum compilers for the Cli�ord+T gate set rely on the optimization of CNOT+T cir-

cuits. Either by rearranging CNOT+T circuits around the Hadamard gates [10] or by gadgetizing

the said Hadamard gates [80], the optimization of CNOT+T circuits is central in the minimization

of the cost of a quantum circuit.

Although fault-tolerant protocols are much more costly for the T gate than for Cli�ord gates

[150], the Cli�ord cost may represent a non-negligible part, and even the most costly part, of

running an entire quantum circuit [132]. In that case, one should also optimize the Cli�ord cost,

namely the CNOT cost, in CNOT+T circuits. Optimizing the CNOT circuits occurring in a CNOT+T

circuit is one way to go. Amy et al. designed an algorithm, GraySynth, that optimizes directly the

CNOT count in CNOT+Rz circuits [9] for an architecture with full qubit connectivity. This work

was then extended to restricted connectivities [49, 146].

2.5.4 Other References

We present succinctly some reference works about problems that are part of quantum circuit

synthesis but that are not directly in the scope of this thesis.

(H,T) Synthesis

The Cli�ord+T gate set is universal for quantum computation. This non-trivial theorem relies

on two results:

1. the set of one-qubit gates with the CNOT gate is universal [17],

2. any one-qubit gate can be approximated at an arbitrary precision with the (H,T) gate set.

This is the Solovay-Kitaev theorem [45, 103].
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In this section, we focus on practical implementations of the second result. The Solovay-Kitaev

theorem also states that the number of (H,T) gates required is only logarithmic in the inverse of

the error. More precisely the length of the gate sequence was shown to be O(logc(1/ε)) with ε
the error and c is a constant which was evaluated at the time between 3 and 4. In other words,

any one-qubit gate can be e�ciently approximated with only the two gates H and T but there was

room for improvement as the optimal scaling is known to be O(log(1/ε)) [45].

Today the problem can be considered as solved. Several works in the years 2011-2016 got closer

and closer to an optimal algorithm. First, a brute-force algorithm was proposed, capable of handling

errors up to ε = 10−4
[61]. An optimal algorithm was proposed for single-qubit unitaries that

can be synthesized exactly with the set (H,T) [108]. Then more and more e�cient approximation

methods were published, focusing on the approximation ofRz rotations. With ancillary qubits, an

asymptotically optimal algorithm was designed [107]. Without ancillae, an improvement over [61]

was proposed in [109]. It was capable of reaching errors around ε = 10−17
but its classical runtime

was still exponential in the number of T gates. An algorithm reaching a T-count ofK+4 log2(1/ε)
was proposed [173], making one step closer to the information-theoretic lower bound of K +
3 log2(1/ε). Finally, an optimal and fast probabilistic algorithm is given in [164].

While the size of purely unitary circuits produced by the best methods attain the theoretical

lower bound [164], with additional techniques it is possible to generate even shorter circuits. For

instance, the Repeat-Until-Success (RUS) protocol produces (non-unitary) circuits with approxi-

mately 2.5 times fewer gates than this theoretical lower bound [26]. A simpler protocol is also

proposed in [25].

Finally, some extensions to other universal gate sets have been presented [105, 163].

Reversible Synthesis, Oracle Synthesis

When an operator consists in a permutation of the basis states, its matrix representation is a

permutation matrix of size 2n and we enter the realm of reversible circuit synthesis [177]. We refer

the reader to [166] for a survey about this topic.

Oracle synthesis is a special case of reversible circuit synthesis where we want to implement a

speci�c Boolean function over n inputs. Oracles are used in many di�erent quantum algorithms

[39, 71, 77]: the complexity of quantum algorithms is sometimes measured in the number of calls

made to the oracle. It is, therefore, crucial to be able to provide e�cient implementations of those

logical functions.

Given a Boolean function f over n bits, the usual way to implement it reversibly is to use an

ancillary qubit and to perform the operation U de�ned on n+ 1 qubits by

U |x〉 |y〉 = |x〉 |f(x)⊕ y〉 .

f can be given in multiple di�erent forms (formula, boolean network, etc.). Several methods

have been designed during the last years and we cannot summarize them all. We refer the reader

to some recent works in the literature, mostly focusing on the quantum implementation in the

Cli�ord+T gate set [137, 139].

2.6 Problems Tackled in this Ph.D. thesis

We summarize in Table 2.3 the di�erent problems that we have tackled during this Ph.D. thesis.

Below is the list of the main algorithms/routines that have been produced for solving each of these

problems.
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1. ZUNQRF is a LAPACK-like [13] routine for a speci�c QR factorization designed for unitary

matrices. We can express the synthesis of a unitary matrix U ∈ U(2n) as a succession of

state preparations that can be performed either using the standard {CNOT + SU(2) } gate set

or the speci�c { MS + SU(2) } gate set for trapped-ions. The main objective is to optimize the

compilation time in order to address larger problem sizes than those tractable with current

state-of-the-art algorithms. We also optimize the total number of gates so that we produce

circuits at most twice larger than those produced by the best algorithm in the literature. The

synthesis is exact and may not require any ancillary qubit. These results have been published

in Elsevier’s journal Computer Physics Communications [47].

2. We use the well-known BFGS algorithm to synthesize circuits of optimal size for random

operators. Given a unitary U , we use the BFGS algorithm to compute the best angles in a

parameterized circuit given in a canonical form of optimal size. We reach the theoretical

lower bound and give insights about the validity of such bound. Again, our framework

works for both the standard { CNOT + SU(2) } gate set or the speci�c trapped-ions { MS +

SU(2) } gate set. Due to the "continuous variable optimization" nature of this framework,

the synthesis is approximate. We do not use ancillary qubits. Part of these results have been

presented at ICCS 2019 and they are published by Springer in LNCS [46].

3. GreedyGE is a greedy variant of the Gaussian elimination algorithm. We use it for the syn-

thesis of CNOT circuits that can be represented as a boolean matrix and we optimize the size

of the circuits. The synthesis is exact, does not require ancillary qubits, and can be made on

unconstrained architectures. We also optimize the compilation time. Overall this method

has the best asymptotic results, outperforming the state-of-the-art methods in both circuit

size and compilation time.

4. DaCSynth is a divide-and-conquer algorithm for the synthesis of CNOT circuits on uncon-

strained architectures. The goal is the optimization of the depth of the circuits and a version

both with and without ancillary qubits have been designed. We report the best results for

operators of intermediate size (< 103
qubits).

5. We designed an algorithm for CNOT circuits synthesis that relies on the solution of the

cryptographic problem called the “syndrome decoding problem”. We use it for optimizing the

size of the circuits on unconstrained and constrained architectures. We do not use ancillary

qubits. Our method outperforms state-of-the-art methods for various architectures. These

results have been presented at RC 2020 and they are published by Springer LNCS [48].

2.7 Notations

Throughout this manuscript, the term �ops stands for �oating-point operations and the �op count

evaluates the volume of work in a computation. Unless otherwise speci�ed theses �ops are given

in complex arithmetic. The linear algebra formulas will be presented using Matlab-like notations.
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Chapter 4 Chapter 5 Chapter 9 Chapter 10 Chapter 11

Abstract

Representation

U ∈ U(2n) U ∈ U(2n) A ∈ Fn×n2 A ∈ Fn×n2 A ∈ Fn×n2

Set of gates S { CNOT, SU(2) }

or { MS, SU(2) }

{ CNOT, SU(2) }

or { MS, SU(2) }

{CNOT} {CNOT} {CNOT}

Error ε 0 Arbitrary 0 0 0

Ancillary qubits m 0 0 0 Arbitrary 0

Cost function f Size Size Size Depth Size

Main objective T (UC) f f f f

Second objective f T (UC) T (UC) T (UC) T (UC)

Algorithm ZUNQRF BFGS GreedyGE DaCSynth Syndrome

Table 2.3: Problems tackled and algorithms designed in the Ph.D. thesis.
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Chapter 3

Introduction to Generic Quantum
Circuits Synthesis

Contents
3.1 Presentation of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Presentation of the Problem

This part of the thesis is dedicated to what we informally call generic quantum circuits synthesis,
i.e., the synthesis of generic operators given as unitary matrices. We immediately exclude any sub-

class of operators that has a custom representation and custom synthesis methods: Cli�ord circuits,

CNOT+T circuits, etc. We also assume that the operators to synthesize are random, sampled from

a uniform distribution according to the Haar measure [73]. This measure is the standard measure

for sampling random matrices from compact topological groups, e.g., GLn(C),U(n). For QRAM

generation — probably the main application of generic synthesis — the assumption of random-

ness in the classical data to load seems viable, for instance for the generation of an unstructured

database [23].

In other words, we do not expect the operators to have a particular short circuit implementation.

We will not study methods that try to optimize at most the size of the circuits: these methods

generally either try to exploit the speci�cities of the input matrix or perform some kind of brute

force search to �nd an optimum. Given that random operators almost surely represent the worst

cases possible — more details are given in Chapter 5 —, in the former case there are no speci�cities

an algorithm can exploit and in the latter case the methods are limited to extremely small problem

sizes for savings that will not be as consequent as one can expect from an exact method.

Instead, we focus on the asymptotic worst-case behavior. As a function of the number of qubits,

generic synthesis of quantum circuits takes exponentially large matrices as inputs and outputs

exponentially large quantum circuits most of the time. The scalability of any algorithm for this

problem is therefore limited. In this thesis we push the limits of generic quantum circuits synthesis

a little further, in two antinomic directions:

1. What is the largest unitary one can synthesize in a reasonable amount of time?
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2. What is the shortest circuit one can synthesize for a given unitary in a reasonable amount of

time?

Those two metrics — circuit size/quantum resources and generation time/classical resources —

are unfortunately incompatible. If one wants the shortest circuit possible then the use of exponen-

tially costly algorithms is often necessary. This results in a doubly exponential algorithm as the

inputs are already exponentially large in the number of qubits. Faster algorithms will not produce

optimal circuits but at least larger problems can be addressed. This inevitable tradeo� between

classical and quantum resources is at the core of our work and is one of its guiding threads. More

precisely, methods for generic synthesis produce circuits of asymptotic size α× 4n where n is the

number of qubits (as discussed in Section 2.5). Our goal is to understand how to optimally trade

the value of α such that the circuits generation time remains reasonable. By reasonable we mean

less than a few hours, but all our results can be extended to the case where more running time is

allowed.

To summarize, we focus on the following task:

Synthesize an operator on n qubits in a reasonable amount of time with a circuit of size α× 4n.

Our goal is to succeed for as large an n as possible and, for each n, with the smallest α possible.

This part is divided into three chapters:

1. In Chapter 4 we propose a fast algebraic algorithm based on the QR factorization with House-

holder transformations to synthesize the largest unitaries possible while keeping α as low

as possible. These results have been published in Elsevier’s journal Computer Physics Com-
munications [47].

2. In Chapter 5 we use numerical optimizers to synthesize unitaries with the lowest α possible

and we explore the tradeo� between classical time and circuit size. Part of these results have

been presented at ICCS 2019 and they are published by Springer in LNCS [46].

3. Finally, in Chapter 6 an attempt to extend the reuse method [104] to generic circuits synthesis

is proposed. These results have been presented at AMMCS 2017 and they are published by

Springer in Recent Advances in Mathematical and Statistical Methods [5] .

3.2 Notations

Throughout this part, we will make use of the following notation: #Op.
Meth.

(n) gives the entan-

gling cost, i.e., the number of entangling gates (most of the time this will be the CNOT cost) for

synthesizing the family of operators “Op.”, with the method “Meth”, as a function of the number of

qubits n. For instance:

• #UQSD(n) is the number of CNOT gates in the circuits given by the Quantum Shannon De-

composition (QSD) for the synthesis of generic unitary operators on n qubits.

• #SPSchmidt(n) is the number of CNOT gates in the circuits given by the method using Schmidt’s

decomposition for state preparation from [155].

For completeness, all the families of operators, all the methods and all the corresponding nota-

tions we will encounter in this part are given in Table 3.1.
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Family of operators Method Notation

Generic unitary

QSD #UQSD

Householder #UHous.

Householder + rotation multiplexors #UHous., rot

Householder + SU(2) multiplexors #UHous., su

Householder + Schmidt’s decomposition #UHous., Schmidt

Householder + Schmidt’s decomposition + QSD #UHous., Schmidt, QSD

Up to diagonal operator #U-diag

State preparation

Rotation multiplexors #SProt

SU(2) multiplexors #SPsu

Schmidt’s decomposition #SPSchmidt

Schmidt’s decomposition + QSD #SPSchmidt, QSD

Real state with Ry-multiplexor #SPreal, rot

Isometries

QSD #IsoQSD

Householder + rotation multiplexors #IsoHous., rot

Householder + SU(2) multiplexors #IsoHous., su

Householder + Schmidt’s decomposition #IsoHous., Schmidt

Householder + Schmidt’s decomposition + QSD #IsoHous., Schmidt, QSD

Multiplexors

Rotations #Multrot

SU(2) operators #Multsu

Diagonal operators Rz multiplexors #Diag
rot

Generalized To�olis From [78] #To�
[78]

Table 3.1: Summary of the notations used in Part B.
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Chapter 4

A QR-Based Synthesis Algorithm
Using Householder Transformations

Contents
4.1 Motivation and Technical Background . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.1 Quantum Multiplexors, Diagonal Operators . . . . . . . . . . . . . . . 46

4.1.2 Quantum State Preparation . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.3 Quantum Shannon Decomposition . . . . . . . . . . . . . . . . . . . . 51

4.1.4 Other Synthesis Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.5 Other Decomposition Schemes . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 A QR Algorithm for Unitary Matrices with Householder Transformations . . . 58
4.4 From the Householder Decomposition to a Quantum Circuit . . . . . . . . . . . 62

4.4.1 General Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.2 Resources Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.3 Extension to other gate sets . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5.1 Sequential Runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5.2 Multithreaded Runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5.3 Experiments on Graphics Processing Units (GPU) . . . . . . . . . . . . 74

4.1 Motivation and Technical Background

This chapter is dedicated to a question that has gathered little interest since now: the classical

time complexity of quantum circuit synthesis methods. This question is doubly important:

• Improving the time complexity will be useful when one has to compile a continuous stream

of quantum circuits on the �y or when the quantum operator is parameterized and one has to

recompile the parameters of the resulting quantum circuit every time the operator changes.

• Maybe more importantly, improving the compilation time also allows reaching larger prob-

lem sizes. This will be of crucial importance for quantum algorithms that need to process
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classical data. If the size of the classical data to load is too large the synthesis of the associ-

ated unitary operator may be impossible because it will require too much classical time. Fast

quantum circuit synthesis methods are important if only to widen the �eld of applications

of quantum algorithms.

In the literature related to quantum circuit optimization, the running times of the methods are

usually provided [9, 10, 80]. This is particularly instructive when the algorithm is a heuristic and

that it is complicated to give a theoretical time complexity. In quantum circuit synthesis, the ap-

proach is di�erent. The methods in the literature are mostly algebraic, with exponential complexity.

Therefore the time complexity was not a major concern until the last decade where some works

integrated it in their analysis [11,87,135]. Yet we face two limitations: �rst, the running times were

given in the context of (optimized) brute-force search methods where the scalability of the methods

is limited (only a few qubits) and represents the main issue to tackle [11,135]. For purely algebraic

quantum circuit synthesis methods the time complexity was given theoretically with no deeper

insights [87]. For instance, the constant factors of the leading terms were not given. We claim they

are very important and we show in this chapter that improving the constant factor enables us to

reach problems with one, two, three more qubits, and consequently to process classical data that

are two, four, eight times larger.

We start by giving an overview of the di�erent quantum circuit synthesis methods. We intro-

duce the basic blocks and basic structures used as we will need them for the method presented

in Sections 4.3 and 4.4. We also investigate the time complexity of state-of-the-art methods. If

not speci�ed otherwise, all the calculations we present can be found in the corresponding original

article.

4.1.1 Quantum Multiplexors, Diagonal Operators

Also named uniformly controlled-rotations [18], quantum multiplexors are a generalization of the

controlled gates. A unitary positively controlled by k qubits is applied if the value of all k qubits is

|1〉, otherwise the identity operator is applied. A quantum multiplexor applies a di�erent operator

for each value of the control qubits. For instance, a multiplexor controlled by two qubits and acting

on k qubits has the matrix block structure

A =


A0 0 0 0
0 A1 0 0
0 0 A2 0
0 0 0 A3


where A0 is a k-qubit operator that is applied if both control qubits are 0, A1 is applied if the �rst

control qubit is 0 and the second one is 1, etc. The graphical representation of a multiplexor is

illustrated in Figure 4.1 with the correspondence between A and a succession of multi-controlled

gates. In the circuit, the crossed-out line stands for several qubits (in this case, k qubits).

The problem of decomposing a multiplexor into elementary gates admits algorithms with vary-

ing numerical costs depending on the choice of elementary gates [143,174]. In the case of a multi-

plexor applying only one kind of elementary rotations (along one of the axis Y or Z – we call such

a structure a rotation multiplexor) the transition from the angles of the multiplexors to the angles

in the corresponding quantum circuits can be performed via a single matrix-vector product [143].

Moreover, the decomposition is much simpler than the general case shown in Figure 4.1: the de-

composition of anRk-multiplexor controlled by n qubits into two multiplexors controlled by n−1
qubits has the shape shown in Figure 4.2 and the special case with one control qubit is shown in

46



Part B – Synthesis on SU(2n) Chapter 4

/ A

≡
/ A0 A1 A2 A3

Figure 4.1: Circuit equivalence for a multiplexor.

/

Rk

≡ /

Rk Rk

Figure 4.2: Decomposition of a rotation multiplexor.

Figure 4.3 (where we omit angles for legibility). Such decompositions can be applied recursively

and by removing some CNOT gates that cancel (see Figure 2 in [174] for more details) we obtain a

�nal quantum circuit composed of

#Multrot(n) = 2n−1
(4.1)

CNOTs and 2n−1
elementary rotations. Note that, for the synthesis of Ry multiplexors, a func-

tionally equivalent circuit can be obtained by replacing each CNOT gate by a Controlled-Z (CZ)

gate [174]. For multiplexors in SU(2) the decomposition given in Figure 4.2 remains valid up to a

diagonal matrix that replaces the last CNOT gate and operators in SU(2) that replace the elemen-

tary rotations. Hence, without considering the diagonal gate — for our purpose we will be able to

remove it — we need

#Multsu(n) = 2n−1 − 1 (4.2)

CNOTs and 2n−1
generic one-qubit gates to implement an SU(2)-multiplexor.

Quantum multiplexors are expressive enough to be reused in other constructions, thus helping

during the compilation process. This structure is at the core of modern quantum circuit synthesis

methods producing the best results in terms of gate count [142, 174].

Diagonal Operators

An example of the use of multiplexors is for the synthesis of diagonal operators. In [174] it was

shown that a diagonal operator on n qubits is equivalent to a diagonal operator on n−1 qubits plus

an Rz multiplexor controlled by those same n− 1 qubits. For instance, given a diagonal operator

D, for each bitstring s of size n− 1 one can always �nd an angle αs such that

Rz(αs)

(
D0s

D1s

)
= eiθsI2

where

(
D0s

D1s

)
is a 2× 2 matrix and D0s and D1s are the diagonal elements of D at location

0s and 1s. Setting D0s = eiφs and D1s = eiϕs one can check that αs = φs − ϕs and θs =
(φs +ϕs)/2 works. Applying all those Rz rotations for each bitstring s de�nes an Rz multiplexor

controlled by the last n−1 qubits. After application of such a multiplexor, we have a new operator

D′ =
(
D2

D2

)
with D2 diagonal on n− 1 qubits and for each bitstring s of size n− 1 we have
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Rk
≡

Rk Rk

Figure 4.3: Decomposition of a rotation multiplexor with one control qubit.

D =


eiθ1

eiθ2

eiθ3

eiθ4

 =


ei(θ3−θ1)/2

ei(θ4−θ2)/2)

ei(θ1−θ3)/2

ei(θ2−θ4)/2


︸ ︷︷ ︸


ei(θ1+θ3)/2

ei(θ2+θ4)/2

ei(θ1+θ3)/2

ei(θ2+θ4)/2


︸ ︷︷ ︸

Rz(θ1 − θ3)
Rz(θ2 − θ4) ei

θ1+θ2+θ3+θ4
4 × I2 ⊗Rz

(
θ1 + θ3 − θ2 − θ4

2

)
︸ ︷︷ ︸

Rz

Rz

Figure 4.4: Process for the synthesis of a diagonal operator on 2 qubits. The dashed dotted box

stands for a global phase, it can be applied on any qubit and at any time in the circuit.

(D2)s = eiθs . One can pursue the synthesis of D2 on the last n− 1 qubits. The synthesis process

for n = 2 is given in Fig 4.4. Overall we need

#Diag
rot

(n) = #Multrot(n) + #Diag
rot

(n− 1) =
n∑
k=2

2k−1 = 2n − 2

CNOT gates for the implementation of a diagonal operator.

4.1.2 Quantum State Preparation

With Multiplexors

Similarly to the diagonal operator case, a common method for preparing a generic quantum state

on n qubits consists in applying a series of operations such that we are left with the preparation

of a quantum state on n − 1 qubits, and we repeat the process until we have to prepare only a

one-qubit state. Given as input a unit complex vector Ψ ∈ C2n
, disentangling the �rst qubit is

for instance equivalent to zeroing the second half of the components of Ψ. To do so, one can

apply for each bitstring s ∈ Fn−1
2 a speci�c one-qubit operation Us on the �rst qubit such that

Us(Ψ0s |0s〉 + Ψ1s |1s〉) = Ψ′0s |0s〉. Then the global operator

⊕
s Us can be implemented either

by applying successively one Rz-multiplexor and one Ry-multiplexor, both on the �rst qubit and

controlled by the n−1 other ones, or by applying one SU(2)-multiplexor, still on the �rst qubit and

controlled by the other qubits [142, 174]. In the case where we only use Ry and Rz multiplexors,

we can simply repeat the operation on the n− 1 remaining qubits. Overall we need to implement

two rotation multiplexors on n qubits, two on n− 1 qubits, etc. The implementation of a rotation

multiplexor can be reversed if you take the opposite angle for each rotation in the circuit, so it is

possible to cancel two CNOTs for each pair of Ry/Rz multiplexors. Overall one needs a total of

#SProt(n) =
n∑
k=2

(2× #Multrot(k)− 2) = 2n+1 − 2n− 2

CNOTs and 2 + 2 ×∑n
k=2 2k−1 ≈ 2n+1

elementary rotations to implement an arbitrary state on

n qubits.
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When using multiplexors in SU(2), the additional diagonal gate in the synthesis of the mul-

tiplexor can be merged with the remaining quantum state as adding phases to each component

of the state will not change the number of nonzero elements. So preparing a quantum state with

multiplexors in SU(2) requires to implement one SU(2)-multiplexor on n qubits, one on n − 1
qubits, etc., without considering the extra diagonal gates, for a total of

#SPsu(n) =

n∑
k=2

#Multsu(k) = 2n − n− 1

CNOTs and approximately 2n generic one-qubit gates. Finally, to have the total count for the num-

ber of elementary rotations, we decompose each one-qubit gateU as a product of three elementary

rotations (ignoring the global phase) [148]

U = Rx(α)×Rz(β)×Rx(γ) (4.3)

where α, β, γ are three real parameters. Rx rotations commute with the CNOT gate if the Rx
gate acts on the target qubit of the CNOT gate. So for each quantum subcircuit implementing an

SU(2)-multiplexor and starting from the leftmost rotation, we can commute the Rx gate, merge it

with the next generic one-qubit gate, and repeat the process (the decomposition shown in Eq. (4.3),

commutation, and merging) until we reach the last one-qubit gate of the multiplexor implementa-

tion. Thus, up to a linear number of gates, all the generic one-qubit gates can be decomposed into

only two elementary rotations, for a total of approximately 2n+1
rotation gates.

Note that a quantum state on n qubits is completely de�ned by 2n+1 − 2 real parameters: 2
parameters for each complex entry and the two removed parameters correspond to the arbitrary

global phase and the norm of the vector equal to 1. This means that the method for quantum state

preparation using either rotation multiplexors or SU(2) multiplexors is optimal in the number

of rotations up to a constant additive factor. The only possible improvement is in the number of

CNOT gates.

Note �nally that for a real quantum state we can solely use Ry multiplexors and the circuit

construction and CNOT complexity are similar to the case where we synthesize a diagonal operator.

Yet we can save some CNOT gates if we implement the multiplexors with controlled-Z (CZ) gates

replacing the CNOT gates, as done in [174] for the Quantum Shannon Decomposition. We can start

the implementation of a Ry multiplexor with a CZ gate but this gate does not modify the number

of nonzero elements in the state to synthesize. It only multiplies by −1 some of the entries. These

changes of phases can also be handled by changing the angles of some Ry rotations. Therefore we

can remove the �rst CZ gate of each multiplexor and

#SPreal, rot(n) =
n∑
k=2

(#Multrot(k)− 1) = 2n − n− 1.

With Schmidt Decomposition

Schmidt’s decomposition expresses a quantum state |ψ〉 as

|ψ〉 =

2r−1∑
i=0

αi |ui〉 ⊗ |vi〉 (4.4)

where 2r ≤ n, α ∈ R2r , ‖α‖ = 1, (ui)0≤i<2r is an orthonormal set of quantum states on r qubits

and (vi)0≤i<2r is an orthonormal set of quantum states on n − r qubits. In [155] a method for

preparing any state |ψ〉 is given exploiting Schmidt’s decomposition. It consists in three parts:
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1. starting from |0〉r ⊗ |0〉n−r , prepare the state |α〉 on the �rst r qubits. Note that α is a real

vector of unit norm and of size 2r so preparing α on a register of r qubits is a perfectly valid

operation. We get the state

2r−1∑
i=0

αi |i〉 ⊗ |0〉n−r .

2. apply CNOT gates with control j and target n− r+ j for j = 1..r such that we get the state

2r−1∑
i=0

αi |i〉 ⊗ |0〉n−2r ⊗ |i〉 .

3. apply the r-qubit operator U =
(
u0 u1 . . . u2r−1

)
on the �rst r qubits and the n − r

qubit operator V =
(
v0 v1 . . . v2r−1 ? . . . ?

)
on the last n − r qubits. We �nally

get the state

2r−1∑
i=0

αi |ui〉 ⊗ |vi〉 = |ψ〉 .

This construction transforms the synthesis of a state on n qubits to the synthesis of an r-qubit

operator and an r to n − r isometry. Given that the synthesis of operators is more studied than

the synthesis of isometries, the case where r = bn/2c and n− r = dn/2e is of particular interest.

Namely, if n is even then the synthesis of a state on n qubits is equivalent to the synthesis of two

operators on n/2 qubits. If n is odd, then we have to synthesize an operator of (n − 1)/2 qubits

and half of an operator on (n + 1)/2 qubits (an bn/2c to dn/2e isometry). In terms of resources,

the two operators represent the main quantum cost: preparing a state on r qubits only requires

O(2r) gates, the number of CNOTs in Stage 2 of the procedure is linear in the number of qubits.

Synthesizing operators on n/2 qubits needs some O(4n/2) = O(2n) gates. Those two operators

carry almost all the information on the state to synthesize. An example for n = 5 is given Fig 4.5.

The total number of CNOTs is given by

#SPSchmidt(n) = #SP∗(bn/2c) + bn/2c+ #U∗(dn/2e) + #U∗(bn/2c) (4.5)

if one considers the isometry as a full operator. A more precise formula is

#SPSchmidt(n) = #SP∗(bn/2c) + bn/2c+ #Iso∗(bn/2c, dn/2e) + #U∗(bn/2c). (4.6)

These formulas are a little more general than those given in [155]. One is free to choose any

method for state preparation and the unitary/isometry synthesis parts. This is symbolized by the

index ∗ in the formulas. In [155] the QSD was used for the synthesis of the unitaries. The QSD

produces circuits of size
23
484n, therefore if n is even one can show that the state preparation routine

based on Schmidt’s decomposition produces circuits of size
23
242n, improving on the method based

on SU(2) multiplexors. A similar complexity was derived later when n is odd in [86]. The authors

used a custom QSD for the synthesis of the bn/2c to dn/2e isometry which requires fewer CNOT

gates than simply synthesizing a full operator on dn/2e qubits. More details are given in the next

section.
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|0〉⊗2

|0〉⊗3

SP(α) U

≡ |0〉5 |vi〉SP(vi)

V

Figure 4.5: Example of state preparation based on Schmidt’s decomposition for n = 5 qubits.

4.1.3 Quantum Shannon Decomposition

Among the various existing synthesis methods [50,148,194], the one giving the shortest circuits

in terms of number of gates is the Quantum Shannon Decomposition (QSD) [142, 174]. It relies on

the following two decomposition formulas:

• the �rst one is the Cosine-Sine decomposition (CSD) of a unitary matrix U on n qubits [66]:

U =

(
A1

A2

)(
C −S
S C

)(
B1

B2

)
. (4.7)

A1, A2, B1, B2 are unitary matrices on n − 1 qubits and C, S are real positive diagonal

matrices such that C2 + S2 = I2n−1 . The central term in the CS decomposition is in fact

an Ry-multiplexor controlled by the n − 1 least signi�cant qubits. The circuit equivalence

is given in Figure 4.6a, where angles are omitted for legibility.

• The second formula decomposes a multiplexor(
A1

A2

)
=

(
V

V

)(
D†

D

)(
W

W

)
(4.8)

with D a diagonal matrix on n − 1 qubits, V and W are unitary operating n − 1 qubits.

The central term involving the matrix D is in fact a Rz multiplexor controlled by the n− 1
least signi�cant qubits. The circuit equivalence is represented in Figure 4.6b, again with

omitted angles. The computation of V,W and D can be done, e.g., by diagonalizing the

matrix A2A
†
1 = V D2V †. Then W = DV †A1.

Finally, synthesizingU on n qubits is equivalent to synthesizing 3 rotation multiplexors on n qubits

and 4 matrices on n− 1 qubits on which we can apply the QSD again as shown in Figure 4.6c. We

repeat the process until we get only multiplexors and gates acting on a small number of qubits

(typically 2) for which an exact decomposition is known [35, 116, 195–197].

Therefore to have the total number of CNOTs required, we solve the recursive formula

cn = 4cn−1︸ ︷︷ ︸
the four unitaries on n− 1 qubits

+ 3× 2n−1︸ ︷︷ ︸
the three multiplexors

.

If we stop the recursion at p qubits, one can prove by induction the following expression for cn:

cn = 4n−p(cp + 3× 2p−1)− 3× 2n−1.

The Ry multiplexor can be implemented with CZ rotations instead of CNOT gates. Depending

on if the implementation of the Ry multiplexor begins or ends with a CZ gate, one CZ gate, being
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/ /n− 1
U ≡

/ /B1

B2

Ry

A1

A2

(a) Cosine-Sine Decomposition

/ /n− 1
A1

A2

≡
/ /W

Rz

V

(b) Decomposing a multiplexor

/ /n− 1
U ≡

/ /U1

Rz

U2

Ry

U3

Rz

U4

(c) Full QSD decomposition

Figure 4.6: Circuit equivalences for the QSD.

diagonal, can be merged with either the operator

(
A1

A2

)
or the operator

(
B1

B2

)
. This

saves one CZ gate for eachRy multiplexor. In total (4n−p−1)/3 CZ gates are saved. If only CNOT

gates are available, it is still possible to switch back to CNOT gates as CNOT and CZ gates are

equivalent up to Hadamard gates [174]. Overall, the total number of CNOT gates is given by

#UQSD(n) =
#U(p) + 3× 2p−1 − 1/3

4p
× 4n − 3× 2n−1 +

1

3
. (4.9)

Lastly, when p = 2, the two-qubit operators can be implemented as the concatenation of a

diagonal operator and a two-qubit operator that only needs 2 CNOT gates. Then, starting from the

left-most two-qubit operator, the diagonal gate can commute with the controls of the multiplexors

and merge with the next operator. Pursuing until we reach the last operator, every two-qubit

operator but the last can be implemented with only 2 CNOT gates. Therefore one can save 4n−2−1
additional CNOT gates or equivalently one can replace p = 2, #U(p) = 2 and add 1 to get the

current best CNOT count for circuit synthesis:

#UQSD(n) =
23

48
4n − 3× 2n−1 +

4

3
. (4.10)

Assuming that we can synthesize an operator on p qubits up to a diagonal gate with #U-diag(p)
gates, we have a more general formula than the one given in [174]:

#UQSD(n) = αp × 4n − 3× 2n−1 +
1

3
+ δp (4.11)

where

αp =
#U-diag(p) + 3× 2p−1 − 1/3

4p
,

δp = #U(p)− #U-diag(p).

Application to Isometry Synthesis and State Preparation

We can combine the QSD with the state preparation scheme using Schmidt’s decomposition. We

get new equations that cannot be found in the literature. Using Eq (4.9) in Eq (4.5) we have:

#SPSchmidt, QSD(n) = αp ×
(

4dn/2e + 4bn/2c
)
− 3

2

(
2dn/2e + 2bn/2c

)
+ 2bn/2c − 1

3
+ 2δp. (4.12)
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However, this represents an improvement over the method using SU(2) multiplexors only when

n is even. When n is odd we have to synthesize an r − 1 to r isometry with r = dn/2e. This

synthesis can be done more e�ciently by using a tailored QSD as done in [86]. Namely, in the

synthesis of an r− 1 to r isometry we only want to synthesize the �rst 2r columns of an operator

of size 2r+1
. We can equivalently assume that the �rst qubit is in the �xed state |0〉. When applying

the CSD decomposition one can see that the �rst multiplexor

(
B1

B2

)
from Eq (4.7) needs not

to be implemented completely as the control qubit is in the �xed state |0〉. In other words, we only

need to implement the operator B1 on the last r− 1 qubits, plus the usual Ry multiplexor and the

second multiplexor

(
A1

A2

)
. Overall the synthesis on an r − 1 to r isometry is equivalent to

the synthesis of two rotation multiplexors on r qubits and three operators on r−1 qubits. We have

#Iso(r − 1, r) = 3× #U(r − 1) + 2#Multrot(r).

And using the QSD for the synthesis of the three operators we get

#IsoQSD(r − 1, r) =
3

4
αp4

r − 5

4
2r + 1 + 3δp. (4.13)

Combining Eq. (4.13) and Eq. (4.6), we �nally get

#SPSchmidt, QSD(n) = αp ×
(

4bn/2c +
3

4
4dn/2e

)
− 1

2
2bn/2c − 5

4
2dn/2e +

1

3
+ 4δp. (4.14)

when n is odd. To summarize:

• if n is even, then

#SPSchmidt, QSD(n) = 2αp × 2n − 2× 2n/2 − 1

3
+ 2δp. (4.15)

With p = 2, αp = 23/48, δp = 1 we recover the result from [155].

• if n is odd, then

#SPSchmidt, QSD(n) = 2αp × 2n − 3× 2(n−1)/2 +
1

3
+ 4δp. (4.16)

With p = 2, αp = 23/48, δp = 1 we recover the result from [86].

Classical Resource Estimation

If the Quantum Shannon Decomposition (QSD) is the method giving the best asymptotic number

of CNOTs in the circuit so far:
23
48 × 4n, one result of this thesis is to explicitly show that this

method has nonetheless a drawback: the method is very costly in terms of classical resources.

What follows is a summary of how the QSD can be implemented with an estimation of the total

�ops count. Notably, the algorithm used for computing the Cosine-Sine Decomposition (CSD) is

taken from [185]. This algorithm is now part of LAPACK (routine ZUNCSD) and has already been

used in other implementations [87, 200].

The algorithm for computing Formula (4.7) consists in reducing theK×K matrix U into a 2×2
bidiagonal block form. Then the 4 bidiagonal blocks are simultaneously diagonalized using bidiag-

onal SVD algorithms. The �rst part is the most expensive one in terms of �oating-point operations:
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by applying Householder re�ectors to the left and right of U , we progressively bidiagonalize U —

this requires K3/3 �ops for each block — and we store the accumulation of each Householder

re�ector to compute A1, A2, B1, B2 — this requires K3/6 �ops for each block. Overall, comput-

ing the CSD on a K ×K matrix requires 2 ×K3
�ops. Concerning Formula (4.8), we follow the

methodology given in [174]. One has to perform two matrix/matrix products and an eigenvalue

decomposition. With square matrices of size K, each matrix/matrix product requires 2×K3
�ops

and the eigenvalue decomposition needs around 26×K3
[24, Table 3.13]. Overall for the �rst step

of the Quantum Shannon Decomposition applied to a matrix of size N we have to compute:

• one CSD of a matrix of size N ,

• decompose two multiplexors, i.e., four matrix/matrix products of size N/2 and two eigen-

value decompositions of size N/2 too,

• decompose three rotation multiplexors, this part can be computed with a single matrix/vector

product and is negligible.

This represents a total of 2 × N3 + 4 × 2 × (N/2)3 + 2 × 26 × (N/2)3 = 19
2 × N3

�ops.

To pursue the algorithm we have to perform the same operations on 4 matrices of size N/2, then

on 16 matrices of size N/4, etc. Overall, with N = 2n we can approximate the total number of

�ops to 19× 8n which is very expensive. Standard QR factorizations only require about N3
�ops,

so we may expect other synthesis methods to be much more e�cient in terms of classical time

complexity.

4.1.4 Other Synthesis Methods

We just saw in the previous section that the QSD has a large overhead in its classical time com-

plexity. Cheaper methods, even though they produce less optimal circuits, are of interest if they are

able to synthesize unitaries on a larger number of qubits. In this section, we explore other methods

in the literature and we evaluate their complexities in terms of time complexity and gate counts.

We can distinguish two classes of methods for quantum circuit synthesis:

1. the methods that synthesize the operator column by column, i.e., given an operator U ∈
U(2n) we compute a sequence of gates such that we are left with the synthesis of an operator

V ∈ U(2n − 1) and we repeat the process. QR methods typically lie in this class.

2. the methods that transform the synthesis on an n-qubit operator into the synthesis of several

(n− 1)-qubit operators. The QSD is such an example.

QR Decompositions

A QR decomposition based on Givens rotations is proposed in several works [3,43,194]. Givens

rotations are 2-level unitary matrices that act on only two basis states. One rotation can, therefore,

be used to zero one speci�c entry of the operator. With O(4n) such rotations one can reduce an

operator U to the identity by zeroing iteratively each column of U . By doing so the zeroed entries

will not be modi�ed again in the QR factorization.

Most of the work done to improve these methods is about the implementation of the Givens

rotations into quantum circuits and in which order should we implement them to reduce the gate

count the most. We will not detail it here but the authors in [194] gave an estimation of the average

number of gates in the circuits: 8.7× 4n with an upper bound of 11× 4n. This method produces
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circuits that are between 16 and 20 times larger than the QSD. Such overhead is too important to

retain this method. Besides, although this is an a posteriori argument, the use of Givens rotations

is not recommended compared to the use of Householder re�ections — like our method does, see

Section 4.3 — when the operator is dense, which is the case if we assume that our operator is generic.

For sparse operators, on the other hand, a method based on Givens rotations is relevant. But we

do not focus on sparse operators in this chapter. For all these reasons we do not add this method

in our benchmarks.

Another QR decomposition can be found in [86]. They also synthesize the operator column by

column with the use of multiplexors and multi-controlled gates that prevent the zeroed columns

to be modi�ed while zeroing the next ones. In [87] both time and gate complexities are given for

the synthesis of an m to n isometry:

• the method produces circuits with 2m+n − 1
242n +O(n2)2m CNOTs,

• the classical time complexity is O(n22m+n).

With this method, we have the inverse problem compared to the QR factorization based on

Givens rotations: the CNOT count is close to that of the QSD but the classical run time has an

extra factor of n. For general unitary synthesis with n = m, this method cannot be e�cient

compared to the QSD.

Knill Decomposition

An in-between method is given by Knill’s decomposition [110]. It is not directly based on a

QR factorization but it does not decompose U into operators on fewer qubits neither. Given U =
PDP † an eigenvalue decomposition of U , we have

U =
2n∏
i=1

PiΛn−1(Ph(Di))P
†
i

where:

• Pi is an operator that prepares the state P [i, :], i.e., the i-th eigenvector of U , and Pi |0〉 =
P [i, :].

• Di = eiθi for some real θi is the i-th diagonal entry of D, i.e., the i-th eigenvalue of U ,

• Λn−1(U) stands for an operator U negatively-controlled by the last n − 1 qubits (see Sec-

tion 2.2.2 for a de�nition of a negatively-controlled operator),

• Ph(θ) =

(
θ 0
0 1

)
.

This decomposition is used in [86] and [87]. With some optimizations, the number of CNOT

gates depends on the parity of n. Again the complexity is given for an m to n isometry:

• if n is even the method produces circuits with

23

24
(2m+n + 2n) +

23

12
2m+n/2 − 2m+n/4+2 +O(n2)2m

CNOTs,
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H H

D C
A

B
|0〉⊗n−1

|0〉

|0〉⊗n−1

|0〉

U

Figure 4.7: Block-ZXZ decomposition of an operator U .

• if n is odd the method produces circuits with

115

96
(2m+n + 2n) +

23

12
2m+(n−1)/2 − 2m+(n−1)/4+2 +O(n2)2m

CNOTs.

So the method produces circuits twice larger than the QSD, which is of interest if the run time

is much lower. Computing the complete eigenvalue decomposition (eigenvalues and eigenvectors)

requires about 26N3
�ops for an N ×N matrix. In our case, we need 26× 8n �ops. Synthesizing

a state requires O(2n) �ops, so the synthesis of 2n states requires O(4n) �ops which is negligi-

ble compared to the eigenvalue decomposition. Overall the time complexity is dominated by the

eigenvalue decomposition and is more costly than the QSD requiring 19× 8n �ops.

4.1.5 Other Decomposition Schemes

The QSD is the best method among those who decompose the synthesis into syntheses of op-

erators acting on a smaller number of qubits. It is, in fact, the culmination of the works based

on the CSD. Apart from that, the only decomposition using a similar technique is the block-ZXZ

decomposition [50]. The n-qubit operator U is decomposed as

U =
1

2

(
A 0
0 B

)(
I + C I − C
I − C I + C

)(
I 0
0 D

)
where A,B,C,D are operators acting on n − 1 qubits and I is the identity operator. Given that(
I + C I − C
I − C I + C

)
= (H⊗ I)

(
I 0
0 C

)
(H⊗ I) we get the decomposition scheme given in Fig 4.7.

Then the decomposition can be applied recursively on A,B,C,D.

Actually this decomposition is not far from the QSD. By applying the multiplexor decomposition

given by Eq. (4.8) on the operators

(
A 0
0 B

)
,

(
I 0
0 C

)
and

(
I 0
0 D

)
and merging some operators,

it is easy to see that we recover the QSD decomposition.

4.2 Contributions

A summary of the state-of-the-art methods (�op count and CNOT count) is given in Table 4.1.

The QSD appears to be the best method for synthesizing small circuits but also the quickest

method. This is quite surprising as we highlighted that the QSD is, in fact, costly in terms of clas-

sical resources. The only method in the literature that may be less expensive than the QSD is the

QR factorization based on Givens rotations but we saw that the size of the circuits produced is too

large to be used. Clearly, it lacks a quick synthesis method that produces circuits of reasonable
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Method Asymptotic CNOT count �op count

QSD [142, 174]
23
48

× 4n 19× 8n

QR (Givens) [194] ≈ 8.7× 4n O(8n)

Column by Column [86] 4n O(n8n)

Knill’s Decomposition [86, 110]

{
23
34 × 4n if n is even

115
96 × 4n if n is odd

26× 8n

Table 4.1: Summary of the state-of-the-art methods for generic quantum circuit synthesis. The best

results for the CNOT count and the �op count are in bold.

size. In response to this, we propose a method based on Householder transformations. Strongly

connected to classical results about QR decomposition, this method aims at achieving better per-

formance in the synthesis of quantum circuits by �nding a compromise between circuit size and

calculation time.

The main contributions of the chapter are as follows.

• We adapt the well known and numerically stable QR factorization based on Householder

transformations [66] to the factorization of unitary matrices. The adaptation heavily relies

on the speci�c structure of unitary matrices. We exhibit a signi�cant theoretical and prac-

tical speedup of our speci�c QR algorithm compared to the unmodi�ed QR routine and the

usual technique for quantum circuit synthesis based on the quantum Shannon decomposi-

tion (QSD) [174].

• We propose a complete circuit synthesis method using this specialized QR decomposition

with a complexity analysis for circuit size and arithmetical operations. If some existing the-

oretical and experimental works for quantum circuits synthesis with Householder transfor-

mations have been undertaken [37, 88, 190], to our knowledge none has proposed an imple-

mentation method and a �nal circuit construction with clearly de�ned properties. Overall,

our technique is faster than the QSD-based method while providing circuits only twice as

large
1
.

• We back up our approach with benchmarks on multicore and GPU architectures for random

unitary matrices operating on up to 15 qubits.

These results have been published in Elsevier’s journal Computer Physics Communications [47].

The plan of the chapter is as follows. In Section 4.3 we detail the new adapted Householder

algorithm. We explain in Section 4.4 how to convert this factorization into a quantum circuit.

Section 4.5 presents the performance obtained on multicore and GPU architectures by our algo-

rithm. We also compare our results with a reference algorithm based on the Quantum Shannon

Decomposition method.

1

This extra cost in the �nal quantum circuit is not negligible, especially when considering the current limitations of

the quantum hardware. It may be possible that the gain in the classical process will not compensate the execution time of

the twice as large quantum circuit on real hardware. However, we can handle problem sizes that were unreachable before

with the QSD, regardless of the quality of the hardware. We believe our approach highlights the tradeo�s between two

measures of complexity (circuit size/compilation time) and that this has to be taken in consideration when synthesizing

generic quantum circuits.
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A(k) = 0k−1

R(k)

B(k)b

Figure 4.8: Matrix pattern at step k-th of Householder transformation.

4.3 AQRAlgorithm forUnitaryMatriceswithHouseholderTrans-
formations

In this section, we �rst recall the main principles of the QR factorization of a general complex

square matrix via Householder transformations. Then we consider the special case of unitary

matrices.

The QR decomposition of a matrix A ∈ Cn×n expresses A as the product of a unitary matrix

Q ∈ U(n) and an upper triangular matrixR. A standard algorithm to compute such a factorization

consists in applying a series of Householder transformations [66, p. 209] zeroing out successively

the subdiagonal entries of each column.

At step k (1 ≤ k ≤ n− 1) of the QR algorithm, we zero out all but the �rst entry of the vector

b in the matrix depicted in Figure 4.8 using the Householder transformation, H ′k = In − τkuku†k,

where uk ∈ Cn−k+1
and τk = 2/u†kuk. Note that in the complex case, the Householder matrix H ′k

can be sometimes referred to as “elementary unitary matrix” (e.g. in [118]).

Then the k-th iteration ends with the computation of the matrix

A(k) = HkA
(k−1),

withHk =

(
Ik−1 0

0 H ′k

)
,A(0) = A andH1 = H ′1. This operation updatesB(k) = A(k)(k : n, k : n)

via the relation (
In−k+1 − τkuku†k

)
B(k) = B(k) − τkuk

((
B(k)

)†
uk

)†
, (4.17)

which zeroes out the subdiagonal entries in column k (but does not a�ect the zeros already intro-

duced in previous columns). The problem is now to �nd the vector uk ∈ Cn−k+1
such that(

In−k+1 − τkuku†k
)
b = (βk, 0, . . . , 0)T = βke1.

with βk ∈ C. From [66, p. 233], we have uk = b± eiθ‖b‖e1 with θ = arg(b1), but various choices

for uk have been proposed in numerical libraries (see [118] for a review of these choices).

At the end of the algorithm we have computed a set of n − 1 Householder transformations

H1, H2, ...,Hn−1 such that (
n−1∏
i=1

Hn−i

)
A = R

where R is upper triangular. Since the Householder matrices are Hermitian, we obtain

A =

(
n−1∏
i=1

Hi

)
R = QR.
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In the QR algorithm, the Householder matrices H ′k never need to be explicitly formed and the

expensive part of the computation is the update of the matrixB(k)
, given in Equation (4.17), which

requires at each iteration a matrix-vector multiplication followed by a rank-1 update of B(k)
. The

total cost of the factorization is about
4
3n

3
complex �ops (

16
3 n

3
real �ops).

A block version of the algorithm uses the fact that a product of pHouseholder matricesH1×. . .×
Hp can be written as I − V TV † where V is an n × p rectangular matrix with the Householder

vector uk ∈ Cn at the k-th column and T is an upper triangular matrix [184]. The algorithm

consists in partitioning A into blocks of size n × nA for some nA, factorizing the �rst block and

updating the remaining blocks via the operation (we use a matlab-like notation)

A(:, nA + 1 : n) = A(:, nA + 1 : n)− V TV †A(:, nA + 1 : n),

and repeating the process with the next block until the whole matrix is triangularized. The update is

richer in BLAS 3 operations [51], potentially leading to better performance, yet without decreasing

the �op count [171].

Let us now exploit the speci�city of quantum operators where the corresponding matrix A is

unitary and see how the QR decomposition simpli�es. In this case, the triangular factor is also

unitary and thus diagonal and the QR algorithm ofA consists in a progressive diagonalization ofA.

For sake of simpli�cation, we detail in the remainder only the �rst iteration. Let b = (b1, . . . , bn)T

be the �rst column of the unitary matrix A and r = (r1, . . . , rn) its �rst row. We choose the value

of the Householder vector u = b± eiθ‖b‖e1 as de�ned in [66, p. 233] but we will choose the sign

“+”. This choice has the advantage of maximizing ‖u‖ (for sake of stability [66, p. 233]) and of

simplifying the �nal decomposition of the quantum operator into elementary circuits, as we will

see in Section 4.4. Since A (and A(k)
at the kth iteration) is unitary, we have ‖b‖ = 1 and we get

u = b+ eiθe1

and

τ =
2

‖u‖2 =
2

‖b‖2 + ‖e1‖2 + 2|b1|
=

1

1 + |b1|
.

Then applying the Householder transformation H to b gives

Hb = −eiθ‖b‖e1 = −eiθe1. (4.18)

The gain in �ops complexity occurs in the update phase. Using the orthonormality of the vectors

of A, the update expressed in Equation (4.17) simpli�es to

HA = A− τ(b+ eiθe1)
(
A†
(
b+ eiθe1

))†
= A− τ(b+ eiθe1)(eT1 + e−iθr).

Then we have

HA = A− τ(beT1 + eiθe1e
T
1 + e1r + e−iθbr).

The �rst column of A does not need to be updated in this computation because Equation (4.18)

implies that we can ignore the term beT1 + eiθe1e
T
1 . Similarly the �rst row of A does not need to

be updated because the unitarity of the rows of A ensures that r = −eiθeT1 after application of H .

Moreover τe−iθ = 1/(eiθ + |b1|eiθ) = 1/(b1 + eiθ) = 1/u1, where u1 denotes the �rst component

of u. So we are left with the rank-1 update

(HA)2:n,2:n = A2:n,2:n −
b(2 : n) · r(2 : n)

u1
.
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The matrix-vector product expressed in Equation (4.17) for the classical QR factorization is avoided.

The matrix obtained after the �rst iteration is then

A(1) =

(−eiθ 0
0 (HA)2:n,2:n

)
and we can continue the algorithm on the unitary matrix A(1)(2 : n, 2 : n) and so on, until A
becomes diagonal. The update at the k-th iteration requires only (n − k)2

multiplications and

(n− k)2
additions. Finally this new algorithm requires

∑n−1
k=1 2× (n− k)2 ∼ 2

3n
3

complex �ops,

which is twice as less than the standard case.

It is possible to choose the vector u such that u1 = 1, then the value of τ will be adjusted so

that the resulting Householder transformation H remains the same. More precisely, keeping the

notations above we set

u← 1

eiθ(1 + |b1|)
u (4.19)

and we obtain τ = (1 + |b1|) and then the update phase becomes

(HA)2:n,2:n = A2:n,2:n − u(2 : n) · r(2 : n). (4.20)

The algorithm can easily be done in place. One can store the Householder vectors in the strictly

lower triangular part of A, the diagonal elements of R are stored in the diagonal and the τi’s are

stored in a speci�c array.

The main cost of the algorithm resides in the rank-one update phase in Equation (4.20). In order

to use more optimized BLAS 2 and BLAS 3 operations we can derive from Equation (4.20) new

update relations. Suppose we have already performed the factorization and the update for the �rst

nb rows and columns for some nb. Therefore the �rst nb columns of A contain the Householder

vectors, and the blockA(1 : nb, nb+1 : n) has been updated following (4.20). Let i, j ∈ Jnb+1, nK,

one can verify that the update of the element A(i, j) is given by

A(i, j)← A(i, j)−
nb∑
k=1

A(i, k)×A(k, j) (4.21)

by simply applying successively the update (4.20).

In terms of matrix and vector operations we have

A(i, nb+ 1 : n)← A(i, nb+ 1 : n)−A(i, 1 : nb)×A(1 : nb, nb+ 1 : n) (4.22)

for the update of one row,

A(nb+ 1 : n, j)← A(nb+ 1 : n, j)−A(nb+ 1 : n, 1 : nb)×A(1 : nb, j) (4.23)

for the update of one column and

A(nb+ 1 : n, nb+ 1 : n)←
A(nb+ 1 : n, nb+ 1 : n)−A(nb+ 1 : n, 1 : nb)×A(1 : nb, nb+ 1 : n) (4.24)

for the update of the full matrix. This last update is a BLAS 3 operation and can potentially yield

higher performance on hybrid CPU-GPU architectures [187].

Using these new update relations we can improve the algorithm by three means:
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• First we can improve the unblocked algorithm. Instead of updating the whole matrix at

each iteration with a rank one update we only update one row and one column: at the k-th

iteration we have computed the k-th Householder vector and we update the rowA(k+1, k+
1 : n) and the column A(k + 1 : n, k + 1) via the relations (4.22) and (4.23). Such updates

consist in more and bigger matrix-vector operations and experimentally it appears to scale

better.

• Secondly this naturally leads to a blocked version of the algorithm. Let nb be the size of our

block. Once we have done the computations on the �rst nb rows and nb columns of A with

an unblocked version, we can update the rest of the matrix with a matrix/matrix product via

equation (4.24) and continue the algorithm on the matrix A(nb+ 1 : n, nb+ 1 : n) until we

reach the last block where the unblocked algorithm is applied.

• A third improvement can be made in order to avoid using the unblocked algorithm to com-

pute the full panel of nb rows and columns of A. Indeed the update of the blocks A(nb+ 1 :
n, 1 : nb) and A(1 : nb, nb + 1 : n) can be performed with BLAS 3 operations. One can

prove that there exist triangular matrices T i1, T
i
2 of size i× i, i = 1..nb such that

A(i+ 1 : n, 1 : i)← A(i+ 1 : n, 1 : i)× T i1 (4.25)

A(1 : i, i+ 1 : n)← T i2 ×A(1 : i, i+ 1 : n). (4.26)

The matrices T i1, T
i
2 are computed using the following recursive formula:

T 1
1 = 1, T i+1

1 =

(
T i1 −pi+1T

i
1/Ni

1/Ni

)
, (4.27)

T 1
2 = 1, T i+1

2 =

(
T i2

−qi+1T
i
2 1

)
(4.28)

with pi = A(1 : i, i), qi = A(i, 1 : i). Ni is the normalization factor expressed in Equa-

tion (4.19).

Proof of Formulas (4.25) to (4.28). By induction on i. We do it for T2 only. The case i = 1
is trivial because we do not have to update the �rst row. Now suppose the result is true for

some i, 1 ≤ i < nb. The �rst i rows are already updated by the application of T i2, we only

need to update the next row i+ 1. Let A(i+ 1, j), j ∈ Jnb+ 1, nK be an element of this row.

If the column A(1 : i, j) was already updated the update of A(i + 1, j) would be given by

the equation (4.21), i.e.,

A(i+ 1, j)← A(i+ 1, j)−
i∑

k=1

A(i+ 1, k)×A(k, j).

Written di�erentlyA(i+ 1, j)← A(i+ 1, j)−A(i+ 1, 1 : i+ 1) ·A(1 : i, j). By hypothesis

A(1 : i, j) is updated by the relation A(1 : i, j)← T i2A(1 : i, j). This gives

A(i+ 1, j)← [−A(i+ 1, 1 : i+ 1)× T i2 ; 1] ·A(1 : i+ 1, j).

Doing it for all j and concatenating it with the update of the �rst i rows by the action of T i2
gives the result. The same proof can be done with T1 but one has to be careful about the

normalization factors of the Householder vectors.
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Therefore Tnb1 and Tnb2 only depend on the block A(1 : nb, 1 : nb) and can be used to update

A(nb + 1 : n, 1 : nb) and A(1 : nb, nb + 1) in two BLAS 3 updates. This means that during

an iteration we only need to perform an unblocked Householder factorization on a square matrix

of size nb and then perform 3 BLAS 3 updates. The pseudo code of the algorithm is given in

Algorithm 4.1 (we call the corresponding routine ZUNQRF and its unblocked version ZUNQR2).

ZLARFT2 refers to the adaptation of the standard ZLARFT routine that computes the triangular

matrices. Note that the factorization routine aims at being integrated in the public domain libraries

LAPACK and MAGMA, in collaboration with the University of Tennessee.

Algorithm 4.1: Householder factorization of a unitary matrix A - ZUNQRF.

Require: N ≥ 0, A∈ UN
Ensure: A = QR

// NX determines when to switch from blocked to unblocked code

// NB is the block size

for I = 1, NX,NB do
IB ←MIN(N − I + 1, NB)
call ZUNQR2( IB, IB, A( I, I ), TAU( I ) )

T1, T2 ← ZLARFT2( N, IB, A( I, I ), TAU( I ) )

update A(I : N, I : I + IB) via a call to ZTRMM

if I + IB ≤ N then
update A(I : I + IB, I : N) via a call to ZTRMM

update A(I + IB : N, I + IB : N) via a call to ZGEMM

end if
end for
if I ≤ N then

call ZUNQR2( N-I+1, N-I+1, A( I, I ), TAU( I ) )

end if

Thanks to the above QR decomposition resulting in a product of Householder matrices and a

diagonal matrix, we store the information of a unitary matrix into the subdiagonal part of the

complex matrix (the Householder vectors), and two real vectors, including the θ’s (angles of the

diagonal entries) and the τ ’s. In Section 4.4 we use this factorization of unitary operators to obtain

quantum circuits.

4.4 From the Householder Decomposition to a Quantum Circuit

In this section we develop several methods to convert the Householder representation of a uni-

tary matrix into a quantum circuit. We present a general method in the Section 4.4.1 and we

optimize it in Section 4.4.2.

4.4.1 General Method

Let U ∈ U(2n) be the unitary matrix we want to synthesize. The QR factorization of U gives

normalized vectors u1, u2, . . . , u2n−1 and a diagonal matrix D such that

U =
2n−1∏
i=1

Hi ×D.
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whereHi are Householder matrices de�ned byHi = I2n−2uiu
†
i as in Section 4.3 (since the ui are

normalized). The synthesis of a diagonal operator is a well-known problem [36, 203]. Therefore,

the main issue is the synthesis of the Householder matrices. We recall that

Hiui = −ui

and

∀v, v ⊥ ui ⇒ Hiv = v.

Consequently, for any unitary matrix Pi whose �rst column is ui we can write

Hi = PiDGP
†
i (4.29)

with

DG =


−1

1
. . .

1

 .

IndeedPi can be regarded as an orthonormal basis of vector columns containing ui. In other words,

Equation (4.29) is a diagonalization of Hi.

From this analysis, we get the following decomposition of the unitary matrix U

U =
2n−1∏
i=1

PiDGP
†
i ×D (4.30)

and we can derive a quantum circuit as depicted in Figure 4.9.

• As mentioned already, the synthesis of D is a problem with known solutions.

• Each block PiDGP
†
i is equivalent to un-preparing the state ui, applyingDG and repreparing

the state ui.

– The matrixDG is the “zero phase shift” operator and is used for instance in the Grover

di�usion operator in Grover’s algorithm [71]. Up toX operators this operator is equiv-

alent to the multi-controlled Z gate. So, up to X and H operators, DG is equivalent to

a generalized To�oli gate. Many di�erent implementations of the generalized To�oli

gate exist in the literature [17,78,91,131,167]. In our calculations we write #To�
[78]

(n)
the CNOT complexity of the generalized To�oli gate on n qubits. For numerical ap-

plications we authorize ourselves the use of one ancillary qubit and we use the circuit

from [78]. According to [78], we can synthesize a generalized To�oli gate on n qubits

(n− 1 controls) with

#To�
[78]

(n) = 24n− 72

CNOT gates if n > 4, otherwise we need 1 CNOT for n = 2 and 6 CNOTs for n = 3.

– In our circuits we use the notation SP(v) to refer to a black box that prepares the state

v. Although many di�erent operators can prepare the state v, we point out that in one

circuit the operators preparing and un-preparing the same state are exactly the same,

otherwise the decomposition would not be valid. Many previous research studies have

sought to optimize the preparation of states and we use their results for our synthesis

[142, 155, 174].
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|0〉n
/ U ≡ / D SP(u2n−1)† DG SP(u2n−1) · · · SP(u1)† DG SP(u1)

Figure 4.9: A �rst circuit for the Householder method.

/

SP
(

0
1
⊗ ui

)
≡

/

X

SP(ui)

Figure 4.10: Desentangling one qubit in state preparation.

4.4.2 Resources Estimation

We now turn to the question of the size of the circuit sketched in Figure 4.9 (measured in number

of CNOTs), and to the computational cost to generate the circuit (measured in �ops). Asymptotic

results are summarized in Tables 4.2 and 4.3.

Using naively Eq (4.30), the number of CNOT gates is

#UHous.(n) = #Diag
rot

(n) +
2n−1∑
k=1

2#SP(n) + #To�
[78]

(n).

The complexity of the size of the circuit is therefore essentially due to the preparation and un-

preparation of quantum states. Because of the structure of the problem, we can do better than

systematically applying state preparation on n qubits for each of the ui vectors. We describe two

successive optimizations. The �rst one relies on the possibility to perform state preparations on

less than n qubits; the second one proposes to fuse adjacent sequences of un-preparations and

preparation of states.

Optimization Based on State Preparation

When preparing ui, if only the last 2k elements of ui ∈ C2n
are non zero, the state is encodable

on k qubits only. This means that a k-qubit operator can prepare the state u′i ∈ C2k
such that

ui = ( 0
u′i

). Let Q be such an operator, then the operator

P = X⊗(n−k) ⊗Q =

(0) 1

. .
.

1 (0)

⊗
u′i (∗)

 =

(
0 ∗
u′i ∗

)

prepares ui. A quantum circuit to illustrate this is given in Figure 4.10.

Thus, up to the operators X , D and DG, we observe that the Householder method breaks down

as follows: the synthesis of the �rst 2n−1
columns is done via operators acting on n qubits, then

the next 2n−2
columns are synthesized with operators acting on n− 1 qubits, etc.

To simplify the calculations, we use the concept of isometries introduced in [86]. We recall that,

with n > m, an m to n qubits isometry can be represented as a 2n × 2m matrix V such that

V †V = I2m×2m .
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The data of the 2m �rst columns of an operator on n qubits can be regarded as such an isometry

V . For instance an isometry from 0 to n qubits is a quantum state on n qubits. Synthesizing an

isometry from n− 1 to n qubits is equivalent to synthesizing the �rst 2n−1
columns of an n-qubit

operator. With this formalism the synthesis of an n-qubit operator via the Householder method

naturally leads to synthesizing n isometries, respectively isometries from k − 1 to k qubits for k
from 1 to n. Therefore

#UHous.(n) = #Diag
rot

(n) +
n∑
k=1

#IsoHous.(k − 1, k). (4.31)

With this decomposition we voluntarily omit the side-e�ects that may occur between two sub-

circuits acting on a di�erent number of qubits — typically the transition between the subcircuit

preparing states on j qubits only and the subcircuit preparing states on j + 1 qubits. These side-

e�ects are asymptotically negligible and not taking them into account highly simpli�es the calcu-

lations.

We are concerned with estimating #UHous.(n): to this end we focus on the estimation of

#IsoHous.(k − 1, k). With our current circuit, we have

#IsoHous.(k − 1, k) = 2k−1 × (2× #SP(k) + #To�
[78]

(n)) (4.32)

We have seen that the value #SP(k) varies depending on the structure of subcircuits we consider:

• With rotation multiplexors [142, 174],

#SProt(k) = 2k+1−2k−2, #IsoHous., rot.(k−1, k) = 2×4k−(k+1)2k+1+2k−1
#To�

[78]
(n)

hence

#UHous., rot.(n) =
8

3
4n − 4n2n + (2n − 1)#To�

[78]
(n) + #Diag

rot
(n)− 8

3
.

• With multiplexors in SU(2) [142],

#SPsu(k) = 2k − k − 1, #IsoHous., su(k − 1, k) = 4k − (k + 1)2k + 2k−1
#To�

[78]
(n)

and

#UHous., su(n) =
4

3
4n − 2n2n + (2n − 1)#To�

[78]
(n) + #Diag

rot
(n)− 4

3
.

The same calculation can be done for the number of rotations in the circuit. Actually, Equations

(4.31) and (4.32) highlight the decomposition of the quantum circuit into smaller subcircuits, thus

remain true by replacing the number of CNOTs with the number of elementary rotations. A quan-

tum state preparation on n qubits requires 2n+1
rotations, whether using rotations or SU(2) mul-

tiplexors [142]. Overall the number of rotations rn required for the synthesis of a n-qubit operator

with the Householder method is

rn ∼
8

3
4n.
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Method CNOT count Rotation count

QR 8.7× 4n Unavailable

Quantum Shannon 23/48× 4n 9/8× 4n

Householder (with rotation multiplexors) 2× 4n 2× 4n

Householder (with multiplexors in SU(2)) 4n 2× 4n

Lower bound 1/4× 4n 4n

Table 4.2: Asymptotic gate counts for decomposition methods.

Optimizing adjacent state preparations and un-preparations

For each k − 1 to k isometry we synthesize with the Householder method, the corresponding

quantum circuit is composed of:

• one state un-preparation at the beginning and one state preparation at the end of the circuit,

both on k qubits,

• 2k−1
generalized To�oli gates on n qubits,

• 2k−1 − 1 concatenations of a state preparation SP(ui+1) and a state un-preparation SP(ui)
†
,

both on k qubits.

We now focus on the concatenations of the adjacent subcircuits SP(ui+1) and SP(ui)
†

in the

circuit of Figure 4.9. These sequences of operations can indeed be optimized.

To this end we need to look in more details to the state preparation circuits. A circuit P that

prepares the state ψ on n qubits can be decomposed as

P = DY

where

D =

e
iθ1

. . .

eiθ2n


such that θj = arg(ψj) and Y prepares the real state

Ψ =

 |ψ1|
...
|ψ2n |

 .

Y can be synthesized with only Ry rotations by following the standard methodology for state

preparation [174] without caring about the phases equal to 0. Using this decomposition the prod-

ucts preparation/un-preparation that we encounter in the global decomposition are of the form

P †j Pi = Y T
j D

∗
jDiYi

and the diagonal matrices can merge, thus diminishing the size by a cost of a diagonal matrix. In

total 2k−1−1 diagonals on k qubits vanish. Equivalently each subcircuit (state preparation + state

un-preparation) is now composed of two real state preparations and a diagonal gate. Note that the
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D

X

X

D∗7 |vT7 |

DG

X

X

|v7|

X

D6
7 |vT6 |

DG

X X

|v6| D5
6 |vT5 |

DG

X

|v5|
D4

5 |vT4 | DG |v4| D3
4 |vT3 | DG |v3| D2

3 |vT2 | DG |v2| D1
2 |vT1 | DG |v1| D1

Hv7 Hv6 Hv5 Hv4 Hv3 Hv2 Hv1

Figure 4.11: Quantum circuit designed by the Householder method for 3 qubits.

state preparation and state un-preparation at both ends of the circuit also have to be synthesized by

a real state preparation followed by a diagonal gate, otherwise the synthesis of the corresponding

Householder operators would not be valid. In other words we can replace Eq (4.32) by

#IsoHous., rot(k − 1, k) = 2k × #SPreal, rot(k) + (2k−1 + 1)× #Diag
rot

(k) + 2k−1
#To�

[78]
(n)

=
3

2
4k − (k + 1)× 2k − 2 + 2k−1

#To�
[78]

(n)

and

#UHous., rot.(n) = 2× 4n − (2n− 1)× 2n − 2n− 4 + (2n − 1)#To�
[78]

(n). (4.33)

Asymptotically this also represents a gain of 2/3 × 4n rotations, bringing the asymptotic total

to 2× 4n rotations. For completeness, we also give the total CNOT count if we merge the diagonal

operators between the isometries. For each isometry, except the Iso(n, n − 1) one, one diagonal

operator is saved, for a total of

∑n−1
k=1 #Diag

rot
(k) = 2n − 2n CNOT gates saved, hence

#UHous., rot.(n) = 2× 4n − 2n× 2n − 4 + (2n − 1)#To�
[78]

(n). (4.34)

If we use multiplexors in SU(2), only multiplexors on k qubits are merging and not diagonal

anymore, saving twice less CNOTs but the same number of rotations. Eq. (4.32) is now

#IsoHous., su(k − 1, k) = (2k−1 − 1)× (2× #SPsu(k)− #Multsu(k)) + 2#SPsu(k) + 2k−1
#To�

[78]
(n)

=
3

4
4k − 2kk − 1 + 2k−1

#To�
[78]

(n)

and

#UHous., su(n) = 4n − (2n− 3)2n + (2n − 1)#To�
[78]

(n)− n− 5. (4.35)

We also save 2/3 × 4n rotations and the number rotations becomes asymptotically equal to

2 × 4n. We also notice that the operators X that appear when we switch to synthesis on a lower

number of qubits disappear too by multiplying themselves. An example on 3 qubits is showed in

Fig 4.11. We use the following notation: |vk| (resp. |vTk |) represents the operator that prepares (resp.

un-prepares) the real state |vk| consisting of the amplitudes of the components of the state vk. Dk

is the diagonal gate containing the phases of the components of the state vk and Dj
k = D∗j ×Dk.

The results for the �nal gate counts are given Table 4.2.

Optimization using Schmidt’s Decomposition

When we have the concatenation of a circuit preparing a state |ui〉 and a circuit un-preparing

a state |ui+1〉, one can realize that using the circuit template based on Schmidt’s decomposition

we can merge the operators or isometries. An example is given in Fig 4.12. Compared to the case

where we only merged diagonal gates, we merge “almost entirely” the two state preparations so

this should represent a greater gain in the number of gates. Yet we face a particular problem: how

do we merge two operators whose only �rst half column/half rows are of interest? This happens

67



Part B – Synthesis on SU(2n) Chapter 4

SP(ui) SP(ui+1)
†

SP(αi) Ui

Vi

U †
i+1

V †
i+1

SP(αi+1)

merge

merge

Figure 4.12: Merge of state preparation and state un-preparation with Schmidt’s decomposition.

when n is odd and we have a product of an isometry and the inverse of another isometry. We have

to consider a full representation of both isometries and computing the complete operator given by

their product. We lose some optimality but we did not �nd a better way to do this merge.

Again it is easier to estimate the complexity of the k to k+ 1 isometries appearing in the circuit.

We avoid the side e�ects when two state preparations on di�erent numbers of qubits are concate-

nated and where we are supposed to merge operators not acting on the same qubits. In a k − 1 to

k isometry each merge of state preparation and state un-preparation is composed of:

• a state preparation on bk/2c qubits,

• a wall of bk/2c CNOTs,

• one unitary on bk/2c qubits and one unitary on dk/2e,

• another wall of bk/2c CNOTs,

• a state un-preparation on bk/2c qubits.

The CNOT count for the isometry is now

#IsoHous., Schmidt(k−1, k) = (2k−1−1)×(2× #SP(bk/2c) + 2bk/2c+ #U(bk/2c) + #U(dk/2e))
+ 2k−1 × #To�

[78]
(n) + 2× #SPSchmidt(k) (4.36)

The main interest of this method is that we reformulated the synthesis of an n-qubit operator

into a succession of syntheses of n/2-qubit operators. The complexity results now depend on

the method used for the state preparation and unitary synthesis for smaller problems. Even if we

choose one speci�c method, it will be fastidious to derive the exact CNOT count. Instead, we derive

an asymptotic complexity for the Householder method assuming that we have a general method

for unitary synthesis achieving an asymptotic complexity of β4n CNOTs for some β. With this

simpli�cations we have

#IsoHous., Schmidt(k − 1, k) ∼ 2k−1β ×
(

4bk/2c) + 4dk/2e)
)
.

If k = 2r is even

#IsoHous., Schmidt(k − 1, k) ∼ 2kβ × 4r.

68



Part B – Synthesis on SU(2n) Chapter 4

If k = 2r + 1 is odd

#IsoHous., Schmidt(k − 1, k) ∼ 2k−1β × (5× 4r).

We get similar formulas that the ones obtained in [86] with Knill’s decomposition.

We �nally have

#UHous., Schmidt(n) ∼ 7

5
β16bn/2c +

5

4
β(dn/2e − bn/2c)42dn/2e−1.

In other words, if n is even then

#UHous.,Scmhidt(n) ∼ 7

5
β4n

and if n is odd

#UHous., Schmidt(n) ∼ 8

5
β4n.

The overhead of
7
5 or

8
5 is due to the merge of the isometries. Given that the other best asymptotic

result for the Householder method is 4n CNOTs, if we manage to have a second method producing

circuits with CNOT count at most
5
8 × 4n then we have a direct improvement of the Householder

method by combining the two synthesis algorithms. This works in the case of the QSD method

for instance: replacing β = 23
48 and we recover the recent results from [127]. Our result can be

seen as a generalization of their method where we are free to choose any secondary method. This

algorithm combining Householder and a second method will be of particular interest if the second

method is too expensive to be used on large problem sizes. At the cost of a constant factor, we

can �rst use the Householder method to decompose our large unitary into several smaller unitary

synthesis and then apply a more e�cient synthesis algorithm.

For completeness, we give an approximate CNOT count if we use the QSD at the second level of

recursion for unitary synthesis and the standard state preparation method with SU(2) multiplex-

ors:

#IsoHous., Schmidt, QSD(k − 1, k) = f(k) + 2k−1
#To�

[78]
(n) + 2(2k − k − 1)

with

f(k) =


αp × 16r − 1

2
× 8r +

(
δ + 2αp −

2

3

)
× 4r − 3× 2r +

2

3
+ 2δ if k = 2r

5αp × 16r − 5

2
× 8r +

(
2δ + 3αp −

4

3

)
× 4r − 7

2
× 2r +2 + 6δ if k = 2r + 1

This formula is valid only for k ≥ 2p with p the number of qubits where we stop the recursion

in the QSD algorithm. To simplify the calculations we assume that this formula remains true for

k < 2p. This will modify the CNOT count by a constant negligible factor given by the di�erence

between the exact value of f(1) + ...+f(2p−1) and the one given by our formula above. We also

ignore other constant factors (for instance appearing in the CNOT count for diagonal operators)

and we �nally get that the number of CNOT gates #UHous., Schmidt, QSD(n) is

7

5
αp4

n− 13

14

√
8
n

+
6δ + 11αp − 1

3
× 2n− 19

2

√
2
n

+

(
4δ +

4

3

)
n+ (2n− 1)#To�

[78]
(n) + cste

(4.37)
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Method �ops

Quantum Shannon 19× 8n

Householder 2/3× 8n

Classical QR factorization 4/3× 8n

Table 4.3: Asymptotic �op counts for decomposition methods.

if n is even and

8

5
αp4

n−3
√

8

7

√
8
n
+

6δ + 10α− 1

3
×2n− 13√

2

√
2
n
+

(
2

3
+ 2δ

)
(2n+1)+(2n−1)#To�

[78]
(n)+ cste

(4.38)

if n is odd.

Flop Counts

Apart from the circuit size, the other measure we are interested in is the computational cost,

measured in �ops.

The computational cost of the synthesis part is negligible compared to the cost of the House-

holder decomposition. Overall state preparations of states of size 2n, 2n − 1, . . . , 3, 2 need to be

performed. For a state on k qubits, it requires O(k2k) operations, and we need to do it for 2k−1

states. Thus the synthesis part needs around

n∑
k=1

k2k × 2k−1 = O(n4n)

�oating point operations. This is asymptotically negligible compared to the Householder factor-

ization where O(8n) operations are needed. Table 4.3 summarizes the �op count for the various

methods.

4.4.3 Extension to other gate sets

To synthesize a unitary matrix into a quantum circuit via the use of Householder transforma-

tions, we go through an intermediate abstract step, corresponding to Eq. (4.30). This step reformu-

lates the synthesis of a unitary operator as a succession of state preparations, generalized To�oli

gate syntheses and the synthesis of a diagonal operator. This intermediate representation makes it

easier to use any desired universal gate set. In this chapter we focused on producing CNOT based

quantum circuits but if one can provide routines for state preparations, To�oli and diagonal syn-

thesis in another gate set S ′ then any quantum operator can be implemented with this new gate

set S ′. Besides, the computational core of the factorization is identical. In some sense we can say

that the Householder transformations based synthesis algorithm is partially hardware agnostic.

4.5 Experimental Results

The experiments have been carried out on one node of the QLM (Quantum Learning Machine)

located at ATOS/BULL. This node is a 24-core Intel Xeon(R) E7-8890 v4 processor at 2.4 GHz.

Hyper-threading has been disabled.
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Most of the programs are written in C with the C-interface for LAPACK [13] (LAPACKE). We

adapted the LAPACK routine ZGEQRF (in Fortran) to compute the QR factorization of unitary ma-

trices using the blocked algorithm described in Section 4.3. LAPACK is linked with the MKL [84]

multithreaded BLAS. The original ZGEQRF routine computes the best block size according to the

size of the matrix and the hardware, we keep this computation in our modi�ed routine. Our exper-

iments use random unitary matrices generated via the LAPACK routine ZLAROR which generate

matrices from a uniform distribution according to the Haar measure [183]. This way we get the

most generic matrices possible: dense, without any particular structure or pattern in the matrix

elements. We are thus ensured to have a worst case scenario in terms of performance for our

algorithms.

We present here numerical experiments to evaluate successively the sequential performance,

the strong scalability and the weak scalability using multiple cores.

4.5.1 Sequential Runs

In Figure 4.13 we compare the performance (in time) of the following routines or programs:

• The LAPACK routine ZGEQRF that computes the QR factorization of a complex matrix in

double precision (note that here the matrix is square), to serve as a reference.

• Our modi�ed ZGEQRF routine adapted for unitary matrices.

• The complete circuit synthesis process which includes the QR factorization and the synthesis

of the circuit obtained from this decomposition as explained in Section 4.4.

• The Quantum Shannon Decomposition (QSD), where the implementation essentially relies

on the methodology described in [174] and uses the LAPACK routine ZUNCSD to compute

the Cosine-Sine Decomposition (CSD). The routine implements the algorithm in [185]. This

algorithm is the state of the art and has already been used in other implementations [87,200].

We considered matrices of sizes 2k × 2k, k = 1 . . . 15 (operators acting on 1 to 15 qubits). The

upper limit of 15 was chosen so that all decompositions can be achieved within an hour. This is

why the curve plotting the QSD decomposition stops for 12 qubits.

As expected all the methods follow asymptoticallyO(8n) (curve also plotted) in accordance with

the theoretical complexity. The gap between the general and modi�ed QR factorizations in log scale

corresponds approximatively to a factor of 2, in accordance with the �op count.

When comparing the QR and QSD methods, we observe that for the same amount of time we can

synthesize matrices with 2, almost 3 qubits more. The ratio between the times taken by the QSD

and our method is even increasing with the number of qubits, reaching a value of almost 300 for

12 qubits which is much bigger than the expected ratio of 30. This is due to the routine ZUNCSD

that does not follow the theoretical complexity and does not scale well with the number of qubits.

4.5.2 Multithreaded Runs

Because we could reach 15 qubits (unitary matrices of size 32768 × 32768) with a sequential

run in less than one hour, we chose this size for our multithreaded runs. The strong scalability

is then evaluated using up to 24 threads. Since the ZUNCSD routine used for the QSD is not

parallel, it has been excluded from our experiments. Figure 4.14 presents performance results (in

time and G�op/s) for the chosen number of threads. The time of the modi�ed ZGEQRF scales like

the full circuit synthesis since the QR factorization represents most of the computational cost in

71



Part B – Synthesis on SU(2n) Chapter 4

Number of qubits

T
i
m

e
(
s
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10−7

10−5

10−3

10−1

101

103

105

H H H
H
H
H
H
H
H
H
H
H
H
H
H

•
• • •

•
•
•
•
•
•
•
•
•
•
•

? ?
?

?
?

?
?

?
?

?
?

?
?

?
?

×

× ×
×
×
×
×
×
×
×
×
×

···?··· Full circuit synthesis

···•··· ZGEQRF

···H··· Modi�ed ZGEQRF

···×··· QSD

10−9 × 8n

Figure 4.13: Sequential time for operator decomposition and circuit synthesis. The x-axis corre-

sponds to the problem sizes considered given by the number of qubits on which the synthesized

operator act. The computational times of the original LAPACK QR factorization ZGEQRF, our

modi�ed version of ZGEQRF, our full circuit synthesis scheme and the Quantum Shannon Decom-

position are given.
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Figure 4.14: Strong scaling for quantum operator decomposition and circuit synthesis on 15 qubits.

For each method (the original QR routine ZGEQRF, our modi�ed ZGEQRF routine and our full

circuit synthesis scheme) the evolution of the computational time as we increase the number of

threads is plotted. For the purely factorization routines (ZGEQRF and modi�ed ZGEQRF), the

number of G�ops computed per second is also plotted with the performance of the matrix/matrix

product in red.
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Figure 4.15: Weak scaling for quantum operator decomposition on 15 qubits. We plot the evolution

of the number of G�ops computed per second as the number of qubits and threads increase, the

idea being to have a �xed problem size per thread. We compare our modi�ed ZGEQRF routine

against the original QR routine ZGEQRF and the matrix/matrix product (ZGEMM).

the synthesis. Also, due to a smaller �op count, the modi�ed QR is always much faster than the

general QR. Moreover, looking at the G�op/s performance rate, we observe that our modi�ed QR

factorization o�ers a good scalability due to an algorithm which is rich in BLAS 3 operations and

provides a performance close to that of a matrix-matrix product (ZGEMM routine, also plotted in

Figure 4.14). Note that the G�op/s rate for the full circuit synthesis is not plotted since the bulk of

the arithmetical operations correspond to those of the factorization and the time of the synthesis

itself is negligible.

Our experiments on weak scaling aim at measuring how the performance evolves with the num-

ber of threads but with a �xed problem size for each thread. Our algorithm for circuit synthesis

can only accept matrices of size 2n × 2n, i.e., 4n entries. As we can only multiply the size of our

problems by a factor of 4, we need to multiply also the number of threads by a factor of 4. Thus,

starting from a sequential run on 13 qubits, we achieved experiments on 14 and 15 qubits using 4
and 16 threads respectively. The results given in Figure 4.15 show that the rate (in G�op/s) of the

modi�ed ZGEQRF increases with the number of threads/qubits with a very good scalability (close

to that of ZGEMM) due to the mostly BLAS 3 operations implemented in the algorithm.

4.5.3 Experiments on Graphics Processing Units (GPU)

We performed additional experiments to study the behavior of our QR algorithm for unitary

matrices using two Kepler K40 with 2880 CUDA cores and a multicore host composed of two Intel

Xeon E5-2620 processors (6 cores each). The time for the synthesis is not plotted here since it is

negligible compared to the time of the QR factorization.

1

The original �gure can be found in [47].
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Figure 4.16: Time for factorization of unitary matrices on GPUs. We compare the computational

times of the original MAGMA QR routine and our modi�ed ZGEQRF routine adapted for GPU.

Results with one and two GPUs are given.

Similarly to what was made previously with the LAPACK routine, we modi�ed the QR routine

from the MAGMA [187] linear algebra library for GPUs according to Algorithm 3.1. Note that

the transfer of the panel (block column factorized at each iteration) from the CPU to the GPU

performed in MAGMA is replaced by a transfer of the 2 triangular matrices mentioned in Section 4.3

which are broadcasted to the GPUs involved in the computation. In Figure 4.16, we obtain the factor

of 2 (due to half the number of �ops) between the standard and the modi�ed QR factorization. We

also observe that using 2 GPUs is not of interest for problems smaller than 12 qubits but we get a

factor close to 2 (e.g., 1.84 for 15 qubits) when switching from 1 to 2 GPUs for problems larger than

13 qubits, showing a good scalability of the algorithm.

1

The original �gure can be found in [47].

75





Chapter 5

Numerical Optimization of Quantum
Circuits Synthesis with Continuous
Variables
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5.6.3 With B Gates, Controlled-Phases, To�oli, etc. . . . . . . . . . . . . . . 90
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5.6.5 Universal Topologies for State Preparation, Isometries . . . . . . . . . 92
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5.7.3 The Synthesis Methods are Complementary . . . . . . . . . . . . . . . 96

5.1 Motivation and Technical Background

In the previous chapter, we pushed the limits of quantum circuits synthesis in terms of classical

runtime and reachable problem sizes while keeping a reasonable quantum cost. In this chapter, we

investigate the opposite problem: how to minimize as much as possible the quantum cost with rea-

sonable classical runtime? This problem is more standard than the classical resource optimization

problem. Most of the methods in the literature try to optimize a polynomially sized representation

of the operator: a Boolean function in oracle synthesis [137, 139], a quantum circuit in quantum
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Ry(x1) Rz(0.14)

Rz(x2) Rx(4)

Figure 5.1: Topology on 2 qubits with 2 degrees of freedom: x1 and x2.

circuit optimization [145], etc. In the case where we have the complete operator U ∈ U(2n) as

input, the literature is more limited on the subject.

Solving this problem even on a small number of qubits o�ers both short-term and long-term

bene�ts. In the short term, for example, it gives elementary bricks to experimenters to design

programmable chips on a few qubits [75, 159]. In the NISQ (Noisy Intermediate Scale Quantum)

era [157] compressing circuits as much as possible is crucial to reduce the noise and the circuit exe-

cution time as much as possible. In a more long term view, within a compilation-oriented approach,

a procedure capable of synthesizing optimal circuits on 2,3,4 qubits or more can be integrated as

a subtask in a peep-hole optimization framework [106]. It can also be combined with the QSD

synthesis, or any recursive synthesis method, such that we can stop the recursion earlier on larger

problem sizes. We discuss this application in Section 5.7 and show how we can improve the gate

complexity of the QSD.

Shende et al. de�ne in [176] the notion of circuit topology. It relies on the fact that some quantum

gates are parameterized: the elementary rotations are parameterized by an angle, the MS gates are

parameterized (see Section 2.3.3), etc. A circuit topology, or topology for short, is an abstraction of a

quantum circuit made of constant gates and unspeci�ed parameterized gates. The gates are placed

in the circuit and the only variable data of a topology are the parameters of the unspeci�ed gates.

A priori these parameters can take any value, they are called the degrees of freedom (DOF) of the

topology. By setting the values of the DOF we create a quantum circuit which is an instantiation

of the topology.

Note that a constant gate in a topology can be a parameterized gate in another topology. Simply

the value of its parameter is �xed in the �rst topology and unspeci�ed in the other. An example is

given in Fig 5.1. Two elementary rotations are �xed in the topology and two others are parameter-

ized. The topology is therefore de�ned on 2 qubits and has 2 degrees of freedom. Each quantum

circuit implements an operator U ∈ U(2n), therefore for any topology T with k DOF we de�ne

fT : Rk → U(2n). (5.1)

fT maps any speci�cation of the k DOF to the corresponding operator implemented by the instan-

tiated quantum circuit. The whole point of this chapter is the study of the functions fT for suitable

T . Notably, a topology T is said to be universal if =(fT ) = U(2n) (see Section 2.3.3). In other

words, for any operator U and universal topology T there exists a speci�cation of the parameters

in T such that the corresponding quantum circuit implements U .

A natural question one can ask is: what is the minimum number of gates required to have a

universal topology? A lower bound of the number of CNOT gates required is given in [176]:

Theorem 5.1.1 ( [176] ). A topology T composed of one-qubit rotations and CNOT gates cannot be
universal with fewer than

⌈
4n−3n−1

4

⌉
CNOT gates.

The proof relies on counting the DOF of the topology and circuit identities. For completeness

and because we will use similar techniques, we develop it in details here.
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Proof. First we use Sard’s theorem [72] to claim that the image of fT is of measure 0 if #DOF <
dim(U(2n)) = 4n. We can remove one DOF corresponding to the global phase. Hence to be sure

that we can potentially cover the whole unitary space we need

#DOF ≥ 4n − 1 (5.2)

Then, using circuit identities the authors propose a canonical form for CNOT+SU(2) circuits and

they count the maximum possible number of DOF in it. Given a topology with placed CNOT gates,

we can add 2 generic one-qubit gates at the left of each CNOT, i.e., on the control and target qubits,

and end the topology with a wall of one-qubit gates on each qubit. This gives us a new topology T .

It is clear that this topology is "optimal" in the sense that we cannot add one-qubit gates without

them merging with other gates in the circuit. Ignoring the global phase, every one-qubit gate U
can be decomposed as

U = Rx(a)×Rz(b)×Rx(c)

or

U = Rz(a
′)×Rx(b′)×Rz(c′)

with suitable angles a, b, c, a′, b′, c′. Rx andRz rotations commute with the CNOT gate depending

on which qubit they are applied: Rz gates commute with the CNOT if they act on the control qubit

of the CNOT, Rx gates commute with the CNOT if they act on the target qubit of the CNOT. The

circuit identities are given in Fig. 5.2. Therefore using one of the two decompositions for all the

one-qubit gates in the topology and commuting the appropriate rotations, we can show that T is

equivalent to another topology with a fewer number of elementary rotations in it. Namely, starting

from the most left CNOT gate:

1. consider the two one-qubit gates on its left in the topology. Uc is the one on the control qubit

and Ut is the one on the target qubit.

2. Decompose Uc = RzRxRz, Ut = RxRzRx, where we omit the angles for simplicity.

3. Commute the Rz gate on the control qubit with the CNOT and merge it with the next one-

qubit gate in the circuit. Do the same with the Rx on the target qubit.

4. Repeat operations 2-3 with the next CNOT.

5. Decompose the last one-qubit gates on each qubit the way you want.

After this procedure, we are left with a topology T ′ functionally equivalent to the topology T . In

fact T ′ can be considered to be the canonical form of T . An example is given in Fig. 5.3. Therefore

a topology T with k CNOT gates can have at most 4k + 3n DOF. To verify Eq. (5.2) we need at

least

#CNOT ≥
⌈

1

4
(4n − 3n− 1)

⌉
for T to be universal.

To our knowledge, no proof has been given showing that this lower bound is tight. Clearly this

is not an obvious result. Maybe with other circuit identities one can show that some rotations are

unnecessary. This will lower the maximum number of DOF a topology with k CNOTs can have

and therefore it will increase the theoretical lower bound.
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tation.
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(b) Commutation identity with the CNOT and Rx ro-

tation.

Figure 5.2: Circuit identities with the CNOT gate and elementary rotations.
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Figure 5.3: Canonical form of a topology on 3 qubits with 6 CNOT gates.

The main goal of this chapter is twofold. With the help of numerical optimizers, we seek to

reduce as much as possible the quantum resources and we want to give some insights about the

tightness of the lower bounds. Using heuristics or classical optimization methods to synthesize

circuits is not new. The BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm [208] has already

been used to synthesize trapped-ions circuits [129] and machine learning techniques have been

used in the case of photonic computers [15]. Genetic algorithms have also been used in a general

context [126] or for the speci�c IBM quantum computer [121]. However, these works are purely

experimental: the overall optimality of their solution is not discussed.

5.2 Contributions

The main contributions of the chapter are as follows.

• We adapt the work in [176] to the technology of trapped-ions quantum computer which uses

speci�c quantum gates. This technology holds great promise to cross the passage to scale:

quantum circuits with trapped-ions technology have great �delities and the qubits have a

long decoherence time. In other words, the noise in the results is low and long time com-

putations can be performed before the system interferes with the environment and loses its

information. Moreover, the particular architecture of trapped-ions quantum circuits makes

the problem simpler for numerical optimization because as we will see it only involves the

optimization of continuous real parameters. We derive a lower bound on the number of

entangling gates required to perform any computation.

• We provide a simple optimization framework and use it to synthesize generic quantum oper-

ators. We give an e�cient way to compute the gradient of the cost function in our framework.

This results in a better scalability of our optimizer. We can synthesize optimally — or close to

optimality — arbitrary operators up to 6 qubits and arbitrary quantum states up to 11 qubits.

• We show that the lower bounds for both trapped-ions and usual superconducting circuits
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seem to be tight. Especially, for the CNOT+SU(2) gate set, we provide di�erent universal

topologies that may reveal some structures in the group of unitary operators. We also provide

depth-e�cient and architecture-aware universal topologies.

• We bring new insights into the inherent tradeo� between quantum resources and classical

resources.

The plan of the chapter is the following: in Section 5.3 we develop in more detail the modeling of

a circuit as a parameterized topology and the question of the minimum-sized topology necessary to

implement any operator. In Section 5.4 we introduce a generic optimization framework formalizing

the circuit synthesis as a classical optimization problem. In Section 5.5 we apply this framework

to optimally synthesize generic unitary matrices with the trapped-ions natural set of gates. We

also discuss the scalability of this method and how we can naturally trade the optimality of the

�nal quantum circuit for shorter computational time. We extend the framework to other gate sets,

notably the CNOT+SU(2) gate set, in Section 5.6.

Sections 5.3, 5.4 and 5.5 have been presented at ICCS 2019 and they are published by Springer

in LNCS [46].

5.3 Lower Bounds for the Synthesis of Trapped-IonsQuantumCir-
cuits

In this section, we derive a lower bound in the case of trapped-ions circuits using a similar

reasoning to the one done for the CNOT+SU(2) gate set.

Theorem 5.3.1. A topology composed of one-qubit rotations and parameterized MS gates cannot be
universal with fewer than

⌈
4n−3n−1

2n+1

⌉
MS gates.

Proof. We remind that the standard gate set for trapped-ions quantum circuits is (see Section 2.3.3):

• local Rz gates,

• global Rx gates, i.e., local Rx are applied to every qubit with the same angle,

• the entangling Mølmer–Sørensen gate (MS gate) de�ned by

MS(θ) = e−iθ(
∑n
i=1 σ

i
x)2/4.

where σix is the operator X applied to the i-th qubit.

We give a normal form to trapped-ion circuits in order to count the number of DOF. MS gates

operate on all qubits, they are diagonal in the basis H⊗n =
⊗n

i=1H obtained by applying an

Hadamard gate to each qubit, the so-called "|+〉 / |−〉" basis or Hadamard basis. We have

MS(θ) = H⊗n ×D(θ)×H⊗n (5.3)

with

D(θ) = diag([ei(n−wt(j))2×θ]j=0..2n−1) (5.4)

where wt is the Hamming weight in the binary alphabet.
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Figure 5.4: Generic quantum circuit on 3 qubits for the trapped-ions technology.

First we can merge the Hadamard gates appearing in Equation (5.3) with the local gates so that

we can consider that our circuits are only composed of local gates and diagonal gates given by

Equation (5.4). Then we can write each local gate U as

U = Rz(α)×Rx(−π/2)×Rz(β)×Rx(π/2)×Rz(γ) (5.5)

where α, β, γ parameterize the unitary matrix U . Because the MS gates are now diagonal we can

commute the �rst Rz so that it merges with the next local unitary matrices. By doing this until we

reach the end of the circuit we �nally get a quantum circuit for trapped-ions hardware with the

following basic subcircuit:

• a layer of local Rz gates,

• a layer of global Rx(π/2) gates,

• a layer of local Rz gates,

• a layer of global Rx(−π/2) gates,

• an MS gate (given in its diagonal form).

This subcircuit is repeated k times for a circuit with k MS gates. Ultimately, the circuit ends

with a layer of rotations following the decomposition (5.5) on each qubit. An example of a quantum

circuit on 3 qubits with 2 MS gates is given in Figure 5.4. The angles of theRz rotations are omitted

for clarity. The only parameters of such generic circuits are:

• the angles of the Rz rotations,

• the number and the angles of the MS gates.

Each elementary rotation (around the x, y, z axis) is parameterized by one angle so it can only

bring one additional degree of freedom, as the MS gates if they are parameterized. Including the

global phase, a circuit containing k parameterized MS gates can have at most (2n+1)×k+3n+1
DOF. In the example given �gure 5.4, the topology has 24 DOF. To reach universality we must

verify equation (5.2), which leads to the lower bound

#MS ≥
⌈

4n − 3n− 1

2n+ 1

⌉
. (5.6)

This proof easily transposes to the state preparation problem with a few changes:

• a quantum state is completely characterized by 2n+1 − 2 real parameters,
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• starting from the state |0〉⊗n we can only add one degree of freedom to each qubit on the

�rst rotations because the �rst Rz result in an unnecessary global phase.

Consequently the total number of DOF a topology on n qubits with k MS gates can have is at

most (2n+ 1)k + 2n. We get the lower bound

#MS ≥
⌈

2n+1 − 2n− 2

2n+ 1

⌉
. (5.7)

To our knowledge, this is the �rst calculation of a lower bound in the context of trapped-ions cir-

cuits. In the next section, we propose an algorithm based on numerical optimization that achieves

accurate circuit synthesis using a number of gates corresponding to the above lower bounds. This

gives a good indication of the tightness of these bounds.

5.4 The Optimization Framework for Continuous Variables Cir-
cuit Synthesis

Given a function f representing a topology on n qubits, �nding the best possible synthesis of a

unitary matrix U with the topology f can be reformulated as solving

arg min
x
‖f(x)− U‖ = arg min

x
g(x),

where g(x) = ‖f(x) − U‖ and where ‖ · ‖ is an appropriate norm. All norms are equivalent in

�nite dimension, so by appropriate norm we mean a norm that will simplify the calculations. We

decompose the cost function g as

g(x) =
1

k

k∑
i=1

∥∥f(x) |eφ(i)〉 − uφ(i)

∥∥ ,
where φ is a permutation of J1, 2nK and uj denotes the j-th column of U . In other words, we

generalize our problem to the synthesis of k given columns of our operator U . For simplicity now

we can only study the case where k = 1: this is the state preparation problem.

Our goal is to rely on various algorithms for non-linear optimization. We choose the norm to be

the Euclidean norm squared so that with this choice of norm we have a simple expression of the

cost error:

g(x) = 2×
(

1−<
(
〈0| f(x)† |ψ〉

))
. (5.8)

The cost to compute the error function is equivalent to the simulation cost of the circuit. Starting

from the state |ψ〉 we simulate the circuit f(x)†, then the real part of the �rst component gives

the error. Many methods for simulating a quantum circuit have been designed and we can rely on

them to perform calculations as e�cient as possible.

In our case g is C∞. We can use more e�cient optimization algorithms if we can compute the

gradient and if possible the Hessian. To compute the gradient, we need to give a more explicit

formula for g(x). For some j we have

∂

∂xj
g(x) = −2

∂

∂xj
<
(
〈0| f(x)† |ψ〉

)
,
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and by linearity we get

∂

∂xj
g(x) = −2<

(
∂

∂xj
〈0| f(x)† |ψ〉

)
.

Let us suppose we have K gates in our circuit. Then we can write

f(x)† =

K∏
i=1

Ai

where (Ai)i=1..K is the set of gates on n qubits that compose the circuit f . In all circuits encoun-

tered the parameterized gates are of the form eiθΩ where Ω can be either X,Y, Z (tensored with

the identity if necessary) or more complex Hermitian operators (see the MS gate for instance), θ is

the parameter of the gate. We assume that two gates are not parameterized by the same variable.

Let k1 be the index of the gate depending on xj , then we have

∂

∂xj
〈0| f(x)† |ψ〉 =

∂

∂xj
〈0|

k1−1∏
i=1

Ai × ei×xj×Ω ×
K∏

i=k1+1

Ai |ψ〉

= 〈0|
k1−1∏
i=1

Ai ×
∂

∂xj
ei×xj×Ω ×

K∏
i=k1+1

Ai |ψ〉

= i× 〈0|
k1−1∏
i=1

Ai × Ω×Ak1 ×
K∏

i=k1+1

Ai |ψ〉

Therefore we have a simple expression for the partial derivatives

∂

∂xj
g(x) = 2=

〈0| k1−1∏
i=1

Ai × Ω×Ak1 ×
K∏

i=k1+1

Ai |ψ〉

 .

To compute the whole gradient vector we propose the Algorithm 5.1.

On total we need 3 circuit simulations to compute the error and the gradient: once to compute

f(x)† |ψ〉 and twice to compute the gradient.

Note that, for the synthesis of k columns, we need to store 2k vectors when computing the

gradient. If k = 2n it is possible to perform a similar algorithm by computing the trace of a 2n×2n

matrix and iteratively applying operators on the left and right of the matrix. We will not give more

details about this method but it requires less memory than the one we propose because we only

need to store one matrix instead of two. However, memory is not a big concern here compared to

the computational time — we focus on small problem sizes — so we keep this framework even for

k = 2n.

5.5 Numerical Experiments for Trapped-Ions Hardware

The experiments have been carried out on one node of the QLM (Quantum Learning Machine)

located at ATOS/BULL. This node is a 24-core Intel Xeon(R) E7-8890 v4 processor at 2.4 GHz. Our

algorithm is implemented in C with a Python interface and has been executed on 12 cores using

OpenMP multithreading. The uniform random unitary matrices are generated according to the

Haar’s measure [183]. For the numerical optimization we use the BFGS algorithm provided in the

SciPy [158] package.

84



Part B – Synthesis on SU(2n) Chapter 5

Algorithm 5.1: Computing the gradient of the cost function.

Require: n > 0, |ψ〉 ∈ C2n , f : Rk → U(2n),

Ensure: Computes ∂f
〈ψ1| ← 〈0|
|ψ2〉 ← f(x)† |ψ〉
m← 1
// N is the total number of gates in the circuit

for i = 1, N do
// Ai is the i-th gate in the circuit f(x)†

if Ai is parameterized then
// Hi is the Hamiltonian associated to the gate Ai
df [m]← 2= (〈ψ1|Hi |ψ2〉)
m← m+ 1

end if
〈ψ1| ← 〈ψ1|Ai
|ψ2〉 ← A†i |ψ2〉

end for

5.5.1 Synthesizing Generic Circuits

A clear asset of trapped-ion technology is that there is no notion of topology. Contrary to su-

perconducting circuits where we have to deal with the placement of the CNOT gates, here we just

have to minimize the number of MS gates to optimize the entangling resources. Local rotations

are less expensive to realize experimentally [129]. So, as a �rst approach, we can always apply

one-qubit gates on every qubits between two MS gates such that a quantum circuit for trapped

ions always follow a precise layer decomposition.

This asset can be quali�ed because there is not only one trapped-ions technology, and there are

models where entangling gates on only subsets of qubits are available (or are at least less costly

than a global MS gate). It depends notably on the isolation of these qubits in di�erent traps.

For 50 random unitary matrices on k ∈ {2, 3, 4} qubits, and quantum states on k ranging in

{2, 3, 4, 5, 6, 7} qubits, we execute Algorithm 5.1 with circuits containing various numbers of pa-

rameterized MS gates. The stopping criterion for the optimization is the one chosen in SciPy, i.e.,

the norm of the gradient must be below 10−5
. We repeat the optimization process several times

per matrix with di�erent starting points to maximize our chance to reach a global minimum. Then

we plot, for various numbers of MS gates,

• the error expressed in Formula (5.8), maximized over the sample of matrices,

• the number of iterations needed to converge to a local minimum, averaged over the sample

of matrices.

We summarize our results in Figures 5.5a and 5.5b, corresponding respectively to the circuit syn-

thesis problem on 4 qubits and the state preparation problem on 7 qubits. The results obtained for

lower numbers of qubits are similar. The amount of time required to perform such experiments for

larger problems is too important (more than a day).

For both graphs, we observe an exponential decrease of the error with the number of MS gates.

This strong decrease shows that there is a range of MS gates count for which we have an acceptable

accuracy without being minimal. Although we can save only a small number of MS gates by this
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(a) 4-qubits Quantum circuit synthesis problem.

Number of MS gates

S
y

n
t
h

e
s
i
s

e
r
r
o

r

#
I
t
e
r
a
t
i
o

n
s

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

0

0.05

0.1

0.15

0.2

0.25

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+++

+++++

?

?

?

?

?

?
? ????????????????

···+··· # Iterations

···?··· Error

Lower bound

(b) 7-qubits State preparation problem.

Figure 5.5: Evolution of the synthesis error and the number of iterations with the number of MS

gates. The x-axis gives the number of MS gates in the trapped-ion quantum circuit. The left y-axis

gives the maximum error we encountered during the synthesis of a sample of random operators or

random states. The right y-axis gives the average number of iterations needed for our numerical

optimizer to return a result. We considered both the case of unitary synthesis on 4 qubits and the

case of state preparation on 7 qubits. For each problem, there exists a theoretical lower bound on

the number of MS gates necessary to be able to synthesize any operator with an arbitrary error.

Such lower bound is represented in red on each graph.

trade, we conjecture that for a given precision the number of saved MS gates will increase with

the number of qubits. In other words, if we want to synthesize an operator up to a given error, the

range of “acceptable” number of MS gates will increase with the number of qubits. We also want

to insist on the fact that the error here is, in fact, a squared error. The “real” error would be rather

given by the square root of the error we compute. In other words, for a computed error of 10−8

we have in fact an error of approximately 10−4
between the target and the synthesized operators.

What is the experimental lower bound? Interestingly, the number of iterations is a better vi-

sual indicator of this lower bound: once the exact number of DOF is reached, we add redundant

degrees of freedom into the optimization problem. We make the hypothesis that this leads to a

bigger search space but with many more global minima. Hence the search is facilitated and the

algorithm can converge in fewer iterations. So the peak of the number of iterations corresponds

to the experimental lower bound, which is con�rmed by the computed errors.

The experimental lower bounds follow the formulas Eq. (5.6) and Eq. (5.7) given in Section 5.3

except for the 2-qubit quantum circuit synthesis case where we need 1 more MS gate to reach

universality. This gives strong indications about the correctness of the theoretical lower bounds

and the relevance of the approach of counting the degrees of freedom to estimate the resources

necessary for implementing a quantum operator.

5.5.2 Tradeo� Quantum/Classical Cost

In the previous experiments, we could synthesize unitary operators on 6 qubits in 7 hours and

quantum states on 11 qubits in 13 hours, both with circuits of optimal size. In the graphs plotted

in Figures 5.5a and 5.5b, we also observe an exponential decrease in the number of iterations after

0

Please refer to [46] for the o�cial �gures.
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(b) State preparation problem.

Figure 5.6: Number of iterations and time per iteration for di�erent problem sizes. We compare two

cases: the �rst case corresponds to numerical optimizations done with circuits of optimal size, i.e.,

given by the theoretical lower bound. For the second case we consider circuits a little less optimal,

10% larger. We consider both the unitary synthesis problem and the state preparation problem,

with, overall, similar results.

we have reached the optimal number of MS gates. We can exploit this behavior if we want to

accelerate the time of the synthesis at the price of a bigger circuit. By adding only a few more

MS gates the number of iterations can be signi�cantly reduced, allowing us to address potentially

bigger problems in the synthesis. In Figure 5.6 we show, for di�erent problem sizes, how the

iteration count and the time per iteration evolve when we add 10% more MS gates to the optimal

number of gates. We observe that the number of iterations is reduced at most by a factor 5 in

the case of 6 qubits for generic operators and 11 qubits for quantum states. More importantly,

with such an augmentation in the number of MS gates, the number of iterations only slightly

increases, almost linearly, in contrary to circuits of optimal size where the number of iterations

increases exponentially. This means that the time per iteration, also increasing exponentially with

the number of qubits, is the main limiting factor in the good scalability of the method. Thus any

improvement in the classical simulation of a quantum circuit (i.e., reducing the time per iteration)

will lead to a signi�cant acceleration in the synthesis time.

Finally, in our experiments, we achieved circuit synthesis on 6 qubits in about an hour and state

preparation on 11 qubits in about 3 hours. Despite this sacri�ce in the quantum cost (since we use

more gates), this is still to our knowledge the best method to synthesize generic quantum circuits

and quantum states for the trapped-ions technology.

5.6 Universal Topologies for Other Gate Sets

We extend the use of our framework to other gate sets. This task is not simple because we con-

sider gate sets with two-qubit entangling gates (CNOT, iSWAP,

√
SWAP) and we need to think

of how to arrange those gates to have a universal topology. Once we have found good struc-

tures with repeating patterns, the behavior of the numerical optimizer is about the same as for the

MS+rotations gate set: we observe a strict drop of the error when we reach a certain number of

gates in the topology. We also observe the same decrease in the number of iterations if we add

more gates, making it possible to trade the quantum cost for the classical cost. In this section, we
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Figure 5.7: Graphical notation for 2 blocks of gates.

will not detail the numerical results each time but rather we show the topologies that are likely to

be universal.

We did not repeat the experiments we did with the MS gates. The way we estimate if a topology

is universal or not is based on a simpli�ed procedure:

• we set the tolerance of the gradient to 10−8
,

• we tried several topologies with a regular pattern and we increased the number of gates

progressively,

• the error must drop to 10−8
at least for a sample of random unitaries. We recall that the

error is a squared error so the real error for 10−8
is 10−4

.

We did not rely on the number of iterations to help evaluate if universality is reached or not.

Generally, it is not easy to tell with the experiments if a topology is universal or not. We want to

warn that there are some inaccuracies, simpli�cations, that will be done to get the results we will

present. Especially, the notion of universality becomes less and less clear as the number of qubits

increases. For example, for unitary synthesis: with n = 3, 4 we notice a drop in the error when

we reach the theoretical lower bound, for instance from 10−5
to 10−10

or even less. However, for

n = 5 the error slowly decreases and we can hardly notice a change at the theoretical lower bound.

The error is already at 10−7
before reaching the lower bound and the convergence is harder and

harder and requires more and more iterations to reach a negligible error. For these reasons, we are

aware that our results must be questioned. Yet we believe our results still give good insights about

the tightness of the lower bounds.

5.6.1 The CNOT + SU(2) Gate Set
Following the proof in [174] detailed in Section 5.1, we consider blocks of one CNOT and 4 local

rotations and ultimately a wall of one-qubit gates. We give in Fig 5.7 the graphical notations for

those two blocks of gates. The lower bound of⌈
1

4
(4n − 3n− 1)

⌉
CNOT gates given in [174] seems to be tight. We were able to reach universality with several

topologies. They are summarized in Table 5.1. For each topology, the minimum number of CNOT

required to have universality is given by the theoretical lower bound. The �rst two topologies

(stairs and depth friendly) are LNN compliant. The depth friendly topology is also optimal in

depth. In our opinion, this should be the preferred topology if one has to synthesize small unitaries

on a real architecture. The two others ("one control", "one target") may be useful if one qubit is

centralized in the hardware and is connected to all the other isolated qubits.
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Name Graphical representation Features

Stairs LNN compliant.

Depth friendly LNN compliant. Optimal in depth.

One control One centralized qubit.

One target One centralized qubit.

Table 5.1: Universal topologies for the CNOT+SU(2) gate set.

89



Part B – Synthesis on SU(2n) Chapter 5

Rx(−π/2)

B

Figure 5.8: Circuit equivalence for the B gate.

5.6.2 The iSWAP + SU(2) Gate Set

The iSWAP gate, acting on 2 qubits with matrix representation


1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

, has similar

commutation rules with the elementary rotations than the CNOT. Namely, it commutes with the

Rz rotations on both qubits. We need to adjust the block of an iSWAP gate but, otherwise, we can

transpose all the results for the CNOT gate. The topologies given in Table 5.1 are also universal

topologies for the iSWAP + SU(2) gate set.

5.6.3 With B Gates, Controlled-Phases, To�oli, etc.

Occasionally a topology with k entangling gates can almost be universal but we still need to

add one more entangling gate to reach universality. By doing so we add redundant DOF. The best

example is the two-qubit case where a circuit with 2 CNOTs can have at most 15 degrees of freedom

while 16 are expected to reach universality. 3 CNOTs are therefore necessary to implement most

of the operators but we expect that it is possible to synthesize any two-qubit operator with only

two uses of a more suitable entangling two-qubit gate. Such a gate was found in [213]. This gateB
is equivalent to a CNOT followed by a controlled-Rx(−π/2) where the target of the CNOT is the

control of the controlled-Rx, see Fig 5.8. Given the shape of B, one can feel that the commutation

rules are not as clear as for the CNOT and that probably more DOF can be carried "on the left" of

the gate. If it happens to be true it will explain why fewer B gates are necessary. We did some

experiments on this gate and tried to evaluate the number of B gates necessary to implement a

3-qubit operator, a 4-qubit operator, etc. As we do not know how elementary rotations commute

with the B gate, we tested several topologies (stairs, depth friendly) with an elementary block

made of 6 elementary rotations and one gate B, plus a �nal wall of three elementary rotations on

each qubit. The results are summarized in Table 5.2 with other gate sets. For each problem size

from 2 to 5, the number of B gates required to reach an apparent universality follows the formula⌈
1
6(4n − 3n− 1)

⌉
. In other words, each rotation in each block contributes as one DOF. As a 2-

qubit gate, the gate B is optimal in the sense that a topology with one two-qubit gate can have at

most 6 DOF (7 with the global phase). This also means that the gateB does not commute with any

elementary rotation otherwise the number of DOF per B gate would be lower.

This count can also be achieved with another gate: the To�oli gate. The To�oli gate follows

the same commutation rules as the CNOT but, in this case, we have two controls instead of one.

In some architectures, for example with neutral atoms, the To�oli gate, or the CCZ gate, can be

realized with great �delity [119, 168]. The use of the To�oli gate instead of the CNOT gate can,

therefore, be an asset in this case.

Lastly, we explore the use of another kind of entangling gates: the controlled-rotations. We focus

on the controlled-phases. They commute withRz gates on both qubits so a block can contain up to

4 elementary rotations. However, the controlled-phase is in itself a parameterized gate so a block

of elementary rotations and one controlled-phase can contain at most 5 DOF. The lower bound
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Gate set

Estimated count for universality

Formula

n = 2 n = 3 n = 4 n = 5

CNOT + SU(2)
3 14 61 252

⌈
1

4
(4n − 3n− 1)

⌉
iSWAP + SU(2)

√
SWAP + SU(2) 4 18 81 336

⌈
1

3
(4n − 3n− 1)

⌉
+ 1

Controlled-phase + SU(2) 2 11 49 202

⌈
1

5
(4n − 3n− 1)

⌉
B + SU(2) 2

9 41 168

⌈
1

6
(4n − 3n− 1)

⌉
To�oli + SU(2) \

MS + SU(2) 3 8 27 92

⌈
1

2n+ 1
(4n − 3n− 1)

⌉
+ 1

Table 5.2: Estimated entangling gate counts to reach universality for di�erent gate sets. The �g-

ures in red correspond to the cases where it was observed that an additional gate was necessary

compared to the theoretical lower bound.

of the number of controlled-phases is, therefore, equal to

⌈
1
5(4n − 3n− 1)

⌉
. Again we repeat the

same experiments and the results are given Table 5.2. The counts again follow the theoretical lower

bound.

5.6.4 The
√
SWAP+ SU(2) Gate Set

Finally we explore the use of the gate

√
SWAP =


1 0 0 0
0 1

2(1 + i) 1
2(1− i) 0

0 1
2(1− i) 1

2(1 + i) 0
0 0 0 1

 .

This gate is not maximally entangling as we need two uses of the

√
SWAP to produce a Bell state

from product states. Said di�erently, two

√
SWAP are necessary to implement a CNOT gate [56].

The results we get for this gate are not as clear as for the other gate sets and this may be explained

by its lower entangling capabilities. For n = 3, 4, 5 a lower bound of
1
3(4n − 3n− 1) seems to be

veri�ed. On the other hand for n = 2 we need 4
√

SWAP to reach universality while the theoretical

lower bound we deduce from the cases n = 3, 4, 5 suggests that only 3
√

SWAP are necessary. We

are unable to explain this gap.

Above all, the theoretical lower bound suggests that each

√
SWAP carries at most 3 DOF. This

is a strange result because the symmetry of the gate lets think that an even number of elementary

rotations can be placed on the left of the

√
SWAP gate so we might expect an even number of DOF

per

√
SWAP gate. Again we do not have any satisfactory explanation and this should be the subject

of a future work.
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5.6.5 Universal Topologies for State Preparation, Isometries

We have seen in Section 5.5 that the theoretical lower bound for state preparation is probably

tight with the MS gate set. In this section, we give similar results for CNOT based topologies and

we also generalize to any operator speci�ed by k columns, for any 1 ≤ k ≤ 2n. In a nutshell, we

report that the candidate universal topologies (stairs, depth friendly, etc.) are likely to be universal

and the theoretical lower bounds again match.

Each column of an n-qubit unitary operator is described by 2n+1
real parameters and a set of

k columns is described by k2n+1
real parameters. The orthonormality conditions between the

columns of the operator give us

(
k
2

)
complex equations given by the orthogonality between any

pair of columns and k real equations given by the unitarity of each column. Therefore, a set of k
columns of a unitary operator is entirely speci�ed by

k2n+1 − k2

real parameters.

Next, if we are solely interested in the synthesis of k columns, this means that we have dlog2(k)e
qubits unspeci�ed and n−blog2(k)c that are in a �xed arbitrary state, |0〉 for instance. We already

explained that we can remove one rotation for each qubit in a speci�c state. With the fact that each

CNOT gate can carry at most 4 DOF, the maximum number of DOF in a circuit topology with p
CNOT gates and dlog2(k)e unspeci�ed qubits is

4p+ 1 + 3dlog2(k)e+ 2(n− dlog2(k)e)

where we added one DOF given by the global phase. The theoretical lower bound is the solution

of

4p+ 1 + 3dlog2(k)e+ 2(n− dlog2(k)e) > k2n+1 − k2,

i.e.,

#CNOT ≥
⌈

1

4

(
k2n+1 − k2 − 1− dlog2(k)e − 2n

)⌉
.

Replacing k by 2n and one recovers the lower bound for unitary synthesis. Replacing k by 0 and

one recovers the lower bound for state preparation. Finally replacing k by 2m and one recovers

the lower bound for m to n isometry synthesis.

We tested the four topologies ("stairs", "depth friendly", "one control", "one target") in the follow-

ing cases:

• state preparation,

• synthesis of a 1 to n isometry,

• synthesis of a n− 1 to n isometry,

• unitary synthesis,

• unitary synthesis up to diagonal gate.

The results are summarized in Table 5.3. A few remarks about the results:

• the bounds for the state preparation and 1 to n isometry cases are not clear. The di�erences

we observed with the theoretical lower bounds are represented by the �gures in red or in

blue: the �gures in red are a unit larger than the theoretical lower bound, the �gures in
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Operators

Estimated count for universality

Formula

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

Quantum State

1 1 3 3 7 7 14 14 29 30 62 62

⌈
1

4
(2n+1 − 2n− 2)

⌉
+ 1 + 1

1 1 3 3 6 6 14 14 29 29 61 61

1 to n isometry

2 2 6 6 13 14 28 29 60 62 125 125

⌈
1

4
(2n+2 − 2n− 6)

⌉
+ 1 + 1

2 2 6 5 13 13 28 28 60 60 124 124

n− 1 to n isometry

2 2 10 10 45 45 189 189

x x

⌈
3

16
× 4n − 3

4
n

⌉
2 2 10 10 45 45 189 189

Unitary

3 3 14 14 61 61 252 252

x x

⌈
1

4
(4n − 3n− 1)

⌉
3 3 14 14 61 61 252 252

Unitary (up to diag.)

2 2 13 13 58 58 x x

x x <

⌈
1

4
(4n − 3n− 1)

⌉
2 2 13 13 58 58 x x

Table 5.3: Estimated CNOT counts to reach universality for di�erent kinds of operators and four

topologies. The northwest quadrant gives results for the stairs topology, the northeast quadrant

is for the depth friendly topology, the southwest quadrant is for the one control topology and the

southeast quadrant is for the one target topology. The �gures in red, resp. blue, correspond to the

cases where it was observed that one, resp. two, additional gate was necessary compared to the

theoretical lower bound.

blue are two units larger. For n = 3, we need an extra CNOT for the four topologies to

reach universality. For n = 4 the stairs and depth friendly topologies again need an extra

CNOT gate compared to the theoretical lower bound to reach universality but not for the

"one control" and "one target" topologies.

• For n = 5, in the unitary synthesis problems, the BFGS algorithm has trouble �nding a

clear global minimum when the number of CNOTs is around the theoretical lower bound —

we get errors around 10−7
— making it hard to decide when universality is reached or not.

Especially, when we try to estimate the number of CNOT gates required to synthesize an

operator up to a diagonal gate, no known theoretical lower bounds exist and the case n = 5
is not clear at all.

• We note that for the "one control" and "one target" topology the convergence of the BFGS

algorithm is easier.

5.7 Combining Universal Topologies with Other Synthesis Meth-
ods

We discuss the possibility of combining synthesis using universal topologies with algebraic

methods. We want to highlight the complementarity of algebraic and numerical methods. The

former allows tackling larger problem sizes by breaking down the synthesis into a multitude of

93



Part B – Synthesis on SU(2n) Chapter 5

p

Exact Unitary synthesis Unitary synthesis Up to Diag.

#U-diag(p) δp αp cp δp αp

1 0 0 2/3 ≈ 0.666 0 0 2/3 ≈ 0.666

2 3 0 13/24 ≈ 0.542 2 1 23/48 ≈ 0.479

3 14 0 77/192 ≈ 0.401 13 1 37/96 ≈ 0.385

4 61 0 127/384 ≈ 0.331 58 3 245/768 ≈ 0.319

5 252 0 899/3072 ≈ 0.293 x x x

6 1020 0 3347/12288 ≈ 0.272 x x x

7 4091 0 803/3072 ≈ 0.261 x x x

Table 5.4: Possible values for the leading coe�cient of the QSD method.

syntheses on a small number of qubits. Once a su�ciently small number of qubits is reached, we

can call a numerical optimizer as a subroutine and improve the optimality of the initial algebraic

decomposition. We illustrate this with two algebraic methods: the QSD and the Householder based

synthesis method presented in Chapter 4.

5.7.1 With the QSD

We recall that the CNOT complexity of the QSD method is given by

#UQSD = αp4
n − 3× 2n−1 +

1

3
+ δp

with

αp =
#U-diag(p) + 3× 2p−1 − 1/3

4p

and

δp = #U(p)− #U-diag(p)

and p is the number of qubits where we decide to stop the recursion. The improvements in the

synthesis of small unitaries with the BFGS optimizer have a direct impact on the value of αp. In

Table 5.4 we give the values of αp for di�erent p and whether we synthesize the small operators

completely or up to a diagonal gate. Without even considering a synthesis up to a diagonal operator,

assuming that we can always synthesize a p-qubit operator with d1/4(4n − 3n− 1)e CNOT gates

using a numerical optimizer, the value of αp decreases exponentially in p up to the asymptotic

limit of 1/4. It is not unimaginable that with good optimizations an exact synthesis on 6 qubits is

possible. For n = 6, α6 ≈ 0.272 and we are very close to the theoretical lower bound of α = 0.25.

For n = 3, 4 we can save a few CNOTs assuming that the synthesis can be done up to a diagonal

gate. The new CNOT counts are given in the last row of Table 5.3. To compute those results, we

simply added a diagonal topology to our candidate topology and we reduced the number of CNOT

gates in the candidate topology until we were unable to reach apparent universality. Implementing

small operators up to a diagonal gate has a non negligible impact on the value of αp, see the results

on the second column of Table 5.4.

However, this combination of the QSD and numerical synthesis raises the problem of the global

approximation error. If U, V are two unitaries such that ‖U − V ‖ < ε1 and W,Ω are two other

unitaries such that ‖W − Ω‖ < ε2, then we have ‖UW − V Ω‖ < ε1 + ε2. In other words,

the errors add up. Synthesizing an n-qubit operator via the QSD and stopping the recursion at
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p qubits require the synthesis of 4n−p operators on p qubits. Even a good approximation error

for each p-qubit operator might not be enough if all errors are added. Therefore we need to have

strong con�dence that our numerical scheme will be able to reach su�ciently low errors to keep

the global error low as well. From the experiments we did, we are con�dent for the case n = 4
but for n = 5 we are not as con�dent. Moreover, the classical runtime increases as the target error

is low and on a laptop, without particular optimization, it becomes very costly to run the BFGS

algorithm on 5 qubits in order to have an error of 10−8
or even lower. From the experiments done

in Chapter 4 we know that the QSD method cannot be applied on more than 12-qubit operators,

this gives an upper bound of 412−p
on the number of p-qubit operators we have to synthesize. With

p = 4 we have 65536 operators on 4 qubits to synthesize and it is not too expensive to synthesize

each of them with an error below 10−9
. Therefore we can manage to have an error of at most

6×10−5
for the global operator. We must then see on a case by case basis if this error is acceptable

or not.

5.7.2 With the Householder Framework

We simply recall the results from Chapter 4. We have shown that we can use a recursive formu-

lation of the Householder method and if we have a synthesis method achieving a CNOT count of

β4n for n ≤ p then we get:

cn =

(
7

5

)q1 (8

5

)q2
β4n

where q1, q2 are given as follows: n = x0x1...xm is the binary decomposition of n, q is the biggest

integer such that x0x1...xq ≤ p and

q1 = |{xi = 0 | i ∈ Jq + 1,mK}|,

q2 = |{xi = 1 | i ∈ Jq + 1,mK}|.

We illustrate it with n = 18, p = 3. We expect c18 = 7
5c9 = 7

5
8
5c4 = 7

5
8
5

7
5c2. Given that

18 = 10010, we �nd q = 2 and q1 = 2, q2 = 1 hence the result.

In theory, this result is not very useful. For large n and small p one can expect the leading coef-

�cient to be multiplied by at least

(
7
5

)log2(n/p) ≈ nlog2(7/5) ≈ √n. Even with optimal synthesis for

less than p qubits, the improvement in the leading coe�cient can only be by a factor of 2 compared

to the best method in the literature. So the overhead introduced by the use of the recursion in the

Householder framework is not compensated by the optimality of the synthesis on small problems.

The CNOT count quickly becomes several orders of magnitude larger than the theoretical lower

bound or even the complexities of other methods (the QSD, the Householder with standard state

preparation, etc.).

In practice, however, the value of n will never exceed 20. This means that in one step of the

recursion we already have to synthesize operators on 10 qubits at most. For this range of sizes, the

QSD is fast enough to be called and the gain in complexity compensates the factor of
7
5 or

8
5 such

that we still have a method that produces smaller circuits than the standard Householder method.

The other possibility was to apply twice the recursive Householder framework and then use our

numerical optimizer. But this would give an asymptotic complexity of at least

(
7
5

)2 × 1
4 × 4n =

49
100 × 4n which is not better than using the QSD after one level of recursion.
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5.7.3 The Synthesis Methods are Complementary

Overall it seems that three synthesis methods are complementary and produce the shortest cir-

cuits in a speci�c range:

• for small problems, typically n ≤ 4, a numerical optimizer with a universal topology can be

used. It produces optimal circuits for most of the unitaries.

• the QSD is the best algebraic method but its scalability is limited. For n ≤ 12 it can be used

in accordance with the numerical method.

• When n > 12 we need to use the fast Householder method. With the use of Schmidt decom-

position we can transform the synthesis on n < 20 qubits into several synthesis on n < 10
qubits where we call the QSD.

We summarize this global synthesis framework in Table 5.5. For each problem size the best result

is in bold.
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Algorithm

CNOT counts

Formulas

n = 1 2 3 4 5 6 7 8

Speci�c operators

Rx/y/z multiplexor \ 2 4 8 16 32 64 128 2n−1

SU(2) Multiplexor (up to diag. gate) \ 1 3 7 15 31 63 127 2n−1 − 1

Diagonal operator 0 2 6 14 30 62 126 254 2n − 2

Generalized To�oli 0 1 6 24 48 72 96 120 1 if n = 2, 6 if n = 3, 24n− 72 if n > 3

State preparation

Rotations mult. 0 2 8 22 52 114 240 494 2n+1 − 2n− 2

SU(2) mult. 0 1 4 11 26 57 120 247 2n − n− 1

Schmidt’s decomposition


α× 2n − 2× 2n/2 − 1

3
+ 2δp if n even

α× 2n − 3× 2(n−1)/2 +
4

3
+ 4δp if n odd

+ QSD (p = 2) 0 1 5 9 23 47 103 215 α = 23
24 , δp = 1

+ QSD (p = 4) 0 1 5 9 23 35 79 137 α = 490
768 , δp = 3

BFGS 0 1 3 6 14 29 61 x ≈
⌈

1
4(2n+1 − 2n− 2)

⌉
Unitary synthesis

BFGS

BFGS 0 3 14 61 252 x x x

⌈
1
4(4n − 3n− 1)

⌉
BFGS (up to diag. gate) 0 2 13 58 x x x <

⌈
1
4(4n − 3n− 1)

⌉
QSD αp × 4n − 3× 2n−1 + 1

3 + δp

QSD (p = 2) 0 3 20 100 444 1,868 7,660 31,020 αp = 23
48 , δp = 1

QSD (p = 3) 0 3 14 76 348 1,484 6,124 24,876 αp = 37
96 , δp = 1

QSD (p = 4) 0 3 14 61 282 1,214 5,038 20,526 αp = 245
768 , δp = 3

Householder

With rotations mult. 0 15 118 740 3,212 11,956 43,164 157,572 2× 4n − 2n× 2n − 4 + (2n − 1)#To�
[78]

With SU(2) mult. 0 8 74 527 2,278 8,045 27,156 92,795 4n − (2n− 3)2n + (2n − 1)#To�
[78]
− n− 5

With Schmidt, QSD (p = 2) 0 9 77 505 2,130 6,978 23,346 71,522 Eq. (4.37) and Eq. (4.38)

With Schmidt, QSD (p = 4) 0 9 77 505 2,040 6,492 19,977 58,091 Eq. (4.37) and Eq. (4.38)

Algorithm

CNOT counts

Formulas

n = 9 10 11 12 13 14 15 16

Speci�c operators

Rx/y/z multiplexor 256 512 1,024 2,048 4,096 8,192 16,384 32,768 2n−1

SU(2) Multiplexor (up to diag. gate) 255 511 1,023 2,047 4,095 8,191 16,383 32,767 2n−1 − 1

Diagonal operator 510 1,022 2,046 4,094 8,190 16,382 32,766 65,534 2n − 2

Generalized To�oli 144 168 192 216 240 264 288 312 1 if n = 2, 6 if n = 3, 24n− 72 if n > 3

State preparation

Rotations mult. 1,004 2,026 4,072 8,166 16,356 32,738 65,504 131,038 2n+1 − 2n− 2

SU(2) mult. 502 1,013 2,036 4,083 8,178 16,369 32,752 65,519 2n − n− 1

Schmidt’s decomposition


α× 2n − 2× 2n/2 − 1

3
+ 2δp if n even

α× 2n − 3× 2(n−1)/2 +
4

3
+ 4δp if n odd

+ QSD (p = 2) 447 919 1,871 3,799 7,663 15,447 31,023 62,295 α = 23
24 , δp = 1

+ QSD (p = 4) 291 595 1,223 2,491 5,047 10,203 20,535 41,307 α = 490
768 , δp = 3

BFGS x x x x x x x x ≈
⌈

1
4(2n+1 − 2n− 2)

⌉
Unitary synthesis

BFGS

BFGS x x x x x x x x

⌈
1
4(4n − 3n− 1)

⌉
BFGS (up to diag. gate) x x x x x x x x <

⌈
1
4(4n − 3n− 1)

⌉
QSD αp × 4n − 3× 2n−1 + 1

3 + δp

QSD (p = 2) 124,844 500,908 2,006,700 8,032,940 x x x x αp = 23
48 , δp = 1

QSD (p = 3) 100,268 402,604 1,613,484 6,460,076 x x x x αp = 37
96 , δp = 1

QSD (p = 4) 82,862 332,974 1,334,958 5,345,966 x x x x αp = 245
768 , δp = 3

Householder

With rotations mult. 588,652 2,248,532 8,736,572 34,340,644 135,970,572 540,737,268 2,155,937,500 8,608,284,356 2× 4n − 2n× 2n − 4 + (2n − 1)#To�
[78]

With SU(2) mult. 328,034 1,203,017 4,548,400 17,575,703 68,886,270 272,350,949 1,082,293,964 4,313,513,651 4n − (2n− 3)2n + (2n − 1)#To�
[78]
− n− 5

With Schmidt, QSD (p = 2) 262,026 848,106 3,502,634 11,909,290 52,543,162 182,508,154 825,554,090 2,886,297,322 Eq. (4.37) and Eq. (4.38)

With Schmidt, QSD (p = 4) 197,028 616,896 2,435,360 8,161,924 35,375,344 122,376,244 550,521,776 1,923,509,236 Eq. (4.37) and Eq. (4.38)

Table 5.5: CNOT counts and formulas for di�erent synthesis methods.
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In the Chapters 4 and 5 we either improved standard algebraic methods or standard numerical

methods. There exists a less typical method that focuses on a decomposition of the operator as

a linear combination of other operators chosen from a given set. This method enables to reuse

optimized circuits in order to implement more complex operators [104]. To our knowledge, this is

the only method using such a technique. This method, which we informally call the reuse method,

has been shown to be e�cient on speci�c cases [104]. Our objective in this chapter is to determine

whether this method can be e�ciently extended to a general framework for circuit synthesis.

The chapter is organized as follows. In Section 6.1, we recall the main principles of the reuse

method. In Section 6.2, we select the groups that can be used in synthesizing circuits via the reuse

method. In Section 6.3, we study the potential group candidates.

6.1 Presentation of the Reuse Method

The reuse method has emerged from the following motivation: if we know how to implement

circuits (supposedly e�ciently), can we directly reuse these circuits in order to implement new

operators?

Based on this idea, Klappenecker and Rötteler replied in the a�rmative [104]. Below is a sim-

pli�ed version of [104, Th. 6].

Theorem 6.1.1. Let G ⊂ U(2m) be a group of order 2n, and T = (t1, ..., tn) be such that any
member g of G can be written as g = tα1

1 ...tαnn with αi ∈ {0, 1}). Suppose

A =
∑
g∈G

βgg (6.1)

99



Part B – Synthesis on SU(2n) Chapter 6

H

H

t1 tn

CA

t-1n t-11

H

H

|0〉

|0〉

|x〉

|0〉

|0〉

A|x〉

Figure 6.1: Quantum circuit implementing a linear combination of operators.

withA ∈ U(2m) and de�ne the coe�cient matrixCA = (βg−1h)g,h∈G. Then the coe�cients (βg)g∈G
can be chosen such thatCA is unitary and the operatorA can be implemented as depicted in Figure 6.1.

This remains a simpli�ed version, su�cient for the rest of our study. An illustration of the

method can be found in [104, Sec. 3], where there is an implementation of the Hartley transform

via a linear combination of powers of the Fourier transform.

A key point in the use of this method is the distribution of information between the group

and the matrix of coe�cients. When the group contains su�cient information, such as the Fourier

transform powers group, the coe�cient matrix is easy to compute and the e�ciency of the quantum

Fourier transform synthesis is used to produce an e�cient circuit on non trivial operators. An

alternative would be to consider the problem in the other direction: the group is simple, contains

little information but the matrix of coe�cients — which now has a maximum of information — has

a structure that makes its implementation e�cient.

For example, if the group is circulant then the matrix of coe�cients will be circulant and diago-

nalizable in the Fourier basis [40]. If the group is symmetric and its elements are involutive, then

the matrix will be diagonalizable in the Hadamard basis (similarly to the MS gate, see Section 5.3).

In these cases, information can be predominantly contained in the coe�cient matrix but the imple-

mentation of the coe�cient matrix, although inevitably costly in terms of gates, is much simpler

than for any generic operator (see the article by Bullock and Markov for the implementation of

diagonal operators [36]).

However among all the possible matrix groups, some are more suitable than others for a generic

synthesis method. In the next section we narrow our research by investigating the theoretical

properties of “good” groups for general synthesis.

6.2 Characterization of Candidate Groups G

In this section we discuss under which conditions the reuse method can be used as a generic

method for the synthesis of circuits.

We can already eliminate the case where the groupG is Abelian. Indeed, in this case the matrices

of the group G commute in pairs and are therefore simultaneously diagonalizable, just like any

member of the span of G. One cannot reach all unitary matrix but only those diagonalizable in a

speci�c basis.

Ideally, the group G should be built easily for any number of qubits either with an adaptable

construction for any n or with a recursive approach. In fact, we can show how to construct a

solution group K and its matrix of coe�cients for n + m qubits from a solution group G for n
qubits and a solution group H for m qubits.
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We use can the properties of the tensor product to construct the group K . Indeed, by setting

K = G⊗H , provided that U(2n) ⊆ span(G) and U(2m) ⊆ span(H) then we have U(2n+m) ⊆
span(G⊗H). Recall the identity

(g1 ⊗ g2)(h1 ⊗ h2) = (g1h1)⊗ (g2h2) (6.2)

which is used to provide an expression of the coe�cient matrix associated with K :

CK = (βg−1h)g,h∈G⊗H = (β(g−1
1 ⊗h−1

1 )−1(g2⊗h2))g1,g2∈G,h1,h1∈H

= (β(g−1
1 g2)⊗(h−1

1 h2))g1,g2∈G,h1,h1∈H .
(6.3)

With an appropriate ordering of K , the matrix CK can be expressed as

CK =



β(g1g1,h1h1) ... β(g1gn,h1h1) β(g1g1,h1h2) ... β(g1gn,h1h2) ...

...
...

...
...

β(gng1,h1h1) ... β(gngn,h1h1) β(gng1,h1h2) ... β(gngn,h1h2) ...

β(g1g1,h2h1) ... β(g1gn,h2h1) β(g1g1,h2h2) ... β(g1gn,h2h2) ...

...
...

...
...

β(gng1,h2h1) ... β(gngn,h2h1) β(gng1,h2h2) ... β(gngn,h2h2) ...

...
...

...
...


. (6.4)

Thus, if a series of operations P factors CG and a series of operations Q factors CH , then (P ⊗ I)
block-factorizesCK and (I⊗Q) factorizes each block ofCK . Thus a priori (P ⊗Q) factorizesCK .

Therefore, if a solution for one qubit has been found, we can generate a solution for an arbitrary

number of qubits by successive tensor products. Now, because the available memory is limited
1
,

it is desired to minimize the number of auxiliary qubits per logical qubits especially if additional

qubits are necessary for error correcting codes [181]. In our study the size of the group G has been

�xed to a maximum of 8 elements so as to have only 3 auxiliary qubits per logic bit. This accounts

for the fact that quantum memory is expensive.

Only a few potential groups then satisfy the above restrictions:

• the projective Pauli group,

• the dihedral group over 3 qubits,

• the quaternion group.

6.3 Study of the Candidates

The two 8-element groups – quaternion and dihedral group – are very similar: we only consider

the latter. Indeed, the results on one of the two groups are immediately transposable to the other

group.

This section analyzes �rst the base cases: the projective Pauli group and the dihedral group. In

a second step, we discuss the behavior of the factorization mentioned in Section 6.2 for the case of

two qubits in the context of the dihedral group.

1

Simulating quantum computation on a conventional computer is known to be expensive [148] since a linear increase

in the number of manipulated qubits yields an exponential increase in the size of the required memory.
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6.3.1 The Projective Pauli Group

In the original publication, [104, Th. 6] has been extended to the case of projective groups in [104,

Th. 7]. The particular projective group that we consider is

G = {I,X,Z,XZ}. (6.5)

By setting A = a0I + a1X + a2Z + a3XZ the associated coe�cient matrix is

CA =


a0 a1 a2 a3

a1 a0 a3 a2

a2 −a3 a0 −a1

a3 −a2 a1 −a0

 . (6.6)

Klappenecker and Rötteler [104, Eq. 12] gave the factorization

CNOT × CNOT (2,1) × (H ⊗ I2)× CA × (H ⊗ I2)× CNOT = A⊗ I2 (6.7)

with

CNOT (2,1) =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .

This shows that the synthesis of CA is as di�cult as the synthesis of A. No improvement can

therefore be achieved with this group.

6.3.2 The dihedral group

The idea is to get rid of the projective character of the Pauli group by adding matrices to the G
group, i.e., with

G = {I,−I,X,−X,Z,−Z,XZ,−XZ}. (6.8)

The coe�cient matrix then becomes

CA =



a0 a1 a2 a3 a4 a5 a6 a7

a1 a0 a3 a2 a5 a4 a7 a6

a2 a3 a0 a1 a7 a6 a5 a4

a3 a2 a1 a0 a6 a7 a4 a5

a4 a5 a6 a7 a0 a1 a2 a3

a5 a4 a7 a6 a1 a0 a3 a2

a7 a6 a5 a4 a2 a3 a0 a1

a6 a7 a4 a5 a3 a2 a1 a0


. (6.9)

The best factorization that we have found is

P × CA × P † =


I

U
I

U

 = I ⊗ Λ(U) (6.10)

where

P = (SWAP ⊗ I)× (I ⊗ SWAP )× (Λ(Z)⊗ I)×H⊗3
(6.11)

and where U is some arbitrary 2 × 2 unitary matrix, a priori not simpler to synthesize than the

matrix A.

We can then conclude that no improvement can neither be found for this group.
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6.3.3 Factorization for two qubits

In this section, we highlight the fact that the factorization procedure envisioned in Section 6.2

is not so simple to use, and that it does not necessarily provide a usable decomposition.

Consider indeed an operator A on 2 qubits. Using the dihedral group, the block factorization on

CA would then lead to 
I

V
I

V

 (6.12)

with V a 2 by 2 block-matrix with blocks of size 8 by 8. Applying the same factorization on each

block of V gives a matrix of the shape

I 0
U1 U2

I 0
U1 U2

0 I
U3 U4

0 I
U3 U4


, (6.13)

withU1,U2,U3 andU4 arbitrary matrices of size 2×2, such that

(
U1 U2

U3 U4

)
is unitary. Synthesizing

A therefore corresponds to synthesizing this matrix, which does not seem too less costly. This hints

at the fact that extending the study to larger groups might not trivially help in getting a working

solution.
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Chapter 7

Conclusion and Perspectives on
Generic Circuits Synthesis

We started this part of the thesis with the goal

Synthesize an operator on n qubits in a reasonable amount of time with a circuit of size α× 4n

and we studied its feasibility for extreme values of n and α, i.e., the largest values possible for n
and the smallest ones for α. We �rst proposed ZUNQRF in Chapter 4, a LAPACK-like routine for

the QR factorization of a unitary matrix based on Householder transformations. We transformed

the problem of the synthesis of an arbitrary operator into the synthesis of several Householder

operators which itself is roughly equivalent to the preparation of quantum states. We derived

analytical formulas for the �op counts and the size of the resulting quantum circuits. Considering

that "a reasonable amount of time" corresponds here to one hour, we achieve our goal with the

Householder framework for new problem sizes n = 13, 14, 15 at the cost of a twice as large α
compared to the state-of-the-art method. With the help of multithreaded architectures or GPUs

we can hope to reach even larger problem sizes: n = 17, n = 18 qubits, maybe even more.

On the other end of the spectrum, we used numerical optimizers to produce circuits with the

lowest possible α in Chapter 5. We considered circuit skeletons with parameterized gates where a

numerical optimizer computes a set of angles that minimizes the error between the target operator

and the one implemented by the circuit. With this simple framework, we exhibited universal cir-

cuit skeletons, i.e., circuits from which we can empirically always �nd a set of angles such that the

circuit instantiated implements the desired operator. We provided universal topologies for several

gate sets like the standard universal gate set for trapped-ion based quantum circuits or the standard

continuous gate set for superconducting qubits. More importantly, the size of those topologies is

optimal in the sense that α cannot be lower. We also highlighted that the number of iterations re-

quired to converge is correlated to the extra number of entangling gates in the circuits. Therefore

it is possible to trade some quantum resources to consistently decrease the classical resources. This

improvement in the synthesis of small operators is useful in itself as a subtask in a global compila-

tion framework but it also improves the state-of-the-art methods like the QSD or our Householder

framework. By stopping the recursion of the QSD at 4 qubits for instance we synthesize circuits

with a lower α than the one usually given by the QSD.

Our results from Chapters 4 and 5 can be summarized by the graph given in Fig 7.1. Given the

amount of classical resources on the x-axis and the amount of quantum resources on the y-axis,

we can place every synthesis method. The ideal method is the one closest to the origin of the

graph. More realistically, we can imagine a theoretical curve such that you cannot synthesize a
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classical resources(flops, time)

quantum resources (#gates)

QSD (p=2)

Givens rotations

BFGS

SAT

Genetic algorithms

Householder

theoretical curve ?

Ideal method

QSD (p=3)

QSD (p=4)

QSD (p=5)

BFGS (+5%)

BFGS (+10%)

Current curve

n > 12 n < 7n = 6...12

Figure 7.1: Synthesis methods in the quantum resources/classical resources plane.

circuit with a method that would lie below this curve. In other words, the curve gives the lowest

quantum circuit complexity one can hope with a speci�c amount of classical resources. A non-

exhaustive overview of the state of the art is is given by the blue crosses: SAT solvers for optimal

synthesis, algebraic methods like the QSD or the QR via Givens rotations for faster but less optimal

synthesis, and genetic algorithms in between that have shown encouraging but limited results. Of

course, other synthesis schemes like Knill’s decomposition or block-ZXZ have their own place in

the graph but, for clarity, we did not put them.

With the results from this thesis we can add several methods, represented in red in the graph:

�rst, the Householder framework from Chapter 4 which provides, to our knowledge, the fastest

method while keeping a relatively low complexity. Then we have the BFGS based synthesis frame-

work from Chapter 5 which provides asymptotically optimal circuits but at the cost of a lot of

classical resources. Then we can add the variations around BFGS: by adding a percentage of the

total number of CNOT gates in our topologies we can decrease the number of iterations required

for BFGS to converge and thus the total of classical resources. These improvements have also

consequences on the QSD method. For each size at which we stop the recursion, we have a new

tradeo� quantum/classical: the larger the stopping size is the shorter the �nal quantum circuit is

but the longer it is to compute the optimal synthesis of each small operator. The reuse method,

which is a bit apart from the other methods, is more di�cult to place so we put it aside. Finally,

this gives us the green curve which corresponds to the current state of the art. As we do not give

real �gures about the number of quantum and classical resources, we have added an approximate

idea of what problem sizes can be addressed with the current green curve.

Can we improve the Householder framework? In terms of classical resources, it is complicated.

The strong scaling experiment has shown that the performance of ZUNQRF is almost as good as
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the matrix/matrix product which is probably the most optimized routine in scienti�c computing.

In other words, unless a new framework with less theoretical �ops is found, any improvement of

the Householder method is dependent on the improvements done on the matrix/matrix product.

But these improvements rely on experts in the �eld. In terms of circuit size, the main bottleneck

is the optimization of the product of isometries: when n is odd, the concatenation of state prepa-

ration and state de-preparation can we simpli�ed with Schmidt’s decomposition as the product

of two operators on bn/2c qubits and two isometries on dn/2e qubits. For the moment we have

to consider the last product as an entire operator on dn/2e qubits but, similarly to the product

state preparation/de-preparation that can be simpli�ed, we think it may be possible to simplify

this product of isometries.

Concerning the BFGS based algorithm, there is room for improvement. The �rst obvious im-

provement is a theoretical one: can we prove that the lower bounds are tight? Can we at least

show it for n = 3 qubits? The structure of the cost function is in fact well understood: this is

a trigonometric polynomial with variables the angles of the rotations in the circuit. But with k
parameters in the circuit, the polynomial contains 2k monomials and with k = 4n it is intractable

to have a complete description of the cost function even for n = 3. Still, we can expect:

• that some black-box optimization algorithms tailored for trigonometric polynomials exist

and will give better results than the BFGS algorithm.

• Some analytical work can be done in the hope to prove that the trigonometric polynomials

we encounter always have a zero.

We are not familiar with the optimization of trigonometric polynomials and we did not �nd

something useful in the literature.

Another question regarding the BFGS framework: can we extend it to synthesize speci�c oper-

ators? When the operator is not random and we expect that a short circuit can implement it, is it

possible to use numerical optimization? We are quite pessimistic about it. For CNOT+SU(2) based

quantum circuits, it involves �nding a correct layout of CNOT gates which implies a combinato-

rial optimization on top of the standard numerical optimization. This may be done for 3, maybe

4 qubits but the scalability of such a method is probably not good at all. But we do not think that

this is the main problem. An even more worrying aspect that we noticed is the local minima prob-

lem: when dealing with speci�c operators and circuits with only one solution, it is very hard to

converge to the global minimum. To give an example, we generated a random topology with a

few CNOT gates and we instantiated the topology with random angles. We tried to recover the

associated operator by using the BFGS algorithm and we always fell in a local minimum. Even

worse: starting from the initial set of angles used to generate the operator and taking an initial

perturbation of 10−2
of each component as a starting point of the BFGS algorithm, we still fell in

a local minimum. This is the main reason why we are pessimistic. Even with MS gates that do not

require to optimize a layout, the numerical optimizer has trouble �nding the global minimum. We

did not try global optimization algorithms yet, it would be interesting to see the scalability of such

methods for small problem sizes.

Finally, we have proposed a classical algorithm for computing the error and the gradient. In

terms of classical resources, this represents three classical simulations of a quantum circuit and this

limits the range of application of the framework. The simulation of a quantum circuit is exponential

in the number of qubits and linear in the number of gates, which is also exponential in the number

of qubits. What if we can execute the circuit directly on a quantum machine? This idea is at the

heart of variational algorithms used for instance to solve optimization problems [57, 140] or in

quantum chemistry [151]. Notably, the idea of computing an error via a quantum computer for
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compilation is developed in [99] where they propose a framework for compiling unitaries on NISQ

architectures. Our work is part of the same issue but we propose a di�erent point of view where

we focused on random operators with theoretical lower bounds that we try to validate. We hope

our work will give better understandings of the behavior of the classical optimization part of such

variational algorithms.
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Chapter 8

Introduction to Linear Reversible
Circuits Synthesis
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8.1 Motivation

During Part B of this thesis, we saw that the synthesis of operators in SU(2n) is very costly in

classical and quantum resources. It can only be used in very speci�c cases and must be integrated

into a more general compilation framework. To synthesize and optimize quantum circuits beyond

the intrinsic limits of synthesis in SU(2n) we must turn to alternative representations of an oper-

ator. It is no longer a question of using a matrix in SU(2n) as input but a compact representation

of the operator that we can handle more easily: this can be a Boolean formula for the synthesis

of oracles, a quantum decision diagram, a quantum circuit, etc. We lose the universal character

of the synthesis — not all operators can be described compactly — but we gain in scalability with

the idea that a given algorithm can be divided into several sub-operators more e�cient to process.

This is the whole challenge of quantum compilation: navigating between the di�erent e�cient

representations of an operator to extract the smallest quantum circuit possible. In this context, the

synthesis of circuits focuses on speci�c non-universal classes of operators. We can cite the Clif-

ford operators, the CNOT + T circuits (the corresponding operators are called phase polynomials),

or the oracles which have attracted much attention in the literature. Knowing how to e�ectively

synthesize these types of operators is crucial because today’s compilers rely heavily on these par-

ticular cases. For example, the optimization of a quantum circuit can be reduced to a succession of
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synthesis of CNOT + T circuits and is at the heart of the state-of-the-art algorithms Tpar [10] and

Topt [80].

This part of the thesis is dedicated to the synthesis of the so-called linear reversible operators.

They can be synthesized with the CNOT gate solely and we will use the term CNOT circuits for

reversible linear circuits during this part even though other sets of gates can synthesize linear

reversible operators (fan-in or fan-out gates for instance [81]). These operators are part of two

classes of operators mentioned above: the Cli�ord operators and the phase polynomials. As we

have said, phase polynomials have been the basis of modern compilers for a short decade and have

allowed enormous progress in the optimization of quantum circuits. However, most of the e�orts

have focused on reducing the number of T gates in the circuit. We explained in Chapter 2 that

considering only this metric could be misleading because the CNOT cost can equal or even exceed

that of the T gates. Optimizing the synthesis of CNOT circuits will reduce the CNOT cost of CNOT

+ T circuits and therefore the cost of quantum circuits in general. Cli�ord circuits represent the

second major application of the synthesis of CNOT circuits. Cli�ord operators play an essential

role in several �elds such as error correcting codes. They are therefore essential for the realiza-

tion of a fault-tolerant quantum computer, among many other applications (quantum tomography,

randomized benchmarking, etc.). We recall that a Cli�ord circuit is a circuit containing only the

gates H, S, CNOT, and Pauli. The structure of this group is better and better understood. Several

canonical forms have been demonstrated [2,134]. They break down a Cli�ord operator into several

layers of operators made up of a single type of gate, i.e., for instance, layers of H gates, layers of

S gates, or layers of CNOT gates. The layers of CNOT circuits in these canonical forms represent

the major part of a Cli�ord circuit in terms of number of gates. Therefore optimizing the synthesis

of CNOT circuits has an immediate impact on the synthesis of Cli�ord operators as well.

The outline of this introductory chapter is the following: we recall the notions about linear re-

versible circuits and the state of the art in Section 8.2. We end with a summary of our contributions

in Section 8.3.

8.2 Background and State of the Art

8.2.1 Background on Linear Reversible Circuits

Let F2 be the Galois �eld of two elements. A Boolean function f : Fn2 → F2 is said to be linear

if

f(x1 ⊕ x2) = f(x1)⊕ f(x2)

for any x1, x2 ∈ Fn2 where ⊕ is the bitwise XOR operation. Let ek be the k-th canonical vector of

Fn2 . By linearity we can write for any x =
∑n

k=1 xkek where xk ∈ {0, 1}

f(x) = f

(
n∑
k=1

xkek

)
=

n∑
k=1

xkf(ek)

and the function f can be represented with a column vector α = [f(e1), ..., f(en)]T , also called a

parity, such that f(x) = α ·x,where · stands for the scalar product on Fn2 and (−)T is the matrix-

transpose operation. This easily extends to the n-input m-output functions f : Fn2 → Fm2 where

f is de�ned by an m × n Boolean matrix A such that f(x) = Ax. In the case of linear reversible

Boolean functions, n = m and we have a one-to-one correspondence between the inputs and the

outputs. We then consider n-input n-output functions f for which the equation y = f(x) = Ax
must have a unique solution for any y ∈ Fn2 . In other words, the matrix A must be invertible in
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F2 and there is a one-to-one correspondence between the linear reversible functions of arity n and

the invertible Boolean matrices of size n. This was notably used to count the number of di�erent

linear reversible functions of n inputs in [152]. Namely, there are

n−1∏
i=0

(2n − 2i)

linear reversible operators on n qubits. Note that the i-th row of A corresponds to the parity held

by the i-th qubit after application of A. The application of two successive operators A and B is

equivalent to the application of the operator product BA. The application of the inverse operator

of A is equivalent to the application of A−1
.

We are interested in synthesizing general linear reversible Boolean functions into a reversible

circuit, i.e., a series of elementary reversible gates that can be executed on a suitable hardware. The

CNOT is a linear reversible gate, it performs the following 2-qubit operation:

CNOT(x1, x2) = (x1, x1 ⊕ x2)

where the �rst qubit in the state x1 is the control qubit and the second qubit in the state x2 is the

target qubit. It is straightforward to check that the CNOT gate is a linear reversible gate. It can also

be shown to be universal for linear reversible circuit synthesis: any linear reversible function of

arity at least 2 can be implemented by a reversible circuit containing only CNOT gates [2]. In the

following chapters, we aim at producing CNOT-based reversible circuits for any linear reversible

functions. Note that the choice of the CNOT gate as a universal gate set is not a necessity. Other

universal linear reversible gates may be of interest, but the CNOT gate is part of almost every

universal gate sets in current architectures so it is natural to focus on CNOT circuits.

The matrix representation of the CNOT gate controlled by the line j acting on line i 6= j is writ-

tenEij = I+eij where I is the identity matrix and eij the elementary matrix with all entries equal

0 but the component (i, j) where its value is 1. Therefore, �nding a CNOT circuit implementing

an operator A is equivalent to �nding a sequence of matrices (Eikjk)1≤ik,jk≤n such that

N∏
k=1

Eik,jk = A.

Using the fact thatE−1
ij = Eij , it is more convenient to rewrite the synthesis problem as a reduction

of A to the identity operator I
1∏

k=N

Eik,jkA = I

because we now show that the synthesis problem can be reformulated in terms of elementary

operations applied on A. Given a CNOT with control j and target i applied on an operator A, the

updated operator EijA can be deduced from A with an elementary row operation :

ri ← ri ⊕ rj ,

writing rk for the k-th row of A. Therefore, if one can compute a sequence of row operations

transforming A into the identity operator then one can construct a circuit implementing A by

concatenating the CNOT gates associated to each row operation. With a standard Gaussian elim-

ination algorithm it is always possible to reduce an invertible operator to the identity with row

operations. This gives a simple proof that the CNOT gate is universal for linear reversible circuit
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synthesis. Yet, in some cases we will also authorize the use of column operations. A column op-

eration cj ← ci ⊕ cj is equivalent to right multiplying A by Eij . Overall by combining row and

column operations we get ∏
(i1,j1)

Ei1j1 ×A×
∏

(i2,j2)

Ei2j2 = I

and �nally

A =
∏

(i1,j1)

Ei1j1
∏

(i2,j2)

Ei2j2

so we recover a CNOT circuit for the implementation of A.

Thus, synthesizing a linear reversible function into a CNOT-based reversible circuit is equivalent

to transforming an invertible Boolean matrix A to the identity by applying elementary row and

column operations. From now on we will privilege this more abstract point of view because it

gives more freedom and often appears clearer for the design of algorithms. We note by Row(i, j)
the elementary row operations rj ← ri ⊕ rj and Col(i, j) the elementary column operations

cj ← ci ⊕ cj .
We now review the main algorithms designed for the synthesis of CNOT circuits.

8.2.2 State of the Art

Gaussian Elimination

The �rst proposed algorithm is a standard Gaussian elimination algorithm for matrices in F2.

The algorithm consists of two parts: �rst, the operator A is transformed into an upper triangular

operator by zeroing the subdiagonal elements of each column. Then the �rst part is repeated on

the triangular operator: the superdiagonal elements are zeroed column by column.

More precisely, given a lower triangular operator L — the upper case can be treated similarly

— the Gaussian elimination algorithm can be summarized as follows: by applying elementary row

operations Row(i, j) with i < j we zero the subdiagonal elements of L without changing its

triangular shape. This process is performed column by column, starting from the �rst one. This

way one can easily see that if the k �rst columns are treated, applying row operations Row(i, j)
with k < i < j will not change the treated columns as all their elements are 0. SinceL is invertible,

when zeroing the k-th column the k-th row is necessarily equal to L[k, :] = eTk hence one can

always add the row k to any row j > k to zero the entry L[j, k]. This guarantees the good

behavior of the algorithm for any input matrix.

To triangularize an operator the same procedure is applied but one has to be careful to ensure

that the diagonal element on the current column is not zero. If it is not the case an extra row

operation is needed.

Since one row operation sets to zero only one element at a time, we need at most
n(n−1)

2 row

operations to zero every subdiagonal elements of L, leading to a worst-case complexity of O(n2)
for the synthesis of a generic linear reversible operator.

For completeness, we give the pseudo-code in Algorithm 8.1.

Patel-Markov-Hayes Algorithm (PMH)

In [152] Patel, Markov and Hayes proposed an algorithm with worst-case complexityO(n2/ log2(n)).

Besides, they also showed that this worst-case complexity is optimal, meaning that there exist oper-
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Algorithm 8.1: Gaussian Elimination algorithm on an operator A.

Require: n ≥ 0, A ∈ Fn×n2

Ensure: C is a CNOT-circuit implementing A

C ← [ ]
for i = 1 to n do
if A[i,i] != 1 then
diag_is_zero = true

end if
for j = i+1 to n do
if A[j,i] = 1 then
if diag_is_zero then

C.append(CNOT(j, i))
A[i, :]← A[j, :]⊕A[i, :]
diag_is_zero = false

end if
C.append(CNOT(i, j))
A[j, :]← A[j, :]⊕A[i, :]

end if
end for

end for
for i = 1 to n do
for j = i+1 to n do
if A[n-j+1,n-i+1] = 1 then

C.append(CNOT(n− i+ 1, n− j + 1))

A[n− j + 1, :]← A[n− j + 1, :]⊕A[n− i+ 1, :]
end if

end for
end for
return reverse(C)
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ators that cannot be synthesized with less thanO(n2/ log2(n)) gates. In other words this algorithm

is asymptotically optimal.
To prove this lower bound on the worst case complexity, note that for each CNOT we have 2

(
n
2

)
di�erent choices for the control and the target, plus a "do nothing" gate. This means that we have

at most (
2

(
n

2

)
+ 1

)k
di�erent operators that can be implemented with a circuit with no more than k CNOTs. We want

to �nd the smallest k such that(
2

(
n

2

)
+ 1

)k
≥

n−1∏
i=0

(2n − 2i) ≥ 2n(n−1)

which will ensure us that we can potentially synthesize any operator with only k CNOT gates.

Taking the log on both sides, we �nally get

k =
n2

2 log2(n)
+ o(n2/ log2(n)). (8.1)

The PMH algorithm is an improvement over the Gaussian elimination method. Patel et al. [152]

showed that in average O(log2(n)) elements can be zeroed in one row operation and not only 1
as in the Gaussian elimination algorithm. To do so they designed a block version of the Gaussian

elimination algorithm. By treating a block of m columns simultaneously, it is possible to zero

n−2m rows ofm elements with only one row operation each as there are only 2m di�erent words

on m qubits. After zeroing those duplicate rows the rest of the block is zeroed with a standard

Gaussian elimination algorithm. Then the algorithm pursues with another block of m columns,

and so on until the operator is triangular. Similarly to the Gaussian elimination algorithm, the

algorithm is repeated on the triangular operator.

If m is the size of the blocks, they showed that the number of row operations required to syn-

thesize an operator is upper bounded by

total row op. [152] ≤ n2

m
+ 2n2m + negligible terms (8.2)

Take m = α log2(n) with 0 < α < 1 and we have the desired complexity:

total row op. [152] ≤ n2

α log2(n)
+ 2n1+α + negligible terms (8.3)

By taking α arbitrarily close to 1, the multiplicative constant is arbitrarily close to 1 but the term

2n1+α
is also arbitrarily close to 2n2

. We will see that this term is not negligible and distorts the

concrete complexity. In practice α = 1/2 produces the best results for intermediate values of n
(n < 100) [152]. A pseudo-code is given Algorithm 8.2 in the case of a triangular operator L.

To our knowledge, the PMH algorithm is the best algorithm for the synthesis of linear reversible

circuits when the the connectivity between the qubits is full. It is notably used in some recent

circuit optimization algorithms [9, 10].

Steiner Trees and Hardware Constraints

The current technologies for quantum computers cannot a�ord full connectivity between the

qubits. The qubits are arranged in a certain way in the hardware and CNOTs are possible only
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Algorithm 8.2: PMH algorithm on a triangular operator L.

Require: n ≥ 0, 0 < m ≤ n, L ∈ Fn×n2 triangular

Ensure: C is a CNOT-circuit implementing L

C ← [ ]
NB ← dn/me // number of blocks

for k=1 to NB do
begin_block← (k − 1)×m+ 1
end_block← min(k ×m,n)
size_block← end_block-begin_block+1

locations← zeros(2size_block
) // create a vector of size 2m locating the last positions of

subrows

for i = begin_block to n do
subrow← Int(A[i, begin_block:end_block])
if locations[subrow] != 0 then
j ← locations[subrow]

C.append(CNOT(j, i))
L[i, :]← L[j, :]⊕ L[i, :]

else
locations[subrow]← i

end if
end for
for i =begin_block to end_block do
for j = i+1 to n do
if A[j,i] = 1 then

C.append(CNOT(i, j))
A[j, :]← A[j, :]⊕A[i, :]

end if
end for

end for
end for
return reverse(C)
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between neighboring qubits. For instance, the qubits can be arranged as a line (the Linear Nearest

Neighbor architecture) or a grid. Some other examples of restricted connectivities were given in

Fig 2.3 in Chapter 2. The Gaussian elimination algorithm or the PMH algorithm are designed

assuming that any CNOT between any pair of qubits can be performed. They cannot be directly

used for a hardware with a restricted connectivity. To overcome this, two solutions are possible:

1. there exist methods for rewriting a circuit so that it veri�es the connectivity constraints.

The rewriting consists generally in moving the qubits in the hardware with SWAP gates to

execute every CNOT gate in the original circuit. Therefore these methods, sometimes called

SWAP insertion methods, introduce an overhead somehow proportional to the size of the

initial circuit. In other words, such rewriting methods perform well for small input circuits

but are not as e�ective for large circuits.

2. If the original circuit is big enough (and this notion is not easy to quantify), or if the operator

is given by its matrix representation, then direct synthesis methods that take into account the

connectivity constraints are preferable. Indeed, SWAP insertion methods can increase the

complexity by a factor of n, so a method relying on the PMH algorithm and a SWAP insertion

method provides circuits of size O(n3/ log2(n)) in the worst case. With direct methods, it

is possible to synthesize linear reversible circuits for any architecture with at most O(n2)
CNOT gates [102, 146].

Recently, two concomitant papers proposed a modi�cation of the Gaussian elimination algo-

rithm to produce circuits compliant with a connectivity graph given as input of the algorithm

[102,146]. Both papers use Steiner trees to perform a custom Gaussian elimination: the operator is

still synthesized column by column but the zeroing of one column is modi�ed to respect the con-

nectivity constraints. Given a set of vertices S in the connectivity graph G as the qubits for which

the entry of the current column is 1, an e�cient way to zero those entries is to follow a tree in G
spanning the vertices in S. The entries of the current column are zeroed in the order given by the

tree: from the leaves to the root. The two papers di�er in the way they compute the sequence of

row operations from the tree — we invite the reader to read the papers [102, 146] for more details.

Computing a Steiner tree with a minimum number of edges is equivalent to computing a minimum-

weight Steiner tree in a graph whose edges are weighted to 1. This problem is NP-Hard but ap-

proximation algorithms with good approximation ratios exist in the literature. This algorithm

relying on Steiner trees improves over rewriting methods found in modern compilers (namely, the

QuilC [179] and t|ket〉 [41] compilers). Very recently, in a preprint, Wu et al. improved this method

with the use of non-cutting vertices [209].

Depth Optimization Algorithms for LNN

So far we have presented state-of-the-art algorithms that optimize the size of the produced cir-

cuits. The other metric of interest is the depth of the CNOT circuits and some works proposed

algorithms for this problem. In this section, we present algorithms for the LNN architecture. In

Section 8.2.2 we will present algorithms for depth optimization in the case of full qubit connectivity.

We �rst present the algorithms for the LNN architecture because, surprisingly, the �rst papers

on the subject directly focused on the depth optimization for the LNN architecture. In [130] Maslov

showed how to reorganize the CNOTs applied during the Gaussian elimination algorithm in order

to have a circuit of linear depth. More precisely, he considered a skeleton circuit with placeholders

for all potential CNOTs that can be applied in the Gaussian elimination algorithm. This means that

for a speci�c operator to synthesize, you only have to decide for each placeholder if there will be
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|q0〉

|q1〉

|q2〉

|q3〉

|q4〉
(a) Skeleton circuit for 5 qubits. Each CNOT has a placeholder in the skeleton but its actual presence is

conditioned by the operator to be synthesized. This is symbolized by the "?". The skeleton has CNOT depth

2n− 3.

?

?

?

?

?

??

? ? ?

|q0〉

|q1〉

|q2〉

|q3〉

|q4〉
(b) Skeleton circuit for 5 qubits compliant with the LNN architecture. The presence of a CNOT gate is still

conditioned by the operator, however the SWAP gates are necessary for any operator. The skeleton has

CNOT depth 3(2n− 3).

Figure 8.1: Skeleton circuits on 5 qubits with a linear depth.

a CNOT in the circuit or not. An example with 5 qubits taken from his paper is given in Fig 8.1a.

Maslov showed that the skeleton can be set to have depth 2n− 3. Then, with the concatenation of

3 skeleton circuits, he managed to synthesize any operator in depth 6n− 9.

Then he extended it to the LNN architecture. The general idea is to move the qubits in the hard-

ware in such a way that the skeleton circuit can still be executed. This gives a new skeleton circuit

made of necessary SWAP gates and optional CNOT gates — the CNOT gates in the original skele-

ton circuit. Fig 8.1b gives the new skeleton circuit from Fig 8.1a adapted to the LNN architecture.

A SWAP gate needs 3 CNOTs to be implemented but combined with a CNOT gate it only needs 2
CNOTs. In any case, the worst-case depth for the new skeleton is 3 times the depth of the original

skeleton circuit, i.e., 18n+O(1).

Around the same time, Kutin et al. gave several constructions of speci�c linear reversible op-

erations for the LNN architecture: addition, swap, permutation, generic linear reversible opera-

tor [117]. They focused on the shallowest way to do it. For a generic linear reversible operator, they

relied on their construction for reversing the qubits, i.e., the image of an n-qubit state |x1x2...xn〉 is

|xnxn−1...x1〉. This construction is a sorting network and contains only SWAP gates. The network,

as a SWAP circuit, is of depth n. An example with 7 qubits is given Fig 8.2. Then they considered

the same sorting network but with boxes replacing the SWAP gates. Each box, acting on 2 qubits,
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|q0〉

|q1〉

|q2〉

|q3〉

|q4〉

|q5〉

|q6〉

|q6〉

|q5〉

|q4〉

|q3〉

|q2〉

|q1〉

|q0〉

Figure 8.2: Sorting network for 7 qubits. As a SWAP circuit, the depth of the circuit is n. Replac-

ing each CNOT by a box gives a skeleton circuit for the synthesis of triangular linear reversible

operators.

can perform one of the following operations:

• (u, v)→ (u, v), requiring 0 CNOT,

• (u, v)→ (u, u⊕ v), requiring 1 CNOT,

• (u, v)→ (u⊕ v, v), requiring 1 CNOT,

• (u, v)→ (v, u⊕ v), requiring 2 CNOT,

• (u, v)→ (u⊕ v, u), requiring 2 CNOT,

• (u, v)→ (v, u), requiring 3 CNOT.

Kutin et al. [117] proved that a sorting network made of boxes can transform any operator into

a northwest triangular one. Moreover, for each box, only the state of one of the two output qubits

needs to be �xed after applying the box. This means that we can always choose a box that needs

at most 2 CNOTs to be implemented. Consequently, the total depth of the sorting network is 2n.

Finally, they showed how to synthesize a northwest triangular operator with a similar sorting

network except that in this case for each box the states of the two output qubits need to be �xed.

Therefore we may need at most 3 CNOTs for some boxes (if we only need to swap the qubits)

and the depth of this second part is upper bounded by 3n. Overall this gives a generic method for

synthesizing any linear reversible operator for the LNN architecture in depth at most 5n. To our

knowledge, this is the best result in the literature for any given graph connectivity. This result

can only be improved by a constant factor as Kutin et al. also showed that some operators need

at least circuits with depth 2n to be implemented. So the best possible method for synthesis for

the LNN architecture should provide circuits of depth comprised between 2n and 5n. For other

architectures, the bounds are not clear. Obviously, if an architecture contains a Hamiltonian path

in it then one can apply the algorithm for the LNN case, giving an upper bound of 5n for the

depth. To our knowledge, lower bounds are not known but Maslov computed lower bounds for 2
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simpli�ed models in the case where each qubit has k neighbors [130]. The �rst model is the case

where we have to execute every gate given by the Gaussian elimination algorithm in a given order;

the second model is less restrictive as we have to execute every gate but we assume that they all

commute. In both cases, the depth is lower bounded linearly in n.

Depth Optimization Algorithms for Full Qubit Connectivity

Although it was not done in their paper, the algorithm proposed by Kutin et al. [117] can be

extended to the full connectivity case: this is what we show in this paragraph. To our knowledge,

such an extension has never been proposed in the literature.

In the original Kutin et al.’s algorithm [117], each box corresponds to an interaction between a

pair of qubits and it can be decomposed into two parts: �rst, we execute the interaction strictly

speaking between the two qubits with a CNOT gate, secondly, we move the qubits in the hardware

by swapping them. If we consider that the connectivity is full then we do not need to move the

qubits anymore in the hardware. This means that we can replace each box by a CNOT gate and we

get rid of the SWAP gates. We end with a new skeleton circuit that is functionally equivalent to the

one given by Kutin et al. except that each box is now a single CNOT. The skeleton circuit from Kutin

et al., as a box-based circuit, is of depth 2n. Therefore our now skeleton, as a CNOT-based circuit,

is also of depth 2n. To our knowledge, this was the best result until the asymptotically optimal

algorithm proposed recently in [90]. The pseudo-code of this new algorithm is given Algorithm 8.3.

For simplicity we only show the case for a lower triangular operator, the generalization to any

operator is done via an LU decomposition [66]:

A = PLU

where A is the operator to synthesize, P is a permutation matrix, and L, resp. U , are lower, resp.

upper, triangular operators. With full qubit connectivity, a permutation can be implemented with

a circuit of constant depth 6 [141]. Each triangular operator can be synthesized with a circuit of

depth n, leading to a total depth of 2n + 6 for the synthesis of an arbitrary operator. Given that

we do not move the qubits anymore, most of the algorithm consists in tracking what would be the

positions of the qubits in the hardware to determine which interactions need to be done at a given

time step. Then it is easy to decide if, for a given pair of qubits (i, j), a CNOT gate needs to be added.

If the operator is lower triangular, we only have to decide if we add the CNOT (i → j), i < j as

we must not ruin the triangular structure by adding a CNOT (j → i). Then if the i-th component

of the j-th row is 1 then add a CNOT (i → j). The reason why it works is not straightforward:

we have to note that when we decide to apply or not a CNOT (i → j), either the components

k < i have already been treated for qubit i so it cannot modify the components of qubit j, or such

components have not been treated on both qubits, so modifying them on qubit j is not a problem

as they will be zeroed later in the algorithm.

So far we have presented state-of-the-art algorithms that can only synthesize circuits with linear

depth. But given that:

• any operator can be synthesized with a circuit of size O(n2/ log2(n)),

• it is possible to apply O(n) CNOT gates in parallel,

we must ask: can we synthesize any linear reversible operator with circuits of depthO(n/ log2(n))?

For some restricted connectivities — LNN for instance — we know that the answer is no but what

about the unconstrained case? This question was answered in the already mentioned article [90]

and the answer is yes. The authors propose an algorithm based on the LU decomposition and a
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Algorithm 8.3: Adaptation of Kutin et al.’s algorithm [117] on a triangular operator L for a

full qubit connectivity.

Require: n ≥ 0, L ∈ Fn×n2 triangular

Ensure: C is a CNOT-circuit implementing L with depth at most n

C ← [ ]
perm← J1, nK
for j = 1 to n do
if j ≡ 1[2] then

start← 1
else

start← 2
end if
while start < n do
if L[perm[start+1], perm[start]] = 1 then

C.append(CNOT(perm[start], perm[start+1]))

end if
perm[start], perm[start+1]← perm[start+1], perm[start]

start← start + 2

end while
end for
return reverse(C)

divide-and-conquer approach. The proof of the optimal depth complexity is quite hard to sum-

marize but the principle of the algorithm is simpler so we give a brief description of it. First, the

algorithm starts with an LU decomposition A = PLU . Again P can be synthesized in constant

depth 6, therefore we only need to treat the triangular case. We illustrate with the lower triangular

case. The synthesis of L consists in a divide-and-conquer algorithm, the operator L is decomposed

as

L =

(
Lbn/2c
A Ldn/2e

)
where Lbn/2c and Ldn/2e are triangular operators of size bn/2c and dn/2e respectively and A is

any boolean matrix of size bn/2c × dn/2e. The algorithm initially synthesizes in parallel both

triangular suboperators by applying recursively the algorithm. Then we are left with the operator

L′ =
(
I
A′ I

)
to synthesize. This is done by considering the following blocks in L:

• the northwest identity operator is seen as a block diagonal operator with n/ log2(n) blocks

of size log2(n)/2, noted B1, ..., Bn/ log2(n),

• A is divided into log2(n)/2 blocks ofn/ log2(n) rows, notedA1, ..., Alog2(n)/2. For simplicity

we consider eachAi as a matrix Ci ∈ (F
log2(n)/2
2 )

n
log2(n)

× n
log2(n) , i.e., we seeAi as a

n
log2(n) ×

n
log2(n) matrix with elements from F

log2(n)/2
2 .

The speci�c structure of L is summarized in Fig 8.3. The synthesis of L consists in successive

applications of two stages of row operations:
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1
1
1
1

1
1

L =

log2(n)/2

A1

A2

Alog2(n)/2

n
log2(n)

log2(n)
2

B2

Bn/ log2(n)

B1

Figure 8.3: Block structure of the triangular operator L for Jiang et al.’s algorithm.

1. row operations on the Bi’s such that speci�c words of log2(n)/2 bits appear on each row,

2. row operations between the Bi’s and the Ai’s to zero words of log2(n)/2 bits of A.

More precisely, the k-th row of a Bi has to zero the i-th column of Ck. For that a sequence of

operators on log2(n)/2 qubits is computed such that the property "Every word on log2(n)/2 bits

appears on each row of the Bi’s" is veri�ed. Such sequence of operators is called a row traversal

sequence. The operators of the row traversal sequence are computed in parallel on each Bi via

the row operations during Stage 1. Once we have the desired operator on each Bi, we need to

compute the appropriate row operations of Stage 2. Each row of a Bi act on a speci�c Ck so the

corresponding row operations can be done in parallel. So all we need is to see how to coordinate

the row operations acting on the same Ck. For simplicity consider the case k = 1, i.e., all the �rst

rows of each Bi are used to zero C1. Given that all Bi’s are identical, the choice of applying a

row operation from block Bi to the k-th row of C1 is: is C[k, i] equal to B∗[1, :] (where the index

on B has been omitted to emphasize that all Bi’s are the same) ? Therefore the matrix C1 can be

seen as the adjacency matrix P of a bipartite graph G where P [k, i] = 1 if C1[k, i] = B∗[1, :]. A

sequence of parallel row operations between the Bi’s and C1 corresponds to a matching in G and

a "good" sequence of parallel row operations is given by a matching decomposition ofG. A central

theorem that we will also use in our own work is the following: if the maximum number of 1 in a

row or a column of P is p then there exists a decomposition of G into p matchings, i.e., a sequence

of p parallel row operations is necessary to zero all the entries of C equal to B∗[1, :]. Given that

123



Part C – Linear Reversible Circuits Synthesis Chapter 8

each word appears on each row of the Bi’s we are ensured that A will be zero at the end of the

algorithm. Finally we need to assume that A is su�ciently random, if it is not the case one can

decompose A = A′ ⊕ A′′ with A′, A′′ su�ciently random and do the process two times, the �rst

time for addingA′ and the second time for addingA′′. A high level pseudo-code of their algorithm

is given Algorithm 8.4.

The depth d(n) for the synthesis of one triangular operator is therefore given by

d(n) = d(n/2)+2× length row traversal sequence ×

 d(log2(n))︸ ︷︷ ︸
synthesize the operator Bi

+ size matching decomposition


Finally the authors have shown that the length of the row traversal sequence is O(

√
n) and if

A is su�ciently random at each iteration the matching decomposition is of size O(
√
n/ log2(n)).

Therefore

d(n) = d(n/2) +O(
√
n)× (d(log2(n)) +O(

√
n/ log2(n))) = O(n/ log2(n))

hence the result. A better estimation of the total depth is given in Chapter 10.

8.3 Contributions

In the �rst three following chapters we propose di�erent algorithms for the synthesis of CNOT

circuits. Each chapter focuses on a speci�c metric and connectivity:

1. Chapter 9 focuses on the size optimization of CNOT circuits with full qubit connectivity.

2. Chapter 10 is dedicated to the depth optimization of CNOT circuits with full qubit connec-

tivity.

3. Chapter 11 deals with the size optimization of CNOT circuits for hardware with constrained

connectivity.

Chapter 12 is dedicated to the benchmarks. The method we propose in Chapter 11 gives also

good results in the full qubit connectivity case, we need to compare it with the methods of Chap-

ter 9. Besides the types of benchmarks are very similar in Chapters 9,10 and 11. For these reasons,

we believe it appears clearer to show all the benchmarks in one shot in a dedicated chapter. Finally,

Chapter 13 concludes Part C with a summary of our works and proposes tracks for future research.

8.3.1 Contributions of Chapter 9

The contributions of Chapter 9 are as follows:

• We propose GreedyGE, an optimized version of the Gaussian elimination algorithm for syn-

thesizing any linear reversible operator. When we zero out the subdiagonal entries of the

matrix, like in a standard Gaussian elimination, we perform the operations that minimize an

ad-hoc cost function, resulting in fewer operations for the synthesis. We study the theoret-

ical worst-case behavior of our algorithm. Overall, our algorithm is asymptotically optimal

with an improvement over [152, Algo. 1] . In terms of computational time, our algorithm is

faster than the standard Gaussian elimination algorithm.
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Algorithm 8.4: Jiang et al.’s algorithm for CNOT circuit synthesis.

Require: n ≥ 0, L ∈ Fn×n2 lower triangular

Ensure: C is a CNOT-circuit implementing L−1

Function Synthesis(L, n)
C ← [ ]
k1 ← dn/2e
k2 ← bn/2c
L1 ← L[1 : k1, 1 : k1]
L2 ← L[k1 + 1 : n, k1 + 1 : n]
C1 = Synthesis(L1, k1)

C2 = Synthesis(L2, k2)

C .append(C1)

C .append(C2)

applyCircuit(L,C)

A← L[k1 + 1 : n, 1 : k1]
A′, A′′ ← ComputeRandomSum(A)

m← log2(n)/2
nb← n/ log2(n)
R← RowTraversalSequence(m)

R.push�rst(Im)

forM = {A’, A”} do
for i = 2 to length(R) do
Circ← StandardSynthesis(RiR

−1
i−1)

for j = 1 to nb do
C .append(shift(Circ, (j − 1)m))

end for
for j = 1 to m do
G← GenerateGraph(M [(j − 1)×m+ 1 : j ×m, :], Ri[j, :])
M←MatchingDecomposition(G)

Circ← ExtractRowOperations(M)

C .append(Circ)
end for

end for
end for
return C
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• We propose a new way to compute the LU decomposition of a linear reversible operator. This

provides us triangular operators L and U whose synthesis yield shorter circuits, especially

when the circuit is expected to be "small enough". We will detail this notion of "small enough"

in Chapter 12.

• We show that cost minimization techniques are useful for �nding circuits whose expected

size is "small enough". We brie�y review the existing algorithm and we propose our own

cost function that increases the range of validity of this kind of technique.

8.3.2 Contributions of Chapter 10

The contributions of Chapter 10 are as follows:

• We present a generalization of the ideas developed in [90]. This gives DaCSynth: a simple

divide-and-conquer framework that divides the synthesis into parallelizable sub-problems

that can be solved with several strategies.

• We give strict upper bounds on the depth of the circuits. First, we prove that, in all generality,

the depth is upper bounded by 2n + 2dlog2(n)e. Then we present a speci�c strategy that

gives the upper bound depth(n) < 8
5n + 8dlog2(n)e, this is an improvement over the best

algorithm in the literature for medium sized registers. In practice, we propose a greedy

algorithm to solve our sub-problem.

• We extend our framework to the case where parities on ancillary qubits need to be synthe-

sized. We show that the depth increases logarithmically in the number of ancillae.

8.3.3 Contributions of Chapter 11

The contributions of Chapter 11 are as follows:

• We present a new method for the synthesis of CNOT circuits relying on solving a well-known

cryptographic problem: the syndrome decoding problem [19]. Our algorithm transforms the

synthesis problem into a series of syndrome decoding problems.

• We propose several methods to solve the syndrome decoding problem. The �rst one is an ex-

act method relying on integer programming. Then to reach larger problem sizes we propose

approximate methods using well-known greedy methods for path�nding problems.

• This method, initially designed for full qubit connectivity, is robust enough to be extended

to hardware having a Hamiltonian path in their connectivity graph.

The results of Chapter 11 have been presented at RC 2020 and they are published by Springer

LNCS [48].

8.3.4 Contributions of Chapter 12

In Chapter 12:

• We provide benchmarks of our methods optimizing the size with full qubit connectivity

and compare them to state-of-the-art algorithms. First, we test our algorithms on random

circuits of various sizes. Overall, we can synthesize circuits with more than 200 qubits in a

few seconds while giving circuits that are 25% smaller on average than the current state of

the art and up to 50% for some speci�c operators.
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Metric Size Depth

Connectivity Full Arbitrary Full Arbitrary

Algorithm Patel-Markov-Hayes
Kissinger et al.

Mosca et al.

1. Jiang et al.

2. Kutin et al.

Kutin et al.

Complexity O
(
n2/ log2(n)

)
O(n2) 1. O (n/ log2(n))

2. 2n
5n

Idea Block Gaussian elimination Steiner tree + GE
1. Divide-and-conquer + LU

2. Sorting network

Sorting network

Our contributions

Greedy Gaussian elimination

(GreedyGE)

Syndrome decoding

Greedy Divide-and-conquer

(DaCSynth)

x

Complexity O
(
n2/ log2(n)

)
Unknown ≈ 0.85n x

Practical savings 25% > 15% 50% x

Chapter 9 11 10 x

Table 8.1: State of the art and summary of contributions for CNOT circuits synthesis.

• We also provide benchmarks for our syndrome decoding based method for speci�c NISQ

architectures. Except for small architectures where the variance of our results is very large

or the LNN architecture where our algorithm performs poorly, we consistently outperform

the state-of-the-art method with gains between 10% and 20% on average.

• We give benchmarks of our divide-and-conquer framework to support our theoretical results

and compare them to state-of-the-art algorithms. Our best method provides circuits of depth

smaller thannwheren is the number of qubits. This improves the state-of-the-art algorithms

by a factor of 2.

• We include our methods into a more general Cli�ord+T quantum compiler: the Tpar algo-

rithm proposed in [10] and we show how our algorithms perform. On a set of reversible

functions from a standard library of functions, we successfully reduce the total number of

CNOTs and the total circuit depth while keeping other metrics of interest (T-count, T-depth)

as low as possible.

A summary of the state-of-the-art algorithms and our contributions is given in Table 8.1.

127





Chapter 9

Size Optimization on an
Unconstrained Architecture

Contents
9.1 GreedyGE: a Greedy Gaussian Elimination Algorithm for Triangular Boolean

Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9.1.1 General Presentation of the Algorithm . . . . . . . . . . . . . . . . . . 130

9.1.2 Improving the Time Complexity . . . . . . . . . . . . . . . . . . . . . . 132

9.1.3 Bounding the CNOT Count . . . . . . . . . . . . . . . . . . . . . . . . 132

9.2 Extending GreedyGE to General Operators . . . . . . . . . . . . . . . . . . . . 137

9.2.1 Modi�cation of FastGreedyGE . . . . . . . . . . . . . . . . . . . . . . . 137

9.2.2 Optimizing the Choice of L and U . . . . . . . . . . . . . . . . . . . . 137

9.3 Path�nding Based Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.4 The Benchmarks in a Nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

This chapter focuses on the size optimization of CNOT circuits for an unconstrained architec-

ture, i.e., with full qubit connectivity. We improve on two results in the literature: �rst, we im-

prove [152, Algo. 1] which remains, to our knowledge, the best algorithm for size optimization

in unconstrained architecture. We provide both theoretical and practical improvements. Namely,

the upper bound of our algorithm proposal is slightly better and we give insights into why we are

strongly con�dent that our algorithm always performs better than [152, Algo. 1] . The benchmarks

in Chapter 12 are consistent with these theoretical improvements. Secondly, we improve the work

in [169] where a cost-minimization approach was studied. Notably, we propose a new cost function

that performs better than the cost function considered in [169] in some speci�c cases that we will

highlight in Chapter 12.

The outline of this chapter is the following: in Section 9.1 we �rst present GreedyGE, a greedy

version of the Gaussian elimination algorithm for the synthesis of triangular matrices. Then in

Section 9.2 we extend GreedyGE to the synthesis of any operator in two ways: we either triangu-

larize the operator with a slight modi�cation of GreedyGE and then we apply GreedyGE, or we

compute an LU decomposition of our operator and apply GreedyGE twice. Finally, we investigate

the use of pure greedy algorithms in Section 9.3.
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9.1 GreedyGE: a Greedy Gaussian Elimination Algorithm for Tri-
angular Boolean Matrices

9.1.1 General Presentation of the Algorithm

Given a lower triangular operator L — the upper case can be treated similarly — the Gaus-

sian elimination algorithm can be summarized as follows: by applying elementary row operations

Row(i, j) with i < j we zero the sub-diagonal elements ofLwithout changing its triangular shape.

This process is performed column by column, starting from the �rst one. This way one can easily

see that if the k �rst columns are treated, applying row operations Row(i, j) with k < i < j will

not change the treated columns as all their elements are 0. Since L is invertible, when zeroing the

k-th column the k-th row is necessarily equal to L[k, :] = eTk hence one can always add the row k
to any row j > k to zero the entry L[j, k]. This guarantees the good behavior of the algorithm for

any input matrix.

Usually, a Gaussian elimination algorithm always performs row operations Row(k, j) when ze-

roing the k-th column. As one row operation ensures to zero only one element at a time, we need

at most
n(n−1)

2 row operations to zero every sub-diagonal elements of L, leading to a worst-case

complexity of O(n2) for the synthesis of a generic linear reversible operator.

A �rst straightforward improvement is to authorize any row operation Row(i, j), i < j. This

was exploited in [152, Algo. 1] : by partitioning the matrix of size n into blocks of size m, the

authors use the fact that there can only be at most 2m di�erent vectors in each block. So for

n > 2m it is possible to zero n− 2m full vectors of size m by applying one row operation for each

vector. Using this method some row operations can zero up to m entries at a time, diminishing

the total number of row operations. By choosing m = bα log2(n)c (for arbitrary 0 < α < 1) they

reach an asymptotic complexity of n2/(α log2(n)) in the worst case which meets the theoretical

lower bound.

Our proposed algorithm can be seen as a direct improvement of [152, Algo. 1] . It comes from

the following simple observation: given a row i of our triangular operator and assuming that we

follow a standard Gaussian elimination process, an upper bound on the number of row operations

that will be applied to row i during the synthesis is given by

#CNOTs = i−min{j | L[i, j] = 1}. (9.1)

In other words, when zeroing the entries of a row, we have to focus �rst on the entries on the

�rst columns and this can be done by minimizing the cost function given by Eq. (9.1). Once an

entry is zeroed, we are sure that it is “treated” and will never be modi�ed. Note on the other

hand how zeroing entries in the last columns do not give us the guarantee that they would not

be modi�ed again during the synthesis. This simple observation is at the core of the Gaussian

elimination algorithm: entries are acted upon one by one. It is also at the core of [152, Algo. 1]

which improves on regular Gaussian elimination: entries are acted upon by �xed-size blocks. In

this paper, we improve on [152, Algo. 1] by allowing for varying-size blocks. In other words, we

do not �x a block size but at each iteration we let the greedy component of our algorithm choose

the largest suitable block size.

Therefore we propose the following 3-step method:

1. choose among the rows with entries "1" in the left-most columns the two rows i and j that

have the largest number of common left-non-zero-elements,

2. apply the row operation Row(min(i, j),max(i, j)),

130



Part C – Linear Reversible Circuits Synthesis Chapter 9

3. repeat the �rst two steps until L is the identity.

The pseudo-code of the algorithm is given in Algorithm 9.1. The time complexity of the algo-

rithm mostly depends on step 1, i.e., the function SelectRowOperation. Actually, this step can be

easily implemented iteratively on the columns :

• We start with the set of all the rows and, during the kth step, we have in memory a set of

rows having the same �rst k-1 entries.

• Then we separate those rows into two sets: those which have the k-th entry respectively

equal to 0 and 1, corresponding respectively to the sets set0 and set1 in Algorithm 9.1. The

rows in either set0 or set1 have the same �rst k entries.

• We want to zero the maximum of 1 in priority so if set1 contains 2 or more rows we continue

with this set, otherwise we choose set0 and go to step k+1.

By this process, the size of our set of lines always remains greater than 2 until we have only 2 lines:

these are the two lines on which to do our row operation. Clearly, the algorithm is polynomial in

the size of the matrix.

Algorithm 9.1: GreedyGE : Greedy Gaussian Elimination of a triangular operator L.

Require: n ≥ 0, L ∈ Fn×n2 lower triangular

Ensure: C is a CNOT-circuit implementing L
Function Synthesis(L, n)
C ← [ ]
while L 6= In do

set← SelectRowOperation(L, n)
i0 ← min(set[0], set[1])
j0 ← max(set[0], set[1])
C.append(CNOT(i0, j0))

L[j0, :]← L[i0, :]⊕ L[j0, :]
end while
return reverse(C)

Function SelectRowOperation(L, n)
set← J1, nK
j ← 0
while |set| > 2 do

set0 ← {i ∈ set | L[i, j] = 0}
set1 ← {i ∈ set | L[i, j] = 1}
if |set1| < 2 then

set← set0

else
set← set1

end if
j ← j + 1

end while
return set

Our algorithm belongs to the same family as the Gaussian elimination method and [152, Algo. 1]

because we synthesize the operator column by column. However, this is an improvement over [152,
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Algo. 1] because we do not work with a �xed block size. At each step, we somewhat choose the

largest block size possible to zero the largest number of elements in one row operation. We are

then ensured that these entries will not be modi�ed anymore. Thus this is also an improvement

over cost minimization methods [169] that can take as cost function the number of ones in the

matrix for instance. With such greedy methods, it may be possible that in one step more elements

are zeroed but it is not guaranteed that theses elements will be left untouched thereafter. We keep

a structure in the synthesis which enforces the convergence of our greedy algorithm.

9.1.2 Improving the Time Complexity

When executing Algorithm 9.1 we �nd at each iteration the next row operation by selecting the

rows according to their number of common �rst elements. As a �rst approach, we keep the set

of the most promising rows until the size of the set is equal to 2. With a little more work we can

in fact order all the rows in one run and get the whole set of row operations required to zero the

sub-diagonal elements of the current column. It is more e�cient than redoing the sorting work

after each new row operation because the selection algorithm will repeat the same calculations

again and again but without the presence of the modi�ed rows. The new pseudo-code for a more

e�cient version of our method is given Algorithm 9.2.

The new version of SelectRowOperation, the function SelectAllRowOperations, is based on the

idea that row operations should always be done, if possible, between rows belonging to the same

sets. We implement this idea recursively on the columns: �rst, we only select the rows with a "1"

entry in the �rst column. Then, after the creation of set0 and set1, we call recursively SelectAllRow-

Operations on both sets: we have two sets of row operations that treat separately the rows with �rst

entries "10" and "11". After the execution of SelectAllRowOperations, both set0 and set1 contains

the unmodi�ed rows. In both cases, there can be at most one row unmodi�ed. If both sets have one

row unmodi�ed then we add another row operation Row(min(set0[0], set1[0]),max(set0[0], set1[0]))
and the set returned contains min(set0[0], set1[0]). If only one set has an unmodi�ed row then the

set returned contains that row. We illustrate the behavior of our algorithm with the example given

in Fig 9.1.

9.1.3 Bounding the CNOT Count

We denote with C(n) the number of CNOTs required to synthesize a triangular operator L of

size n with Algorithm 9.1. Given 1 ≤ k ≤ n, we consider c(n, k) the number of row operations

required to synthesize the �rst k columns.

Once the �rst k columns are synthesized the n× k block matrix L[:, 1 : k] is equal to the matrix(
Ik
0

)
and we are left with the sub-matrix L[k+ 1 : end, k+ 1 : end] to synthesize. Then we have

∀k ≥ 1, C(n) ≤ c(n, k) + C(n− k)

and the total number of row operations to synthesize L is upper bounded by

C(n) ≤
m∑
i=1

c

n− i−1∑
j=1

kj , ki

 (9.2)

where k1, k2, ..., km can represent any partition of L into m sub-blocks, i.e., m positive integers

such that

∑m
i=1 ki = n. By considering the worst-case scenario for each block we do not take

into consideration the side e�ects of the row operations that were applied on the �rst blocks and
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Algorithm 9.2: FastGreedyGE : Greedy Gaussian Elimination of a triangular operator L.

Require: n ≥ 0, L ∈ Fn×n2 lower triangular

Ensure: C is a CNOT-circuit implementing L
Function OptimizedSynthesis(L, n)
C ← [ ]
for j = 1 to n-1 do

set← {i ∈ [j, ..., n] | L[i, j] = 1}
pairs, set = SelectAllRowOperations(L, j+1, set)

for pair = pairs do
i0 ← min(pair[0], pair[1])
j0 ← max(pair[0], pair[1])
C.append(CNOT(i0, j0))

L[j0, :]← L[i0, :]⊕ L[j0, :]
end for

end for
return reverse(C)

Function SelectAllRowOperations(L, j, set)
if |set| < 2 then

return ∅, set

end if
set0 ← {i ∈ set | L[i, j] = 0}
set1 ← {i ∈ set | L[i, j] = 1}
pairs0, set0 ← SelectAllRowOperations(L, j + 1, set0)
pairs1, set1 ← SelectAllRowOperations(L, j + 1, set1)
pairs← [pairs0, pairs1]
if |set0| > 0 and |set1| > 0 then

i0 ← set0[0]
i1 ← set1[0]
pairs← [pairs, [min(i0, i1),max(i0, i1)]]
set← min(i0, i1)

else
if |set0| > 0 then

set← set0[0]
else

set← set1[0]
end if

end if
return pairs, set
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L =



1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0
1 1 1 0 0 1 1 0 0 0
1 0 1 1 1 0 0 1 0 0
1 0 0 0 0 1 0 1 1 0
0 0 0 1 0 0 1 1 1 1


set1 = [1, 2, 3, 4, 6, 7, 8, 9]column 1

column 2

column 3

set0 = [1, 8, 9] set1 = [2, 3, 4, 6, 7]

set0 = [1, 9] set1 = [8] set0 = [2, 6] set1 = [3, 4, 7]

column 4

column 5

column 6

column 5

column 4

column 3

column 2

column 1

set0 = [1, 9]

set0 = [1, 9]

set0 = [1] set1 = [9]

set1 = [ ]

set1 = [ ]

set0 = [1]

set0 = [1]

set0 = [1]

set0 = [1]

set1 = [8]

set0 = [2] set1 = [6]

set1 = [ ]

set1 = [ ]

+ CNOT(1,9)

+ CNOT(1,8)

set0 = [2] set1 = [6]

set0 = [2]

+ CNOT(2,6)

+ CNOT(2,3)

set1 = [2]

+ CNOT(1,2)

set1 = [1]

set1 = [4]set0 = [3, 7]

set0 = [3] set1 = [7]

set0 = [3] set1 = [7]

+ CNOT(3,7)

set0 = [3] set1 = [4]

set1 = [3]

+ CNOT(3,4)

Row Operations : [ (1,9), (1,8), (2,6), (3,7), (3,4), (2,3), (1,2) ]

Figure 9.1: Illustration of the SelectAllRowOperations function on a speci�c example.
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that could have an impact on the remaining matrix. Especially when looking strictly at one block,

one can easily see that some row operations will only zero one element at a time in a block — the

rightmost elements — but will certainly have an impact on the next block: by not considering this

e�ect, we weaken our upper bound but the proof of the inequality (9.2) is straightforward.

We now turn to an estimation of an upper bound of c(n, k). Considering a block of size (n, k)
and assuming that k < log2(n), the algorithm process is the following :

• as there can be at most 2k di�erent bitstrings of k bits, n − 2k row operations at most will

be used to zero the duplicate rows.

• We are left with a rectangular block of size (2k, k). Using a similar argument we can zero

k − 1 bits of 2k−1
di�erent rows by using one row operation for each, then the remaining

bit on these rows can be zeroed with one row operation. We are now left with a block of

size (2k−1, k), we zero k − 2 bits of 2k−2
rows with one row operation each and the two

remaining bits on these rows can be zeroed with two row operations. Repeating this process

until the whole block has been reduced to

(
I
0

)
, we perform at most

2k−1 × (1 + 1) + 2k−2 × (1 + 2) + 2k−3 × (1 + 3)... = 2k+1 ×
k+1∑
j=2

j/2j ≤ 3× 2k

row operations. We can save some row operations because the right upper triangular part

of the block is already zeroed (as L is triangular) but we neglect them for simplicity.

So we have the estimation

c(n, k) ≤ n+ 2k+1. (9.3)

From this we can derive an upper bound for C(n). We replace Eq. (9.3) in Eq. (9.2) :

C(n) ≤
m∑
i=1

n− i−1∑
j=1

kj + 2ki+1

 .

As n−∑i−1
j=1 kj =

∑m
j=i kj for any i we rewrite the upper bound

C(n) ≤
m∑
i=1

2ki+1 +
m∑
j=i

kj


C(n) ≤

m∑
i=1

(
2ki+1 + iki

)
. (9.4)

For simplicity we assume that k1 = k2 = ... = km−1 = k. We also assume that km = n −∑m−1
i=1 ki = k and m = n/k because it does not a�ect the results. Replacing in Eq. (9.4):

C(n) ≤ m2k+1 + k
m(m+ 1)

2
=
n2

2k
+
n

k
2k+1 +

n

2
(9.5)

We now prove two things:

1. for one block we show that our upper bound is better that the one given in [152].
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2. we prove that the asymptotic complexity is at most n2/ log2(n).

1. Taking k = α log2(n) with 0 < α < 1, we have

2× C(n) <
n2

α log2(n)
+

4n1+α

α log2(n)
+ n. (9.6)

where the multiplication by 2 gives an upper bound for the synthesis of a generic operator. This

is a direct improvement over the upper bound in [152] given by

total row op. [152] ≤ n2

α log2(n)
+ 2n1+α + negligible terms (9.7)

provided
4

α log2(n) < 2 which is the case if n is su�ciently large. For instance, with α = 1/2 then

n > 16 is su�cient.

2. The coe�cient of the leading term in Eq (9.6) is 1/α, yet taking the limit α → 1 in Eq. (9.6)

leads to a complexity of 5n2/ log2(n). Instead, taking k = log2(n)− p for some p, we have

2× C(n) <
n2

log2(n)
× 1

1− p/ log2(n)
×
(

1 +
4

2p

)
+ n.

By choosing carefully p, for instance p =
√

log2(n), we get

2× C(n) < a(n)× n2

log2(n)
+ n

with a(n) = 1

1−1/
√

log2(n)
×
(

1 + 4

2
√

log2(n)

)
. As a(n) → 1 this proves that the asymptotic com-

plexity is n2/ log2(n).

We improve the upper bound Eq. (9.7) in two ways: we ensure that the coe�cient of the leading

term is 1 and we avoid other terms that distort the real complexity. Especially if one wants to have

the best asymptotic complexity with [152, Algo. 1] by choosing α arbitrarily close to 1, the term

n1+α
becomes arbitrarily close to n2

and its impact is not negligible until very large values of n.

Even with intermediate values of n, for example n = 1000, then a(n) ≈ 2.12. To have the same

leading term we have to choose α = 1/2.12. With these values we now have

2n1+α + n2/(α log2(n))

n2/(α log2(n))
≈ 1.25

which means that the term 2n1+α
increases the upper bound by 25%.

Discussion. The main result we want to emphasize is that the upper bound in Eq. (9.4) is true

for any partitioning of the matrix L. This means it performs better than any partitioning method

unless a more e�cient method for synthesizing one block is found. Notably, given k1 = k2 = ... =
km−1 = k the size of the block used for [152, Algo. 1] , it is clear that the row operations done

in [152, Algo. 1] to zero an entire k-bits row will also be performed by our algorithm. Then we

are left with a sub-matrix to synthesize for which [152, Algo. 1] will use a Gaussian Elimination

method whereas our algorithm will perform recursively by �rst zeroing the bitstrings of size k−1.

In the worst case our algorithm will only zero one element at a time like the Gaussian elimination

algorithm.
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This gives insights about the advantage of GreedyGE over [152, Algo. 1] . When [152, Algo. 1]

performs a standard Gaussian elimination process to zero some elements, we somewhat perform

[152, Algo. 1] on a smaller sub-matrix. Thus, at these steps of the algorithm, we expect to have

the same gain in the number of row operations than [152, Algo. 1] has compared to the classical

Gaussian elimination algorithm. Consequently, although we cannot theoretically claim that our

algorithm always generates shorter circuits than [152, Algo. 1] — as we cannot claim that [152,

Algo. 1] always performs better than standard Gaussian elimination — we have strong con�dence

that our algorithm provides better results most of the time — for the same reasons that [152, Algo. 1]

gives most of the time better results than the Gaussian elimination algorithm. This assertion is

empirically veri�ed in our benchmarks, see Chapter 12.

9.2 Extending GreedyGE to General Operators

So far we have presented an algorithm for the synthesis of triangular operators. To extend this

to generic linear reversible operators A we give two strategies :

• we can modify our algorithm for triangular operators such that it transformsA into an upper

triangular operator U on which we apply our unmodi�ed algorithm,

• we can rely on an LU decomposition to factorize A into the product of two triangular oper-

ators. Then the concatenation of the circuits implementing U and L yields a circuit imple-

menting A.

9.2.1 Modi�cation of FastGreedyGE

Algorithm 9.2 works even if the input operator is not lower triangular. In the outer for-loop,

during the j-th iteration the algorithm will zero the sub-diagonal elements of the j-th column

provided that the elementA[j, j] is equal to 1. So all we need to do is adding an extra row operation

to make sure that A[j, j] = 1 is satis�ed. If A[j, j] = 1 then we do nothing otherwise we choose

among the rows Jj + 1, nK whose j-th element is 1 the one that zeroes the largest number of right

elements of the j-th row so that when executing FastGreedyGE on the future U operator we save

some row operations. Overall this increases the CNOT count by at most n so it is negligible in the

derivation of the upper bound above.

9.2.2 Optimizing the Choice of L and U

An LU decomposition provides a way to decompose an operator into two simpler sub-operators.

Ideally, the path from the identity to the target operator given by the concatenation of the paths

of two sub-operators would be close to the optimal path. In our case, it is very unlikely that an

LU decomposition would give such an ideal decomposition because the structure of triangular

operators is too speci�c. Nonetheless, the matrices L and U in the LU decomposition are not unique

and we can optimize the factorization by choosing appropriate L and U operators such that we

minimize the overall complexity of the �nal reversible circuit. In this section, we report several

strategies to choose the matrices L and U.

If we allow row and column permutations, we can compute the LU decomposition of an operator

A following this algorithm:

1. Choose a row vector v = A[i, :] and a column j for which A[i, j] = 1.
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2. Set the �rst line of U to v and set the �rst column of L to A[:, j].

3. Update the matrix A, �rst by left-applying the gate SWAP(i, 1) and right-applying the gate

SWAP(j, 1). Then add the vector v to every row A[k, :] where A[k, 1] = 1. Finally we are

left with a matrix A with zeroed �rst column and �rst row.

4. Repeat the algorithm on this updated A until we obtain the null matrix.

At the end of the algorithm we have the relation

P1AP2 = LU

where P1, P2 are permutation matrices. P1 is the concatenation of the SWAP gates that were left-

applied toA and P2 is the concatenation of the SWAP gates that were right-applied toA. After the

synthesis of L and U we can commute the gates with P2 and have

A = P−1
1 P−1

2 L′U ′

and we transfer the permutation matrix P−1
1 P−1

2 to the end of the total circuit. L′ and U ′ are

triangular operators up to a permutation of their rows and columns.

At each step of the algorithm, we have several choices for the row and column vectors. We aim

to construct L and U such that their synthesis will give short circuits. To do so we tried di�erent

strategies :

• First, if we believe that sparse L and U matrices can be implemented with shorter circuits,

a �rst approach consists in choosing the row and column with smallest Hamming weights:

this is the “sparse” approach.

• Secondly, we can adopt a "minimizing cost" approach. If the updated matrix A′ minimizes

a cost function then the synthesis of A′ will require a shorter circuit. We choose the cost

function to be the number of ones and we choose among all the possible rows and columns

the pair that minimizes the number of ones in A′.

These decompositions transform a general operatorA into two operators L,U with speci�c struc-

tures. Triangular operators are easier to synthesize but this also limits the optimality of the so-

lution. Because we force the algorithm to synthesize two matrices with a speci�c structure, it is

very unlikely that we can perform an optimized synthesis by going through this forced path. This

also gives insights into the question about the global optimality of our algorithm: even if we use

an optimal algorithm for synthesizing a triangular operator it is very unlikely that we can get an

optimal solution for the whole synthesis. Our algorithm gives asymptotic optimal results in the

worst case but will be suboptimal for speci�c operators. Notably, if the operators can indeed be

synthesized with a small circuit, direct greedy methods have shown encouraging results. In the

next section, we will review the methods used and propose an extension of this framework to

improve the scalability of this kind of algorithms.

9.3 Path�nding Based Algorithms

The problem of linear reversible circuit synthesis can �t into a more generic problem called

"path�nding". In a path�nding problem, we are generally given a starting state, a target state, and

a set of operators that dictates the reachable states from a speci�c state. Then the goal is to �nd
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a path from the starting state to the goal state and the shorter the path is, the better it is. The

reformulation of linear reversible circuit synthesis into a path�nding problem is straightforward:

the starting state is the operator A we want to implement, the goal state is the identity operator

and the available operators are all the elementary row and column operations.

This �eld of research in AI has been very active for the last decades and we can rely on many

algorithms to solve our problem. The most famous one is probably the A* algorithm and all its

derivatives (IDA* [113], Weighted A* [115], Anytime A* [122], etc.). These algorithms have been

successfully used to solve toy problems (Rubik’s cube, Tile puzzles, Hanoi towers, Top Spin puzzle)

but also concrete problems in video games [4], robotics [4,122], genomics [76,83,211,214], planning

[27, 76], etc. Yet we are quickly faced with some crucial limitations :

• First the size of the search space grows much faster in our case than in any of the cases

mentioned above. To give an order of magnitude, in [206] they compare greedy search algo-

rithms - a subclass of path�nding algorithms known for providing suboptimal solutions very

quickly - and they highlight time and memory limitations of some algorithms especially on

the largest problem they ran on: the 48-puzzle. The 48-puzzle and its variations (8-puzzle,

15-puzzle) are sliding puzzles. In the case of the 48-puzzle, 48 tiles are arranged in a 7 × 7
square with one tile missing. The goal of the puzzle is to order the tiles by moving the empty

space around. For this speci�c problem the authors of [206] show that the computational

time for most of the path�nding algorithms they consider increases substantially while pro-

viding solutions of poor quality. The number of di�erent positions in the 48-puzzle is equal

to 49!/2 ≈ 3× 1062
. This is less than the number of linear reversible functions on 15 qubits.

As we expect to be able to synthesize circuits on 50 qubits and even more, it is clear that we

cannot use all the path�nding algorithms in the literature.

• Secondly we need a function that will evaluate the distance between the current state and

the target state. The properties of this function, usually called the heuristic, will deeply

in�uence the performance of the path�nding algorithms. Its goal is to guide the search by

giving priority to more promising states and prune a whole part of the search space. More

generally there are two sources of improvement for a path�nding algorithm: the accuracy of

the heuristic function and the management of the path discovery, i.e., what strategy do you

employ to explore the search space. If the latter can be quite independent of the problem, the

former is very problem-speci�c and unfortunately to our knowledge no good heuristics exist

that satisfy good theoretical properties. For instance, for A* to provide an optimal solution

we need the heuristic to be admissible and consistent, i.e., it must always underestimate the

length of the optimal path and the value of the heuristic should always decrease of at most

one after the application of one elementary operation. By taking a function that always

returns 0 we have an admissible and consistent heuristic but the search will result in a brute-

force search. Generally to obtain an admissible heuristic we can consider a simpler version

of our problem and the optimal solution of this problem gives an underestimation of the

distance to the target state. In the case of linear reversible circuits, the closest simpli�ed

subproblem we found is the Shortest Linear Straight-Line Program [28] but this problem is

also NP-hard and cannot be approximated exactly by a polynomial algorithm.

For all these reasons, we believe that using the standard A* algorithm or its derivatives is a dead

end. Instead of that, we focused our work on greedy best-�rst search algorithms that can be seen

as a cost minimization/discrete gradient descent approach. It has been shown that the heuristics

that are e�cient for this kind of search are di�erent than the ones for A* algorithms [205], so we

expect that we can exploit the properties of the matrix A of our operator to guide our search.
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To our knowledge, the cost minimization approach for linear reversible circuits synthesis has

only been investigated in [169]. Yet, with their methods, the authors can only synthesize circuits

on at most 25 qubits. More crucially, they did not investigate the behavior of their methods when

the resulting circuits are supposed to be small. According to us, this is a behavior that has to be

considered because as we will see the results of the methods drastically change depending on the

size of the optimal circuits.

We consider two di�erent heuristic functions to guide our search. The �rst one, already used

in [169], is the function

hsum(A) =
∑
i,j

ai,j

that is to say the number of ones in the matrix A. We also propose a new cost function to solve

this problem, it is de�ned by

hprod(A) =

n∑
i=1

log

 n∑
j=1

ai,j


which corresponds to the log of the product of the number of ones on each row. An important

improvement given in [169] is to add the value of the cost function applied to the inverse as well,

i.e.,

Hsum(A) = hsum(A) + hsum(A−1),

Hprod(A) = hprod(A) + hprod(A
−1).

As we will see this tightens the possible paths and can improve the results because we escape more

easily from local minima during the search.

We now give a few details on our implementation. We directly work on a cost matrix that

stores the impact of each possible CNOT on the cost function. Namely let M be such matrix, then

M [i, j] = h(EijA)− h(A) where h ∈ {hsum, hprod}. We can de�ne similar cost matrices for A−1

and for column operations. Overall we have four matrices MA,row,MA,col,MA−1,row
,MA−1,col

.

Note that (EijA)−1 = A−1Eij so a row operation Row(i, j) on A is a column operation Col(j, i)
on A−1

. The cost minimization algorithm is simple if we work with such matrices: at each it-

eration we look for the pair (i, j) that minimizes min(MA,row[i, j] + MA−1,col
[j, i],MA,col[i, j] +

MA−1,row
[j, i]), we updateA andA−1

and we pursue the algorithm untilA is a permutation matrix.

The advantage of working on cost matrices rather than directly on A is that the update of the M ’s

is cheaper than updating A and computing the costs. For instance, suppose we apply Row(i, j) to

A, then if h = hsum the impact on the cost function of any row operation that does not involve

row j will be the same than before the application of Row(i, j). This means that we only need to

updateMA,Row[i, j],MA,Row[j, i],MA−1,Col
[i, j],MA−1,Col

[j, i] for i = 1..n. The updates ofMA,Col

and MA−1,Row
are also simpler because only one element of each column of A has been modi�ed.

However, for our new cost function the updates are not that simple and it will have an impact on

the computational time.

With cost minimization techniques it is not rare to fall into local minima. In that case we simply

select among the best operations a random one and pursue the search. If the number of iterations

exceeds a certain number then we consider that the algorithm is stuck in a local minimum and we

stop it.

140



Part C – Linear Reversible Circuits Synthesis Chapter 9

9.4 The Benchmarks in a Nutshell

We provide benchmarks of GreedyGE and purely greedy methods in Chapter 12, Section 12.1.

In a few words, GreedyGE is fast and produces the shortest circuits for operators that represent

the worst cases. Purely greedy methods give the best results when the number of qubits is smaller

than 30 or when the operators are expected to be synthesized with a small circuit. Otherwise,

their scalability is limited: their performance deteriorates rapidly with great variance in the results

whether with the number of qubits or the “complexity” of the operator to synthesize.

In other words, GreedyGE is the algorithm of choice for synthesizing operators in a worst-case

scenario or when the number of qubits is large. Purely greedy methods perform well when the

number of qubits is small or when the operators are “simple enough” to be synthesized with a

“short circuit”. These notions of “simple enough” and “short circuit” are hard to quantify, but some

experiments are done in Chapter 12 to give numerical insights about these notions.
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After studying how to optimize the size of CNOT circuits we are now interested in optimizing

their depth, still for an architecture with full qubit connectivity. First, we propose an algorithm

without ancillary qubits, then we extend our algorithm in the case where extra parities have to be

synthesized on ancillary qubits. Our work builds on the paper [90]. It contains insightful theoretical

works on how to use divide-and-conquer methods to optimize the depth of CNOT circuits both with

and without ancillary qubits. Notably, in the non-ancillary case, the authors show that an n-qubit

CNOT circuit can be parallelized to depth O(n/ log2(n)). However, their result is probably not

useful for practical use, at least until very large problem sizes. An upper bound of the depth is

given approximately by

depth [90] ≤ α n

log2(n)
+ β
√
n log2(n).

Let us now compute an estimation for α, β. As a divide-and-conquer framework, the authors have

derived a recursive formula in the case of triangular operators. Noting d(n) for the depth we have

d(n) ≤ d(n/2) + 2×O(
√
n)× (O(log2(n)) +O(

√
n/ log2(n))).

Note that we think there is a typo in their formula, the term O(log2(n)) being O(log3
2(n)) in

their paper. This term corresponds to the synthesis of an operator of size log2(n)/2. Assuming

that we use the best algorithm, i.e., the adaptation of Kutin et al.’s algorithm [117] we proposed

in Section 8.2.2, each of these operators can be synthesized with a circuit of depth at most 2 ×
log2(n)/2 = log2(n).We may have missed something but this improves the real complexity so we

keep our proposed modi�cation. The second term O(
√
n/ log2(n))) corresponds to the matching

decomposition of a graph and the authors showed that the leading coe�cient is

√
e. The third term,

O(
√
n), corresponds to the length of the row-traversal sequence on k qubits that gives a sequence
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of k-qubit operators such that for any bitstring of size k and any integer j ∈ J1, kK, there is an

operator in the sequence whose j-th row equals the bitstring. The authors proved that there exists

a row-traversal sequence on k qubits of length 3× 2k−1−k+ 1. Here we have k = log2(n)/2 and

O(
√
n) = 3/2×√n. Therefore, we �nally get

d(n) ≤ d(n/2) + 3×√n×
(
log2(n) +

√
ne/ log2(n)

)
= d(n/2) + 3

√
n log2(n) + 3

n
√
e

log2(n)

and

d(n) ≤ 3×

log2(n)−1∑
j=0

√
n

2j
log2

( n
2j

)
+

√
e n

2j

log2

(
n
2j

)
 .

After simpli�cation we have

d(n) ≤ 3×
(

2
√
e

n

log2(n)
+ 3.3

√
n log2(n)

)
and we have to do it for the two triangular operators given by the LU decomposition. Overall

depth [90] ≤ 20

(
n

log2(n)
+
√
n log2(n)

)
.

Although it is only an upper bound, in practice there is little simpli�cation one can make when

synthesizing a speci�c operator: the row-traversal sequence still needs to be synthesized and the

matching decomposition is done on random graphs so we cannot expect the exact complexity to

be that lower compared to the upper bound. To give an idea, it is cheaper to use our modi�cation

of Kutin et al.’s algorithm [117] — producing circuits of depth at most 2n, see Section 8.2.2 — until

n = 170000. In their article [90], the authors acknowledge that their method is not e�ective for

practical register sizes. For practical use, they propose a simpler algorithm that produces circuits

of depth at most 4n. Thus the adaptation of Kutin et al.’s algorithm is still, to our knowledge, the

best algorithm when the number of qubits ranges from 1 to several thousands.

Nevertheless, we think the use of a divide-and-conquer method is a promising idea and we pro-

pose a practical implementation of a divide-and-conquer framework. This framework transforms

the synthesis problem into successive zeroing of binary matrices with given elementary operations.

We show that the work in [90] �ts in our framework as a special case. With a speci�c strategy for

zeroing the matrices we also improve the upper bound to
8
5n+ 8 log2(n), making it the best upper

bound for 150 < n < 480000, see Table 10.1 for more details. In practice, we use a greedy method

for zeroing the matrices and the benchmarks show that the depth of the produced circuits lies be-

tween 0.85n and n. We also extend our framework when additional parities need to be synthesized

on ancillary qubits. We show that this can be done with a logarithmic overhead in the number of

extra parities.

The outline of the chapter is as follows: �rst, we present DaCSynth — the divide-and-conquer

framework used — and we derive upper bounds on the depth in Section 10.1. Then we present

the practical greedy method we use for executing the zeroing process in Section 10.2. Finally, in

Section 10.3 we extend our framework to take into account extra parities.

10.1 DaCSynth: a Divide-and-Conquer Framework

Given an operator A ∈ Fn×n2 to synthesize, our proposed algorithm is a divide-and-conquer

algorithm and consists in the following Steps :
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Method Gaussian [117] [90] Our algorithm

elimination

Upper bound 4n 2n O
(

n
log2(n)

)
8
5n+ 8 log2(n)

Best result for - n < 150 n > 480000 150 < n < 480000

Table 10.1: Synthesis algorithms and theoretical upper bounds with the approximate ranges of

validity for each method.

1. First compute a permutation matrix P such that PA =

(
A1 A2

A3 A4

)
and A1 ∈ F dn/2e×dn/2e2

is invertible,

2. Apply row operations on A to zero the block A3 such that the resulting matrix is A′ =(
A′1 A′2
0 A′4

)
,

3. Apply row operations on A′ to zero the block A′2 such that the resulting matrix is A′′ =(
A′′1 0
0 A′′4

)
,

4. Call recursively the algorithm on A′′1 and A′′4 . When n = 1 return an empty set of row

operations.

Step 1 is straightforward: consider the rows of the sub-matrix A[:, 1 : dn/2e] (using Matlab

notation). Start from an empty set and at each Step add a row to the set. If the rank of the set

is increased, keep the row, otherwise remove it. If the resulting set is not of rank dn/2e, this

would mean that the �rst dn/2e columns of A are not linearly independent which is impossible

by invertibility of A. In addition, we assume that the qubits are fully connected so we can avoid to

apply P by doing a post processing on the circuit that would transfer the permutation operation

directly at the end of the total circuit. This can be done without any overhead in the number of

gates. Hence the core of the algorithm lies in Steps 2 and 3. We now give the details for processing

Step 2. This can be easily transposed to do Step 3 as well.

Theorem 10.1.1. Given A =

(
A1 A2

A3 A4

)
∈ Fn×n2 with A1 ∈ F dn/2e×dn/2e2 invertible, zeroing A3

by applying row operations on A is equivalent to zeroing the matrix B = A3A
−1
1 by applying any

row and column operations on B or �ipping any entry of B.

Proof. First, by assumption, A1 is invertible so the matrix B exists.

• Applying an elementary row operation Row(i, j) on A3 gives the matrix EijA3 and B is

updated by EijB. Thus a row operation on A3 is equivalent to a row operation on B.

• Applying an elementary row operation Row(i, j) on A1 gives the matrix EijA1 and B is

updated by BEij . Thus a row operation on A1 is equivalent to a column operation on B.

• B is a bn/2c × dn/2e matrix. The k-th row of B gives the decomposition of the k-th row of

A3 in the basis given by the rows of A1. Thus any row operation Row(k1, dn/2e+ k2) will

�ip the entry (k2, k1) of B.
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With these three types of operations available on B, the invertibility of A1 is preserved. Thus

when B is zero necessarily A3 is also zero.

Obviously �ipping all the 1-entries of B is enough to reduce A3 to the null matrix, but we are

concerned with the shallowest way of doing this. In the following we show how to compute the

optimal depth of the circuit zeroing B using only the �ipping operation.

Theorem 10.1.2. With the same notations, let k be the maximum number of 1 entries in one row or
one column of B. Then if we use only the �ipping operation we need a circuit of depth k to zero B.

Proof. We exploit a theoretical result about bipartite graph already used in [90]. Consider the

bipartite graph G = (V1, V2, E) where each vertex of V1 is a row of A1, each vertex of V2 is a row

ofA3 andB is the adjacency matrix ofG. Any matching inG represents a series of row operations

that can be executed in parallel and that will zero some entries in B. If there is at most k non-zero

entries in each row and column of B this means that the degree of G is k as well. Any bipartite

graph of degree d can be decomposed into exactly d matchings [96]. Hence a circuit of depth k is

needed to transform B into the null matrix.

We are now able to give a strict upper bound on the worst-case result of our algorithm.

Corollary 10.1.2.1. The depth of the circuits given by our algorithm is upper bounded by 2n +
2dlog2(n)e with n the number of qubits.

Proof. A �rst straightforward formula for the depth of the circuit output by our algorithm is

d(n) = d(dn/2e) + 2× d∗(dn/2e)

where d∗ is the depth of the circuits computing Steps 2 and 3. Using the result of the previous

theorem we have

d∗(n) ≤ n
So overall the depth of our circuit is upper bounded by

d(n) ≤ d(dn/2e) + 2dn/2e

As d(1) = 0 and by exploiting the fact that ddn/2e/2e = dn/4e we have

d(n) ≤ 2×

dlog2(n)e∑
k=1

dn/2ke

 ≤ 2×

dlog2(n)e∑
k=1

n/2k + 1


After calculation we have

d(n) ≤ 2n+ 2dlog2(n)e

A Block algorithm for Steps 2 and 3

In order to improve the upper bound of our framework, we propose a block method for Steps 2

and 3. Given an n× n matrix B to zero and an integer k < n such that n = bk + r, we divide B
into a matrix of dnk e × dnk e blocks:

• bnk c
2

such blocks are of size k,
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• bnk c such blocks are of size k × r,

• bnk c such blocks are of size r × k

• and the lower right one is of size r × r.

IfB is of size n× (n+ 1) or (n+ 1)×n (which can happen ifA is of odd size) then some blocks

on the edge will be of size k × (r + 1) or (r + 1) × k. In any case, as r < k, r + 1 ≤ k and the

critical point is that all of these rectangular blocks are smaller than the k × k blocks.

Now we consider each nonzero block as a 1-entry in a dnk e × dnk e binary matrix that can be

mapped to a bipartite graph G as above. Then it is clear that a matching in G corresponds to a

subset of blocks on which we can apply row and column operations in parallel.

Considering one such matching, we assume that we can reduce the maximum number of 1-

entries in each row and column of one block to an integer p in depth at most D. Then all the

blocks are matrices with at most p nonzero entries per row and column and we can �ip all of these

nonzero entries in p sequences of row operations as they belong to di�erent rows and columns in

B. After that all the blocks given by the matching are zero and we can repeat the process with

another matching without modifying the nulli�ed blocks. G can be decomposed into at most dnk e
matchings, each of them requires a depth of at most D+ p to zero all the blocks so the total depth

for Step 2 (or Step 3) is (D+ p)× dnk e. Again using the formula d dn/mek e = d nmke an upper bound

for the total depth is given by

d(n) ≤ 2(D + p)×

dlog2(n)e∑
j=1

dn/(k2j)e

 .

After calculation we get

d(n) ≤ 2(D + p)

k
n+ 2(D + p)dlog2(n)e. (10.1)

We notice that with k = 1 then D = 0, p = 1 and we recover the result of Theorem 10.1.2. We

can now prove our main result.

Corollary 10.1.2.2. The depth of the circuits given by our algorithm is upper bounded by 8
5n +

8dlog2(n)e with n the number of qubits.

Proof. To improve our �rst result we need to �nd an e�cient synthesis for bigger problem sizes.

We performed a brute-force search for square matrices of size k = 1, 2, 3, 4, 5, 6. The search con-

sisted in a breadth-�rst search: starting from the partial permutations, i.e., binary matrices with at

most one entry equal to 1 per row and column, row/columns operations were applied in a growing

depth manner. We explored the set of binary matrices and computed the minimum depth required

to reduce them to a partial permutation. To reduce the size of the search space we only considered

matrices up to row and column permutations. For this purpose, we used standard techniques in-

volving graph isomorphisms to compute a canonical representative for each class [63]. The results

are given in Table 10.2. We recall that row and column operations can be performed in parallel. It

is clear that for smaller rectangular matrices the worst-case depth cannot be larger. So by consid-

ering blocks of size 5 the depth in the worst case is D = 3 and p = 1. Replacing in Eq. (10.1) gives

the result.
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Depth

Number of qubits

1 2 3 4 5 6

0 2 3 4 5 6 7

1 4 17 58 160 447

2 15 237 3960 105039

3 17 1498 144575

4 1531

5 11

Table 10.2: Number of binary matrices reachable for di�erent number of qubits and circuit depth

(up to row/column permutations).

We want to insist on the fact that the current upper bound is to be improved. In fact, any

improvements in the synthesis of “small” quantum circuits can signi�cantly improve the theoretical

upper bound and its range validity given in Table 10.1 on page 145. For instance, computing the

worst-case depth for k = 7, 8, 9, if possible, may lead to a better upper bound. Especially, what

happens if we stop the row and column operations once the maximum number of 1-entries in each

row and column is below an integer p > 1? If D decreases faster than p increases this would

represent another improvement.

Besides, although the upper bound requires to use the worst case scenario for zeroing the blocks,

we can expect a better behavior in average. With blocks of size k = 6 the chances that among

dn/ke blocks there is one block requiring a depth of 4 or 5 is given by p = 1 −
(

250068
251610

)dn/6e
so

with probability q =
(

250068
251610

)dn/6e ≈ 0.9939dn/6e we have D = 3. On average, for computing

Step 2 or 3, we can expect that the depth will be D = (3q + 5p) = (5− 2q). For example, with

n = 128 the calculations give an average depth of 1.42n + 56 which represents an improvement

over the strict worst case.

As we already mentioned, the synthesis algorithm proposed in [90] can in fact be seen as a spe-

cial case whereA1 = I and their strategy is also a block algorithm with blocks of size log2(n)/2×
log2(n)/2 and n/ log2(n) × log2(n)/2. Yet, translated in our framework, they only use the oper-

ations on the columns and the �ipping entries operations.

10.2 Zeroing Binary Matrices with a Greedy Approach

In practice, we use a greedy algorithm to perform Steps 2 and 3. We recall that we work on a

matrixB that we want to zero with the following three available operations: (1) row operations, (2)

column operations, (3) �ipping one entry. Note that row and column operations can be performed

in parallel as this corresponds to CNOT circuits on two disjoint subsets of qubits.

At each Step we compute a sequence of row and column operations on B that minimizes the

number of ones inB and that can be done in parallel. If we only consider row or column operations

then the optimal sequence can be computed in a polynomial time. To do so we create a directed

graph Grow/Gcol whose nodes are the rows/columns of B and the edges (i → j) are weighted by

the gain in the number of ones if we apply the row operation i → j. The optimal sequence of

row/column operations is given by the maximum weight matching in such graph which can be

computed in polynomial time using the blossom algorithm [55].

However, when considering both row and column operations, things are not that simple. A

row operation on B modi�es Gcol and a column operation modi�es Grow so we cannot solve in-
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dependently (or one after the other) the two problems in order to have an optimal sequence. The

maximum weight matching problem can be reformulated as the linear program

maximize

∑
e

xew(e)

such that

∑
e={u,v}

xe ≤ 1 for all vertices u, v

xe ∈ {0, 1} for all edges e.

(10.2)

Taking into account both row and column operations adds quadratic terms in the cost func-

tion and this complicates the search for an optimal solution. Namely, this new problem can be

reformulated as

maximize

∑
erow

xerow
w(erow) +

∑
ecol

xecol
w(ecol)

+
∑

ecol,erow

xerow
xecol

δ(erow, ecol)

such that

∑
erow={u,v}

xerow
≤ 1 for all vertices u, v ∈ Grow∑

ecol={u,v}
xecol
≤ 1 for all vertices u, v ∈ Gcol

xe ∈ {0, 1} for all edges e.

(10.3)

where the δ’s are the quadratic terms. Each quadratic term corresponds to a speci�c entry in B so

we have δ(erow, ecol) ∈ {−1, 0, 1} for any row and column. It turns out that solving a generaliza-

tion of Problem 10.3 is NP-Hard.

Theorem 10.2.1. With the same notations, �nding the sequence of parallel row and column opera-
tions that minimizes the number of ones in B is NP-Hard.

Proof. We reduce the Maximum Clique Problem to problem 10.3. Given a graph G = (V,E), we

construct the following two graphs A,B as follows: for any vertex v ∈ V create two vertices

vA1 , vA2 in A and two vertices vB1 , vB2 in B. For both pair of vertices set the weight of the edge

at 0. Set the weights of all the other edges to −∞. Now for any pair of vertices (v, v′) ∈ V × V ,

consider the associated four vertices vA1 , vA2 , v
′
B1
, v′B2

. If v = v′ or v, v′ are adjacent in V then

set the quadratic term to +1, otherwise set the quadratic term to −∞.

A clique of size k in G gives a solution of weight k2
for problem 10.3. Conversely, given a

solution to problem 10.3 whose weight is not −∞, it is always possible to extend this solution to

a symmetric solution in A and B, i.e., the matching in A and the matching in B are of equal size.

By construction this correspond to the same vertices in V . If the matching in A and B is of size k
then the total weight of the solution to problem 10.3 is of size k2

and this corresponds to a clique

of size k in G.

Given the NP-Hardness of the problem, we compute a sequence of row and column operations

greedily. We �rst choose the best row or column operation that minimizes the number of ones and

we keep in memory the operation applied. Then we determine the best row or column operation

among the operations that can be performed in parallel with the previously stored operation and

we repeat the process. Finally if some rows and columns are left untouched we may complete

the sequence of operations by �ipping some entries. The best sequence of �ipping operations is
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computed as described in the proof of Theorem 10.1.2 using the blossom algorithm [55]. If no row

or column operation can reduce the number of 1 in B then only the �ipping operation is used.

10.3 An Extension to Utilize Extra Memory

The quantum compiler Tpar [10] e�ciently reduces the T-depth by computing subsets of T gates

that can be applied in parallel. Each T gate is associated to a parity, i.e., a linear combination of the

input qubits. Linearly independent parities can be computed at the same time and the T gates are

applied in parallel to each qubit carrying one of these parities.

With ancillary qubits, the parallelization can be even more e�cient because the ancillary qubits

can carry any parity, i.e., it can be a linear combination of the parities carried by non-ancillary

qubits. In terms of CNOT circuits synthesis, we need to synthesize a bigger linear reversible oper-

ator. Namely, we have to synthesize a boolean matrix of size p×nwhere p−n is the number of addi-

tional qubits that will carry a parity. We extend our framework to treat this particular case. First, we

prove in Section 10.3.1 that the depth for the synthesis of an operatorA ∈ F p×n2 , p ≥ 2n is equal, up

to additive logarithmic terms, to the depth of the synthesis on an operatorA ∈ F p×n2 , n ≤ p ≤ 2n.

This result shows that the total depth barely increases with the number of ancillae after a certain

threshold. Then, in Section 10.3.2, we extend our framework to deal with an arbitrary number of

ancillae to treat the case where A ∈ F p×n2 and n ≤ p ≤ 2n.

10.3.1 A Block Extension Algorithm

Given p = kn+ r, we partition the operator A into k blocks of n rows and one block of r rows.

We assume that the �rst block is of full rank and we merge the �rst block with the block of r rows.

The strategy we propose is divided into three parts:

1. perform some row operations on A such that the (k − 1) ancillary blocks are also of full

rank.

2. synthesize each block in parallel.

3. zero each (k − 1) ancillary block.

Step 1 can be performed with a circuit of depth dlog2(k)e using the following lemma:

Lemma 10.3.1. Given two matrices A,B ∈ Fn×n2 with A of full rank, there exists a partial permu-
tation1 P such that B + PA is of full rank.

Proof. Suppose B is of rank k, k < n. We can write B = CD where C ∈ Fn×k2 , D ∈ F k×n2

are of rank k. One can always add a set of n − k canonical vectors to the columns of C to create

a basis of Fn2 . We can complete as well the rows of D into a basis of Fn2 by adding row vectors

of A. We get two new extended matrices C ′, D′ such that B′ = C ′D′ is now invertible. We can

always add zero columns in C ′ and the remaining rows of A in D′ and reorder the columns of

C ′ and D′ to get C ′ = [C|P ] and D′ = [D|A] with P a partial permutation matrix. Rewriting

B′ = [C|D]× [P |A] = CD + PA = B + PA proves the result.

To perform Step 1, we �rst make sure that the second block is of full rank by adding the appro-

priate rows of the �rst block. Using the lemma, this operation can be done with a circuit of depth

1

We remind that a partial permutation is a boolean matrix with at most one entry equal to 1 per row and column.
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1. Then we make sure that the third and fourth block are of full rank by adding the appropriate

rows of the �rst and second blocks, etc. It is clear that we only need dlog2(k)e iterations to treat

all of the blocks.

Step 2 requires a call to our framework for the square blocks and the extension of our framework

for the rectangular block. All synthesis are performed simultaneously so the total depth for Step 2

is given by the maximum depth required for the synthesis of one of the blocks.

After Step 2 each block is equal to a permutation matrix. It is clear that we can zero in one

iteration half of the blocks, then half of the remaining blocks, etc. Similarly to Step 1 we need a

circuit of depth dlog2(k)e to zero all the blocks and complete the synthesis.

The total depth d(n, p) is given by

d(n, p) = 2 log2(bp/nc) + d∗(n, n+ r) ≤ 4n+ 2 log2(bp/nc)

where d∗(n, n+r) is the depth required to synthesize the block of size (n+r)×n, which informally

represents the maximum depth required when synthesizing all the blocks in parallel. The upper

bound is not the tightest possible. The result we want to emphasize is that the depth only depends

logarithmically on the number of ancillae.

10.3.2 Extension of the Divide-and-Conquer Framework

We now show how to treat the rectangular block in Step 2 of the block extension algorithm.

What follows can be performed for any number of ancillae even though we only need n ≤ p ≤ 2n.

Again, we partition the matrix

A =


A1 A2

A3 A4

A5 A6

A7 A8


where A5, A6, A7, A8 encode the ancillary parities. The algorithm consists in similar operations

to the case without ancillae:

1. Find a permutation matrix P such that the updated A1, A4 are of full rank.

2. Apply row operations on A to zero the blocks A3, A7 such that the resulting matrix is A′ =
A′1 A′2
0 A′4
A′5 A′6
0 A′8

,

3. Apply row operations onA′ to zero the blocksA′2, A
′
6 such that the resulting matrix isA′′ =

A′′1 0
0 A′′4
A′′5 0
0 A′′8

,

4. Call recursively the algorithm on [A′′1;A′′5] and [A′′4;A′′8].

The main di�erence is that in Steps 2 and 3 we now deal with rectangular matrices. Suppose we

are performing Step 2. For clarity we set

C1 = [A1;A5],
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C2 = [A3;A7],

and

n1 = dn/2e+

⌈
p− n

2

⌉
,

n2 = bn/2c+

⌊
p− n

2

⌋
.

With these notations, C1 ∈ Fn1×dn/2e
2 and C2 ∈ Fn2×dn/2e

2 . We face two problems if we try to

simply copy the method without ancillae:

1. First we cannot create the matrix B as before because the matrix C1 not invertible. Instead

we create a matrix B ∈ Fn2×n1
2 where B[i, :] is a solution of

B[i, :]C1 = C2[i, :].

In other words

BC1 = C2.

We still want to zero B and one can see that the three elementary available operations (row

operation, column operation, bit �ip) are still valid. If B is zero then C2 is zero but the

converse is not true anymore: we can still apply our greedy algorithm but it may be less

optimal because one nonzero row of B might be in the kernel of C1 and we will add useless

row operations to zero it.

We need a way to explicitly form B. We have many choices for each row of B, we said that

any solution to

xC1 = C2[i, :] (10.4)

is a valid row for B. In fact Eq 10.4 is an instance of a cryptographic problem called the

syndrome decoding problem. Finding a solution with minimal Hamming weight is NP-Hard.

In [48] a greedy solution of the problem has been proposed to optimize the size of CNOT

circuits but it requires the presence of the canonical vectors to ensure the convergence of

the algorithm (see Chapter 11 for more details). This condition can be met if we set

C1 ← C1A
−1
1

C2 ← C2A
−1
1

so that the �rst dn/2e vectors of C1 are now canonical vectors. Then we can compute the

rows of B by solving each instance of the syndrome decoding problem.

2. Secondly, we are not ensured after Step 2 that

(
A′4
A′8

)
will be of full rank because

(
A′1 A′2
A′5 A′6

)
may be of rank > dn/2e. Ideally, we would like to ensure that

(
A1 A2

A5 A6

)
is of rank dn/2e

before Step 2. This would mean that after Step 2 this sub-matrix is still of rank dn/2e because

the only modi�cations made on it were internal row operations and consequently the desired

matrix

(
A′4
A′8

)
is necessarily of rank n − dn/2e. Unfortunately this is not always possible.
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Take for instance the matrix

A =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0
0 1 1 1

 ,

there is no subset of 3 rows of rank 2. This means that we have to restrict the available

operations we perform on A during Step 2. The following modi�cations do not need to be

applied during Step 3 though. First, we ensure when computing the permutationP thatA4 is

also of full rank, then we have to prevent any row operation onA that could change the rank

of A4. The easiest way to do so is to zero A3 as if we were in the case with no ancillae and

we zero A5 with all kinds of operations possible. The consequence of this simple method is

that the depth required to synthesize the whole operator can only be greater than the depth

required to zero the sub-operator without ancillae.

To be sure that our greedy algorithm will converge, the rows of A3 have to be written in the

basis of the rows of A1 only because these will be the only rows we will use to zero A3. In

other words if B1 is a solution of B1C1 = A7, then we create B =

(
A3A

−1
1

B1

)
.

Although each row of B is of size n1 we have the guarantee that the Hamming weight of each

row will not exceed dn/2e. However, we cannot say anything on the Hamming weight of the

column of B so we can roughly upper bound the depth of Steps 2 and 3 only by n2 ≈ p/2. This

means that in theory the depth can increase linearly with the number of ancillae. In practice we

will see in Chapter 12 that it is not the case.

10.3.3 The Benchmarks in a Nutshell

We provide benchmarks of DaCSynth and its extensions in Chapter 12, Section 12.2. In a few

words, DaCSynth outperforms the state-of-the-art methods [117,130]. The empirical complexity of

the depth is approximately n which is a factor or 2 better than the adaptation of Kutin’s algorithm

[117] (Algorithm 8.3) and a factor of 4 better than the standard Gaussian elimination algorithm.

The results with ancillae are consistent with the theoretical results of Section 10.3. For the block

version we recover the logarithmic overhead in the number of ancillae shown in Section 10.3.1. For

the extension of the divide-and-conquer framework presented in Section 10.3.2 the depth increases

linearly with the number of ancillae but with a relatively small slope.
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Chapters 9 and 10 focused on optimizing the circuits when the qubit connectivity is full. This is

only a theoretical case since for the moment current architectures allow only limited interactions

between qubits. Yet it is still important to work on ideal cases as sometimes a method working for a

simpli�ed problem can be transposed to take into account some constraints. This is the case of the

method we present in this chapter. It was initially designed for full qubit connectivity and it appears

to also work for some connectivity graphs. The algorithm consists in transforming the synthesis of

a triangular operator into a series of syndrome decoding problems to solve. The syndrome decoding

problem is NP-Hard and inapproximable so we cannot a�ord to use an exact algorithm unless the

problem size is small enough. Yet, although this is a standard problem in cryptography, we were

unable to �nd practical algorithms to compute approximate solutions. We had to come up with ad-

hoc greedy solvers and the benchmarks show that it turns out to be e�cient. In the unconstrained

case, we improve [152, Algo. 1] but also GreedyGE, introduced in Chapter 9 when the number

of qubits is below a certain threshold (around 200 qubits). This gives insights about when to use

each method. Then we show that the method is robust enough to be naturally extended to a

constrained connectivity case. However, the generalization is not done for all possible connected

connectivity graphs but only for those that have a Hamiltonian path. This delicate transition from

graphs with a Hamiltonian path to all graphs is not inherent in our problem. The method using

Steiner trees in [102] also required an extra e�ort to adapt it to all connected graphs. Nevertheless,

many architectures have a Hamiltonian path and the benchmarks show that we outperform the

state of the art for those particular architectures. The outline of the chapter is the following: we

�rst present our algorithm in the case of an all-to-all connectivity in Section 11.1. Then we extend
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it to the case of restricted connectivity in Section 11.2.

11.1 Syndrome Decoding Based Algorithm for an All-to-All Con-
nectivity

In this section, we present our algorithm in the case of a complete connectivity between the

qubits. We focus on the synthesis of a lower triangular operator L ∈ Fn×n2 . What follows can be

straightforwardly extended to the case of upper triangular operators and to general operators using

the LU decomposition. With an all-to-all connectivity, one can avoid applying the permutation P
by doing a post-processing of the circuit that would transfer the permutation operation directly at

the end of the total circuit. This can be done without any overhead in the number of gates.

A circuit implementing L can solely consist of “oriented” CNOTs, whose controlled qubit i and

target qubit j satisfy i < j. The circuit given by the Gaussian elimination algorithm is an example.

For this particular kind of circuits, a CNOT applied to a qubit k does not have any in�uence on

the operations performed on the �rst k − 1 qubits: removing such a CNOT will not modify the

result of the synthesis of the �rst k − 1 parities. We use this property to design a new algorithm

where we synthesize L parity by parity and where we reuse all the information acquired during

the synthesis of the �rst k parities to synthesize parity k + 1.

Given Ln−1 = L[1:n− 1, 1:n− 1] (again using Matlab notation), a circuit C implementing the

operator

(
Ln−1 0

0 1

)
and considering that we want to synthesize the operator

L =
(
Ln−1 0
s 1

)
the core of our algorithm consists in adding a sequence of CNOTs toC such that we also synthesize

the parity s of the n-th qubit. During the execution of C , applying a CNOT i → n will add the

parity currently held by qubit i to the parity of qubit n without impacting the synthesis of the �rst

n−1 parities. In other words, if we store in memory all the parities that appeared on all n−1 qubits

during the execution of the circuit C , we want to �nd the smallest subset of parities such that their

sum is equal to s. Then, when a parity belonging to this subset appears during the execution of C ,

on qubit i for instance, we insert in C a CNOT i → n. We ultimately have a new circuit C ′ that

implements L.

The problem of �nding the smallest subset of parities whose sum equals s can be recast as a

classical cryptographic problem. Assuming thatH ∈ Fn−1×m
2 is a Boolean matrix whose columns

correspond to the m available parities, any Boolean vector x satisfying Hx = sT gives a solution

to our problem and the Hamming weight of x, wt(x), gives the number of parities to add, i.e., the

number of CNOTs to add to C . We are therefore interested in an optimal solution of the problem

minimize

x∈Fm2
wt(x)

such that Hx = sT .
(11.1)

Problem 11.1 is an instance of the syndrome decoding problem, a well-known problem in cryptog-

raphy. The link between CNOT circuit synthesis and the syndrome decoding problem has already

been established in [9], yet it was used in a di�erent problem for proving complexity results (under

the name of Maximum Likelihood Decoding problem) and the authors did not pursue the optimiza-

tion. The syndrome decoding problem is presented in more detail in Section 11.1.1.

To summarize, we propose the following algorithm to synthesize a triangular operator L. Start-

ing from an empty circuit C , for i from 1 to n perform the three following steps:
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1. scan circuit C to compute all the parities available on a single matrix H ,

2. solve the syndrome decoding problem Hx = s with s the parity of qubit i,

3. add the relevant CNOT gates to C depending on the solution obtained.

Provided that the size of C remains polynomial in n, which will be the case, then steps 1 and 3 can

be performed in polynomial time and in practice in a very short amount of time. The core of the

algorithm, both in terms of computational complexity and �nal circuit complexity, lies in Step 2.

11.1.1 Syndrome Decoding Problem

In its general form, the syndrome decoding problem is known to be NP-Hard [19] and cannot

be approximated by a constant factor [14]. A good overview of how di�cult the problem is can be

found in [193].

We give two methods for solving the syndrome decoding problem. The �rst one is an optimal

one and uses integer programming solvers. The second one is a greedy heuristic providing sub-

optimal results in a short amount of time.

Integer Programming Formulation.

The equality Hx = s is a Boolean equality of n lines. For instance, the �rst line corresponds to

H1,1x1 ⊕H1,2x2 ⊕ . . .⊕H1,mxm = s1.

We transform it into an “integer-like” equality constraint. A standard way to do it is to add an

integer variable t and to create the constraint

H1,1x1 +H1,2x2 + . . .+H1,mxm − 2t = s1.

If we write c = (1, ..., 1, 0, ..., 0)T ∈ Nm+n
and A = [H| − 2In] then the syndrome decoding

problem is equivalent to the integer linear program

min
x∈Fm2 ,t∈Nn

cT · [x; t]

such that A[x; t] = s.
(11.2)

A Cost Minimization Heuristic.

Although the integer programming approach gives optimal results, it is very unlikely that it will

scale up to a large number of qubits. Moreover, to our knowledge, the other existing algorithms

proposed in the literature also give exact results, but they are complex to implement and their

time complexity remains exponential with the size of the problem. We therefore have to consider

heuristics to compute an approximate solution in a much shorter amount of time.

We use a simple cost minimization approach: starting with the parity s we choose at each itera-

tion the parity v in H that minimizes the Hamming weight of v ⊕ s and we pursue the algorithm

with the new parity v⊕s. The presence of the canonical vectors inH (as we start with the identity

operator) is essential because they ensure that this method will ultimately converge to a solution.

A simple way to improve our heuristic is to mimic path�nding algorithms like Real-Time A*

[114]. Instead of directly choosing the parity that minimizes the Hamming weight, we look up to
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|xc〉

|x1〉

|x2〉

|xt〉

|xc〉

|x1〉

|x2〉

|xc ⊕ xt〉

Figure 11.1: CNOT in LNN architecture.

a certain horizon and we make one step in the direction of the most promising path. To control

the combinatorial explosion of the number of paths to browse, we only expand the most promising

parities at each level. We set the maximum width to m and the depth to k so that it represents

at most mk
paths to explore. With suitable values of m and k, we can control the total complex-

ity of the algorithm. A limitation of such a simple approach is that we can store the same path

but with di�erent parities order: we decided to ignore this limitation in order to keep a simple

implementation.

Lastly, we introduce some randomness by a change of basis and we solve the problem PHx =
Ps for several change of basis matrices P . Repeating this several times for one syndrome decoding

problem increases the chance to �nd an e�cient solution. This technique has been proven to be

e�cient for a class of cryptographic algorithms called Information Set Decoding [156], even though

the complexity of these algorithms remains exponential.

11.2 Extension to Any Connectivity with an Hamiltonian Path

In this section, we extend the algorithm to the case where the connectivity is not complete.

First, we show how to adapt our algorithm based on the syndrome decoding for the synthesis of

triangular operators, then we extend our method to the synthesis of any general operator.

11.2.1 Synthesis of a Triangular Operator

Let G be a qubit connectivity graph and L the lower triangular operator to synthesize. We

require an ordering on the nodes of G such that the subgraphs containing only the �rst k nodes,

for k = 1..n, are connected. As we need to synthesize both L and U we need, in fact, this property

to be true for an ordering of the qubits and the reverse ordering. A Hamiltonian path inG is enough

to have this property so for simplicity we assume that the ordering follows an Hamiltonian path

in G.

Even though the native CNOTs in the hardware are CNOTs between neighbor qubits in the con-

nectivity graph, it is possible to perform an arbitrary CNOT gate but this requires more local CNOT

gates. Given a target qubit qt and a qubit control qc, and assuming we have a path (qc, q1, ..., qk, qt)
in the graph connecting the two nodes (such path always exists with the assumption we made

above), it is possible to perform the CNOT qc → qt with max(1, 4k) CNOTs. An example for 4

qubits (with k = 2) is given Fig 11.1.

Hence, it is still possible to perform the synthesis parity by parity but we have to be more careful

in the setting and in the solution of the syndrome decoding problem. Not all parities have the same

cost, depending on the qubit holding the parity and its position on the hardware. Therefore we

have to solve a weighted version of the syndrome decoding problem. Namely, once we have a set
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|xc〉

|x1〉

|x2〉

|x3〉

|x4〉

|xt〉

|xc〉

|x1〉

|x2〉

|x3〉

|x4〉

|y〉

|y〉 = |xt ⊕ xc⊕x1⊕x2⊕x3 ⊕ x4〉

Figure 11.2: Fan-in CNOT in LNN architecture.

of parities in a matrix H and a cost vector c ∈ Nm, we look for the solution of the optimization

problem

minimize

x∈Fm2
cT · x

such that Hx = sT .
(11.3)

Problem 11.3 can be recast again as an integer linear program: we only have to change the value

of c. In what follows, we also propose a greedy heuristic for solving quickly and approximately

the problem: we de�ne the “basis cost” of implementing s as the sum of the costs of each canonical

vector whose component in s is nonzero. Let bc(s) be this cost. Our greedy approach consists in

�nding among the parities of H the parity v (column i of H) that minimizes the cost

c[i] + bc(s⊕ v).

This approach gives a good trade-o� between zeroing the most costly components of s and

applying parities at a very high cost. Again we can repeat the algorithm with random changes of

basis to �nd a better solution. Especially, we focused on computing bases for which the canonical

vectors have the lowest possible costs.

Nonetheless, compared to the all-to-all case, solving the weighted syndrome decoding problem

is not the only computational core for controlling both the quality of the solution and the compu-

tational time. Another key task lies in the enumeration of the available parities. As we will see, it is

possible to generate more parities for one syndrome decoding problem instance and this increases

the chances to get a low-cost solution.

Listing the Parities Available.

Until now we set the weighted syndrome decoding instances by computing the parities appear-

ing during the synthesis and by using the template in Fig. 11.1 to estimate their costs. This is in

fact ine�cient because it ignores some speci�cities of the problem:

• It is possible to add multiple parities in one shot using the template in Fig. 11.1.

• There is not necessarily one unique path inG between the control qubit and the target qubit.

More precisely, the template shown in Fig. 11.1 is the best to our knowledge, in terms of size, to

apply solely the parity on qubit qc to qubit qt. However it is possible to apply any parity

qt ← qt ⊕ qc ⊕ki=1 αiqi
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with αi ∈ {0, 1} using fewer CNOTs than required for applying only qc. In fact the less costly

linear combination of parities is the complete combination qc ⊕ q1 ⊕ ... ⊕ qk: 2k + 1 CNOTs

are enough. Removing any parity from this combination requires 2 additional CNOTs per parity

except for the qubit qk that needs only one extra CNOT. An explanatory template on 6 qubits

(k = 4) is given in Fig. 11.2. For any parity at a distance k of the target qubit, there is at most

2k−1
di�erent linear combinations possible and just as many new parities to consider. Moreover,

the path between the control qubit and the target qubit matters as a di�erent path will result in

di�erent linear combinations of parities. A slight modi�cation of the A* algorithm is enough to

compute all the shortest paths between two nodes in a graph.

Even for a small number of qubits the number of parities becomes quickly intractable. The

number of linear combinations along a path increases exponentially with the length of the path

as the number of paths for most of the architectures — a grid for instance. In practice, we control

the total number of parities by favoring paths over the choices in the linear combinations. This

option is empirically justi�ed but a more detailed analysis could be made. For one path we only

consider the less costly linear combination, i.e., the one that adds all the parities on the way. On

the other hand, if possible, we go through all the shortest paths between one control qubit and one

target qubit. We introduce a parameter Pmax equal to the maximum number of shortest paths we

consider between two qubits.

11.2.2 Synthesis of a General Operator

The extension of the synthesis from triangular to general operator is not as straightforward as

in the all-to-all connectivity case. We cannot simply write A = PLU and concatenate the circuits

synthesizing L and U and ultimately permuting the qubits. If we want to use this algorithm as a

sub-task of a global circuit optimizer for NISQ architectures we cannot a�ord to swap the qubits

because it could break the optimizations done in the rest of the circuit.

To avoid the permutation of the qubits, we have to transform the matrix A by applying a pre-

circuit C such that CA = LU . Then the concatenation of C−1
and the circuits synthesizing L and

U gives a valid implementation of A.

Computation of C.

If A is invertible, which is always the case, then it admits an LU factorization (with P = I) if

and only if all its leading principal minors are nonzero. We propose an algorithm for computing C
exploiting this property while trying to optimize the �nal size of C . We successively transform A
such that every sub-matrixA[1:i, 1:i] is invertible. By construction when trying to makeA[1 : k, 1 :
k] invertible for some k we have A[1:k − 1, 1:k − 1] invertible. If A[1 : k, 1 : k] is invertible then

we do nothing, otherwise we look in the parities A[k + 1:n,1:k] those who, added to A[k, 1 : k],
make A[1 : k, 1 : k] invertible. By assumption A is invertible so there is at least one such row that

veri�es this property. Then, among the valid parities, we choose the closest one to qubit k in G.

We can add all the parities along the path because by assumption they belong to the span of the

�rst k − 1 rows of A[1 : k, 1 : k] so it has no e�ect on the rank of A[1 : k, 1 : k].

Choice of the Qubit Ordering.

A last optimization can be performed by changing the qubits ordering. The algorithm we have

presented for synthesizing a triangular operator is still valid up to row and column permutations.

Thus, given a permutation P of the qubits, one can synthesize P−1LP by applying our algorithm
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with the order given by P . Then, instead of computing a circuit C such that CA = LU we search

for a circuit C satisfying P−1CAP = LU and

CA = PLP−1PUP−1 = L′U ′

where L′ and U ′ can be synthesized using our algorithm. Searching for such C can be done using

our algorithm on A[P, P ] (in Matlab notation, i.e., the reordering of A along the vector P ).

This means that we can choose P such that the synthesis of L and U will yield shorter circuits.

Empirically we noticed that when synthesizing the kth
parity of L it is preferable to have access to

the parities appearing on qubits k− 1, k− 2 etc. in priority for two reasons: �rst because they can

modify more bits on the kth
parity and secondly because it is likely that there will be much more

parities available, increasing the chance to have an inexpensive solution to the weighted syndrome

decoding problem. Intuitively we want the ordering of the qubits to follow at least an Hamiltonian

path in G = (V,E) which would match the previous restriction on the ordering we formulated at

the beginning of the section. We formulate the best ordering π : V → J1, nK as a solution of the

Minimum Linear Arrangement problem

minimize

π

∑
(u,v)∈E

wuv |π(u)− π(v)|
(11.4)

where wuv is the weight of the edge connecting u and v in the graph. Here we want to give

priority to neighbors in the hardware: the nodes must be as close as possible in the hardware if

their “numbers” are also close. A way to do so is to solve the MinLA problem, not in the hardware

graph, but in the complete graph with suitable weights. Namely wij must be large when i, j are

neighbors in the hardware andwij must be smaller if i, j are at distance 2 etc. The MinLA problem

has already been used for qubit routing [154] and the problem is in general NP-Hard [65]. In our

case we did not use any heuristic for solving this problem: all the architectures chosen to test our

method have Hamiltonian paths and we simply manually chose a suitable ordering of the qubits.

Fig. 2.3 features the choices we made for some architectures: the nodes are labeled with their

position in the linear arrangement. We leave as a future work the inclusion of the solution of the

MinLA problem in our algorithm.

11.3 The Benchmarks in a Nutshell

We provide benchmarks of the syndrome decoding based algorithms in Chapter 12, Sections 12.1

and 12.3. In the unconstrained case, the better the solver of the syndrome decoding problem the

shorter the circuits generated are. All our algorithms always outperform the PMH algorithm [152,

Algo. 1] but they only outperform GreedyGE (presented in Section 9.1) when n < 150. This is in

fact due to the bad scalability of the method: complex solvers do not scale well with the number

of qubits and when the solver is too simple we think the quality of the solution of the syndrome

decoding problem deteriorates with the problem size.

In the constrained case, except for the LNN architectures, we consistently outperform the state-

of-the-art algorithm [102]. Especially, the more connected the architectures, the larger the savings.
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This chapter presents the experimental results related to the synthesis of CNOT circuits. We

have the following algorithms to benchmark:

• GreedyGE for size optimization with full qubit connectivity from Chapter 9,

• cost minimization techniques for size optimization with full qubit connectivity from Chap-

ter 9,

• DaCSynth for depth optimization with full qubit connectivity from Chapter 10,

• the syndrome decoding based algorithms for size optimization for both full and restricted

connectivities from Chapter 11.

The state-of-the-art algorithms for each category are the following:

• The PMH algorithm [152, Algo. 1] for size optimization and full qubit connectivity, see Al-

gorithm 8.2,

• The extension of Kutin et al.’s algorithm [117] for depth optimization with full qubit connec-

tivity, see Algorithm 8.3.

• Steiner tree based algorithm [102, 146] for size optimization on constrained architectures.

Two kinds of datasets are used to benchmark our algorithms:

• First, a set of random operators. The test on random operators gives an overview of the

average performance of our algorithm. We generate random operators by creating random

CNOT circuits. Our routine takes two inputs: the number of qubit n and the number of
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CNOT gates k in the random circuit. Each CNOT is randomly placed by selecting a ran-

dom control and a random target and the simulation of the circuit gives a random operator.

Empirically we noticed that when k is su�ciently large — k = n2
is enough — then the

operators generated have strong probability to represent the worst case scenarii. The same

can be done with the depth as parameter instead of the number of gates.

• Secondly, a set of reversible functions, given as circuits, taken from Matthew Amy’s github

repository [8]. This experiment shows how our algorithms can optimize useful quantum al-

gorithms in the literature like the Galois Field multipliers, integer addition, Hamming coding

functions, the hidden weighted bit functions, etc.

To evaluate the performance of our algorithms for the random set, two types of experiments are

conducted:

1. a worst-case asymptotic experiment, namely for increasing problem sizes n we generate

circuits with n2
gates/depth 2n and we compute the average number of gates/depth for each

problem size. This experiment reveals the asymptotic behavior of the algorithms and gives

insights about strict upper bounds on their performance.

2. a close-to-optimal experiment, namely for one speci�c problem size we generate operators

with di�erent number of gates/depth to show how close to optimal our algorithms are if the

optimal circuits are expected to be smaller than the worst case.

All our algorithms are implemented in Julia [22] and executed on the ATOS QLM (Quantum

Learning Machine) whose processor is an Intel Xeon(R) E7-8890 v4 at 2.4 GHz.

The outline of the chapter is the following: �rst, we present the benchmarks about the size

optimization in the full qubit connectivity case in Section 12.1. Secondly, in Section 12.2 we show

the benchmarks for depth optimization with full connectivity. Next, we give the benchmarks for

the size optimization for constrained architectures in Section 12.3. In these three sections only

benchmarks on random operators are considered. We present in Section 12.4 the benchmarks of

the library of reversible functions, both for size and depth optimizations. Finally, we also count the

number of reversible functions up to row and column permutation in Section 12.5.

12.1 Size Optimization with Full Qubit Connectivity

First, we present the worst-case asymptotic experiment with the following algorithms:

• GreedyGE with standard LU decomposition,

• Syndrome decoding with the cost minimization heuristic with unlimited width and depth 1,

• Syndrome decoding with the integer programming solver (Coin-or branch and cut solver),

• Syndrome decoding with the cost minimization heuristic (width=Inf, depth=1) and 50 ran-

dom changes of basis, the “Information Set Decoding” (ISD) case.

• Syndrome decoding with the cost minimization heuristic with width 60 and depth 2,

• Syndrome decoding with the cost minimization heuristic with width 15 and depth 3,
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Algorithm

Average computational time (s)

n = 10 n = 100 n = 500 n = 1000 n = 5000

Gaussian elimination 0.00004 0.00125 0.14 1.2 140

PMH algorithm 0.00015 0.006 0.75 7 980

GreedyGE 0.00015 0.0035 0.1 0.6 45

Table 12.1: Computational time of GreedyGE vs PMH and standard Gaussian elimination algo-

rithms.

The results are given in Fig 12.1. For the sake of clarity, instead of showing the circuit size

we plot the ratio between the circuit size given by our method and the circuit size given by the

PMH algorithm. So if the ratio is below 1 this means that we outperform the state-of-the art

method [152, Algo. 1] . We also have a better view of which algorithm is better in which qubit

range. We stopped the calculations when the running time was too large for producing benchmarks

within several hours.

Overall, for the considered range of qubits, all our algorithms outperform [152, Algo. 1] . The

integer programming solver gives the best results with with a maximum gain of more than 55%

but its scalability is limited: beyond 50 qubits it requires too much computational time. Using com-

mercial softwares for addressing larger problem sizes would be interesting to con�rm the tendency

toward an increasing gain.

Concerning the cost minimization heuristic for solving the syndrome decoding problem, it seems

better to increase the depth of search rather than the width. With depth 3 and width 15 we have

the best results for the range 70-125 with at least 30% of gain. Surprisingly, the Information Set

Decoding based method with 50 random changes of basis works well until 60/70 qubits with more

than 35% of gain. Then it seems that the number of random changes is not enough to search

e�ciently an optimal solution and ultimately after 150 qubits the random changes have no e�ect

at all compared to the simpler heuristic with one try. It is possible to increase this number of

random changes but this comes at the price of a longer computational time and the Information

Set Decoding method cannot compete with the other versions of the cost minimization heuristic.

As the number of qubits increases the syndrome decoding based algorithm performs worse and

GreedyGE eventually produces the shortest circuits when n > 120. Notably, the average gain

over the PMH algorithm stabilizes around 25% whereas the syndrome decoding based algorithms

performances continue to deteriorate such that for n large enough the PMH algorithm is better.

We cannot tell if it is due to the method in itself or to the solution of the syndrome decoding

problem that becomes less and less optimal as the problem size increases. We leave this question

as a future work. For large n, GreedyGE is the best method so far. GreedyGE is also fast: we

compare the computational time of GreedyGE against the standard Gaussian elimination and the

PMH algorithm. The results are given in Table 12.1. Not only GreedyGE produces the smallest

circuits but in addition it is the fastest method to our knowledge.

Next, we show the impact of the choice of the LU decomposition. We provide results with

GreedyGE considering it can be directly transposed to the syndrome decoding based algorithms

as well. We perform the close-to-optimal experiment with the GreedyGE and three di�erent LU

decompositions:

• a standard LU decomposition for matrix in F2, taken from the Julia package Nemo [60],

• the LU decomposition algorithm of Chapter 9 with the "sparse" strategy,
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Figure 12.1: Average performance of GreedyGE and the Syndrome Decoding based algorithms

versus the PMH algorithm.

• the LU decomposition algorithm of Chapter 9 with the "cost minimization" strategy.

The experiment is done on 60 qubits. We also add the best method for this problem size: the

syndrome decoding based algorithm with the "Information Set Decoding" strategy. The results

are given in Fig 12.2. Computing more e�cient LU decompositions has almost no e�ect on the

worst-case results but provides some improvements when the input circuits are smaller. There is

no signi�cant di�erence between the two strategies "sparse" and "cost minimization" in terms of

circuit sizes but the running time is much lower for the sparse approach so we would privilege it.

This improvement also bene�ts the syndrome decoding based method as it also relies on an LU

decomposition.

Similarly to the worst case, the syndrome decoding based algorithm, in this range of qubits, is

better even when the input circuits are expected to be small.

12.1.1 Path Finding Methods

We now evaluate the performance of purely greedy methods. We remind that we have four cost

functions to study:

• hsum(A) =
∑

i,j ai,j ,

• hprod(A) =
∑n

i=1 log
(∑n

j=1 ai,j

)
,

• Hsum(A) = hsum(A) + hsum(A−1),

• Hprod(A) = hprod(A) + hprod(A
−1).

First, we show the asymptotic behavior of those four methods. The results are given in Fig 12.3.

The �rst graph in Fig 12.3a shows that the cost function hsum does not scale well with the number
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Figure 12.2: Performance of GreedyGE Syndrome Decoding on 60 qubits for di�erent input circuit

sizes.

of qubits so we decide to remove it for clarity. The new graph is given in Fig 12.3b. We notice two

things: �rst, the cost function Hprod always underperforms Hsum, secondly both Hsum and hprod

outperform our syndrome decoding based algorithm for small problem sizes (n < 30) but with an

advantage for Hsum when n < 25. There is a thin window — between 25 and 30 qubits — where

it is preferable to use hprod instead of Hsum.

The results given in Fig 12.3 are mainly there to discredit two of the four cost functions: hsum

and Hprod. The result that really interests us is that of the close-to-optimal experiment, given in

Fig 12.4. For this problem size on the worst case the syndrome decoding based algorithm out-

performs our greedy methods. But when we are not in the worst case the results are completely

di�erent: the greedy methods follow more faithfully the bound y = x than the syndrome decoding

based algorithm. We have to wait input circuits of size 300 for the syndrome decoding algorithm

to be better. The greedy algorithm based on the cost function hprod produces much more stable

results than the one with the cost function Hsum. For the cost function Hsum the variance is ex-

tremely large because the method struggles �nding a global minimum. However, it is Hsum that

produces the best results most of the time in the range of size 0−300. Again there is a thin window

where it may be relevant to use hprod instead of Hsum.

12.1.2 Conclusion: Combining the Methods

Similarly to what we have seen during Part B of this thesis with the synthesis in SU(2n), each

method has its own range of validity:

• GreedyGE is suited when the number of qubits exceeds 120, it outperforms the PMH algo-

rithm and our other algorithms in both circuit size and computational time.

• The syndrome decoding based algorithms must be used for intermediate problem sizes (30 <
n < 120) with the best possible solver of the syndrome decoding problem (in order: inte-
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(a) Average performance of {hsum, hprod, Hsum, Hprod} vs Syndrome decoding (Information Set Decoding).

(b) Average performance of {hprod, Hsum, Hprod} vs Syndrome decoding (Information Set Decoding).

Figure 12.3: Average performance of Cost minimization techniques vs Syndrome decoding (Infor-

mation Set Decoding).
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Figure 12.4: Performance of Cost minimization techniques vs Syndrome Decoding on 50 qubits for

di�erent input circuit sizes.

ger programming, Information Set Decoding if n < 70, maximum depth otherwise). Both

GreedyGE and the family of syndrome decoding based algorithms are state of the art in a

worst case scenario.

• When the output circuit is expected to be small, or when n < 30, then direct greedy meth-

ods have shown to produce the best results. The proposal of a new cost function paid o�

as this o�ers a more scalable direct greedy search. However, the moment when our new

custom function outperforms the one proposed in [169] coincides with the moment when

the syndrome decoding based algorithm also outperforms the direct greedy search. More

investigation needs to be done to clarify which cost function should be preferred and when.

Given the variety of methods, each providing the best results in particular cases, the best method

when trying to synthesize an operator would be simply to test each method and to keep the best

result. Except for the direct greedy methods, the computational time of each method is well un-

derstood. Given a speci�c problem size, it is easy to know which method can be used and how

long it will take. It is more delicate with the direct greedy methods, we have to set a limit in the

maximum number of iterations before considering that the search will not converge to a solution.

12.2 Depth Optimization with Full Qubit Connectivity

First, we need an explicit way to compute the depth. This task is not trivial compared to the

number of gates in the circuits. The most common way to perform this computation is to create

a Directed Acyclic Graph representation of the circuit: the vertices of the graph are the gates and

the edges represent their inputs/outputs. The depth of the circuit is then given by the longest path

in the graph which can be computed by doing a topological sorting of the vertices for example.

An interesting feature of this procedure is that we recover the skeleton circuit outlined in [130]
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by computing the depth of a circuit returned by the standard Gaussian elimination algorithm. We

therefore only benchmarked the Gaussian elimination method and the adapted method from [117].

We did the worst-case asymptotic experiment for n = 1...100 and the close-to-optimal exper-

iment on n = 40 qubits with input circuits depth from 1 to 2n. The results are plotted in Figure

12.5 and in Figure 12.6. In the worst case, for medium values of n (n < 50) the depth is slightly

bigger than n but then it tends to approximately 0.85n. This is a factor of 4 smaller than the stan-

dard Gaussian elimination results and a factor of 2 smaller than the method given in [117]. This

also highlights that there may still be room for improvements in the theoretical upper bound we

derived in section 10.1.

When the input circuit is already shallow, our algorithm still is able to re-synthesize a circuit

with small depth, although it cannot give optimal results: this is represented by the gap with the

line y = x in Figure 12.6. We are again better than the state-of-the-art algorithms but this gap can

still be improved.

Figure 12.5: Average performance of our algorithm vs Gaussian elimination algorithm and [117].

With Ancillae

We repeat the �rst experiment but this time with various number of ancillary qubits. Namely,

for di�erent problem sizes we generated 100 random operators. Then we add progressively some

random parities to our operator and we do the synthesis again. We are not particularly interested

this time in the average depth required to synthesize those bigger operators but rather in the av-

erage increase in the depth as we add more and more ancillae. The results are given in Figure 12.7

for n = 5, n = 15 and n = 50. We present the results for both our extension of the divide-and-

conquer framework and the block strategy described in Chapter 10. Overall, we cannot avoid an

increase of the depth but this increase seems independent of the size of the problem and is mostly

moderate with respect to the number of extra parities. For the extension of our framework, espe-

cially, when the number of ancillae is large, the increase of the depth seems to stabilize to a linear

growth with a slope of at most 0.15. For the block strategy, we recover the theoretical results: the
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Figure 12.6: Performance of our algorithm vs Gaussian elimination algorithm and [117] on 40 qubits

for di�erent input circuits depths.

depth oscillates following an average increase given by a logarithmic overhead in p/n. If the num-

ber of ancillae is extremely large, it is preferable to use the extension rather than the block version

because the logarithmic overhead is more important than the natural increase of our extension.

Such promising results tend to encourage the use of ancillary qubits when synthesizing CNOT+T

circuits.

12.3 Size Optimization on Constrained Architecture

We compare the method we presented in Section 11.2 against the best algorithm in the literature

[102] whose source code is available on the PyZX Github repository [101]. The code provided gives

a way to generate random operators and compute several synthesis methods. For each architecture

considered in the authors’ implementation, we generate a set of 100 random operators and perform

the synthesis using the Steiner trees. The algorithm from [102] also provides an optimization using

genetic algorithms but this implements the circuit up to a permutation of the qubits. As we focus

on implementing exactly the operator, we considered a version of the algorithm from [102] without

this extra optimization.

For our own implementation we set a time limit of 10 minutes for the synthesis of an operator.

We recall that:

• Pmax is the maximum number of shortest paths considered between two qubits.

• We also set Niter_syndrome to be the number of iterations for the solution of a decoding syn-

drome.

• Niter is the number of times that the synthesis has been repeated.

The values of the parameters for the di�erent problem sizes are the following:
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(a) 5 qubits

(b) 15 qubits

(c) 50 qubits

Figure 12.7: Average increase of the depth with the number of ancillae for di�erent problem sizes.
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Architecture #

Steiner

Syndrome

Saving

tSt (s) tSy (s)

[102] Mean Min. Max. Positive

9q Square 9 60 56 6% -25.5% 40.6% 66% 0.01 0.16

Rigetti 16q 16 272 245 10% -6% 23.1% 97% 0.022 1.6

IBM QX 5 16 245 195 20.2% 10% 28.7% 100% 0.019 2

16q Square 16 205 183 10.7% -7.1% 33% 93% 0.02 1.6

19q Line 19 455 470 -6.7% -19.4% 7.9% 6% 0.045 4.5

IBM Q20 Tokyo 20 292 239 18.1% 8.7% 26.9% 100% 0.025 1.8

25q Square 25 512 458 10.6% 3.5% 19.1% 100% 0.04 19

25q Sq. + diag. 25 410 324 21% 10.7% 28.3% 100% 0.035 8

36q Square 36 1067 891 16.5% 11% 22.4% 100% 0.1 67

36q Sq. + diag. 36 861 667 22.5% 18.2% 26.6% 100% 0.09 22

49q Square 49 1981 1662 16% 11.9% 20.7% 100% 0.2 420

49q Sq. + diag. 49 1607 1246 22.4% 19% 25.2% 100% 0.19 114

64q Square 64 3374 2812 16.6% 13.9% 18.9% 100% 0.54 79

81q Square 81 5363 4447 17% 14.4% 19.2% 100% 1.04 192

100q Square 100 8148 6666 18.2% 16.8% 19.8% 100% 2.1 449

Table 12.2: Performance of our Syndrome Decoding based algorithm vs Steiner trees algorithm

[102] for several architectures.

• n < 36, Pmax = Inf, Niter = 100 and Niter_syndrome = 1,

• n = 36, Pmax = Inf, Niter = 20 and Niter_syndrome = 1,

• n = 49, Pmax = 10, Niter = 100 and Niter_syndrome = 1,

• n > 49, Pmax = 1, Niter = 100 and Niter_syndrome = 1.

The results are summarized in Table 12.2. Columns 3 and 4 give the average size of the generated

circuits for the method using Steiner trees in [102] and our algorithm based on syndrome decoding.

The next columns detail the savings: the mean saving, the minimum saving (negative saving means

that our algorithm performs worse), the maximum saving and the proportion of operators for

which our circuit is actually shorter than the one provided by the state-of-the-art method. The last

two columns give the average time required to perform the synthesis of one operator (all iterations

included for our algorithm).

We can expect our algorithm to behave better if there are more connections between the qubits.

When the connectivity is as limited as possible, for instance with an LNN architecture, our algo-

rithm does not outperform the algorithm based on Steiner trees. Except for 6% of the operators

where we have a slight gain (less than 8%) we provide circuits with more gates, up to 19%. For

other architectures the results are more promising. In the case of the 9-qubit square there is a lot

of variance in the results: depending on the operator we can have a gain of 40% or a loss of 25%.

Overall, we still manage to produce a shorter circuit 66% of the time. For larger square architec-

tures, we outperform the state-of-the-art algorithm consistently with increasing savings, between
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10% for the 25 qubits square to 18% for the 100 qubits square. When adding diagonal connections

in the square architectures the results are even better. This shows that improving just slightly the

connectivity can improve consistently the results of our algorithm compared to the state of the art

method. Finally, on speci�c architectures, we also provide better results. The results for Rigetti’s

chip are not as good as for IBM’s chips essentially because the connectivity is still close to a straight

line, otherwise we manage to have a saving of around 20% for both IBM-QX5 and IBM-Tokyo chips.

12.4 Benchmarks on Reversible Functions

We apply our CNOT circuit synthesis to the optimization of quantum algorithms. A standard

library to evaluate the quality of a quantum compiler is a library of reversible functions consisting

of adders, Hamming coding functions, multipliers, etc. The circuits are from Matthew Amy’s github

Feynman repository [8].

Recent quantum compilers mainly focused on the T-count or T-depth optimization of quantum

circuits but these optimizations often lead to an increased CNOT count. Although it is experimen-

tally more costly to implement a T gate, the total number of CNOT gates in a quantum circuits

should not be too large otherwise the CNOT cost of the total circuit will not be negligible. To give

a rough overview, if the T gate is 50 times more costly than the CNOT gate but we have 20 more

CNOT gates in the circuit then then the CNOT cost will be 1/3 of the total cost of implementing

the circuit. In practice, the CNOT cost cannot be neglected.

In [9] the algorithm Gray-Synth for the optimization of the CNOT count in CNOT+T circuits

is proposed. It e�ciently reduces the total number of CNOT gates but it comes at the price of

an increased T-depth, i.e., a longer circuit runtime. Here we show that, using our methods for

CNOT circuit synthesis, one can reduce signi�cantly the CNOT count without paying the price

of increasing the T depth. We used the C++ implementation of Matthew Amy’s Tpar algorithm

to produce optimized circuits with low T-count and T-depth. We post process the circuits by re-

synthesizing any chunk of purely CNOT circuits. It is possible to further optimize the synthesis of

the CNOT+T circuits, using for instance the TODD optimizer [80] but as we are concerned about

showing the impact of our method on the CNOT count and the T-depth we did not pursue the

optimization to have a lower T-count so that we can directly compare against the results from [9].

The results are given in Table 12.4. For each reversible function we provide the results (T-count,

T-depth, Total depth) of di�erent circuits implementing it. Namely, the original circuits, the circuits

optimized solely with the Tpar algorithm and GraySynth as the state-of-the-art methods and the

circuits optimized with the Tpar method and our own methods: the one for optimizing the size

and DaCSynth. For Gray-Synth we used the Haskell implementation, still from [8]. The savings

given always compare against the circuits given by solely the Tpar algorithm. We notice several

interesting points:

• we cannot decrease the CNOT count as much as with GraySynth, but we still manage to

decrease the CNOT count consistently and above all we do not modify the T-depth. Our

circuits therefore represent a tradeo� between the T-cost the CNOT-cost.

• We also considerably reduce the total depth of the circuits, making their execution faster on

NISQ architectures.

• Surprisingly, the depth is better optimized when we optimize the size rather than the depth.

This is explained by the fact that most of the CNOT circuits involved in those reversible func-

tions are elementary operators, requiring only a few CNOTs to be implemented. Therefore
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the size and the depth are very close and greedy methods �nd a close-to-optimal implemen-

tations while DaCSynth may have some overhead. Overall if among 100 CNOT subcircuits

DaCSynth has an overhead of 1 in the depth for 50 of them, the total depth is increased by

at most 50 which can be huge and this can explain the not as good results we have with

DaCSynth.

To illustrate our last statement, we kept track of the best algorithm that was used to compute

each CNOT sub-circuit that appeared in the synthesis of one reversible function. The results are

given in Table 12.5. Most of the time, both pure greedy methods and the syndrome decoding based

methods provide the best results. According to us, this highlights the simplicity of the operators

to synthesize otherwise there would be many more cases where we would observe a di�erence

of even one CNOT. Overall, for this library of reversible functions, the use of methods other than

the pure greedy methods is useless. This is not surprising as the number of qubits never exceeds

40 except for three operators. For such small problem sizes, we saw that pure greedy methods

always outperform the other methods, in addition to the fact that we have strong suspicions that

the majority of the operators encountered are easy to synthesize. We note the interest of using the

cost function hlog as an alternative because in some cases it allows to synthesize operators more

e�ciently.

12.5 Database of Optimal Reversible Circuits

In this section, we develop the idea of using a database to store the optimal circuits for linear

reversible operators of small size. This idea is not new and occurred multiple times in the literature.

In [67] by exploiting some symmetries in the reversible functions representation the authors stored

optimal results for all the 4-bits reversible functions. In [11] a meet-in-the-middle method was used

to store optimal quantum circuits up to a certain depth for small number of qubits. Similarly to

our problem, in [106] these methods were applied to store Cli�ord quantum circuits and were also

applied to the speci�c case of linear reversible circuits. Yet they were limited to 6 lines before

exhausting the available memory.

First, it is only necessary to construct a database that stores the minimum number of CNOT

gates required for the implementation of any linear reversible function. Indeed, given a speci�c

operator to synthesize, we already know how many CNOTs are required for its implementation.

Then all we need is to try every possible row operation/CNOT gate and �nd a new operator that

needs one less CNOT for its implementation. We store the chosen CNOT and we repeat on the

new operator until we reach the identity operator.

Storing blindly all the possible linear reversible functions is not e�cient at all. In Table 12.3

we computed the number of linear reversible functions up to 9 lines and we see that the problem

becomes already intractable for 6/7 lines. A common way to reduce the total size of the database

is to exploit the symmetries of linear reversible functions to avoid storing redundant informations.

For instance, if we know how to synthesize an operator A then we know how to implement A−1

by reading the circuit in reverse order. This reduces the size of the database by a factor of 2. Then,

if we know how to implement an operator A we know how to implement any operator P1AP2,

where P1, P2 are permutation matrices, by independently renaming the inputs and outputs. Using

this symmetry, we can approximately reduce the size of the database by a factor of (n!)2
where

n is the number of lines. We give the estimated new sizes of the databases in Table 12.3 and we

see that the problem is tractable up to 8 lines. The key to use e�ciently this symmetry lies in

the possibility to compute a canonical representative for the equivalence relation "inputs/outputs

independent renaming".
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n
Number of linear

reversible functions
(exact)

Simultaneous
I/0 renaming
(estimated)

Independent
I/0 renaming
(estimated)

Inverse and independent
I/0 renaming
(estimated)

1 1 1 1 1

2 6 3 2 1

3 168 28 5 2

4 20,160 840 35 18

5 9,999,360 83,328 694 347

6 20,158,709,760 27,998,208 38,886 19,443

7 163,849,992,929,280 32,509,919,232 6,450,381 3,225,190

8 5,348,063,769,211,699,200 132,640,470,466,560 3,289,694,208 1,644,847,104

9 699,612,310,033,197,642,547,200 1,927,943,976,061,501,440 5,312,896,759,429 2,656,448,379,714

10 66,440,137,299,948,128,422,802,227,200 100,981,078,400,558,897,823,744 27,827,678,130,665,481 13,913,839,065,332,741

Table 12.3: Sizes or estimated sizes of di�erent databases.
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Function #n
Original Tpar Tpar + GraySynth Tpar + CNOT size opt. Tpar + CNOT depth opt.

T-count T-depth CNOT count Depth T-count T-depth CNOT count Depth T-count T-depth CNOT count Depth T-count T-depth CNOT count Depth T-count T-depth CNOT count Depth

Adder_8 24 399 69 466 223 213 30 741 302 215 74 ( 147%) 399 (−46%) 257 ( −15%) 213 30 491 ( −34%) 204 ( -32%) 213 30 683 ( −8%) 254 ( −16%)

barenco_tof_10 19 224 96 224 288 100 43 332 272 100 81 ( 88%) 146 (−56%) 264 ( −3%) 100 43 188 ( −43%) 217 ( -20%) 100 43 262 ( −21%) 267 ( −2%)

barenco_tof_3 5 28 12 28 36 16 8 52 60 16 16 ( 100%) 20 (−62%) 40 ( −33%) 16 8 26 ( −50%) 34 ( -43%) 16 8 34 ( −35%) 41 ( −32%)

barenco_tof_4 7 56 24 56 72 28 13 96 96 28 26 ( 100%) 38 (−60%) 64 ( −33%) 28 13 50 ( −48%) 61 ( -36%) 28 13 67 ( −30%) 78 ( −19%)

barenco_tof_5 9 84 36 84 108 40 18 134 123 40 34 ( 89%) 56 (−58%) 88 ( −28%) 40 18 73 ( −46%) 89 ( -28%) 40 18 98 ( −27%) 108 ( −12%)

csla_mux_3 15 70 21 90 67 62 8 379 210 62 28 ( 250%) 115 (−70%) 91 ( −57%) 62 8 187 ( −51%) 81 ( -61%) 62 8 312 ( −18%) 128 ( −39%)

csum_mux_9 30 196 18 196 59 84 6 366 153 84 16 ( 167%) 160 (−56%) 78 ( −49%) 84 6 179 ( −51%) 70 ( -54%) 84 6 315 ( −14%) 110 ( −28%)

cycle_17_3 35 4739 2001 4742 5974 1944 562 6608 5231 1955 1857 ( 230%) 3040 (−54%) 5698 ( 9%) 1944 562 4267 ( −35%) 4229 ( -19%) 1944 562 6111 ( −8%) 5102 ( −2%)

GF(210
)_mult 30 700 108 709 290 410 16 2206 1026 410 109 ( 581%) 648 (−71%) 324 ( −68%) 410 16 955 ( −57%) 307 ( -70%) 410 16 2294 ( 4%) 401 ( −61%)

GF(216
)_mult 48 1792 180 1837 489 1040 24 6724 2551 1040 585 ( 2338%) 1691 (−75%) 1488 ( −42%) 1040 24 2542 ( −62%) 678 ( -73%) 1040 24 7724 ( 15%) 788 ( −69%)

GF(232
)_mult 96 7168 372 7292 1001 4128 47 34244 11520 4128 2190 ( 4560%) 6636 (−81%) 5391 ( −53%) 4128 47 10953 ( −68%) 2113 ( -82%) 4128 47 49895 ( 46%) 2397 ( −79%)

GF(24
)_mult 12 112 36 115 99 68 6 307 173 68 39 ( 550%) 106 (−65%) 117 ( −32%) 68 6 135 ( −56%) 80 ( -54%) 68 6 285 ( −7%) 116 ( −33%)

GF(25
)_mult 15 175 48 179 130 115 9 502 259 115 51 ( 467%) 166 (−67%) 152 ( −41%) 115 9 209 ( −58%) 107 ( -59%) 115 9 391 ( −22%) 138 ( −47%)

GF(26
)_mult 18 252 60 257 163 150 9 660 350 150 63 ( 600%) 235 (−64%) 189 ( −46%) 150 9 310 ( −53%) 137 ( -61%) 150 9 694 ( 5%) 180 ( −49%)

GF(27
)_mult 21 343 72 349 195 217 12 996 490 217 75 ( 525%) 319 (−68%) 224 ( −54%) 217 12 442 ( −56%) 184 ( -62%) 217 12 940 ( −6%) 228 ( −53%)

GF(28
)_mult 24 448 84 469 233 264 13 1254 619 264 87 ( 569%) 428 (−66%) 266 ( −57%) 264 13 588 ( −53%) 224 ( -64%) 264 13 1386 ( 11%) 293 ( −53%)

GF(29
)_mult 27 567 96 575 258 351 15 1712 810 351 95 ( 533%) 526 (−69%) 283 ( −65%) 351 15 753 ( −56%) 266 ( -67%) 351 15 1805 ( 5%) 341 ( −58%)

grover_5 9 336 144 336 457 154 51 499 477 154 130 ( 155%) 232 (−54%) 440 ( −8%) 154 51 331 ( −34%) 384 ( -19%) 154 51 424 ( −15%) 432 ( −9%)

ham15-high 20 2457 996 2500 3026 1019 380 3427 2956 1019 839 ( 121%) 1588 (−54%) 2583 ( −13%) 1019 380 2183 ( −36%) 2226 ( -25%) 1019 380 3087 ( −10%) 2731 ( −8%)

ham15-low 17 161 69 259 263 97 33 471 360 97 83 ( 152%) 221 (−53%) 271 ( −25%) 97 33 280 ( −41%) 223 ( -38%) 97 33 415 ( −12%) 281 ( −22%)

ham15-med 17 574 240 616 750 230 84 759 682 230 194 ( 131%) 368 (−52%) 622 ( −9%) 230 84 481 ( −37%) 506 ( -26%) 230 84 672 ( −11%) 632 ( −7%)

hwb6 7 105 45 131 152 75 24 270 248 75 63 ( 162%) 111 (−59%) 188 ( −24%) 75 24 172 ( −36%) 164 ( -34%) 75 24 250 ( −7%) 209 ( −16%)

hwb8 12 5887 2139 7970 7956 3531 860 22670 15838 3531 2752 ( 220%) 6841 (−70%) 9338 ( −41%) 3531 860 13353 ( −41%) 9261 ( -42%) 3531 860 20860 ( −8%) 12290 ( −22%)

mod5_4 5 28 12 32 41 16 6 48 57 16 15 ( 150%) 28 (−42%) 51 ( −11%) 16 6 32 ( −33%) 39 ( -32%) 16 6 40 ( −17%) 47 ( −18%)

mod_adder_1024 28 1995 831 2005 2503 1011 258 3650 2560 1011 864 ( 235%) 1390 (−62%) 2474 ( −3%) 1011 258 2369 ( −35%) 1913 ( -25%) 1011 258 3323 ( −9%) 2392 ( −7%)

mod_adder_1048576 58 17290 7292 17310 21807 7298 1927 29794 19975 7323 6577 ( 241%) 11080 (−63%) 20089 ( 1%) 7298 1927 19122 ( −36%) 15286 ( -23%) 7298 1927 27522 ( −8%) 18799 ( −6%)

mod_mult_55 9 49 15 55 50 35 7 106 75 35 20 ( 186%) 40 (−62%) 52 ( −31%) 35 7 73 ( −31%) 61 ( -19%) 35 7 88 ( −17%) 57 ( −24%)

mod_red_21 11 119 48 122 158 73 25 223 207 73 59 ( 136%) 102 (−54%) 179 ( −14%) 73 25 136 ( −39%) 144 ( -30%) 73 25 183 ( −18%) 174 ( −16%)

qcla_adder_10 36 238 24 267 73 162 13 648 195 162 33 ( 154%) 225 (−65%) 94 ( −52%) 162 13 362 ( −44%) 86 ( -56%) 162 13 548 ( −15%) 128 ( −34%)

qcla_com_7 24 203 27 215 81 94 12 371 154 94 31 ( 158%) 150 (−60%) 89 ( −42%) 94 12 202 ( −46%) 76 ( -51%) 94 12 274 ( −26%) 106 ( −31%)

qcla_mod_7 26 413 66 441 197 231 28 813 296 237 67 ( 139%) 386 (−53%) 212 ( −28%) 231 28 479 ( −41%) 188 ( -36%) 231 28 701 ( −14%) 238 ( −20%)

qft_4 5 69 48 48 142 67 44 96 185 67 60 ( 36%) 48 (−50%) 163 ( −12%) 67 44 56 ( −42%) 150 ( -19%) 67 44 78 ( −19%) 165 ( −11%)

rc_adder_6 14 77 33 104 104 47 22 165 157 47 39 ( 77%) 79 (−52%) 111 ( −29%) 47 22 100 ( −39%) 103 ( -34%) 47 22 120 ( −27%) 113 ( −28%)

tof_10 19 119 51 119 153 71 27 236 190 71 61 ( 126%) 86 (−64%) 172 ( −9%) 71 27 130 ( −45%) 143 ( -25%) 71 27 185 ( −22%) 173 ( −9%)

tof_3 5 21 9 21 27 15 6 35 46 15 12 ( 100%) 16 (−54%) 32 ( −30%) 15 6 21 ( −40%) 31 ( -33%) 15 6 26 ( −26%) 36 ( −22%)

tof_4 7 35 15 35 45 23 9 63 71 23 18 ( 100%) 26 (−59%) 51 ( −28%) 23 9 37 ( −41%) 49 ( -31%) 23 9 49 ( −22%) 54 ( −24%)

tof_5 9 49 21 49 63 31 12 97 104 31 24 ( 100%) 36 (−63%) 70 ( −33%) 31 12 50 ( −48%) 67 ( -36%) 31 12 70 ( −28%) 78 ( −25%)

vbe_adder_3 10 70 24 80 79 24 9 120 88 24 18 ( 100%) 54 (−55%) 71 ( −19%) 24 8 61 ( −49%) 45 ( -49%) 24 9 75 ( −38%) 52 ( −41%)

Mean savings +391.39% -60.21% -29.66% -45.03% -41.26% -12.61% -27.68%

Minimum savings +36% -81% -68% -68% -82% -38% -79%

Maximum savings +4560% -42% +9% -31% -19% +46% -2%

Table 12.4: CNOT optimization of a library of reversible functions with several CNOT circuits synthesis methods.



Function #n #CNOT

sub-circuits

PMH GreedyGE Syndrome (Information Set Decoding) Syndrome (Depth 3) Syndrome (IP) Greedy Ones Greedy Log

Best choice Only Choice Best choice Only Choice Best choice Only Choice Best choice Only Choice Best choice Only Choice Best choice Only Choice Best choice Only Choice

Adder_8 24 60 12 (20%) 0 (0) 13 (22%) 0 (0%) 42 (70%) 0 (0%) 42 (70%) 0 (0%) 42 (70%) 0 (0%) 60 (100%) 2 (3%) 58 (97%) 0 (0%)

barenco_tof_10 19 99 29 (29%) 0 (0) 33 (33%) 0 (0%) 83 (84%) 0 (0%) 83 (84%) 0 (0%) 83 (84%) 0 (0%) 99 (100%) 0 (0%) 99 (100%) 0 (0%)

barenco_tof_3 5 14 8 (57%) 0 (0) 8 (57%) 0 (0%) 12 (86%) 0 (0%) 12 (86%) 0 (0%) 12 (86%) 0 (0%) 13 (93%) 0 (0%) 13 (93%) 0 (0%)

barenco_tof_4 7 27 12 (44%) 0 (0) 12 (44%) 0 (0%) 24 (89%) 0 (0%) 24 (89%) 0 (0%) 24 (89%) 0 (0%) 26 (96%) 0 (0%) 26 (96%) 0 (0%)

barenco_tof_5 9 39 16 (41%) 0 (0) 16 (41%) 0 (0%) 32 (82%) 0 (0%) 32 (82%) 0 (0%) 32 (82%) 0 (0%) 38 (97%) 0 (0%) 38 (97%) 0 (0%)

csla_mux_3 15 15 0 (0%) 0 (0) 0 (0%) 0 (0%) 8 (53%) 0 (0%) 8 (53%) 0 (0%) 8 (53%) 0 (0%) 15 (100%) 2 (13%) 10 (67%) 0 (0%)

csum_mux_9 30 14 1 (7%) 0 (0) 1 (7%) 0 (0%) 6 (43%) 0 (0%) 6 (43%) 0 (0%) 6 (43%) 0 (0%) 13 (93%) 4 (29%) 9 (64%) 0 (0%)

cycle_17_3 35 1436 219 (15%) 0 (0) 330 (23%) 0 (0%) 1094 (76%) 0 (0%) 1094 (76%) 0 (0%) 1094 (76%) 0 (0%) 1429 (100%) 23 (2%) 1412 (98%) 6 (0%)

GF(210
)_mult 30 20 0 (0%) 0 (0) 0 (0%) 0 (0%) 1 (5%) 0 (0%) 1 (5%) 0 (0%) 1 (5%) 0 (0%) 16 (80%) 13 (65%) 6 (30%) 3 (15%)

GF(216
)_mult 48 28 0 (0%) 0 (0) 0 (0%) 0 (0%) 2 (7%) 0 (0%) 2 (7%) 0 (0%) 2 (7%) 0 (0%) 18 (64%) 15 (54%) 11 (39%) 8 (29%)

GF(232
)_mult 96 51 0 (0%) 0 (0) 0 (0%) 0 (0%) 2 (4%) 0 (0%) 2 (4%) 0 (0%) 2 (4%) 0 (0%) 30 (59%) 28 (55%) 21 (41%) 19 (37%)

GF(24
)_mult 12 10 0 (0%) 0 (0) 0 (0%) 0 (0%) 3 (30%) 0 (0%) 3 (30%) 0 (0%) 3 (30%) 0 (0%) 9 (90%) 3 (30%) 6 (60%) 0 (0%)

GF(25
)_mult 15 13 1 (8%) 0 (0) 0 (0%) 0 (0%) 3 (23%) 0 (0%) 3 (23%) 0 (0%) 3 (23%) 0 (0%) 10 (77%) 6 (46%) 6 (46%) 2 (15%)

GF(26
)_mult 18 13 0 (0%) 0 (0) 0 (0%) 0 (0%) 2 (15%) 0 (0%) 2 (15%) 0 (0%) 2 (15%) 0 (0%) 9 (69%) 7 (54%) 5 (38%) 3 (23%)

GF(27
)_mult 21 16 0 (0%) 0 (0) 0 (0%) 0 (0%) 3 (19%) 0 (0%) 3 (19%) 0 (0%) 3 (19%) 0 (0%) 12 (75%) 7 (44%) 8 (50%) 3 (19%)

GF(28
)_mult 24 17 0 (0%) 0 (0) 0 (0%) 0 (0%) 2 (12%) 0 (0%) 2 (12%) 0 (0%) 2 (12%) 0 (0%) 15 (88%) 10 (59%) 6 (35%) 1 (6%)

GF(29
)_mult 27 19 0 (0%) 0 (0) 0 (0%) 0 (0%) 4 (21%) 0 (0%) 4 (21%) 0 (0%) 4 (21%) 0 (0%) 14 (74%) 10 (53%) 8 (42%) 4 (21%)

grover_5 9 123 39 (32%) 0 (0) 39 (32%) 0 (0%) 110 (89%) 0 (0%) 110 (89%) 0 (0%) 110 (89%) 0 (0%) 122 (99%) 0 (0%) 121 (98%) 0 (0%)

ham15-high 20 852 220 (26%) 0 (0) 256 (30%) 0 (0%) 698 (82%) 0 (0%) 698 (82%) 0 (0%) 698 (82%) 0 (0%) 852 (100%) 3 (0%) 849 (100%) 0 (0%)

ham15-low 17 69 21 (30%) 0 (0) 18 (26%) 0 (0%) 57 (83%) 0 (0%) 57 (83%) 0 (0%) 57 (83%) 0 (0%) 69 (100%) 2 (3%) 66 (96%) 0 (0%)

ham15-med 17 189 56 (30%) 0 (0) 63 (33%) 0 (0%) 167 (88%) 0 (0%) 167 (88%) 0 (0%) 167 (88%) 0 (0%) 189 (100%) 1 (1%) 188 (99%) 0 (0%)

hwb6 7 48 11 (23%) 0 (0) 12 (25%) 0 (0%) 40 (83%) 0 (0%) 40 (83%) 0 (0%) 40 (83%) 0 (0%) 47 (98%) 0 (0%) 47 (98%) 0 (0%)

hwb8 12 2130 270 (13%) 0 (0) 343 (16%) 0 (0%) 1248 (59%) 0 (0%) 1245 (58%) 0 (0%) 1247 (59%) 0 (0%) 2115 (99%) 159 (7%) 1938 (91%) 10 (0%)

mod5_4 5 14 8 (57%) 0 (0) 8 (57%) 0 (0%) 13 (93%) 0 (0%) 13 (93%) 0 (0%) 13 (93%) 0 (0%) 14 (100%) 0 (0%) 14 (100%) 0 (0%)

mod_adder_1024 28 716 173 (24%) 0 (0) 214 (30%) 0 (0%) 564 (79%) 0 (0%) 564 (79%) 0 (0%) 564 (79%) 0 (0%) 716 (100%) 28 (4%) 688 (96%) 0 (0%)

mod_adder_1048576 58 5615 857 (15%) 0 (0) 1335 (24%) 0 (0%) 4275 (76%) 0 (0%) 4276 (76%) 0 (0%) 4276 (76%) 0 (0%) 5593 (100%) 114 (2%) 5500 (98%) 21 (0%)

mod_mult_55 9 14 4 (29%) 0 (0) 4 (29%) 0 (0%) 9 (64%) 0 (0%) 9 (64%) 0 (0%) 9 (64%) 0 (0%) 14 (100%) 0 (0%) 14 (100%) 0 (0%)

mod_red_21 11 46 19 (41%) 0 (0) 19 (41%) 0 (0%) 40 (87%) 0 (0%) 40 (87%) 0 (0%) 40 (87%) 0 (0%) 45 (98%) 0 (0%) 44 (96%) 0 (0%)

qcla_adder_10 36 24 3 (12%) 0 (0) 4 (17%) 0 (0%) 17 (71%) 0 (0%) 17 (71%) 0 (0%) 17 (71%) 0 (0%) 23 (96%) 2 (8%) 20 (83%) 0 (0%)

qcla_com_7 24 26 4 (15%) 0 (0) 4 (15%) 0 (0%) 15 (58%) 0 (0%) 15 (58%) 0 (0%) 15 (58%) 0 (0%) 26 (100%) 0 (0%) 26 (100%) 0 (0%)

qcla_mod_7 26 52 5 (10%) 0 (0) 5 (10%) 0 (0%) 35 (67%) 0 (0%) 35 (67%) 0 (0%) 35 (67%) 0 (0%) 51 (98%) 2 (4%) 48 (92%) 0 (0%)

qft_4 5 29 9 (31%) 0 (0) 12 (41%) 0 (0%) 28 (97%) 0 (0%) 28 (97%) 0 (0%) 28 (97%) 0 (0%) 29 (100%) 0 (0%) 29 (100%) 0 (0%)

rc_adder_6 14 49 33 (67%) 0 (0) 34 (69%) 0 (0%) 43 (88%) 0 (0%) 43 (88%) 0 (0%) 43 (88%) 0 (0%) 48 (98%) 0 (0%) 48 (98%) 0 (0%)

tof_10 19 52 21 (40%) 0 (0) 21 (40%) 0 (0%) 48 (92%) 0 (0%) 48 (92%) 0 (0%) 48 (92%) 0 (0%) 51 (98%) 0 (0%) 50 (96%) 0 (0%)

tof_3 5 12 7 (58%) 0 (0) 8 (67%) 0 (0%) 11 (92%) 0 (0%) 11 (92%) 0 (0%) 11 (92%) 0 (0%) 11 (92%) 0 (0%) 11 (92%) 0 (0%)

tof_4 7 17 10 (59%) 0 (0) 11 (65%) 0 (0%) 16 (94%) 0 (0%) 16 (94%) 0 (0%) 16 (94%) 0 (0%) 16 (94%) 0 (0%) 16 (94%) 0 (0%)

tof_5 9 22 11 (50%) 0 (0) 11 (50%) 0 (0%) 18 (82%) 0 (0%) 18 (82%) 0 (0%) 18 (82%) 0 (0%) 21 (95%) 0 (0%) 21 (95%) 0 (0%)

vbe_adder_3 10 19 4 (21%) 0 (0) 4 (21%) 0 (0%) 18 (95%) 0 (0%) 18 (95%) 0 (0%) 18 (95%) 0 (0%) 18 (95%) 0 (0%) 18 (95%) 0 (0%)

Table 12.5: Frequency of best performance of each algorithm during the optimization of reversible circuits. For each algorithm, the �rst column gives

the number of times it has returned the best result (possibly other algorithms returned circuits of same size). The second column reports the number

of times it was the only one to provide the best possible circuit.
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In [106] they evoke the possibility of using the independent renaming of the inputs and outputs

and propose a way to compute the canonical representative. It is unclear if they applied this strat-

egy. They stopped to a database for 6 lines although with an independent input/output renaming

we estimate we can reach 8 qubits. Besides the way they compute the canonical representative can

be improved because they compute a minimum over all possible row (or column) permutations,

introducing a huge overhead such that it cannot be used to compute e�ciently the database.

We use an e�cient way of computing the canonical representative. This will enable us to gener-

ate quickly the database up to 8 lines. This is the same technique as in the proof of Corollary 10.1.2.2

where we did a BFS search on the set of binary matrices and reduced the size of the search space

by considering equivalence class for operators where equivalence means permutation of rows or

columns. In the proof, we brie�y explained that the way to compute a canonical representative

relies on graph isomorphisms. For completeness we give more details about this technique as it is

central in the construction of the database.

An isomorphism of graphs G and H is a bijection between the vertex sets of G and H f :
V (G) → V (H) such that two vertices u and v of G are adjacent in G if and only if f(u) and

f(v) are adjacent in H . Any binary matrix A of size n corresponds to the bi-adjacency matrix

of a balanced bipartite graph G = (U, V,E) with |U | = |V | = n. Given a binary matrix A and

its associated bipartite graph G = (U, V,E), applying a row, resp. column, permutation on A
is equivalent to a renaming of the vertices in U , resp. V . In other words we get a new graph

G′ = (U ′, V ′, E) where G′ is isomorphic to G. We have an injection between a set of binary

matrices that are equal up to row, resp. column, permutations and an isomorphic class of graphs

but not a bijection: there may be a bijection f where a node in U has its image in V and f still

preserves the adjacency relations. Consider a graph where one node in U and one node in V are

not connected to any node: switching the two nodes gives a new graph isomorphic to the �rst but it

does not correspond to a permutation of the rows or columns of the associated bi-adjacency matrix.

In fact, you transpose the row and the column corresponding to the two nodes. As we do not want

our operators to be equivalent up to some transpositions of rows and columns, we have to restrict

the way we decide if two graphs are isomorphic. To overcome this we consider colored bipartite

graphs: the vertices inU are colored in one color and the vertices in V are colored in another color.

We impose the bijection to also preserve the color of the nodes. This enables to consider both row

and column permutations as the bijections can only mix nodes of same color. This de�nes a new

equivalence relation. Computing a canonical representative for a set of binary matrices equal up

to row or column permutations is therefore equivalent to computing a canonical representative

of an isomorphic class of graphs given by the custom equivalence relation. Determining whether

two graphs are isomorphic is the graph isomorphism problem. This problem is believed not to

be solvable in polynomial time nor to be NP-complete. Fortunately, to solve this problem, many

e�cient algorithms exist and directly compute a canonical representative. We used the nauty

program [136] and linked it to our Julia code. Once we have a canonical representative we convert

it into an integer on 64 bits by reading the binary sequence given by the boolean matrix of the

canonical representative.

We performed a breadth-�rst search until we reached all the possible linear reversible functions.

In a sequential run we can only generate a database for 7 qubits in approximately 10 minutes. With

the exponential growth of the problem sizes it is impossible to generate a database for 8 qubits

without a parallel implementation. For each integer k we iterated through a queue containing all

the functions implementable with k gates in order to generate the queue k+1. By this way we can

divide the work equally between each thread without the risk that a thread adds a function with

a wrong optimal size (for instance, a "fast" thread reaches a function in K gates whereas another

thread would have reached it with only K-1 gates). We gave one queue and one database for each
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n Independent I/0 renaming
(exact)

Inverse and independent I/0 renaming
(exact)

1 1 1

2 2 2

3 7 6

4 51 35

5 885 486

6 44,206 22,456

7 6,843,555 3,425,932

8 3,373,513,302 1,686,852,696

Table 12.6: Exact databases sizes.

thread and between two queues iteration we merged the results. This approach may not be the

optimal one but it is enough to generate the database in less than 48h with 24 threads. We give

in table 12.6 the number of di�erent linear reversible functions up to independent inputs/outputs

renaming. This sequence follows the sequence A224879 and we are able to add one value to the

sequence for the case n = 8. The distribution of the sizes of the circuits is given table 12.7.

We realized after performing the computation that a similar method was done in [63] for count-

ing the number of linear codes. Yet the procedure was stopped at n = 7.

We can exploit the fact than if we know how to implement a function f optimally then we know

how to implement f−1
as well. Indeed it is su�cient to read the circuit in reverse. When computing

the canonical representative of f we can take the minimum of the two 64-bits integers given by

the canonical representative of f and f−1
. Again after performing a breadth-�rst search we get

the results Table 12.6 and Table 12.8.

180



Part C – Linear Reversible Circuits Synthesis Chapter 12

Number of gates

Number of lines

1 2 3 4 5 6 7 8

0 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

2 4 5 5 5 5 5

3 1 18 22 23 23 23

4 19 114 141 145 146

5 6 293 883 1,046 1,073

6 1 346 4,123 8,311 9,430

7 97 12,314 57,516 89,874

8 6 17,967 311,380 829,495

9 8,049 1,161,639 6,721,597

10 694 2,494,728 44,179,051

11 4 2,275,942 217,421,135

12 1 524,718 710,850,603

13 8,098 1,284,845,188

14 2 947,875,714

15 159,305,838

16 1,384,123

17 5

Table 12.7: Number of linear reversible functions reachable for di�erent problem and circuit sizes.

Number of gates

Number of lines

1 2 3 4 5 6 7 8

0 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

2 3 4 4 4 4 4

3 1 12 15 16 16 16

4 12 66 84 87 88

5 4 157 471 564 582

6 1 184 2,121 4274 4,875

7 53 6,245 29,031 45,410

8 5 9,069 146,258 416,152

9 4,076 581,664 3,364,233

10 364 1,248,453 22,097,401

11 3 1,138,735 108,724,675

12 1 262,742 355,447,216

13 4,100 642,445,628

14 2 473,954,811

15 79,658,969

16 692,630

17 4

Table 12.8: Number of linear reversible functions reachable for di�erent problem and circuit sizes

(with inverse).
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circuits synthesis
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13.1 Size optimization with full qubit connectivity

In Part C of this manuscript, we studied three di�erent kinds of algorithms for the synthesis of

CNOT circuits with full qubit connectivity and with the size of the circuit as objective:

• a Gaussian elimination based algorithm called GreedyGE, where we greedily choose the row

operation that maximizes the number of zero left-most elements of the operator to synthe-

size,

• purely greedy methods, where we choose the row operation that minimizes a cost function,

• an algorithm based on the syndrome decoding problem, where we reformulate the problem

as a series of syndrome decoding problems for which various strategies are applied.

Overall, each algorithm gives the best results depending on the number of qubits or the size of

the optimal circuit implementing the desired operator:

• For large n (n > 150) in a worst-case scenario, GreedyGE is the best algorithm. The algo-

rithm is fast and it produces circuits with around 25% less CNOTs than the PMH algorithm.

• For medium n (30 < n < 150) and in a worst-case scenario, the syndrome decoding based

algorithm gives the best results. Especially, the better the solver of the syndrome decoding

problem is, the shorter the produced circuits are. But optimal or near-optimal methods do

not scale well. We report up to 55% of gain compared to the PMH algorithm.

• For small n (n < 30) or when the optimal circuit is expected to be small, purely greedy

methods provide almost optimal results.
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We now present a few open questions/tracks for improvement.

• Even though we improved practically and theoretically the Patel-Markov-Hayes algorithm,

the asymptotic complexity of GreedyGE remains a factor of 2 away from the theoretical lower

bound. Can we �nd an algorithm that reaches this lower bound? If yes, we think it will not

be with an algorithm like PMH or GreedyGE that blindly zeroes the entries of the matrix.

Indeed, with such algorithms, the maximum number of entries we are ensured to zero with a

row operation is log2(n). However, in order to reach the theoretical lower bound of
n2

2 log2(n) ,

each row operation needs to zero in average 2 log2(n) entries. This cannot be achieved with

simple Gaussian elimination based algorithms.

• The syndrome decoding based algorithm may be a good candidate to reach the theoretical

lower bound, but we need tools from the cryptographic realm to establish tight worst-case

complexities. This should be the subject of a future work. The practical complexity also

depends on the algorithm used for solving the syndrome decoding problem. Can we �nd a

better solver? The integer programming solver provides optimal results but is unusable for

problems larger than 50 qubits. The greedy heuristics scale better and we manage to address

larger problems with them but at the cost of a suboptimal solution. This sub-optimality

may explain why the method does not provide good results for large n compared to PMH

or GreedyGE. We know that the syndrome decoding problem, in its general form, is NP-

Hard. Thus it is unlikely that we can fundamentally do better than a brute-force solver or a

suboptimal greedy algorithm. Yet there is one feature of the problem that we did not exploit

in our work and that may simplify the problem. This relies on a graph-oriented reformulation

of our problem and we let its solving as a future work. When we scan a circuit to compute the

available parities, each new parity is obtained because we apply a CNOT gate that sums two

rows of the current linear reversible operator. So, when we gather the di�erent parities in a

matrixH , if the gathering is done chronologically, each new column ofH can be written as a

sum of two previous columns ofH . We can create a parity graph where each node is a parity

and, given three nodes v1, v2, v3 corresponding to three parities p1, p2, p3, we add two edges

v1 → v3, v2 → v3 if p3 = p1⊕ p2. We call such a three-node structure a triangle. Each node

except the �rst n ones have two such in-edges. There is no restriction on the number of out-

edges though. A solution to the syndrome decoding problem is given by a subset of nodes:

those nodes are considered active. Given such a subset, we can switch to another solution

by considering one triangle and taking the complementary in terms of active/inactive nodes.

We can then navigate in the space of all the solutions in search of the one with the fewest

active nodes: this is the optimal solution of the syndrome decoding problem. One can show

that we can always reach the optimal solution with only the elementary operation "take the

complementary of a triangle" because whatever the set of active nodes, we can always reach

a canonical form where the active nodes are solely among the �rst n nodes. The problem is

illustrated on 4 qubits in Fig 13.1. Is there an e�cient solution to this problem?

• Some quantum algorithms have been proposed for solving the syndrome decoding prob-

lem via the Information Set Decoding algorithm [20, 95, 100]. This gives the possibility of

designing a hybrid quantum/classical compiler for this particular synthesis problem.

• Do we need the best solver possible? From the experiments we saw that the better the solver

was, the better were the results. Nevertheless, this result is not obvious and raises a question:

how far are we from the optimal circuit with an optimal solver of the syndrome decoding

problem? When we optimally solve one instance of the syndrome decoding problem we

solely compute an optimum of a subpart of the global synthesis problem. We can imagine for

184



Part C – Linear Reversible Circuits Synthesis Chapter 13

instance “wasting” a CNOT to create a parity that will be reused for other syndrome decoding

problems. Solving non optimally one instance of the syndrome decoding problem would,

therefore, help to have smaller solutions of other larger instances of the syndrome decoding

problem and eventually synthesize a shorter circuit. It would be interesting to develop a

global optimization algorithm which would calculate the next CNOT not according to the

cost of the current syndrome decoding problem but of all the syndrome decoding problems

to follow. Such a method would certainly provide shorter circuits but the question is to know

how good its scalability is.

• Another avenue for improvement would be to mix GreedyGE and the syndrome decoding

based algorithm. When you apply GreedyGE on an operator A, �rst you triangularize A
and then you synthesize an upper triangular operator U . During this process, once the �rst

column is treated, there will be no more CNOT gates with control the �rst qubit during

the triangularization but also during the synthesis of U . In other words, the �rst row of U
can be ultimately synthesized with a speci�c instance of the syndrome decoding problem

where you can apply any parity that appeared in A[2 : end, 2 : end] after the �rst column

has been treated during the �rst step of GreedyGE. Similarly the second row of U can be

synthesized by solving a syndrome decoding problem with all the parities that appeared in

A[3 : end, 3 : end] after the treatment of the second column in GreedyGE’s part. Compared

to a standard syndrome decoding based algorithm, the number of parities collected is much

larger because it includes everything that was done during the �rst part of the synthesis (the

triangularization part). This increases the chances to have small solutions on the syndrome

decoding part. On the other hand GreedyGE produces less optimal circuits for medium-

sized registers, this introduces an overhead that may not be compensated by the gain in the

syndrome decoding parts.

• Finally, purely greedy methods have shown to be quite e�ective especially to �nd short

circuits. But ultimately the scalability of those methods are limited. Can we �nd better cost

functions? A main problem for a good scalability is the presence of local minima. In our

implementation we simply choose a random operation with minimum cost in hope of falling

into another minimum. How can we deal with those minima more e�ciently?

13.2 Depth optimization with full qubit connectivity

We looked for a practical implementation of the divide-and-conquer framework proposed in

[90]. We have proposed a generalization of their method, by simply reformulating the synthesis

of the operator as a succession of binary matrix zeroing problems with a precise set of elementary

operations, namely row and column operations, and the bit �ip of one entry. Several strategies

can be employed to solve the zeroing problem. With a block strategy, we improved the worst case

upper bound for practical values of n (150 < n < 480000). With a greedy approach, we were able

to synthesize an n-qubit operator with depth between 0.85n and n. This is an improvement by a

factor of 2 compared to the state-of-the-art method.

We now present a few open questions/tracks for improvement.

• It seems clear when looking at the benchmarks that the upper bound of our framework is to

be improved. It is easy to have some results when we only consider the maximum number

of ones in each row of B = A3A
−1
1 ∈ Fn×n2 , but combining this with a restriction on the

columns makes the proofs harder. For instance it is easy to prove that one can �ip no more
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H =


1 0 0 0 1 1 1 0 0
0 1 0 0 1 1 0 1 1
0 0 1 0 0 1 0 1 1
0 0 0 1 0 0 1 1 0



p1 p2 p3 p4

p5

p6

p7

p8

p9

(a) CNOT circuit

(b) Parity table

(c) Parity graph

Figure 13.1: An example of a CNOT circuit, the parities that appear in it and the associated parity

graph.

than n/2 entries on each row ofB to get a matrixB⊕C with only two di�erent row vectors.

Such matrix can be zeroed in a logarithmic number of steps and this would give an upper

bound of approximately n+logarithmic terms which is closer to our benchmarks. Yet we are

unable to get any property on the maximum number of 1 in the columns of C to conclude.

• In Section 10.3 we showed that the implementation of an operator A ∈ F p×n2 is barely

more costly than the synthesis of a square operator of size n. We want to highlight that this

important result can lead to new strategies for our initial divide-and-conquer framework

and improve the theoretical upper bounds on the depth. Consider the matrixB = A3A
−1
1 ∈

Fn×n2 to zero during step 2 of the framework. If B is of rank k < n then we write

B = DF

where D ∈ Fn×k2 , F ∈ F k×n2 are both of rank k. By using the block extension algorithm

we know that there is a sequence (EiDjD)iDjD , resp. (EiF jF )iF jF ), of row, resp. column,

operations of depth O(k) such that∏
iD,jD

EiD,jDD =

(
Ir
0

)
,

F
∏
iF ,jF

EiF ,jF =
(
Ir 0

)
.

Equivalently ∏
iD,jD

EiD,jDB
∏
iF ,jF

EiF ,jF =

(
Ir 0
0 0

)
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and B can be zeroed with a sequence of operations of depth O(k). So instead of trying to

minimize the number of ones in B, as we do, one might be interested in diminishing the

rank. The problem can be formulated as: given an integer r < n and B ∈ Fn×n2 of rank

k > r, what is the sequence of operations (row operations, column operations, entry �ips)

of minimum depth that transform B into a matrix of rank r?

This problem is related to other problems in the literature. The matrix rigidity of a matrix A
is de�ned as the minimum Hamming distance between A and a matrix of rank r. In other

words the matrix rigidity ofA is the minimum number of entries of A that must be modi�ed

in order for the rank to drop to r. In the literature the concept of matrix rigidity was used

to prove lower bounds on the complexity of classical linear circuits [124, 191]. Most of the

work we found on the subject was thus dedicated to �nding explicit rigid matrices, which is

quite the opposite of our approach. Moreover, the distance for the matrix rigidity problem

is de�ned as the number of �ips in A whereas we are concerned in the depth of a sequence

of operations.

The problem of matrix rigidity can be extended with the more general problem of low rank

approximations where we try to �nd, for given target rank r, the solution to

min
rank(R)=r

‖A−R‖

where ‖ · ‖ is an appropriate norm. Using the L1 norm, we recover the problem of �nding

the matrix rigidity of A. But again none of the norms usually considered take into account

the depth required to implement R. Lastly, such problems only consider one of the three

operations that are available to us, namely the entry �ips. Although row and column oper-

ations alone cannot reduce the rank of a matrix, they can help in creating a new matrix that

needs less entries to �ip to have a reduced rank.

• We did not treat the case where we have clean ancillae. With n+ p ancillae, standard tech-

niques [90, 141] compute the two operations

|x〉 |0〉 |0〉p → |x〉 |0⊕Ax〉 |0〉p = |x〉 |Ax〉 |0〉p

|x〉 |Ax〉 |0〉p → |x⊕A−1Ax〉 |Ax〉 |0〉p = |0〉 |Ax〉 |0〉p

and swap the �rst two registers. It is easy to show that with kn additional clean ancillae we

can synthesize independently blocks of (ni)i=1..k columns, with

∑k
i=1 ni = n and add them

together with a logarithmic overhead to create A. The total depth would be

d ≈ 4(max
i=1..k

(d(ni)) + 1 + dlog2(k)e) ≈ 4n/k

but this does not represent a clear improvement over [90]. They show that a circuit with

(3s+ 1)n ancillae can be parallelized to O( n
s log2(n)) and the overhead is not as problematic

as in the non-ancillae case.

• Finally, can we extend this framework to take into account connectivity constraints? We

believe it is not an easy task because it is not natural in a restricted connectivity to split the

qubits into two sets, especially if there is no particular symmetry between the two sets. We

think it is preferable to improve the results from [117] for the LNN architecture and extend

it to an arbitrary topology.
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13.3 Size optimization on constrained architectures

We extended the algorithm using the syndrome decoding problem to take into account the hard-

ware constraints. The idea is to order the qubits according to a Hamiltonian path in the connectivity

graph then to solve weighted instances of the syndrome decoding problem. Each parity is assigned

a weight corresponding to the number of CNOTs needed to add the parity to the target qubit. The

farther the qubit carrying the parity to add is in the hardware, the greater the weight of the parity

will be. The experiments have shown that, except for the LNN architecture whose connectivity is

too sparse, we consistently outperform the state-of-the-art algorithm based on Steiner trees by a

percentage that increases with the number of qubits.

We now present a few open questions/tracks for improvement.

• We have shown that the choice of a "good" Hamiltonian path is given by the solution of an

instance of the Minimum Linear Arrangement problem. We did not implement an algorithm

for solving it yet. Instead we manually chose a suitable Hamiltonian path for each archi-

tecture we considered. Solving the MinLA problem may give better results, this will be the

subject of future work.

• Can we extend e�ciently our framework to architectures that do not have a Hamiltonian

path? A straightforward extension would consist in considering paths with holes between

the qubits. This would require to use more expensive CNOT as one of the target in the path

has to be removed. Otherwise our algorithm can be used identically. Is there a more e�cient

way to do the extension?

• We expect our algorithm to give better and better results as the density of the connectivity

graph increases. A detailed comparison against the Steiner tree based method with more and

more connected architectures will be a subject of future work.
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Summary

During this thesis we have broached the subject of the synthesis of quantum circuits, in a rather

broad sense, by focusing on two precise abstract representations of quantum operators:

• via a unitary matrix in SU(2n). Any operator has such a representation and moreover this

representation is unique. The compilation of a unitary matrix into a circuit is historically

what is meant by “synthesis of quantum circuits”.

• via an invertible Boolean matrix in F2. This compact form is used to represent so-called re-

versible linear operators. Reversible linear operators represent a subclass of operators having

multiple applications in quantum and in particular are at the center of current compilers.

During the �rst half of this manuscript (Part B) we have emphasized the interest of working

on a joint optimization of classical and quantum resources in the synthesis process. If quantum

resources are currently extremely limited, classical resources are also limiting the synthesis to a

few qubits. We have considered two types of optimizations:

• First we have proposed a method of synthesis using a QR factorization algorithm based on

Householder transformations. Our method is almost as fast as a matrix/matrix product which

is one of the most optimized routines in scienti�c software libraries, and allows us to syn-

thesize operators up to 15 qubits while the state-of-the-art algorithm, the Quantum Shannon

Decomposition, is limited to 12 qubits.

• Then we have explored the use of numerical optimizers for the synthesis. For the majority of

operators, representing the worst case, we obtained excellent results by succeeding in syn-

thesizing operators and states with a number of entangling gates given by a theoretical lower

bound. In other words, it is impossible to do better for the majority of operators and that

gives theoretical indications on the validity of the theoretical lower bounds. It is also possible

to increase the number of gates in the circuit to drastically reduce the number of iterations

necessary for the convergence of the optimizer. Thus we can increase the problem size that

can be treated by this method while producing smaller circuits than those synthesized by

state of the art methods even though the circuits are not optimal anymore.

These two new synthesis methods can also be combined with methods from the literature. For

example, the use of a numerical optimizer for small operators makes it possible to improve the

size of the circuits produced by the QSD. We can thus propose a continuous landscape of methods

according to the size of the problem. For each problem size, a synthesis method can be proposed

which minimizes the number of gates in the circuit, knowing the quantity of classical resources

available. Typically forn > 12 only the Householder method is viable but forn = 10 it makes more

sense to combine the QSD with our optimizer by stopping the recursion of the QSD at n = 4 or

n = 5. We hope that these methods will be useful for the execution of future quantum algorithms
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based on the generation of circuits without particular structure, as one might encounter in the

QRAM generation.

During the second half of the manuscript we studied the synthesis of linear reversible circuits

by implementing them only with the CNOT gate. We were interested in the optimization of quan-

tum resources only — the number of CNOTs or the depth of the CNOT circuit — and in two cases

of architectures: an architecture where the qubits are fully connected and the current architec-

tures where the qubits are linked only to their neighbors in the hardware. We have proposed new

algorithms in the following three cases:

1. size optimization for a fully connected architecture,

2. depth optimization for a fully connected architecture,

3. size optimization for architectures with partial connectivities.

In each of the three cases, we have designed algorithms outperforming the state of the art, with

various gains:

1. on average 25% with a maximum of 55% in case 1,

2. 50% gain on average on the depth in case 2,

3. �nally between 10% and 20% gain, depending on the architecture, in case 3.

Linear reversible operators are used in the compilation of Cli�ord+T circuits, in particular in

the synthesis of so-called CNOT+T circuits. So we replaced the methods of synthesis of the purely

CNOT parts by our own to see the gains that this could bring on libraries of reversible functions. We

have shown that our methods allow to considerably reduce the number of CNOTs while preserv-

ing another important metric: the T-depth. Some state-of-the-art algorithms manage to generate

circuits with fewer CNOTs but at the cost of a much greater T-depth. We o�er a possible tradeo�

between these two metrics. The depth is also signi�cantly reduced. These optimized circuits come

closer and closer to circuits that can be reasonably performed on quantum computers to arise in

the coming years.

192



Global perspectives

The current trend in the literature is to focus on subclasses of operators that can be expressed

compactly, i.e., polynomially in the number of qubits. CNOT circuits, stabilizer circuits, CNOT+T

circuits, oracles, Hamiltonians in quantum chemistry, all these operators can be described e�-

ciently and the implementation of a circuit implementing them is the subject of continuous progress

in the literature. It might be interesting to look at other forms of operators that can be easily sim-

ulated. For example, match gates are gates acting on 2 qubits of the form

G(A,B) =


p 0 0 q
0 w x 0
0 y z 0
r 0 0 s

 A =

(
p q
r s

)
, B =

(
w x
y z

)

whereA,B are matrices in SU(2) with same determinant. A circuit made ofG(A,B) gates acting

only on nearest neighbor lines can be e�ciently simulated by a classical computer [93]. Thus such

circuits are more likely to be e�ciently optimized.

For generic circuits synthesis we solely focused on the unitary matrix as representation of a

quantum operator. What about using a Hermitian matrix H such that U = eiH? We enter the

realm of Hamiltonian simulation, i.e., the simulation of a quantum system speci�ed by its Hamil-

tonian, and we somehow go back to the born of the quantum computer with Richard Feynman and

Yuri Manin evoking the idea of simulating a quantum system with a quantum machine itself. Can

we transpose some or our methods to the Hamiltonian simulation? Some compilation algorithms

have already been successfully transposed into the Hamiltonian simulation, take for instance the

GraySynth algorithm [42]. There is a simple link between a unitary given as a product of House-

holder matrices and its associated Hamiltonian matrix. We plan to transpose the Householder

framework to the case of the Hamiltonian simulation.

From a theoretical point of view, it would be very interesting to continue the study of Lie alge-

bras and Lie groups. We now know that the QSD �ts perfectly in a Lie algebraic framework. Can

we �nd more e�cient decompositions? The work in [144] provides a fairly general framework for

�nding new decompositions. These decompositions — also called KAK decompositions — make

it possible to decompose a unitary on n qubits into 4 unitaries on n-1 qubits and 3 operators de-

scribed by speci�c Hamiltonians: the link between unitary synthesis and Hamiltonian simulation

is straightforward. The complexity of a KAK decomposition is given by the cost of synthesizing

those three Hamiltonians. A good class of Hamiltonians would be a class easier to implement than

the multiplexors that also �ts into a Cartan decomposition. Does such a class exist?

Finally, some works during the second half of the 2000’s have established a link between �nding

a quantum circuit and �nding a path in a certain curved geometry [52, 147, 149]. Finding the

optimal circuit implementing an operator is equivalent to solving a doubly exponentially hard

problem [147]. More precisely, one has to solve an exponentially large instance of the closest

vector in a lattice problem. Solving exactly this problem is hard, but what about approximating it?
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To our knowledge, no practical use of these results has been undertaken. Can good heuristics be

designed?
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Synthèse en français

Nous étudions l’optimisation de ressources classiques et quantiques lors de la synthèse de circuits

quantiques. La synthèse de circuits quantiques consiste en la transformation d’une spéci�cation

haut niveau d’un algorithme en une séquence d’instructions élémentaires exécutables directement

par l’ordinateur quantique : un circuit quantique. Cette étape s’inscrit dans le contexte plus général

de la compilation d’algorithmes quantiques et est une problématique essentielle vu que la capacité

à générer un circuit optimisé pour un algorithme est la garantie de sa bonne exécution sur une

machine quantique dont les ressources sont actuellement très limitées. Le problème de la synthèse

de circuits quantiques se décline en plusieurs sous-problèmes, chacun rattaché à une représenta-

tion abstraite di�érente des opérateurs à synthétiser: matrice unitaire, formule booléenne, etc. La

première partie de cette thèse s’intéresse à la synthèse d’opérateurs quantiques représentés par

une matrice unitaire. Là où la littérature s’est essentiellement intéressée à optimiser la taille du

circuit quantique �nal, nous étudions le compromis entre ressources quantiques — la taille du cir-

cuit quantique généré — et ressources classiques — la quantité de calcul classique nécessaire pour

générer le dit circuit quantique. Nous proposons deux méthodes qui améliorent l’état de l’art aux

deux extrêmes de ce compromis. Dans un premier temps nous développons une méthode nécessi-

tant peu de ressources classiques, e�cacement parallélisable sur des architectures multi-coeurs ou

GPU, tout en générant des circuits seulement deux fois plus gros que ceux fournis par le meilleur

algorithme dans la littérature. En contrepartie notre méthode est capable de synthétiser des opéra-

teurs sur des tailles de problèmes inaccessibles par les autres méthodes existantes. Dans un second

temps nous explorons l’utilisation d’algorithmes d’optimisation numériques pour une synthèse

optimale. Nous mettons en évidence qu’il est possible de synthétiser des opérateurs sur un petit

nombre de qubits avec une taille de circuit optimale donnée par une borne inférieure théorique.

Finalement nos deux méthodes se complémentent avec le meilleur algorithme de l’état de l’art,

chaque méthode étant la plus e�cace pour une plage de tailles d’opérateurs donnée. La seconde

partie de cette thèse s’intéresse à la synthèse d’une classe d’opérateurs spéci�ques : les opérateurs

dits linéaires réversibles. Dans cette partie nous nous intéressons exclusivement à l’optimisation

des ressources quantiques et nous considérons deux métriques : la taille du circuit, métrique déjà

utilisée durant la première moitié de cette thèse et ici donnée par le nombre de portes CNOT dans le

circuit, mais également la profondeur du circuit qui est très étroitement liée au temps d’exécution

du circuit quantique. Nous proposons de nouvelles méthodes aux techniques variées (variante de

l’élimination Gaussienne, algorithme diviser pour régner, réduction à un problème de cryptogra-

phie) optimisant ces deux métriques. Chacune de nos méthodes surpasse l’état de l’art dans une

grande majorité des cas et globalement nos méthodes, quand elles optimisent la même métrique,

sont complémentaires selon la taille et la complexité de l’opérateur à synthétiser. Nous appliquons

également nos méthodes pour la compilation d’une bibliothèque de fonctions réversibles. Nous

arrivons à diminuer drastiquement le nombre de portes CNOT et la profondeur totale du circuit

tout en gardant d’autres métriques d’intérêt (la profondeur des couches des portes T par exemple)

les plus faibles possibles.
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Résumé: Pour exécuter un algorithme abstrait sur
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