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In this work we summarize our computation of the vacuum polarization for a massive
non-minimally coupled scalar field on a Lifshitz black hole background. The general
method for computing the Green function is outlined and a procedure to renormalize is
described We also provide numerical results for some specific values of mass, nonminimal
coupling, and dynamical exponent.
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1. Introduction

Classically, the effect of matter over the curvature of spacetime is characterized
by the stress-energy tensor 7),,. If one wishes to introduce quantum effects, it is
expected that, in the semiclassical approximation, the Einstein equations become

G =81 (Tp) . (1)

Unfortunately, calculating (7),,) is, most of the times, a formidable task, even nu-
merically. A quantity that incorporates information about quantum effects, parti-
cle production, symmetry breaking, and that is slightly simpler to compute is the
vacuum polarization. For a scalar field it is indicated as (¢?) and corresponds to
the coincidence limit of the euclideanized scalar Green function

($*(z)) = lim Gp(x,2). (2)

' —x

Calculations of such kind in black hole spacetimes were initiated by Candelas!:2. In
this proceedings we summarize our results regarding the computation of the scalar
vacuum polarization for a class of black hole spacetimes with Lifshitz scaling®. We
will address the method, main difficulties and present some numerical results.

2. The Green function in a Lifshitz spacetime

A (euclideanized) Lifshitz spacetime is specified by the general line element

ds® = 2 f(r)dr? + _’“<§> dr® + r2d02 | (3)
r
with z being the dynamical exponent. Details for these kind of spacetimes can be

found, for instance, in Refs. 4.
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With the aim of computing the vacuum polarization, we will follow the details
of the method outlined in Refs.%7 and Ref.® and start from the the Green function
of a scalar field in a curved spacetime

§W(z — )
T'

For spherically symmetric spacetimes, we can expand the Green function in terms

(O, —m? —€R) Gg(z,2') = — (4)

of spherical harmonics
1 20+ 1 /
Gg(z,2') = = E g 21 et ) Py(cos)Gp(r, 7). (5)

where 8 = 1/T and a = 27 /3. Inserting this expansion in Eq. (4) leads to the
differential equation for the radial Green function

o (P L) (2 52 ) ot =
(6)

where M? = m? 4+ €R. In general, we can express a solution to the above equation

in terms of solutions regular at the horizon or at infinity, so that the Green function
is valid everywhere outside the Lifshitz black hole.

3. The WKB approximation of the solution

To evaluate the Green function we are faced with the task of determining the so-
lutions of the homogeneous equation associated to Eq. (6). In that effort, we shall
use a WKB ansatz

_ " Wha
WD) = e ey ([, [l v
Th

which is chosen in such a way that we get the same differential equation for W (r)
in the case of both solutions. The resulting equation is of the form

W/ /2 "
WZZW(n,l,r)—i—o—i—al(r)W—i—ag( )W2 + as(r )W ) (8)
We take an iterative solution of the form W = Wy + Wj + ... and retain terms up

to next-to-leading order. The Green function in the coincidence limit can thus be
expressed solely in terms of W,,; for each mode n and [, having the form

(I+1 / 2
Gg(z 9
with W, denoting the truncated solution. The above result requires renormaliza-
tion due to the presence of divergences. One type of divergence is linked, like in the
Schwarzschild case, to the | summation (for large I, Wy, ~ (I + 1/2)y/f/r leads to
an infinity the summation over ). This is not a harmful divergence and it can be
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easily removed by adding a multiple of §(7 —7’). The other infinity comes from the
summation over n and cannot be removed by any mathematical trick. It originates
from the fact that high energies (large n) are not bounded in the theory, and to
regulate this behavior, one needs to add appropriate counter-terms.

The specific expression for the divergent part in any four dimensional spacetime
has been thoroughly studied in?, where a general result for the divergent part of the
coincident limit of the Green function and a procedure to compute the counter-terms
was given. In fact, the passage from the result of Ref.? to the fully renormalized
result for the vacuum polarization involves some nontrivial transformations allowing
appropriate combination with the divergent result leading to a cancellation of the
infinities, that are all contained in the first two orders of the WKB approximation.
Details will be given elsewhere.

4. The renormalized vacuum polarization

The exact result for the renormalized vacuum polarization (¢?(x)) is obtained by
adding and subtracting the vacuum polarization obtained through the truncated
WKB solution (¢?(z))y; - The final expression can therefore be expressed as a
term which is calculated analytically plus a reminder of the WKB approximation
§ (¢*(x)) = (¢*(x)) — (#*(2)) g3 Which is regular and can be calculated numeri-
cally. We organize this in the following expression

(#2(2)) = o5 {To+ 1+ T2 - A) (10)

where we have defined

(2
T"_Z(rzﬂma) rz+1\/7)’

1=0

Y= ;(2 — 0no) ; (l + 5) (7’2+2Wn(l) N 7’Z+2Wn(l)> )
N 2na 2 (o1 1

227; [2T”+r22f+ {m (g 6) R] na]

and A is a somewhat complicated function of the radial coordinate r, metric compo-
nents, mass and curvature. The term 37 is the reminder of the WKB approximation,
which is numerically computed and Y5 contains the cancellation of the divergences.
Both Ty and A are explicitly finite. Some examples of numerical calculations are
shown in Figs. 1 and 2.

For z = 1 the metric is asymptotically AdS, allowing us to compare our results
with those of Ref.®. We have also checked the limiting value of the vacuum po-
larization for large r. From Fig. 1, one can fit the data in the asymptotic limit
as

(@) ~at 2

7 (11)

with b = —1/4872, which is the correct value!C.
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Fig. 1.
L= (rp/r)+3.

Fig. 2.
1 — (rp/r)?+3.
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5. Conclusions
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Vacuum polarization for £ = 0, m = 0.01 and z = 1. The metric functions are f = 1/u =

T —Th
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Vacuum polarization for £ = 0, m = 0.01 and z = 2. The metric functions are f = 1/u =

The general procedure for calculating the vacuum polarization in a Lifshitz space-
time was presented. We started by expanding the Green function of a general scalar

field in curved space in spherical harmonics, thus reducing the problem to solving a

second order differential equation for the radial component. Using a WKB ansatz

for the solution, we arrived at a result expressed in terms of sums in the energy

and angular momentum modes. Two divergences appeared: an apparent one in the

angular modes and a physical one in the energy modes. The former was removed us-
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ing a mathematical trick involving multiples of a delta function and the latter was
removed by subtracting the Christensen counter-terms for the coincidence limit
of a Green function in a curved spacetime. A fully renormalized result was thus
attainable and some numerical examples were presented, which were seen to be in
accordance with previous results. A more detailed version of this work can also be
consulted?®.
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