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Abstract

Heavy Neutral Leptons (HNLs) are a popular extension of the Standard Model (SM)

to explain the lightness of neutrino masses and the matter-antimatter asymmetry

through leptogenesis. This work studies the phenomenology of low scale Seesaw

HNLs with their mass between 1 MeV and 1 GeV in direct searches, neutrinoless

double beta decay and cosmology.

Future direct searches, such as fixed target setups like DUNE, and neutrinoless

double beta decay, such as LEGEND-1000, are both expected to probe the regime of

the standard Seesaw scenario of neutrino mass generation for HNL masses around

mN ≲ 1 GeV. We analyse the complementarity between the two experiments to

probe the nature of HNLs, i.e., the Majorana nature and CP-violating phases in the

HNL sector. Following an analytic discussion of the complementarity, a statistical

analysis is performed in the combined search for HNLs.

HNLs in the MeV-scale mass range, are very constrained by Big Bang Nucle-

osynthesis (BBN) as their decays significantly impact the formation of the primor-

dial elements. We propose here a model where the primary decay channel for the

HNLs is to an axion-like particle (ALP) and a neutrino. Consequently HNLs decay

much earlier and can evade the BBN bound for much lower masses, provided the

ALPs themselves decay considerably later. Further cosmological and astrophysical

constraints limit severely the range of validity of the ALP properties. We find that a

new parameter region opens for HNLs with masses between 1 MeV and 1 GeV, and

active-sterile mixing between 10−9 − 10−6 that is consistent with observations. In

such a scenario, current HNL bounds, as well as sensitivities of future direct HNL

searches such as at DUNE or PIONEER, will be affected.
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Impact Statement

This work represents a comprehensive study of heavy neutral leptons (HNLs) under

non-standard seesaw scenarios. It summaries results from nuclear decays, fixed

target experiments, cosmology and astrophysical observations to give constraints

on heavy neutral lepton parameters.

The neutrino mass is inconsistent with the standard model of particle physics.

HNLs, as one of the most popular extensions to the standard model, can explain the

mass origin of neutrinos. Therefore, the study of the nature of HNLs can help to

develop our understanding of neutrinos and their position in physics.

Neutrinoless double beta decay (0νββ ) has been one of the most promising

approaches to probe lepton number violation, which specifically indicates that neu-

trinos are their own anti-particles, or in another word, if they are Majorana particles.

The complementary study between 0νββ experiments and beam dump experiments

can be used to probe the Majorana nature of neutrinos and existence of HNLs.

Neutrinos and HNLs can likewise be a portal to the dark matter problem. Dark

matter particles may be interacting with the neutrino sector in the very early Uni-

verse. A better understanding of the nature of dark matter can be achieved by study-

ing interactions between the neutrino sector and dark matter.

This work focuses on the theoretical extensions of neutrino sector which are

experimentally testable. It attempts to explain the Majorana nature, the mass origin

of neutrinos and the nature of dark matter. It is hoped that the work will be a useful

reference to the relevant researchers and will be inspiring to young people who are

interested in fundamental sciences.
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Chapter 1

Introduction

There exists Taiji,

it gives birth to dipoles.

Yijing

Particle Physics is a branch of physics which studies the most fundamental

building blocks in nature. The understanding of elementary particles not only helps

us to gain knowledge of the microscopic world, but it is also the key to describe how

the Universe evolves. The standard model (SM) [1–3] is currently the best theory

to explain most of the observed phenomena in particle physics with a remarkable

precision. It therefore becomes one of the most successful theories in physics.

Neutrinos are an important part of the SM which have not been fully under-

stood. The concept of the neutrino was proposed by Wolfgang Pauli in 1930 in

order to explain the electron energy spectrum in beta decay processes. Neutrinos

are predicted to be electrically neutral and light in order to satisfy the conservation

laws. It was estimated by Enrico Fermi [4] that a neutrino-nucleus scattering cross-

section per neutrino energy is of the order 10−38cm2/GeV. The small scattering

cross-section makes neutrinos hardly interact with ordinary matter and extremely

difficult to be detected. However, Reines and Cowan [5] successfully observed the

first event only in 1956. As suggested by Pontecorvo and Wang [6, 7], the exper-

iment is based on the inverse beta decay process where an anti-electron neutrino

from a reactor interacts with a proton in the detector to produce a neutrino and a
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positron such as

p+ ν̄e → n+ e+. (1.1)

The detector contains two large water tanks to increase the interaction possibility of

the electron neutrino. The gamma rays produced from positron-electron annihila-

tion in water can be seen by the liquid scintillator between the water tanks.

After the discovery of the electron neutrino, the other flavours of neutrinos

were not known until 1962, when Lederman, Schwartz and Steinberger [8] discov-

ered the muon neutrino. Finally, the tau neutrino was discovered in 2000 by the

DONUT collaboration [9].

One of the key things to learn about the properties of neutrinos is to under-

stand weak interactions which were not fully understood before the 1950s. It was

suggested by Yang and Lee [10] that parity is violated in weak interactions and neu-

trinos were assumed to be massless due to the absence of the right-handed partners.

The theory was proved by Wu’s experiment [11] that beat decay indeed violates

parity. However, the discovery of neutrino oscillations [12], which were initially

proposed to explain the electron deficit in solar neutrino observation [13,14] shows,

that the three types of neutrinos should have at least two massive states. The reason

why oscillations require massive neutrinos is the misalignment between the mass

states (ν1,ν2,ν3) and flavour states (νe,νµ ,ντ ) of the neutrinos. Based on the work

of Maki, Nakagawa and Sakata [15], Pontecorvo and Gribov [16] developed the

model of neutrino mixing which describes how neutrinos change their flavours dur-

ing propagation, i.e., oscillations.

Six parameters control neutrino oscillations, namely, the three neutrino mix-

ing angles (θ12,θ13,θ23), the neutrino mass squared differences (∆m2
12,∆m2

23) and a

CP-violating phase δ . These parameters are probed by different types of neutrino

experiments. Long baseline accelerator experiments such as MINOS, K2K, NOvA

and T2K [17–20] measure the oscillation pattern of the propagation of the neutri-

nos produced from the collision between an accelerated proton beam and a target

over a long distance. Atmospheric neutrino experiments such as Super-Kamiokande

and IceCube [21–23] look for neutrinos produced in the upper atmosphere. Super-
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Kamiokande gave measurements of ∆m2
23 ∼ 2.5× 10−3eV2 and the mixing angle

θ23 ∼ 45◦. Solar neutrino experiment such as Borexino [24] looks for neutrinos pro-

duced from the sun and they measure ∆m2
12 ∼ 7.5×10−5eV2 and the mixing angle

θ12 ∼ 33◦. Short baseline reactor neutrino experiments, such as Double CHOOZ,

Reno and Daya Bay [25–27], measure the θ13 ∼ 8.5◦ mixing angle using neutrinos

produced from nuclear reactors. IceCube is also looking for cosmic TeV-PeV high

energy neutrinos, which cannot be produced artificially on Earth [28].

From oscillation experiments, the mass splittings can be measured precisely,

but the absolute neutrino masses are still not known. The current best result for the

absolute neutrino mass bound is from the KATRIN experiment. It puts an upper

bound of the neutrino mass of mβ < 0.45 eV [29] through the measurement of the

spectrum of the electron produced from tritium decays. The absolute neutrino mass

is also constrained by cosmology, the mass of the neutrinos will have an impact on

CMB and structure formation of the Universe. Combining data from the PLANCK

satellite, such considerations give an upper mass bound of ∑i mνi < 0.1 eV [30].

The neutrino mass can be the Dirac, Majorana or a combination of the two

types. If neutrinos are of Dirac type, they will have similar properties as the other

SM fermions. If neutrinos are Majorana, they are their own anti-particles and they

can have a bare mass disconnected form electroweak symmetry breaking. The see-

saw mechanism [31–34] is one of the most popular models to explain neutrino

masses. It requires heavy right-handed partners to the active neutrinos. These heavy

partners should be sterile in all known SM interactions in order to fits into the SM

gauge structure, they are often called heavy neutral leptons (HNLs).

Majorana neutrinos will induce lepton number violating (LNV) processes.

Neutrinoless double beta decay (0νββ ) is one of them. Since 0νββ produces two

electrons without neutrino emission, lepton number is violated by two units. 0νββ

is induced by new physics (NP) beyond the SM. It is also proven that no matter what

mechanism induces 0νββ , the active neutrinos have Majorana character [35–37].

HNLs can also induce 0νββ and this implies that neutrinos are Majorana.

The Universe is an excellent laboratory for probing BSM theories and the na-
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ture of neutrinos. Neutrinos were originally in equilibrium with other particles in

the thermal plasma very shortly after the Big Bang. As the Universe expands, the

thermal energy (T ∼ 1 MeV) becomes insufficient to support weak interactions be-

tween neutrinos and other SM particles [38]. Neutrinos are therefore decoupled

from the thermal bath and the neutrino temperature starts to evolve differently from

the photon temperature. Primordial light elements such as 4He and 7Li can give

information about the Big Bang Nucleosythesis (BBN), shortly after neutrino de-

coupling [39]. BBN constrains BSM theories by constraining the proton, neutron

and light nuclei abundances in the early Universe and the effective number of rel-

ativistic species at the time. After recombination, electrons combine with protons

to form neutral atoms and photons decouple from matter in the Universe. The light

degrees of freedom (Neff) can probe all light species in the Universe including the

three types of neutrinos in the SM. The measurements of Neff put a bound on BSM

theories with light exotic particles.

This thesis summaries the author’s work related to neutrinos and HNLs. It is

organised as follows. Chapter 2 reviews the fundamentals of particle physics which

includes the particle content, SM symmetries, the Higgs mechanism and its relation

to fermion mass. This chapter ends with a brief discussion of BSM phenomena such

as neutrino masses, the matter-antimatter asymmetry and dark matter. In Chapter 3,

we start with the three-neutrino mixing theory and oscillation experiments. The

neutrino mass problem will be discussed following a brief introduction to neutrino

mixing, after which the most popular theories explaining neutrino masses will be

presented, namely the seesaw mechanism. After that, a short introduction to dou-

ble beta decay is given. Single beta decay and double beta decay are mentioned

briefly and we pay most of our attention to the basic theory and current experimen-

tal status of neutrinoless double beta decay. At the end of this chapter, we will talk

about the basics of cosmology and the impact of neutrinos on the evolution of the

Universe from early times (neutrino decoupling and BBN) to late periods (CMB).

Chapter 4 demonstrates one of the main works of this thesis. In this chapter, we

will see how to probe the nature of ≃1 GeV mass HNLs complementarily in fixed
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target and neutrinoless double beta decay experiments. The chapter starts with the

phenomenological model for a simplified 1-active neutrino plus 2-HNLs scenario

and also a more complete 3+2 scenario, followed by a pheomenological study of

LEGEND-1000 and DUNE experiments. Finally, we perform a combined analysis

for signals observed in both experiments. Chapter 5 demonstrates the other work in

this thesis which is about how a HNL-ALP (axion-like particle) coupling impacts

the evolution of the Universe. HNLs in the mass range of MeV to GeV are studied

together with 10 eV to 1 keV mass ALPs. The history of HNLs, ALPs and neutrino

abundance is computed and the impact on cosmology is illustrated. At the end of

this thesis, Chapter 6 summarises the two works and gives an outlook for future

research in these directions.



Chapter 2

The Standard Model & Beyond

Before a discussion of the three types of neutrinos in the SM of elementary particles,

this chapter reviews of the structure and content of the SM with an emphasis of the

leptonic sector. I will then discuss the need to extend the SM to deal neutrino

oscillation and finally give some insights of the seesaw mechanism to the neutrino

mass problem.

2.1 The Standard Model of Elementary Particles
The SM of elementary particles preserves a SU(3)c × SU(2)L ×U(1)Y symme-

try [1–3] and it contains 6 types of quarks, 6 types of leptons, 4 gauge bosons

and 1 scalar boson. The SU(3)c non-abelian group is responsible for the interac-

tions between coloured quarks and gluons, as discussed in quantum chromo dy-

namics (QCD) [40–42]. The rest of the symmetry group, SU(2)L ×U(1)Y , gives

us the electroweak (EW) sector. The weak and electromagnetic interactions emerge

through the spontaneous EW symmetry breaking via the Higgs mechanism [43–45].

Apart from giving masses to the gauge bosons, the Higgs also gives masses to most

of the fermion fields in the SM.

Table 2.1 shows the field content and the corresponding charge under each

symmetry. All the fermion fields stand for the three generations of particles: e,µ,τ

for leptons, u,c, t for uL/R and d,s,d for dL/R. In the QCD and quark sector, the

quark fields (Q,uR,dR) transform as colour triplets under the SU(3)c group associ-

ated with gluons and the representation 3̄ stands for the conjugated triplets for the
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Fields SU(3)c SU(2)L U(1)Y

L ≡
(

νL
ℓL

)
1 2 -1/2

Q ≡
(

uL
dL

)
3 2 1/6

ℓR 1 1 1
uR 3̄ 1 2/3
dR 3̄ 1 -1/3
W 1 3 0
B 1 1 0
G 8 1 0

H ≡
(

h+

h0

)
1 2 1/2

Table 2.1: Particle content in the SM and representations under the SM gauge group stands
for. The left hand lepton doublet is for all three generations of charged leptons
ℓL = (eL,µL,τL) and the three corresponding neutrinos. The left-handed quark
doublet is for all three generations uL = (uL,cL, tL) and dL = (dL,sL,bL) and all
colour states (r, g, b). The weak hypercharge is given by Y = Q−T3 with Q as
the electric charge and T3 is the third component of the weak isospin.

right-handed components. The gluon field G contains 8 fundamental representation

generators of the SU(3)c group. The left-handed components of the fermion fields

transform as doublets under the SU(2)L group, whereas the right-handed compo-

nents transform as singlets. The relevant bosons for the SU(2)L and U(1)Y are the

W± bosons and the B boson respectively. The W field also transforms as a triplet

and the B field is a singlet under SU(2)L. W and B do not carry any weak hyper-

charge for U(1)Y .

The SM Lagrangian can be written as,

LSM = LGauge +LFermion +LHiggs +LYukawa . (2.1)

The gauge part LGauge describes the photon, weak boson and gluon dynamics.

LGauge =−1
4

BµνBµν − 1
4

W i
µνW iµν − 1

4
Ga

µνGaµν . (2.2)

The fermion part LFermion gives the details for the dynamics of the fermionic
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fields and their interactions with the gauge fields, it can be shown in the Eq. (2.3).,

LFermion = ∑
ℓ=e,µ,τ

iL̄ℓ
γ

µ

(
∂µ − ig1Y ℓ

L Bµ − ig2
τ i

2
W i

µ

)
Lℓ

+ ∑
q=d,s,b

iQ̄q
γ

µ

(
∂µ − ig1Y q

L Bµ − ig2
τ i

2
W i

µ − igs
ta

2
Ga

µ

)
Qq

+ ∑
ℓ=e,µ,τ

iℓ̄Rγ
µ

(
∂µ − iY ℓ

Rg1Bµ

)
ℓR

+ ∑
u′=u,c,t

iuRγ
µ
(
∂µ − iY q

R g1Bµ

)
u′R

+ ∑
d′=d,s,b

idRγ
µ
(
∂µ − iY q

R g1Bµ

)
d′

R,

(2.3)

here YL is the weak hypercharge and g1 is the B field coupling strength. τ i is the

normalised SU(2)L group generators and g2 is the W field coupling strength. g2

is gluon field coupling strength. It can also be seen from the Lagrangian that the

right-handed fermion fields only interact with the B field, whereas the left-handed

leptons also interact with the W and the left-handed quarks interact with all three

gauge fields. The G field only interacts with the quark sector and ta is the normalised

group generators for SU(3)c.

The Yukawa sector LYukawa shows how fermionic masses can be generated

via Higgs boson.

LYukawa =− ∑
ℓ=e,µ,τ

yℓL̄ℓHℓR − ∑
q=d,s,b
d′=d,s,b

yd
quQ̄qHd′

R

− ∑
q=d,s,b
u′=u,c,t

yu
qu′Q̄

qH̃u′R + h.c. ,
(2.4)

H̃ stands for the conjugate Higgs field. The Yukawa term shows how the Higgs

gives mass to the fermionic fields. This type of mass is called the Dirac mass for

fermion which will be discussed in the later section.

The final part LHiggs gives the properties of Higgs itself and its interaction
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with itself and the gauge bosons.

LHiggs =H†
(

∂µ +
i
2

g1Bµ + ig2W a
µ

τa

2

)(
∂

µ − i
2

g1Bµ − ig2W bµ τb

2

)
H

−λ

(
H†H − v2

2

)2

,

(2.5)

v in the Lagrangian is the Higgs vacuum expectation value and it usually has a

value of 246 GeV. The first line describes the interactions between the Higgs and

the gauge bosons and the second line contains the Higgs kinetic, self-interaction

and mass terms. The interaction between the Higgs and the gauge bosons will be

discussed in the spontaneous symmetry breaking section.

2.2 Particle Symmetry

Fermionic fields given in Eq. (2.3) are elementary particles that contribute to ordi-

nary matter formation. All fermions in the SM satisfy Dirac’s equation,

iγµ
∂µψ −mψ = 0. (2.6)

The field ψ in this equation form a spinor, which is a 4-component object trans-

forming differently from scalars or vectors under Lorentz transformations and m

defined as the bare mass of the field ψ . Correspondingly, the gamma matrices γµ

are 4×4 matrices satisfying

1
2
{γ

µ ,γν}= η
µν1. (2.7)

The Dirac Lagrangian can be expressed from Dirac’s Equation,

LDirac = ψ̄
(
iγµ

∂µ −m
)

ψ = ψ̄(i ̸ ∂ −m)ψ, (2.8)

with the conjugate field ψ̄ = ψ†γ0, also called the Dirac adjoint. The equation of

motion for this Lagrangian is just the Dirac equation.



2.2. Particle Symmetry 30

A fifth gamma matrix is defined as,

γ
5 = iγ0

γ
1
γ

2
γ

3. (2.9)

It has the properties (γ5)2 = 1, (γ5)† = γ5 and
{

γ5,γµ
}
= 0. The left and right

chiral projection operators for spinors can be defined correspondingly,

PL =
1
2

(
1− γ

5
)
,

PR =
1
2

(
1+ γ

5
)
.

(2.10)

These hermitian projection operators can act on the spinors and give the left and

right components ψL and ψR of a field repectively. These 2-component spinors are

called Weyl spinors. The two parts add up to the whole fermionic field ψ . The

Dirac Lagrangian can be therefore rewritten as

L = ψ̄Li ̸ ∂ψL + ψ̄Ri ̸ ∂ψR −m(ψ̄LψR + ψ̄RψL) . (2.11)

If the field is massless, the left and right components will decouple and the fermion

field will have an additional global U(1) axial symmetry. There will be opposite

global phases between the left and right chiral fields. The purpose of introducing the

Weyl spinors ψL and ψR is for theoretical simplification in weak interaction. Parity

operation reverse the spatial coordinates. It was found that there is only left-handed

weak current and no matter how to reverse the coordinates. It was also observed in

Wu’s experiment [11] that parity is not conserved in weak interaction. The effective

4-point weak Lagrangian which describes beta decay process(n → pν̄ee) is written

as

Lweak =−GF√
2

JµJ†
µ , (2.12)

with GF defined as the Fermi constant for weak interaction and the effective charged

current Jµ is defined as

Jµ = νeγµ (1− γ5)e+ ūγµ (1− γ5)d. (2.13)
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Parity violation gives different properties to the left-handed fermions and right-

handed fermions. It can also be noticed from Eq. (2.3) that the left-handed fermions

transform differently from the right-handed fermions due to different symmetry

groups. Theoretically, a fermion mass term mψ̄ψ should always exist in its La-

grangian, such a mass term is forbidden in the SM since this mass is not invariant

under gauge transformation.

For the lepton sector, the kinetic term goes with the covariant derivative for

SU(2) as given in Eq. (2.23). It can also be extended to the quark sector by adding

the SU(3)c components into the derivative, so for any elementary fermion field ψ ,

LFermion = ψ̄Li ̸ DψL + ψ̄Ri ̸ DψR, (2.14)

the covariant derivative for fermions is defined as

Dµ = ∂µ + igsGa
µta + ig1BµY + ig2W i

µτ
i. (2.15)

It is clear that the kinetic term in Eq. (2.14) describes both the kinetic motion of the

SM fermionic fields and their interaction with to the SM gauge fields.

For the SM gauge bosons, a general gauge boson Lagrangian is

LProca =−1
4

FµνFµν +
1
2

m2AµAµ , (2.16)

with Fµν = ∂µAν − ∂νAµ is the field strength tensor and Aµ is the vector field.

For different SM gauge fields (Ga
µ ,W

i
µ ,Bµ ), the kinetic terms are gauge invariant

under different symmetries (SU(3)c,SU(2)L,U(1)Y ). By fixing the gauge ∂µAµ =

0, one of the degrees of freedom of the gauge field is removed. The massive gauge

field with three polarisations is therefore not invariant under a gauge transformation.

Proca field is a historical version of massive gauge bosons. It can be seen in the

following section that gauge bosons can acquire their masses via interactions with

a scalar field.
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2.3 Spontaneous Symmetry Breaking

It was discovered in spontaneous symmetry breaking of Abelian fields that every

broken generator gives a massless Goldstone boson [46]. This prediction contradicts

with experimental observation of massive weak gauge bosons [47–51].

In the SM, the SU(2)L group is non-Abelian and the Lagrangian becomes,

LGauge =−1
2

TrFµνFµν +
1
2
(
Dµφ

)
i (D

µ
φ)i −V (φ). (2.17)

The field φ is now a two component scalar with a non-zero vacuum expectation

value φ = φ0 +ϕ . The scalar potential is V (φ) = 1
2λφ 4

i −µ2φ 2
i with the mass term

µ2 > 0. By defining a set of generators T̂ which makes T̂ φ0 = 0, the corresponding

vector is φ̂ a = iT̂ aφ0 and gauge field Aµ = Aa
µ T̂ a. The covariant derivative can be

written as (
Dµφ

)
i = ∂µϕi +gAa

µ φ̂
a
i + igAa

µ T̂ a
i jϕ j. (2.18)

Therefore the kinetic term of the Lagrangian is

1
2
(
Dµφ

)
i (D

µ
φ)i =

1
2
(
∂µϕi

)
∂

µ
ϕi +g

(
∂µϕi

)
Aµ,a

φ̂
a
i

+
1
2

g2
λaAa

µAµ,a +O(A4),

(2.19)

where λa is the eigenvalue of the φ 2 operator or the so-called symmetry breaking

operator S in kinetic term,

φ̂
a
i φ̂

b
i =

(
φ̂

a)T
φ̂

b =−φ
T
0
(
T̂ a)T T̂ b

φ0 =−(ca)α
φ

T
0 (T α)T T β

φ0(cb)β

= (ca)α Sαβ (cb)β = λb(ca)α(cb)α = λbδab.
(2.20)

The mixing term here again can be removed by choosing a new gauge for the in-

finitesimal transformation of ϕi → ϕi +θ aφ a
i ,

θ
a =− 1

λa

(
ϕ

T
φ̂

a) , (2.21)

where θ a is defined as an infinitesimal transformation of the gauge group M =
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1+ iθ aT̂ a. A similar unitary gauge ϕT φ̂ a = 0 can be derived as it is done for the

Abelian scenario. The final Lagrangian computed is

L =− 1
4

(
∂µAa

ν −∂νAa
µ

)
(∂ µAν ,a −∂

νAµ,a)+
1
2

g2
λaAa

µAµ,a

+
1
2

∂µϕi∂
µ

ϕi −
1
2

m2
i jϕiϕ j.

(2.22)

The mass ma = g
√

λa for each gauge field in the theory and one scalar field is

removed by the unitary gauge.

In the SU(2)L symmetry, the symmetry breaking operator will give three de-

generate massive states which corresponds to three weak bosons and one massless

state which is the photon. There are two different coupling strengths g1 and g2 for

the gauge bosons respectively,

Dµφ = ∂µφ + ig2Aµφ + i(g1/2)Bµφ , (2.23)

with Aµ =Aa
µta is the SU(2)L gauge field and the forth component Bµ ≡A4

µ is under

U(1)Y . This gives rise to the Weinberg mixing angle θW with

sinθW =
g1√

g2
1 +g2

2

, cosθW =
g2√

g2
1 +g2

2

. (2.24)

The symmetry breaking pattern for this scenario is SU(2)L×U(1)Y →U(1)em. The

residual symmetry U(1)em is a linear combination of U(1)Y and the U(1) subgroup

of SU(2)L. A new set of generators Âa
µT a = Aa

µta is given in the symmetry breaking

basis, the fields are

Aµ = Â1
µ = cosθW Bµ + sinθW A3

µ ,

W±
µ =

1√
2

(
Â2

µ ∓ iÂ3
µ

)
=

1√
2

(
A1

µ ∓ iA2
µ

)
,

Zµ = Â4
µ = cosθW A3

µ − sinθW Bµ .

(2.25)
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The covariant derivative can be rewritten correspondingly as

Dµ = ∂µ + i
g1g2√
g2

1 +g2
2

(
T 3 +Y

)
Aµ

+ i

(
g2

2T 3 −g2
1Y
)√

g2
1 +g2

2

Zµ +
ig2√

2

(
W+

µ T++W−
µ T−

)
.

(2.26)

The masses of the weak bosons are therefore mγ = 0 for the A field, mW = g2v/2

and mZ = v
√

g2
1 +g2

2/2. Weinberg angle can be calculated from the gauge boson

masses, cosθW = mW
mZ

= 0.88153 at tree level and there will also be higher order

corrections. The vacuum expectation value is v = 2mw
g2

= 246 GeV. This covari-

ant derivative is the same as Eq. (2.26). By rearranging the basis of the covariant

derivative, T± = T 1 ± iT 2, the coupling for the residual U(1)em symmetry can be

obtained,

e =
g1g2√
g2

1 +g2
2

= g2 sinθW , (2.27)

and the electric charge can be expressed in terms of the weak isospin and weak

hypercharge,

Q = T 3 +Y. (2.28)

2.4 Fermion Mass

As mentioned in previous section, the SM fermions cannot have mass terms due to

the different gauge transformations of the left-handed and right-handed fields. The

Higgs boson will also be needed in order to generate the masses for fermions via a

different way from the gauge fields, namely, the Yukawa coupling.

The Higgs doublet needs to couple with the left-handed doublet and right-

handed singlet in order to generate Yukawa type of coupling for fermion mass term

in the SM. By defining the Higgs field H non-zero vev φ0 =
1√
2
( 0 v )T , the mass
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term in Eq. (2.11),

L Lep
Yukawa =−L̄YℓHℓR − ℓ̄RYℓH†L

=− Yℓ√
2

( ν̄L ℓ̄L

) 0

v

ℓR + ℓ̄R

(
0 v

) νL

ℓL


=− 1√

2
Yℓv
(
ℓ̄LℓR + ℓ̄RℓL

)
.

(2.29)

It is discussed in previous section, there are three generations of fermions in the

SM. In case of leptons, they are e,µ and τ defined in the weak interaction basis,

or flavour basis, as defined in Eq. (2.25). The flavour basis is not necessarily the

same as the mass basis of leptons since the kinetic term and the mass term are two

separate parts in the Lagrangian. It is alway possible to find a biunitary transforma-

tion UMℓV = Mm which diagonalises Mℓ, where Mℓ is the lepton mass matrix in

flavour basis and Mm is the diagonal lepton mass matrix. The transformation takes

leptonic fields from the flavour basis to the mass eigenstate basis due to the mis-

alignment between the two sets of bases. The term Yℓ is a 3× 3 Yukawa coupling

matrix between the leptons and Higgs field.

It can be seen from Eq. (2.29), there is no mass for neutrinos.The same mech-

anism can be applied to the quark sector by replacing the lepton doublets and sin-

glets with the quark fields.This type of mass generated by the left-handed and right-

handed fields is called a Dirac mass.

The charge conjugation of a spinor ψ is defined as

ψ
c ≡Cψ

T , (ψL)
c ≡CψL

T , (ψR)
c ≡CψR

T , (2.30)

the charge conjugation operator follows the rules of

Cγ
T
µ C−1 =−γµ , Cγ

T
5 C−1 = γ5, C−1 =C† =CT =−C. (2.31)

Gamma matrices help the mass term in Eq. (2.11) to be Lorentz invariant. If the

relation ψc = ψ holds, the field ψ is said to be Majorana, otherwise it is Dirac.
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ℓ−(+)

νℓ(ν̄ℓ)

W−(+)

u(ū)

d(d̄)

W−(+)

ℓ(νℓ,q)

ℓ̄(ν̄ℓ, q̄)

Z0

Figure 2.1: Charged (left and middle) & neutral (right) current vertices for leptons ℓ and νℓ

and quarks q,u,d.

A Lorentz invariant mass term of −1
2mψ̄L

cψL can be then generated for Majorana

fermion fields by using the gamma matrices. This type of mass is called the Majo-

rana mass.

It will be discussed in next chapter, a neutrino itself can in principle have Ma-

jorana mass. It can also have Dirac mass through Yukawa coupling if a right-handed

neutrino is added.

There will be right-handed singlets for both u type and d type quark fields.

All generations of u and d type quarks get masses from their couplings to Higgs as

shown in Eq. (2.32).

LY =−ūRYuH̃†Q− d̄RYdH†Q+ h.c. , (2.32)

where H̃ ≡ iτ2H∗ with τ2 is the second Pauli matrix under SU(2)L.

The charged current with leptons and hadrons has been seen in Eq. (2.13).

The weak current vertices are shown in Fig.2.1. The charged current involves

W±, whereas the neutral current involves Z. The weak processes contain only left-

handed fermionic fields due to parity violation.

As discussed in Sec. 2.2, the difference from the lepton sector is the misalign-

ment between the flavour and mass states. In the flavour basis or weak interaction

basis, unitary matrices can be defined V u
L ,V

d
L ,V

ℓ
L which take the u quark fields, d

quark fields and charged lepton fields from the mass basis ψmass
L to the flavour basis

ψflavour
L , such as ψflavour

L = V f
L ψmass

L . A charged current Lagrangian can be written
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correspondingly,

LW± =− g√
2

v̄LW µ
γµV ℓ

Lℓ
′
L −

g√
2

ū′LW µ
γµ

(
V u†

L V d
L

)
d′

L + h.c. . (2.33)

The flavour-mass mixing matrix for quarks is called the Cabibbo-Kobayashi-

Maskawa (CKM) matrix [52, 53],

VCKM ≡V u†
L VL =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 , (2.34)

which in the standard parameterisation is given by

VCKM =


c12c13 s12c13 s13e−iδCP

−s12c23 − c12s13s23eiδCP c12c23 − s12s13s23eiδCP c13s23

s12s23 − c12s13c23eiδCP −c12s23 − s12s13c23eiδCP c13c23

 .

(2.35)

This matrix contains three Cabibbo mixing angles (θ12,θ13,θ23) of si j =

sinθc,i j,ci j = cosθc,i j and one complex phase δCP and it describes how different

types of quarks mix with each other.

2.5 Beyond The Standard Model

Apart from the gauge symmetries discussed above, there are two other symmetries

of the SM namely baryon number B and lepton number L. Each quark has a baryon

number of +1/3 (-1/3 for anti-quarks) in order to give an overall +1 for a baryon

(-1 for anti-baryons). Each lepton has a lepton number of +1 (-1 for anti-lepton),

but in addition, there are lepton numbers L, or, flavour numbers for each generation

(e, µ , τ). These symmetries are accidental global symmetries in the SM. Accidental

means they emerge due to the gauge symmetry and the particle content in the SM,

and, small violation in these symmetries will lead to new physics, eg. L is violated

if a right-handed Majorana neutrino is added. Lepton flavour violation has already

been observed in neutrino oscillation [54–56], it must happen for charged leptons
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as well, but the rate is small.

As discussed in Sec. 2.4, fermion fields must have both left-handed and right-

handed components in order to generate masses via Yukawa coupling with the Higgs

boson. Neutrinos were assumed to be massless in the SM, are now observed to be

massive due to neutrino oscillations. It is discussed that mixing is a consequence

of mismatch of the flavour states and the mass states. Mixing between the states

can cause change in flavour during the propagation of neutrinos and it requires at

lest two massive neutrinos out of three. The origin of neutrino masses cannot be

understood in the SM since there is only the left-handed neutrino fields. There may

be sterile right-handed neutrinos, or other mass generation mechanisms. This work

focuses on neutrino mass generation via sterile right-handed neutrino or HNL in the

non-standard seesaw scenarios.

The matter-antimatter asymmetry in the Universe is not explained well in the

SM. The CP violation in the quark sector is not sufficient to create sufficient mat-

ter over antimatter as observed. Sakharov [57] gave the conditions to create the

amount of asymmetry in the Universe. The asymmetry will require most crucially

baryon number violation in the quark sector. Secondly, C and CP violation would

give difference between the forward and backward rates in baryon number viola-

tion processes. Lastly, the baryon number violation process should happen out of

thermal equilibrium. Baryogenesis may be facilitated by extra CP violation effects

from neutrino sector since the CP violation effect in the neutrino sector is larger

than the effect in the quark sector. Additionally, sterile right-handed neutrino may

also contribute to CP violation significantly.

The SM explains many phenomena well, but there is tension between the mat-

ter observed electromagnetically and the excess gravitational effect observed from

rotation of galaxies [58], galactic cluster [59], CMB [60, 61] and many other indi-

rect evidence. This is the well-known dark matter problem. There is no particle in

the SM which can be used to explain dark matter and exotic particles are needed to

explain the phenomenon.

The Axion is a pseudo-scalar boson, which was initially proposed to solve
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the strong CP problem in QCD [62]. The first proposed axion type is therefore

called the QCD axion, which not only interacts with quarks and gluons, but also

with other SM particles such as the photon, at tree or loop level. QCD axion will

give an additional contribution to Maxwell’s equations in electromagnetism, and the

corresponding axion-photon coupling is tightly constrained experimentally [63–65].

Astrophysical observations such as active galactic nuclei and supernovae also put

strong bounds on the axion-photon coupling strength [66]. The coupling between

the axion and SM particles should be generally small because axions have not been

detected so far. The coupling strengths are expected to be inversely proportional

to a symmetry breaking scale fa, with a high fa therefore giving a weak coupling.

The QCD axions, mix with neutral pions, with mass mπ and decay constant fπ , and

the axion mass ma should obey the relation ma fa ≃ mπ fπ if they have the same

quantum number. The QCD axion mass is therefore inversely proportional to its

coupling strength. The QCD axion is a type of ALP, which is more general pseudo-

scalar particle not necessarily related to the strong CP problem. ALPs therefore do

not necessarily interact with quarks and gluons. Also, their masses do not need to

be related to their coupling strengths. ALPs were latterly found to be a potential

candidate for dark matter [67, 68]. They can not only explain the observed dark

matter relic density in the Universe. This thesis will discuss one scenario of ALPs,

which can be produced by HNLs.

There are many more issues in the SM, for example, the strong CP problem in

the quark sector, the self-coupling of Higgs field, the naturalness of the SM gener-

ations, etc.. This work only focuses on the problems of neutrino mass and lepton

number, and will not discuss these issues in detail. This thesis will focus on probing

the properties of HNLs and ALPs in different phenomenological scenarios.



Chapter 3

Neutrino Physics

This chapter aims to discuss our understanding of neutrinos and recent experimental

and theoretical developments in neutrino physics. This chapter will start with neu-

trino mixing and oscillations and progress to Dirac and Majorana masses of neu-

trinos. Secondly, the seesaw mechanism and a brief introduction to heavy neutral

leptons (HNL) is given. Finally, the basic phenomenology of neutrinoless double

beta decay and cosmology is introduced.

3.1 Neutrino Mixing & Oscillation

In the SM, neutrinos are assumed to be massless because of their left-handed na-

ture. One can add right-handed partners to acquire neutrino masses via the Higgs

mechanism just like what is done in the quark and charged lepton sector and these

neutrinos are therefore Dirac type.

The three corresponding right-handed neutrinos NR are singlets under SU(2)L

and there will be an additional term in the SM Lagrangian,

LYukawa ⊃− ∑
ℓ=e,µ,τ
i=1,2,3

yν
ℓiL̄

ℓH̃Ni
R + h.c. (3.1)

Here, yν
ℓi is the Yukawa couplings for neutrinos. The mass obtained after symmetry

breaking will be mν
ℓi = yℓiv/

√
2.

A similar diagonalisation matrix as in Eq. (2.34) can be given in the neutrino
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sector, 
νe

νµ

ντ

=UPMNS


ν1

ν2

ν3

=


Ve1 Ve2 Ve3

Vµ1 Vµ2 Vµ3

Vτ1 Vτ2 Vτ3




ν1

ν2

ν3

 . (3.2)

The Pontecorvo-Maki-Nakagawa-Sakat (PMNS) unitary matrix [12, 15] UPMNS

which diagonalises the Yukawa matrix yν is introduced due to the misalignment be-

tween the weak flavour eigenstates and the mass eigenstates of neutrinos as stated

in Eq. (2.33),

ν
m
L =U†

L νL,

Nm
R =U†

RNR.
(3.3)

Here, νL are the left-handed neutrinos in the SM and the index m indicates the mass

eigenstates of the neutrinos. The matrices UL and UR are the mixing matrices for

the left-handed and right-handed parts of the neutrino fields, respectively.

According to the charged weak Lagrangian in Eq. (2.33), the charged current

can be written as

jµ

ℓ,W/2 = νLγ
µℓL = νm

L U†
L γ

µVLℓ
m
L = νm

L U†
PNMSγ

µℓm
L . (3.4)

Here, the PMNS matrix is defined in terms of the neutrino mixing matrix Uℓ
L and

charged lepton mixing matrix V ℓ
L which takes the charged flavour states to the mass

states,

UPNMS =V ℓ†
L UL. (3.5)

The parameterisation of the PMNS matrix follows that of the CKM matrix con-

structed in Eq. (2.34),

UPMNS =U23 (θ23)U13 (θ13,δ )U12 (θ12)

=


c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 .
(3.6)



3.1. Neutrino Mixing & Oscillation 42

All mixing angles take values from 0 to π/2 and the δ phase goes from 0 to 2π .

If neutrinos are Majorana particles, there will be additional Majorana CP phases φ1

and φ2 and the mixing matrix will be [69]

V Majorana
PMNS =V Dirac

PMNS


1 0 0

0 eiφ1 0

0 0 eiφ2

 . (3.7)

Following from Eq. (3.7), the neutrino flavour states can be written in terms of

the mass states,

vℓ(x) =
3

∑
i=1

U∗
ℓivi(x), ℓ= e,µ,τ. (3.8)

The flavour state is a superposition of all the mass states the neutrino has. By

using a standard quantum mechanical framework for simplicity, the time-dependent

superposition is expressed as

|νℓ(t)⟩=
3

∑
i=1

U∗
ℓie

−iEit |νi(0)⟩ . (3.9)

Here, Ei is the energy of the neutrino and |νi(0)⟩ is the initial state of the neutrino.

The neutrino transition amplitude is constructed as

Aνα→νβ
(t)≡

〈
νβ | να(t)

〉
=

3

∑
i=1

U∗
αiUβ ie

−iEit , (3.10)

and the transition probability is written as

Pνα→νβ
(t) =

∣∣∣Aνα→νβ
(t)
∣∣∣2 = ∑

i, j
U∗

αiUβ iUα jU∗
β je

−i(Ei−E j)t . (3.11)

The formula gives the probability of a neutrino of type α to be converted to type

β as time progresses. Due to the small neutrino masses, neutrinos are usually

ultra-relativistic during propagation. The dispersion relation of neutrinos can be

approximated as Ei ≃ E +
m2

i
2E with the kinetic energy of the neutrino and momen-

tum E = p. The energy difference in Eq. (3.11) becomes Ei −E j ≃
∆m2

i j
2E with the
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definition ∆m2
i j ≡ m2

i −m2
j . Also, the relativistic neutrinos travel at nearly the speed

of light and the time dependence can be replaced by the distance they traveled with

L = t (for c = 1),

Pνα→νβ
= ∑

i, j
U∗

αiUβ iUα jU∗
β j exp

(
−i

∆m2
i jL

2E

)
. (3.12)

Although the probability contains four mixing matrix element, the probability does

not depend on the Majorana phases since the quartic term is invariant under rephas-

ing transformation Ui j → eiαiUi jeiφ j , where αi is a global phase factor [70]. Another

version of the oscillation formula can be constructed,

Pνα→νβ
= δαβ −4 ∑

k> j
ℜe
[
U∗

αkUβkUα jU∗
β j

]
sin2

(
∆m2

k jL

4E

)

+2 ∑
k> j

ℑm
[
U∗

αkUβkUα jU∗
β j

]
sin

(
∆m2

k jL

2E

)
.

(3.13)

If α = β , the probability is called survival probability and the formula will be the

first line of Eq. (3.13). If α ̸= β , it is a transition (or appearance) probability.

Both real and imaginary terms depend on the CP phase and the CP phase makes

independent transition probabilities different for neutrinos and anti-neutrinos. The

transition probabilities for neutrinos and anti-neutrinos are equal only if CP sym-

metry is preserved (i.e. real mixing matrix). An example can be given if the mixing

matrix U is real, in the simplified two neutrino (e,µ only) oscillation scenario,

U =

 cosθ −sinθ

sinθ cosθ

 , (3.14)

The transition probability for νe to νµ conversion is

P
(
νe → νµ

)
= P

(
ν̄e → ν̄µ

)
= P

(
νµ → νe

)
= sin2(2θ)sin2

(
∆m2L

4E

)
. (3.15)

There is only one mixing angle θ and one mass splitting ∆m2 between the two

neutrinos. In addition, the survival probability can be written correspondingly
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P(νe → νe) = P
(
νµ → νµ

)
= 1−P

(
νe → νµ

)
.

A more rigorous way to study neutrino oscillations by using wave packet model

[71, 72]. The effective interaction Hamiltonian can be written as

HI(x) =
GF√

2 ∑
a

U∗
αaν̄a(x)γρ (1− γ5)ℓα(x)JP

ρ (x), (3.16)

where GF is the Fermi constant and JP
ρ is the charged weak current. The time

ordered transition amplitude in the quantum field theory framework will be [72]

iAα→β (T, L⃗) = ⟨PF ,DF | T̂
{∫

d4x1

∫
d4x2H

P
I (x1)H

D
I (x2)

}
|PI,DI⟩ , (3.17)

where PI,DI,PF ,DF are the initial and final particle states at production and detec-

tion, correspondingly. The amplitude will be a function of the propagation time

T and propagation baseline L. By assuming the saddle point approximation and a

Gaussian momentum distribution, the wave packet for neutrinos is

|να⟩ ∝∑
a

U∗
αa

∫
d3 p∑

h
Ai

a(p⃗,h) |νa(p⃗,h)⟩

×
∫

d4xexp
[
−i(Ei −Eνa(p⃗)) t + i(p⃗i − p⃗) x⃗− (⃗x− v⃗t)2

4σ2
xi

]
.

(3.18)

Here the index i stands for the neutrinos in production P or detection D. Ei is the

average energy, pi is the average momentum and vi is the group velocity. σxi is

defined as the spatial width of the wave packet. It satisfy the uncertainty relation,

σxiσpi = 1/2, (3.19)

where σpi is the momentum width. The amplitude for production or detection is

Ai
a(p⃗,h)≡ ūνa(p⃗,h)γρ (1− γ5)vℓα

(p⃗ℓα
,hℓα

)JP
ρ

(
p⃗′i,I,hi,I; p⃗′i,F ,hi,F

)
. (3.20)

This amplitude can be made for production or detection process and the charged cur-

rent should be a function of all initial and final state momenta p and helicity states h.
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The neutrino transition amplitude inserting the neutrino states into Eq. (3.17) and

integrating over space-time,

Aα→β (T, L⃗) ∝∑
a

U∗
αaUβa ∑

h

∫
d3 pAP

a (p⃗,h)AD
a (p⃗,h)e−Sa(p⃗)

× exp
[
−iEνa(p⃗)T + ip⃗ · L⃗

]
.

(3.21)

Here, Sa is defined as

Sa(p⃗)≡ ∑
i=P,D

(p⃗i − p⃗)2

4σ2
pi

+
[(Ei −Eνa(p⃗))− (p⃗i − p⃗) · v⃗i]

2

4σ2
piλi

, (3.22)

where λ is defined as

λi ≡ σ
2
xi

(
v⃗2

iI

σ2
xiI

+
v⃗2

iF

σ2
xiF

+
v⃗2
ℓα

σ2
xℓα

)
− v⃗2

i . (3.23)

k⃗a is defined as the momentum which is the stationary point of Sa so that Aα→β

is not suppressed. v⃗iI and v⃗iF are the velocities for initial and final state neutrinos

at detection or production, respectively. v⃗ℓα is the charged lepton velocity. σxi(I,F)

and σxℓα are the spatial width of the wave packets of initial or final state neutrinos

at detection or production and for charged leptons, correspondingly. The energy

and momentum at the stationary point of Sa can be then given under the relativistic

approximation,

εa ≃ E +ρ
m2

a
2E

,

ka ≃ E − (1−ρ)
m2

a
2E

,

(3.24)

with ρ as the suppression factor,

ρ =

1
σ2

p
− ℓ⃗·⃗vP(1−ℓ⃗·⃗vP)

σ2
PPλP

− ℓ⃗·⃗vD(1−ℓ⃗·⃗vD)
σ2

pDλD

1
σ2

P
+

(1−ℓ⃗·⃗vP)
2

σ2
pPλP

+
(⃗ℓ·⃗vD−1)

2

σ2
pDλD

, (3.25)

and
1

σ2
p
=

1
σ2

pP
+

1
σ2

pD
. (3.26)
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Eq. (3.17) can be further approximated by aligning k⃗a with L⃗ and the localisations

of the production and detection are much smaller than L,

Aαβ (T, L⃗) ∝ ∑
a

U∗
αaUβa exp

[
−iεaT + ikaL− (L−uaT )2

4η2

]
, (3.27)

where velocity ua ≃ 1 − m2
a

2E2 and η2 = ωσ2
x = ω(σ2

xP + σ2
xD) is the total spatial

coherence widths with

ω =

{
1+σ

2
p

[
(vx

P −1)2 +
(
vy

P
)2

+(vz
P)

2

σ2
pPλP

+
(vx

D −1)2 +
(
vy

D
)2

+(vz
D)

2

σ2
pDλD

]
+

σ
4
p

[
(vx

P −1)vy
D − (vx

D −1)vy
P
]2
+[(vx

P −1)vz
D − (vx

D −1)vz
P]

2 +
(
vy

Pvz
D − vz

Pvy
D
)2
}

σ2
pPλPσ2

pDλD


×
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+
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(3.28)

The transition probability can be computed from the amplitude as

Pαβ (T, L⃗) = ∑
a
|Uαa|2

∣∣Uβa
∣∣2 +2Re ∑

a>b
U∗

αaUβaUαbU∗
βb

× exp

−2πi
L

Losc
ab

−

(
L

Lcoh
ab

)2

−2π
2
ρ

2
ω

(
σx

Losc
ab

)2
 , (3.29)

where the oscillation length Losc and the coherent length Lcoh are defined as follow-

ing,

Losc
ab =

4πE∣∣∆m2
ab

∣∣ ,
Lcoh

ab =
4
√

2ωE2∣∣∆m2
ab

∣∣ σx.

(3.30)

It can be seen clearly in Eq. (3.29) that oscillations will be the dominant if the

localisations σx of production and detection processes are much smaller than the

oscillation length. The oscillation will not be observable if the propagation length

is much greater than the coherence length of the neutrinos. Therefore, oscillationary

effect will depend on the give source of neutrinos.
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Mass Order Parameters Values

Normal
Ordering

θ12 33.41+0.75
−0.72

◦

θ23 42.2+1.1
−0.9

◦

θ13 8.58+0.11
−0.11

◦

δ 232+36
−26

◦

∆m2
12 7.41+0.21

−0.20 ×10−5 eV2

∆m2
23 2.507+0.026

−0.027 ×10−3 eV2

Inverted
Ordering

θ12 33.41+0.75
−0.72

◦

θ23 49+1.0
−1.2

◦

θ13 8.57+0.11
−0.11

◦

δ 276+22
−29

◦

∆m2
12 7.41+0.21

−0.20 ×10−5 eV2

∆m2
23 −2.486+0.025

−0.028 ×10−3 eV2

Table 3.1: Current fitted results for neutrino oscillation data [73].

Neutrino oscillation experiments showed that neutrinos are massive and there-

fore are one of the first fundamental disagreements with the SM predictions. Super-

Kamiokande [54] was the first oscillation experiment which measured atmospheric

neutrinos in a 33 ktons pure water tank with an exposure time of 535 days. Final

state charged leptons are produced in the neutrino-nucleus interaction in water, re-

sulting in Cherenkov radiation to be observed. The experiment measures the νµ to

ντ conversion and therefore the θ23 mixing angle.

The Sudbury Neutrino Observatory [55] used pure heavy water to detect solar

neutrinos. It has been firmly confirmed electron neutrino disappearance by results

from both charged current and neutral current detections. The Double Chooz reac-

tor neutrino experiment [25] first announced that there is a non-zero but small θ13

mixing angle, which was subsequently measured by the Daya Bay experiment [56].

Different experiments are needed to study different oscillation types since the

oscillation probability is dependent on their baseline. The measurements from os-

cillation data also depends on the mass ordering of the neutrinos. The neutrino

mass ordering could be normal m1 < m2 < m3 or Inverted (m3 < m1 < m2). Which

cannot be determined by oscillation experiments since they are only sensitive to the

mass difference saquares. Tab. 3.1 shows the current global fitted data for neutrino

oscillation parameters [73].
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3.2 Neutrino Mass & Heavy Neutral Leptons

It is useful to introduce a Majorana field ψM based on the chiral Weyl fields defined

previously,

ψM = ψL + eiθ
ψ

C
L . (3.31)

The phase θ is refered to a Majorana phase since the conjugate of the Majorana

field is [74]

ψ
C
M = ψ

C
L + e−iθ

ψL = e−iθ
ψM. (3.32)

The Majorana field coincides with its conjugate and the Majorana phase becomes

an overall phase for the field. A four-component fermion field can be described

by Dirac, Weyl and Majorana fields and neutrino fields can also be described by

all three types of fields if they are of the Dirac type. The Majorana neutrinos are

described by a left-handed field νL with the right-handed neutrinos being NR =Cν̄T
L .

The four-component neutrino field can be constructed ν = νL +NR and it can be

seen that the neutrino field ν is equivalent to its conjugate field.

There are two solutions. Firstly, neutrinos can acquire their masses through

lepton number violating Majorana mass terms. In the purely (or mostly) Dirac

scenarios, neutrinos acquire masses via Higgs mechanism. For mν ∼ 0.1 eV neu-

trino masses, we require Yukawa couplings to be yν ∼ 10−12. The mixing angles

between the left-handed and right-handed neutrinos are small in this sense and the

left-handed neutrinos are therefore called active neutrinos and the right-handed neu-

trinos are called sterile neutrinos. Secondly, there are sterile right-handed neutrinos

to give the Dirac masses to neutrinos via Yukawa couplings. Both mechanisms can

be in play as well. For purely Majorana neutrinos, there is no need of right-handed

neutrinos. A non-renormalisable dimension-5 Weinberg operator can be added to

the SM Lagrangian.

The introduction of Majorana mass breaks the U(1) lepton number symme-

try. A Majorana mass only breaks the gauge symmetry in the left-handed neutrino

sector. An effective Weinberg operator may be introduced instead of the Majorana
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mass term [75],

LWeinberg =
1
2

3

∑
i, j=1

cν
i j

ΛNP

(
LiH

)T (
L jH

)
+ h.c. . (3.33)

This operator is of dimension-5 which includes two lepton and two Higgs doublets,

and it breaks lepton number by two units. cν is defined as a matrix of the Wilson

coefficients and ΛNP these have the energy scale for new physics which can give

rise to lepton number violation.

We discussed the scenarios of Dirac and Majorana neutrinos. The most popular

mechanism to explain light neutrino masses actually contains both, namely the See-

saw mechanism. More precisely, there are the type I [31,33,34,76], type II [77–79]

and type III [80] seesaw mechanisms.

The type I seesaw model has the Higgs and lepton doublets to couple with a

right-handed fermion singlet NR. In the most general cases, it requires three gener-

ations of right-handed neutrinos to generate the masses for each generation of SM

neutrino via Higgs mechanism. There is also a bare Majorana masses for NR since

they are completely decoupled from the SM particles apart from the left-handed

neutrinos and the Higgs. The extended SM Lagrangian then becomes

LSeesaw =−
3

∑
i, j=1

mD
i jν̄L

iNc, j
R − 1

2

3

∑
i, j=1

Mi j

(
Nc, j

R

)T
Nc, j

R + h.c.. (3.34)

mD is the Dirac mass matrix and M is the Majorana mass matrix. The neutrino mass

can be written in a matrix form as

LSeesaw =−

 ν i
L

Nc, j
R

T

Mν

 ν i
L

Nc, j
R

 . (3.35)

For an arbitrary number N of right-handed neutrinos NR, the Dirac mass matrix is

3×N , the Majorana mass matrix is N ×N and Mν is a (3+N )× (3+N )

matrix. The mass spectrum of the neutrinos can be calculated by diagonalising the
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L Lc

⟨H⟩ ⟨H⟩

NR Nc
R

L Lc

⟨H⟩ ⟨H⟩
∆

L Lc

⟨H⟩ ⟨H⟩

F Fc

Figure 3.1: Feynman diagrams demonstrates the active neutrino mass generations for type
I (top left), type II (top right) and type III (bottom) seesaw mechanisms. Here,
L is the SM lepton doublet, NR is a right-handed neutrino singlet, ∆ is a SU(2)L

scalar triplet and F is a SU(2)L fermion triplet.

mass matrix with a single unitary matrix,

Mν =UνDmUT
ν . (3.36)

Here Dm is a diagonal matrix which contains 3+N mass eigenvalues. The unitary

matrix Uν can be represented in parts such as

Uν =

 Vνν UνN

UNν VNN

 . (3.37)

The matrix Vνν and VNN give the mixing within the active neutrinos and right-

handed neutrinos, respectively. Matrices UνN and UNν give the mixing between

active neutrinos and right-handed neutrinos and vice-versa. The diagonalisation

and resulting small Majorana mass for the active neutrinos can also be represented

diagrammatically in Fig. 3.1 (top left).

Assuming, for simplicity, a single generation of νL and NR, both mD and M are

just numbers. The two eigenvalues, they are

m± =
1
2

(
M±

√
M2 +4m2

D

)
. (3.38)

Taking the seesaw limit M ≫ mD, the masses can approximated as

m+ ≃ M+
m2

D
M

, m− ≃−m2
D

M
. (3.39)
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Recalling Eq. (3.33), the active neutrino mass can be expressed as

mν =
v2

2ΛNP
cν , (3.40)

which can be identified with the lighter mass. Likewise, the heavy mass scale ΛNP

can be matched to the right handed neutrino mass or HNL mass. It is clear that, for

a 0.1 eV neutrino mass, we require a M = 1014 GeV (setting cν = 1).

A mixing matrix U can be found which diagonalises the seesaw mass matrix,

U =

 cosθ sinθ

−sinθ cosθ

 . (3.41)

By requiring the (1,2) and (2,1) elements in Eq. (3.35) to be zero, the mixing angle

is obtained as

tan(2θ) = 2mD/M. (3.42)

This simplified one-generation version gives an approximated scale for canonical

seesaw active-sterile mixing. The mixing angle is small under the limit taken and

the heavy state is almost decoupled from the neutrino sector. The heavy state is

therefore also called a sterile neutrino.

The lighter mass is negative as can be seen from the approximation in

Eq. (3.38). To recover positive masses, a diagonal phase matrix can be multiplied

U →U ·Dφ ,

Dφ =

 eiφ1 0

0 eiφ2

 , (3.43)

with φ1 = π and φ2 = 0. This is equivalent to the Majorana phases to PMNS matrix.

As a result of active-sterile mixing, the SM charged current introduces interac-

tions of the heavy neutral leptons (sterile neutrinos),

∑
i=e,µ,τ

gW√
2

W+
µ ℓ̄i

Lγ
µ

ν
i
L =

3

∑
m=1

3

∑
n=1

gW√
2
(UPMNS)mnW+

µ ℓ̄m
L γ

µ
ν
′n
L

+
3

∑
m=1

3+N

∑
n=3

gW√
2
(UνN)mnW+

µ ℓ̄m
L γ

µ
ν
′n
L ,

(3.44)
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where N is the the number of sterile neutrinos and UPMNS is contained in Uν as

defined earlier.

The type II seesaw [77–79] can lower down the heavy mass scale of the theory

naturally by introducing a heavy scalar triplet in SU(2)L as shown in Fig. 3.1(top

right). The scalar modifies the Yukawa term in the following way,

L∆− Yukawa = ∑
ℓ=e,µ,τ
ℓ′=e,µ,τ

y∆

ℓℓ′L
ℓT

C
(
iτ2)

∆LLℓℓ
′
+ h.c.. (3.45)

Where ∆L is the heavy scalar triplet under SU(2)L,

∆L = ∆L · τ =

 1√
2
∆+ ∆++

∆0 − 1√
2
∆+

 , (3.46)

and y∆

ℓℓ′ is the Yukawa coupling strength between the scalar and the SM lepton

doublets. The scalar can interact with the Higgs and acquire a VEV as

⟨∆L⟩ ≃

 0 0
µv2

2M2
∆

0

 , (3.47)

where M∆ is the scalar mass, µ is the coupling strength with the Higgs doublets and

v is the SM Higgs VEV. For M∆ ≫ v, a small active neutrino mass of type II seesaw

is achieved as

mII
ν =

µv2

M2
∆

y∆. (3.48)

There is also another possible way to generate a seesaw model which is called

the type III seesaw [80]. It introduces a fermion triplet under SU(2)L, the triplet

couples with the SM lepton and the Higgs doublets in a similar way as the right-

handed fermion fields. The extension to the SM Lagrangian is

LF = ∑
ℓ=e,µ,τ
j=1,2,3

yFT
ℓ j LℓT

C
(
iτ2)(F j · τ

)
H + ∑

i=1,2,3
j=1,2,3

MF
i j
(
Fi)T

CF j + h.c., (3.49)
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where F are the new fermion triplets and MF is the mass matrix for these fields. For

MF ≫ yFv, she small active neutrino mass of type III seesaw is

MIII
ν =

(
yF)T

v2 1
MF yF . (3.50)

With a focus of the type I seesaw model, the heavy mass scale can be lowered by

adding two sterile neutrinos. The simplified mass model for the one-generation

mass matrix can be written as,

MInverse =


0 mD 0

mD 0 M

0 M µ

 , (3.51)

where mD is the Dirac mass term and M is a heavy mass scale. This mass model

has a lower lepton number violation mass scale µ . This form of mass matrix is

the inverse seesaw mass matrix [81–83]. In the limit µ → 0, lepton number is

conserved. This model can naturally give a small active neutrino mass due to small

µ and the heavy mass scale M can be therefore significantly lower than the standard

seesaw scenario. It can be seen that the active neutrino mass scale is approximately

mν ≃ m2
Dµ

M2 , (3.52)

and the HNL masses are

mN2/1 ≃ M± 1
2

(
m2

D
M

+µ

)
. (3.53)

There is a mass splitting 1
2

(
m2

D
M +µ

)
between the lighter HNL mass mN1 and the

heavier mass mN2 . The mass term µ naturally gives a small neutrino mass accroding

to Eq. (3.51) and lepton number is conserved if µ → 0. The mass spectrum of

this model is shown in Fig. 3.2 as a function of µ . It is clear from the Fig. 3.2

that the neutrino mass becomes infinitesimally small when µ tends to zero and the

inverse-seesaw assumption breaks down when µ overcomes the heavy mass scale
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Figure 3.2: Neutrino mass eigenvalues as a function of the µ mass term in the inverse
seesaw matrix calculated numerically for M = 100 GeV and mD = 1 GeV.

M = 100 GeV. The light neutrino mass grows logarithmically and the heavy masses

stay almost constantly with a negligible mass splitting for µ below 10 GeV.

Another scenario is the so-called linear seesaw [84–87]. In one generation, the

mass matrix is

MLinear =


0 mD m2

mD 0 M

m2 M 0

 . (3.54)

This model has an extra lepton number violation mass term m2. By applying a

rotation between the sterile states,

U =


1 0 0

0 cosθ sinθ

0 −sinθ cosθ

 , (3.55)

the mass matrix transforms as

U T MLinear U =


0 mD/cosθ 0

mD/cosθ M sin2θ M cos2θ

0 M cos2θ −M sin2θ

=


0 m′

D 0

m′
D mR M′

0 M′ mL

 .

(3.56)

It can be seen that the generalised inverse-seesaw mechanism with a small (2,2)



3.3. Neutrinos in Double Beta Decay 55

entry (mR ≪ M) is the most general model of its kind [88].

Our current best direct measurement of neutrino mass is done with single beta

decay experiment, the observable mβ is defined as

mβ = ∑
i
|Uei|2m2

νi
. (3.57)

An upper bound of mβ < 0.45 eV with at 90 % CL is given by KATRIN [89].

KATRIN is an upper limit of the effective beta decay mass mβ . There is also an

upper limit ∑i mνi < 0.1 eV from cosmology. Oscillation experiments are evidence

for the neutrino mass splitting ∆m2.

Another question is the mass ordering. The mass differences are measured

to a good precision by oscillation experiments, but there are two possibilities, nor-

mal ordering (NO) and inverted ordering (IO). Combined analysis from oscillation,

beta decay and cosmological observations will be needed to confirm neutrino mass

ordering. Although precise analyses have been done in neutrino oscillation experi-

ments, a direct measurement of neutrino masses is still needed to confirm the result.

The current data for different neutrino mass ordering is shown in Tab. 3.1.

3.3 Neutrinos in Double Beta Decay
The process of inverse beta decay resulted in the discovery of neutrinos and it is

still the leading way to measure absolute neutrino masses [90]. In some isotopes,

it is discovered that the nucleus undergoes two beta decay to reach an energetically

stable state as shown in Fig. 3.3 (left) [91]. This simultaneous process is called

double beta decay or two-neutrino double beta decay (2νββ ),

(A,Z)→ (A,Z +2)+2e−+2ν̄e. (3.58)

Double beta decay is a rare process in nature. The life times of double beta decay

isotopes usually ranges from 1018 −1022 years [92–95].

In the Majorana neutrino scenario, the two emitted neutrinos can become an

internal propagator as shown in Fig. 3.3 (right), this is called neutrinoless double
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Figure 3.3: Feynman diagrams for double beta decay (left) and neutrinoless double beta
decay (right).

beta decay (0νββ ),

(A,Z)→ (A,Z +2)+2e−. (3.59)

There is a clear experimental difference between 0νββ and 2νββ to distin-

guish between the two processes shown in Fig. 3.4. It is clear that neutrinoless

double beta decay experiments are looking for the end point energy peak in the

these decays and two-neutrino double beta decay acts as background.

The half life of a 2νββ isotope is already long, it makes the detection of 0νββ

even harder. Large amount of high purity isotopes and long exposure time are there-

fore needed for the experiments. The number of observed 0νββ events N in a 0νββ

experiment is parameterised by

N =
ln2 ·NA ·E
mA ·T 0ν

1/2
, (3.60)

where E is the sensitivity exposure of the detector used in the experiment, NA is

Avogadro’s number, mA is the molar mass of the isotope used and T 0ν

1/2 is the 0νββ

decay half life. There are two parts which contribute to the decay rate [97],

T−1
1/2 = G0ν

∣∣Mlep
∣∣2 |Mnuc|2 . (3.61)
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Figure 3.4: An illustrative Monte-Carlo pseudo-dataset of LEGEND-1000 for two-neutrino
double beta decay (blue curve) and neutrinoless double beta decay (red curve)
in a observed counts versus electron energy plot normalised to exposure. The
full background model is implemented over 10 t yr of exposure, and a 0νββ

decay half life of 1028 yr is assumed.The 2νββ decays do not leak in the 0νββ

decay signal region, and their contribution is shown separately from the rest of
the background sources. The yellow background model curve shows a small
peak from 214Bi decay as the nearest γ line within the displayed energy range.
The uncertainty on the overall background model is covered by the yellow band
[96].

The leptonic matrix element can be expressed as [98–100]

Mµν

lep ∝ g2
W

3

∑
i=1

e2

[
(Ueiγ

µPL)
qργρ +mνi

q2 −m2
νi

(UeiPLγ
ν)

]
ec

1

∝
g2

W
q2

[
3

∑
i=1

U2
eimνi

]
e2 [γ

µ
γ

νPR]ec
1,

(3.62)

where gW is the weak coupling, e1,e2 are the spinors for the first and second electron

emitted and Uei is a PMNS mixing matrix element. The momentum q ∼ 100 MeV

is for the neutrino internal propagator which is much greater than the neutrino mass.

The product of the PMNS matrix element and the neutrino mass left is defined as

the effective 0νββ mass

mββ =
3

∑
i=1

U2
eimi.
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Figure 3.5: The effective 0νββ mass mββ versus the lightest neutrino mass mlightest [101].
The dark shaded regions are the predictions based on best-fit values of neutrino
oscillation parameters for the normal hierarchy (NH) and the inverted hierarchy
(IH), and the light shaded regions indicate the 3σ from oscillation parameter
uncertainties [102, 103]. The blue band shows the 90% C.L. upper sensitivity
in 136Xe of Kamland-Zen. The impact of different isotopes [104–106] on mββ

is also given. Recent results of improved phase space factor [107, 108] and
NMEs [109–115] are implemented. The right part shows the limit on mββ for
different NMEs of isotopes versus the mass number of the isotopes.

The decay half life can also be expressed through the decay rate Γ0ν/ ln2 = T−1
0ν

,

Γ0ν = ln2
G0νg4

A
m2

e

∣∣mββ Mnuc
∣∣2 , (3.63)

where G0ν is the kinematic phase space factor for 0νββ in the given isotope, gA is

the axial coupling strength, me is electron mass and Mnuc is the nuclear matrix ele-

ment (NME) for 0νββ in the given isotope. The 0νββ decay can also be used as a

tool to probe neutrino mass ordering due to its inclusion in mββ . Fig. 3.5 shows the

allowed parameter space as a function of the lightest neutrino mass and the mass

ordering. The green region is for inverted mass ordering (IO) and the red region

is for normal ordering (NO). The allowed parameter spaces are band shaped, be-
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Experiment Isotope Status T 0ν

1/2/[yr] mββ/[meV ]

LEGEND-200 construction 76Ge 1.5×1027 27-63
LEGEND-1000 proposed 76Ge 1.3×1028 9-21

NEXT-100 construction 136Xe 7×1025 66-281
NEXT-HD proposed 136Xe 2.2×1027 12-50

PandaX-III-200 construction 136Xe 1.5×1026 45-194
LZ-nat construction 136Xe 7.2×1025 64-277
LZ-enr proposed 136Xe 7.1×1026 20-87
Darwin proposed 136Xe 1.1×1027 17-72
KL2Z proposed 136Xe 1.1×1027 17-71
SNO+I construction 130Te 1.8×1026 31-144
SNO+II proposed 130Te 5.7×1026 17-81

Table 3.2: Summary of future 0νββ decay searches. The table includes current status,
expected sensitivity to the 0νββ half life and corresponding mββ [116].

cause all possible CP phase and Majorana phase values are considered. There is an

overlapping region between the two orderings for the lightest neutrino mass greater

than 10−2 eV and mββ > 10−2 eV. The effective mass has already been excluded

to mββ ≲ 10−1 eV by KamLAND-Zen and other recent experiments with inclusion

of the NME calculation uncertainties. Future experiments will be able to probe the

whole IH region down to the sensitivity of 10−2 eV with a greater precision in NME

calculations. Tab. 3.2 shows some of the future 0νββ experiments with the future

sensitivity to the half life for corresponding isotopes and the sensitivity to mββ .

Fig. 3.3 gives a simplified Feynman diagram for 0νββ decay via light neutrino

exchange. Theoretically, the internal neutrino propagator can involve unknown pro-

cess which contains complicated loops and exotic interactions. It is needed to clarify

whether the observation of 0νββ process is equivalent to being Majorana neutri-

nos. In the effective field theory (EFT) point of view, the whole 0νββ process can

be described as a dimension-9 operator by counting all the external legs. The equiv-

alence of Majorana nature of neutrino and 0νββ observation is proved by previous

work [117–119], neutrinos are Majorana no matter what diagram induces 0νββ .

The seesaw typed heavy neutral lepton contributions in 0νββ will be discussed in

chapter 4.
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3.4 Neutrino Cosmology

The observation of the dark matter problem [58, 59, 67, 68] leads to the proposal of

a wide range of dark matter particle candidates including HNLs and axion-like par-

ticles (ALPs). The properties of these potential candidates will affect the evolution

of the Universe. All new physics theory (e.g. seesaw mechanisms) must also be

consistent with cosmological and astrophysical observations, cosmology therefore

becomes an important probe to BSM theories.

In the standard model of cosmology, the Universe after Big Bang is consid-

ered to be homogeneous and isotropic. This ideal system can be described by the

Friedmann–Robertson–Walker (FRW) metric,

gµνdxµdxν =−dt2 +a2(t)
(

dr2

1− kr2 + r2 (dθ
2 + sin2

θdφ
2)) , (3.64)

where r,θ ,φ are the radial and angular components for the comoving polar spherical

coordinate. The scale factor a(t) encodes information from the Einstein Equation

and describes the expansion of the Universe. The parameter k describes the spa-

tial curvature of the Universe and it takes values from +1 to −1 corresponding to

positively curved space (+1), flat space (0) and negatively curved space (−1). The

scaling factor a(t) appears in the component of metric gµν and it can be calculated

from the Einstein equation,

Rµν −
1
2

gµνR = 8πGTµν −Λgµν , (3.65)

where Rµν and R are the Ricci tensor and Ricci scalar which encode the curvature

of the space-time. G is Newton’s gravitational constant, usually expressed in term

of the Planck mass mPl = G−1/2 = 1.22×1019 GeV. Tµν is the energy-stress tensor

which encodes the energy content of the Universe in terms of the energy density ρ

and pressure P, Tµν = diag(ρ,−P,−P,−P) for prefect fluid. Λ is the cosmological

constant which gives an additional contribution to the energy-stress tensor. The

energy-stress tensor is conserved in curved space-time, ∇µT µ

ν = 0, given ∇µ is

the covariant derivative. By solving Eq. (3.65) and Eq. (3.64), one obtains the 0-0
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component of the equation [120],

ȧ2

a2 +
k
a2 =

8πG
3

ρ +
Λ

3
. (3.66)

It is convenient to define the Hubble parameter

H ≡ ȧ
a
. (3.67)

It is clear to see that there are three parts (Λ, k and matter) which contribute to

the expansion of the Universe. Each part will dominate in different cosmological

eras. In the early Universe after an accelerated expansion period - inflation, radia-

tion or more generally, relativistic particles will dominate at the high temperature.

The energy-stress relation can be calculated from p = ρ/3 and the conservation of

energy-stress tensor,

ρR = g∗
π2

30
T 4 = 3PR, (3.68)

where g∗ is defined as the number of light particle degrees of freedom in the Uni-

verse. There are contributions from number of bosonic degrees gi and number of

fermionic degrees g j respectively,

g∗ = ∑
i, boson

gi

(
Ti

T

)4

+
7
8 ∑

j, fermion
g j

(
Tj

T

)4

, (3.69)

the factor 7/8 in front of the fermion term is from the integral of Fermi-Dirac dis-

tribution over momentum space. The Hubble parameter can be then derived by

approximating Eq. (3.66) as

H =

√
4π3

45m2
Pl

g∗T 2. (3.70)

During radiation domination, the number density of a light particle species i with

degree of freedom gi follows,

ni =
ζ (3)
π2 giT 3, (3.71)
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where ζ (3) = 1.20206 is the zeta function. The temperature-time relation for radi-

ation domination can also be computed,

( t
s

)
∼ g−1/2

∗

(
1 MeV

T

)2

. (3.72)

3.4.1 Neutrino Decoupling

The Universe can be modeled by statistical mechanics, particles were initially in

a plasma environment and the plasma is cooled down as the Universe expands.

When particles are in thermal equilibrium, for all decay and scattering processes,

the rates of forward interactions are equal to the rates of backwards interactions,

which makes particles are in dynamical equilibrium. The particles will be out of

equilibrium when the temperature of the Universe is insufficient to support the back-

ward interaction to happen as the Universe cools down. The neutrinos will decouple

from the thermal plasma of the Universe if [38]

Γint(T )≲ H(T ). (3.73)

The neutrino interaction rate Γint can be approximated from the weak interaction

cross-section,

Γint = ⟨σW nνv⟩ ∼ G2
FT 5, (3.74)

where the weak interaction cross-section is σW , nν is the neutrino number density

and v is the relative velocity between interacting particles. The bracket denotes

thermal averaging of the physical quantities inside. The cross-section is of the order

G2
FT 2 from Fermi theory and the other 3 powers of temperature are from the number

density in Eq. (3.71). Together with the expression of the Hubble parameter in

Eq. (3.70), the neutrinos will decouple from the thermal plasma at the temperature,

TD ≃
( √

g∗
G2

FmPl

)1/3

. (3.75)
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Taking the SM value g∗ = 10.75 (including electron and positron, three neutrinos

and the photon), the decoupling temperature will be around TD ∼ 1 MeV which is

equivalent to 1 s after the Big Bang according to Eq. (3.72).

3.4.2 Big Bang Nucleosynthesis (BBN)

Light nuclei (2H,3He,4He,7Li) were formed shortly after neutrino decoupling [39].

Nuclear and electromagnetic interactions dominated during the nuclear equilibrium

period. Free neutrons and protons became the main baryonic species in the Universe

when the excess of photons around a few MeV energy, it is because the photon

energy will be sufficient to produce neutrons from the protons in the plasma. The

density ratio between the proton and neutron product and the second lightest nucleus
2H is given by Saha equation,

n2H
npnn

=
3
4

(
2π (mn +mp −B2H)

mnmpT

)3/2

exp
(

B2H
T

)
. (3.76)

Here, mn and mp are the mass for neutron and proton, respectively. B2H is the

binding energy for deuterium which is around 2.2 MeV. In the MeV regime, the

neutron and proton numbers have approximately the same value nB, the ratio can be

approximated to
n2H
nB

∼ ηB

(
T

mN

)3/2

exp
(

B2H
T

)
, (3.77)

given that the baryon density nB = ηBnγ with the photon density nγ and a baryon

to photon number ratio ηB. mN is the nuclear mass of the nucleus of interest. For

heavier isotopes (A > 7), the density ratio becomes [121]

nN (A,Z)

nB
∼ A3/2

η
A−1
B

(
2ζ (3)

π2

)A−1(2πT
mN

)3(A−1)/2

exp
(

B(A,Z)
T

)
, (3.78)

where A and Z are the mass and atomic numbers of the isotope. ζ is the Apery’s

constant with the value ζ (3) ≃ 1.20. Below the neutrino decoupling temperature,

the photon energy is insufficient to break with deuterium to produce neutrons and

protons. The synthesis of deuterium starts to dominate at about T ≃ 0.07 MeV. The

production of 4He marks the end of BBN since its binding energy is the highest
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in the light isotope regime. A Helium-4 to baryon density ratio Yp ≡
4n4He

nB
can be

defined to measure the effect of BBN and the ratio can be approximated as [122]

Yp ∼
2

1+ exp(∆m/TD)exp(t (TBBN)/τn)
, (3.79)

where τn is the life time for neutrons and ∆m is the proton-neutron mass difference.

TD denotes the neutrino decoupling temperature and TBBN is the temperature at

BBN. The value is Yp ≃ 0.25 in the standard model scenario.

HNLs can affect the BBN via its mixing with active neutrinos through the

following processes,

N → e−ℓ+2 νℓ2 , N → νeνℓ2 ν̄ℓ2 ,

N → Pνe, N → P+e−,

N →V νe, N →V+e−.

(3.80)

HNLs will decay to neutrinos and other SM particles. The decay products have very

different energies from the thermal plasma particles, they will modify the spectra

and production of 4He (i.e. mesons produced lead to over-production of 4He) at

BBN and slow down the cooling of the Universe. The excessive neutrinos produced

will also change the light degrees of freedom at BBN. The BBN observations there-

fore put a tight constraint on HNL mass and mixing with active neutrinos [123,124].

3.4.3 Cosmic Microwave Background (CMB)

The Cosmic Microwave Background (CMB) is the residual thermal radiation from

the Big Bang, permeating the universe and observable in all directions. Approxi-

mately 380,000 years after the Big Bang, the universe cooled sufficiently for protons

and electrons to combine into neutral hydrogen atoms, allowing photons to travel

freely. This recombination process resulted in the release of the CMB, which has

since cooled to a temperature of about 2.725 K due to the universe’s expansion.

The cosmic mircowave background was first discovered in 1965 [125] and it

was the first evidence for the Big Bang theory of cosmology. The photon temper-

ature of the CMB was observed to be TCMB = 2.73 K [126]. At recombination,
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electrons and protons bind together and the Universe started to be transparent to

electromagnetic radiation. The rate of Compton scattering became negligible com-

pared to the Hubble parameter after recombination. The CMB photons were from

the last compton scattering between electrons and photons such that ΓComp = H(T ).

Similar to synthesis of deuterium in Eq. (3.76), a ratio between the product of proton

and electron number densities to hydrogen density can be computed as [121]

npne

nH
=

(
meT
2π

)3/2

exp
(
−

me +mp −mH

T

)
. (3.81)

Here, ne,nH are the electron and hydrogen number densities, and me,mH are the

electron and hydrogen masses. The binding energy for hydrogen atom has the value

of BH = 13.6 eV. An ionised fraction can be defined correspondingly as

Xe ≡
ne

ne +nH
. (3.82)

A similar Saha equation can also be written for recombination in term of Yp defined

in Eq. (3.79),

X2
e

1−Xe
=

1
ηB (1−Yp)

(me

T

)3/2
√

π

25/2ζ (3)
exp
(
−BH

T

)
. (3.83)

For Yp = 0.25 and ηB = 6× 10−10, Xe will have a dramatic decline at T = 0.3 eV.

At later times, neutrinos become the free streaming and neutrinos show the Fermi-

Dirac distribution better because the temperature is lower. The neutrino to photon

temperature ratio can be inferred from electron positron and photon entropies af-

ter neutrino decoupling. When the temperature drops below the electron-positron

pair creation rate Tann ∼ me, pair production is insufficient and most electrons and

positrons disappear. The photons are still in the thermal plasma due to the electro-

magnetic interactions and neutrinos remain almost unaffected by the pair annihila-

tion. Photon is always relativistic because it is massless, the photon energy density
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is the proportional to T 4 from Planck distribution and the entropy density is

Sγ =
2π2

45
T 3gs(T ), (3.84)

where gs(T ) is the entropy relativistic degrees of freedom which is the same way as

Eq. (3.69). gs(T ≫ me) takes the value of 11/2 and becomes 2 after T ≪ me. After

pair annihilation, the effective number of neutrino species Neff is contained in the

radiation density,

ρR = ργ

(
1+3

7
8

(
4

11

)4/3

Neff

)
, (3.85)

where ργ is the photon energy density and it is proportional to T 4 according to

Eq. (3.68). The factor 7/8 is given by the phase-space integral of the fermi-

Dirac distribution. There will be a factor of 1 for bosons. 4/11 gives the neu-

trino to photon temperature ratio because neutrino temperature evolves differently

from photon temperature after neutrino decoupling. Neff is the effective number of

light particle degrees of freedom which includes neutrinos and other non-relativistic

species. Neff,SM = 2.99+0.34
−0.33 is measured by cosmological and astrophysical obser-

vations [30]. The number 3 corresponds to there are three types of neutrinos in the

SM. There will be additional contributions if there are more light exotic particles in

the Universe.

3.4.4 Leptogenesis

The observation of a negligible amount of anti-matter in the Universe [30],

ηB =
nB −nB̄

nγ

≈ 6×10−10, (3.86)

which requires a novel mechanism beyond SM. The origin of this asymmetry should

satisfy the Sakharov conditions [57] : (a) Baryon number is violated. (b) C and

CP are violated in order to differentiate matter and anti-matter. (c) the generation

mechanism is not in thermal equilibrium.

One possibility to explain the matter-antimatter asymmetry is through leptoge-

nesis [127, 128]. It is a process which generates firstly a lepton asymmetry, and the
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Figure 3.6: Feynman diagrams for HNL decays to a lepton and a Higgs at tree level (left)
and one-loop level (right).

baryon asymmetry is then generated from the lepton sector. The decay of HNLs N

is one possible way to generate a lepton asymmetry in the early Universe [129]. In

the early Universe, HNL can decay to a lepton L and a Higgs H via two channels as

shown in Fig. 3.6,

N → L+H,

N → L̄+ H̄.
(3.87)

CP violation will make one decay channel more efficient than the other. Then,

it generates an asymmetry in the lepton number. The decay asymmetry ε generated

by the HNLs is given by

εi =
∑ j
(
Γ
(
Ni → L jH

)
−Γ

(
Ni → L̄ jH̄

))
∑ j (Γ(Ni → L jH)+Γ(Ni → L̄ jH̄))

, (3.88)

This parameter is for the i-th HNL in the model with more than 1 HNL. It sums all

the lepton flavours j and will deviate from zero if CP is violated.

The expansion of the Universe causes the departure from thermal equilibrium.

Interaction rates that are slower than the Hubble expansion rate cannot maintain

the equilibrium of the particle distribution in the Universe. Considering one-HNL

scenario, The non-equilibrium process is described by Boltzmann equations for the

expanding Universe,

Hz
dnN

dz
=−(ΓD +ΓS)

(
nN −neq

N
)
,

Hz
dnL

dz
= εΓD

(
nN −neq

N
)
−ΓW nL,

(3.89)

where H is the Hubble parameter and z = mN/T is the mass of the HNL over the
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Figure 3.7: The ∆L = 1 (top panel) and ∆L = 2 (bottom panel) scattering processes which
contribute to washout of lepton number asymmetry.

temperature of the Universe. nN and neq
N are the number density and the equilibrium

number density for the HNL, respectively. nL stands for the number density of

leptons. ΓD is the rate for both decay and inverse decay of the HNL as Fig. 3.6.

ΓS is the total rate that sums all 2-2 scattering processes of HNL mediated by the

Higgs, which violates the lepton number by 1 unit (∆L = 1),

Nℓi ↔ tQ̄, Nℓ̄i ↔ tQ̄,

Nt ↔ ℓ̄iQ, Nt̄ ↔ ℓiQ̄,
(3.90)

where t stands for the top quark and Q is the SM quark doublets. The ∆L = 2

scattering proceses contribute to the washout rate ΓW ,

LℓH ↔ L̄ℓH̄, LℓLℓ ↔ H̄H̄, L̄ℓL̄ℓ ↔ HH, (3.91)

these processes are mediated by the HNL N and are demonstrated in Fig. 3.7.

The lepton asymmetry is then translated to baryon asymmetry via sphaleron pro-

cesses [130]. These non-perturbative processes, which violate baryon number, are
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Figure 3.8: Diagram for HNL decay via one-loop HNL self-energy.

described within thermal field theory. They correspond to tunneling between two

topologically distinct energy minima (vacua) of the field configurations, which can-

not be connected through continuous gauge transformations. The sphaleron pro-

cesses work for a range of energy from 100 to 1012 GeV.

Apart from the standard leptogenesis processes, leptogenesis can also occur

resonantly [131, 132] as Fig. 3.8 shows. Leptonic asymmetries are resonantly am-

plified through the mixing of nearly degenerate HNLs, with mass differences on

the order of their decay widths. Resonant leptogenesis can reduce the mass scale

for HNLs from ∼ 1012 TeV for the standard leptogenesis to ∼ 1 TeV. This makes

low-scale seesaw models possible for explaining matter-antimatter asymmetry.



Chapter 4

Probing Heavy Neutral Leptons in

0νββ & Direct Searches

4.1 Current Status of HNL Searches
As mentioned in the last chapter, the standard seesaw mechanism results in a very

high mass scale of HNLs such that mν ∼ (100 GeV)2/Λ < 0.1 eV [30, 133], it

requires Λ∼ 1015 GeV which is close to the Grand Unified Scale. The realisation of

low-scale leptogenesis scenarios as Sec. 3.4.4 mentioned and recent developments

for long-lived exotic particle searches, enables a strong interest to look for HNLs at

much lower scales. The active-sterile neutrino mixing |UαN | is expected to be small

in order to satisfy the small active neutrino masses such that

|UαN | ∼
√

mν

mN
≈ 10−6

√
100 GeV

mN
, (4.1)

for one-generation of HNL with mass mN . This describes a seesaw floor that needs

to be probed experimentally to test low-scale type-I seesaw scenarios, through

weaker strengths are allowed by assuming other sources of light neutrino mass and

stronger strengths are possible by employing specific textures [134–146] or symme-

tries [137,138,144,147–149] in a three-generation framework. An additional sterile

neutrino decouples the scale of lepton number violation from the sterile neutrino

mass scale. The large active-sterile mixing strengths are allowed for low-scale ster-

ile neutrino masses, as proposed in the inverse [81,83,150], linear [85,87,151,152]
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and generalised inverse seesaw [88,153,154]. The main feature of such scenarios is

that the Majorana sterile neutrinos form quasi-Dirac pairs with opposite CP phases

and a small mass splitting which suppresses their joint contribution to the light neu-

trino masses and other lepton number violating observables such as neutrinoless

double beta decay.

Following the analysis [155], a general phenomenological parametrisation is

used which is agnostic to the nature of the sterile neutrinos with the assumption

that active neutrinos only receive their masses at tree level. The parametrisation

is extended to include three generations of active neutrinos and two sterile states,

all initially described as Weyl fermions. The 3+2 scenario is the minimal model

in which two of the three active neutrinos acquire mass, while the lightest active

neutrino remains massless. The parametrisation is compared with the Casas-Ibarra

approach and other formulations focusing on quasi-Dirac sterile neutrinos as de-

scribed in [156, 157]. Motivated by the fact that both future 0νββ decay and direct

searches are starting to probe the seesaw floor, we make a complementary analy-

sis between the two types of experiments, with a focus on near GeV mass range.

Fig. 4.1 shows the projected sensitivity of select future searches. Considering the

constraints from BBN and existing searches, HNL masses must be larger than 300

MeV, and DUNE, SHiP and LEGEND-1000 can probe HNLs near the seesaw floor.

The latter is highly sensitive to the nature of HNLs, i.e., whether they are Majorana

or quasi-Dirac, with a potential interference with the light neutrino mass contri-

bution. On the other hand, direct searches are largely independent of this, mainly

probing the strength of the induced SM-like charged and neutral currents. We thus

use the potential of DUNE and LEGEND-1000 to probe the properties of sterile

neutrinos, namely the mass splitting of a quasi-Dirac HNL, and its CP phase rela-

tive to that of the active neutrinos. These properties are crucial in understanding the

role of HNLs in generating the matter-antimatter asymmetry of the universe through

leptogenesis [127, 158–161].
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Figure 4.1: Projected sensitivities of future HNL searches on the electron active-sterile
mixing strength |UeN |2 as a function of the HNL mass mN [162]. Shown are
projections for the direct searches at PIONEER [163], NA62 [164], DUNE
(red dashed from [165], red solid from this work), SHiP [166], FCC-ee [167]
and the 0νββ decay experiment LEGEND-1000 [96]. The latter is shown for
the contribution of a single Majorana HNL and a pair of quasi-Dirac HNL with
a mass splitting of ∆mN/mN = 10−2.5 generating a light neutrino mass of mν =
10−2.5 eV. The shaded region is excluded from existing searches [155,162] and
the impact of the HNL on Big Bang Nucleosynthesis (BBN) [123]. The diag-
onal band indicates the seesaw floor with the notional neutrino mass |UeN |2mN

in the given range. The diamonds indicate benchmark scenarios used in the
analysis.

4.2 Phenomenological Model

In this section we will discuss the effect of two additional fermion singlets on the

SM. Based on the work of [162], a useful phenomenological parametrisation which

can describe the Majorana nature in quasi-Dirac limits of the HNL pair and their

mixing with the light active neutrinos. In another word, The neutrino sector looks

almost Dirac, but there is still a small LNV effect. The relations between the active-

sterile mixing and CP phases that are necessary for the observed light neutrino os-

cillation parameters are derived. For most of our analysis, the number of active

generations NA is set to one. It will be extended to the minimal 3+2 scenario in the

results section for comparison.
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4.2.1 HNL Lagrangian

A general SM Lagrangian which includes NS SM-singlet Weyl fermion fields NiR is

written as

L = LSM + iN̄iR /∂NiR − (Yν)αi L̄αH̃NiR −
1
σ
(MS)i j N̄c

iRN jR + h.c. , (4.2)

where Lα = (ναL, ℓαL)
T is the SM doublet with α = e,µ,τ and H =

(
H0,H−)T is

the SM Higgs field, Yν is the Yukawa coupling matrix for the neutrino sector. MS

stands for the Majorana mass term in the HNL states. The additional terms in the

Lagrangian are the renormalisable terms for arbitrary numbers of HNL states. Here,

Mν is an N ×N complex symmetric matrix,

Mν =

 0 MD

M T
D MS

 , (4.3)

where MD = v√
2
Yν and v= ⟨H0⟩≈ 246 GeV is the Higgs vacuum expectation value.

Without loss of generality, it is possible to perform an unitary rotation among the

sterile states so that V T MSV is diagonal, where V is an NS ×NS unitary matrix.

Alternatively, by exploiting the singular value decomposition of MD, the rotation

among sterile states can be chosen such that MDV = W ∗ΣD, where W is an NA ×

NA unitary matrix and ΣD is an NA ×NS matrix with non-negative real numbers

along the diagonal [88].

More generally, it is possible to rotate the active and sterile states to the mass

basis by performing a unitary rotation on nL, i.e.,

nL = PLU(ν1, . . .︸ ︷︷ ︸
NA

,N1, . . .︸ ︷︷ ︸
NS

)T , (4.4)

where νi = νc
i and Nκ =Nc

κ are Majorana fields and U is the N ×N unitary matrix

that diagonalises the mass matrix Mν . We are interested in the limit where the νi are

mostly-active states and Nκ are mostly-sterile states (or HNLs). The former states

have masses set by the neutrino oscillation data and mix primarily with active neu-
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trino fields ναL, while the latter states have arbitrary masses and mix predominantly

with the sterile fields Nc
kR.

In the NS = 2 case, we can express the mass matrix as

Mν =


0 MD,1 MD,2

M T
D,1 µR mS

M T
D,2 mS µS

=U


mν 0 0

0 mN 0

0 0 mN(1+ r∆)

UT , (4.5)

where (MD,1)α = (MD)α1 and (MD,2)α = (MD)α2. Here, mν is an NA ×NA

diagonal matrix containing the observed light neutrino masses, mN is the mass of

the lighter HNL, and r∆ = ∆mN/mN (where ∆mN is the mass splitting between the

HNL pair). We make the usual observation that for NA +NS = 3+ 2, the rank

of the matrix Mν is 4, and therefore one of the light neutrinos is massless. This

scenario is still compatible with the neutrino oscillation data for the normal and

inverted neutrino mass orderings.

A non-zero mixing between the active neutrinos and possible sterile states is

felt by the SM charged- and neutral-current interactions. For example, taking the

charged lepton Yukawa matrix Yℓ to be diagonal, the charged-current can be written

as

LW± =− g√
2
ℓ̄αL /W

†
ναL +h.c.

=− g√
2

Uαiℓ̄αL /W
†PLνi −

g√
2

UαNκ
ℓ̄αL /W

†PLNκ +h.c., (4.6)

where we see that the mixing UαNκ
couples charged leptons to HNLs. This interac-

tion allows HNLs to mediate 0νββ decay and be produced via meson decays.

It is conventional to express an N ×N unitary matrix in terms of N (N −

1)/2 mixing angles and N (N +1)/2 phases. For the mixing matrix U , NA phases

can be eliminated through a rephasing of the charged lepton fields in Eq. (4.6).

Note that only the upper NA ×N sub-block of U appears in Eq. (4.6), and so all

mixing angles and phases that do not appear in this sub-block are unphysical. This

freedom is equivalent to the arbitrary rotation among the sterile states discussed
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below Eq. (4.5). The mixing matrix U can be expressed as a combination of real and

complex Euler rotations; for example, in the 3+2 scenario, a useful parametrisation

of U is [168, 169]

U =WN1N2W3N2W2N2W1N2W3N1W2N1W1N1R23W13R12D . (4.7)

Here, Wi j (Ri j) is a unitary, unimodular matrix describing a complex (real) rotation

in the i- j plane, which can be written as

[Wi j]rs = δrs +(cosϑi j −1)(δirδis +δ jrδ js)+ sinϑi j(e−iηi jδirδ js − eiηi jδirδ js) ,

(4.8)

with ϑi j ∈ [0,π/2] and ηi j ∈ [0,2π], while Ri j is given by Eq. (4.8) with ηi j = 0. The

angles ϑ12, ϑ13 and ϑ23 and phase η13 contained in R12, W13 and R23 are taken to be

the mixing angles and Dirac CP phase in the PMNS mixing matrix. The matrices

WiNκ
in Eq. (4.7) contain six angles ϑiNκ

, which control the active-sterile mixing

strengths, and six Dirac CP phases ηiNκ
; for convenience, we introduce the notation

ϑiκ ≡ ϑiNκ
, ciκ ≡ cosϑiNκ

, siκ ≡ sinϑiNκ
and ηiκ ≡ ηiNκ

. Finally, four (Majorana)

CP phases which are defined to lie in the range [0,4π] are contained in the diagonal

matrix

D = diag(1,eiα21/2,eiα31/2,eiφ1/2,eiφ2/2) , (4.9)

where α21 and α31 correspond to the usual Majorana phases in the PMNS mixing

matrix. In the 3+ 2 model where mlightest = 0, only a single Majorana phase ap-

pearing in the PMNS mixing matrix is physically relevant; this is the combination

(α21−α31) in the normal ordering (NO) scenario, where m1 = 0, and α21 in the in-

verted ordering (IO) scenario, where m3 = 0. Both scenarios are covered by setting

α31 = 0.

In the neutrino mass matrix Mν in Eq. (4.5), the upper-left NA×NA sub-block

is zero because a mass term of the form ν̄αLνc
βL violates SU(2)L. Equating the two

sides of Eq. (4.5) gives the following relation between the light neutrino masses mi
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and HNL masses mNκ
,

(Mν)αβ = 0 ⇒ 0 =
NA

∑
i=1

miUαiUβ i +
NS

∑
k=1

mNκ
UαNκ

UβNκ
. (4.10)

However, this relation is only valid at tree level. The light neutrino masses also

acquire a contribution at one-loop from self-energy diagrams involving Higgs and

Z bosons [134, 170, 171]. For HNL masses mNκ
≲ 1 GeV and active-sterile mixing

|UeNκ
|2 ≲ 10−6 probed by 0νββ decay and DUNE, such one-loop corrections can

be safely neglected [155].

In the limit siκ ≈ ϑiκ ≪ 1 and ciκ ≈ 1, the upper-left NA ×NA sub-block of

U is approximately the PMNS mixing matrix, i.e. Uαi ≈ (UPMNS)αi. Deviations

from the unitarity of Uν are controlled by the size of the angles ϑiκ , but it is safe

to ignore this effect in the regime probed by 0νββ decay and DUNE. The active-

sterile mixing in Eqs. (4.6) and (4.10) is now given by

UαNκ
≈ Θακ = |Θακ |eiφiκ/2 ≡ siκeiφiκ/2 , (4.11)

where φiκ ≡ φκ −2ηiκ . In the limit ϑiκ ≪ 1, there is a correspondence between the

mass index i and the flavour index α , i.e. e,µ,τ ⇔ 1,2,3, and so in the remainder

of this work we use sαk and φαk. The phase φακ controls the CP-violating nature

of the charged-current interaction between ℓα and Nκ in Eq. (4.6)1. With these

simplifications, the relation in Eq. (4.10) can be written in the NS = 2 case as

mν

αβ
+mNΘα1Θβ1 +mN(1+ r∆)Θα2Θβ2 = 0 , (4.12)

where mν

αβ
≡ ∑

3
i miUαiUβ i. In the next subsection, we will use this result to de-

rive relations between the active-sterile mixing strengths sαk to reproduce the light

1Enforcing the diagonalised neutrino mass matrix to be invariant under CP, the HNL mass eigen-
state Nκ transforms as UCPNκ U−1

CP = ±iγ0Nc
κ . The charged-current between ℓα and Nκ in Eq. (4.6)

then transforms as UCPLW±U−1
CP ⊃∓ g√

2
i(ξ CP

ℓα
)∗N̄κ /WPLUαNκ

ℓαL +h.c., where (ξ CP
ℓα

)∗ is the CP par-

ity of ℓα . Taking ξ CP
ℓα

= i implies that CP is conserved for U∗
αNκ

= ±UαNκ
, or equivalently for

eiφακ =±1. The arbitrariness of ξ CP
ℓα

is eliminated when considering relative phase differences, e.g.
∆φα = φα2 −φα1. CP is conserved for ei∆φα =±1.
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neutrino masses, mixing angles and phases contained in mν

αβ
.

4.2.2 Active-Sterile Mixing Ratio Formulae

If a pair of HNLs exists in nature, their masses (mN , r∆), active-sterile mixing

(|Θα1|, |Θα2|) and CP phases (φα1, φα2), for the flavour α = e,µ,τ can in prin-

ciple be measured experimentally. Furthermore, if the HNL pair is the sole (or

dominant) contribution to the light neutrino masses and mixing, Eq. (4.12) implies

that there are correlations among these measurable quantities. If an HNL pair is

found that does not follow Eq. (4.12), it cannot be the only contribution to the light

neutrino masses. For example, there may exist more than two HNLs; we generalise

Eq. (4.12) and the results derived below to the 3+NS model in Appendix A.

We can insert into the neutrino mass matrix mν

αβ
the light neutrino masses,

mixing angles and Dirac CP phase inferred from the neutrino oscillation data; how-

ever, the Majorana phases α21 and α31 remain unconstrained. Taking the lightest

neutrino to be massless, as implied in the 3+2 model, we have

mν

αβ
= miUαiUβ i +m jUα jUβ j , (4.13)

where (i, j) = (2,3) and (1,2) in the NO and IO scenarios, respectively. Now only

a single unconstrained Majorana phase is physically relevant, which we can choose

to be α21.

We first consider the constraint (Mν)αβ = 0 for α = β , i.e. the constraints

along the diagonal of Eq. (4.5). The expression in Eq. (4.12) can be rearranged to

give

Θ2
α2

Θ2
α1

=−1+ xα
αα

1+ r∆

; xρ

αβ
≡

mν

αβ

mNΘ2
ρ1

. (4.14)

Using Θακ = |Θακ |eiφακ/2 ≡ sακeiφακ/2, it is now straightforward to find

|Θα2|2

|Θα1|2
=

|1+ xα
αα |

1+ r∆

, cos∆φα =−Re[1+ xα
αα ]

|1+ xα
αα |

=
|xα

αα |2 −1−|1+ xα
αα |2

2|1+ xα
αα |

,

(4.15)
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where ∆φα = φα2−φα1 is the CP phase difference. Written in this way, we see that

in order to reproduce the light neutrino data in mν
αα (up to a value of the Majorana

phase α21), the values of |Θα2| and cos∆φα are fixed by mN , r∆, |Θα1| and φα1.

If we instead consider (Mν)αβ = 0 for α ̸= β , i.e., the off-diagonal constraints

of Eq. (4.5), we obtain

Θβ1

Θα1
=

xα

αβ
±
√

(xα

αβ
)2 − xα

ααxα

ββ

√
1+ xα

αα

xα
αα

≡ yα

αβ
, (4.16)

which can be used to find

|Θβ1|2

|Θα1|2
= |yα

αβ
|2 , cos(φβ1 −φα1) =

Re
[
(yα

αβ
)2]

|yα

αβ
|2

. (4.17)

Combining Eqs. (4.14) and (4.16), it is also possible to write,

Θβ2

Θα1
=±i

√
(yα

αβ
)2 + xα

ββ

1+ r∆

, (4.18)

and therefore all active-sterile mixing strengths |Θβ i| and CP phases φβ i (for α ̸=

β ) can be written in terms of mν

αβ
(containing the light neutrino masses, mixing

angles and Dirac CP phase from the neutrino oscillation data and a single Majorana

phase α21 for mlight = 0), the HNL masses mN and mN(1+ r∆), a single active-

sterile mixing |Θα1| and CP phase φα1 for a particular flavour α . We note that this

approach is very similar to the Casas-Ibarra parametrisation [172], which splits the

mixing matrix U into sub-blocks and uses the relation (Mν)αβ = 0 to express the

active-sterile mixing strengths in terms of the light neutrino masses, mixing angles

and phases, HNL masses and arbitrary angles in a complex orthogonal matrix R.

In Appendix B, we compare the phenomenological approach summarised in this

section to the minimal 3+2 parametrisation of [173].

An interesting limit to consider for Eqs. (4.14) and (4.16) is |xα

αβ
| ≪ 1, or

equivalently |Θα1|2 ≫ |mν

αβ
|/mN , which is exactly the inverse seesaw limit as dis-

cussed in Sec. 3.2. With the lightest neutrino being massless in the 3+2 model, we
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obtain

|Θα2|2 ≈
|Θα1|2

1+ r∆

, cos∆φα =−1 ,
Θβ1

Θα1
≈

√
miUβ i ∓ i√m j Uβ j√
miUαi ∓ i√m j Uα j

, (4.19)

where (i, j) = (2,3) and (1,2) in the NO and IO scenarios, respectively. As dis-

cussed in Appendix A, the choice of sign in Eqs. (4.16) and (4.18), and therefore

yν

αβ
in Eq. (4.19), is arbitrary. In Eqs. (4.18) and (4.19), we choose the positive sign

and allow the physically-relevant Majorana phase α21 in the Uαi to lie in the range

[0,4π], which takes into account both values of of the sign.

In Fig. 4.2 (left), we depict two regions in the (|Θe1|2, |Θe2|2) plane that

are compatible with the (Mν)ee = 0 constraint for fixed mN = 400 MeV and

r∆ = 10−0.5, but allowing α21 and φe1 to vary. The blue and green shaded regions

are for the NO and IO scenarios, respectively. We see that the regions can tend to

small |Θe1|2 or |Θe2|2 values while the other mixing strength remains constant. To

the upper right, the region can also tend to large values of both mixing strengths;

here, the ratio |Θe2|2/|Θe1|2 follows the relation in Eq. (4.19). These limits will be

discussed in more detail in the next subsection.

4.2.3 Approximate Ratio Formulae

We will now examine Eq. (4.14) in the simple 1+2 model, with the active neutrino

flavour α = e. These results will allow a broad strokes comparison of 0νββ decay

and DUNE in the following sections. The light neutrino mass matrix element mν

αβ

is simply replaced by mν , which gives the expression

|Θe2|2 =
|rν + |Θe1|2eiφe1|

1+ r∆

=

√
r2

ν + |Θe1|4 +2rν |Θe1|2 cosφe1

1+ r∆

, (4.20)

where we have defined rν ≡ mν/mN . In Fig. 4.2 (right), we use Eq. (4.20) to plot

the combination |Θe2|2(1+ r∆)/rν as a function of |Θe1|2/rν for different values of

cosφe1. The blue region formed for cosφe1 ∈ [−1,1] indicates the parameter space

that is compatible with (Mν)ee = 0. Every point in the parameter space has an

associated value of cosφe1 and cosφe2; in Fig. 4.2 (right), the values of these phases
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Figure 4.2: (Left) Regions in the (|Θe1|2, |Θe2|2) plane that are compatible with Eq. (4.14)
in the 3 + 2 model, showing the NO (blue) and IO (green) cases for
mN = 400 MeV, r∆ = 10−0.5 and mlightest = 0. (Right) Region in the
(|Θe1|2/rν , |Θe2|2(1+ r∆)/rν) plane that is compatible with Eq. (4.14) in the
simple 1+2 model. The blue and magenta lines are contours of constant cosφe1
and cosφe2, respectively; their values on the edges of the allowed region are
shown in parentheses.

on the extremities of the allowed region are shown. Likewise, the value of cos∆φe

is given by

cos∆φe =
r2

ν −|Θe1|4 − (1+ r∆)
2|Θe2|4

2(1+ r∆)|Θe1|2|Θe2|2
=

r2
ν −|Θe1|4 −||Θe1|2 + rνe−iφe1|2

2|Θe1|2||Θe1|2 + rνe−iφe1|

=− |Θe1|2 + rν cosφe1√
r2

ν + |Θe1|4 +2rν |Θe1|2 cosφe1
.

(4.21)

The relevant limits of Eq. (4.20) are made clear in the figure; firstly, the thin ex-

tensions to the left and bottom of the allowed region indicate that the active-sterile

mixing strengths tend to constant values when the other mixing is much smaller

than rν , i.e.,

|Θe1|2 = rν , cosφe1 =−1 (|Θe2|2 ≪ rν/(1+ r∆)) , (4.22)

|Θe2|2 =
rν

1+ r∆

, cosφe2 =−1 (|Θe1|2 ≪ rν) . (4.23)
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This is exactly the standard seesaw scenario as discussed in Sec. 3.2, where one

of the HNL states generates the light neutrino mass at tree level, while the other

decouples. In each case, the value of one phase is constrained, while the phase

difference can take any value. Secondly, the thin extension to the upper right of the

allowed region suggests that the active-sterile mixing can also tend to values much

larger than rν . In this limit,

|Θe2|2 =
|Θe1|2

1+ r∆

, cos∆φe =−1 (|Θe1|2 ≫ rν) . (4.24)

This is the inverse seesaw scenario, where both HNL states have a large active-

sterile mixing, but a cancellation ensures that their combined contribution to the

tree level neutrino mass is small.

4.3 Neutrinoless Double Beta Decay
In this section we will examine the 0νββ decay process in the phenomenological

parametrisation set out in Sec. 4.2. Firstly, we will provide a general formula for the

0νββ decay half-life in the 3+2 model, examining how an experimental measure-

ment of 0νββ decay can be used to constrain the active-sterile mixing and phases

for a given HNL mass mN and mass splitting ratio r∆. We will then simplify to the

1+2 scenario, considering only the first generation. Various limits of the resulting

formulae will be investigated.

4.3.1 In the Phenomenological Model

The 0νββ decay rate Γ0ν and half-life T 0ν

1/2, taking into the account the exchange

of NA active neutrinos and NS sterile neutrinos, can be written as

Γ0ν

ln2
=

1
T 0ν

1/2
=

G0νg4
A

m2
e

∣∣∣∣NA

∑
i

U2
eimiM

0ν(mi)+
NS

∑
κ

U2
eNκ

mNκ
M 0ν(mNκ

)

∣∣∣∣2 , (4.25)

where G0ν is the kinematical phase space factor for the 0νββ decay isotope, gA is

the axial coupling strength, me is the electron mass, and M 0ν(mi) is the nuclear ma-

trix element (NME) of the process, which depends on the mass mi of the exchanged
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NME MF M AA
GT M ′AP

GT M ′′PP
GT M ′WW

GT M ′AP
T M ′′PP

T M ′WW
T M 0ν

ν M 0ν
N

MX −0.780 6.062 0.036 0.00034 0.089 −0.010−0.00014−0.035 −5.28 –

MX ,sd −48.89 170.0 2.110 0.028 2.945 −1.310−0.022 −6.541 – −194

Table 4.1: Standard and short-distance Fermi, Gamow-Teller and tensor NMEs of 76Ge
and the resulting light and heavy NMEs [175] used in the simple interpolation
formula of Eq. (4.30).

neutrino and encodes the non-trivial transition between initial and final-state nu-

clei. The values of NME are taken from existing computational results as shown in

Tab. 4.1.

The typical energy scale of 0νββ decay, kF ∼ 100 MeV (the Fermi momentum

of a nucleus), is much smaller than the electroweak scale. The first step in deriving

Eq. (4.25) is therefore to write the interactions between the quarks, outgoing elec-

trons and exchanged neutrino as the effective Fermi interaction, i.e., the low-energy

limit of the charged-current interaction in Eq. (4.6). Due to the non-perturbative na-

ture of QCD, this description of 0νββ decay in terms of quarks and gluons breaks

down below the GeV scale. It becomes necessary to use chiral perturbation theory

to characterise pions and nucleons as degrees of freedom below the chiral symme-

try breaking scale Λχ ∼ 1 GeV. In turn, chiral effective field theory (EFT) and the

non-relativistic limit must be used to describe the many-nucleon initial and final

states. These steps go into calculating the NMEs in Eq. (4.25); this has been per-

formed numerically using many-body methods such as the quasi-particle random

phase approximation (QRPA), shell model and interacting boson model (IBM-2).

More recently, ab initio methods have been used to calculate the NMEs directly

from the chiral EFT [174].

The mass of the exchanged neutrino has a large impact on the above discus-

sion. For mi ≲ Qββ , where Qββ = EI −EF − 2me ∼ O(MeV) is the Q-value of

the isotope (EI and EF are the energies of the initial and final nuclei, respectively),

the 0νββ decay rate is dominated by the exchange of potential neutrinos, with

(p0,p) ∼ (0,kF), and hard neutrinos, with p0 ∼ p ∼ Λχ [176, 177]. In this limit,
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the NMEs can be written as

M 0ν(mi ≲ Qββ ) =
g2

V

g2
A
MF −

2mempgNN
ν

g2
A

MF,sd −MGT +MT , (4.26)

where MF is the Fermi NME, while

MGT = M AA
GT − gP

6gA
M ′AP

GT +
(gV +gW )2

6g2
A

M ′WW
GT +

g2
P

48g2
A
M ′′PP

GT , (4.27)

MT =
gP

6gA
M ′AP

T +
(gV +gW )2

12g2
A

M ′WW
T − g2

P

48g2
A
M ′′PP

T , (4.28)

are the Gamow-Teller and tensor NMEs. In Eq. (4.26), mp is the proton mass

and gV = 1, gW = 3.7 and gP = 231 are the vector, magnetic and pseudoscalar

charges, respectively [178]. The potential neutrinos contribute to MF , MGT and

MT , while the hard neutrinos induce the term proportional to gNN
ν ∼ 1/(2Fπ)

2,

Fπ = 92.2 MeV, which is a low-energy constant (LEC) describing the short-range

nucleon-nucleon coupling. This term contains the short-range Fermi NME MF,sd,

which is found by replacing the long-range neutrino potential in the calculation of

the Fermi NME with a short-range potential (we use the normalisation factor of

memp similar to [178, 179] instead of m2
π used by [177]). All NMEs in Eqs. (4.26)-

(4.28) are given in Table 4.1 for 76Ge.

If the exchanged neutrinos are instead much heavier than the chiral symme-

try breaking scale, mNκ
≫ Λχ , they must be integrated out before matching onto

the chiral perturbation theory; the exchange of such states is then described by a

dimension-nine operator [177, 180, 181]. Neutrinos in the intermediate mass re-

gion Qββ ≲ mNκ
≲ Λχ are more difficult to describe, as loop corrections scaling

as ∼ mNκ
/Λχ become large. Nevertheless, it is possible to approximate this inter-

mediate region by applying an interpolating formula between the well-understood

low- and high-mass regions. In the treatment of [177], this involves constructing

an interpolating formula for each NME MX appearing in Eqs. (4.26)-(4.28), for
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example,

M int
X(,sd)(mNκ

) = MX(,sd)
⟨p2

X⟩
⟨p2

X⟩+m2
Nκ

; ⟨p2
X⟩ ≡ memp

∣∣∣∣MX ,sd

MX

∣∣∣∣ , (4.29)

where ⟨p2
X⟩ ∼ k2

F . An interpolating formula can also be formulated for gNN
ν , which

connects the LEC for hard neutrino exchange to other LECs from dimension-nine

operators. Rather than using an interpolation formula for each NME in Eqs. (4.26)-

(4.28), a more naive approach is to interpolate between the low- and high-mass

limits of the whole NME M 0ν . For example,

M̃ int
0ν (mNκ

) = M 0ν
ν

⟨p2⟩
⟨p2⟩+m2

Nκ

; ⟨p2⟩ ≡ memp

∣∣∣∣M 0ν
N

M 0ν
ν

∣∣∣∣ , (4.30)

where the light NME M 0ν
ν is the expression in Eq. (4.26) and the heavy NME M 0ν

N

is given by Eq. (4.26) with gNN
ν → 0 and MX → MX ,sd. Inserting the interpolation

formula in Eq. (4.30) into Eq. (4.25), it is now possible to write the inverse 0νββ

decay half-life as

1
T 0ν

1/2
=

G0νg4
A|M 0ν

ν |2

m2
e

∣∣meff
ββ

∣∣2 , (4.31)

where the effective Majorana neutrino mass from 0νββ decay is

∣∣meff
ββ

∣∣= ∣∣∣∣NA

∑
i

U2
eimi +

NS

∑
κ

U2
eNκ

mNκ

⟨p2⟩F (mNκ
)

⟨p2⟩+m2
Nκ

∣∣∣∣ . (4.32)

Here, F (mNκ
) = M int

0ν
(mNκ

)/M̃ int
0ν
(mNκ

) is a correction function to the naive in-

terpolation formula in Eq. (4.30). As mentioned above, a more accurate approach

would be to include in M int
0ν
(mNκ

) an interpolating formula for gNN
ν and each NME

in Eqs. (4.26)-(4.28).

In the 3+2 model we have UeN1 ≈ |Θe1|eiφe1/2 and UeN2 ≈ |Θe2|eiφe2/2. Insert-

ing these into Eq. (4.33), it is then possible to use Eq. (4.14) to eliminate |Θe2|2 and
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Figure 4.3: (Left) In the 3+ 2 model, the effective Majorana mass
∣∣meff

ββ

∣∣ from the 0νββ

decay of 76Ge as a function of the active-sterile mixing |Θe1|2 for mN =
400 MeV, r∆ = 10−0.5, marginalising over α21 and φe1 in the NO (blue shaded)
and IO (green shaded) scenarios with mlight = 0. (Right) Regions in the
(mN , |Θe1|2) parameter space compatible with a measured 0νββ decay half-
life of T 0ν

1/2(
76Ge) = 1028 yr, for a mass splitting ratio of r∆ = 10−0.5 in the

NO (blue) and IO (green) scenarios, marginalising over α21 and φe1. In both
plots, solid lines use F (mN) = 1, dashed lines the more accurate NME in-
terpolating formula (shown in the inset). The corresponding seesaw lines,
|Θe1|2 = |mν

ee|/mN , are shown (dotted).

φe2, giving

∣∣meff
ββ

∣∣= ∣∣αmν
ee +βmN |Θe1|2eiφe1

∣∣ , (4.33)

where we have introduced

α ≡ 1−
⟨p2⟩F

(
mN(1+ r∆)

)
⟨p2⟩+m2

N(1+ r∆)2 β ≡ ⟨p2⟩F (mN)

⟨p2⟩+m2
N

−
⟨p2⟩F

(
mN(1+ r∆)

)
⟨p2⟩+m2

N(1+ r∆)2 .

(4.34)

In Fig. 4.3 (left), we plot the effective Majorana mass from 0νββ decay in

Eq. (4.33) as a function of the active-sterile mixing |Θe1|2 for an HNL mass mN =

400 MeV and mass splitting ratio r∆ = 10−0.5. We assume that φe1 and the Majo-

rana phase α21 are not constrained by other means; we therefore marginalise over

them, forming a band of possible
∣∣meff

ββ

∣∣ values. The blue and green shaded regions

depict the NO and IO scenarios, respectively, with a massless lightest neutrino. The
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solid lines make use of the naive interpolating formula in Eq. (4.30), i.e., setting

F (mN) = 1 in Eq. (4.33), while the dashed lines use an interpolating formula for

gNN
ν and each NME in Eqs. (4.26)-(4.28). The regions are compared to the current

upper limit on
∣∣meff

ββ

∣∣ from the GERDA-II experiment, T 0ν

1/2(
76Ge) > 1.8×1026 yr,

and the future sensitivity of the LEGEND-1000 experiment, T 0ν

1/2(
76Ge)> 1028 yr.

In Fig. 4.3 (right), we plot the active-sterile mixing |Θe1|2 as a function of mN

found from Eq. (4.33) for r∆ = 10−0.5 and a 0νββ decay half-life of T 0ν

1/2(
76Ge) =

1028 yr. Again, we depict the NO (blue shaded) and IO (green shaded) scenarios

for a massless lightest neutrino and marginalise over φe1 and the Majorana phase

α21. The solid and dashed lines, respectively, use the naive and more accurate

interpolating formulae; in the inset, we plot the values of F (mN) over the same

mass range. The blue and green dotted lines show the ranges of possible seesaw

relations, |Θe1|2 = |mν
ee|/mN , in the NO and IO cases, respectively.

4.3.2 Approximate 0νββ Decay Rate

In the 3+ 2 model, 0νββ decay is induced by the exchange of the light neutri-

nos and a pair of HNLs. Depending on the parameters of the model, one of these

contributions may dominate over the others; alternatively, if the contributions are of

similar size, constructive or destructive interference may occur in
∣∣meff

ββ

∣∣. In order to

investigate this interplay, it is useful to use the simple 1+2 model as in Sec. 4.2.3.

Replacing mν
ee with mν in Eq. (4.33), we obtain the simplified effective Majorana

mass

∣∣meff
ββ

∣∣= ∣∣αmν +βmN |Θe1|2eiφe1
∣∣= mN

√
α2r2

ν +β 2|Θe1|4 +2αβ rν |Θe1|2 cosφe1 .

(4.35)

We see that the interplay between the light neutrino and HNL pair is controlled

by the active-sterile mixing |Θe1|2, light neutrino mass mν , HNL mass mN , mass

splitting ratio r∆ (contained in α and β ) and CP phase φe1.

We will now examine how
∣∣meff

ββ

∣∣ depends on the active-sterile mixing |Θe1|2.

Firstly, in the standard seesaw limit, i.e., when the active-sterile mixing of the HNL
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pair lies in the thin extensions to the left or bottom of the allowed region in Fig. 4.2

(right), we have

∣∣meff
ββ

∣∣≈
(α −β )mν (|Θe1|2 = rν)

αmν (|Θe1|2 ≪ rν)

. (4.36)

Here, one HNL decouples while the other has an active-sterile mixing following the

seesaw relation and a CP phase cosφei =−1, therefore adding destructively with the

light neutrino contribution. Instead, in the inverse seesaw limit |Θe1|2 ≫ rν , where

the active-sterile mixing strengths follow |Θe2|2 = |Θe1|2/(1+ r∆) and the relative

CP phase is cos∆φe = −1 (and therefore the HNLs add destructively with each

other in
∣∣meff

ββ

∣∣), there are three interesting cases. If the active-sterile mixing |Θe1|2

lies in the range rν ≪ |Θe1|2 ≪ αrν/β (note that β < α and therefore α/β > 1

for all positive values of mN and r∆), it is not large enough for the HNL pair to

dominate over the light neutrino contribution, and again
∣∣meff

ββ

∣∣≈ αmν . Instead, for

|Θe1|2 ≈ αrν/β , cancellations can occur between the light neutrino and HNL pair.

The phase φe1 is unconstrained in the |Θe1|2 ≫ rν limit, so for |Θe1|2 = αrν/β we

may have any value between
∣∣meff

ββ

∣∣ ≈ 0 for cosφe1 = −1 and
∣∣meff

ββ

∣∣ ≈ 2αmν for

cosφe1 = 1. Finally, for |Θe1|2 ≫ αrν/β , the HNL pair dominates over the light

neutrino contribution, and

∣∣meff
ββ

∣∣≈ βmN |Θe1|2 (|Θe1|2 ≫ αrν/β ) . (4.37)

This is nothing but the destructive interference between the HNL contributions. In

this limit,
∣∣meff

ββ

∣∣ is insensitive to the phase φe1.

We can now ask the question: what would a measurement of 0νββ decay tell

us about the available parameter space of the HNL pair? We can equate
∣∣meff

ββ

∣∣ in
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Eq. (4.35) to the experimental value of the effective Majorana mass,

∣∣mexp
ββ

∣∣≡ me

g2
A|M 0ν

ν |
√

G0νT 0ν

1/2

= 1.24×10−2 eV
(

2.36×10−15 yr−1

G0ν

)1/2( 5.28
|M 0ν

ν |

)(
1028 yr

T 0ν

1/2

)1/2

,

(4.38)

where T 0ν

1/2 is the measured 0νββ decay half-life. The constraint
∣∣meff

ββ

∣∣ = ∣∣mexp
ββ

∣∣
defines a hypersurface in the (mν ,mN ,r∆, |Θe1|2,cosφe1) parameter space, described

by

cosφe1 =

∣∣mexp
ββ

∣∣2 −α2m2
ν −β 2m2

N |Θe1|4

2αβmνmN |Θe1|2
. (4.39)

We can also use the constraint
∣∣meff

ββ

∣∣ = ∣∣mexp
ββ

∣∣ to define a hypersurface in the pa-

rameter space with φe1 replaced by the relative CP phase ∆φe, described by

cos∆φe =
α2m2

ν − (2α −β )βm2
N |Θe1|4 −|mexp

ββ
|2

2
√

αβ mN |Θe1|2
√

|mexp
ββ

|2 − (α −β )(αm2
ν −βm2

N |Θe1|4)
, (4.40)

which is found by inserting Eq. (4.39) into Eq. (4.21).

In Fig. 4.4 (left), we plot regions in the (mN , |Θe1|2) plane that are compatible

with a measured 0νββ decay half-life of T 0ν

1/2(
76Ge)= 1028 yr, a mass splitting ratio

of r∆ = 10−0.5 and three different values of the light neutrino mass: mν = 10−2.5 eV

(blue), 10−1.9 eV (light blue) and 10−1.5 eV (green). We allow the phase cosφe1 to

lie anywhere in the range cosφe1 ∈ [−1,1], forming bands of allowed |Θe1|2 values.

In Fig. 4.4 (upper right), we show the effective Majorana mass
∣∣meff

ββ

∣∣ as a function

of |Θe1|2 for mN = 400 MeV, r∆ = 10−0.5 and the same three values of mν . The

observed Majorana mass
∣∣mexp

ββ

∣∣ for a 0νββ decay half-life of 1028 yr is shown as

a horizontal (dotted) line; where this line intersects the
∣∣meff

ββ

∣∣ region indicates the

allowed range of |Θe1|2 along the mN = 400 MeV line (dot dashed) in the left plot

of Fig. 4.4.
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Figure 4.4: (Left) In the 1+ 2 model, regions in the (mN , |Θe1|2) parameter space com-
patible with a measured 0νββ decay half-life of T 0ν

1/2(
76Ge) = 1028 yr, for a

mass splitting ratio of r∆ = 10−0.5, an arbitrary CP phase φe1 and a light neu-
trino mass mν = 10−2.5 eV (blue), 10−1.9 eV (light blue) or 10−1.5 eV (green).
The corresponding seesaw lines, |Θe1|2 = mν/mN , are shown (dotted). (Upper
right) For mN = 400 MeV, allowed values of |meff

ββ
| as a function of |Θe1|2 for

the same three mν values, compared to |mexp
ββ

| from a 0νββ decay half-life of
1028 yr (black dotted). (Lower right) For mN = 400 MeV, r∆ = 10−0.5 and three
mν values, 1+ cosφe1 (solid) and 1+ cos∆φe (dashed) as a function of |Θe1|2,
implied by a measured 0νββ decay half-life of 1028 yr.

In Fig. 4.4 (lower right), we plot the values of 1+cosφe1 (solid) and 1+cos∆φe

(dashed) as a function of |Θe1|2 using Eqs. (4.39) and Eqs. (4.40), respectively, given

a 0νββ decay half-life of T 0ν

1/2(
76Ge) = 1028 yr, for mN = 400 MeV, r∆ = 10−0.5 and

the same three mν values. For mν = 10−2.5 eV, cosφe1 can lie anywhere between −1

and 1. This is made clear from Fig. 4.4 (upper right); the light neutrino mass does

not saturate the 0νββ decay rate and so
∣∣mexp

ββ

∣∣ intersects the
∣∣meff

ββ

∣∣ region where∣∣meff
ββ

∣∣ ≈ βmN |Θe1|2 (i.e., the HNL pair dominates), which is insensitive to φe1.

For mν = 10−1.5 eV, we instead have cosφe1 ≈ −1; now, the light neutrino mass

does saturate the 0νββ decay rate and
∣∣mexp

ββ

∣∣ intersects the
∣∣meff

ββ

∣∣ region where

there must be a cancellation between the light neutrino and HNL pair. For the

intermediate case mν = 10−1.9 eV, the light neutrino contribution only just saturates

the 0νββ decay rate and therefore a wider range of |Θe1|2 values are allowed.
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For the relative CP phase ∆φe, we see that cos∆φe ≈−1 for all three mν values;

this is because the intersection of
∣∣mexp

ββ

∣∣ and the
∣∣meff

ββ

∣∣ region occurs well within

the inverse seesaw regime for mN = 400 MeV and r∆ = 10−0.5. This is confirmed

in Fig. 4.4 (left), where we see that the allowed bands of |Θe1|2 are well above the

seesaw lines. Nevertheless, large values of cos∆φe are still possible in the narrow

light blue and green regions where the allowed |Θe1|2 values fall below the seesaw

lines. For a light neutrino mass mν > |mexp
ββ

|, this occurs when the HNL mass mN is

such that
∣∣mexp

ββ

∣∣= αmν , i.e.,

mN =
1

1+ r∆

√√√√ |mexp
ββ

|⟨p2⟩
mν −|mexp

ββ
|
, (4.41)

and so
∣∣mexp

ββ

∣∣ intersects the
∣∣meff

ββ

∣∣ region along the thin extension to small |Θe1|2

values.

To conclude this section, we consider how the factors α and β depend on mN

and r∆. To do this, it is convenient to write the factors α and β (for F (mN) = 1) as

α = 1− 1
1+ rp(1+ r∆)2 , β =

1
1+ rp

− 1
1+ rp(1+ r∆)2 , (4.42)

where we have defined rp ≡ m2
N/⟨p2⟩. The relevant limits of α and β are listed

in Table 4.2. First, we can consider the scenario where the mass splitting ratio is

small (r∆ ≪ 1) and the HNL mass mN is below the scale kF ∼ 100 MeV (rp ≪ 1).

In this limit, α ≈ rp ≪ 1 and β ≈ 2rpr∆ ≪ 1 and therefore the effective Majorana

mass is suppressed. This can be understood from Eq. (4.33); the effective Majo-

rana mass is approximately proportional to (Mν)ee in Eq. (4.10) which is zero at

tree level, and the light neutrino and HNL pair contributions exactly cancel each

other. Another possible situation is that rp ≪ 1, i.e. the lighter HNL is less massive

than ∼ 100 MeV, but r∆ ≫ 1/r1/2
p (or ∆mN ≫ ⟨p2⟩1/2), so that the heavier HNL

is more massive than ∼ 100 MeV. This gives α ≈ β ≈ 1 and so the contributions

from the light neutrino and lighter HNL dominate the 0νββ decay rate, while the

contribution from the heavier HNL is suppressed.
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α , β rp ≪ 1 rp ≫ 1

r∆ ≪ 1 rp, 2rpr∆ 1, 2r∆/rp

r∆ ≫ 1 1, 1 1, 1/rp

Table 4.2: Approximate values of the factors α and β in the different limits of the ratios
rp = m2

N/⟨p2⟩ and r∆ = ∆mN/mN .

We next examine the limit in which both HNL states are heavier than ∼

100 MeV (rp ≫ 1). This gives α ≈ 1 and β ≈ 2r∆/rp ≪ 1 if the mass splitting ratio

is small (r∆ ≪ 1) and α ≈ 1 and β ≈ 1/rp ≪ 1 if the splitting is large (r∆ ≫ 1).

As DUNE probes HNLs in the mass range 100 MeV ≲ mN ≲ 2 GeV, this is the

interesting regime for the comparison of 0νββ decay and DUNE. If we are in the

small mν limit (so the HNL pair dominates 0νββ decay),

∣∣meff
ββ

∣∣≈ βmN |Θe1|2 ≈
mN

rp

(
1− 1

(1+ r∆)2

)
|Θe1|2

≈

2mNr∆|Θe1|2/rp (r∆ ≪ 1)

mN |Θe1|2/rp (r∆ ≫ 1)
,

(4.43)

where we first approximate the factor β for rp ≫ 1 and then for the two different

limits of r∆. For r∆ ≪ 1,
∣∣meff

ββ

∣∣ is given by the difference of the HNL contributions,

which is proportional to r∆. The inverse 0νββ decay half-life in Eq. (4.31) therefore

scales as (T 0ν

1/2)
−1 ∝ (∆mN)

2|Θe1|4/m4
N . For r∆ ≫ 1,

∣∣meff
ββ

∣∣ is just the contribution

of the lighter HNL, because the contribution of the heavier HNL is suppressed.

The inverse 0νββ decay half-life then scales as (T 0ν

1/2)
−1 ∝ |Θe1|4/m2

N . Equating

Eq. (4.43) to
∣∣mexp

ββ

∣∣ and solving for |Θe1|2 (keeping an arbitrary value of r∆) gives

|Θe1|2 ≈
mN |mexp

ββ
|

⟨p2⟩
(1+ r∆)

2

r∆(2+ r∆)
. (4.44)

This result will be used to compare 0νββ decay and direct searches at DUNE ana-

lytically in Sec. 4.5.
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4.4 The Deep Underground Neutrino Experiment

Fixed target experiments are sensitive probes of HNL scenarios, which we intend to

use in conjunction with 0νββ decay to explore the nature of an HNL pair. As seen

in Fig. 4.4, 0νββ decay searches have the highest sensitivity to the active-sterile

mixing in the 100 MeV to GeV mass range.

To explore the complementarity with direct searches, we focus on the upcom-

ing experiment DUNE, which will be able to probe the direct production of HNLs

in a similar mass range.

In this section we will first describe the production and subsequent decay of

HNLs via SM channels in fixed target experiments. We will then examine in more

detail the sensitivity of the DUNE near detector to HNLs produced from the decays

of pions, kaons and D mesons. Using PYTHIA to simulate the momentum profiles of

HNLs produced from these production channels, we will apply simplified geometric

cuts on the decays of HNLs in the DUNE near detector to estimate the sensitivity of

the experiment. DUNE will initially receive a 1.2 MW proton beam from the Main

Injector accelerator at the Long Baseline Neutrino Facility (LBNF) at FNAL. The

120 GeV proton beam will impinge on a graphite target, which corresponds to pp

collisions with the target at rest. DUNE will use two detectors; a far detector (FD)

situated at a distance of 1300 km from the target and a smaller near detector (ND)

at a distance of 574 m from the target [165].

For our analysis, we will model the ND with a simplified geometry; since our

goal is to obtain the number of events from DUNE for a comparison with 0νββ

decay, we do not include the exact geometry of the fiducial volume, which might

result in O(1) corrections that can be obtained from a detailed analysis [165]. The

basic schematic of our analysis is as follows: the proton beam hits the target, lead-

ing to the production of mesons from pp collisions, which travel and decay to SM

particles and HNLs. We employ geometric cuts, where we demand that the pro-

duced HNL decays to charged tracks inside the fiducial volume, taken to have a

length of 5 m along the beam axis and a cylindrical cross section. We demand

that 2.44 events be detected to reject a null event rate with 90% C.L., assuming no
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Meson P π+ K+ K0
L,S D0 D+ D+

s

Mesons/POT 2.8 0.24 0.18 6×10−5 1.2×10−5 3.3×10−6

Table 4.3: Number of positively-charged and neutral pseudoscalar mesons produced per
proton on target (POT) in DUNE, for a 120 GeV proton beam.
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Figure 4.5: Distributions of momentum fractions along the beam axis for pions (left), kaons
(centre) and D mesons (right) from PYTHIA-generated events.

background events and a Poisson-like distribution. We first limit our analysis to the

case where the HNL mixes uniquely to the electron flavour (α = e), while the more

general case of mixing with all the three flavours will be explored later.

4.4.1 Meson Production at DUNE

Meson decays are the dominant source of HNLs in fixed target experiments. A

variety of mesons, such as pions, kaons and D mesons are produced at DUNE via pp

collisions, which we will now briefly describe in terms of their production fractions

and momentum profiles.

Following the approach of Refs. [182–184], we show the production fractions

of mesons at DUNE in Table 4.3, using the values given in the literature when in

agreement with the values we extract from the simulation of meson production in

PYTHIA (v. 8.307) [185].2 In PYTHIA, the momentum distributions for mesons pro-

duced in DUNE are also extracted. In Fig. 4.5, we show the momentum distribution

histograms for pions (left), kaons (centre) and D mesons (right), where it can be

seen that the produced mesons are highly boosted along the beam direction.

2In the current literature, there exists a slight variation in the production fraction of pions from
pp collisions at DUNE, varying roughly by an order of magnitude. A more systematic study would
be needed to improve the accuracy, but it would not lead to a drastic change in the overall DUNE
sensitivity (roughly at the 10% level), and would not affect our final results.
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4.4.2 HNL Production from Meson Decays

After simulating the production of mesons at DUNE, we consider all possible decay

modes of pions, kaons and D mesons leading to the production of HNLs. Meson

decays to HNLs are calculated in the rest frame of the meson and then boosted

to the lab frame using the momentum of the corresponding meson, extracted from

PYTHIA.

Meson decays can be grouped into two categories, the first being purely lep-

tonic two-body decays such as P+ → e+N, which have the generic branching frac-

tion

Br(P+ → e+N)≃ τP
G2

Fm3
P

8π
f 2
P|UeN |2|Vqq̄|2

m2
N

m2
P

(
1−

m2
N

m2
P

)2

, (4.45)

where τP, fP, mP and Vqq̄ correspond to the meson lifetime, decay constant, mass,

and CKM mixing matrix element (depending on valence quark content of the me-

son), respectively [186]. The second category contains three-body semi-leptonic de-

cays, which can be competitive to the two-body channels, as seen in Fig. 4.6. This

is mainly attributed to the absence of CKM or chirality-flip suppressions, which

compensates for the smaller phase space [186, 187]. The formulae for three-body

decays require the use of form factors and depend on whether the daughter meson

is pseudoscalar or vector. For the decay into a pseudoscalar meson, the branching

fraction is given by

Br(P+ → P′0e+N) ∝ τP
G2

Fm5
P

64π3 |Vqq′|2|UeN |2 f (IP) . (4.46)

For the decay into a vector meson, the branching fraction becomes,

Br(P+ →V 0e+N) ∝ τP
G2

Fm7
P

64π3m2
V
|Vqq′|2|UeN |2 f (IV ) , (4.47)

where f (IP) and f (IV ) are functions that depend on the meson coupling constants

and form factors, respectively [187].

As shown in Fig. 4.6, for HNL masses below the pion threshold, π+ → e+N
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Figure 4.6: Branching fractions of decays of pions and kaons (left) and D mesons (right)
to HNLs, with a value of |UeN |2 = 10−8 for the active-sterile mixing with the
electron flavour.

(solid blue) is the dominant production channel, which slowly gives way to K+ →

e+N (solid red) up to the kaon threshold. For heavier HNLs above the kaon but

below the charm threshold, production via D meson decays is dominant, with D+
s →

e+N (solid green) being the most important channel.

4.4.3 HNL Decays

HNLs are unstable, and will therefore decay to SM particles via charged- or neutral-

current processes, suppressed via the active-sterile mixing |UeN |2. These decays

proceed via off-shell W±/Z bosons, which means that they can be long-lived, with

decay lengths in the tens of meters or larger, and thus are very well suited to be-

ing explored at fixed target experiments. We will briefly discuss these SM decay

channels of HNLs here, a detailed discussion can be found in [183, 188]. In our

framework with only one HNL species that couples with the first generation only,

we have the corresponding decay channels of HNLs as:

1) N → νeℓ
−
2 ℓ

+
2 : In this process, one νe participates. For this case, charged (only

for electron flavor) as well as neutral current (for any ℓ2 = e,µ,τ) interactions are

present. The corresponding decay width is (with xℓ2 = mℓ2/mN),

Γ
νeℓ

−
2 ℓ

+
2 = |UeN |2

G2
Fm5

N
96π3

[(
C1 +2sin2

θwδe,ℓ2

)
f1(xℓ2)+

(
C2 + sin2

θwδe,ℓ2

)
f2(xℓ2)

]
,

(4.48)
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where

C1 =
1
4
(1−4sin2

θw +8sin4
θw), C2 =

1
2
(−sin2

θw +2sin4
θw), (4.49)

and the functions defined as

f1(x) = (1−14x2 −2x4 −12x6)
√

1−4x2 +12x4(x4 −1)L(x)

f2(x) = 4[x2(2+10x2 −12x4)
√

1−4x2 +6x4(1−2x2 +2x4)L(x)], (4.50)

with

L(x) = ln

(
1−3x2 − (1− x2)

√
1−4x2

x2(1+
√

1−4x2)

)
. (4.51)

2) N → e−ℓ+2 νℓ2 : In this process, one of the participating charged lepton is e− itself.

Now, in this situation only charged current interaction is allowed and ℓ2 = µ,τ . The

corresponding decay width is (with xM ≡ max{xe,xℓ2}= xℓ2),

Γ
e−ℓ+2 νℓ2 = |UeN |2

G2
Fm5

N
192π3 (1−8x2

M +8x6
M − x8

M −12x4
Mln(x2

M)). (4.52)

3) N → νeνℓ2 ν̄ℓ2 : Here only neutral current interaction will be present and ℓ2 =

e,µ,τ . The corresponding decay width can be written as,

Γ
νeνℓ2 ν̄ℓ2 =

G2
F

96π3 |UeN |2m5
N . (4.53)

4) N → Pνe : Here P corresponds to neutral pseudoscalar meson i.e., π0,K0,η ,η ′.

The corresponding decay width is

Γ
Pνe =

G2
Fm3

N
32π

f 2
P|UeN |2(1− x2

P)
2, (4.54)

with fP as the decay constants of the corresponding neutral meson while xP ≡

mP/mN .

5) N → P+e− : Here all the relevant charged pseudoscalar mesons like π±,K±,D±,D±
s
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Figure 4.7: HNL decay diagrams which includes leptonic decays: N → e−ℓ+ν̄ℓ (top left),
N → νeℓ

−ℓ+ (top middle), N → νeνℓν̄ℓ (top right) and hadronic decays: N →
P0(V 0)νe (bottom left), N → P(V )ℓ+(ℓ−) (bottom right).

will contribute. The decay width is

Γ
P+e− =

G2
Fm3

N
16π

f 2
P|UeN |2|Vqq′|2λ

1/2(1,x2
p,x

2
e)[1− x2

P − x2
e(2+ x2

P − x2
e)]. (4.55)

6) N →V νe : In this decay channel the neutral vector meson V like ρ,ω,φ ,K∗0 will

be present, the decay width here can be written as

Γ
V νe =

G2
Fm3

N

32πm2
V

f 2
V g2

V |UeN |2(1+2x2
V )(1− x2

V )
2. (4.56)

7) N →V+e− : Here the relevant charged vector meson will be ρ±,K∗,±, the decay

width in this channel can be written as

Γ
V+e− =

G2
Fm3

N

16πm2
V±

f 2
V |UeN |2|Vqq′|2λ

1/2(1,x2
V ,x

2
e)[(1−x2

V )(1+2x2
V )+x2

e(x
2
V +x2

e−2)].

(4.57)

All the decay diagrams are shown in Fig. 4.7 and the total decay width arising

from Majorana HNL decaying into purely SM particles can be written as,

Γ
N→SM = ∑

ℓ1,ℓ2

Γ
νeℓ

−
2 ℓ

+
2 + ∑

ℓ2=µ,τ

2Γ
e−ℓ+2 νℓ2 +∑

ℓ2

Γ
νeνℓ2 ν̄ℓ2 +∑

P
Γ

Pνe +∑
P

2Γ
P+e−

+∑
V

Γ
V νe +∑

V
2Γ

V+e−. (4.58)
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Figure 4.8: (Left) Total HNL decay width, normalised by the active-sterile mixing |UeN |2.
(Right) branching fractions of an HNL to 3ν (dashed green), other combina-
tions of leptons (dashed red), and hadronic states (dashed blue). The black
curve corresponds to the total branching fraction of decays to charged tracks
(leptonic or semi-leptonic).

For Majorana HNL, the ∆L = 0 process N → P+e− as well as its charge con-

jugate process with |∆L| = 2 i.e., N → P−e+ are possible with same width ΓP+e− .

That is why we have included a factor of 2 associated with this decay width. Similar

argument applies for the other decay modes like N → e−ℓ+2 νℓ2 and N →V+e−.

Schematically, the charged-current interactions result in processes such as

N → e+e−ν and N → e−ud̄, depending on the leptons/quarks. The neutral-current

mediated decays lead to processes of the form of N → νe+e− and N → νqq̄. Both

charged-current and neutral-current mediated processes interfere for processes in-

volving the same generations, viz. the decay modes N → 3ν and N → νe+e−.

Below the pion threshold, the invisible decay N → 3ν is the dominant decay

mode. Above the pion threshold and below 1.5 GeV, the quarks generally confine

into hadronic states, and the resultant single meson hadronic channels, correspond-

ing to N → e−P+ (charged-current), N → νP0 and N → νV 0 (neutral-current) are

important. The decay mode to a single pion makes up a large proportion of the

hadronic decay modes.

In the left hand side of Fig. 4.8, we depict the total HNL decay width ΓN ,

normalised to the active-sterile mixing |UeN |2. In Fig. 4.8 (right), we show the

relevant branching fractions, including the branching fraction of invisible decays to

three neutrinos (solid green) and charged final states (solid black), the latter being
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a requirement to observe tracks in the DUNE ND. Both the total HNL decay width

ΓN and the branching fraction to charged tracks are needed to estimate the DUNE

sensitivity.

4.4.4 Majorana vs. Quasi-Dirac HNLs at DUNE

In the literature, the distinction between Majorana and quasi-Dirac HNLs in beam

dump and collider experiments has been studied in detail [189–191]. Naively, for

Majorana and quasi-Dirac HNLs with the same active-sterile mixing |UeN |2, one

would expect the rate for Majorana HNL decays to charged final-states to be twice

that for a quasi-Dirac HNL in DUNE. This is because a Majorana HNL produced

from the decay K+ → e+N can decay via both the lepton number conserving (LNC)

and LNV channels N → e−π+ and N → e+π−, respectively, while a quasi-Dirac

HNL with a vanishing mass splitting can only decay via N → e−π+.

However, when the mass splitting is non-zero, oscillations with a frequency

controlled by ∆mN = mNr∆ can occur between the Majorana pair forming the quasi-

Dirac HNL. The appearance of these oscillations depends on whether the HNL

decay is prompt or long-lived. If the HNL decays promptly, i.e. ΓNτ ≫ 1, an

experiment can only observe the time-integrated rates for the LNC and LNV decay

modes. The ratio of LNV to LNC events in the detector is given by

Rll =
m2

Nr2
∆

2Γ2
N +m2

Nr2
∆

, (4.59)

which can range from 0 and 1 depending on the relative sizes of the HNL mass

splitting and decay width [192, 193].

To decay inside the DUNE ND, however, the quasi-Dirac HNL must be long-

lived. For the baseline L = 574 m, we require an HNL lifetime,

τ =
L

βγ
∼ 2×10−6 s

βγ
, (4.60)

where βγ = pNz/mN is the HNL boost factor. The signal in the detector now

depends on the relative sizes of mNr∆ and τ . If the mass splitting is such that
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mNr∆τ ≫ 2π , or

r∆ ≫ 2π

mN

1
τ
∼ 10−17

(
400 MeV

mN

)(
574 m

L

)
βγ , (4.61)

the oscillations must be averaged out, yielding an equal rate for LNC and LNV

decays. Only when the mass splitting is extremely small will the LNV decay modes

be suppressed for quasi-Dirac HNLs. For the mass splittings r∆ required to produce

an observable 0νββ decay rate, as explored in the Sec. 4.5, we must include both

LNC and LNV decay modes to estimate the DUNE sensitivity. In the following,

we consider the sensitivity of DUNE to a single Majorana HNL. For a quasi-Dirac

HNL, we would need to add the contributions of two Majorana states.

4.4.5 DUNE Acceptance

We will now describe our approach to calculating the expected number of signal

events in the DUNE ND. The detector is located at a distance of L = 574 m from

the target, with a transverse cross-section of Adet = 12 m2 and a depth of ∆ℓdet = 5 m

along the beam axis [194]. Instead of using the cuboidal geometry of the detector,

we use a simplified cylindrical geometry to model the experimental setup. Keeping

the beam axis the same and defining an angular aperture θdet for the transverse

cross-section,

θdet = tan−1
(
⟨xdet⟩
⟨L⟩

)
∼ 3.8 m

576.5 m
∼ 7×10−3 , (4.62)

where ⟨xdet⟩ corresponds to the average transverse width of the fiducial volume and

⟨L⟩ is the mean distance along the beam axis from the target to the fiducial volume.

As described above, we first use PYTHIA (v. 8.307) [185] to simulate the pro-

duction of mesons from a pp collision at
√

s= 15 GeV, extracting the four-momenta

profile to define the lab frame for each event. The HNLs are produced from the

decays of these simulated mesons at rest, and then boosted corresponding to the

extracted meson momentum. The HNLs with angular distribution smaller than θdet

will end up in the the fiducial volume, and hence can contribute to the event rate if

they decay to a charged final state. The HNLs with larger transverse angles will not
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enter the fiducial volume and therefore not contribute to the event rate, regardless

of the decay mode. Putting this together, the total number of signal events is

Nsig = NP ·Br(P → N) ·Br(N → charged) · εgeo , (4.63)

where NP is the relevant production fraction in Table 4.3 multiplied by the total

number of protons on target NPOT. The geometrical efficiency is given by

εgeo =
1

Ntot
∑
cut

e
−mN ΓN

pNz
⟨L⟩
(

1− e
−mN ΓN

pNz
∆ℓdet
)
, (4.64)

where Ntot is the total number of simulated events, pNz is the lab-frame momentum

of the HNL along the beam axis, and ΓN is the total decay width of the HNL.

We use NPOT = 6.6×1021 protons on target, which corresponds to a run-time of 6

years [165]. In Eq. (4.64), ‘cut’ refers to the HNLs which pass through the fiducial

volume, i.e., all HNLs that have an angular momenta profile smaller than the angle

θdet,

pNT

pNz

< θdet ∼ 7×10−3 , (4.65)

where pNT is the lab-frame momentum of the HNL transverse to the beam axis.

The geometic efficiency εgeo therefore corresponds to the requirement that the HNL

decays inside the fiducial volume.

The analysis above only considers HNL production and decay via the electron

neutrino mixing, but this can be easily generalised to the mixing to all three active

neutrinos. As an example, we consider arbitrary mixing strengths to both electron

and muon neutrinos3. The basic schematics of the calculation are similar, with HNL

production and decay proceeding via both |UeN |2 and |UµN |2. In our simulation,

we fix mN = 800 MeV as a benchmark scenario and calculate the sensitivity for

arbitrary |UeN |2 and |UµN |2. At this HNL mass, the dominant production channels

are D+
s → ℓ+α N (α = e,µ) and HNL decays to pions have the largest branching

3We neglect the active-sterile mixing to tau neutrinos as HNL decays to taus are forbidden for
the HNL masses considered.
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Experiment Beam type ∆Adet [m2] ∆ℓdet [m] ℓdet [m] NPOT

DUNE 120 GeV, p 12 5 574 6.6×1021

SHiP 400 GeV, p 50 45 50 2.0×1020

Table 4.4: Brief description of the upcoming fixed target experimental facilities, DUNE
and SHiP, considered in our analysis. The beam type corresponds to a proton
beam of given energy impinging on the target nuclei [194].

ratios, N → ℓ∓α π± (α = e,µ). As expected, the inclusion of the muon channels

leads to an enhanced signal rate; the behaviour of the electron and muon channels

are also similar, since both charged leptons can be considered massless compared

to an HNL of mass 800 MeV. As we will explore in Sec. 4.5.7, HNL decays such

as N → ℓ∓α π± that only proceed via one of the mixing strengths |UeN |2 and |UµN |2

can be used as useful observables of the phenomenological model in Sec. 4.2.

We emphasise that the methods of this analysis are not restricted to the DUNE

setup, and can be extended to other fixed target experimental facilities. The generic

scheme would require the relevant proton beam energy and the associated meson

production fractions, as well as a new geometrical cut for the specific experimental

setup. Putting these together, one can then estimate the sensitivity using Eq. (4.63).

To this end, we have modified our analysis for the well-studied SHiP proposal by

changing the incoming proton beam energy to 400 GeV as shown in Table 4.4, the

number of protons on target to 2× 1020 and adjusting the detector geometry to a

distance of 50 m from the beam dump and a fiducial volume of length 45 m and

transverse cross section of 5×10 m2 [194]. Our estimated upper bound on |UeN |2 is

in good agreement with the results of [166], and can be improved further by intro-

ducing an additional attenuation factor to account for the exact geometrical cut (as

the fiducial volume is a much longer length compared to DUNE). The attenuation

factor quantifies the intensity or amplitude of a signal diminishes before reaching

the detector. This is influenced by the medium through which the signal travels and

the distance between the source and the detector. Note that we do not use any ad-hoc

factors for DUNE since the detector length is small and so our assumed cylindrical

geometry works well.
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4.5 Probing HNLs with DUNE and LEGEND-1000
We will begin this section with an analytical comparison of 0νββ decay and the

direct production of HNLs in DUNE. Using the approximate results for the 0νββ

decay half-life in Sec. 4.3.2 and the DUNE ND event rate, we will estimate the

HNL mass splitting r∆ = ∆mN/mN implied by the observation of 0νββ decay and

an HNL-like DUNE signal. This will be done in the optimistic scenario where the

light neutrino mass does not saturate the observed 0νββ decay half-life and the

DUNE event rate is large.

Following on from these estimates, we will perform a more detailed Bayesian

analysis, using Markov chain Monte Carlo (MCMC) methods to sample the sta-

tistical likelihoods, given the HNL pair hypothesis, of positive signals in a 0νββ

decay experiment and the DUNE ND. This will allow us to identify the 68% and

95% credible regions in the 1+ 2 model parameter space for four benchmark sce-

narios. We will also consider the sensitivities in the scenario where 0νββ decay

is observed but no HNL-like events are seen at DUNE, and vice versa. Finally, we

will derive excluded regions in the 1+ 2 model parameter space if neither 0νββ

decay nor HNL-like DUNE events are seen. To extend, we will perform a Bayesian

analysis implementing the current active neutrino data in the complete 3+2 model

with a massless lightest neutrino.

In the following, we will consider the upcoming search for 0νββ decay by the

LEGEND experiment [195], which will use a 76Ge detector to provide an excellent

energy resolution and low intrinsic background. The next phase of the experiment

will be LEGEND-1000 [96], which increases the mass of 76Ge detector to 1 ton

and an exposure leading to a sensitivity of T 0ν

1/2 = 1028 y. We assume that DUNE

collects data for 6 years in the neutrino beam mode, collecting NPOT = 6.6×1021.

4.5.1 Analytical Comparison

In Fig. 4.9, we illustrate two signal scenarios in 0νββ decay and direct HNL

searches. The plots on the upper (lower) row assume a 0νββ decay half-life of

1028 years from the LEGEND experiment and 100 (300) HNL-like events at DUNE.

Considering the constraints on the simple 1+2 model, on the upper row we take the
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Figure 4.9: Constraints in the 1+2 model parameter space if both 0νββ decay and HNL-
like events at DUNE are observed, for T 0ν

1/2 = 1028 yr, NDUNE = 100, r∆ = 0.1
(above) and T 0ν

1/2 = 1028 yr, NDUNE = 300, r∆ = 1.5 × 10−3 (below). Left:
Regions in the (mN , |Θe1|2) plane from signals at DUNE (blue) and 0νββ

decay (green), marginalising over cosφe1. The regions roughly overlap at
the benchmark HNL masses (black diamond) mN = 400 MeV (above) and
mN = 800 MeV (below). Middle: NDUNE (blue) and |meff

ββ
|2 (green) as a func-

tion of |Θe1|2. Right: Implied values of cosφe1 from DUNE (blue) and 0νββ

decay (green) signals as a function of |Θe1|2. Also shown is the implied value
of cos∆φe1 from 0νββ decay (yellow) as a function of |Θe1|2.

light neutrino mass to be mν = 10−1.9 eV, which marginally saturates the observed

0νββ decay half-life. Below, we instead take mν = 10−2.5 eV, which does not sat-

urate the half-life and therefore implies a dominant HNL contribution, as discussed

in Sec. 4.3.

The two plots to the left of Fig. 4.9 show the regions in the (mN , |Θe1|2) plane

implied by the positive 0νββ decay (green region) and DUNE (blue region) signals,

with the spread from varying cosφe1 (only visible for 0νββ decay). In the 1+ 2

model, the last relevant parameter is the mass splitting r∆; in the upper (lower) row,

we take r∆ = 0.1 (r∆ = 1.5× 10−3) which results in the 0νββ decay and DUNE

regions overlapping at the benchmark point of mN = 400 MeV (800 MeV) and

|Θe1|2 = 10−9 (2×10−7), just below the current upper bound from T2K (CHARM).

We also show the DUNE region using an approximate formula for the number
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of signal events induced by the HNL pair in the DUNE ND (dashed cyan). For

mN = 400 MeV (800 MeV), the dominant HNL production channel and decay mode

to charged final states are K+ → e+N (D+
s → e+N) and N → e∓π±, respectively.

We can then estimate the number of events as

NDUNE ≈CP
det

[
APP′(mN)|Θe1|4 +APP′

(
mN(1+ r∆)

) |rν + |Θe1|2eiφe1|2

(1+ r∆)2

]
, (4.66)

where we have used the expression for |Θe2|2 in the 1+2 model in Eq. (4.20) and

APP′(mN)≡
mNΓN

|UeN |4
Br(P+ → e+N)Br(N → e±P′∓) , (4.67)

where Br(P+ → e+N) and Br(N → e±P′∓) are given in section 4.4.3. For conve-

nience, we have introduced the factor

CP
det ≡ NPεgeo

∆ℓdetεdet

⟨pNz⟩
= NP

⟨pNz⟩
⟨pNT ⟩2

Vdetεdet

L2 , (4.68)

where Vdet is the fiducial volume and we use the estimate εgeo = ⟨pNz⟩2/⟨pNT ⟩2 ×

Adet/L2 for the geometric efficiency, with ⟨pNz⟩ and ⟨pNT ⟩ the average longitudinal

and transvese HNL momenta. For Nexp
DUNE = 100 (300), we use Eq. (4.66) to plot the

dashed cyan lines in Fig. 4.9. The expressions above are simplified if we consider

the limit |Θe1|2 ≫ rν , i.e., the inverse seesaw regime. This allows to pull out a factor

of |Θe1|4 in Eq. (4.66) and write

|Θe1|2 =
√

NDUNE

CP
detBPP′

(|Θe1|2 ≫ rν) , BPP′ ≡ APP′(mN)+
APP′

(
mN(1+ r∆)

)
(1+ r∆)2 .

(4.69)

In the limit of small mass splitting between the HNL pair, r∆ ≪ 1, the function

simplifies to BPP′ ≈ 2APP′(mN). We see that Eq. (4.69) is effectively independent

of φe1.

The two plots in the centre of Fig. 4.9 show the value of NDUNE (using

the approximate formula in Eq. (4.66)) and |meff
ββ

|2 as a function of |Θe1|2, for



4.5. Probing HNLs with DUNE and LEGEND-1000 106

mN = 400 MeV (800 MeV) and allowing the value of cosφe1 to vary. The two hor-

izontal dashed lines indicate the measured experimental values Nexp
DUNE and |mexp

ββ
|2,

while the vertical dot-dashed line shows the value of |Θe1|2 compatible with the

two measurements. Finally, the two plots to the right of Fig. 4.9 show the values of

1+ cosφe1 determined from the 0νββ decay and DUNE signals using Eqs. (4.39)

and (4.66). It is evident that DUNE has little sensitivity to the value of cosφe1. The

crossing point of these curves indicates the compatible values of |Θe1|2 and φe1 (for

given values of mν , mN and r∆). We also show the values of 1+cos∆φe, in the lower

plot being multiplied by a factor of 107 to be visible. We see that cos∆φe ≈ −1 is

being probed in both scenarios.

In the scenario where the light neutrino mass does not saturate 0νββ decay

and the HNL-like event rate in DUNE is large, we will now show that the value

of r∆ being probed by both experiments is approximately insensitive to the value

of cosφe1. Using Eq. (4.69), the active-sterile mixing implied by an observation at

DUNE is given approximately by

|Θe1|2 ≈ 2×10−7
(

Nexp
DUNE
300

)1/2(6.6×1021

NPOT

)1/2( 5 m
∆ℓdet

)1/2(7.3×103 MeV2

APP′(mN)

)1/2

,

(4.70)

where we have used ADsπ(800 MeV) = 7.3× 103 MeV2. With this active-sterile

mixing, we can then solve Eq. (4.44) for r∆. If the value of Ndet
DUNE is large, and

therefore the implied value of r∆ small, we obtain the approximate result:

r∆ ∼ 1.5×10−3
(

2×10−7

|Θe1|2

)(
mN

800 MeV

)(
1028 yr

T 0ν

1/2

)1/2

. (4.71)

This estimate is not possible if the light neutrino mass does almost saturate the

observed 0νββ decay half-life, because there is then much more freedom in the

value of cosφe1. To better understand this region of the parameter space, we perform

a statistical analysis of the experimental likelihoods in the next section.



4.5. Probing HNLs with DUNE and LEGEND-1000 107

4.5.2 General Statistical Analysis

To incorporate statistical uncertainties, we perform a simple Bayesian analysis

based on a combined likelihood for DUNE and LEGEND-1000. We treat both

as simple counting experiments and to avoid running an ensemble of mock experi-

ments, we take the continuous version of the Poisson distribution,

Poisson
(
nobs | λsig(θ)+λbkg(θ)

)
∝

(
λsig(θ)+λbkg(θ)

)nobs e−(λsig(θ)+λbkg(θ))

Γ(nobs +1)
.

(4.72)

Here, nobs is the ‘observed’ number of events, expected in a hypothetical benchmark

scenario (or nobs = 0, if the experiment is assumed to see no signal). The expected

number of signal and background events given a theoretically-predicted parameter

choice θ are λsig(θ) and λbkg, respectively.

For 0νββ decay, the number of signal events in the 1+ 2 model, with the

parameters θ = {mν ,mN ,r∆, |Θe1|2,φe1}, can be calculated as

λ
0ν
sig (θ) =

ln2 ·NA ·E
mA ·T 0ν

1/2 (θ)
, (4.73)

where NA is Avogadro’s number, mA is the average molar mass of the 0νββ decay-

ing material (mA = 75.74 g/mol for 76Ge), and E is the sensitive exposure of the

detector, with E = 6632 kg·yr for LEGEND-1000 [116,196]. The half-life is calcu-

lated from Eq. (4.25) using the full interpolating formula discussed in Sec. 4.3. The

background event rate is λ 0ν
bkg = E ·B, where B is the sensitive background, giving

λ 0ν
bkg = 0.4 events for LEGEND-1000. Although the 0νββ decay NMEs have con-

siderable discrepancies between different nuclear structure calculations and it may

be possible that the nuclear axial coupling is quenched [197], we assume that there

are no theoretical uncertainties to explore the full potential of future 0νββ decay

searches.

For DUNE, we use the sensitivity formula derived in Sec. 4.4. For the expected

number of signal events in the 1+2 model, we incoherently add up the contribution



4.5. Probing HNLs with DUNE and LEGEND-1000 108

Scenario mN [MeV] |Θe1|2 r∆ mν [eV] λDUNE λ0ν T 0ν

1/2 [yr]

1 400 10−9.0 10−0.5 10−1.9 76.7 5.94 1027.8

2 400 10−9.0 10−0.5 10−2.5 76.7 2.73 1028.1

3 800 10−6.7 10−2.5 10−1.9 325 15.5 1027.4

4 800 10−6.7 10−2.5 10−2.5 325 12.3 1027.5

Table 4.5: Benchmark scenarios for the light neutrino mass mν , the HNL mass mN , the
active-sterile mixing strength |Θe1|2 and the HNL mass splitting r∆ adopted in
our statistical analysis. In all cases, the HNL phase parameter is cosφe1 = 0.
Also given are the expected number of signal events at DUNE, λDUNE, and
LEGEND-1000, λ0ν , as well as the corresponding half-life for the latter, T 0ν

1/2.

Eq. (4.63) from each HNL separately, i.e.,

λ
DUNE
sig (θ) = Nsig(mN , |Θe1|2)+Nsig

(
mN(1+ r∆), |Θe2|2

)
, (4.74)

where |Θe2|2 is given by Eq. (4.20) as a function of mν , mN , r∆ |Θe2|2 and

cosφe1. We assume a negligible background for HNL-like events in the DUNE

ND (λ DUNE
bkg = 0), because the primary background for this search arises from neu-

trino interactions within the detector volume and active neutrino events exhibit a

topology that differs significantly from that of HNL decays. [165]

In our analysis, we consider four benchmark scenarios, listed in Table 4.5. The

first two benchmarks are chosen for an HNL mass mN = 400 MeV with an active-

sterile mixing strength just below the current bound from T2K. The third and fourth

benchmarks are at mN = 800 MeV with an active-sterile mixing strength well below

the current bound from CHARM. The benchmark points are indicated in Fig. 4.1.

The light neutrino mass is chosen to be either mν = 10−1.9 eV or 10−2.5 eV. These

roughly correspond to the smallest and largest possible effective Majorana masses

for the light neutrinos in the inverted ordering and normal ordering, respectively.

The benchmark scenarios are further distinguished by having a rather large HNL

mass splitting r∆ = ∆mN/mN = 10−0.5 in scenarios 1 and 2 (being close to the

seesaw line, the HNLs are not required to form a quasi-Dirac pair) and a small

splitting r∆ = 10−2.5 in scenarios 3 and 4. The benchmark scenarios are chosen to

represent different parameter regions of interest that yield appreciable number of
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events, both at DUNE and LEGEND-1000, also listed in Table 4.5. As expected,

the DUNE event rate is not affected by the light neutrino mass, being only sensitive

to the incoherent sum of the HNL contributions. On the other hand, the 0νββ decay

event rate is affected by mν , as well as the HNL phase parameter cosφe1, which is

chosen to be cosφe1 = 0 in all scenarios, as the light neutrino and HNL contributions

are coherently added.

In the following, we discuss four hypothetical experimental outcomes, namely,

(A) both DUNE and LEGEND-1000 observe a signal, (B) DUNE observes signal

events but not LEGEND-1000, (C) LEGEND-1000 observes signal events but not

DUNE and (D) both DUNE and LEGEND-1000 see no signal events. We sample

the parameter space using an MCMC to find the posterior parameter distribution

for a given likelihood formed by the Poisson-Lambda distribution in Eq. (4.72), for

DUNE and LEGEND-1000. We scan over the parameters log10(|Θe1|2), log10(r∆)

and cosφe1 in the range [−12,−6], [−4,0] and [−1,1], respectively, using a flat

prior, in analysis (a) and (b), i.e., mN is fixed, assumed to be determined from kinetic

information at DUNE to sufficient accuracy. In (c) and (d), mN is also scanned over

the range [0.1,1.0] MeV.

For each benchmark point, we insert the expected event rate for LEGEND-

1000 and DUNE, following the Asimov data set approach [198], setting the number

of observed events nobs for each experiment equal to the number of expected events

λsig(θ)+λbkg in a benchmark scenario. In the case of no signal, we set nobs = λbkg.

In Sec. 4.5.7, we extend our analysis to the full 3+ 2 model using the currently

measured active neutrino data, under the assumption that the lightest active neutrino

is massless. The free parameter in the active neutrino sector becomes the light

Majorana phase α21 instead of the active neutrino mass mν in the simplified 1+ 2

scenario.

4.5.3 (A) Signals at both

In Fig. 4.10, we illustrate the posterior distributions resulting from the MCMC,

marginalized to the (|Θe1|2,r∆) parameter plane. Here, we assume an observation of

the expected number of events at DUNE (near vertical blue points) and LEGEND-



4.5. Probing HNLs with DUNE and LEGEND-1000 110

��-�� ��-� ��-�
��-�

���

�

|Θ��|
�

� Δ
mN = 400 MeV
mν = 10

-1.9 eV

Scenario 1

DUNE

0νββ

��-�� ��-� ��-�
��-�

���

�

|Θ��|
�

� Δ

mN = 400 MeV
mν = 10

-2.5 eV

Scenario 2

��-� ��-�
��-�

��-�

|Θ��|
�

� Δ

mν = 10
-1.9 eV

mN = 800 MeV

cosϕ
1 <

-0.4

-0.4
<
cosϕ

1 <
0.4

0.4
<
cosϕ

1

Scenario 3

��-� ��-�
��-�

��-�

|Θ��|
�

� Δ

mν = 10
-2.5 eV

mN = 800 MeV
Scenario 4

Figure 4.10: Posterior distribution marginalized to the (|Θe1|2,r∆) parameter plane assum-
ing an observation at DUNE (blue points), LEGEND-1000 (diagonal green or
coloured points) or both simultaneously (yellow and red contours represent-
ing the 68% and 95% credible regions) in the four benchmark scenarios. In
the bottom plots, the LEGEND-1000 points are colour-coded according to the
value of the HNL phase parameter cosφe1 as indicated.

1000 (diagonal green or coloured points) as per Table 4.5 for the four benchmark

scenarios. In the top plots, the red, orange and green points for observed 0νββ de-

cay are filtered according to the value of the HNL phase parameter cosφe1, namely

cosφe1 < −0.4, −0.4 ≤ cosφe1 ≤ 0.4 and cosφe1 > 0.4, respectively. The points

thus indicate the posterior distributions assuming observation in either DUNE or

LEGEND-1000 but not both. The combined posterior assuming observation in both

is illustrated by the red and yellow contours indicating the 68% and 95% credible
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Figure 4.11: Posterior distribution (blue points and yellow/red contours) marginalized to
the (cosφe1,r∆) plane assuming observations at both DUNE and LEGEND-
1000 in benchmark Scenario 3. The green line shows the analytic relation in
Eq. (4.39).

regions.

In all benchmark scenarios, the number of DUNE events is fairly large, re-

sulting in a narrow, near vertical band, essentially fixing the value of |Θe1|2. The

deviation from vertical in the top plots is due to the large mass splitting r∆ ≳ 0.1 and

the resulting dependence on the mass of the second HNL N2. In Scenarios 1 and 2

with mN = 400 GeV (top plots), the number of events at LEGEND-1000 is, on the

other hand, small, near the detection limit. This does not allow a definite determina-

tion of the model parameters, only setting a weak limit r∆ ≲ 1 on the mass splitting.

In Scenarios 3 and 4 (bottom plots), the number of expected LEGEND-1000 events

is, instead, much larger, constraining the parameter space to a diagonal band. This

reflects the fact that the contribution of the HNLs is constrained to be sufficiently

small, either due to a small active-sterile mixing or a small mass splitting with a

resulting quasi-Dirac nature of the HNLs. In combination with the DUNE observa-

tion this would allow a measurement of the mass splitting r∆ ≈ 10−2.5, with a higher

precision in Scenario 4, where the light neutrino contribution is not saturating the

0νββ decay half life.

As can be seen in Fig. 4.10, DUNE is effectively insensitive to the light neu-
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trino mass and HNLs with r∆ < 0.1, whereas 0νββ decay is sensitive to both the

HNL mass splitting ratio and the active-sterile mixing. In addition, 0νββ decay is

also sensitive to the HNL phase φe1, namely, the interference term proportional to

cosφe1 in Eq. (4.35) is important if the light and heavy neutrino contributions are

of a similar size. In Fig. 4.10 (bottom), the widths of the 0νββ bands depends on

the light neutrino mass; when the light neutrino contribution saturates the 0νββ

decay half-life, as in Scenario 3, the band of allowed points is much wider. This is

in agreement with the analytical behaviour discussed in Sec. 4.5.1. Increasing the

HNL mass can be seen to shift the allowed region to smaller |Θe1|2 and r∆ values.

The resulting degeneracy between cosφe1 and r∆ is displayed in Fig. 4.11, show-

ing the posterior distribution in Scenario marginalized to this parameter plane. The

points and contours both illustrate the combined distribution assuming observation

at both DUNE and LEGEND-1000. The central green line results from the analyti-

cal relation in Eq. (4.39).

4.5.4 (B) Signal at DUNE — No Signal at LEGEND-1000

In Fig. 4.12, we analogously display the posterior distribution in (|Θe1|2,r∆), assum-

ing an observation at DUNE (blue points) but no events at LEGEND-1000 (green

points), for the four benchmark scenarios. The yellow and red contours show the

68% and 95% credible regions combining both observations. As mentioned earlier,

in this case the number of 0νββ decay signal events is not set according to Table 4.5

but λ
sig
0ν

= 0 is imposed. With regard to DUNE the assumptions are identical to (A)

above and thus the blue point distributions are the same.

With no 0νββ decay events, the corresponding regions extend to arbitrarily

small values of r∆ but they also partially overlap with those in Fig. 4.10 where 0νββ

decay is assumed to be observed. This is due to the inherent statistical uncertainties

but also because cancellations in the 0νββ decay rate can occur, especially for a

large light neutrino mass mν .
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Figure 4.12: As Fig. 4.10, but assuming a signal at DUNE with no events at LEGEND-1000
in the four benchmark scenarios. Top-left: use r∆ range 10−2 to 1. Bottom-
right: use r∆ range 10−3 to 10−2.

4.5.5 (C) No Signal at DUNE — Signal at LEGEND-1000

In Figs. 4.13 and 4.14, we show the points generated in the MCMC scans in the

(mN , |Θe1|2) and (|Θe1|2,r∆) planes, respectively, assuming no HNL-like DUNE

events (blue points) and a positive 0νββ decay signal (green points), for the four

benchmark scenarios. In Fig. 4.13, it can be seen that increasing the HNL mass

shifts the 0νββ decay points to larger values of |Θe1|2. This is to be expected from

the approximate formula of Eq. (4.44), where the active-sterile mixing is linearly

proportional to the HNL mass. We see that the light neutrino mass does not change

the results of the MCMC scan significantly in the (mN , |Θe1|2) plane. The region
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Figure 4.13: Posterior distribution marginalised in the (mN , |Θe1|2) plane assuming an ob-
servation at LEGEND-1000 but no signal for DUNE for the four benchmark
scenarios. The green points represent the distribution for LEGEND-1000, the
blue points for no signal at DUNE.

compatible with an observation of 0νββ decay but not HNL-like events at DUNE

is mostly determined by 0νββ decay for large HNL masses.

If there is no observation of HNL-like events at DUNE, there is still the chance

to observe 0νββ decay for the benchmark points in the red 68% credible con-

tour regions in the (|Θe1|2,r∆) plane, shown in Fig. 4.14. The combined regions

are now mostly determined by 0νββ decay, since a positive DUNE signal is no

longer placing a stringent constraint on the parameter space. The combined regions

are situated at large HNL mass splittings and relatively large active-sterile mixing,

|Θe1|2 ≳ 10−9.
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Figure 4.14: The same data set as Fig. 4.13 shows, but in the (|Θe1|2,r∆) plane for the
four benchmark scenarios. The green points represent the distribution for
LEGEND-1000, the blue points for no signal at DUNE. The yellow and red
contours are the 68% and 95% credible regions combining both measurements
respectively.

4.5.6 (D) No signals at neither

In Fig. 4.15, we display the points produced in the MCMC scans in the (mN , |Θe1|2)

plane (left) and (|Θe1|2,r∆) plane (right), assuming no DUNE (blue points) or 0νββ

decay (green points) signals. In the top left-hand plot, where the light neutrino mass

mν = 10−1.9 eV only just saturates a 0νββ decay half-life of 1028 yr, we indicate

the value of the HNL mass splitting r∆ for each point; green for r∆ < 10−2, orange

for 10−2 < r∆ < 10−1, and red for 10−1 < r∆ < 1. It can be seen that the points with

larger active-sterile mixing correspond to larger values of r∆. The points with small
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Figure 4.15: Posterior distribution marginalised in the (mN , |Θe1|2) plane (left) and
(|Θe1|2,r∆) plane (right) assuming no observation at LEGEND-1000 nor
DUNE for the four benchmark scenarios. The blue points represent the distri-
bution for no signal at DUNE and the green points for no signal at LEGEND-
1000. In the top left-hand plot, the points for no observation at LEGEND-
1000 are colour-coded according to the value of the HNL mass splitting r∆, as
indicated.

r∆ (red) cover the whole region in which no 0νββ decay signal is seen, while points

with large r∆ (red) only occupy the region where the active-sterile mixing is small.

In the plots to the right, it can be seen that the regions compatible with no DUNE

or 0νββ decay signals extend from arbitrarily small |Θe1|2 values up to an upper

limit determined by r∆. For 0νββ decay, these upper limits are shifted slightly by

the value of mν .

Comparing the plots in the (mN , |Θe1|2) plane in Figs. 4.10 and 4.15, it can be

seen that in some regions of the parameter space, 0νββ decay can either be ob-

served or not observed. It is due to the fine-tuned nature of cancellations between
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the light neutrino and HNL pair needed to suppress the 0νββ decay rate; never-

theless, the specific arrangement of the parameters in the model needed for this

cancellation are possible over much of the parameter space.

4.5.7 (E) Signals at both in the 3+2 scenario

In this final subsection, we further investigate the mN = 800 MeV scenario, but now

in the 3+ 2 model with mlight = 0. We now include HNL production and decay in

DUNE via the muon neutrino mixing, as discussed at the end of Sec. 4.4. Events

involving HNL mixing with the tau neutrino are neglected for mN = 800 MeV, as

it is not kinematically possible to produce τ± from the considered meson decay

channels. The expected number of DUNE signal events is given by

λ
DUNE
sig (θ) = Nsig(|Θe1|2, |Θµ1|2)+Nsig

(
|Θe2|2, |Θµ2|2

)
, (4.75)

where |Θe2|2, |Θµ1|2 and |Θµ2|2 are written in terms of |Θµ1| and φe1 using

Eq. (4.16). In Fig. 4.16, we plot |Θe2|2 and |Θµ1|2 as a function of α21 in the

NO (left) and IO (right) for |Θe1|2 = 10−6.7 and r∆ = 10−2.5. This is in the regime

|Θe1|2 ≫ |mν
ee|/mN , where the ratio of mixing strengths is given by Eq. (4.19); in

the NO and IO scenarios, the only freedom is the Majorana phase α21. For small

mass splittings r∆, it is also the case that |Θe1|2 ≃ |Θe2|2 and |Θµ1|2 ≃ |Θµ2|2.

To perform the analysis, we consider the two benchmark scenarios shown in

Table 4.6; for the HNL mass mN = 800 MeV, the active-sterile mixing strengths

|Θe1|2 and |Θµ1|2 are chosen to lie just below the current experimental bounds.

The light neutrino Majorana phase is chosen to be either α21 = 0. These give the

upper bounds on the effective Majorana masses for the light neutrinos in the inverted

ordering and normal ordering, respectively. |Θe1|2 can no longer be chosen as the

same value since it is further constrained by current muon-sterile mixing strength

bound and the mixing strengths can be one order of magnitude different between

|ΘeN |2 and |ΘµN |2 as Figs. 4.16 shows. With the choice of different values of r∆ =

10−2.5 and r∆ = 10−1.5 to keep observable LEGEND-1000 sensitivity (1028 years),

|Θe1|2 = 106.70 and |Θe1|2 = 107.64 are chosen to make the scenarios just below
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Ordering α21 mN [MeV] |Θe1|2 |Θµ1|2 r∆ φe1

IO 0 800 10−6.70 10−7.05 10−2.50 π/2

NO 0 800 10−7.50 10−6.58 10−1.50 π/2

Ordering T 0ν

1/2 [yr] λ0ν λDUNE λDUNE (e) λDUNE (µ)

IO 1026.7 65.2 192 71.5 28.1

NO 1027.1 28.2 193 12.3 95.4

Table 4.6: Default values for the light neutrino Majorana phase α21, the HNL mass mN ,
the active-sterile mixing strengths |Θe1|2 and |Θµ1|2 and the HNL mass splitting
r∆ adopted in the benchmark scenarios of our statistical analysis in the inverted
and normal mass ordering scenarios respectively under the 3 + 2 model. In all
cases, the HNL phase parameter is φe1 = π/2. Also given are the total expected
number of events at DUNE, λDUNE, and DUNE electron and muon only events,
λDUNE (e) and λDUNE (µ),and LEGEND-1000, λ0ν , as well as the corresponding
half-life T 0ν

1/2.
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Figure 4.16: Different mixing angles (|Θe2|2, |Θµ1|2, |Θτ1|2) versus the Majorana phase
α21 in the 3 + 2 model for inverted ordering (left) and the normal order-
ing (right). The mixing strengths have the relations that |Θe1|2 ≃ |Θe2|2 and
|Θµ1|2 ≃ |Θµ2|2.

the active-sterile mixing constraints and give similar number of total DUNE events

for IO and NO, respectively. The electron (DUNE(e)) and muon (DUNE(µ)) only

events can be made as separate observales to constrain the HNL phase parameter

φe1, which is chosen to be φe1 = π/2 in both scenarios, to match previous cosφe1 = 0

benchmark value.

Figs. 4.17 shows the MCMC scans in the (|Θe1|2,α21),(r∆, |Θe1|2),(φe1,r∆)
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Figure 4.17: Posterior distribution marginalised in the (α21, |Θe1|2) plane (top left),
(r∆, |Θe1|2) plane (bottom left), (α21,φe1) plane (top right) and (r∆,φe1) plane
(bottom right) by assuming observations at both LEGEND-1000 and DUNE
for the benchmark scenario 3 in inverted mass ordering. The blue points repre-
sent the total DUNE event, the pink points are for electron only observations
and purple points for muon only observations at DUNE. The green points
stand for LEGEND-1000 observations, the blue points for total DUNE ob-
servations, the purple points are muon only DUNE events and the dark blue
points represent the electron only DUNE events.The blue points stand for
combined DUNE and LEGEND-1000 likelihood events and the brown points
show the combined total, muon only and electron only DUNE events. The
green curve is the predicted relation between r∆ and φe1 by using Eq. (4.39)
given the IO scenario in Table 4.6. The red contour is for 95% for combined
measurement and the purple (yellow) stands for 68% likelihood.

and (α21,φe1) planes assuming combined observations of HNL-like events at both

DUNE (dark blue points) and LEGEND-1000 (green points) with additional con-
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straints from electron only (pale blue points) and muon only (purple points) events

at DUNE, respectively. The red contour again represents the combined likelihood

at 95% and the purple for 68%.

In the parameter space studied, DUNE is still sensitive to the mixing strengths

but insensitive to the light Majorana phase α21, whereas 0νββ decay is really sen-

sitive to α21 with a periodic feature but not to the mixing strengths. Both experi-

ments are not effectively sensitive to the HNL Majorana phase φe1. In the top left

plot, the combined analysis constrains the allowed space within two small circle

which is the benchmark point and one of the periodic identical points of α21. The

reason for no observation at α21 = 4π is clearly due to the constraint from muon

only DUNE events. The top right plot illustrates that the electron only events con-

strain the space dominantly alongside with additional narrow down from the total

DUNE event and muon only events and LEGEND-1000 only excludes the very

large HNL mass splitting region. Also, the three DUNE lines show the same be-

haviour Fig. 4.16 presented. The bottom right plot shows a tightly constrained space

in high mass splitting regime, which is due to nearly equal amount contributions

from all 4 observable HNL-like events.

In Figs. 4.18, the MCMC scans are presented in the (r∆, |Θe1|2) and

(α21, |Θe1|2) planes under the same analysis as Figs. 4.17 in the normal order-

ing scenario. The left plot demonstrates a similar feature at DUNE as the right plot

in Figs. 4.16 indicates. In comparison with the inverted ordering case, the left plot

gives a band for 0νββ rather than three strips for the IO, it is due to the saturation

of the light effective mass in IO which enhances the impact of the Majorana phase

in the light neutrino sector. The right plot agrees with the bottom right plot in

Figs. 4.10, the allowed band is narrowed down to a circle from the IO effective

mass regime to the NO regime since less chance for the cancellation between the

light and heavy neutrino contributions to occur in 0νββ for given LEGEND-1000

sensitivity. In the NO scenario, LEGEND-1000 become less sensitive to α21 and

the sensitivity is completely lost for φe1.
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Figure 4.18: The parameter planes as the plots in Fig. 4.17, but for the normal mass order-
ing. The blue points represent the total DUNE event, the pale blue points are
for electron only observations and purple points for muon only observation
at DUNE. The green points stand for LEGEND-1000 observations, the blue
points for total DUNE observations, the purple points are muon only DUNE
events and the dark blue points represent the electron only DUNE events. The
left plot shows the (α21, |Θe1|2) plane. The right plot shows the (r∆, |Θe1|2)
plane with brown points represent the combined DUNE analysis.The yellow
contour is for 95% for combined measurement and the red stands for 68%
likelihood.

4.6 Conclusions
In this chapter, we have investigated the phenomenology of a pair of heavy neutral

leptons (HNLs) in the MeV to GeV mass range, which can generate the observed

masses and mixing of the light active neutrinos but also impact neutrinoless double

beta (0νββ ) decay and direct searches for HNLs at fixed target experiments. In

particular, we have shown how the combination of a positive 0νββ decay signal

at LEGEND-1000 and HNL-like events in the DUNE near detector (ND) can con-

strain the active-sterile mixing and mass splitting of the HNL pair. Additionally, we

have considered the model implications of only one or neither of the signals being

observed.

In Sec. 4.2, we introduced a phenomenological parametrisation of the 3+ 2

model, which adds a gauge-singlet Weyl fermion pair to the SM and is sufficient to

generate masses for two light neutrinos at tree level. Using the tree level relations

between the light neutrino and HNL parameters in the limit of small active-sterile
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mixing, we derived useful ratio formulae making it possible to express all active-

sterile mixing parameters in terms of a single active-sterile mixing and CP phase

(in addition to the light neutrino data and HNL masses). This is in contrast to the

Casas-Ibarra parametrisation, which uses a complex angle as the free parameter.

This parametrisation is generalised for an arbitrary number NS of additional HNL

states in Appendix A, with the number of free parameters increasing accordingly.

We also illustrated the behaviours of the active-sterile mixing parameters in the

simple 1+ 2 model, which covers the relevant limits of the 3+ 2 model. We saw

how either of the HNL pair can effectively decouple, with one HNL giving a mass

to the light neutrino via the standard seesaw, and how both active-sterile mixing

strengths to the HNLs can become large in the inverse seesaw limit.

Using the phenomenological model, in Sec. 4.3 we examined the 0νββ de-

cay process, carefully taking into account the exchange of HNLs in the 100 MeV

to 1 GeV mass range. In this mass region, around the Fermi momentum kF , the

exchange of HNLs is difficult to treat using chiral effective field theory methods.

However, the low and high-mass regions are well understood and so a carefully

chosen interpolation formula can be used to good approximation in the intermedi-

ate region. In the simple 1+ 2 model, we gave a schematic illustration of how the

HNL pair can either interfere constructively or destructively with the light neutrino

contribution. Thus, given a precise knowledge of the neutrino masses and whether

they have a normal or inverted ordering, the observation of a 0νββ decay half-life

T 0ν

1/2 that is incompatible with the light neutrino contribution could be used to put

stringent constraints on the HNL pair. Conversely, if the light neutrino contribu-

tion just saturates the observed half-life, the 1+ 2 model parameter space is less

constrained.

In Sec. 4.4, we covered the production and decay of long-lived HNLs in the

DUNE experiment in the phenomenological model. Using PYTHIA, we performed

a simulation of mesons produced from 120 GeV protons on target, generating their

production fractions and momentum profiles. All possible decays of these mesons

to HNLs via the active-sterile mixing |UeN |2 are used to simulate the production
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of HNLs in the rest frame of the mesons. The HNLs are then boosted to the lab

frame and required to decay to charged tracks inside the ND, which we take to have

a cylindrical cross-section. This analysis allows us to estimate the sensitivity of

DUNE to Majorana HNLs, which can either be detected via LNC or LNV decay

modes. This is also relevant for quasi-Dirac neutrinos; for the mass splittings of

interest, the oscillations between the HNL pair are averaged out and the quasi-Dirac

pair appears to be a pair of Majorana states.

In Sec. 4.5, we finally examined the complementary of 0νββ decay and DUNE

in constraining the HNL paramater space. We first compared a measurement of

0νββ decay and HNL-like events at DUNE analytically, finding the implied mass

splitting r∆ in the limit where the light neutrino mass does not saturate the observed

0νββ decay half-life and the HNL event rate is large, so the HNL contribution is

tightly constrained. We then explored in more detail the parameter space of the

simple 1+ 2 model by performing a Markov chain Monte Carlo scan over the sta-

tistical likelihoods of signals at LEGEND-1000 and DUNE, given the HNL pair

hypothesis. We found that if both signals are seen, the mass splitting between the

HNL pair is well constrained, with values r∆ ∼ 0.1 implied for HNL masses around

mN = 400 MeV and r∆ ∼ 3×10−3 for mN = 800 MeV, shown in Fig. 4.10 as con-

tours at the 68% and 95% confidence levels. If one signal is observed but not the

other, we showed how the mass splitting is generally less constrained in Figs. 4.12

and 4.14. Finally, we found the regions of the parameter space in Fig. 4.15 where

neither 0νββ decay nor HNL-like events are observed.

In this work, we have demonstrated how two very different probes of HNLs

can constrain an intriguing region of the HNL parameter space where the active-

sterile mixing is just above or touching the seesaw floor, |UαN |2 = mν/mN . We

therefore have the exciting prospect for 0νββ decay and DUNE to not only confirm

(as their principal experimental aims) the mass ordering of the light neutrinos and

their Majorana nature, but also that their masses are generated by the presence of a

HNL pair with a small mass splitting.



Chapter 5

Probing Heavy Neutral Leptons in

Astrophysics & Cosmology

There are numerous past, current and planned future searches for HNLs based on

BBN constraint, over a wide range of HNL masses mN ; from the eV-scale where

HNLs can be tested in oscillations, over keV and MeV scales mainly probed in nu-

clear processes such as β decay, MeV to GeV in beam dump and meson decays,

to electroweak scale masses and above probed in colliders. A recent overview of

current and future searches is provided in [155]. There has especially be an in-

creased effort to search for HNLs in the mass range 100 MeV ≲ mN ≲ 100 GeV.

The reason for this is that in this mass range, HNLs are naturally long-lived for the

small active-sterile mixing strengths expected for successful neutrino mass gener-

ation. This results in macroscopic decay lengths and thus displaced decay vertices

that can be looked for with a high sensitivity.

Being long-lived, HNLs also affect the early history of the Universe. If HNLs

had been in thermal equilibrium, and they decay around or later than about a second

after the big bang, the produced particles affect Big Bang Nucleosynthesis (BBN)

[123]. HNLs decay to SM products with very different energies to the thermal

plasma. The rates of the expansion of the Universe and the rate of weak interaction

are therefore altered. This leads to different light element abundances we observe

today. Such considerations disfavour HNLs with masses mN ≲ 1 GeV, for small

active-sterile mixing strengths required by current constraints and expected for light
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neutrino mass generation. Even lighter and longer-lived N are likewise disfavoured

as they will act as additional degrees of freedom, or inject them through their decays,

and may overclose the universe.

We here explore such a scenario where the HNL couples to a light, exotic

pseudoscalar a, akin to an axion-like particle (ALP). We will refer to this dark scalar

as ALP in the following, and it is dark in the sense that it couples only to the HNL in

the first instance, with interactions to the SM suppressed by the active-sterile mixing

and through loops. Our motivation is to explore the cosmological consequences

of changing the HNL decay width due to the additional channel N → aν in the

scenario. While suppressed by both the active-sterile neutrino mixing and the ALP

decay constant fa, it is a two-body decay that can compete with the three-body (at

parton level) decays to SM particles only. This will enlarge the region of interest

constrained by BBN, i.e., where HNLs decay earlier and motivate direct searches

with such an additional invisible HNL decay. At the same time, the production

of ALPs and their own decays will themselves lead to constraints on the viable

parameter space by ensuring the cosmological history, especially until the time of

the formation of the cosmic microwave background (CMB), is not affected.

This chapter is organized as follows. In Section 5.1, we describe the model

and determine the HNL and ALP decay widths as important quantities for our later

considerations. In Section 5.2, we describe our modelling of the cosmological his-

tory in our scenario by setting up the Boltzmann equations which we separate into

a regime before and after BBN. The relevant constraints from cosmology and astro-

physics are then discussed in Section 5.3, and they are applied in Section 5.5 where

we present our results in terms of the viable parameter space. We briefly sketch

expectations for direct searches in Section 5.4.

5.1 Phenomenological Model

In this chapter, we have extended the existing SM particle spectrum by adding SM

gauge singlet Heavy Neutral Lepton (HNL) or Right-Handed Neutrino (RHN) and

an Axion-Like Patricle (ALP) to it.
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Axions are weakly interacting pseudo-scalar particles for solving strong CP

problem in QCD [62, 199, 200]. It is also considered as one of the most popu-

lar candidates of cold dark matter (CDM) [201]. Axion-like particles (ALPs) are

pseudo-scalar particles which do not necessarily solve the strong CP problem, but

can still be dark matter candidates. In this context, as the mass of this ALP is

not strictly tied to the QCD phase transition scale, ΛQCD, this particle can be quite

light in the framework. With this extension, we will outline a phenomenological

framework which can describe the coupling between HNL and ALP and its impli-

cations on current phenomenological, cosmological and astrophysical constraints

from other complimentary studies.

5.1.1 Lagrangian and Particle Spectrum

In order to generate at least two non-degenerate active neutrino masses, as con-

firmed by the results from various neutrino oscillation experiments, it is necessary

to introduce at least two HNLs. In general, we can extend the SM to include N

HNLs as SM gauge-singlet Weyl fermion fields NiR (i = 1, ..,N ) and we include

the pseudoscalar ALP a where the most general, renormalisable terms added to the

SM Lagrangian are

L = LSM + iN̄iR /∂NiR − (Yν)αiL̄αH̃NiR −
1
2
(MR)i jN̄c

iRN jR +LaNN +h.c.. (5.1)

Here, Lα = (ναL, ℓαL)
T and H = (H0,H−)T are the SM lepton doublet with flavor

index α = e,µ,τ and Higgs doublet, with H̃ ≡ iσ2H as the dual of H, respectively.

Recalling the SM decay modes of HNLs in Section 4.4.3, we also assume

that the ALPs a couples with the HNL N, but not with other SM particles directly.

Hence, due to the pseudoscalar nature of ALPs, the Lagrangian for the ALP-HNL

interaction is given by the derivative coupling [202] in the mass basis as,

LaNN =
N

∑
κ=1

1
fa
(∂µa)N̄κγ

µ
γ5Nκ =−

N

∑
κ=1

2i
fa

mNκ
aN̄κγ5Nκ , (5.2)

where fa is the ALP decay constant and mNκ
are the eigenvalues of MN . The second
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equality holds by applying the equation of motion for the HNLs and removing a to-

tal derivative after integration by parts [203]. Due to the small active-sterile mixing

UνN = UNν ≡
√

mνM−1
N , an interaction between the ALP and the active neutrinos

να is induced. In the mass bases of active neutrinos and HNLs, we can write the

interaction Lagrnagian between ALP and two active neutrinos as (also considering

the HNLs to be almost degenerate),

Laνν =−
3

∑
λ ,λ ′=1

N

∑
κ=1

2i
fa

mNκ
a(U†

ννUT
Nν)κλ (U

∗
NνUνν)κλ ′ ν̄λ γ5νλ ′

≈−
3

∑
λ ,λ ′=1

2i
fa

mNa|UNνU∗
νν |2λλ ′ ν̄λ γ5νλ ′ (5.3)

where λ ,λ ′ denote the mass eigenstates for active neutrinos. Furthermore, the in-

teraction Lagrangian for aNν vertex can be written similarly as,

LaNν =−
3

∑
λ ′=1

N

∑
κ=1

2i
fa

mNκ
a(U∗

NνUνν)κλ ′N̄κγ5νλ ′. (5.4)

While at least two HNLs are needed to explain all active neutrino masses and

mixing, we are mainly interested in elucidating the principle effects in our frame-

work. For simplicity, we consider a single HNL only, N1 ≡ N, we can acquire all

the important information from the framework using this simplified viewpoint. Fur-

thermore, we consider the active-sterile mixing of N1 with a single active neutrino

ν1 which is mostly electron-type neutrino i.e., ν1 ≡ νe, without loss of generality.

From now on, we take |Uνν |2 ∼ O(1) ≫ |UνN |2 = |UNν |2 and UνN = UeN . Equa-

tions (5.2) and (5.3) then take the form

LaNN =−2i
fa

mNaN̄γ5N,

LaNν =−2i
fa

mNUeNaN̄γ5νe,

Laνν =−2i
fa

mN |UeN |2aν̄eγ5νe =−2i
fa

mνaν̄eγ5νe, (5.5)

with the light neutrino mass mν = |UeN |2mN induced by the seesaw mechanism.
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5.1.2 HNL Decays

Apart from the model for neutrinos and HNLs as mentioned in Section 4.2.1, the

interaction in Eq. (5.5) gives a new decay channel for HNLs in this framework,

where the HNL decays into an ALP and an active neutrino via active-sterile mixing

at tree level. The decay width, in the limit where mν ≪ mN , can be written as

Γ
N→aν =

U2
eNm3

N
4π f 2

a

√
1+
(

ma

mN

)2
(

1−
(

ma

mN

)2
)3/2

≃
U2

eNm3
N

4π f 2
a

, (5.6)

where the last equality holds in the limit where ma,mν ≪ mN . Hence the lifetime

of the HNL considering only this decay mode, calculated in its rest frame, can be

expressed as

τN→aν =
1

ΓN→aν
≃ 8.6×10−4 sec×

(
fa

1 TeV

)2

×
(

10−14

U2
eN

)
×
(

1 GeV
mN

)3

=
4π f 2

a

U2
eNm3

N
.

(5.7)

The total decay width of HNL to SM particles only can be approximately writ-

ten as [155],

Γ
N→SM ∼

(
30 Γ

2−body +10 Γ
3−body

)
|UeN |2 ∼

(
30

G2
F f 2

Mm3
N

5π
+10

G2
Fm5

N
200π3

)
|UeN |2

(5.8)

where fM ∼O(0.1) GeV, corresponds to the typical decay constant of the produced

pseudoscalar or vector meson. The factors 30 and 10 are from the numerical results

of chosen region of parameter space. Comparing this with Eq. (5.6), it is clear that

the N → aν channel will be dominant over the SM decay channels if,

mN >

√
5|1−24G2

F f 2
M f 2

a |π
faGF

. (5.9)

Moreover, all the SM as well as ALP decay channels have similar dependency on

active-sterile mixing, so the above equation is completely independent of |UeN |2.
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Figure 5.1: Branching ratios of HNL to axionic as well as various SM channels as a func-
tion of mN for ma = 1 keV and two different values of fa: 1 TeV (top) and 103

TeV (bottom)

The branching ratios of the HNL to as a function of mass of the HNL for two

different values of fa are shown in Fig. 5.1. In this work, as we are mostly interested

in the regime where ma ≪ mN , correspondingly we have chosen ma = 1 keV and

varied mN ∈ [10−3 − 50] GeV range. In the top panel, we have considered fa = 1

TeV where the Br(N → aν)≈ 100% (solid green) throughout the entire mass range

of HNL, while the behaviour of different SM decay channels are shown as, N → 3ν

(solid black), N → νe(e+e− + µ+µ− + τ+τ−) (solid orange), N → e−(νµ µ+ +

νττ+) (solid magenta), different pseudoscalar (P) and vector (V ) mesonic channels
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Figure 5.2: Effective couplings of the ALP to electrons (left) and photons (right).

(which become relevant as mN ≥ mπ ) as N → Pν (solid red), N → Pe (dashed

brown), N → V ν (solid cyan), N → Ve (dashed blue). In the bottom panel of the

figure we have taken fa = 103 TeV, for which the coupling of the ALP to HNL

significantly decreases. Here, for lower mass of HNL the axionic decay channel

still dominates the scenario, while for mN > mπ , as the mesonic channels come into

picture, the BR to axionic channel drops significantly as compared to the SM decay

channel BRs.

5.1.3 ALP Decays

The interaction between the ALPs and active neutrinos in Eq. (5.3) causes the ALP

to decay. This decay channel occurs at tree level, thus dominating the ALP decay

width, and it is given by

Γ
a→νν =

1
f 2
a

m2
NmaU4

eN
2π

√
1− 4m2

ν

m2
a

(
1− 2m2

ν

m2
a

)
≃

m2
NmaU4

eN
2π f 2

a
, (5.10)

where we have considered ma ≫ mν to arrive at the last expression.

No other decay channels are available at tree level. However, as it will be seen

below (see Section 5.3), most of the constraints on axion-like particles come from

their interactions with electrons and photons. Though the Lagrangian in Eq. (5.5)

does not produce axion-electron or axion-photon interactions at tree level, such cou-

plings can be induced at 1-loop and 2-loop respectively, as shown in Fig. 5.2.

These effective axion-electron and axion-photon couplings, gae and gaγ , can

cause the ALP to decay to a pair of electrons or photons and, in the limit where



5.1. Phenomenological Model 131

ma,mν ,me ≪ mN , are given by

gae ≈
√

2GFgaN |UeN |4memN

16π2 =

√
2GF |UeN |4mem2

N
16π2 fa

,

gaγ ≈
e2gae

2π2me

(
1+

1
12

m2
a

m2
e

)
=

√
2e2GF |UeN |4m2

N
32π4 fa

(
1+

1
12

m2
a

m2
e

)
, (5.11)

where gaN = mN/ fa.

Nevertheless, for light ALPs, ma ≤ 1 keV, which is the focus of this study,

the only open decay channels for the ALPs are either a pair of active neutrinos or

a pair of photons. But, as seen in Fig. 5.2, the diphoton decay happens at 2-loop

and thus it is significantly suppressed with respect to the decay to active neutrinos.

For example, the decay width to photons of a 1 keV ALP with decay constant of

1 TeV will be of order 10−46 GeV, negligible compared to decay width to active

neutrinos [204, 205].

The ALP lifetime can thus be computed from its decay width to two active

neutrinos. So in ALP rest frame,

τa = 1 sec×
(

1 GeV
mN

)2

×
(

10 keV
ma

)
×
(

6×10−7

|UeN|2

)2

×
(

fa

1 TeV

)2

. (5.12)

For HNLs and ALPs in the mass range of interest, mN ∼ 1 GeV and ma ∼ 1

keV, the lifetime of the ALPs, and hence the scenario that is realised, depends on

the ALP-HNL interaction 1/ fa and the active-sterile mixing UeN . For example, an

ALP that is stable compared to the age of the universe would require fa ∼ 1 TeV

and |UeN |2 ≤ 10−13.

5.1.4 Benchmark Scenarios

There are four benchmark points we choose to study, given in Tab. 4.5. The allowed

parameter space is investigated for all four scenarios in active-HNL mixing versus

HNL mass planes in Sec. 5.5. The number density evolutions and interaction rates

are studied explicitly through cosmological history for scenarios 1 and 2 as exam-

ples. These benchmark points satisfy the requirements that HNL decays before the

start of BBN and ALP decays before the start of CMB. The reason for these choice
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Scenario mN [GeV] |UeN |2 fa [GeV] ma [keV]

1 10−1 10−10 103 1

2 10−0.4 10−9.2 105.5 1

3 - - 103 10−2

4 - - 105.5 10−2

Table 5.1: Benchmark scenarios labelled by the red squares on Fig.5.6. For fixed ALP mass
ma = 1 keV, they are mN = 10−1 GeV and |UeN |2 = 10−10 for fa = 103 GeV and
mN = 10−0.4 GeV and |UeN |2 = 10−9.2 for fa = 105.5 GeV respectively. The last
two scenarios are given at fixed ma = 10 eV for fa = 103 GeV and fa = 105.5

GeV, respectively.

is explained in Sec. 5.2 and the points are also deliberately chosen in (or close to)

the seesaw region in order to explain massive neutrinos.

5.2 Cosmological History of HNLs and ALPs

In the hot dense plasma of the early Universe, it is expected that the interactions

between the HNLs and SM particles are strong enough to maintain thermal and

chemical equilibrium between the two sectors. HNLs with masses around the GeV

scale typically do not have time to freeze-out as their decays into SM particles,

and in our framework into ALPs, will deplete their abundance sufficiently fast. On

the other hand, the interactions of HNLs and SM particles with ALPs are typically

weak, and hence we assume that that ALPs do not start in thermal equilibrium

with the SM and HNLs, and that their initial abundance is negligible (freeze-in

production). The scattering between ALPs and HNLs might briefly bring the ALPs

in thermal equilibrium, for small enough fa, but they would soon freeze out, and

eventually decay into active neutrinos. All of these decay channels and scattering

rates play an important role in the evolution of the energy and number densities of

HNLs and ALPs throughout the history of the universe. The most relevant processes

that determine the abundances of HNLs and ALPs can be seen in Fig.5.3.

The change on the energy and number densities of the various particle species

due to the expansion of the universe and the processes in Fig. 5.3 can be computed

with the Boltzmann equations for the expanding Universe [206, 207]
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Figure 5.3: Relevant processes for the scattering of HNLs, ALPs and SM particles, re-
sponsible for determining their abundances. The diagrams on the top describe
the scattering of HNLs with SM particles (NN ↔ SM), and the scattering of
HNLs or active neutrinos with ALPs (NN ↔ aa). The diagrams on the right
and second row depict the decays of HNLs (N → aν and N → SM) and ALPs
(a → νν).

dρi

dt
+3H(ρi + pi) =

δρi

δ t
=
∫

giE
d3 p
(2π)3 C [ f ]

dni

dt
+3Hni =

δni

δ t
=
∫

gi
d3 p
(2π)3 C [ f ]

(5.13)

where ρi, pi and ni are energy density, pressure and number density of particle

i, H the Hubble parameter, gi its internal degrees of freedom and δρi/δ t and δni/δ t

the energy and number density transfer rates, computed with the collision operator

C [ f ], which takes into account all energy and number changing processes.

As mentioned earlier, the addition of the ALPs to this model has the intended

consequence of forcing the HNLs to decay faster than in vanilla HNL models. Con-

sequently, even for HNL masses of the order of 10-100 MeV, HNLs decay fast

enough to avoid affecting the BBN abundances. In contrast, the ALPs should not

decay before BBN, otherwise they would in turn modify BBN. Therefore, we study

the HNL and ALP abudances in two different time epochs, before BBN and be-

tween BBN and recombination1. After recombination the ALPs may or may not be

1We should mention that we here consider the onset of BBN to occur at the time of neutrino
decoupling, i.e. t ∼ 1 s. This approximation holds as long as none of the number changing processes
involved are active between that time and the end of BBN, t ∼ 104 s.
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stable, and that will have some astrophysical consequences that will discussed in

Section 5.3.

5.2.1 Abundances before BBN

We start by assuming that after some inflationary epoch and subsequent reheating,

the SM particles are in equilibrium in the early Universe. The actual value of the

reheating temperature is no importance, since most particles will be at their equilib-

rium densities, but it must be low enough to ensure that the ALPs are not strongly

coupled after reheating. The HNLs are thus assumed to be in thermal and kinetical

equilibrium with the SM, but the ALPs are not. The evolution of the densities of

HNL and ALP can be described by coupled Boltzmann equations, as in Eq. (5.13).

Before neutrino decoupling, the HNL number density is given by

dnN

dt
+3HnN =−⟨σNN→SM v⟩

(
n2

N −neq,2
N

)
−⟨σNN→aa v⟩

(
n2

N −neq,2
N

n2
a

neq,2
a

)
−⟨ΓN→SM⟩

(
nN −neq

N
)
−⟨ΓN→aν⟩

(
nN −neq

N
na

neq
a

)
(5.14)

where ⟨σNN→SMv⟩, ⟨σNN→aav⟩, ⟨ΓN→SM⟩ and ⟨ΓN→aν⟩ are the thermally-averaged

scattering cross-sections of HNL annihilation to SM particles and ALPs, and the

thermally-averaged decay widths of HNLs into light SM particles and ALP-active

neutrino pairs, respectively. The quantities neq
X denote the equilibrium number den-

sity of any species (X = N,a). Similarly the Boltzmann equation for ALPs is

dna

dt
+3Hna =−⟨σaa→νν v⟩

(
n2

a −neq,2
a
)
−⟨σaa→NN v⟩

(
n2

a −neq,2
a

n2
N

neq,2
N

)

−⟨Γa→νν⟩(na −neq
a )+ ⟨ΓN→aν⟩

(
nN −neq

N
na

neq
a

) (5.15)

which also contains various contributions from the scattering of ALPs with the

HNLs and neutrinos and the thermally averaged ALP decay width ⟨Γa→νν⟩. The

solution of these Boltzmann equations will give the evolution of the number densi-

ties of HNLs and ALPs between some unspecificed reheating time and the time of

neutrino decoupling, t ∼ 1 s. The solve the Boltzmann equations we make a vari-
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able transformation, to the comoving yield YX = nX/s for any species X , where s is

the entropy density given by

s =
2π2

45
g∗T 3. (5.16)

where g∗ are the number of relativistic degrees of freedom and T the temperature

of the thermal bath of SM particles. The Boltzmann equations for the yield YX are

therefore

zHs
dYN

dz
=−γ

eq
NN→SM

(
Y 2

N

Y eq,2
N

−1

)
+ γ

eq
aa→NN

(
Y 2

a

Y eq,2
a

−
Y 2

N

Y eq,2
N

)

− γN→SM

(
YN

Y eq
N

−1
)
− γN→aν

(
YN

Y eq
N

− Ya

Y eq
a

)
,

zHs
dYa

dz
=−γ

eq
aa→νν

(
Y 2

a

Y eq,2
a

−1
)
− γ

eq
aa→NN

(
Y 2

a

Y eq,2
a

−
Y 2

N

Y eq,2
N

)

− γa→νν

(
Ya

Y eq
a

−1
)
+ γN→aν

(
YN

Y eq
N

− Ya

Y eq
a

)
,

(5.17)

where z = mN/T and the thermally averaged decay/scattering density γX→Y is de-

fined as

γX→Y = neq
X

K1(z)
K2(z)

ΓX ,0, (5.18)

with ΓX→Y,0 the rest frame decay with / scattering rate for the given process at zero

temperature, and K1(2)(z) are the Bessel function of first (second) kind. The relation

between the thermally averaged cross-section, the interaction rate and the thermally

averaged interaction density,

⟨σX→Y v⟩neq,2
X = ⟨ΓX→Y ⟩neq

X = γX→Y (5.19)

The decay and scattering rates, normalised to the equilibrium number density

of the parental particles, are shown in the bottom plots of Fig. 5.4 and 5.5 as a

function of the inverse temperature z = mN/T , from some arbitrary initial reheating

temperature TR = 106 GeV until the formation of the CMB. The bottom panels

in Fig. 5.4 and 5.5 use benchmark values of the model parameters of scenario 1

(Fig. 5.4) or scenario 2 (Fig. 5.5) according to Tab. 5.1. These values are chosen
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to showcase a scenario where the dominant decay channel of HNLS is via ALPs

and also the ALPS enter briefly into thermal equilibrium before BBN (top), and

a scenario where the HNLs decay with almost equal likelihood to ALPS and SM

particles, and also the ALPs are never in equilibrium (bottom).

As the universe cools down from the reheating era (z ∼ 10−6) to the time

of neutrino decoupling (102 < z < 103), the annihilation processes for the HNLs

become inefficient, γ
eq
NN→SM,γ

eq
NN→aa ≪ H, and the HNLs would undergo thermal

freeze-out in the absence of decays. However, the decays of HNLs to ALPs (and

SM particles if not-negligible) kick in sufficiently before BBN so as to deplete the

abundance of HNLs early enough and not affect the formation of nuclei. It is worth

noting that in either scenario depicted in the bottom panels Fig. 5.4 and 5.5, the de-

cay of ALPs is extremely inefficient for most of the temperature range, only becom-

ing efficient after BBN. Because of this, for the solution of the Boltzmann equations

in eq. (5.17) until the time of neutrino decoupling, we neglect the contribution from

ALP decays.

The evolution of the number densities of HNLs and ALPs can be seen in the

top panels of Fig. 5.4 and 5.5, for the same benchmark scenarios as before. As

expected, the abundance of HNLs depletes very fast once their decays becoming

efficient. In the panel on the top, the HNL starts decaying before falling out of

thermal equilibrium and thus follows the equilibrium density, whereas the bottom

panel shows that the HNLs freeze-out for a short time, only decreasing with the

expansion and Boltzmann suppression, before the decays completely overtake them

and destroy the HNL abundance. If the ALPs are sufficiently strongly coupled

to the HNLs, they would enter in thermal equilibrium for a short period of time

before BBN, as seen in the top panel of Fig. 5.4, where their number density follows

the equilibrium number density of relativistic particles. Conversely, for weakly

coupled ALPs (bottom panel), the ALPs are never in thermal equilibrium, their

number density increases while their production via scattering or decays of HNLs

is efficient, and ultimately they undergo freeze-in some time before the beginning

of BBN.
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5.2.2 Abundance of ALPs after BBN and temperature evolution

As we saw before, in all scenarios we consider, the abundance of HNLs depletes

very fast before BBN. As a consequence, the main production mechanisms for

ALPs, which were HNL-ALP scattering and HNL decays, are really inefficient after

BBN and thus the ALP abundance only decreases at late times. Even the process

νν → aa falls out of thermal equilibrium significantly before BBN. Therefore, the

abundance of ALPs after the end BBN is solely determined by their decays. Their

Boltzmann equation is therefore given by [208]

zHs
dYa

dz
=−γa→νν

(
Ya

Y eq
a

−1
)
, z > zBBN. (5.20)

If the ALP decays are fast enough, as in the top panel of Fig. 5.4, the ALPs

decay shortly after the end of BBN, and their number density completely disappears.

Conversely, the abundance of long-lived ALPs becomes frozen-out after BBN as

the top panel of Fig. 5.5 shows, and will only deplete slowly, depending on their

lifetime.

Before neutrino decoupling, the temperatures of the photon and neutrino baths

evolved together, changing only via adiabatic cooling since ALP decays are negli-

gible before BBN [209]. After the end of BBN, however, the decays of ALPs to

neutrinos, a → νν become relevant, which will introduce energy into the neutrino

bath and thus increase its temperature. An increase on the neutrino temperature rel-

ative with the photon temperature at the time of recombination has a strong impact

on the number of effective neutrino degrees of freedom Neff. Because of this, we

need to track separately the evolution of the photon and neutrino temperatures from

the end of BBN until the formation of the CMB. Neglecting chemical potentials

and effects from neutrino oscillations, the evolution of the temperatures with time
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is given by [207, 210]

dTγ

dt
=−

4Hργ +3H(ρe + pe)
∂ργ

∂Tγ
+ ∂ρe

∂Tγ

dTν

dt
=−12Hρν +3H(ρa + pa)+δρa/δ t

3∂ρν

∂Tν
+ ∂ρa

∂Tν

(5.21)

where ρi and pi are the energy density and pressure of particle species i, and δρa/δ t

is the energy exchange rate from ALPs to neutrinos, given by the collision operator

in eq. (5.13). Eq. (5.21) takes into account the decoupling of the electrons from

the photon bath when they become non-relativistic, as well as the decoupling of the

ALP from the neutrino bath when Tν ≳ ma.

5.2.3 Abundance and Interaction Rate Evolution

Fig. 5.4 and 5.5 show the evolution of the thermally averaged scattering and decay

rates (bottom row) and the number density of various species (top row) for two

different scenarios from Table 4.5. Scenario 1 has mN = 10−1 GeV, |UeN |2 = 10−10,

fa = 103 GeV and ma = 1 keV. Scenario 2 has mN = 10−0.4 GeV, |UeN |2 = 10−9.2,

fa = 105.5 GeV and ma = 1 keV.

The rate evolution plots (bottom) show how the various rates compare to the

Hubble parameter (red). In scenario 1 in Fig. 5.4, the thermally averaged scattering

rate aa → NN (solid blue) begins becomes efficient for a short period of time at

around z ∼ 1, which brings the ALPs and HNLs close to thermal equilibrium. Other

scattering rates, such as aa → νν , with either N (dotted blue) or ν (dashed blue)

mediation, are negligible. Once the ALP-HNL scattering rate becomes inefficient

shortly before the onset of BBN, HNL decays to ALPs (green) become the primary

source of ALP production while the HNLs are abundant enough. Other HNL decays

to SM particles (orange) only become efficient in scenario 1 much after all HNLs

have decayed away to ALPs, and thus have to effect on the evolution. Lastly, a long

time after BBN, but before recombination, the decays of ALPs, aa → νν (pink)

become efficient and make the ALPs decay completely before the formation of the

CMB. On the other hand, in scenario 2 in Fig. 5.5, the scattering rates are never
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Figure 5.4: Evolution of the number densities (top) and the rates for relevant processes
(bottom) for benchmark scenario 1 as given in Tab. 4.5. The blue lines on the
rate plots show the ALP to HNL annihilation rates (solid), ALP to a neutrino
and a HNL annihilation rates via HNL exchange (dotted) and ALP to a neutrino
and a HNL annihilation rates via light neutrino exchange (dashed). The green
curves give the thermally averaged decay rates for HNL to ALP and a neutrino
and the yellow curve give the rates for SM HNL decay channel. There is also
the di-neutrino decay rates for ALP which is represented by the pink curves.
Finally, the red curves give the evolution of Hubble parameter. The blue and
orange lines represent the number densities for ALP and HNL respectively.
The dashed lines denote the equilibrium number densities for the corresponding
species and neutrinos (purple line).
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Figure 5.5: As Fig. 5.4 but for benchmark scenario 2.

efficient enough, so the HNLs and ALPs are never in thermal equilibrium. The

decay of HNLs to ALPs (green) is thus the only source of ALP production, but

in this scenario it is comparable to the HNLs decays to SM particles (orange), and

thus not all HNLs decay to ALPs. Since the ALP-neutrino interaction rate is weaker

compared to scenarion 1, larger fa, ALPs do not decay efficiently in scenario 2, as

their decay rate only becomes efficient around or after the formation of the CMB,

which causes the ALPs to survive after recombination.

In the number density plots (top), the orange curves show the actual (solid)
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and equilibrium (dashed) number density for HNL, the blue curves shgow the ac-

tual (solid) and equilibrium (dashed) number density for ALP and the dashed purple

curve gives the equilibrium density for neutrinos. In scenario 1, the strong scatter-

ing between HNLs and ALPs brings them close to thermal equilibrium at around

z ∼ 1. Shortly after, the HNLs become non-relativistic and thus their actual and

equilibrium abundances are Boltzmann suppressed, thereby falling rapidly before

BBN. Since the ALPs and HNLs are close to equilibrium already, the incrasing ef-

fect of HNL decays on the ALP abundance is small, and in fact causes the ALP

abundance to decrease as inverse decays tend to dominate when the ALP popu-

lation is high. Lastly, after BBN the ALPs become non-relativistic, but initially

there are no equilibrium processes that can deplete their abundance, and thus they

freeze-out, i.e. their real abundance (solid blue) overshoots their equilibrium abun-

dance (dashed blue). Finally, shortly before recombination, ALPs decay to light

neutrinos, depleting their abundance completely. In scenario 2, the ALPs are never

in thermal equilibrium, and are only efficiently produced by HNL decays, so they

freeze-in after the HNLs become non-relativistic and disappear. In this scenario,

ALPs are longer lived, and thus their abundance freezes-out, as before, but only

depletes slowly before the formation of the CMB.

5.3 Astrophysical and Cosmological Constraints

In this work we have introduced two new particles, a HNL and an ALP. that modify

very significantly the evolution of the early Universe compared to ΛCDM. The cos-

mological and astrophysical implications of both of these species are well known

separately [211, 212]. However, their combination has a somewhat different effect,

as the HNLs are allowed to be lighter than in most previous scenarios, due to the

weakening of the BBN bound (see below), and also due to the ALPs coupling ex-

clusively to neutrinos via the HNL portal. Consequently we need to evaluate the

predictions of our model towards known cosmological and astrophysical observ-

ables and hence assess whether their strong constraints render the model invalid

or there are still parameter combinations that are unconstrained. For this purpose
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we study how this model affects the formation of primordial elements (BBN), the

observations of the CMB, as well as astrophysical constraints such as those from

the observation of the supernova SN1987A, and others such as Extragalactic back-

ground light (EBL) or X-ray constraints.

5.3.1 Big Bang Nucleosynthesis

The predictions of ΛCDM with regards to the formation of the primordial elements

match very well with their observed present abundances2 These predictions are,

however very sensitive to the cosmological state of the Universe at any time be-

tween neutrino decoupling and the CMB. Any modification of the temperature of

neutrino decoupling, the rate of expansion of the Universe or energy injection in the

primordial plasma, may cause a catastrophic change on the formation of light ele-

ments. This is specially true in our scenario, where the decays of HNLs into mesons

disturb the p ↔ n conversion processes that set the initial proton and neutron abun-

dances for BBN [215]. If the HNLs decay fast enough, however, the abundances

of protons and neutrons have time to restore to the expected values from ΛCDM,

and thus there is no effect on BBN. Hence, we set a conservative limit on the HNL

lifetime of τN < 0.023 s [215], beyond which the decays will disturb the BBN abun-

dances too much and is therefore marked as excluded in our scenario.

In addition to the decays of the HNLs, the decays of ALPs may also modify

the primordial plasma and affect BBN. If the ALPs decay before neutrino decou-

pling, since their primary decay channel is a → νν , they would modify the neutrino

spectrum and increase the temperature of the neutrino bath, thereby delaying neu-

trino decoupling and the formation of primordial elements. Consequently, we do

not consider scenarios where the ALPs have short lifetimes, and to ensure that they

do not directly affect BBN, we only consider ALPs decaying after the end of BBN,

i.e τa > 104 s. Subsequent decays of the ALPs may also dissociate the formed ele-

ments and modify their abundance [209], however this dissociation is mostly caused

2The present-day abundance of 7Li is currently is disagreement with the predictions from stan-
dard cosmology. Attempts have been made to provide an explanation in modified cosmologies, with
varying degrees of success. Therefore, it remains unclear whether this is caused by modifications
over ΛCDM or an inaccurate measurement of their present abundance [213, 214].
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by electromagnetic cascades, which are rare in our scenario since the decay rate of

a → γγ is negligible.

Even if the ALPs do not decay before BBN, they may still affect the forma-

tion of the primordial elements if they are too abundant. Since ALPs are relativistic

before neutrino decoupling, a sufficient abundance would act as dark radiation and

thus modify the Hubble rate during radiation domination. This effect can be under-

stood as increase in the neutrino temperature and therefore results in a modification

on the value of Neff at the time of BBN [216]. Since the contribution from dark

radiation is only relevant when the ALPs are close to thermal equilibrium, we can

parametrise the deviation from ΛCDM as

∆NBBN
eff ≈ ρa

ργ

≈ ρ
eq
a na

neq
a ργ

(5.22)

where ργ is the energy density in photons at BBN. Though Neff is not directly

measured at BBN, it can inferred from the measured value at recombination by

Planck [30], to be [217] NBBN
eff = 2.86±0.15, hence we set an upper bound on the

ALP abundance at BBN by requiring ∆NBBN
eff ≲ 0.2.

BBN is one of the most important probes to early Universe which can be

tested and measured by both laboratory experiments and cosmological observa-

tions [218–220]. In the ΛCDM model, the primordial abundance of light nuclei

such as 2H, 4He and 7He, can be calculated directly from the SM. The light element

abundance nowadays can be therefore predicted with the aid of simulated galac-

tic chemical evolution [221]. The abundance of light nuclei is parameterised by the

baryon to photon ratio ηB as mentioned in Section 3.4 or baryon density ωB =ΩBh2.

The current best observed data is ωB = 0.02236±0.00029 [30] which agrees with

theoretical predictions [213, 222–225]. The presence of new non-relativistic parti-

cles at BBN will increase the light nucleus abundances due to the increase in energy

density compared to relativistic particles. MeV-GeV HNLs as super-weakly inter-

acting particles can decay to the SM particles via active-sterile mixing UνN which is

|UνN | ≪ 1 due to the seesaw relation mν = mN |UνN |2. The decay products of HNLs

will inject energy to the SM thermal plasma of the Universe and therefore increase
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the temperature and shift chemical equilibrium of the weak processes. This restricts

the HNL life time to be ≲ 1 sec [123]. Furthermore, mesons from HNL decay can

also increase the production of 4He and further constrain the HNL life time to be

≲ 0.02 sec [215].

5.3.2 Cosmic Microwave Background

After the end of BBN, any particle that injects energy in the primordial plasma will

modify to some extent the observations of the CMB. The impact of energy injected

before recombination would work to heat up the plasma and hence cause changes

to the observed anisotropies in the CMB power spectrum. However, since the ma-

jor source of energy injected is via ALP decays to neutrinos, the energy injected

into the photon bath is negligible, and thus we not expect constraints arising from

CMB anisotropies. Late time decays of ALPs could also cause spectral distortions

in the black body spectrum of the CMB if the decays heat up the photon batch sig-

nificantly [226]. Fortunately, as before, the decay rate from ALPs to photons is

neglibile and we assume that secondary energy injected into the photon spectrum

from the decays to neutrinos can be safely ignored.

The most significant impact of the decays of ALPs for recombination is the

modification of the neutrino temperature. Since neutrino decoupling, the photon

and neutrino temperatures evolved independently which, even in ΛCDM, causes

a value of the effective neutrino degrees of freedom as Neff = 3.044± 0.384 [30].

ALP decays before the formation of the CMB increase the neutrino temperature, as

in eq.(5.21). This increase of the temperature of the neutrino bath with respect to

that of the photon bath, causes the value of Neff to increase from the expectations of

ΛCDM, as

NCMB
eff = NBBN

eff

(
11
4

)4
3
(

Tν

Tγ

)4

(5.23)

which strongly constraints the decay rate of ALPs.

Lastly, from observations of the CMB, the abundance of non-baryonic matter

(dark matter) was observed to be around ΩDM ∼ 0.12. ALPs that become non-

relativistic before recombination, and they have lifetimes larger than τa > 1013 s,
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would survive long enough to contribute their abundance to that of dark matter.

Therefore this also sets a strong constraint on the total abundance of ALPs at the

time of recombination, which is partially complementary to the constraint on Neff.

5.3.3 SN1987A

The core of supernovae (SN) are very hot and dense systems, with temperatures of

the order of T ∼ 30 MeV. Most of the particles created in such energetic medium are

trapped and contribute to the energy transfer inside the SN core. Weakly coupled

particles, however, can free-stream and escape the core, contributing to the cooling

of the SN. The primary source of cooling for SNs are neutrinos, which can escape

as long as they have energies Eν ≲ 30 MeV. This neutrino burst was observed for

SN1987A by various water Cherenkov detectors, including Kamiokande-II [227,

228]. Besides neutrinos, the HNLs and ALPs in our model could also escape the

SN core as they interact very weakly with the SN inner medium, and contribute

to SN cooling [229–234]. This additional source of cooling is very constrained by

measurements of the luminosity of SN1987A. Secondary decays of HNLs and ALPs

into neutrinos produce a high-energetic additional flux of active neutrinos that could

have been detected alongside the normal neutrino burst [232,233]. The combination

of SN cooling and the additional neutrino flux can impose strong constraints on our

model for high couplings.

For both HNLs and ALPs, the constraint on the secondary neutrino flux is

much stronger than the constraint from SN cooling [233, 234], and hence we only

include the former in our study. Typical constraints on the secondary neutrino flux

from HNL decays assume decay rates for HNLs in the absence of additional chan-

nels, so the N → πν and N → 3ν decays dominates [231]. Other studies involving

SN constraints on lighter HNLs can be found in [229, 235–237]. In our model the

primary decay channel for HNLs is to ALPs, which consecutively decay to a pair

of neutrinos. Hence, neglecting resonant effects, the secondary neutrino flux from

HNLs can be approximated to that arising from the 3-body decay of the HNLs to

neutrinos. Even though the 2-body decay branching ratio is around 7 times larger

than the 3-body decays for HNL masses in the 100 MeV range, Cherenkov detec-
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tors are more sensitive to the 3-body decays, since the interaction cross section of

antineutrinos, only produced in 3-body decays, is around 100 times larger than that

of neutrinos from our numerical result [227]. Therefore, SN limits on traditional

HNL decays can be directly applied to our scenario. We thus use the limits on HNL

masses and mixing from Fig. 2 of [234] to constrain the large mixing angle regions

in our model.

In addition to HNLs, ALPs can also be produced in the core of SN. The ex-

pected secondary neutrino flux from decaying ALPs with masses below the keV

scale is smaller than that from HNL decays that can escape the SN core. However,

heavy HNLs cannot escape and thus SN constraints from the production of ALPs

are stronger for mN ≳ 400 MeV. From Fig. 5 of [234], we can see that the coupling

between the ALP and the electron-neutrino gae must be gae ≲ 10−7 for keV-scale

ALPs. In our model, gae is given by Eq. (5.11), which imposes only weak limits for

heavy HNLs and large HNL-ALP couplings, beyond the ranges considered in our

study.

Lastly, there could be additional constraints from secondary decays of HNLs

and/or ALPs to photons [66, 238–242]. However, these are negligible as the pho-

tonic branching ratios of both particles are very small for the masses considered.

5.3.4 Other Astrophysical Constraints

In addition to the astrophysical constraints from SN cooling and its secondary

fluxes, there is a plethora of possible astrophysical probes of ALPs. The production

of ALP in the core of white dwarfs or RGB stars can lead to strong cooling, and even

provide an explanation for the observed cooling hints [243,244]. In fact, it has been

shown that an ALP with a coupling to electrons of the order gae ∼ 10−13 provides

a good fit to stellar cooling data [244]. However, in our model the ALP-electron

coupling is very small, so much that the value gae ∼ 10−13 can only be reached for

mixings U2
eN ∼ 10−1 and HNL masses mN ∼ 1 TeV. Since this parameter region is

beyond our scope, and anyways disfavoured by various cosmological constraints,

as we will see later, we neglect the constraints from stellar cooling in our study.

Long-lived ALPs that survive after recombination may still be observable to-
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day through their decay products. The photons injected by ALP decays are the most

detectable candidates, as they can be probed in observations of the extragalactic

background light (EBL) or via X-rays [245]. For ALP masses below the keV scale,

the constraints on the ALP-photon coupling from X-ray and EBL surveys require

that gaγ ≲ 10−15 GeV−1 [226, 245]. In our model, however, the ALP-photon cou-

pling is derived at two-loop order, and therefore extremely small. As above, only

for very large mixings U2
eN ∼ 10−3 and large HNL masses mN ∼ 1 TeV, has this

constraint any effect. Consequently, we also ignore any astrophysical constraints

from late-time photonic decays of ALPs.

5.4 Impact on Direct HNL Searches
Future HNL searches, especially those based on long-lived signatures, will probe

small active-sterile mixing strengths approaching the seesaw expectation. Promi-

nent examples of proposed and planned searches are PIONEER [163], NA62

[164, 246], DUNE [165], SHiP [166], FCC-ee [167] and Faser [247]. A dedicated

analysis is needed to present a study of the sensitivity in our scenario depending

on the specific search strategy. Such a detailed analysis is beyond the scope of this

chapter and will be considered in future work. In this section, we will assess how

the sensitivity is modified in the presence of new HNL-ALP coupling in the context

of DUNE. We qualitatively describe the approach for calculating the expected num-

ber of signal events in the DUNE near detector (ND) based on the analysis [248].

The ND is located at a distance of L = 574 m from the HNL production point, with

a transverse cross-section of A = 12 m2 and a depth of ∆L = 5 m along the beam

axis. Following [248], we write the expected number of signal events as

Nsig = NP ×Br(P → N)×Br(N → charged)× εgeo, (5.24)

where NP is the relevant production fraction of positively charged and neutral

pseudoscalar mesons multiplied by the total number of protons on target NPOT =

6.6× 1021 for a 120 GeV proton beam at DUNE, Br(P → N) are the branching

fractions of HNL production from the meson P, Br(N → charged) is the branching
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fraction of produced HNL decaying into charged lepton pairs and εgeo corresponds

to the geometric efficiency,

εgeo = e
−mN ΓN

pNz
L
(

1− e
−mN ΓN

pNz
∆L
)
. (5.25)

Here, pNz is the momentum of the HNL along the beam axis in the lab frame, where

we have considered pNz = 7.5 GeV, following the simulation of meson production

from a pp collision at
√

s = 15 GeV [248]. As we have not explicitly simulated

any events and analysed with respect to detector level cuts, for simplicity, we will

consider, in our analysis, that all produced HNL events will be accepted at detector

level.

In the presence of the HNL-ALP coupling as well as the new HNL decay chan-

nel N → aν in our scenario, the corresponding total decay width will also be af-

fected. Correspondingly, the partial decay width of HNLs decaying into visible

final states as well as the geometrical efficiency factor will change. In contrast,

the production rate NP as well as the branching ratio of the HNL production from

mesons is unaffected. We thus consider the relative change in the number of events,

N′
sig

Nsig
=

Br′(N → charged)
Br(N → charged)

ε ′geo

εgeo
(5.26)

where the unprimed and primed quantities correspond to ΓN ≡ ΓN→SM and Γ′
N ≡

ΓN→SM + ΓN→aν , respectively, as discussed in Sec. 4.4.3 and Sec. 5.1.2. From

Fig. 5.1, we can notice that for (ma, fa) = (1 keV,1 TeV), the total decay width of

the HNL is dominated by N → aν throughout the mass range considered, while for

(1 keV,102.5 TeV), up to mN ∼ mπ , N → aν dominates the scenario and beyond

this point, it drops significantly. Furthermore, as the decay widths for N → aν and

N → SM have the same UeN dependence, the branching fractions are independent

of UeN .
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Likewise, the ratio of the geometric efficiencies can be approximated by

ε ′geo

εgeo
= exp

[
−mN

pNz

Γ(N → aν)L
]

Γ′
N

ΓN
, (5.27)

for a shallow detector depth ∆L, i.e., for (mN/pNz)Γ
′
N∆L ≪ 1. The ratio of decay

rates in this expression is equal to Γ′
N/ΓN = Br(N → charged)/Br′(N → charged),

thus canceling the corresponding ratio in Eq. (5.26) in this limit. Thus, we have

N′
sig

Nsig
= exp

[
−mN

pNz

Γ(N → aν)L
]
, (5.28)

which approaches unity for long decay lengths, (mN/pNz)Γ(N → aν)L ≪ 1. Thus,

for small |UeN |2 and mN where Γ(N → aν) ≪ pNz/(mNL), we expect that DUNE

will have the same sensitivity to the active-sterile mixing strength |UeN |2 in our

HNL-ALP scenario as in the standard HNL case. For shorter decay lengths, the

sensitivity will be reduced.

As another example for a direct search experiment we consider the existing

NA62 experiment which uses a different search strategy as compared to DUNE.

The NA62 experiment [246] used a secondary 75 GeV hadron beam containing a

fraction of kaons, and has been able to probe the decays K+ → ℓ+N. For small

active-sterile mixing the decay length of HNL is much larger than the 75 m detector

size and the process is characterised by a single detected track, that of the charged

lepton – a positive signal is a peak in its missing mass distribution. As this experi-

ment is currently insensitive to the decay of the HNLs, the presence of the N → aν

decay channel will not affect the search as long as the decay length remains large.

5.5 Results and Discussion
The aim of this chapter is to find valid scenarios where the traditional BBN bound

on HNLs [215] is relaxed due to the primary decays to ALPs. For this purpose we

have performed some small scale parameter scans around the benchmark scenarios

in Table 4.5 to illustrate this effect3. Figure 5.6 shows the results of these parameter
3We performed a grid scan on two parameters of the model, mN and |UeN |2. This simplification is

enough for our purposes as we only intend to highlight the crucial features of the model, but do not
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Figure 5.6: Allowed parameter regions in the mN vs |UeN |2 plane for the four benchmark
scenarios in Table 5.1: Upper left panel : fa = 1 TeV, ma = 1 keV, Upper right
panel : fa = 102.5 TeV, ma = 1 keV, Lower left panel : fa = 1 TeV, ma = 10
eV, Lower right panel : fa = 102.5 TeV, ma = 10 eV. The red region shows
the space disallowed by HNL decay time after the start of BBN, while the
region left to red dashed contour is disfavored if HNL decays only via SM
decay channels, in absence of ALP. The most stringent bound from cosmology,
Neff < 3.10322 (ΛCDM)+ 0.0384 (0.1σN) gives the brown forbidden region
of active neutrinos produced from ALP decays. The region above the purple
contour is excluded due to astrophysical constraints from supernova SN1987A.
The seesaw regime for active neutrinos 1 meV ≲ mν ≲ 100 meV is shown in
blue. The different black lines label the ALP decay time at 104 s (end of BBN),
1013 s (CMB) and 1017 s (today). Benchmark values from Tab.5.1 for scenario
1 and 2 with fixed mN and |UeN |2 are denoted in top panels by blue diamonds.

scans, varying the values of mN = [10−3,102] GeV and |UeN |2 = [10−13,10−6]. The

attempt to map the available parameter space nor perform any statistical interpretation of the results.
For more details on the rigorous treatment of inference and statistics in physics see [?].
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top row corresponds to scans around scenarios 1 and 2, with only ma and fa fixed,

and, where the blue diamond markers are the fixed values of mN and |UeN |2 from

Table 4.5. The bottom row shows scans of scenarios 3 and 4, which have a lighter

ALP mass of ma = 10 eV.

In all the panels of Fig. 5.6, the three different regimes of ALP decay lifetime

(as discussed earlier) are shown. ALPs decaying before the end of BBN, i.e., τa <

104 s, to the right of the τa = 104 s line, are not considered in this study. As we will

argue below, points in this region are excluded anyway due to the fast ALP decays,

so in this way we are justified in neglecting scenarios with short-lived ALPs. As

expected, since the lifetime of the ALP goes like ∼ f 2
a /ma, for the larger values of

fa in the right-hand panels and lower ma values on the bottom panels, the excluded

region for short ALP lifetimes moves to larger HNL masses and larger mixing.

Additionally, the ALP lifetimes around the formation of the CMB, τa = 1013 s, and

the age of the Universe, τa = 1017 s are shown.

The dashed red line corresponds to the HNL decay lifetime τN = 0.023 s where

only SM decay channels are present, i.e. in the absence of the ALP. Conversely,

the solid red line denotes the same HNL lifetime limit, but in the presence of the

additional decay channel N → aν . Since HNL decays after the start of BBN would

modify the abundance of primordial elements, scenarios with longer lived HNLs are

also not considered, and hence shaded in red in Fig. 5.6. Consequently, whenever

the HNL to ALP decays dominate, the BBN limit is relaxed as compared to the

standard scenario. This effect is more evident on the left-hand side panels, with

fa = 1 TeV, where the BBN limit is lowered by about two orders of magnitude with

respect to vanilla HNL models. For larger fa values, on the right-hand panels, the

HNL-ALP coupling, which goes like ∼ 1/ fa, is weaker and thus the exclusion due

to the HNL lifetime is stronger as the impact of the addition of the ALP to the model

is less significant.

In this chapter, for simplicity, we have only considered a single HNL, which

is not enough to generate non-zero masses for all active neutrinos. Nevertheless, it

is useful to show the expected mass scale of active neutrino mass generation, under
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the seesaw approximation. We thus show in Fig. 5.6 the blue shaded region for the

seesaw mass 1 meV ≲ mν ≲ 100 meV.

The strongest cosmological constraint, shown as the shaded brown region in

the panels, arises from the increase on the neutrino temperature due to ALP decays,

which shows as a modification of the Neff at the time of recombination. Neff con-

strains the larger HNL masses and mixing, corresponding to shorter ALP lifetimes.

0.1σN has been chosen because 1σN did not place constraints on the parameter

space studied. Consequently, ALPs decaying before the onset of BBN, or shortly

after, would cause a sufficient increase of the neutrino temperature and be excluded

by the Planck measurement of the Neff value. Smaller HNL-ALP couplings cause

longer ALP lifetimes, and thus the right-handed panels with larger fa have weaker

Neff constraints. However, for the bottom panels with lower ma, even though the

lifetime is also longer and one would expect the limit to be weaken, the opposite ef-

fect occurs and the Neff limit is significantly stronger. This happens because lighter

ALPs are ultra-relativistic for a longer period between BBN and recombination,

and thus have a stronger effect on the expansion rate, and thus on the neutrino tem-

perature and value of Neff. Other cosmological constraints such as, energy injection

before BBN or the relic abundance of ALPs are subleading and thus not shown. The

region above the purple contour is, in principle, excluded due to the astrophysical

constraints from supernova SN1987A, arising from the modified neutrino flux due

to the production of HNLs in the core of the supernova. Nevertheless, the uncer-

tainties in the calculation of the SN neutrino flux are high and depend on the choice

of SN core model [249], hence we show in purple a conservative expectation of the

limit, but refrain from excluding models only on the basis of this SN constraint. Su-

pernova constraints due to ALP production, which is largely independent of ma in

the ranges of interest, only apply for large values of |UeN |2 and mN , which however

resides well outside of our considered region.

The combination of all the overlaid constraints still leaves a significant re-

gion of the parameter space allowed, which becomes narrower for large values of

|UeN |2 and wider for smaller values. The most interesting section of this allowed
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region corresponds to the one on the left of the BBN limit in vanilla HNL models

(dashed red), which is the parameter space gained for lower HNL masses with the

introduction of the additional decay channel N → aν . The panels on the left, for

fa = 1 TeV, show a significant increase on the viability of HNL masses, all the way

down to mN ∼ MeV, at the expense of stronger constraints on the mixing |UeN |2 due

to the stronger HNL-ALP interactions. The newly open region is much narrower

in the panels on the right, with fa = 102.5 TeV, as the HNL-ALP interactions are

much weaker, and only slightly relevant for high |UeN |2 values. On the other hand,

stronger HNL-ALP interactions, for fa < 1 TeV, would not provide any noticeable

improvement, as the ALPs would then be produced in equilibrium and the cosmo-

logical constraints would be much stronger. In conclusion, from Fig. 5.6 there is a

reasonable expectation for HNLs in our model to have masses at around the MeV

scale without affecting the cosmological history of the Universe.

In Fig. 5.7 we present this newly available parameter region which may be

the target of future dedicated searches for HNLs. In the left panel, we show

the corresponding parameter space for scenario 1 ( fa = 1 TeV, ma = 1 keV) as

described in previous section, while the right panel corresponds to the scenario

2 ( fa = 102.5 TeV, ma = 1 keV). The gray shaded regions in both panels are

disfavored from various cosmological and astrophysical constraints discussed in

Sec. 5.3, and shown coloured in Figure 5.6. The gray dashed curve denotes

the BBN bound from the HNL only decaying to SM decay channels i.e., in ab-

sence of the ALP. The corresponding seesaw regime is shown in blue considering

1 meV ≲ mν ≲ 100 meV. The red dashed contour corresponds to the future sen-

sitivity of DUNE HNL searches in standard HNL models (without ALPs), while

the solid red contours in both panels denote the resultant sensitivity contours for

observation of 6 events in presence of the new N → aν decay channel in respec-

tive benchmark scenarios with two different fa values. Additionally, as described

in Tab. 4.5, in blue diamonds two benchmark scenarios with fixed HNL mass and

mixing mN = 10−1 GeV, |UeN |2 = 10−10 and mN = 10−0.4 GeV, |UeN |2 = 10−9.2,

have been shown. The brown dashed contour denotes the present exclusion contour
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Figure 5.7: The sensitivity contours of future DUNE and current NA62 searches for obser-
vation of 6 events in newly available parameter space constrained by several
astrophysical and cosmological constraints (gray shaded region) for two dif-
ferent benchmark scenarios i.e., left panel ( fa = 1 TeV, ma = 1 keV) and right
panel ( fa = 102.5 TeV, ma = 1 keV). The region left to gray dashed contour
is disfavored if HNL decays only via SM decay channels, in absence of ALP.
The seesaw regime for active neutrinos 1 meV ≲ mν ≲ 100 meV is shown in
blue. Benchmark values from Tab.4.5 for scenario 1 and 2 with fixed mN and
|UeN |2 are denoted in two panels by blue diamonds. The red solid (dashed) con-
tours denote the DUNE sensitivity contours with (without) HNL to ALP decay
channel. The brown contour corresponds to NA62 present sensitivity while the
brown shaded region denotes the unaffected parameter space, in presence of
N → aν channel, using the approximation discussed in subsection 5.4.

from NA62 experiment. Furthermore, considering the discussion of subsection 5.4,

we have also highlighted in brown the region where the approximation holds (with

LNA62 = 75 m and pNz ∼ 30 GeV as the K+ beams have energy ∼ 75 GeV [246]),

the present sensitivity contour remains unaffected by the new axion decay channel

of HNL in this region. From Figure 5.7 it is evident that the available regions con-

strained by several astrophysical and cosmological constraints can be well probed

in the future by DUNE and NA62 in presence of this new decay channel of HNLs.



Chapter 6

Conclusions

In this thesis, we have explored the nature of HNLs and active neutrinos in fixed

target experiments, neutrinoless double beta decay and cosmology. We started with

a review of the basics of the SM in Chapter 2. As pointed out in Section 2.5, there

are still a lot of open questions in the SM which are related to neutrinos such as the

neutrino mass origin, lepton number violation and the matter-antimatter asymmetry.

An introduction to neutrino physics is given in Chapter 3. It goes from the

theory of neutrino mixing and neutrino oscillation experiments to the current under-

standing of neutrino mass. The Dirac and Majorana nature of neutrinos is discussed

to facilitate the introduction of the seesaw mechanism and HNLs. The three types

of seesaw mechanisms are stated with an emphasis of the type-I and type-II seesaw

mechanisms. We use a simplified one-generation model to show the way to pa-

rameterise the neutrino mass matrix and how light neutrino mass is generated. The

parameterisation is extended to 3 generations of active neutrinos by adding more

mixing angles and phases. The simplified model is compared to the 3+2 minimal

model to show the consistency. The current neutrino mass measurements are also

presented for different experiments. Apart from the basic properties of neutrinos,

we also give the phenomenology in the other half of this chapter. Neutrinoless

double beta decay is a consequence of the Majorana nature of neutrinos since lep-

ton number is broken by two units in this process. The formulation of 0νββ is

given and the contributions from neutrinos (mββ ) and nuclear isotopes (NMEs) are

demonstrated. Examples of the experimental signature are given and the current
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status of 0νββ searches is discussed. We also show that neutrinos behave differ-

ently in different cosmological periods; the final part of this chapter demonstrates

how neutrinos impact the Universe in neutrino decoupling, BBN and CMB.

In Chapter 4, we show the effect of a pair of near-GeV mass HNLs on ob-

servations in LEGEND-1000 (0νββ ) and the near detector (ND) of DUNE (fixed

target) by using a one-generation light neutrino simplification. The pair of HNLs

give additional contributions to 0νββ , but the contributions will be suppressed by

the HNL mass. Also, the Majorana phase between the active neutrino and HNL

sector can cancel the contributions from the two sectors. HNLs can be produced by

and decay to SM particles via the active-sterile mixing. The HNL decay products

can be captured in the ND of DUNE. DUNE can therefore measure the mass of

HNLs and active-sterile mixing. We also extensively study the effect of the mass

splitting between the HNL pair on these experiments. After a combined analysis

in signals observed in both experiments, signal observed in one of the experiments

and no observed signal at all, we demonstrate how the two different types of exper-

iments can constrain the parameter space in HNL searches and determine the light

neutrino properties. The results for the 1+2 model are also compared with a more

complete 3+2 scenario.

In Chapter 5, we bring the well-studied HNLs and ALPs together in a dark sec-

tor which only interacts with the SM through the neutrino portal. We demonstrate

that the N → aν decay channel can significantly reduce the BBN constraint for rela-

tively low decay constants ( fa ≲ 106 GeV) and open up a possibility for MeV-mass

HNLs. All the relevant HNL and ALP processes are computed and we calculate the

effective coupling between the ALP and SM particles such as the electron and the

photon. Two sets of Boltzmann equations are used for the regime before and after

the start of BBN. For 100 MeV - 1 GeV HNLs and an ALP mass ma = 1 keV, we

find that the freeze-out of HNLs will be delayed and ALPs will not be in thermal

equilibrium for higher decay constants ( fa ∼ 106 GeV) compared to fa = 103 GeV.

Cosmological and astrophysical observations such as Neff, ΩCDM and SN1987A will

put constraints on the parameter space studied, but a viable region in the considered
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mass range remains.

In conclusion, this thesis gives highlights for searches of HNLs through vari-

ous experiments and observations, as well as the way to conduct a complementary

analysis by combining observations from different types of experiments. It also

demonstrates how the interaction between hypothetical particles will both constrain

the parameter space for new physics searches.

In the future, the sensitivities of different types of experiments, such as neutrino

oscillation, β decay, 0νββ and charged lepton flavour violation will be improved.

DUNE and Hyper-Kamiokande as long baseline neutrino oscillation experiments

will be able to measure the neutrino oscillation parameters with a greater sensitiv-

ity [250]. Medium baseline experiments such as JUNO will be able to determine

the neutrino mass ordering and measure δCP [251]. Newly proposed experiments

for long-lived particle searches such as DUNE, SHiP and PIONEER can probe the

nature of HNLs in different regimes [163, 166]. Upper bounds on the absolute neu-

trino mass scale are expected to reach the sub-eV range with upcoming beta decay

experiments, such as KATRIN and Project 8, along with cosmological surveys. As

we enter this era of increased precision, the neutrino sector offers an additional av-

enue for exploring new physics [252]. LEGEND-1000, as an example of a future

0νββ experiment, will be able to probe the IO neutrino regime and NP can also be

tested. With advancements in the precision of these and other experiments in the fu-

ture, it will become increasingly feasible to investigate and place tighter constraints

on the broader landscape of BSM physics.



Appendix A

Extended Phenomenological

Parametrisation

In this appendix, we generalise the phenomenological parametrisation in Sec. 4.2

to the NA +NS scenario, i.e., the SM with an arbitrary number NA of active fields

extended to include NS gauge-singlet Weyl fermion fields. Now, the relation in

Eq. (4.10) can be written as (at first-order in the active-sterile mixing stengths Θακ ),

mν

αβ
+mNΘα1Θβ1 +mN(1+ r21

∆ )Θα2Θβ2 +
n

∑
κ=3

mN(1+ rκ1
∆ )ΘακΘβκ = 0 , (A.1)

where Θακ ≡ |Θακ |eiφακ/2 and rκ1
∆

≡ (mNκ
−mN)/mN . It is now possible to take

the diagonal elements (α = β ) and rearrange the expression above to find

Θα2

Θα1
=±i

√
1+ xα

αα

1+ r∆

, (A.2)

where the parameter xρ

αβ
is given by

xρ

αβ
≡

mν

αβ

mNΘ2
ρ1

+
n

∑
κ=3

(1+ rκ1
∆ )

ΘακΘβκ

Θ2
ρ1

. (A.3)
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Additionally, it is possible to take the off-diagonal elements (α ̸= β ) to find

Θβ1

Θα1
=

xα

αβ
±
√

(xα

αβ
)2 − xα

ααxα

ββ

√
1+ xα

αα

xα
αα

≡ yα

αβ
. (A.4)

Combining these two results, we can write

Θβ2

Θα1
=±i

√
(yα

αβ
)2 + xα

αα

1+ r∆

, (A.5)

which reduces to Eq. (A.2) for α = β because yα
αα = 1. Thus, for a given flavour α ,

it is possible to completely determine the mixing to the first and second HNL, Θβ1

(α ̸= β ) and Θβ2 (β = e,µ,τ), in terms of Θα1 (the convenient choice for 0νββ

decay is α = e).

Above, the constraint from the upper-left NA×NA sub-block of Mν has made

it possible to eliminate NA(NA − 1) parameters among the (NA +NS + 1)(NA +

NS) describing the complex symmetric mass matrix Mν . Additionally, NA phases

can be eliminated via a redefinition of the charged lepton fields and N 2
S mixing

angles and phases eliminated via an unphysical rotation among the sterile states.

Consequently, the number of active-sterile mixing strengths and CP phases that can

be eliminated is given by NA(NA − 1)+min(NA,NS), i.e., two parameters in the

1+2 scenario (|Θe2| and φe2) and 10 parameters in the 3+2 scenario (|Θβ1| and φβ1

for β = µ,τ and |Θβ2| and φβ2 for β = e,µ,τ). In the 3+ 3 scenario, it becomes

possible to eliminate 12 parameters; i.e., an additional active-sterile mixing and CP

phase such as |Θβ3| and φβ3 for a single flavour.

In the 3+2 model, the ratio in Eq. (A.2) has branch points at

Θα1 = |Θα1|eiφα1/2 =±i

√
mν

αα

mN
. (A.6)

This corresponds to the seesaw limit in which the heavier HNL decouples and the

lighter HNL has a mixing |Θα1| =
√

|mν
αα |/mN and CP phase φα1 = φ ν

αα ± π ,

where we have defined mν
αα ≡ |mν

αα |eiφ ν
αα . In the 1+ 2 model, with mν

αα → mν ,
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we instead have the requirement that φα1 =±π . As a matter of convention, we take

the positive square root in Eqs. (A.5) and (A.6) and negative square root Eq. (A.4).

Having defined the Dirac phases in Eq. (4.8) and the Majorana phases in Eq. (4.9)

to lie in the ranges [0,2π] and [0,4π], respectively, the CP phases φακ = φκ −2ηαi

are also taken to be in the range [0,4π]. This extended range takes into account both

values of the square root sign; for example, in the inverse seesaw limit of the 3+2

model, Eq. (A.4) tends to

Θβ1

Θα1
=

mν

αβ
±
√

(mν

αβ
)2 −mν

ααmν

ββ

mν
αα

=

√
m2Uβ2 ∓

√
m3Uβ3√

m2Uα2 ∓
√

m3Uα3
, (A.7)

where the second equality is valid for the normal ordering case. Both signs of the

square root are taken into account by allowing the physically-relevant Majorana

phase α21 to lie in the range [0,4π].



Appendix B

Phenomenological vs. Minimal

Casas-Ibarra Parametrisation

In this appendix we compare the phenomenological parametrisation in Sec. 4.2 with

the mininal Casas-Ibarra parametrisation used to study the 3+2 model in [173].

Firstly, we note that in the phenomenological approach of this work, the six

active-sterile mixing strengths in the 3+ 2 model can be written in terms of the

elements of the light neutrino mass matrix mν

αβ
≡ ∑i miUαiUβ i (depending on two

light neutrino masses, three mixing angles, a Dirac CP phase and single Majorana

phase for mlight = 0), the masses of the two HNLs mN1 = mN and mN2 = mN(1+ r∆)

with r∆ = ∆mN/mN , a single active-sterile mixing |Θα1| and CP phase φα1, i.e.,

UβN1 ≈ |Θα1|eiφα1/2yα

αβ
, UβN2 ≈ i|Θα1|eiφα1/2

√
(yα

αβ
)2 + xα

ββ

1+ r∆

, (B.1)

for β = e,µ,τ , where the factors xρ

αβ
and yρ

αβ
are functions of |Θα1| and φα1 and

are given in Eqs. (4.14) and (4.16), respectively. A useful choice for the comparison

of 0νββ decay and direct searches at DUNE is α = e.

In the scheme of [173], the neutrino mass matrix is diagonalised similarly (in

the normal ordering case with m1 = 0) as

U†MνU∗ = diag(0,m2,m3,mN1,mN2) , U =

Uνν UνN

UNν UNN

 , (B.2)
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where now the sub-blocks of the 5×5 mixing matrix U are parametrised as

Uνν =UPMNS

1 0

0 H

 , UνN =−iUPMNS

 0

Hm1/2
l RT m−1/2

h

 , (B.3)

UNν =−i
(

0 H̄m−1/2
h R∗m1/2

l

)
, UNN = H̄ . (B.4)

Here, ml and mh are the 2×2 matrices,

ml =

m2 0

0 m3

 , mh =

mN1 0

0 mN2

 , (B.5)

containing the masses of the light and heavy states, respectively. The 2× 2 matrix

R is described by a single complex angle,

R =

 cos(θ45 + iγ45) sin(θ45 + iγ45)

−sin(θ45 + iγ45) cos(θ45 + iγ45)

 . (B.6)

Finally, the 2×2 matrices H and H̄ can be written in terms of the matrices above as

H =
[
I2 +m1/2

l RT m−1
h R∗m1/2

l

]−1/2
, H̄ =

[
I2 +m−1/2

h R∗mlRT m−1/2
h

]−1/2
,

(B.7)

where I2 is the 2× 2 identity matrix. The active-sterile mixing contained in UνN

is therefore determined by the light neutrino masses, mixing angles and phases (a

Dirac phase and single Majorana phase for m1 = 0) contained in ml and UPMNS, the

HNL masses mN1 = mN and mN2 = mN(1+ r∆) and the two parameters θ45 and γ45.

The difference between the two parametrisations is the choice of (|Θe1|,φe1) or

(θ45,γ45) as free parameters. The former, which has a direct physical interpretation,

is useful for considering the experimental observation of an HNL that couples to a

flavour α . In that scenario, the active-sterile mixing |Θα1|2 and HNL mass mN are

measured quantities, and all other active-sterile mixing strengths are determined for

particular values of φe1 and r∆.



Appendix C

Calculation of decay and scattering

rates

In this appendix, we will give analytical expressions for the scattering cross-sections

involving active neutrinos, HNL and ALP in all possible way. Due to the couplings

presented in Eq.(5.5) one can also consider the axion-HNL scattering in early uni-

verse. The process happens via t-channel scattering. The matrix element responsi-

ble for the process a(p1)+a(p2)→ N(p3,s)+N(p4,r) can be written as

Mt =
4m2

N
f 2
a

(
ūs

3
/q−mN

q2 −m2
N

ur
4

)
(C.1)

where momentum exchange is q2 ≡ (p1 − p3)
2 = t. Now finding |Mt |2 and per-

forming the sum over final spin states s,r of HNLs one gets

∑
r,s
|Mt |2 =

64m4
N

f 4
a (t −m2

N)
2

[
2(p3.q)(p4.q)− (p3.p4)(q.q−m2

N)+2m2
N(p3.q)+2m2

N(p4.q)

+m2
N(q.q+m2

N)
]

(C.2)
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Now, putting the definitions for kinematic variables and phase space factor as well

as integrating over the angular variables, we get the total cross-section as

σaaNN =
4m4

N

√
s−4m2

a

π f 4
a s3/2

[
−1−

m4
a −4m2

am2
N

m4
a −4m2

am2
N +m2

Ns

+

2(s−2m2
a)coth−1

(
s−2m2

a√
s−4m2

a

√
s−4m2

N

)
√

s−4m2
a

√
s−4m2

N

]
. (C.3)

Similarly, for the inverse scattering N(p1,s)+N(p2,r)→ a(p3)+a(p4) we have

σNNaa =
4m4

N

π f 4
a s3/2

[
−

√
s−4m2

N(2m4
a −8m2

am2
N +m2

Ns)

m4
a −4m2

am2
N +m2

Ns

+

2(s−2m2
a)coth−1

(
s−2m2

a√
s−4m2

a

√
s−4m2

N

)
√

s−4m2
a

]
, (C.4)

where s≡ (p1+ p2)
2 = (p3+ p4)

2. Likewise, for aa→ νν scattering with t-channel

HNL mediation,

σaaνν =
4m4

N

√
s−4m2

aU4
eN

π f 4
a s3/2

×

[
−

2(m4
a +m4

N +m4
ν −2m2

am2
N −2m2

am2
ν −2m2

Nm2
ν)+m2

Ns
m4

a +m4
N +m4

ν −2m2
am2

N −2m2
am2

ν −2m2
Nm2

ν +m2
Ns

+

2(2(m2
a −m2

N +m2
ν)− s)coth−1

(
2(m2

a−m2
N+m2

ν )−s√
s−4m2

a

√
s−4m2

ν

)
√

s−4m2
a

√
s−4m2

ν

]
. (C.5)

In the limit, mν → 0, we will get simplified expression for aa → νν scattering as

σaaνν =
4m4

N

√
s−4m2

aU4
eN

π f 4
a s3/2

[
−

2(m4
a +m4

N −2m2
am2

N)+m2
Ns

m4
a +m4

N −2m2
am2

N +m2
Ns

+

2(2(m2
a −m2

N)− s)coth−1
(

2(m2
a−m2

N)−s√
s−4m2

a
√

s

)
√

s−4m2
a
√

s

]
.

(C.6)
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The cross-section for aa → νN scattering (in the limit mν → 0) with t-channel HNL

mediation,

σaaνN =
2m4

N

√
s−4m2

aU2
eN

π f 4
a s3/2

[
−

2(2m4
a −7m2

am2
N +5m4

N +m2
Ns)

m4
a −2m2

am2
N +m4

N +m2
Ns

+

4(2m2
a −4m2

N − s)coth−1
(

2(m2
a−m2

N)−s√
s−4m2

a
√

s

)
√

s−4m2
a
√

s

]
. (C.7)

The cross-section for aa → NN scattering (in the limit mν → 0) with t-channel ν

mediation,

σaaNN =
4m4

N

√
s−4m2

aU4
eN

π f 4
a s3/2

[
−

2m4
a −4m2

am2
N +4m4

N −m2
Ns

m4
a −2m2

am2
N +m4

N

+

2(2(m2
a +m2

N)− s)coth−1
(

2(m2
a+m2

N)−s√
s−4m2

a

√
s−4m2

N

)
√

s−4m2
a

√
s−4m2

N

]
.

(C.8)

The cross-section for aa → νν scattering (in the limit of mν → 0) with t-channel ν

mediation,

σaaνν =
4m4

N

√
s−4m2

aU8
eN

π f 4
a s3/2

[
−2+

2(s−2m2
a)coth−1

(
s−2m2

a√
s−4m2

a
√

s

)
√

s−4m2
a
√

s

]
. (C.9)

The cross-section for aa → νN scattering (in the limit mν → 0) with t-channel ν

mediation,

σaaνN =
4m4

N

√
s−4m2

aU6
eN

π f 4
a s3/2

[
−2+

m2
N

m2
a
+

2(s−2m2
a)coth−1

(
s−2m2

a√
s−4m2

a
√

s

)
√

s−4m2
a
√

s

]
.

(C.10)
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The cross-section for νν → NN scattering (in the limit mν → 0) with t-channel

axion mediation,

σννNN =
m4

NU4
eN

π f 4
a s

[
2m4

a +2m4
N +m2

Ns+2m2
a(s−2m2

N)

m4
a +m4

N +m2
a(s−2m2

N)

+

2(s+2m2
a −2m2

N)coth−1
(

−2m2
a+2m2

N−s√
s−4m2

N
√

s

)
√

s−4m2
N
√

s

]
. (C.11)

The cross-section for aν → aN (in the limit mν → 0) with s and t-channel HNL

mediation,

σaνaN =
m4

NU2
eN

2π f 4
a (m2

N − s)2s

×

[
1

m4
a −4m2

am2
N +m2

Ns{
2m8

a +m2
N(8m6

N −20m4
Ns+15m2

Ns2 +(5−2m2
N)s

3 +2s4)

+2m2
a(3m6

N +6m4
N(s−1)s−6m2

Ns2(3+ s))+2m6
a(2m2

N(s−3)

− s(3+2s))+m4
a(2m4

N(7−8s)+ s2(7+2s)+m2
Ns(29+14s))

}
−4

√
s−m2

N
s−4m2

a

{
2m4

a +m4
N(3−2s)− s2 +2m2

Ns(s+3)−m2
a(3s

+m2
N(3+4s))

}
coth−1

(
s−2m2
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s−4m2

a

√
s−4m2

N

)]
. (C.12)
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