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Abstract

The theory describing the scaling properties of quantum field theory is in-
troduced. The symmetry principles behind scale and conformal transforma-
tions are reviewed together with the renormalisation group. A method for
improving perturbative calculations of physical quantities in the infra-red
limit is developed using general analyticity properties valid for all unitary
quantum field theories. The infra-red limit of a physical quantity is shown to
equal the limiting value of the Borel transform in a complex scale parameter,
where the order of the Borel transform is related to the domain of analyti-
city. It is shown how this general result can be used to improve perturbative
calculations in the infra-red limit. First, the infra-red central charge of a
perturbed conformal field theory is considered, and for the unitary minimal
models perturbed by @, 3y the developed approximation is shown to be very
close to the exact results by improving only a one loop perturbation. The
other example is the infra-red limit of the critical exponents of ¢* theory
in three dimensions, where our approximation is within the limits of other
approximations. The exact renormalisation group equation is studied for a
theory with exponential interactions and a background charge. It is shown
how to incorporate the background charge, and using the operator prod-
uct expansion together with the equivalence between the quantum group
restricted sine-Gordon model and the unitary minimal models perturbed
by ®(1,3), the equation obtained is argued to describe the flow between uni-
tary minimal models. Finally, a semi-classical approximation of the low
energy limit of a bosonic membrane is studied where the action is taken to
be the world-volume together with an Einstein-Hilbert term. A solution
to the linearized equations of motion is determined describing a membrane

oscillating around a flat torus.
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Introduction

Quantum field theory arose from the efforts of unifying quantum mechanics and spe-
cial relativity. In its present formulation it is the most successful theory in physics
describing phenomena from sub-atomic to cosmological scales, and with an agree-
ment between theory and experiment of up to 107! in quantum electrodynamics.
It provides the framework for the standard model of particle physics that describes
the electro-magnetic, weak and strong nuclear interactions, and it finds important
applications in nuclear, atomic and condensed matter physics together with cosmo-
logy.

The formulation of the physical theories describing the fundamental interactions,
at the currently accessible energy scale, shows the important role that symmetry
principles play in nature. The standard model has a gauge symmetry with gauge
group U(1)® SU(2) ® SU(3), and Einstein’s classical field theory of gravity, general
relativity, has four dimensional space-time diffeomorphisms as its gauge symmetry.

Another important consequence of quantum field theory is that the dynamics
are scale dependent, and this corresponds to what is observed in nature namely that
phenomena observed at one scale are very different from those observed at a much
larger scale, i.e. they decouple. Local field theories have ultra-violet divergences
which have to be renormalised by comparing the observables in a theory with mea-

sured quantities at a certain length scale. The theory will then make unambiguous



1 Introduction

predictions, but the couplings will now depend on the scale, this scale dependence
is described by the renormalisation group.

A quantum field theory is specified by its coupling constants, and the renorma-
lisation group therefore describes a flow in the coupling space under scaling where
the fixed points of the flow are scale invariant theories. The renormalisation group
thereby specifies how different quantum field theories are organized by scale in the
coupling, or theory, space.

Despite the successes of quantum field theory the understanding of it and the fun-
damental laws of nature is still very limited. It has not been possible to incorporate
gravity into a local quantum field theory, and the emergence of the renormalisation
group has meant that quantum field theory is now viewed as an effective theory
valid below some cut-off scale [5, 6, 7). A quantum theory of gravity relevant at
the Planck scale 10733cm (and perhaps even at lower scales) therefore has to be
described by a more fundamental theory, and the only present candidate includes
extended objects like strings and membranes.

In contrast to the many different applications of quantum field theory the actual
calculational methods are few, and the main one is perturbation theory around
the gaussian fixed point describing the free theory. This means that for a general
quantum field theory in the vast infinite dimensional theory space we have only got
information about the neighborhood of a single point, the gaussian fixed point.

To get a better understanding of quantum field theory it is therefore important
to develop new approximation methods that extend the region in parameter space
where calculations can be performed. In this thesis, we have derived a method of
improving perturbative calculations of infra-red quantities using general analyticity
properties of correlation functions valid in any unitary quantum field theory.

Another way of extending the knowledge about theory space, and the renor-
malisation group flows that determine its structure, is to study specific models in
dimensions, or with symmetries, that constrain the dynamics so non-perturbative
results can be derived.

Two dimensional theories are an important example, here the fixed points are two
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dimensional conformal field theories with an infinite dimensional symmetry group,
and perturbation theory can be defined around non-trivial fixed points. Also, in two
dimensions the c-theorem states that the flows of unitary theories are irreversible
and have an infra-red fixed point. The sub-space of renormalisable theories is larger
in two than in higher dimensions, and a classification of all conformal field theories
will therefore also constrain the fixed point structure in higher dimensions.

The more fundamental high energy theories may also prove helpful in getting
a better understanding of the theory space of quantum field theory, even if the
physical reality of such theories remains unclear because of a lack of experimental
evidence. For example, dualities in string theory have lead to conjectured dualities
in supersymmetric quantum field theories by dimensional reduction, and a relation
between the strong coupling limit and supergravity; it might be possible to find

similar arguments related to more realistic field theories in four dimensions.

1.1 Qutline of the thesis

In chapter two and three the theory describing the scaling of quantum field theories
is briefly reviewed. In chapter two No6ther’s theorem and the Ward identities are
introduced, and scale and conformal transformations are defined together with the
energy-momentum tensor. In chapter three renormalisation is described and the
Callan-Symanzik equation is derived. The operator product expansion and the
linearization of the renormalisation group are also reviewed.

In chapter four a method that improves perturbative calculations of physical
quantities in the infra-red limit is developed. The method uses the analyticity of
correlation functions in a scale parameter to express the infra-red physics as an
integral in the ultra-violet region. This expression can be written as the Borel
transform of a certain order, and the infra-red limit is then given as the limiting
value of the Borel transform. First, the Killen—-Lehmann spectral representation is
reviewed together with the perturbative series, and then our method is derived.

This method is applied to calculate the infra-red limit of the central charge in



1 Introduction

chapter five and the critical exponents of ¢* theory in three dimensions in chapter
six. In chapter five some of the important properties of a two dimensional conformal
field theory are first introduced, and Zamolodchikov’s c-theorem is then shown.
Based on the results from chapter four an approximation method is developed for
calculating the infra-red central charge of a perturbed conformal field theory. This
is applied to the free bosonic and fermionic theories perturbed by a mass term, and
the unitary minimal models perturbed by @, 5. For the minimal models we obtain
very good results by maximizing the domain of analyticity, with approximation
values remarkably close to the exact ones by improving only a one loop perturbative
calculation.

In chapter six the critical exponents of ¢* theory are first defined and then an
approximation method for calculating v and 7 is developed based on the results in
chapter four and a conformal mapping and Padé approximation. The results for
v and 7 are within the limits of other results obtained with different calculational
methods.

Chapter seven describes a new application of the exact renormalisation group
equation to a theory with a background charge. The motivation for considering
this case is the equivalence between the perturbed unitary minimal models M,,,
studied in chapter five, and the quantum group restricted sine-Gordon model. First
the Coulomb gas representation of minimal models is introduced together with the
quantum group restricted sine-Gordon model. Then it is shown how the background
charge can be incorporated into the exact renormalisation group equation, and using
the operator product expansion this gives an equation describing the renormalisation
group flow for all the perturbed unitary minimal models. The higher order terms in
the coupling appear in this equation in the off-critical structure constants, and in
the perturbative limit m — oo, the well known perturbative renormalisation group
equation is reproduced.

In the last chapter a semi-classical approximation of the bosonic membrane in
eleven dimensions with an Einstein-Hilbert term is considered. The action is then

a sum of the membrane world-volume and an integral over the scalar curvature,
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and can be viewed as an approximation of the low energy effective action for the
membrane. The equations of motion are non-linear, but can be approximated by
linearizing around a classical solution that is here taken to be a flat torus. A new
solution of the linearized equations is obtained that describes a membrane oscillating

around the flat torus. First the bosonic membrane is introduced and the solution is

then presented.




2
Symmetries and scaling

Physics deals with the understanding of the dynamics in the physical world, and is
expressed in terms of physical laws. These can mathematically be expressed in many
equivalent ways, and this invariance or symmetry in our description of the dynamics
in nature has been one of the main guidelines when formulating new physical laws.
If a theory is described by an action principle, where the classical path is given
by the stationary value of the action, then Néther’s theorem states that for every
continuous symmetry transformation of the action, there is a classically conserved
current and the associated conserved charge is the generator of the transformation.
The conserved quantities in a physical process thereby determine the symmetries
of the interaction and these symmetries can then be used to build an action for the
theory that describes its dynamical properties (for a quantum field theory it is
the partition function which has this role, i.e. here the path integral measure also
needs to be specified). One of the successes of physics has been the isolation and
identification of conserved quantities, and their very existence shows the regularity
and symmetry in nature that has allowed the formulation of the physical laws.
First Nother’s theorem and the Ward identities are shown, the energy-momentum
tensor is then introduced and finally scale and conformal transformations are dis-
cussed. The section about scale transformations follows Callan, Coleman and Jackiw

[8] and [9]. In this chapter the Minkowski signature (+,—, —,---, —) is used. Gen-
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eral discussions about symmetries in field theory can be found in {5, 10, 11, 12, 13]

and for gauge theories in [14, 15].

2.1 Nother’s theorem and Ward identities

Nother’s theorem [16] shows how the symmetries of the action correspond to con-
served quantities. In a local field theory depending on the fields ¢* the action

functional can generally! be written as

Slp] = /dda: E(gpi,augoi) (2.1)
and we will consider the effect of the infinitesimal transformation

o' =zt + 6zt = z* + dw’(z) X (),

a

. o A | (2.2)
0" (3") = ¢ (z) + b9 (z) = ¢'(z) + dw’(z) P} (x),

where dw?(z) is infinitesimal and has compact support. A symmetry is defined as
a transformation that leaves the action invariant. Any infinitesimal transformation
will by definition leave the action invariant at the classical path, for it to be a
symmetry transformation this invémriance must be preserved also away from the
classical path, i.e. when the equations of motion are not satisfied. (2.2) is a rigid
(or global) symmetry of the action when §S = 0 for dw® constant, i.e. 9,0w?(z) =
0. Consider now a transformation where X* and ®! are the same as for a rigid

symmetry but dw®(z) is not constant. 4S can then be written as
S = —/dda:jfl‘(m)auéw“(:r), (2.3)

for some current j¥(z), because then §.5 = 0 for w* constant and 45 is the variation

of a local quantity and is therefore local [5]. Taking the fields ¢* in S to satisfy the

1Classical equations of motion which are higher than second order differential equations often

leads to non-causal effects, so the lagrangian is generally taken to contain at most two derivatives
[10].




2 Symmetries and scaling

equations of motion means that (2.3) vanishes for an arbitrary dw®(z) and integra-
ting by parts yields that the current j#(xz) is conserved 9,j%(z) = 0. Assuming that

the current vanishes at spatial infinity the Nother charge

Q. = /dd_lx 3o(z) (2.4)

is then a constant of the motion 0yQ, = 0, showing that a symmetry leads to a
conserved quantity which is Nother’s theorem. If the lagrangian density is invariant
under a rigid transformation (2.2) then the form of the current follows by considering
the variation of the action. To first order in dw® the variation in the field at fixed z

becomes

5p'(2) = ¢"(2) — ¢'(z) = ¢*(a') = 820, (2) — (@) (25)
= dw*(z)(®,,(z) — X4 (2)0u¢' (7)) = 0" (2)da’ (),

and the action changes as
6S = S[¢'] — Sle] = /ddx'ﬁ'(z') — /ddz[,(:z:)
oL

oL oL . . ,
— d d mn i 7
/5(d )L+ /d z <—8$“6x + (W&p + %M(Saﬂga)

oL oL ;
— d u a a vy _ i
/d z [cau(xa 5w + 8,(L)6w X* + (W d, (__Baugoi)> S

oL ;
+0, (_aau@i dp )]
oL

= [tz o (xewnr) + 25 (@) - Xe@i) su)

oL oL . ,.
(a0 () ) 0]

(2.6)

If now £'(z')d%’ — L(z)d’z = 0 under a rigid transformation (2.2)? where §w® is

constant, then the term proportional to dw®(z) in (2.6) vanishes, and it follows from

2The boundary conditions of the integral are invariant under (2.2) as dw®(z) has compact

support.

11



2 Symmetries and scaling

(2.6) and (2.3) that j¥#(z) is given by the canonical Néther current

oL : oL .,
k=X | -L& -0,0" | — -’ . 2.
= (- gy ) - g 20

In the hamiltonian picture where 7;(z) = ac( ; the Nother charge becomes

08p¢* (x
Q. = / &z (1, X208, — LX° — m,81) (2.8)

and the Poisson bracket® with ¢ is

(@u o)) = [ o5 B S X)) ~ 0(a) = 0. (29)

Q. is in this sense infinitesimal generator for the transformation (2.2).

Not all conserved charges appear in this way from a continuous symmetry, the
other example is topological charges that arise from non-trivial global boundary
conditions of the fields. There is a conjectured duality, the Montonen—Olive duality
[17], between a quantum theory having gauge particles with N6ther (electric) charge

and a theory with solitonic objects with topological (magnetic) charge?.

3The Poisson bracket is here defined as {F,G}p = [d? !z ( 5:._1(;) 5:,%) - 67:5'%) 5;}&)).

4The motivation for this conjecture is the classical electromagnetic duality in Maxwell’s equa-
tions (in the absence of sources) under B — E, E — - B, or using differential forms F' — xF
{#* = —1). A more concrete motivation is the duality in the spectrum of SU(2) Yang-Mills-Higgs
theory between the massive vector boson with mass m o e and charge ¢ e and the BPS monopole
with m o 1/e and charge ¢ o< 1/e (when dyons are considered the duality becomes a transforma-
tion of the charge lattice under SL(2,Z)). The spectrum is therefore invariant under vector boson
+ soliton and e & 1/e exchange, and it is therefore a strong-weak coupling duality. This type
of duality is important when trying to understand the non-perturbative strong coupling region of
supersymmetric quantum field theory and for theories with extended objects. The strong-weak
coupling duality was first seen in two dimensions between the massive Thirring model and the sine-
Gordon model {18]. There are a number of obstructions against a Montonen-Olive type of duality,
the vector boson has spin one whereas the monopole seems to be a scalar and the electric charge
runs, but the topological charge does not. Supersymmetry can potentially cure these as it relates
particles with different spin and leads to non-renormalisation theorems, the only present candidate
where Montonen-Olive duality seems to be exactly realized is for SU(2) N = 4 supersymmetric
Yang-Mills-Higgs [19, 20, 21]

12



2 Symmetries and scaling

2.1.1 Ward Identities

The conservation equation 0, j%(z) = 0 was derived for the classical theory, requiring
that the equations of motion were satisfied. The quantum mechanical consequences
of a symmetry transformation are described by Ward identities that are relations
among the correlation functions of the theory. Physical amplitudes are given in

terms of the correlation functions that are formally defined by the path integral
(¢(z1) - - B(zn)) = (OIT{p(z1) - - - $(zn) }|0) = /D¢ e (z1) - d(zn) (2.10)

where Z = [D¢ €% is the partition function. If a transformation (2.2) is a
symmetry of the action S[¢'] = S[#] and the path integral measure D¢’ = D¢ the

correlation function (2.10) then transforms as

(#(z1) -~ d(zn)) = (¢'(z1) - - - ¢ (a7))- (2.11)

For translations ¢'(z + a) = ¢(z) this shows the translation invariance of the cor-
relators. The case D¢’ # D¢ is called an anomaly, here quantum corrections break
the symmetry present at the classical level. The Ward identities follow from (2.10)

and (2.3) when the path integral measure is invariant, to lowest order

($(z1)- / DS [da0wt @003 (@) (1)) 48 (21))- - -($(Tn) +06(1))

and this shows that

n

[ #4360 @) s @0l - flaa)) = 8D (1) -G w)6ula) - e

=1

=i / d*zéw (z) Z 5z — z) (1) - - Gab(zs) - - - D))

Again dw®(z) is arbitrary so that

Jx#

@) ) =136~ mH B+ bub(m) b)), (212
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this is the Ward identity for the current j*(z). When integrated over space this
leads for one field to® [22]

/dd‘lyaiyowlT{jﬁ(y)aﬁ(@HO) = (0|T{Qud(2)}10) — 6(z° — y*)(0][¢(), Qa)l0)

= i6(z° — y°)(0]6.¢(2)|0).
(2.13)

For 2° # y° then (0|[Q,, #()]|0) = #(0|6,¢(z)|0), and this argument generalizes to
an arbitrary number of fields ¢ [22] so that

i(Qa, $(z)] = —bud(a) (2.14)

holds as an operator equation, it is the quantum version of (2.9) and it again shows

that the charge generates the transformation.

2.2 Scale and conformal transformations

In flat space-time a conformal transformation is defined as a coordinate transforma-
tion that leaves the metric invariant up to a scale factor®. By definition, Poincaré
transformations leave the metric invariant and are therefore conformal, the others
are dilatations and special conformal transformations [24]. The infinitesimal gene-
rators of the conformal group obey the Lie algebra so(2, d) in Minkowski space and

so(1l,d + 1) in Euclidean space [25].

2.2.1 The energy-momentum tensor

In a Poincaré invariant theory the energy-momentum tensor is defined as the con-

served current associated with translations: z’ = z+a, ¢'(2') = ¢(z). The canonical

energy-momentum tensor (2.7) then becomes

oL
00 ¢ (x)

*T{ja(y)d(z)} = ja(W)d(z) + 0(z° — y°)[b(2), j2 (v)]-

For a diffeomorphism invariant quantum field theory on a curved space-time the transformation

Ly (z) 0,¢'(z) — M L(z), (2.15)

gij(z) = Q2(z)gij(x) of the metric is called a Weyl transformation, see e.g. [23] for a review.

14




2 Symmetries and scaling

and the conserved charges P* = [d% 'z T(z) are the energy and momentum
P* = (P° PY). The energy-momentum tensor can be made symmetric (put in
Belifante form) without changing P* and its conservation by adding to T*" total
divergences of antisymmetric tensors: 0,B°*", where B = —BH*" = —B"# [g].
We will always assume a symmetric energy-momentum tensor.

The presence of gravity breaks the global Poincaré invariance. In a curved space-

time the energy-momentum tensor is defined as the source of gravity i.e.”

2 6S[¢%, 9]

T, (x) = 2.16

w9 = 75 () (219
which is symmetric. The quantum version becomes
2 oW

(T (2)) (2.17)

~ V=95¢"()

where W is the generating functional for the connected correlators, Z = eV [26].

2.2.2 Scale transformations
A scale transformation, or dilatation, is defined as

T = sz
¢'(z') = s ¢(z)

where A is the scaling dimension of ¢(z). The scaling dimension is defined so that

(2.18)

the classical action is scale invariant. From the kinetic term in the action it follows
that A = d—g—2 for a scalar field and A = % for a Fermi field, and any mass term
will therefore break scale invariance. A mass sets a scale in the theory. The mass
(or engineering) dimension of a physical quantity is written as [F], it determines the
physical unit in which F is measured. It is a fundamental principle that all physical

quantities are homogeneous with respect to the mass dimension

F(tm) = t¥1F, (2.19)

"The components of the metric tensor satisfy that g(z) = (—1)%detg,.(z) < 0, §g =
m
-9 g;w(sg‘“/ and 6g“p = —g%gF’§g,q.

15




2 Symmetries and scaling

which therefore defines a grading of all physical quantities [27].
In a scale invariant quantum field theory it follows from (2.11) and (2.18) that

the correlators transform as

(r(s521) -+ B(sp)) = 751 - 5700 ($1(z1) - - Pnl(zn)) (2.20)
under scaling. For the transformation (2.18) the canonical scaling current (2.7)
becomes
. oL
Dt =z, T + A¢* -, 2.21
c z cC + ¢ aaﬂ¢z ( )

In [8] it was shown that this current can always (in d > 2) be written as D* =
z,T* for an improved energy-momentum tensor 7#” by adding divergences of anti-
symmetric tensors. Then T} and T*“” generate the same charges and 0,T*" =
0,T" = 0. This shows that for a classically scale invariant theory, with §,D" = 0,
the trace of the improved energy-momentum tensor vanishes T% = 0. From (2.14)

and (2.18) it follows that the scaling charge D is given by
iD, (z)] = —06(z) = dw(A + 1°8,)$(z), s=1+6w, |ow|<1. (2.22)

Using that i[P*, ¢(z)] = 0*¢(z) it follows that i[D, P¥] = P* — n% [ d4-129,D".
For a scale invariant theory then P?' = e¢i@P P2¢—ieD — 20 P2 and this again shows

that masses must vanish m? = 0 [25, 28].

2.2.3 Conformal transformations

A conformal transformation z — z’ changes the scale of the metric: g,,(z) —
9, (') = gpe() o O = 4(z)gu(x), and hence leaves angles % invariant. For

the infinitesimal transformation z'* = z* + €*(z) the change in the metric is to first

order

! I3 2
9, (T") = 94 (x) — Oue, — Ovey = ¥(%)gu(x) = O, +0pe, = 7 0,€” g (),
(2.23)




2 Symmetries and scaling

by taking the trace and using that d,9,,(z) = 0 in flat space. Conformal invariance
completely fixes the form of the two and three point correlations functions in any
number of dimensions [24]. For scalar fields that transform as

—-A/d

0| (), (2.24)

¢'(z') = oz

where |%—“;| is the Jacobian of the conformal transformation, rotation and translation
invariance require that (¢1(z1)¢2(z2)) = f(Jx; — 72|), and invariance under scale
transformations (2.20) shows that (¢ (z,)d2(z2)) = cia/|z1 — T2|*1722 for some
c12 € C. The Jacobian becomes || = = = v(z)~%2. The special conformal

transformations are given by

oo — T + bz? oz'| 1
142b- x4+ b2z?’ x| (1+2b-z+ b2z2)?
and it then directly follows that®
)2
(ah — ah)? = (1~ 22) (2.25)

(14 2b- 1 + b222)(1 + 2b - T, + b2x3)’
Hence, together with (2.24) invariance under special conformal transformations sets

c12 = k6a,—n, 0, and the fields are normalized so that k =1, i.e.

(61(z2) palzn)) = 27820 (2.26)

o |.’I31 - iBQlZAI ’
A similar expression is obtained for the three point function.

From (2.16) and (2.23) the variation of the action becomes

55 — % / 42/~ 6¢" (x) To () = -% / i/ ~g TH(z) 3 e (2.27)

Classical scale invariance §,D* = T# = 0 therefore implies conformal invariance

8S = 0 for the improved energy-momentum tensor’. There are no general arguments

8This is most easily seen writing (¢} — z3)% = #}° + z4° — 2z - z}.

9This argument does not show that T, % = 0 for a conformally invariant theory (as sometimes
stated, J,¢” is not an arbitrary function), but it is shown in [29] that conformal invariance is
equivalent to the existence of a traceless energy-momentum tensor and this is the one we will use
when considering conformal field theories. In a curved space-time Weyl invariance does imply that
T} =0.
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2 Symmetries and scaling

saying that this also holds at the quantum level, but no counter examples exists for
unitary theories in flat space (see [30] for a recent example in curved space), and it
is often stated that a vanishing beta function leads to conformal invariance [29, 27].
In two dimensions scale invariance can be proven to imply conformal invariance also
at the quantum level, this is shown in chapter 5 using the spectral representation.
Quantum corrections change the scaling of a theory. A local field theory has an
infinite number of degrees of freedom that give rise to ultra-violet divergences which
have to be renormalised, the scaling behaviour of renormalised quantum field theory

is described by the renormalisation group.

18




3

The renormalisation group and

universality

The renormalisation group describes the behaviour of a quantum field theory un-
der scaling. It also describes scaling in statistical mechanics and it provides an
important link between relativistic quantum field theory, statistical mechanics and
critical phenomena. The structure of the space of all quantum field theories is also
determined by the renormalisation group.

The relation between field theory and statistical mechanics has led to an un-
derstanding in statistical mechanics of critical phenomena and universality, and
calculations of critical exponents using quantum field theory methods. On the other
hand, the idea of effective field theories used in statistical mechanics is now also
used for quantum field theory which is seen as an effective field theory only valid
below some fundamental scale Ag.

The requirement of renormalisability was originally used as a selection criterion
for physical theories, but an effective theory must include all terms obeying the
symmetries of the theory, also the non-renormalisable terms. However, these terms
are irrelevant in the renormalisation group sense and are therefore suppressed at
energies A < Ay. The perturbative calculations in the wilsonian effective theory are

equivalent to normal perturbative calculations, where the running coupling constant
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3 The renormalisation group and universality

can be seen as the effective coupling. Non-renormalisable interactions are allowed
with a very small coupling, and gravity has been speculated [6] to be one such
example!.

A quantum field theory is determined by its symmetries and the coupling con-
stants of the interaction. The space of quantum field theories is therefore spanned
by the infinite dimensional coupling constant space. The renormalisation group de-
scribes a one parameter flow under scaling in the coupling constant space, where
fixed points correspond to scale invariant theories. The coupling constants describe
the microscopic interactions, but different quantum field theories have the same long
range physics if they flow to the same fixed point under the renormalisation group.
Quantum field theories can therefore be grouped into different equivalence class-
es according to which fixed point they flow to. The renormalisation group in this
way determines the structure of the coupling constant space. To get a better under-
standing of the space of quantum field theories it is therefore important to study the
infra-red and ultra-violet limits of quantum field theories and their renormalisation
group flows.

The analogy between statistical mechanics and quantum field theory, which is
an exact equivalence when the continuum limit of the statistical mechanical system
is considered, stems from the path integral formulation of the latter. Under a Wick
rotation it = tg, (z,2)y = —(,2)g and iS = —Sg: Z[J] = [ DeeiSt] ¢zl @)é@)
[ Doe=Se+[d'27(@)¢(=) which is analogous to the partition function of a statistical
mechanical system in d space dimensions where Sg is the classical hamiltonian. The
n-point Green functions become euclidean Green functions, or Schwinger functions,
that are equivalent to correlation functions in statistical mechanics, and this is the

term we will use throughout the thesis?.

!To explain why gravity is irrelevant and the other interactions are relevant one needs a funda-

mental finite theory.
2The usual convention in physics is applied where euclidean signature means a riemannian

manifold (M, g;;) where g;; has signature (+,...,+) and Minkowski signature means a pseudo-

riemannian manifold (M, 7;;) of signature (+,—,...,—).
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3 The renormalisation group and universality

3.1 Renormalisation

Loop diagrams in quantum field theory contain ultra-violet divergences (infra-red
divergences are discussed in chapter 6). For example in euclidean ¢* theory the

tadpole diagram
Q - (22)«1 fddq (@Z+m?)™t > K fko: dr r{d-2)-1

for some ky, ko € R, and the diagram is therefore divergent for d > 2. A theory
is renormalised by first regularizing it® introducing a convergent expression for the
loop integrals depending on some cut-off parameter ¢, so that the original expression
is obtained in the limit where the cut-off is removed ¢ — 0. The divergences are
then absorbed into bare couplings by redefinitions of the coupling constants of the
theory so that the correlation functions, and thus physical quantities, are finite when
e — 0, but the bare couplings diverge. Here a wave function renormalisation is used,
vo = Z* () pr, 92 = Zo(p)(¢?)r, where pg, (?)r and X are the renormalised and

o, P53, Ao are the bare quantities,

Lr(or, A) = L(¢r, A) + Let.(0r, A) = Lo(po, Ao). (3.1)

A theory is called renormalisable if it is possible to absorb the infinities into a finite
number of couplings at every order in the perturbation. Studying the loop diagrams

the requirement of renormalisability of a scalar field interaction Ap(z)" becomes
[A] = 0. (3.2)

The interactions of the theory (like the self-interaction above) are incorporated into
the renormalised couplings, and it is these couplings that have to be compared with

measured quantities. The bare couplings are the ultra-violet approximation of the

3There is an operator formulation of perturbative quantum field theory where no regularization
and renormalisation is performed. In the (Boguliubov-Shirkov-Epstein-Glaser) Causal approach
(see e.g. [31]) ultra-violet divergences are removed by proper definitions of products of operator

valued tempered distributions in position space.
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3 The renormalisation group and universality

renormalised couplings in the sense that no interactions are here taken into account?.

The counter terms L. ; are only specified up to finite terms in the limit ¢ — 0.
This means that the theory does not have any predictive power until the parameters
of the lagrangian, i.e. the couplings and the constant in the kinetic term, have been
fixed by comparing with experimental values measured at a certain length scale.
Choosing a different renormalisation condition by fixing the parameters at a different
scale then corresponds to a different finite renormalisation of the theory.

The regularization introduces an additional mass parameter p into the theo-

11
q2+m2 q2+ﬂ2’

in dimensional regularization ¢ = u~A, where [¢g] = 0. Changing u corresponds

ry, e.g. the lattice spacing 1/u, or in Pauli-Villars: p -’:m"’ — and
to a finite renormalisation and can be seen as choosing a different renormalisation
condition. Physical quantities must be independent of the choice of renormalisa-
tion condition and this invariance in the choice of u leads to the Callan-Symanzik
equation [32, 33] which shows how the system changes under scaling. Some ref-
erences on renormalisation in quantum field theory and some of its history are
[22, 11, 5, 34, 35, 36, 37, 38, 39, 40, 41], in which more detailed references can be

found.

3.1.1 The Callan—Symanzik equation

The simplest case with one coupling is considered, the equation directly generalizes
to more couplings. From the wave-function renormalisation the bare and renor-

malised correlation functions are related as

Ga(pi, 9(1), 1) = (0r(P1) - 0r(PA)) = Z7 "2 (1) Gon (s, os €), (3.3)

4The ultra-violet divergences of the bare couplings then indicate that the perturbative theory is
only an effective theory valid below some fundamental cut-off Ag, and the renormalisation is then
a way of expressing the effective physical degrees of freedom at a length scale much below Ag, this

is exactly the philosophy in the wilsonian view of the renormalisation group.
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3 The renormalisation group and universality

where the overall momentum conservation has been extracted so that G, (p;, g, i) is
defined for 3" p; = 0 . It then follows that

d ey b 42 0 990
0 udHGOn(pl,go,.e) . (%Zl m “au 150 5g Gn(pi, g, 1t).  (3.4)

G (pi, g, 1) is homogeneous with respect to the mass dimension® (2.19)

Gn(tpia g, t,Ll/) = t[Gn(Pi)]Gn (pi) g, /.L), (3‘5)

so that

(135 + 1y~ Gn(p)]) Gl =0, (5:5)

inserting into (3.4) leads to

( 2+ Bl0) 2+ + (G (p»J) Co(tpis 9, 12) = 0, (3.7
with
d dz
Blo) = bglme 70) = 573 L (3.8)

B is the beta function and vy the anomalous field dimension. We call (3.7) the
Callan-Symanzik equation and (3.8) the renormalisation group equation’.

In the Callan-Symanzik equation the invariance of the physics (the S-matrix)
in the choice of renormalisation condition is transformed into describing the scal-
ing behaviour of the correlation functions. The correlation functions change as
(ny + [Gn(pi)])Gr(tpi, 9, 1) under a simultaneous change in ¢ and g in (3.7) and this
suggests that the solution has the form G, (tp;, g, 1) = h(t)Gn(ps, §(t, 9), 1) for some

SUsing translation invariance we can then write the correlator as G,(pi,..., Dn) =

iz (Xi=aP) [z, .. [ dlz,elEr2 PTG (0,20, ... ,2,) = (20)46( 0, i)Gn(pi).
SFor a scalar field [Gn(pi)] = nlp(z)] —nd+d=d— 2(d+2).
7(3.7) is also called the renormalisation group equation, and sometimes the word Callan—

Symanzik equation is reserved for the case with composite operator insertions, these are considered

in chapter 6.
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3 The renormalisation group and universality

function h(t), where the running coupling constant g(t, g) satisfies that g(1,9) = ¢
and t% = B(g) 8. Inserting this into (3.7) then gives

A n I, _
Gr(tps, g, 1) = tE PNV 5724 (. 5(2, 9), ). (3.9)

This shows that the scaled correlators with coupling g are the same up to a factor
as the unscaled correlators with the running coupling g(¢, g) at the scale t.

The renormalisation group in this way specifies a one parameter flow in the cou-
pling constant space that determines how the renormalised couplings must change,
when the length scale changes, to leave the physics invariant. The cut-off € is kept
fixed along the renormalisation group flow; an equivalent view of the renormalisation
group is to keep the renormalised couplings fixed by comparing them to measured
quantities at a certain scale, and then observe how the bare couplings must be varied

in the limit when the cut-off vanishes so that the physical quantities stay unchanged.

The renormalisation group shows how the effective microscopic dynamics, ex-
pressed in terms of g(t¢), depends on the length scale where the theory is probed.
This dynamical scale dependence is one of the most important consequences of the
renormalisation group because it matches what we see in nature, namely that the
behaviour of physical systems depends on the scale where they are studied [36].
Physics on different length scales decouples, that is, the dynamics of a system and
the relevant parameters needed for its description depend on the scale where it is
studied. The value of a physical charge for example depends on the length scale
where it is probed because of screening, and the parameters needed to describe a
thermo-dynamical system differ from the ones needed to describe its microscopic
nuclear properties.

The S-function can be calculated perturbatively and the correlators satisfying
(3.7) are called renormalisation group improved, as (3.7) is an additional condition

on the perturbative calculation. The renormalisation group equation shows that the

8Hence integrating this equation and differentiating with respect to ¢ shows that %gh = g%%’
and it also follows that flt dt’@,ﬂi = fgg dg’ ZW(Z_:;'
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3 The renormalisation group and universality
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Figure 3.1: B-function with an ultra-violet and an infra-red fixed point.

scaling behaviour is completely determined by the S-function; fixed points of the
renormalisation group correspond to scale invariant theories because the effective
couplings are the same at all length scales.

We are interested in theories with a S-function with an ultra-violet fixed point
where the length scale vanishes, and an infra-red fixed point where the length scale
diverges, see figure 3.1. The renormalisation group then flows from the ultra-violet
to the infra-red fixed point in the coupling constant space.

If the coupling constant space, or theory space, has the coordinates g° then
the renormalisation group flow is a one parameter transformation along the vector
field 8 = ﬂi%. In [42, 43] the correlation functions in a theory were argued to
be tensor fields in coupling constant space and the renormalisation group flow can
then be written as the Lie derivative [44] with respect to the vector field 5. It then
seems natural and important to try to further develop the geometrical understanding
of the renormalisation group by introducing a metric, connection and curvature

in theory space, also because geometrical principles have proved very important
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3 The renormalisation group and universality

when formulating general relativity and quantum gauge theories. In [45, 46, 43, 42]
the geometrical properties of the renormalisation group have been studied, but no
general conclusions have yet been reached about the geometry. The hope is that
geometrical considerations will lead to global non-perturbative constraints on the
renormalisation group flow and the structure of theory space. This is the case in
two dimensions for unitary theories where Zamolodchikov’s c-theorem, which we
will prove in chapter 5, shows the irreversible nature of the renormalisation group
flow. Another example where the renormalisation group flow has been studied non-
perturbatively is the Seiberg—Witten solution to N = 2 supersymmetric Yang-Mills,
where the exact S-function has been determined together with a metric on coupling
constant space (47, 48, 49].

3.1.2 Composite operators and the operator product
expansion
In a renormalisable theory correlation functions (O(z)¢(y1) - - - ¢(yn)) with insertion-

s of local composite operators O(z) = 8, - - - 8;¢(x)* will have divergences. These

correlators can be calculated by adding a term to the lagrangian £ — £+ t(z)O(x)

and then use the normal Feynman rules to evaluate Z~! Jt?:c) T )‘_5_’?5 J(yn)Z [, ]| y=¢=0-
This corresponds to summing over the usual Feynman diagrams, but with one addi-
tional vertex corresponding to O(z), this vertex has no self-contractions [27]. Some
of these diagrams will be divergent and the composite operator is renormalised by
adding counter terms t(z)O(z) — t(z)(O(z) + 3, Z0iO;). For the theory to be
renormalisable the constraint (3.2) shows that?® [Zo;] > 0 so that the operator O(z)

only mixes under renormalisation with operators of lower or equal mass dimension.

9This argument is for an operator without any derivatives, a general argument is given in [22]; if
G is a 1PI graph for a counter term Z0iO; with D; derivatives then (3.2) implies that the degree of
divergence of G: §(G) = [G] — [couplings] > [G], and [G) = D; + [Zei]. For Zo;O; to be a counter
term then 6(G) > D;, and together with the above relation this again shows that [Ze;] > 0.
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3 The renormalisation group and universality

The renormalisable composite operator can then be written as

The correlation functions (Oy(z1)g - - Oi(2:)rO;(z;)r - - - On(zn)r) are not de-
fined on the diagonal z; = z;. We will be interested in the short distance ultra-violet
limit where z; — z;, this situation is described by the operator product expansion
(or short distance expansion). To simplify the notation we will here write the renor-
malised composite operator as simply O(z).

The operator product expansion was first conjectured by Wilson in [50] (and
independently by Kadanoff in statistical mechanics [51]), it replaces a product of
operators by a linear combination of local operators, it has been proved to hold in
perturbation theory (see e.g. [22, 52|) and also argued to be true non-perturbatively
using the path integral [52]. In the classical theory the product O;(z;)O;(z;) can be
calculated for z; — z; using the Taylor series O;(z;)O0;(z;) = O;(z;)O;(z;) + (z; —
z;)*(0,0;(z;))O0;(z;) + - - -. In quantum theory O;(z;)O;(z;) is singular, it follows
for example from (2.20) that (¢(sz)@(0)) ~ s722 for s — 0, and the Taylor series

must be replaced by an asymptotic series for z; — z;:
Oi(:)05(z;) ~ Y Cuige(ws — ;) O (x). (3.11)
k

From the scaling behaviour (2.20) it follows that Cyjx(s(z; — z;)) ~ s™2~2+2 for
s — 0, and since there is only a finite number of operators'® Oy with Ay < A; + A
there will only be a finite number of singular terms. The dominant contribution in
(3.11) for z; — z; is therefore given by the operators with lowest scale dimension.

For scalar fields we will write (3.11) as

Oi(2:)0;(z5) ~ Y |as — 35~ Gy Op (x)), (3.12)
k

where Cjji is the operator product expansion coefficients.

10This is the case for all known theories and it can be taken as one of the defining properties of

quantum field theory [53].
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3 The renormalisation group and universality

3.2 Linearizing the renormalisation group and

universality

The structure of the coupling constant space is determined by the renormalisation
group flow, the qualitative behaviour of which is given by the stability of the fixed
points (in the absence of limit cycles and strange attractors). The stability of a
critical point, i.e. if it is attractive or repulsive, can be found by linearizing the
renormalisation group near the fixed point.

It is useful to adopt the wilsonian viewpoint where the renormalisation group is
implemented by integrating out the high energy degrees of freedom not relevant at
lower energy scales. This procedure can also be used in statistical mechanics and the
renormalisation group has made an important connection between relativistic quan-
tum field theory and critical phenomena, which has led to a better understanding
of divergences in quantum field theory and universality in critical phenomena.

In statistical mechanics a renormalisation group transformation is given as a
coarse graining of the system focusing on the long range effects that are the impor-
tant ones in critical phenomena. For a spin system on a (fixed) lattice of spacing a
this can be done by Kadanoff blocking '*. The blocking, or renormalisation trans-
formation, will then generate new couplings between the blocked spins. This is
similar to the renormalisation described by (3.8) where the cut-off is held fixed and
the renormalisation group describes the dependence on the renormalisation scale.
Equivalently, the lattice can be used as a regulator by adjusting the (bare) couplings
so that physical quantities, e.g. the correlation length, are held fixed while the lattice
spacing a goes to zero. This is again analogous to the quantum field theory case
where € — 0. The continuum theory defined in this limit then gives a field theory
with a non-perturbative regulator, namely the lattice, and non-perturbative effects
can in principle be studied in this way.

A continuum formulation is also obtained with a momentum space cut-off, either

1 The lattice is divided into blocks of size s¢ and the spin field in the block is defined as the

average value, length are given in terms of the lattice spacing so they must be rescaled 2’ = z/s.
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3 The renormalisation group and universality

Figure 3.2: A renormalisation group fixed point in coupling constant space with one

relevant and two irrelevant operators.

sharp or smooth. One prescription is to include only momentum modes ¢(k) with
|k] < A in the effective partition function Z = fD¢(k)||k|<Ae_S[¢]. The equivalent
of the blocking transformation in this formulation is to integrate out the momentum
modes with A/s < |k| < A followed by a rescaling k' = sk, ¢'(k') = s®~4¢(k) (which
is the momentum space version of (2.18): ¢'(z/s) = s®¢(z)). This transformation
again corresponds to a flow in the effective coupling constant space A — X(s) and

the S-function is then defined as before S(\) = s2.

3.2.1 Linearizing the renormalisation group

Assume that there is a fixed point of the renormalisation group, i.e. a scale invariant
theory in the coupling space S.[A.]. In the vicinity of the fixed point the action can
be written as S[A(s)] = S. + AS[A(s)] where s is the scale parameter. Linearizing
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3 The renormalisation group and universality

the renormalisation group transformation around the fixed point gives
d
—AS = LAS 3.13
Sy (3.13)

where L is a linear operator depending on S, [38]. If L has a discrete spectrum AS
can be expanded in terms of the eigenoperators with eigenvalue y;: AS = 3. \i(s)0;
so that to lowest order

d

SE)\i(S) = yi)\i(s), /\i(S) = Syi/\i(l). (314)

y; is the renormalisation group eigenvalue for the operator O; at the fixed point S,.
O; is called relevant for Re(y;) > 0 where the coupling grows away from the fixed
point, irrelevant when Re(y;) < 0 where the coupling vanishes along the renormali-
sation group flow, and marginal for y; = 0 where higher order corrections need to be
calculated, see figure 3.2. The critical surface for a fixed point is defined as all points
in the coupling constant space which flows to the fixed point under the renormali-
sation group flow, and is therefore locally spanned by the irrelevant operators. The
co-dimension of the critical surface equals the number of relevant operators for the
fixed point, and the corresponding couplings are the ones that need to be adjusted
to reach the critical surface.

The massless free theory is a fixed point of the renormalisation group, the gaus-
sian fixed point. This fixed point is very important because perturbative quantum
field theory is defined as a perturbation around it. The free theory is finite and
can be calculated exactly. It is a fixed point because the massless free action is
scale invariant, and for a quadratic action there is no mixing of different momentum
modes, so that the high momentum modes decouple without changing the quadratic

d—2

coupling. For example, for a scalar field with scaling dimension A = £=:

1 p a9 2 L ,
~1 [ 9 p(g)g20(- ) )
Z= /D¢(Q)|]ql</\e 2 ma?0ae(-0) _ kl/D¢(Q)||q|<A/s€ 2 rad(@)a?e(—a)
- - dq! (NP AgN] [ 1
= k2/ID¢,(qI)|Iq’I<A6—Sd “ 2%f(‘;")3¢(q )a 2"5(_‘1)’

for some k1, ks € R, and it follows that the massless free action is invariant under

a renormalisation group transformation. In this gaussian case the change in the
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3 The renormalisation group and universality

couplings under the renormalisation group comes solely from the rescaling of the
action. For a non-quadratic interaction term A [ dzO(z) the momentum modes
mix, and the couplings will consequently change when integrating out the high
momentum modes. This effect however must be of order O(\) as it vanishes for the
gaussian theory, so the lowest order change in A is again given by rescaling the action
z — 2 =zx/s, O(z) = O'(z'): A [d2O(z) = As¥2 [diz'O'(z'), where O(z)
has scaling dimension A. The renormalisation group eigenvalue for the gaussian
fixed point is therefore y = d — A which is equal to [A]. The non-renormalisable
interactions with [A] < 0 are thus damped by s~¥! on the renormalisation group flow.
On scales A < Ay the only non-zero parameters are therefore the finite number (in
d > 2) of couplings in front of the renormalisable interactions, irrespective of the
nature of the underlying fundamental theory at the scale Ay, and the theory therefore
has a renormalisable form. A similar argument was given by Polchinski in [54] (see
also [5]) directly using dimensional analysis and an effective lagrangian!? 3.

From the solution to the Callan-Symanzik equation (3.9) it follows that the infra-
red limit of a correlation function is proportional to the same correlator evaluated at
the infra-red fixed point. This shows that all theories flowing to the same infra-red
renormalisation group fixed point have the same long distance behaviour irrespective
of the microscopic dynamics, this is called universality. Fixed points are determined
by the symmetries of the action and the space-time dimension and are characterized
by quantities like the renormalisation group eigenvalues from which such universal
properties as the critical exponents, that are discussed in chapter 6, can be derived.

Quantum field theories can then be grouped into different universality classes, with

12Tn (55, 11] the renormalisation group is seen as an example of functional self-similarity, where a,
solution to a physical problem, imposed in terms of a differential equation, has the same functional
form under a variation of the boundary conditions. If for example the transformation R, : {z —
' =z/t,g - g' = g(t,g)} satisfy the group composition R; Ry = Ry then §(z, g) = g(z/t, §(t, g9)),
and this shows that zﬂﬁaﬂ;»_g) = B(g(z, g)) where B(g(z, g)) = gzg(t,g)h:l, which are similar to the

expressions above.
13A correspondence between Feynman diagrams, knots, Hopf algebras and non-commutative

geometry has been discussed in [56, 57]. This seems to be an important development which may

lead to a more fundamental understanding of the perturbative series and the renormalisation group.
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3 The renormalisation group and universality

the same critical properties, according to which fixed point they flow to under the
renormalisation group, this has been verified experimentally for a number of different
materials and fluids. If all theories have an infra-red fixed point (as would be the
case if the renormalisation group flow could be shown to be a gradient flow with the
interpretation as in the c-theorem) the space of quantum field theories would then

be classified by determining all fixed points, i.e. all scale invariant theories.
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4

Calculating the infra-red limit

using analyticity

In this thesis we are interested in quantum field theories that have a S-function as
in figure 3.1 with an ultra-violet and an infra-red fixed point of the renormalisation
group.

Perturbation theory is the main calculational tool in obtaining physical quantities
from quantum field theory. Here the action is divided into a free gaussian part and an
interaction, and using that the path integral is well defined for gaussian integration
the full interacting theory can then be written as a formal power series in the coupling
constants that define the interaction®. This power series in the couplings will often
at most be asymptotic, hence the finite number of terms obtained in a perturbative
calculation only describe the exact physics correctly in a small region around the
gaussian fixed point ¢° = 0, this is called the perturbative region.

The ability to calculate anything beyond this perturbative region is scarce and
limited, and it is therefore important to develop new calculational tools that can
reach beyond the perturbative region towards the infra-red.

Conventionally the infra-red limit is studied by extrapolating perturbation theory

! A perturbative expansion around a non-gaussian fixed point is possible if the correlation func-

tions in the critical theory are known, we will see an example of this in chapter 5.
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4 Calculating the infra-red limit using analyticity

from the ultra-violet region using the renormalisation group. In this chapter we will
show how to improve this approach with information derived from the analyticity
properties of the correlation functions in the theory. The analyticity follows from the
Kéllen-Lehmann spectral representation that is valid for all quantum field theories.
We are considering Lorentz invariant and unitary theories in an arbitrary number
of dimensions.

Using the analyticity in a complex scale parameter the infra-red limit of the
correlation functions is written as an integral in the ultra-violet region. This integral
over the complex scale parameter is shown to be the Borel transform of order & of
the correlation function, where the order is related to the analytical continuation
chosen for the scale parameter. In chapters 5 and 6 we will use this method to derive
the infra-red limit of different physical quantities in two and three dimensions.

First the Kallen-Lehmann spectral representation is derived, and this is then
used to determine the analyticity domain of correlation functions. The perturbative
expansion in the coupling is then discussed together with asymptotic series and the
Borel transformation, and we then show how to obtain the infra-red limit as an

integral in the ultra-violet region.

4.1 Spectral representation of correlation

functions

The Kéllen-Lehmann spectral representation [58, 59] states that the two point cor-
relation function in an interacting theory can be written as a sum over intermediate
free states of different mass. It follows from general principles of quantum field theo-
ry and can be derived by inserting a resolution of the identity in terms of eigenstates
of the momentum P* [60]. Let us show it for for a scalar field ¢(z), there is a similar
representation for correlators of higher spin fields and we will show it for the spin
two energy-momentum tensor in chapter 5. The unitary irreducible representations
of the Poincaré group are characterized by the invariants of the group (the Casimirs)

which are the mass 1 and the spin s. We consider the s = 0 case and the identity
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4 Calculating the infra-red limit using analyticity

can therefore be written as a sum over the different masses [60]

1 :/ du? Ppr—,2 = / dy,Q/ddp §(p* — u?) 0(P°) Ppv=pe (4.1)
0 0

where P is a projection operator onto eigenstates of P? and P*. Inserting this into

the two point function for z% < 0 gives, using Cauchy’s theorem?

(B(2)6(0)) = (OIT{#(x)$(0)}]0) = (0]4(0)8(z)[0) = (0[4(0)e*(0)[0)
/ di? [ dip 57 — 12)0()e® (01$(0)Ppe—pe $(0)]0)

0

® 9 2 d’p 2 2 0\ ipz
=/ dp*o(p”) WﬂP — ) 0(p)e
00 dd—lp 1 ] 0 o
— 2 2 &V i(Eps®—xp)
/0 do(p )/ (2m)¢-12E,°
oo dd—lp oco-+i€ dpo (_1) .
= 2 2 _— v 1pT 0
;o) [ o [ om0
— d 2 2 / Ppr __ / d 2 2 G )
/0 12 0'(/1, ) (27!')‘1 p2 — /1'2 + g€ € o K 0'(/.1, ) 0(‘T7l*l’)

(4.2)

Here dp?o(p®) = dp?(2m)*1(0|¢(0) Ppv—pr $(0)|0) |22 is the spectral density at the
scale u, and Go(z, i) is the free Feynman propagator which in momentum space is

——L (i.e. ¢ — 0, is taken in integrals). For
p2—pZ+ie + &

given by the distribution Go(p, p) =
z°% > 0 the same result is obtained, and the full interacting propagator can be written
as: G(z) = [;° du*o(u?)Go(z, u), which is the Kéllen-Lehmann spectral represen-
tation. If the projection operator is written Ppv—p = |, p) (11, B it follows that for a
unitary theory the spectral density is non-negative o(u2) = (2m)4"1|(0]¢(0)|5, u)|? >
0 3. The calculation with euclidean signature is equivalent and in momentum space

Here E, = /[ + 4% so that p? — p? = (pO)2 ~ E2. From the identity §(f(z) — f(a)) =

mé(z — a) it follows that [ d9ps(p? — u?)0(p° fdd 1pz—F—, which also shows that —2 is

the Lorentz invariant measure on the upper sheet p® > 0 of the hyperboloid p? = p?.
3The Killen-Lehmann spectral representation is in [61, 5] derived by explicitly constructing the

projection operators, and in [62] in terms of actiomatic field theory.
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4 Calculating the infra-red limit usihg analyticity

it becomes

(B(p)B(0)) 5 = / " Ao (42— (4.3)

2 2
0 Ppt i
From now on we will use euclidean signature unless otherwise stated and write

(D(p)9(0))E = (6(p)9(0)), P} = p* and Sp = S.

4.1.1 Analyticity of correlations functions

The spectral representation (4.3) shows that the correlation functions have an ana-
lytical continuation. Introducing the complex scale factor s € C

@) = [ o) s

then shows that (¢(sp)¢(0)) is analytic in the positive half-plane Re(s) > 0. Of
course, a different continuation can be chosen and generally physical quantities will
not be analytic in the positive half-plane, but in some sector S(a) of the complex

plane defined as
Sla)= {z=re?|0<r<oo, -2 <¢< g}, (4.4)

see figure 4.1. Note that 0 ¢ S(a). We will consider functions which are bounded
at the origin, i.e. 3C > 0: lim,_o |f(2)] < C for z € S(a).

It is very difficult to go beyond the perturbative approximation. One way is
to use the lattice as a non-perturbative regulator as discussed in chapter 3, and
then do numerical calculations of the path integral e.g. using Monte Carlo methods.
Another has been to study particular theories, or models, with features that have
allowed considerations beyond perturbation theory. Examples are theories with
large symmetries, like infinite dimensional affine Lie algebras and supersymmetry,
that have non-perturbative consequences; or use duality transformations between
specific theories, that maps one theory into another weakly coupled theory where
perturbation theory is applicable. Non-perturbative results are also obtained by
studying dominant contributions to path integrals in form of instantons and solitons

that are not given by free theories.
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4 Calculating the infra-red limit using analyticity

by a formal power series expansion in the couplings. Wick’s theorem

(D(21) - d(0)) = 2 PHVBHCE VGG g(1,) - .- P() e IODH] €I @) 0.0

o0

leads to the perturbative expansion in terms of Feynman diagrams. After renorma-
lisation each term in this series is finite, but the series is not necessarily convergent.
It was first argued by Dyson in [64] that for QED this perturbative series can at
most be asymptotic. If the series is convergent then it is analytic at g = 0 and will
therefore also converge for some negative coupling —g (g > 0), but then like charges
will attract and the vacuum will disintegrate by spontaneous polarization.

It is important to understand how well the perturbative series represents the
exact physics, and how much information can be extracted from it, since a large
part of actual calculations are done using perturbative techniques.

In [65] by counting the number of different Feynman diagrams it was conjectured
that the perturbative coefficients grow like H, ~ n!. This was confirmed for large
n by Lipatov [66] using a steepest decent approximation of the functional integral
with non-trivial saddle points that have a finite euclidean action. For ¢* theory
these instanton approximations were calculated in [67]*, and the method has been
generalized to theories with fermions, QED and non-abelian gauge theories, see [70]
for a review and references. »

Let H(g) = Y oo, Hag™ be the perturbative series for a physical quantity H. If
H(g) = o(]g]) when |g| — oo and H(¢*) = H(g)*, where g* is the complex conjugate,

then the once subtracted dispersion relation becomes

0 Im(H ()

H) = HO)+ £ [ g T, (4.5)

This follows from Cauchy’s theorem by integrating #I,{((gg,% over a connected con-

tour consisting of a large circle at infinity together with contours running just below

4An instanton is a solution to the classical euclidean equations of motion with finite euclidean

action. See [68, 69] for an introduction to instantons and solitons.
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4 Calculating the infra-red limit using analyticity

and above the negative real axis from —oo to 0 and an infinitesimal circle around 0.
Applying Cauchy’s theorem again the coefficients with n > 0 can be written as

H, = %/0 gg mUH(9)) (4.6)

1
—oo gt

For large n the integral is dominated by the small negative g values, and in this
region instanton approximations of the functional integral show that [70]
el/ag

(_ag)b+1 ’

As an example [38] consider the integral I(g) = = [ dze™ (z*+92%/2)/2  This can

Im(H(g)) ~ g<0, a>0. (4.7)

be continued to negative values of g if the integration contour is rotated so that
Re(gz*) stays positive leaving the integral finite, i.e. Arg(z) = —Arg(g)/4. Hence,
there are two contours C where: Arg(x) = +n/4 for g = —|g| & 70, respectively.
The imaginary part then becomes Im(7(g)) = (I(—|g] + ¢04) — I(—|g| —i04))/27 ox
( fc+ — fc_)da:e‘(:”2+9“’4/ 2/2. In a steepest decent approximation the contribution
from the saddle point at £ = 0 vanishes and the contours Cy can be split into two
contours going through the other saddle points: z = :l:\/T/g. For small positive
couplings Re(I(g)) = I(g) is therefore dominated by the saddle point z = 0 giving
the perturbative expression Re(I(g)) = 1+ O(g), and for negative g the imaginary
part is dominated by the non-trivial saddle points z = j:\/T/g giving the non-
perturbative expression Im(I(g)) o !/ [38].

The large order behaviour then follows by inserting (4.7) into (4.6) using that
[ dzav~le™® =T(v)

el/eg
H, ~ / dg ———— T (—ag) ~(—a)"T(1+n+b). (4.8)

Stirling’s formula [71]) I'(z) = v/27z e %2~ 1/2(14+-0O(1/x)) shows that I'(z+a)/T'(z) ~

x® for large = and the large order behaviour can therefore be written as
H, ~ (—a)"n!n’(1+0(1/n)), n — co. (4.9)

The factorial growth then shows that in these cases the perturbative series is indeed

asymptotic.
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4 Calculating the infra-red limit using analyticity

4.3 Asymptotic series

We shall need a general definition of asymptotic series. Following [72] a formal power
series f(z) = 3000, fa2" is asymptotic of (Gevrey) order k! > 05 if 3C, K > 0:

|fn] < CK"T(1 +n/k), VneNuU{0}. (4.10)

~

Let f(z) be analytic in the sector S(a). f(z) is the asymptotic expansion of f(z) of
order k > 0 for z — 0 if the function r;(z, N) = 27V (f(z) - ZTI::OI fnz") is bounded
at the origin. That is, to every closed subset S’ C S(«) there exists C, K > 0:
N-1
2/ 7Nf(2) = Y fa2"| < CKNT(1+ N/k), VN >0, Vz€ S, (4.11)
n=0
and this is written as f(z) 2 f(z) in S(@). It follows that ri(z, N +1) =
z7Y(ry(z,N) — fn) is bounded at the origin so that fy = lim,o7;(2, N) for
z € S(a). The same argument directly shows that every f(z) analytic in S(«)
has a unique asymptotic expansion®.

The question is, if a given asymptotic series f is the asymptotic expansion of only
one analytic function (if any), so that the perturbative series uniquely represents the
exact physics. This is not generally the case, as the function e=¢"" with ¢ > 0 shows.
Re(cz™*) > 0 in the sector S(m/k) so that e=="" = o(z) for all N > 0 and z — 0
from S(m/k), which means that e~ 2%, 0. An analytic function f(z) 2% f(z) is
therefore only defined modulo e=%*"" (which for small z is minute).

For sectors with larger opening a > m/k no such functions exists, and only one
function analytic in S(a) satisfies f(z) =% f(z). In this case all of the exact physics
is for small couplings contained in the perturbative series. The injectivity of the
asymptotic expansion for large openings was shown in [73| using an extension of
the Phragmen-Lindel6f theorem [71], it can also be shown by explicitly constructing
f(2) from f(z) by the Borel transform [73, 74].

5Then f € Cllz]l1/x - Cl[2]l1/x is a differential algebra [72].
SIf f(z) is single valued, bounded at the origin and a = 27 then f(2) is analytic at z = 0, hence

f(z) converges and equals the Taylor series at the origin.
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4 Calculating the infra-red limit using analyticity

A
Cy

Figure 4.2: The contour Cy where k > 0 and 0 = (e + 7)/k. € € (0,7) is chosen so
that Cy C S(a), i.e. € < ak — 7. The circle has the radius R.

4.3.1 The Borel transform

Let £ > 0 and f(z) be analytic in S{a) where @ > 7/k and f(z) is bounded at the
origin. The Borel transform of f (z) order k is defined by [72]

dZ k
(u/z)

where the contour Cy is given in figure 4.2. If u € S(e/k) then |Arg((u/2)*)] > 7/2
when z is on the two rays in Ck. The integrand is therefore bounded on C; and the
integral is absolutely convergent and defines an analytic function. From Cauchy’s
theorem the integral is independent of the choice of radius R and € when ¢ < ak —,
and By f(u) is therefore analytic in S(a — 7/k).

The Borel transform of a formal series f(z) = >0 o faz" follows from Hankel’s

integral representation [71]:

1 1 dw 1/
= — | ZZelwys 413
T(1+2) 2w /Cl wo (4.13)
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4 Calculating the infra-red limit using analyticity

so that

Z I'( 1 + n/k (4.14)

n=

The Borel transform of an asymptotic series of order k7!, i.e. |f,| < CK"T(1+n/k),
then converges within some positive convergence radius. The inverse of the Borel
transform is given by the Laplace transform: Ly f(2) = k [7° @uke= /)" f(v). If
there exists an analytic function such that f(z) = f (2), then f(z) is uniquely
given by f(z) = Ekka(z) in an appropriate sector and we say that f(z) is Borel
summable [72]. To perform the integral in the Laplace transform Bjf(u) must be
analytically continued to all of the positive real axis, this can be done e.g. by a
conformal mapping which we will use in chapter 6.

However, this continuation is not always possible, if e.g. B f(u) has a pole on
the positive real axis, then the equation f(z) = LiBxf(z) is not satisfied by any
f(z). QCD is an example of a theory that has poles on the positive real axis known
as renormalons, and it is therefore not Borel summable in this sense (it is possible
to distort the contour avoiding the singularities, but this introduces ambiguities
[75, 52]). If a theory is not Borel summable in the coupling it still might be Borel
summable in the scale parameter s, but the asymptotic expansion in s then has
to be obtained by non-perturbative means to describe the full theory because the
perturbative series in this case is incomplete. For the instanton approximations in
(4.8) the singularity closest to the origin is at the negative axis ¢ = —a < 0, and
no such problems arise’. The ¢? theory which is considered in chapter 6 has been
proved rigorously to be Borel summable for d < 4 [77, 78, 79]. Our interest here is

not the Borel transform in the coupling, but in the scale parameter s.

7A formal way to see that instantons determine the singularities of the Borel transform (of order
one) is to formally rewrite the partition function [76]. First rescale the fields so that the action is
written as S[#]/g (with g > 0) and then: (¢) = Z~1 fD¢e—S/9¢ = [, dt [Dpé(t — S)e=5/9¢ =
J5° dtBy(t)e=/9 where the Borel transform is given by Bi(t) = [ D¢d(t — S[#])¢. Now using the
functional analogue of §(f(z) — f(a)) = é(x — a)/|f'(a)l, shows that B;(t) is singular when 55 =0,
that is, for instantons [76].
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4 Calculating the infra-red limit using analyticity

A

Figure 4.3: Integration contour C in the cut complex plane.

4.4 Relating the ultra-violet and infra-red limits
using analyticity

The perturbative calculation of the infra-red limit of physical quantities can be
improved utilizing their analytical properties, not in the coupling aé above, but in
the scale parameter. The analytic behaviour in the scale parameter follows, as shown
in section one, from the general characteristics of a quantum field theory and are
valid for the exact correlators.

We want to calculate the infra-red limit Fyg of a physical quantity f(z), where
Frr = limpg0 f(), and we will denote the ultra-violet limit Fyy = limyg0 f(2).
We are considering functions with well defined limits in S(a), i.e. limjs F'(s) =
Figr and lim,_,o F'(s) = Fyy for s € S(a).

In the two examples we will consider in chapter 5 and 6, the physical quantities

f(x) are given as functionals of a two point correlator resulting in analytic functions
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4 Calculating the infra-red limit using analyticity

F(s). A large class of physical quantities will in this way preserve the analytic
structure of the correlation functions in the theory, which was described in section
4.1.1.

The dimensionless scale parameter s can, as mentioned, be introduced into the
physical quantity in a number of ways. We will define by F(s) the analytical con-
tinuation of f(z) where s is introduced as F(s) = f(sz)|o—; so that F(s) has the
expansion F(s) = 3" F,s" around the origin, and F'(s) is analytic in S(c). Choosing
another positive power f(s7z)|y=1, ¥ > 0, gives the same ultra-violet and infra-red
limits, but different intermediate behaviour. Let us now introduce the scale para-
meter so that the opening of the analytic sector is 2(7—¢') with ¢ < 1. F(s) = F(s%)

is analytic in S = S(2(n — ¢')) provided that a = sy We will now express the

2(m
infra-red limit as an integral entirely in the ultra-violet region using analyticity.

Using Cauchy’s theorem the analyticity of F'(s) implies that the contour integral
1 ols 1
—,/dse F(s):—(/ ds+/ ds+/ ds)
2(r —e)i Jo s 2(m — €)1 \Jg, a Cy

vanishes in the sector S, where p € R, and the contour C is given in figure 4.3;

€ > €' so that C C S. The contribution from the contour Cj in (4.15), see figure 4.3,

ePls
F(s) =
—F(s) =0,

(4.15)

in the limit where r;p — o0 becomes

1 —m+e i )
lim —— / 48 e IR (rype®) = — lim F(s) = —Fin.  (4.16)

TIR—00 2(7‘(’ - 6) e |s]—o0

The angular integral and the limit 7, = oo can be interchanged as the integrand

in (4.15) is bounded by a constant in the limit 7;5 — co. We then get the integral

representation of Fjp

Fin = Q(W—l_e)—z (/C dse';/sp(s) + /C dse';/sF(s)> | (4.17)

Analogously by considering

Q(W—l_e)%/cdsesﬁF(s):%l_—e)i(/Cods+/01ds+/02ds) 8?psF(s):O,
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we get that
Fyy = —— (/ deF(s) +/ ds-efF(s)> . (4.18)
2(m—€)i \Je, ¢ S
We denote the integral along the contour C) (close to the cut) by
1 ef/s
cut(p) = m/cl ds . F(s). (4.19)

The integrand in this integral is damped by the factor e #/I¥l, and we will show
that lim,_,. cut(p) = 0 by showing that it is bounded by a finite integral for all p
allowing us to take the limit p — co in the integrand. We substitute s = re*H7—¢

for points on C) in the upper and lower half-plane, the integral becomes

_1 rUv pe—i(‘lr—E)/r ) TIR pei(w—e)/r .
cut(p) = 50— / d'f'e—F(Tel(W_e)) +/ dT————e F('re_z("_e))
2(m —€)i \ Jy,n roy

T T
_ TIR pcos(r—e)/r . )
— 1 / dT’e Im[ezps1n(7r—e)/rF(,re—1(1r—e))]
(W - 6) TUV r
-1 TIR epcos(vr—e)/r _
= —/ drT (cos(psin(m — €)/r)Im[F(re={("=9)]

(7T - 6) rUv
+ Re[F(re™™9)]sin(psin(r — €)/7)) .
We divide the r interval into (ryv, 1) and (1,7,g) and write cut(p) = cutyy + cutyrg.
The function F(s) is finite in S hence there exists a constant ¢ > 0 so that in the
limit ryy — 0

—p/r

1
leutyy| < q/ dr® — 0 for p— co. (4.20)
0

r

We know that F'(s) — Frg € R for |s| — co from S, hence Im[F(re=*"=9)] — 0
for r — oo. If Im[F] falls off like r= for some § > 0 then in the limit r;z — oo,
= kl,kg,kg > 0:

00 in(k k =
lcutir| < k1/ dr (sm( 2/7) + kg ) < oo for all p € R,. (4.21)
1

T

For a general F'(s) where the fall off might be slower we keep a finite ;5 then |cut;g|

is again finite for all p and a finite r;g introduces a O(-1-) term in (4.17) which is
TIR
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4 Calculating the infra-red limit using analyticity

negligible for ;g large. As ¢ < 1 we can replace with 5= given a term O(e)

2(7r €)i
on the right hand side in (4.17) which is again negligible for small €. We can then

define

eP/s

Itr(p) = lim —1— ds

rov—0 271 Jo s

F(s) (4.22)

so that Frr = lim, I7r(p) and we have succeeded in writing the infra-red limit
as the limiting value of a contour integral in the ultra-violet region.

We will now use Cauchy’s theorem again to rewrite I;r(p) and this will show
that Irg(p) is the Borel transform of F(s). Instead of integrating over Cy we will
integrate over C given as the path from the origin along the ray Arg(s) = —m + ¢
and then anti-clockwise along |s| = Z > 0 until Arg(s) = 7 — € and then back to the
origin. It follows that this contour integral is independent of the choice of Z and €
as long as € < € < 7. The upper limit ensures that the rays stay in the negative
half-plane (where e?/® is a damping factor), and the lower limit that F(s) is analytic
on the contour. Using this contour the ultra-violet limit ryy — 0 can be taken
explicitly by extending the rays to the origin.

Using that F(s) = F(s®) for a =

2(7r ) then amounts to

1 ds k ds (BYF 70 ox
I — e?/*F(s) —ePSF(s%) = — YF 4.2
r(p) = 278 Jo s 27rz/C ¢ = omi & 8 S Fs), (423)

where k = 1, 5 = p'/% and C' is the contour where the rays satisfy |Arg(s)| =
|(m—€") /K| for some €” € (¢, %). We will write €' = (7—€)/2 for some € € (0, 7—2¢'),
then |Arg((£)¥)| > /2 and the integrand in (4.23) is again damped on the rays.
Also, on the rays [Arg(s)| = (7 + €)/2k = 22 < /2 so that F(s) is analytic on
the contour, C’' C S(e), and the contour 1ntegral is therefore well defined.

The contour integral in (4.23) is independent of the contour C’, i.e. in the choice
of € for € € (0,7 — 2¢') where C' C S(a). (4.23) then shows that I;z(5) is the Borel
transform of F(s) of order k. Equation (4.23) holds for all k& with F(s) = F(s'/¥)
and a > 7w /k, because in this case we can always find an ¢ < ak — 7, so the contour

integral is well defined.
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4 Calculating the infra-red limit using analyticity

We have then shown the general result:

The infra-red limit of a physical quantity, Fip = limg 0 F (), is the limiting value
of the Borel transform of F(s) in the scale parameter s, and changing the way in
which the scale parameter is introduced amounts to changing the order of the Borel
transform. The order k has to satisfy the bound a > w/k where o determines the

analytic sector of the physical quantity F(s).

One way of calculating the contour integral in (4.23) is to insert a series expansion
of F(s) around the origin, but because F'(s) is only analytic in a sector this series
can only be an asymptotic expansion of F(s). For o > 7/k the asymptotic series
will, as explained above, contain all information about the exact function around
the origin.

An asymptotic series of F'(s) in the scale parameter can be obtained doing the
perturbative expansion in the coupling and then inserting the running coupling
constant. Assume that F is given as a formal perturbative series, which we write
as F(s,g) = ¥, Fu(s)g". The Callan-Symanzik equation (3.7) states that a theory
is invariant, i.e. the correlators are invariant, under a scale transformation if the
couplings change according to the renormalisation group. A scaled quantum field
theory can therefore equivalently be described by a theory on the same scale, but
with couplings changed according to the renormalisation group. In this way scale
dependence of a theory can be moved into the running coupling §(s). Moving all
scale dependence into the running coupling we get an asymptotic series in the scale
F(s =1,5(s)) = 3 Fs™ . If F(s) is asymptotic of order k'~ (F(s) € C[[s]]1/xr) we
will choose k = k', and then the Borel transform of F has a non-zero convergence
radius and the analytically continued value at infinity uniquely determines Fjp.

The examples we consider below have o = 7 — ¢/, where ¢ < 1, hence from the
constraint o > 7: k =1+ 6 for some § > 0. We will generally try to minimize the
order k (k — 1), thus maximizing the analytic sector and the convergence of the

Borel transform.
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The method developed in chapter 4 is independent of the choice of dimension as it
is based on analytical properties present in any dimension. In this chapter we will
use this method to calculate the infra-red central charge in two dimensions.

There are many reasons for studying two dimensional theories. Important ex-
amples include the two dimensional spin systems in statistical mechanics, the Ising
model being one of them, these models describe phenomena in condensed matter
physics. Even simple models can capture some of the long range effects in real
systems because of universality which, as described in chapter 3, states that the
infra-red behaviour only depends on the nature of the fixed point and not the mi-
croscopic dynamics. It is often also easier to implement new ideas in a low number
of dimensions, and two dimensional theories have therefore served as an important
testing ground for new theories with behaviour thought to be generic in higher di-
mensions!. Two dimensions have also received a lot of attention due to the efforts
to understand the superstring.

In two dimensions conformal invariance follows from scale invariance and the
renormalisation group fixed points are thus conformal field theories. A classification

of all conformal field theories would therefore determine all possible fixed points,

'However, the dynamics of physical theories often have a strong dependency on the space-time

dimension thereby limiting this kind of approach.
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5 Scaling in two dimensions

and is therefore important in the search for a full understanding of the space of two
dimensional field theories. A two dimensional conformal field theory is characterized
by its field content, the operator product expansion coefficients and the Virasoro
central charge. For unitary theories, the renormalisation group flow is constrained by
Zamolodchikov’s c-theorem which says that it is an irreversible flow, and it therefore
rules out the existence of limit cycles and strange attractors in the coupling constant
space. It also states that the infra-red central charge is never larger than the ultra-
violet central charge, and it shows that the renormalisation group has an infra-red
fixed point.

First the notation used for a conformal field theory is defined, then Zamolod-
chikov’s c-theorem is discussed and F(s) from chapter 4 is determined so that Fig
equals the infra-red central charge c;g. Using the method in chapter 4, ¢y is then
calculated for the free boson and fermion and the unitary minimal models perturbed
by @, 3).

5.1 Conformal field theory

To define the notation we will use for a two dimensional conformal field theory [80]
let us describe a few of its fundamental characteristics. There are many good reviews
on this subject, see [24, 81, 82, 83, 84, 85, 86).

As stated in chapter 2 is the rigid (or global) euclidean conformal group given by
SO(3,1) (= SL(2,C)/Z,). In Cartesian coordinates where g,,, = ¢, an infinitesimal

conformal transformation (2.23) satisfies for d = 2
aue,, + 3,,6“ = du,,a,,ep = 6()61 = —(9160, 6060 = 6161, (51)

which are the Cauchy-Riemann differential equations. The local conformal algebra is

therefore infinite dimensional as any holomorphic function defines a transformation.

0

It is then natural to introduce complex coordinates (z, 2) = (z° + iz!, z° — iz!) and

49



5 Scaling in two dimensions

in these coordinates the components of the metric become

0 1
i = (1 2) , (5.2)
5 0

and we will write the measure as d?z = da® A dz' = idz A dz = d*2. 1t is useful
to treat z,z as independent variables and then the Cauchy-Riemann differential
equations become: J;f(z,2) = 0. The physical variables (1°, z!) € R? are recovered
by the condition zZ = 2z*. Primary fields are defined to transform similarly as (2.24)

under the local conformal transformation z — w(z), z — w(2):

s = (2)" (%) gee 0 5:3)

where (h,h) are the conformal scaling dimensions. The infinitesimal version is

w(z) = z +€(2), w(z) =z + &(2):

beep = ¢'(2,2) — 8(2,2) = ¢'(w, w) — €0,¢ — €0;¢ — ¢

¢ (5.4)
= —(h8,€ + hd;E + €0, + €5;) .

Under an infinitesimal scaling z — (1 + a)z, 2 = (1 + a)z: 8¢ = —a(h + h +
z*9,)¢ and it follows from (2.22) that the scaling dimension is given by A = h + h.
Analogously for a rotation (Lorentz transformation in Minkowski space): z — (1 +
ia)z, Z — (1 —ia)Z, the spin becomes s = h — h. The energy-momentum tensor is
defined as in (2.16)

227 65
Vy(z) 89"

with a different normalization making expressions simpler in two dimensions. In

complex coordinates: T,, =T = %(Too — 2Ty, —Ty1), Tz =T = %(Tm +2iT19—T1y)

and T; = ;T# = ;0. The conservation law 8*T,, = 0 together with conformal

Ty (z) (5.5)

invariance © = 0 shows that

82Tzz + aszz =0 = 32T(z, 2) = 0. (56)
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5 Scaling in two dimensions

The Ward identity (2.12) for translation invariance becomes in complex coordinates
1
0T (2)¢(21) -+~ P(zn)) + 70:(O(2)p(21) - -~ P(wn)) =

T (6(z = 2.)0z, + 6(z — T )hide ) B(@1) - B(an)). (5.7)

i=1
At the fixed point © = 0, so this equation shows that away from the diagonal
0;T = 0 in all correlators in the quantum theory, hence T'(z) is holomorphic. In
chapter 2 it was shown that the currents for Lorentz transformations and scaling
can be written in terms of T),,, in the coordinates (z,z) the corresponding Ward
identities can together be written as [84)?

(B2, ) - Blan, 20)) = — ]{Cdz e(2)(T(2)¢(21,21) - - ¢(2n, Zn)),  (5.8)

2mi

where C' includes all (z;,%). Using (5.4) the conformal Ward identity becomes

- hs 1 9
(TE6) - olan)) = 3 (o ) G b)) 69
T(z) is a density, and because the theory is conformal z is the only dimensionful

parameter in the theory, this means that the two point function can be written as

(T(2)T(0)) = % ceR (5.10)

Here c is characteristic for the particular theory and is called the Virasoro cen-
tral charge. T'(z) is analytic hence it can be written as a Laurent series: T'(2) =

Y onez z7"2L,, and the modes L,, can be shown to satisfy the Virasoro algebra

(L, Ln] = (m — 1) L yn + %m(m2 — Démsno, (5.11)

explaining the name for ¢. (5.11) follows by considering successive conformal trans-

formations, and it implies that if ¢ < 0 then
(h|LnL_pnlh) = (2nh + {en(n® — 1))(h|h) <0 (5.12)

for sufficiently large n > 0, where Lo|h) = h|h), LI = L_, and L,|h) = 0. This

shows that ¢ > 0 for unitary theories.

2Taking € # 0 there is an analogous term with T. Useful identities for manipulating these

expressions are: 762(z) = Bzf, and the residue for an nth order pole (Zf_(z)),, is: £ ((:l__l;)(!“).
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5 Scaling in two dimensions

5.2 Zamolodchikov’s c-theorem

Zamolodchikov’s c-theorem states that for a unitary and renormalisable quantum
field theory in two dimensions there exists a function which is monotonically de-
creasing along the renormalisation group flow, and which is stationary only for con-
formally invariant theories where it takes the value of the Virasoro central charge.
The c-theorem implies that the infra-red limit, where the scale goes to infinity is a
fixed point of the renormalisation group.

The central charge is a measure for the number of massless degrees of freedom in
the theory. The theorem thus shows the loss of massless degrees of freedom under
the renormalisation group flow. At the fixed point there is scale invariance and
all degrees of freedom are massless, by following the renormalisation group some
of these degrees of freedom become massive with a mass m. These decouple at
the length scale R > #, and at the infra-red fixed point all remaining degrees of
freedom will again be massless. The c-theorem then shows the irreversible nature
of the coarse graining that takes place under the renormalisation group.

The c-theorem describes the local flow of the renormalisation group, but it also
says something about the global topological properties of the space of two dimen-
sional quantum field theories. In [87, 88] the c-function was argued to be a Morse
function and the Euler and Betti number of the coupling constant space were cal-
culated.

There have been proposals for c-theorems in higher dimensions?, in theories
with supersymmetry and in connection with the AdS/CFT correspondence and the
holographic renormalisation group®.

The proof of the c-theorem [93, 94, 81] follows from Lorentz invariance and

unitarity of the quantum field theory away form the fixed point, in euclidean space

3See [89, 90] for a recent discussion and references. The most promising candidate for a c-
function in higher dimensions is the coefficient a in front of the Euler density in the trace anomaly

(first suggested by Cardy) [90].
See e.g. [91, 92]. In [92] a c-theorem is proved for a = ¢ in the AdS/CFT context using the

Einstein equations and the weak energy condition.
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5 Scaling in two dimensions

this becomes rotation and translation invariance and reflection positivity. We saw
above that T'(z) has spin 2 and © = T is a scalar so it has spin 0. The general

form of the two point functions then becomes

(T'(2,2)T(0,0)) = @, (T(z,2)0(0,0)) = G(ETZEA)’
(0(z,2)0(0,0)) = _H(zzz;;?\?)

for some functions F, G, H and A is a mass scale of the theory. From the conservation
equation (5.6) it follows that
1 .1,
((0:;T(2,2) + Zc’?lz@(z,z))T(o, 0)=0 =F+ Z(G -3G) =0,
1 . 1 .
((0:T(z,z) + Z@@(z, £))0(0,0))=0 =G-G+ Z(H —2H) =0,

(5.13)

where F* = Zza;é‘z). Defining C = 2(F — 3G — £ H), and substituting into (5.13)

gives

C:—ZHgo. (5.14)

The inequality follows from reflection positivity® and because © is a scalar which
means that H > 0. This shows that C(2Z) is a monotonic function only stationary
when H = 0, here © = 0 and the theory has conformal symmetry with C = 2F =¢
using (5.10). The Callan-Symanzik equation (3.7) can be used to move the scaling
dependence into the running coupling constant. By explicitly writing the dependence
of the couplings C(R, ¢*), with R? = zz, and using that C(R, ¢') is dimensionless

and finite, it becomes

C(R, §*(t))|r=1 therefore describes a flow in the coupling constant space with the
properties in the theorem.

5(A(z, 7)A(z, —7)) > 0, see [63)].
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5 Scaling in two dimensions

It follows from the above proof that we can obtain an expression for the total
change in the central charge when going from short to large distances, as shown by
Cardy in {81]

Ac = ¢(00) — ¢(0) = /0 ” d(RR;)C(R) = —2 /0 " RAO(R)O(O)A(RY.  (5.16)

One can thereby calculate Ac knowing the correlator (©(R)O(0)) in the entire s-
caling region, but (©(R)O(0)) is normally only known perturbatively and therefore

only at scales where the coupling is small.

5.3 Defining F'(s) for the central charge

We will now define a function F(s) as in chapter 4, which has the infra-red central
charge c;p as its infra-red limit.

It follows from (5.10) that the the correlator (T,(2)7;.(0)) gives the ultra-violet
and infra-red central charges in the limits 2 — 0 and z — oo respectively. Using the
Killen-Lehmann spectral representation (4.3) (T, (x)T,,(0)) was in [60] written as

L PP ipe (GuwP® — Puby)(9poP” — PoPo)
Tl T O) = 5755 [ atete) [ ke S

(5.17)

in cartesian coordinates. This is the most general form with the correct mass di-
mension that respects: T,, = T,, and 0,7, = 0. Writing this in the complex

coordinates (z, z) using (5.2)

d?p e3(P7+p2) B

@2 pp+ut

™

T DT 0,0) = 7 [T e) |

where ¢(u?)du® is the spectral density which represents the density in degrees of
freedom of the quantum field theory at the mass pu. If we scale z,Z by a positive

real dimensionless parameter s (s > 0) we get

T 00 d2q 6%((12-}-172) (Tl
Tzz _Tzz = 2¢ 2/ . .
(Tsr s2)T.(0,0) = 3755 [ awett) [ R 22T g
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5 Scaling in two dimensions

In the ultra-violet limit where s — 0 then ; 5 — Z—; and using that the Fourier

N
qq+5°p
transform of (w/24)p*/pp is 1/2*, then (5.18) becomes

_ 1 *° 2./, 2 Cuvy
(T;.(sz,52)T,,(0,0)) = 254—24/0 dp®é(p®) = 5t for s — 0. (5.19)

The ultra-violet central charge is therefore cyy = [;° dp®é(p?) [60]. To calculate

the infra-red limit we first note that

d?q e3(92+) u ol
=2°—) G Z 5.20
[ ey =2 (52) Gotezom 520

where Gy(z, Z, 1) is equal to the free Feynman propagator at mass . Go(z, z, 1) can

be written in terms of a modified Bessel function [84)

d’p P Ko(lz|p)
= = ) 2
Glo,p) / (2m)2 p? + p? 27 (5.21)

Performing the differentiation, using the identities K, = —%(Kn_l + K1), Ko(z) =
Ko(z) + 2K, (z) and K_;(z) = K;(z), we can then write (5.18) as
1 0
(Tzz(sz, SZ)Tzz(()) 0)> = m/{; d:u’2 5(H2)ﬂ3|z| ((/"‘383|Z|3
+24ps|z]) Ko(us|z]) + (8u*s?|z|> + 48) Ky (us)z])) . (5.22)

In the infra-red limit where s — oo, Ko(p|2|s) and K;(u|z|s) have the asymptotic
behaviour [95] e #*1#l and the only contribution to (5.22) comes from the massless

limit where p — 0, hence

- . 1 ¢ 2~r 2 CIR
(T,.(s2,s2)T,,(0,0)) — 11_1’% W/o dp®é(p®) = 5t for s — oo, (5.23)

so that c;g = limeo f; du? é(1?). This shows that cyyv > crg as the spectral density
is positive for a unitary theory, and this is another way of showing the c-theorem
[60]. This representation of the central charge using the spectral representation also
shows that the central charge is a measure for the number of (massless) degrees of
freedom of the conformal field theory. If the theory is scale invariant dimensional

arguments say that the spectral density must be proportional to a delta function as
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5 Scaling in two dimensions

there is no mass in the theory. The representation (5.17) for the trace becomes in

this case

©@eo) =1 [ aw) [ Gher Pl casw, e

which vanishes for |z| # 0 so that © = 0, and this shows that scale invariance does
imply conformal invariance at the quantum level in two dimensions [60].

We define the function

F(s) = 22's4(T,,(sz, 52)T,.(0, 0)) (5.25)

z=z=1
here s and F(s) are dimensionless and s € R,. When we set |z| = 1 then p
becomes dimensionless in (5.22), we also denote this dimensionless quantity by pu.

This function then satisfies

F(s) —

- { cyy for s — 0,4, (5.26)

c¢ir  for s — oo.

5.3.1 Analyticity of F(s)

We will show that F(s) is an analytic continuation of F(z), z € R, for s € § =
S(r — €) (with € < 1); to show this write F/(s) = [;° du?f(s, u2). For F to be
holomorphic in S then f(s, u?) must be holomorphic in S for all y? € [0,00), and
both f and % must be integrable over the set [0,00). Using (5.22) above we can

write F'(s) as
F(s) = Zlé' /0021;42 e(p®)us ((1s®+24ps) Ko(ps) + (8p*s* +48) K (us)) . (5.27)

K,(z) is holomorphic in S so f(s,u?) is clearly holomorphic in S. The modified
Bessel functions also satisfy that |K,(z)| is bounded for |z| > € for any ¢ € R, and

|Arg(z)| < %, which is the case for = = ps when s € S. For large values of |s

integrability is ensured by [ du? &(u?) = cyv < oo and the asymptotic behaviour

K,(z) = /£e*(1 + O(z71)). Around the origin Ko(z)z — 0 for z — 0 and
Ki(2)z — 1 for z = 0, hence F(s) is integrable. %ﬁ” is shown to be integrable in

a similar way and the analyticity is shown.
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5 Scaling in two dimensions

The form of F(s) in (5.27) shows that F(s) has a limit value F((s) — k; for s — 0
with s € S, from (5.26) it follows that k; = cyy, and we define F(O) = cyy. It
also follows from (5.27) that F'(s) has a limit value for |s| — oo from S: F(s) — ks
and (5.26) again sets ko = cyp. The analytic opening is therefore o = n — ¢’ where

e <« 1.

5.3.2 The approximation for c;p

We have the following representation of c;z and cyy

- % ( /C 0 a5 F(s) + /C | dsep/sF(s)) = Lnlp) +outlp)  (5.28)

S S

-1 ePs ers
cov = 5 (/;2 ds—S—F(s) + /Cl ds?F(s)) = Iyv(p) + cut(p), (5.29)
where in both cases the contribution from the cut is rapidly decreasing in p. Note
that in these relations the integral is performed in the opposite scaling limit of the
quantity we calculate. We will here concentrate on (5.28) as perturbation theory
can be applied to F(s) when s € Cy, we will call I;g(p) = I(p).

We can choose coordinates in the coupling constant space so that the ultra-violet
fixed point corresponds to g(s) = 0. In the ultra-violet limit where s — 0 we may
describe F'(s) by perturbation theory as g(s) — 0. The nth order perturbative
approximation of F(s) is denoted by F;,(s) and the corresponding integral by I,,(p).

In the limit of large p the contribution from the cut vanishes and we get

CIR & ,,ll)r& I,(p) = lim F,(s) (5.30)

500
where the last equality follows setting s' = s/p in (5.28) and then taking the limit
p — oo in the integrand valid for all ryy > 0. Moving all scale dependence into
the running coupling constant g(s), as in the proof of the c-theorem, we can write
F.(s) = ®,(g(s)). Let gjg denote the first non-trivial zero of the perturbative -
function, i.e. g(s) — g5 for s = oo (and * is not complex conjugation). Then

equation (5.30) becomes

lim F,(s) = lim ®,(g(s)) = ®n(97r) = CIg (5.31)

8§00 §—00
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5 Scaling in two dimensions

which is the perturbative estimate of c;gr we want to improve.

F.(s) is the ultra-violet perturbative approximation to F(s) and the integra-
tion range in I(p) is compact so lim,_,q I (p) = lim,_o I(p) = cyyv. I,(p) therefore
provides a good approximation to I(p), for small enough p, since the power series
expansion of I(p) is controlled by the small s expansion of F(s) for which perturba-
tion theory applies. This is illustrated in (5.71) below for the minimal models. For
larger values of p higher order terms in the expansion of I,,(p) become important
and the coeflicients of the expansion of I,,(p) and F,(p) part company. If c;r < ¢jg
and if the region where I,(p) is a good approximation to I(p) is large enough, then
I,(p) will have a minimum before approaching its limiting value of c¢}5. Since this
minimum occurs at the largest value of p for which I,,(p) is a reasonable approxi-
mation to I(p) and the true value of ¢;p is given by I(oco), it is this minimum of
I,(p) that we will use to provide a better estimate of c;gr. The approximation then

becomes

CIR = In(pm) (532)

where p,, is the value where I,(p) attains its minimum. Below we consider the
quantity Acezaet = cuv — crr and denote the approximation to it Acapproz = cuy —
I,,(pm), we call the perturbative value Acpere = cyv —lim, 00 In(p) = cyv —c}g. This
approximation rests upon the assumption that the exact function is monotonically
decreasing from cyy to c¢;g, or at least that its minimum value is close to c;p.
Below we will show that this is indeed the case for k = 4, at least to a very good

approximation.

5.3.3 Exact bound on Ac

As discussed above can the exact value I(p) possibly be smaller than the asymptotic
value c;jp. We will denote by p',, the value where I(p) attains its minimum and
Acest = cyv — I(p',,), then Acegact — Acess < 0 measures the undershoot of the exact
function I(p) compared with its asymptotic value c;g, see figure 5.1.

From the spectral representation of F'(s) in (5.27) we can obtain a rigorous lower
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5 Scaling in two dimensions

Acgg

ACCXBC[

ACapprox

ACpert

Figure 5.1: The expected behaviour of cyv — I,(p) and cyv — I(p).

bound on this exact undershoot. As noted above can the spectral density be written
as ¢(u?) = k16(u?) for a scale invariant theory, in a general theory an additional term
is needed [60]: ¢(1?) = k18(u?) + é(u?), where é(u?) is supported away from p? = 0
and (5.23) then sets k; = c¢;r. We showed in (5.19) that [° du’é(u®) = cyv hence
Jo” dp?é(p®) = Acegaet- Using this in (5.27) we get

Acest = cyv — I(p'},) = cuv — 2%” . %e"""/sF(s)

= Aceza.ct - / d,LL2 E(MQ)T(MQ’PIm)
0

where
1 ds , , pust
T 2 1 — =0 P /s 1/4\3
+24ps ) Ko(ust?) + (8(us'/*)? + 48) K, (us'/h))
(5.33)

and F(s) = F(s"/%) with k = 4. Rescaling s allows us to move all x dependence into

/

() = ppt, so that we can write T(u?, 0',,) = Y(¢,,(1)). Unitarity ensures
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5 Scaling in two dimensions
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Figure 5.2: Numerical integration of T(p) given in (5.33).
that é(u?) > 0 hence

AcCegact — Acess = min T (o', (1)) / dii?é(ji?), (5.34)
K 0

Acest > 0 and we are considering the case where Acezqer = 0 so that

> min T (p). (5.35)

The lower bound in the relative undershoot of I(p/,,) therefore equals min, Y(p). In
figure 5.2 we plot Y(p) for £ = 4. With this value we get that min, T(p) = —0.0232
so the relative overshoot in Acey; compared with Acezqe is maximally 2.3%. It
follows from (5.34) that the bound in (5.35) is only saturated for free theories (where
é(p?) o< 8(u? — m?)), for general interacting theories the relative overshoot will be
smaller than |min, T(p)|. We show in figure 5.1 the type of behaviour that we
expect and which is confirmed for the minimal models below.

The actual choice of £ = 4 then is a compromise between maximizing the range
of analyticity (small k) and minimizing the bound of the undershoot in I(p',,,) (large
k).
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5 Scaling in two dimensions

5.4 Application to different two dimensional

models

In this section we calculate the central charge for the free bosonic and fermionic
theory perturbed by a mass term. These theories are gaussian and we can calculate
F(s) exactly, the central charge can then be written as lim, ,o, I(p) as the contri-
bution from the cut then vanishes. The infra-red limit of these theories is trivial
(ctr = 0) as all the degrees of freedom are massive, and therefore decouple when
approaching the infra-red fixed point where the scale goes to infinity. The free theo-
ries are none the less important to consider as we can here obtain the exact function
I(p).

In 5.4.3 we consider the unitary minimal models perturbed by the relevant op-
erator ®(; 3), this theory has a non-trivial infra-red fixed point. We obtain the
renormalisation group improved perturbative calculation of ¢;r and compare with

the approximation (5.32).

5.4.1 The free boson

We take the action for the free bosonic theory in two dimensions with a mass m to
be

S= / &z (%aﬂw(z)aﬂw(x) + %m2<p2(x)) , (5.36)

where the perturbation away from the conformal field theory is given by the mass
term zm?p?. The theory is still a free theory off criticality and the correlator (T'T)
can be calculated exactly in the whole scaling region from the ultra-violet to the

infra-red. With this normalization the energy-momentum tensor becomes
T(z,2) =T,.(2,2) = =27 : 0p(z,2)0p(z, 2) : (5.37)
with the correlator

(T(2,2)T(w,w)) = (2m)*(: dp(z,2)0p(z,2) :: dp(w, ®)dp(w, W) :)
= 2(2m)*(8¢(z, 2)0p(w, @))?, (5.38)
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Figure 5.3: Numerical integration of ;v (p) given by (5.40) compared with the exact

value cyy = 1.

as only the double contractions survive. Using the form (5.21) of the free propagator
then (5.38) is 2(9,0,K(m|z|))? where we have set w = 0 using translation invariance.
(5.38) then becomes
m?|z|?
824

hence F'(s) with k =4 is

(T(z,2)T(0,0)) =

(4K7(ml2)) +m*|2* K (ml2]) +4m2| Ky (m]2]) Ko(ml2]))

4
—mKO(msl/4)K1(msl/4)) .

ms'2\* [ 4
F(s) = ( ) ( 2Kf(msl/‘i) + m2KZ(ms'/*) + <1/

2 s/

(5.39)

Knowing F'(s) exactly the central charges follow from (5.26) directly, but let us use
the relations (5.29), (5.28) in the limit of large p where the cut vanishes. For cyy
we substitute s' = ms'/*, p' = £ in the contour C,. From (5.29) we then get that

(fOI‘ Tir = Elz)

g

1 [3 o . , . _ . .
Iyv(p) = E/ df e ™ (48_210K12(610) + K2 () + 46“’0K0(e“9)K1(e’0)) )

[MIE]

(5.40)
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Figure 5.4: Numerical integration of I;g(p).

This is not expressible in terms of elementary functions, but it can be calculated
using the analytical properties of the Bessel functions. The integration contour
can be collapsed into a contour running along the imaginary axis together with an
infinitesimal semi-circle around the origin. For p — oo only the contribution from
the infinitesimal semi-circle C, survives and here we can insert the asymptotic form
of the modified Bessel functions: Ko(z) ~ —logz and K,(z) ~ 3T(v)(32z)™" for
|z| < 1. In this limit only the first term with K, then contributes, and taking into
account that we only integrate over half a circle we then get the well known result
cyv = 1, which is an exact result as the contribution from the cut vanishes in this
limit. This also directly follows from (5.26) and (5.39) using the asymptotic form
for Ky and K for small s.

To calculate the infra-red central charge we use (5.30): ¢;jp = lim, 0 I1r(p) =
lim;_, o0 F'(s). From the asymptotic form of the modified Bessel functions for large
|2]: Kn(2) ~ \/3-€7%, together with (5.39), it follows that ¢;r = 0. Figure 5.3 shows
the exact function Iy (p) computed by a numerical integration of (5.40) using a NAG
Fortran Library integration routine. The figure shows how the contribution from

the cut vanishes in the limit of large p.
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Figure 5.5: Numerical integration of Iy (p') using (5.42) compared with the exact
value cyy = 1.
The exact infra-red function I;g(p) is plotted in figure 5.4, it is important to

note that the minimum value of I;g(p) is very small, namely —0.019.

5.4.2 The free fermion

The free massive Majorana fermion with the component fields ¥ = (1, 4) has the

action

S = / d*z (YOy + YOy + imyy) . (5.41)

Where the Dirac algebra {y#,v"} = 26" in two euclidean dimensions is represented
by v°=(98). 7' = (3 %)
A calculation analogous to the Bose case gives, for k = 4, that
4

Plo) =g (Kimst ™) (14 ) - Kems™)) . o)

Taking the limit s — 0 and again using K (z) — 1/z for x — 0 yields that cyy = 3,
and the infra-red contribution c;g = lim,_, F'(s) = 0, using that K, (z) ~ e~ for

z — 0o. We have calculated the exact function I{p) by a numerical computation.
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Figure 5.6: Numerical integration of I;gr(p) and the exact value ¢y = 0.

In figure 5.5 Iyy(p) is plotted, and in figure 5.6 I;r(p). We get the same behaviour
of I;1r(p) as in the bosonic case, but with the minimum value —0.0048, so this exact
function does again not differ much from the infra-red central charge at its minimum

value.

5.4.3 The unitary minimal models

The off critical quantum field theory picks out a specific renormalisation group flow
from the ultra-violet to the infra-red conformal field theory. If the quantum field
theory is in the neighborhood of one of the renormalisation group fixed points A* in
coupling constant space, we may choose the coordinates so A* = 0 corresponds to

the ultra-violet conformal field theory, the action can formally be written as [96]

N
S=Scrr+ Y X / d*z @;(x). (5.43)

i=1

Here the ®;(z)’s are scaling fields with scaling dimension A;, the coupling constants
A! then have mass dimension [X*] = 2 — A; = y;. It was shown in chapter 3 that y;
is the renormalisation group eigenvalue of the scaling fields ®,. For renormalisable

quantum field theories we need y; > 0 and the scaling operators therefore have to be
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5 Scaling in two dimensions

relevant (y > 0) or marginal (y = 0). For relevant operators we will move away from
the fixed point when the scale increases and Sc g thus corresponds to an ultra-violet
critical point.

We consider quantum field theories that have the unitary minimal models as their
scaling limits. The miﬁimal models are conformal field theories with central charge
¢ < 1 and a finite number of primary fields. Descendant fields are fields formed by
acting with the modes L_, of T'(z) on a primary field and an arbitrary field is a
linear combination of primary and descendant fields. The correlation functions of
descendant fields can be obtained from correlation functions of primary fields acting
with differential operators. The two and three point functions are, as shown in chap-
ter 2 for the two point function, fixed by conformal symmetry. Hence, if the central
charge, the operator product expansion coefficients, the finite number of primary
fields and their conformal dimensions are known then all correlation functions can
be calculated in the theory. The minimal models are reducible representations of
the Virasoro algebra.

We denote by M,, the unitary minimal model that has the spin zero primary
fields

Ppgy l<p<m—1, 1<q¢<m, (5.44)
and a central charge
6
c=1—————, m2>=23. (5.45)
m(m + 1)

The minimal models represent the critical points of well known statistical models,
e.g. Mj describes the fixed point of the Ising model with ¢ = %, My is the tri-
7 4

critical Ising model with ¢ = {5 and M5 is the 3-state Potts model with ¢ = Z.

The unitary minimal models M,, have the same (m — 1) critical behaviour as a
Landau-Ginzburg theory with a bosonic field and even polynomial interactions up
to the power 2(m — 1) [97, 98].
®, 4) has the conformal scaling dimension
((m+1)p—mg)® -1
4m(m + 1)

hog) = hipg) = , (5.46)
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5 Scaling in two dimensions

m(m—1

which shows that @, ) = ®(m_pmi1-¢) leaving only == ) different primary field-
s. The unitary minimal model M,, perturbed by the relevant operator @ 3) can

formally be written as
S = Mm - )\O/dzz @(1’3)(2,2), )\0 < 0, (547)

and the theory is defined by the correlators

O T1) - On Tn e’\ofdzzq)(ly” "
(01 (371) e On(zn)) = ( 1( 1) (6/\0 f¢52z®)(1,3)>M )M (548)

where (- -)u,, is the correlator in the minimal model M,, and O;(z) are the local
scaling fields in the theory. The renormalisation group eigenvalue for ®(; 3) is then:
y=2-—-A= mi-i-l where A = 2h(, 3). ®(1,3) is therefore a relevant operator (y > 0),
and from the form of A, 4y in (5.46) it directly follows that the other relevant primary

fields are
Pppts), —1<s5<2 1<p+s<m, 1<p<m—1. (5.49)

There are therefore 2m — 3 different relevant primary fields including ®(; ;) = 1.
These are the only relevant scalar fields as all the spin zero descendants will have
scaling dimension 2k, ) + 2n with n € N.
The reasons for using the operator ®(; 3) as a perturbation are that: ©

i) ®(1,3) is a relevant field, b1 3 =1 — Hi—l < 1, which exists in all M,,.

i) ®(m,n) forms an algebra under the operator product expansion. From the fusion
rules of minimal models [83] it follows that ®;® ) = Zp CP.®(, ) where p €
{lr —s|+1,|r — s8] +3,...,7 + s — 1} in steps of two. This shows that ®
constitutes a sub-algebra in which only @), ®(12) and P, 3y are relevant as seen

from (5.46). ®(; 5y is normalized so that the structure constant C((ll,’;))(l 3y = 1 where

1 =311y = Ppn_1,m) is the identity, and it has the self coupling C((lly’;))(m) = b(m) >

8The model (5.47) is integrable and was first studied by Zamolodchikov in [96]. The only
other integrable perturbations of the unitary minimal models are with @, 5y and ®(3 ;). These
three models correspond respectively to the Korteweg-de Vries, Gibbon-Samede-Kotera and Ku-

persmidth equations [99].
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5 Scaling in two dimensions

0. It does not couple to ®; 5y so it has no coupling to other relevant operators
in the sub-algebra ®(;,) [94, 98, 83]. This means that there is perturbatively a
renormalisation group flow connecting the ultra-violet and infra-red fixed points
along the direction of ®(; 3) so it is consistent to include only the one relevant field
®(1,3)- This can be seen perturbatively by writing the Zamolodchikov metric [93] in
normal coordinates around the ultra-violet fixed point” g = 0, G;; = &;; + O(g?), the
beta-functions become in these coordinates 5*(g) = —yig' — 7 3, , Ciy g’ 9" + O(g°)
(see below). If g = 0 for i # (1,3) and C(’1’3)(1’3) =0 for j # (1,3) then B7(g) =0
for j # (1,3) and there is no flow transverse to the ®( 3 direction [98, 100]. It is
therefore perturbatively a geodesic renormalisation group trajectory [42].

i1) ®(1,3) is the least relevant field, and the perturbation in (5.47) becomes marginal
in the limit of m — oo where y = m%rl — 0. In this limit the fixed points are
arbitrarily close in coupling constant space, and perturbation theory is viable in the
whole region from the ultra-violet to the infra-red.

We want to calculate the difference between the ultra-violet and the infra-red
central charge Ac = cyy — crg. It has been argued that the infra-red conformal
field theory of (5.47) is given by the unitary minimal model M,,_;, as Ac in the
perturbative limit y — 0 is given by Ac = 43 + O(y*) [94, 98], and from (5.45) we
get that

3 3
e(m) — e(m — 1) = m(m122— 5= —31)1(4 — - 5’% +OMY.  (5.50)

A general argument for all m has been given by a thermodynamic Bethe ansatz

method in [101]®. We now describe how Ac is calculated using our approximation
method, and we will compare this with the exact result Acezoer = c(m) — ¢(m — 1).

To construct the term (T'(z,2)T(0,0)) we use the Ward identity (5.7)

0T (2,2)®1(21) - - - B () + iaz(e(z, 28y (21) - - B (wn))

=7 Z(é(z — 2;)0z, + 0(z — )0 0., ) (D1 (z1) - - - §p(zn)), (5.51)

"Gij = (®:(1)®;(0)).
8In [102, 103] the first fixed points M,,, m = 3,4, ..., 12 were found numerically using the exact

renormalisation group.
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5 Scaling in two dimensions

here ®; are primary fields with conformal dimension h;. For the correlator we are
interested in contact terms vanish and we get

1

621 822 (T(ZI7 Zl)T(227 ZQ)) = E

04,0:,(O(21, 21)O(22, Z2)). (5.52)

For the perturbed theory scale invariance is broken d,D, = © # 0 and in a renorma-
lisable field theory © must belong to the space spanned by the relevant and marginal

fields defining the perturbation away from criticality in (5.43)

O(z) = sz B (g)®;(x), (5.53)

where 3*(g) is the beta-function given in terms of the renormalised coupling con-

stants g [94]. (5.52) can thus be written

71'2

02,0z, (T'(21,21)T (22, 22)) = Zﬁi(g)ﬁj(g)azl 02, (®i(21, 21) @ (22, 22))- (5.54)

The correlator (®;®;) can be calculated in perturbative conformal field theory using
the operator product expansion in the ultra-violet conformal field theory. Let us

write ®(; 3y(z) = #(x). The bare correlator is in the lowest order in Ay given by

($(z)p(0)eo S Loy

N == ey, (5.55)
= (B0, + 20 [ P B0 Na, + O
(¢(x)#(0)) pq,, was derived in (2.26), and
7 ! C(1’3) ! 1

[ #0808 = LD [ (550

Using the formulas in [104, 105}, (5.55) can then be written as

1 b(y)A

#O0) = -y (140 T gy 00g)) e

where A(y) = %% = 1+0(y?). The operator product expansion coefficient

b(y) can be calculated from a Coulomb gas representation of the minimal models
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5 Scaling in two dimensions

again using the formulas in [104, 105]

(CLD), ) = b()? _16 (1-y)* (m + y/2))4 (p(l _ y/4))3 )

(1,3) 3 (1—y/2)2(1 - 3y/42 \T'(1 —y/2) ) \T(+y/4)

L(1-y)\" (T +3y/4)) _ 16
- (F(1+y)> (F(1—3y/4)> =5 +0),

and we use the standard branch b(y) > 0. Choosing the renormalisation conditions

(5.58)

(#(z, 9)9(0, 9))|jz)=u-1 = p*, the renormalised correlator and the S-function becomes
[100)

(p(z,9)0(0,9)) = |/ﬂ3il;(2—y) (1 + 47TA(y)b(y)9(|uIiy 1+ O(g2)) ,

Blg) = —yg—7b(y)g°Ay) + O(g°), (5.59)

where ¢(z, g) is the renormalised field and g is the renormalised coupling. The zeros
of the f—function, the renormalisation group fixed points, are thus gyy =0, g} =

; and therefore g € (—— 0) as the theory (5.43) lies between the two

. .
mA(y)b(y TA(y)b(y)’
scaling limits. Correlators are renormalisation group improved by demanding that
they satisfy the Callan-Symanzik equation (3.7). The running coupling constant

becomes [100]

= pe) > a0)=

tYg
1 — TAWb()e (tv — 1)’
Yy

(5.60)

interpolating between gyy for ¢ — 0 and gj; for t — oo and satisfying g(1) =

g. Euclidean invariance allows us to write the correlator of the energy-momentum

tensor as (T'(z,2)7(0,0)) = I:;(ﬁ) in terms of the dimensionless quantity R = u22z.

The differential equation (5.54) then becomes
8 - . 8% ., &? .
—F(R) = R*——($(R)$(0)). 5.61
S P(R) = TR (0(R)6(0) (5:6)

A solution to this equation is given by

. 7T252

R R R
F(R) = o <R2 (p¢) — AR / dR' (p¢) + 6 / dR' / dR" (¢¢)) + 0 + R,
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5 Scaling in two dimensions

where a1, as € R. These equations directly generalize to the case with more coup-
lings. The differential equation (5.61) is a boundary value problem as F'(R) is known
in the scaling limits

F(R) —

.- for R — 0,
{ Cyv or (562)

cig for R — oo.

In the limit where R — 0 the correlator (¢¢) scales as in M,, i.e. (¢p) ~ %, hence
R2(¢p) ~ RY — 0, B [FdR(¢¢) ~ RY — 0, and finally [ dR [* dR"(¢¢) ~
RY — 0 for R — 0. This sets the boundary value oy = cyy. As F(R) attains a
finite value for R — oo then all linear terms in F (R) must cancel and we set ap = 0.

Integrating (5.59) and inserting the boundary conditions gives

P =y + T (HEEDOZ0 4 oo (2220 -
PRt G001 0))) |
3(3y—1) '

As in the proof of the c-theorem we can use the Callan-Symanzik equation to move

all scale dependence into the running coupling constant, defining F(s) as F(s) =

F(R)|R:1,g:§(s). With t — s!/% the running coupling constant becomes
gss

g(s) = 1 _ 'ITA(bily)g(S% . 1)7

)

(5.64)

and scale-transformations move around in the coupling constant space. The 1 loop

renormalisation group improved approximation to F(s) then becomes

U 3%(5) (y(2 -y)(8—y)

F = —
1(s) =cuyv + =7 -1

2
(2-y)(B3—-y) , (3y—4)(3y—6)
-y 33y —1) ))'

(5.65)

Lam Ay)bw)3(s) (

Thus k = 4 as Fi(s) = Fy(s'/*). To obtain the approximation for ¢;r we then have

to calculate the contour integral

ePls
Il(p)—i/c ds . Fi(s). (5.66)
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5 Scaling in two dimensions

In the limit m — oo the ultra-violet and infra-red fixed points are perturbatively
close in coupling constant space as noted above, hence F}(s) correctly describes F'(s)
in this limit and we should take p — oo in (5.28) thus eliminating the contribution
from the cut. The approximation then becomes lim,_,o, I1(p) = lim,_, Fi(s) = ¢}y
using (5.31), and the approximation in this limit thus equals the renormalisation

group improved perturbative result which is

7r_2( 2 (y(2 —y)(B—v)

ACpert:cUV_c;R:— 2 gr y—].
+2m A(Y)b(v)gir <(2 — )_(3;_ b, By 3_(;; (Eyl)_ i >> (5.67)
_ 3?/3 4
=76 T O(y%),

this is equal to the asymptotic form of the exact value ¢(m) —c¢(m—1) in (5.50). We
wish to improve this result using the approximation (5.32). We rewrite the running

coupling constant

1/4

1/4 * |~
_ gs 91rl9ls ~ g

s) = = , = —— € (—00,0). (5.68
1) =1z AR (14 — 1) 1+ |g|st! =g - (569

All dependence of the renormalised coupling g is now moved into the parameter p

setting s’ = s|g|* and p' = p|g|*

W) =5 [ R0 = o [ W EIRG =R 6o
= S — = .
IRV o Je, g 11 omi o o 11 1P
st . . .
and then g(s') = 91'+s, 11/: . This contour integral can be evaluated for example doing a

numerical integration or a series expansion in F(s’), we have done both. A numerical
integration of (5.69) with m = 14 using the NAG Fortran Library is shown in figure
5.7. In figure 5.7 the dashed line indicates the expected behaviour of the exact

function 7(0) — I(p') which is taken analogous to the curves of the free theories in

figure 5.3 and 5.4. Writing F(s') as a power series

(5.70)
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Figure 5.7: The numerical-result cyy — 11 (0') against log p for m = 14. Also plotted
is the exact and perturbative values Acezqer and Acper:. The dashed line is the

expected behaviour of I(0) — I(p').

and substituting this into (5.69), we then obtain using the integral representation
(4.13)

o n/4
AHZ r 1{ +)n/4 (5.71)

which is recognized as the Borel transform of order £ = 4. This expression can
be computed numerically (using e.g. Maple) by truncating to a finite n, and the
minimal value can be found. In figure 5.8 cyy — I1(p') is plotted for m = 14 with
50 terms. The horizontal lines are the exact value and the renormalisation group
improved perturbative calculation. The punctured line is the value of the numerical
integration which is seen to match the value of the truncated series.

In table 5.1 the obtained values of the numerical integration denoted Acgpprox
are listed together with the exact results Acegq: and the renormalisation group

improved perturbative values Acpere. For m < 11 the perturbative result will break
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Figure 5.8: A numerical summation of cyy — I;(¢') for m = 14 with 50 terms.
The upper line is the exact value and the lower line is the improved perturbative

calculation. The punctured line is the value of the numerical integration.

down as Acpers becomes negative and thereby violates unitarity. In [1] we used k =
2/y = (m+1)/2, but here (and in [2]) we have chosen k = 4 as we then get a stricter
bound on the exact function as explained in section 5.3.3. The results for k = 2/y
and k£ = 4 are similar for all m calculated, except m = 11,12 where they differ
slightly. The improvement of the approximation (5.32) over the renormalisation
group improved perturbative result is seen to be significant. In figure 5.9 we plot
Acezact — ACapproz and AcCezact — Acpery scaled with m(m? — 1) so that all the points
can be distinguished. The horizontal axis is then the exact value. The figure shows
that the approximation improves the perturbative results with more than a factor
two.

We saw above that the analytical opening @ =7 — €, € < 1. k¥ > m/a so the

best approximation is expected to be in the limit k£ — 1. For k£ = 1 we get results
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5 Scaling in two dimensions

m ACezact Acpert ACapproa: ACapproz?

11 | 0.00909 0 0.00642 | 0.00970
12 || 0.00699 | 0.00180 | 0.00533 | 0.00721
13 || 0.00549 | 0.00248 | 0.00437 | 0.00556
14 || 0.00440 | 0.00253 | 0.00368 | 0.00440
15 || 0.00357 | 0.00237 | 0.00310 | 0.00357
16 || 0.00294 | 0.00215 | 0.00262 | 0.00293
17 || 0.00245 | 0.00191 | 0.00222 | 0.00244
18 || 0.00206 | 0.00169 | 0.00190 | 0.00205
19 || 0.00175 | 0.00149 | 0.00163 | 0.00175
20 | 0.00150 | 0.00131 | 0.00140 | 0.00150
21 | 0.00130 | 0.00116 | 0.00122 | 0.00130
22 | 0.00113 | 0.00103 | 0.00109 | 0.00113
23 || 0.000988 | 0.000911 | 0.000956 | 0.000989
24 || 0.000870 | 0.000811 | 0.000846 | 0.000871
25 || 0.000769 | 0.000725 | 0.000752 | 0.000771
26 || 0.000684 | 0.000650 | 0.000671 | 0.000686
27 || 0.000611 | 0.000583 | 0.000601 | 0.000613

Table 5.1: The exact, perturbative and approximate values for Ac. Acgpproz is With
k = 4 and Acgpprog2 is with k = 1, which is the minimal value of k£ allowed by the

bound £ > 7/a.
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Figure 5.9: (Acepact — ACapproz)m(m? — 1) and (Acegact — Acpert)m(m? — 1) against

m.

which are almost identical to the exact values, we denote these by Acypproz2, and
plot in figure 5.10 Acegeer and Acgpproz2 2gainst m, the numbers are also listed in
table 5.1. In this case though we do not have a strict bound on the exact function
I(p) as for the case with k = 4 described in section 5.3.3. The exact function might
still have a very small undershoot if for example the smallest non-zero mass of a one
particle state is small compared with p! , i.e. Acest ~ AcCezart- Figure 5.10 shows the
very good correspondence between Acezact and Acgpproze, this is remarkable because

the approximation is based on only a one loop calculation.

5.5 Conclusions

We have in this chapter, using the method derived in chapter 4 and the exact bound

obtained in section 5.5.3, attained an approximation method for calculating the
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Figure 5.10: Acegact and Acgpproze against m.

infra-red central charge of a two dimensional theory. This method is applied to the
free bosonic and fermionic theory, and although these theories have a trivial infra-
red limit they are important as the functions used in the approximation F(s) and
I(p) can be calculated exactly. The infra-red central charge for the minimal models
perturbed by ®(;3) is calculated using the approximation method on a renorma-
lisation group improved one loop perturbative result, where the Callan-Symanzik
equation is used to move the scale dependence into the running coupling constant.
Optimizing the order of the Borel transform a remarkably good approximation for

the infra-red central charge is obtained already at the one loop perturbative level.
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Scaling in three dimensions: ¢*

theory

The other example where we will use the method developed in chapter 4 is the
calculation of the critical exponents of ¢* theory in three dimensions with O(N)
symmetry. This model is one of the most studied models in critical phenomena and
it is important because it shares its infra-red fixed point with a number of physical
models, such as: polymers (N = 0), the Ising model (N = 1), super-fluid Bose-liquid
(N = 2) and the Heisenberg ferro-magnet (N = 3) [106]. We will study the Ising
N =1 case in detail here, but the method applies for a general N.

Quantum field theories in dimensions less than four have generic infra-red di-
vergences. For ¢! theory this can be seen by studying the 1PI four point function.
Diagrams with n ‘bubbles’ are divergent when (4 — d)n >d'. A way of regulating
these infra-red divergences is to either do an e expansion in ¢ = 4 — d, or work
with a massive theory. We will here do the latter, and work in d = 3 following
Parisi [106]. We introduce the renormalised field, mass and coupling as in chapter 3:
¢ = (Z,)Y?pr, ¢* = Zy(¢*)g and m, g denote the renormalised mass and coupling,

and Z;, Z, are the renormalisation constants. The infra-red divergences are now

1This follows as the diagram generally behaves as p{@=%)" in external momentum, which has a
Fourier transform proportional to I'(3(d — n(d — 4))) divergent for n(4 — d) > d [76, 106}.

78




6 Scaling in three dimensions: ¢? theory

removed and only show up in the bare correlators as non-analytic dependence in the
bare coupling [106]. We will calculate two of the infra-red critical exponents v and
n, all other exponents follow from scaling relations.

The calculation of the critical exponents in ¢? theory are among the most precise
calculations in quantum field theory, and they have been calculated using both the
€ expansion, exact renormalisation group arguments, perturbative quantum field
theory, high temperature expansions, strong coupling expansions and Monte Carlo
simulations [107]. These exponents describe the scaling behaviour of the theory in
the scaling region and are universal, as described in chapter 3, they are uniquely
determined by the infra-red fixed point and are therefore identical for all quantum
field theories flowing to this point under the renormalisation group, irrespective of

the underlying microscopic dynamics.

6.1 Critical exponents for ¢! theory

We are considering a theory with O(1) symmetry, i.e. the Zs symmetry ¢ — —¢, in

three dimensions with the lagrangian®
L= 56"g0(a:)8ucp(z) + §m0<p(x) + ?go(:v) , Ao >0. (6.1)

In Landau theory the free energy F (from which all thermodynamic quantities can
be derived) is written as an expansion in some order parameter [108]. For the
Ising model with Z, symmetry: F = Fy + aoM? + ay;M* + O(M®) where M is the
magnetization. For as < 0 there is a spontaneous symmetry breaking where F — F,
has minima with non-zero magnetization My = +,/52 (for a4 > 0) see figure 6.1
(b). The system is said to be in a ferro-magnetic ordered phase. For a; > 0 the
minimum is at My = 0 and the system is in a high temperature symmetric (para-
magnetic) phase, figure 6.1 (a). It easily follows that % diverges when a; — 0_ so

the phase transition is second order with power law behaviour and critical exponents.

2p(z)8 is marginal so the critical properties are dominated by the ¢?* term, higher orders with

©®" are irrelevant as [g,] = 3 — n.
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(@ m>0 (b) mZ<0

Figure 6.1: (a) The high temperature symmetric phase with m2 > 0. (b) When

m2 < 0 the system is in a different phase with a spontaneous magnetization.

We can then write a; = @»(T — T;) for some @, > 0 so the phase transition occurs
at the critical temperature T, [108]. Comparing with (6.1) it follows that the bare
mass squared is proportional to the reduced temperature m2 o 8 = T%CTC We are
considering the high temperature symmetric phase with m2 > 0. For the free theory

with Ag = 0 the two point correlator, or propagator, is given as

: 1
Galp.m) = [ i P (p(a)pl0)) = (6.2
hence the free propagator can be written as [106]
Ga(p,0) = 077h(f) (6.3)

where h is regular at the origin and v = 1 and v = This scaling behaviour is

1
5.
assumed to hold also for the interacting theory, where Ag > 0, with critical exponents
v and v, and one of the main problems in critical phenomena is to determine these

exponents. From the scaling relations described below all critical exponents can be
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6 Scaling in three dimensions: ¢* theory

obtained from the propagator. In real space the free propagator becomes [60, 11]

d—2

Gulom) = [ 2 L () Keatolel): ()

2m)4 p? + m? 27| x|

The asymptotic form of the modified Bessel function (see section 5.4.1) then shows

1

that away from the fixed point where —- < |z| the propagator is exponentially

damped, and close to the fixed point where |z| < E it has a power law behaviour:

Go(t|x|,m) ~ #*=¢. For the interacting theory this is generalized to Gs(t|z|,m) ~

279" for the critical exponent 7, in momentum space it becomes

t2-n’

and the gaussian fixed point therefore has n =0,vy=1and v = %

6.2 ['(s) for n and v

We will now define the functions F‘(s) from chapter four for respectively v and 7, and
show that they are analytic in some sector with the correct scaling limits. We denote
the infra-red fixed point coupling g, so that 3(g.) = 0, where g is the dimensionless
renormalised coupling g = f(Xo/m) = 22 + O((2)?). In the infra-red limit ¢ — 0

the Callan-Symanzik equation (3.7) becomes

(9
(~tg +mla) — 2) GEw) —o (65)
where® y; = $RZ 50 that for small t: GF(tp) ~ =iy and this shows that
n = (g.) (see e.g. [106, 109, 110] for further details). Hence defining
= aGR ¢
Fy(t) = (p)/GR( tp)+2, teR,, (6.7)

would satisfy the infra-red behaviour lim,_,o F; (t) = 1. The ultra-violet limit follows

from the spectral representation

t2p2

B Iy du? &P m, 9) gty
o0 ~
fO du2 C(H‘2’ m, g) t2p21+p.2

F,(t) = +2—-0 for t— oo, (6.8)

3Note that « from chapter three is v = v, /2.
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6 Scaling in three dimensions: ¢*? theory

or simply using that G§(p) — 575 in the ultra-violet (the spectral density will
only contribute with 6(u? — m?)) also showing that lim, ,o F,(t) = 0. From this
spectral decomposition it also directly follows that F,(s) = Fy(ts)|,=, is analytic for

s€ S(r—¢)fore < 1% and that

. { n for s — 04, (6.9)

F.(s) —
(®) 0 for s = oo.

Equation (3.6) states that

R R
m8G2 (tp, m) _ t8G2 (tp,m)

om ot

- (GalGE pm) = (15, +2) GE ()

hence it follows that

=« O0GE(tp,m) , r .1 02,
F,(t) = —mT/G2 (tp,m) = Z; Mg (6.10)

also showing that the ultra-violet value is zero as the gaussian theory is ultra-violet
finite. We also want to compute v, but let us first comment on the scaling relations.
The scaling hypothesis states that the singular power law behaviour near a second
order phase transition stems from the divergence of one quantity at the critical
point, namely the correlation length £ = m™! ~ 7. From the definition of v,
it follows that for small m [76]: Z; ~ kym™)(1 + o(1)) for some k; € R, and
Ga(p) = Z:GE(p) = Z1/(p* +m*+O(p*)), hence together with (6.3) this shows that

G2(0) ~ 077 ~ 07VC oy = (2 — 1), (6.11)

which is Fisher’s scaling relation, clearly satisfied by the free theory®.

Similar to v, we define [109] v, = 282 Iy [106] it was shown that Z, o g—ﬁ%
am?

which means that Z; ~ 2 ~ 6?7 and from the definition of v, it follows that

4Actually it will be analytic in S(m) but to get the Borel transform F,(s) needs to be bounded

at the origin so that F,(s) has to be bounded for all closed subsets of S which would not be the
case with S(m).
®The others: a =2 —-vd, B =v(d—-2+1n)/2, 6 = (d+2—7n)/(d -2 +n) are shown in [109)]

using the e expansion.




6 Scaling in three dimensions: ¢* theory

Zy ~ §¥7209<) in the infra-red limit, hence v5(g.) = 2 — v~!. The Callan-Symanzik

equation for correlators G (p) with [ insertions of £¢* reads [109]

0 0
(—ta +Bl9) 5 + Guil] + g + m) GR(tp,tg) =0 (6.12)

where (G (p, ¢)] = [Gn(p)] =2l = d—n(d+2)/2— 2. Hence for t — 0 at the critical
point is [109]

1
GE (tp, tg,m) ~ 45+ (6.13)

and in the limit ¢ — 0 will

t@GQI (tp, tq, m)

1
R = — JEE—
Y [Gaa(tptg,m) = =249 — —, (6.14)
so we define

. . 0GR (tp, —tp,q = 0,
E,(t) = —F,(t) + 4 +1 2 (P ai)q m)

/GE\(tp, —tp, g =0,m).  (6.15)

Again using the homogeneity of G5 we see that F,(t) can be rewritten as

Fult) = M (GEitp,—tp,g = 0.m)/GRtp.m) _ 07,
Y (G}, (tp, —tp,q = 0,m)/GE(tp, m)) * Tom’

(6.16)

which shows that lim;,, F,(t) = 0, again because Z, is a constant in this limit. The
equation (6.15) shows that F,(s) = F,(ts)].=, is analytic in S(r—¢) for all € € (0, 7).

This follows from writing G, = G212;'Z;" and using that Go1(p, —p,¢ = 0) =

__0_
ami

the spectral representation. F,(s) then satisfies

Ga(p) [109] and then rewriting in terms of renormalised quantities and doing

2—-1 fors—0
(s)—>{ e (6.17)

0 for s = oo.

6.3 The infra-red limit

The functions F,(g) and F,(g) have been calculated up to an amazing 7 loops in

3

the coupling constant g. We will follow the convention of [111] where § = 5=

g and
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6 Scaling in three dimensions: ¢* theory

B(g)

Figure 6.2: The first 6 orders of the perturbative S-function, the plot shows the

dependence of the critical coupling on the order of perturbation theory.

B(3) = 7o-B(g) giving £1 as the first two coefficients in the B function; we will use

8, g to denote B, § below to simplify the notation. The results are that [111]
F,(g) = 0.010973936947 + 0.0009142223¢° + 0.00179622294*
— 0.0006536980g° + 0.0013878101¢° — 0.001697694¢”,
F,(9) = 1g—0.0631001372¢% + 0.0452244754¢° — 0.03772334594"
+ 0.04374664944¢° — 0.0589756313¢% + 0.09155179g",
B(g) = — g+ g* — 0.4224965707¢° + 0.35106959784*
— 0.3765268283¢° + 0.49554751¢°% — 0.74968893¢",

(6.18)

where the beta-function has been calculated up to 6-loops {111, 112]. In figure
6.2 we plot the nth order perturbative S-function for n = 1,...,6 : B,(g9) =
—g+ 3k 9 Br

The perturbative series for ¢* theory was in [77, 78, 79] rigorously shown to be

Borel summable in the coupling of order k = 1, so we set F'(s) = F(s'). As discussed

84



6 Scaling in three dimensions: ¢* theory

in chapter 4 (see (4.9)), the high order coefficients of the perturbative correlation

functions f(g) =), fng™ for large n are given as

fn = c(=D)"T(1 + b + n)(1 + O(1/n)) (6.19)
where b, by, ¢ were calculated in [67, 113]. b = 0.14777422 and it follows that the con-
vergence radius of the Borel transform of f(g) is given by b, = 1/b with a singularity
at —1 /5. The critical exponents can now be obtained by first Borel transforming
the series (6.18) and then analytically continuing them to R, by either a conformal
mapping or a Padé approximation. The Laplace transform can then be performed,
e.g. numerically, and resummed series are thereby obtained. The first non-trivial
zero of the resummed S-function on the real axis determines the critical coupling
gc, which substituted into the resummed ﬁ',,(g), F,(g) gives an approximation for 7
and 2 — 1/v. This procedure has some deficiencies, it is very sensitive to variations
of g. and the continuation with Padé approximation might introduce new poles at
or near the real axis that will lead to artificially large contributions in the Laplace
integral. Continuation with a conformal mapping might also lead to poles close to
the positive real axis if there are sub-leading instanton contributions giving poles
away from the negative real axis.

Here we will use the approximation developed in chapter 4 and move the scale
dependence in Fn(s), F,(s) into the running coupling constant and then get the
infra-red limit as the limiting value of the Borel transform. An analytical contin-
uation still has to be performed and we will use a conformal mapping that maps
s — oo to s —» 1. A final approximation is then to do a Padé approximation at
s = 1. The advantage of this approach is that g. does not have to be estimated and
the Laplace integral is not calculated.

When b, > 0 we want to perform a Borel-Leroy transform of order k£, which
replaces a formal series f = 3 fn2" with Youlfn/T(1 + b + n/k)z". Instead of
(4.23) we then define

I(p) = —~— 70 & [ 22 ckbig(p/s) )
(p) kb, 9mi |- sle F(s), (6.20)
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6 Scaling in three dimensions: ¢* theory

this function will then have the limits lim,_,o, I(p) = Fig and lim, o I(p) = Fyy as
before.

We introduce the scale parameter s via the exact running coupling g(s) (s = 0
in the ultra-violet) then we know that F,(g(s)) and F,(g(s)) are asymptotic series
in §(s). We now approximate the exact running coupling g(s) with the solution to

dgn(s)
ds

S

= —Pn(Gn) (6.21)

with the boundary condition g;,(0) = 1, where S3,(g) is the perturbative § function
to the nth order. F,(gn(s)), F,(gn(s)) are then asymptotic series in s, which we will
write as F'(s) = ), Fns™. The Borel-Leroy transform given by (6.20) becomes

n+1 n+1l
I(p,b, k) =T(1+b) - Z =Y Inp™ (6.22)
F 14+ bl + m/k ot

As we are only working with a truncated series we will set k = 1 (only infinitesimally
different from k£ =1+ 4, § < 1), note we are summing up to n + 1 as the nth order
§ function has n + 1 terms, and F'(s) are known to the (n + 1)th order.

6.4 Conformal mapping and Padé approximation

Let us describe how we do the analytical continuation of the Borel transform to get
its infra-red limit.

The Borel transform is analytic in a sector S(€”) where €’ < 1. The series given
by (6.22) will have a pole at the negative real axis for some value p = —7, (r, > 0)

determining its convergence radius.

6.4.1 Conformal mapping

We will now analytically continue I(p) given by (6.22) doing the conformal trans-

formation (as in [76])

t =

» P ¢ ( ]7 (p = )’ (6'23)

rc+p 1-¢
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6 Scaling in three dimensions: ¢* theory

so that I(t,b) = (Z<£b;), and the limit p — oo is replaced by t — 1. Then I(¢) =

(1) = o0 Int™. Using that (1 — y)™ = (oo y™)F = Yooy (omiaaiy™ it

"
follows that I, =2 (re) J(r’n—"—;—)%% hence

n+1

m
" _ m—1
=SNS5t =Y Ll <7;1_ ; ) (6.24)
m=1 1=1

If all poles of I(p) lies in (—oco, —r.| then I(t) given by this series is convergent for
t € [0,1). In [114] it was argued that this is indeed the case for the ¢* theory since
all known instanton contributions have negative action leading to a Borel transform
analytic in a cut plane with the singularity closest to the origin being given by the
large order estimates. We want to evaluate this expression at the convergence radius

=1 (where I(t) is regular), to do this we will use Padé approximants [115, 116].

6.4.2 Padé approximation

In Padé approximation a function f(z) = > c¢,2" is approximated by a rational
fraction, called the Padé approximant [L/M], with polynomials of degree L and M

in the numerator and denominator, and the constant 1 in the denominator
ao+a1z+---apz

[L/M](z) = 1+ b2+ -+ by

If the n first terms in a power series expansion of the function are known then these

L

(6.25)

coeflicients are matched with the coefficients of the polynomials where 0 < L+ N <

n, so that®
£(2) = [L/M)() + O(++4Y), (6.26)

Because of the polynomial in the denominator [L/M] can describe functions with
poles, and it can therefore serve as an approximation of the analytical continuation
of f = )" cp2" outside of the convergence radius. An illustrative example [117] is
the function

1+ 2z

_ 1.1 5, 3
f(z) = T —1+2z g +O0(z°), (6.27)

6See [115] for a discussion about uniqueness of Padé approximants and their convergence.
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6 Scaling in three dimensions: ¢* theory

where we are interested in the value lim, ., f(z), £ € R. The Taylor series diverges
for |z| >  (as f'(—1/2) diverges) and one way to get the limiting value z — oo from

the series data is to do an analytical continuation by performing a Taylor expansion

around z, close to % and so on, but it will take a long time to reach infinity. A

more feasible way is to make the conformal mapping: z = #5-, w = 1 sending
z — oo into w — . The Taylor expansion of f(z(w)) becomes f(w) = (1—w)~ Y2 =
1+ 3w+ 3w? + O(w?), which is convergent at w = 1 and the first truncations gives:
1, 1.25, 1.34375. For the Padé approximation the first approximant easily follows

from (6.27)

INENY
N

[1/1] = 11 : (6.28)

(o
N

giving lim, ,[1/1](z) = 7/5 = 1.4. This is less than 2% off the exact value at
infinity limg e f(7) = v/2 = 1.4142356237 (the next two diagonal approximants
give 1.414201183 and 1.414213198).

The Padé table is a matrix with entries [L/M]. The Padé approximation is based
on the conjecture that there is a subsequence of diagonal Padé approximants [L/L]
which converge uniformly to the function, and this conjecture [118] has shown to
hold in practice. The diagonal Padé approximants are conformally invariant and
are therefore independent, of r, above. Generally we should use Padé approximants
close to the diagonal. Note that according to the Padé conjecture one should still
expect convergence of the Padé approximants even if there are a finite number of
poles within |t| < 1, which is the case if not all poles of I(p) are in (—o0, —7].

We also have to determine the values of r, and b;. Let us first note that from
the boundary condition g, (0) = 1 we have that g,(s) = s + O(s?) and in F(s) =
> m Fms™ we thus have that F,, = E, +--- where E, is the mth coefficient of g
in F(g), this means that the convergence radius of the transformed series cannot
be larger than the convergence radius of the series in the coupling ¢, i.e. 0 < r, <
b, = 1 /5 Also we would suspect that b, ~ b, where b] is the Leroy parameter
of the series in g. If b, is chosen too large we will divide by more than the actual

asymptotic increase in (6.24) and the approximation value will be too small, if b; is
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chosen too small we expect to get a poor convergence in the Padé table. In the same
way we expect the approximate value to be too small if 7. is chosen smaller than
the actual convergence radius because the values we are calculating are increasing
from zero. This is the behaviour we see in the tables and we estimate r. and b; to be
respectively the largest and smallest value so that there is convergence in the Padé
table.

From the asymptotic form of the S-function (6.19) it follows that it is alternating,
and an approximation to a truncated alternating asymptotic series Z?Zl fi is to use
the series Y-, f; where f; = fifor | < nand f, = f,/2 [119]. We have also obtained
the approximation where the perturbative S-function to the nth order (for n = 5
and n = 6) is approximated in this way.

Using the 8 function with 1/2 times the last coefficient, and the choice of coef-
ficients 7., b; mentioned above, i.e. 7, = b and b = 2.4, we get the Padé table (the

best convergence is with the 5th order expression)’

0.407663 0.405138 0.404239
0.362383* 0.405248 0.403736
0.395111 0.404338 : (6.29)
- 0.400335
\ - /
for the function F,(s). Only numbers in the table for which there is convergence
should be sampled [118], hence discarding 0.395111 gives F, ;g = 0.404 + 0.004,

where the error is the inter-tabular error for the points chosen (which is here larger

than the Baker-Hunter error [118, 120]). With the usual S-function we get, with the

"The numbers marked with a * has a pole close to or in the interval (0,1) and are therefore

discarded.
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same values for r. and b,

[ - : 0.407663 0.405138 0.386709 0.396082
0.362383* 0.405248 0.408042 0.392824

0.414164 0.395111 0.392686 0.395422

0.377688 0.392075 0.394118

0.4843*  0.403122

\ 0.406194 )

(6.30)

for the function F,(s) leading to F, ;g = 0.402 £ 0.008. Averaging over these two
we get for the critical exponent v = 0.626 £+ 0.003. At this value of b, and 7,
we have the best convergence in the Padé table, a more conservative estimate of
F, 1r is obtained by varying r. and b; in a region around these values and then
calculate the corresponding Padé tables and sample the highest and lowest values
for which there is some convergence in the Padé table. From this variation we find

that F, ;g = 0.40 £ 0.01 leading to
v = 0.625 £ 0.004. (6.31)

Such a variation also has to be performed when expanding in the coupling as the
asymptotic behaviour might not have been reached for the low number of terms
available. In [121, 122] it was argued that the results obtained using Borel-Leroy
transforms were very stable under variation of b; and b; in a wide range around the
exact asymptotic values, and we see the same stability here.

For the other exponent 1 we get approximately the same Padé tables using either
the B-function given in (6.18) or with a half times the last term, the convergent Padé

table becomes

0.0291884 0.0321865 0.0326601
0.0271003 0.0489937* 0.0327393

0.0323937 0.0310551  0.031359

0.0321239 0.0312882

\0.0312289 )

. (6.32)
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6 Scaling in three dimensions: ¢* theory

and we obtain the critical exponent n = 0.0319 +0.0010, where r. = b, and b; = 1.8.

Again varying around these values gives the estimate
n = 0.0315 £ 0.0020. (6.33)

These numbers should be compared with v = 0.6304 &+ 0.0013 [107], » = 0.6300 +
0.0015 [114], v = 0.6290 + 0.0025 (e expansion [107]), v = 0.6289 £ 0.0008 (Monte
Carlo) and for the other exponent n = 0.0355 + 0.0025 [107], » = 0.032 + 0.003
[114], n = 0.0360 + 0.0050 (e expansion [107]), n = 0.0374 + 0.0014 (Monte Carlo),
n = 0.0347 £ 0.001 (strong coupling [123]), most of these numbers are taken from
[107].

The error in v for our result is seen to be larger than the one in 7 in contrast
to the errors from other methods. The reason for this is that we have chosen a
conservative estimate where we have averaged over the results with two different
B-functions (using its alternating behaviour). The two S-functions differ only in the
7th order term, and here the Fj term is about a factor 100 smaller than the F,
term resulting in less sensitivity to this averaging. The errors obtained could most
likely be lowered e.g. using one of the techniques from [114] or as in [116] using the

information about the pole at r. to obtain an extra order in the Padé table.

6.5 Conclusions

In this chapter the approximation method developed in chapter 4 has been used to-
gether with a conformal mapping and a Padé approximation to calculate the critical
exponents of ¢?* theory in three dimensions. Our estimates of the critical expo-
nents are within the errors of other, more elaborate approximations. In the usual
evaluation one determines the value of the critical coupling g, and then evaluates
the resummed series at this point. The values then become very dependent on the
estimate of g.. One advantage of our method is that we do not have to estimate
Jc, likewise we do not have to perform the Laplace integral, but instead the criti-

cal point is reached taking the limit of the Borel transform. The disadvantage of
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6 Scaling in three dimensions: ¢* theory

the method is that we do not have specific knowledge of the quantities r., b, gov-
erning the asymptotic behaviour for the transformed series in the scale parameter.
In the usual case of the perturbative expansion in the coupling these parameters
are obtained from estimates of the higher order behaviour of perturbation theory.
However, our results showed stability in a variation of these parameters around the

values from high order estimates.
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7

The exact renormalisation group

with exponential interaction

In this chapter the exact renormalisation group equation is used to study the renor-
malisation group flow of a two dimensional theory.

The exact renormalisation group equation is a functional differential equation
which gives a non-perturbative description of how the wilsonian effective action
must vary when the cut-off changes so that the physics is invariant. It is derived
by integrating out the ultra-violet degrees of freedom in the partition function. The
equation is not solvable and has to be approximated.

We will do this by including in the wilsonian effective action only relevant opera-
tors together with a background charge at infinity. The motivation for studying this
interaction is the renormalisation group flow between the unitary minimal models
M, perturbed by ®(; 3) that we considered in chapter 5. Using the equivalence be-
tween the perturbed minimal models and the quantum group restricted sine-Gordon
model, we will argue that this interaction describes the renormalisation group flow
of the perturbed unitary minimal models.

The exact renormalisation group allows for a study of the renormalisation group
flow of the perturbed model M,, for all m, and not only in the limit m — oo

where the ultra-violet and infra-red fixed points approach each other in the coupling
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7 The exact renormalisation group with exponential interaction

constant space as seen in chapter 5.

In the next section the Coulomb gas representation of the perturbed minimal
models is described together with its realization as a quantum group restricted sine-
Gordon model. Then the exact renormalisation group equation is introduced, and
it is approximated by only allowing relevant operators in the effective action, which
for the minimal models are given by exponential operators. The wilsonian effective
potential does not contain any field derivatives so the approximation is similar to
the local potential approximation. The non-linear term in the exact renormalisation
group equation is approximated using the operator product expansion.

For the perturbed minimal models a renormalisation group equation is obtained
where all higher order terms in the coupling are contained in the off-critical structure
constant for the operator product expansion. This renormalisation group equation
is valid for all m > 3, and in the perturbative limit m — oo we show that it is equal

to the perturbative renormalisation group equation.

7.1 Coulomb gas representation and quantum

group restriction

We use the same notation as in chapter 5 for the minimal model M,, and its
primary fields. Recall from chapter 5 that the perturbed minimal model formally

can be written as
S = Mm + /\/dQZ @(1’3) (Z, Z), (71)

with the correlators

z1) - Oplzn e~ M 2803
(O1(@1) - - Op(an)) = 1211  Onln) )t (72)

<e—)\ f d2l’~1>(113) >Mm

and ®(; 3y has the renormalisation group eigenvalue y =2 — A = m%q.




7 The exact renormalisation group with exponential interaction

7.1.1 The Coulomb gas representation

In the Coulomb gas [104, 105, 83] (or Feigin—Fuchs, Dotsenko-Fateev) representation
the minimal model M,, is realized as a lagrangian free field theory with a background

charge —2ay at infinity where ag > 0. The action can then be written as’

5= o [ Eov/sl)e" (00,0@)06() + 2V Finod@R(E)  (73)

on the Riemann sphere C U {oo}, which is the one point compactification of the
complex plane with genus zero, R(z) is the scalar curvature. The primary fields
are given by the vertex operators Vy(z) = €?V22#(®)  With a background charge the
action is complex, but for specific choices of parameters in the theory o and «,
the theory becomes unitary and can be identified with the unitary minimal models
M.

The presence of a background charge changes the energy-momentum tensor from
the free value (5.37) where T = —19¢0¢. The new energy-momentum tensor di-
rectly follows from the definition (2.16) in chapter 2 and the usual formulas for
the variation of the determinant of the metric ¢ and the scalar curvature §R. In
complex coordinates the background charge adds a term iv/2cp8%¢ [83], hence the

energy-momentum tensor undergoes the transformation

1 —2a 1 :
T = ~2040¢ 2o T = ~5000¢ + V200020, (7.4)
The corresponding change in the central charge from the free value ¢ = 1 then
follows from its definition (5.10) using that —2020,,0,(9,¢(2)0,d(w)) = —Q(Z‘iaj)‘,:
c=1-2402. (7.5)

To match the value (5.45) for the minimal model then aq = 1/v/4m(m + 1) (for
ap > 0). The background charge changes the energy-momentum tensor and hence
also the scaling behaviour of the theory. The conformal dimension of the vertex

operator V, becomes h = a® — 2aaq, which follows from the operator product

1We are here using the standard normalization used in the Coulomb gas representation which

differs from the one in chapter 5 for the free boson.
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expansion of T'V,,. The background charge therefore breaks the symmetry between
the operators V, and V_,, and instead the operators V,, and V,,,_, now have the
same conformal dimension.

The Ward identity associated with the transformation ¢ — ¢+ a, a € R (which
is not a symmetry for oy # 0) implies that the overall charge of a non-vanishing

correlation function (Vy, (1) - - - Vo, (%, )) must satisfy that [84]

ZO[]' = 2(10, (76)
i=1

so the overall charge vanishes. To get a consistent theory screening charges must be
inserted into correlators so that this condition holds, but these charges must have
a vanishing conformal dimension so the conformal properties of the correlators are
left unchanged. Non-local screening charges® can be constructed as Qy = [ d?2V,,
which is conformally invariant if h,, = 1, so that c_ay = -1 and a_ + a4 =
2a9. We choose a_ < 0, hence from the constraint on «p above it follows that
a- = —. /.. For the equation (7.6) to be satisfied for the four point function
(VaVaag—aVaVs) it must be replaced with (QTQ" V,Vaao—aVaVa), for appropriate
m,n € N so that 2a + ma + na_ = 0. This shows that 2o has to be an integer
combination of o} and o, we will write it as o, s = l—;—Ta+ + L;—sa_. To correspond
with the unitary minimal models it turns out? that 1 < r <m, 1 <s<m+1.
It then follows that the vertex operator Vi, ,(z) = €'V22rs$(®) has the conformal

dimension

B 1 r(m+1) —sm)2 —1
hr,s = hr,s = ar,s(ar,s - 20{()) = Z(ra+ + 801_)2 - ag - ( ( 4m()m + 1)) ’

(7.7)

2This can also be shown using that the correlators are independent of the large scale cut-off
(83].
3The Coulomb gas representation can be given a BRST formulation [124], where the BRST

charge is given in terms of the screening operators Q1.
4This follows from the values of the operator product coefficients of the minimal models because

the three point function of vertex operators vanishes when the corresponding operator product

coefficient vanishes.
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7 The exact renormalisation group with exponential interaction

which is recognized as the conformal dimension (5.46) of the primary field @y, .
Hence, the primary fields ®, ,) are represented by the vertex operators V,,  (z) =

Virs) = etV2ar.s6(2) and in particular is ®(1,3) represented by V1 3) = e~iV2a-¢,

7.1.2 The quantum group restricted sine-Gordon model

In {125, 126, 127, 128, 129, 130] it was observed that the perturbed unitary minimal
model (7.1) is equivalent to a quantum group restriction of the sine-Gordon theory.

The sine-Gordon theory® is given by the euclidean action®

Ssg = i /d2:r (%Bugb(a:)a“q&(x) — 47\ cos(&ﬁ(x)/\/éﬁ)) . (7.8)

In two dimensions all polynomial interactions are super-renormalisable and the de-
gree of divergence for a graph G becomes 6(G) = 2 — 2V where V' is the number
of vertices. The tadpole diagrams with only one vertex and k external legs and !/
loops for k,l € N are then divergent as §(G) = 0. The theory is renormalised by
adding counterterms and summing over all tadpoles, and this directly leads, as first
shown by Coleman [18]7, to a multiplicative renormalisation of X, where A — 0 in
the ultra-violet limit that therefore corresponds to a free theory with ¢ = 1. 8 and
¢ are not renormalised.

The sine-Gordon model has the infinite dimensional quantum group symmetry

5The sine-Gordon theory has been used to model phenomena in condensed matter physics, e.g.

crystal dislocations, magnetic flux in Josephson lines and magnetic crystals [69)].
6Note that 3 is here a parameter and not a beta function.
In [18] it was shown that the energy is unbounded from below for 42 > 8, and for 5% < 8x,

which is the case we are considering, the theory is equivalent to the massive Thirring model which
is a fermionic theory. The case of 8% > 8 is treated in [131, 132], here § is also renormalised
and this is used to establish a flow between infra-red and ultra-violet theories, but in this case no
identification of the Hilbert space of states exists between the restricted sine-Gordon model and
the perturbed unitary minimal models. The sine-Gordon model is an integrable system, that has

a spectrum consisting of solitons and anti-solitons, with topological charge +n,n € N, and their

bound states breathers (or kinks), the number of boundstates is [7/x] = [37] — 1 where x = 5
(68, 127].
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7 The exact renormalisation group with exponential interaction

U,(sl2) [129, 126] where ¢ is a root of unity® ¢ = e=#7/6° In [129, 126] this was
shown creating four non-local charges Q., @i that together with the topological
charge 7 generate the quantum group Uq(gi\g), which has two U,(sly) sub-algebras
generated by {Q+,5~2_, T} and {Q_,Q—?JF,T}.

In [126, 130] the quantum group restriction of the sine-Gordon model is per-
formed by adding a background charge —2aq at infinity. The background charge
will again change the energy-momentum tensor as in (7.4) and the two vertex opera-

tors in the potential will now scale differently®. Two different couplings are needed,

we will write this as

~ %00 A . A
X cos(B/v/Am) =220 56—“34’/“@ + B—elﬂd’/m. (7.9)

Analogous to the Coulomb gas representation for the minimal models the back-

ground charge « is determined from the central charge ¢ =1 — 2402 =1 — ﬁ.

B is chosen from the requirement that e®%/V47 becomes marginal (i.e. b = 1) so that
it survives in the ultra-violet limit. 8 = /8ra_ = —/8wy/m/(m + 1). The con-
formal dimension of e~#¢/Vi7 jg then h = 2 — L — m=1 _ h(1,3) and e~ iB®/Vin

m—+1 m+1 m+1
10

represents the perturbing operator @, 3 Only relevant operators are included
in the effective action, as explained below, so the marginal screening term e*#¢/ Van
(which is needed when considering correlators) is excluded.

In [126, 129, 130] it was argued that the perturbed unitary minimal model (7.1)
is a quantum group restriction of the sine-Gordon theory, i.e. a massive theory, with

the coupling taken as A = —\ in (7.8). Here we are only interested in the massless

8V, S/l\g has special representations when ¢ is a root of unity [130]. A quantum group is a Hopf
q

algebra with a non-trivial co-multiplication, see [129] for a definition and a review of Uq(s/l\g).
9The quantum group restriction can be described in terms of cohomology in analogy with the

BRST description of minimal models [126]. When the background charge is added the quantum
group symmetry is reduced by breaking the ¢ — —¢ symmetry in the potential. Choosing the back-
ground charge so that Q. becomes a marginal screening operator the quantum group restriction

is then defined by gauging away the U,(sls) sub-algebra containing Q..
10The ultra-violet limit of the restricted sine-Gordon model is a Liouville theory which is equiva-

lent to the unitary minimal models M,,, the perturbed minimal models can therefore also be seen

as a perturbed Liouville theory [133].
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7 The exact renormalisation group with exponential interaction

flow to M,,_1 (A > 0 in [94]) where the limit m — oo is given by perturbation
theory. We will therefore take the opposite sign, A = kA for some k € R, , and in

the exact renormalisation group equation we consider the action

S = ﬁ d*z+/g(z) (%au¢($)3"¢($) - 47r%e”i5¢(z)/m + \/510045(15)]%(35))

(7.10)

as a model for the perturbed unitary minimal model (7.1). The operator ®(; 3) in
(7.1) is normalized as in [134] so that the ultra-violet limit of correlators in the
perturbed theory (7.2) equals the corresponding correlators in M,, where we take
(®1,3(1)®1,3(0))a,, = 1. The scaling dimensions of V13 and @ 3 are equal
so the normalization constant N(; 3) relating them is therefore independent of by
Viu,3) = N,3)@(1,3) and we therefore take A= N(Lg)"l)\. The normalization constant
is given by the formulas in [135, 104, 105]

1—02)%y(3a? — 1)
Nyg? = 2n2 2L =00 ) 730 7.11
a3 =T 2a2) (207 — 1) , (7-11)

where y(z) = I'(z)/T'(1 — z) and we use the normal convention that N 3y > 0.

In [136] the exact relation between the sine-Gordon coupling X (i.e. in the theory
(7.8) without a background charge where the scaling dimensions of cos(3¢/v/4n)
and ®(; 3 differ) and A was established A = ”;\2hig;f;{}?gg;&g’f;éfg)))1/2 using the
Coulomb gas representation of minimal models [83]. We do not use this represen-

tation here because we want the ultra-violet limit to be M,,, and not as in the
sine-Gordon model where it is the free theory with ¢ = 1, also we want a linear
relation between A and .

For a non-zero background charge the scaling of the theory is not determined by
the usual beta function related to the ultra-violet divergences, but by a generalized
beta function as discussed in [131]. (We denote the beta function B to avoid confu-
sion with the parameter 3 in (7.8)). The generalized B-function takes into account

the change in the energy-momentum tensor when the background charge is added.
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To lowest order the background charge adds a term [131]

BO) = Agx = B(Y) = () — 2 Zau 500 (7.12)

to the normal perturbative B-function for the interaction term Ae'Y221.»9(®) in the
action. This follows from the definition of the renormalisation group eigenvalue
(3.14)"! which says that 8 = —yA + O()?), and when the background charge is
added y — y + 2 - 2a1 3)c0 because of the change in the scaling dimension of ®(; 3
given by (7.7): A = A — 2 20 3y00. We discuss below how this term appears in

the exact renormalisation group.

7.2 The exact renormalisation group equation

The wilsonian effective action at the scale A is obtained by ‘integrating out’ momen-
tum modes between A and Ay, where Ay is the fundamental wilsonian cut-off. The
exact renormalisation group equation'? then describes how the effective action must
change so as to describe the same physics when A changes. Following Polchinski

[54], the partition function is written as
2 —
Z(A) = / D ¢l = / Dp ¢ GO KT G VO (7 g

in a continuum formulation with the cut-off propagator &”;&2—1. K(p*/A?) is con-
stant for small s = p?/A? and vanishes faster than any power for large s. The
physics must be independent of the choice of effective scale A so that A%Z (A) =0,
and performing the differentiation in (7.13) it follows that

OK ™ (/N _, OV (9, )

A2 = (=5 [ Gt me-nr ATk 2y =0

(7.14)

HWith a sign change as we are here considering changes in the momentum space.
120r the Wilson-Polchinski renormalisation group equation [137, 54, 41].
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When the wilsonian effective potential obeys the operator equation

9 1/ o /ddk o 2K'(k2/A2)< 52V 5V 6V )
A=V (p,A)== [ dzdy [ ——=e*Y) -
or "\ PN =3 [ 40 [y K \55@09ly) 50 54(9)
(7.15)
where K'(k?/A?) = ‘”;gs)lszkz/,\z, the partition function then changes as a total

derivative up to a field independent term [54], and equation (7.14) is satisfied

d 0 6

8K(gA/A ) (—¢(p)K_1(p2/A2) + (2;) p—25¢i‘§p)> 6_5.

(7.15) is the exact renormalisation group equation'3.

(7.16)
Y

It is a non-linear functional
equation in V (¢, A) which is not directly solvable and approximations must be made,

either by truncating the operator space or by performing a derivative expansion [139].

7.2.1 Truncating the operator space

We will make a truncation in the operator space. Firstly, we will only consider the
relevant operators, this approximation becomes exact in the infra-red (A < Ag)
where the effective theory is determined by the relevant (and marginal) couplings.
Secondly, we saw in chapter 5 that the primary fields {®(12p4+1)} with 0 < p <
(2] form a sub-algebra in M,,, and there is therefore a renormalisation group
flow from the minimal model M,, spanned by these operators. When considering
perturbations with operators in a sub-algebra, all divergences that arise away from
the fixed point will be contained in this sub-algebra, and this shows that there is
a renormalisation group flow in the sub-space of the corresponding couplings. The
operator structure at the non-trivial ultra-violet fixed point thereby determines the

renormalisation group flow.

13Gee [138] for a recent review of the exact renormalisation group equation. A constructive proof
was given by Zinn-Justin in [38] by explicitly integrating out the high momentum modes in the
partition function and observing how the potential then changes under an infinitesimal change in
the cut-off.
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7 The exact renormalisation group with exponential interaction

In the sub-algebra {®( 2p11)} only ®q1y = 1 and P15 are relevant fields'
The exact renormalisation group is only determined up to a field independent term,
so we will only consider perturbations with respect to ®; 3. None of the relevan-
t operators V{, ) contain any derivatives in ¢, so the situation is similar to the
local potential approximation of the exact renormalisation group equation. The
local potential approximation is the lowest order term in a derivative expansion
of V.= V(A,¢,0¢,...) [140, 141]. The second order term containing derivatives
f(A)(0¢)? leads to a renormalisation of ¢ and an anomalous dimension n > 0. In
our approximation there are no derivatives in ¢ because we only keep relevant op-
erators, and ¢ is not renormalised in the sine-Gordon model. In this approximation
the first term in (7.15) can be rewritten [140, 141] as

1 d*k 9/ x2 2 OV o 2. Y N
AQ/( o) K'(k /A)/dxa¢a¢(x)— kl/d a¢a¢() (7.17)

where V(z) is the potential density V = [ d?zV(z), and ky = — [ (dz’“ K'(k?) >0
as K (k?) is decreasing. In the local potential approximation [142, 140, 141, 143] the

second non-local term in (7.15)

_i 2 2 A2k 1012 ) A2\ Hik(z—y) OV ay oV
v ] Ea [ o [ Erw e nsls 0

is approximated by k; [ d®z( (5 ¢( )) where k; € R, depends on the cut-off function

K(s). This is a good approximation in the ultra-violet limit A — oo [143] where

il (g:’)czK’ (k%/A?)e*(@=v) — K'(0 f(‘zi:')‘ ik(@-y) = K'(0)6%(z — y). We consider the

operator version of (7.15) and a different approximation therefore has to be used for

oy oV
3¢(x) 8¢(x)?
whereas (7.15) is finite for A < co. The correct form of the approximation in the

the term (7.18) otherwise divergences will appear in the operator product 3 o

operator case is obtained from the operator product expansion, which for spin zero

operators is (3.12)

£)0;(y) ~ Z 2|22 CE (X, A) Ok (y), (7.19)

4The operator ®(; 3y does not mix with other relevant operators off criticality [94, 81].
(1,3)
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where Oy (y) is a complete set of local scaling fields. The non-local term (7.18) then

takes the form
/ 220(z) / iy / k=) 1 (k2 %)z — ) (7.20)

for some h(|z—y|?) and operator O(z). §%(z) is the Fourier transformation of 1 which
shows that 6%(z) = 16(|z|?), and we use this identity to write the ultra-violet limit
A — oo of the k integral as — [ %e“‘(z“y)K’(kz/AQ) — koé(Jz — y|?) where again
k; € Ry depends on the choice of K(s). For finite A this expression is approximately
kad(|z — y|* — a/A?) where a € R, depends on K (s). The cut-off dependence in a
is removed by redefining A2 — aA?, and the approximation becomes

2
B / %e""”‘”K%k?/M) = ky 6(z — y[? — A™?) (7.21)

in (7.18)!. If the effective potential is written as V = X [ d2z0;(z), where [X{] =
y* > 0, then (7.15) becomes using (7.17) and the operator product expansion

ki [ 5y d ki [ o 0°V(4,A)
2 oA v A = - 2 [ #2200
B | CEAgpY(@h) = | gy
B S A G G0
1,7,k

(7.22)

Here V and ¢ have been rescaled: V — :—;V, ¢ — Vki1¢ and A'; and C‘l’f are the
scaling dimension and structure constant for the field O'; = %—%.
operator then A’ = A, C% o C¥ and O'; « O;. It follows from (7.22) that the

implicit dependence in the choice of cut-off function K(s) contained in k; and k,

If O; is a vertex

drops out [140, 141]. The renormalisation group equation is usually written in terms
of dimensionless couplings §' = A~% ! so that V = §'A? [ d?zO; where [O;] = 0.

15Adding a function f(|z —y|?, 1/A?) satisfying f — 0 for A — oo corresponds to a higher order
derivative expansion in ¢ [143] and it is therefore neglected in the approximation considered here

where there are no derivatives in ¢.

103




7 The exact renormalisation group with exponential interaction

(7.22) then becomes

AQ/d2:vAag (A)@i :_2A2/d2x§i@i_A2/d2$gi 00;

dA 0¢d¢
+ mA? / d’z ) GFPCEO .

1,5,k

(7.23)

For the perturbed minimal models we will use the action (7.10), and for the moment

neglect the curvature term. (7.23) then becomes

[ @zemser (a8 s 2q) + g7 + w1 a0, MDY <o

up to field independent and irrelevant terms. Introducing the dimensionless variable
t=1In AAQ (and Z = Az) the renormalisation group equation for § can then be written
as

ag(t) - 2m m

S =i =23 - () — T

m+lg

3(1)*C3a(3(1), 1). (7.24)

Adding the additional term (7.12) from the background charge 2 - 2 300§ (t) =

—2-§(t) gives

i) = —5(0) — "Ry (3(0),030)° = vi(H) — Ca(30), D30)
(7.25)

The contribution from the background charge to the scaling behaviour can be in-
corporated directly into the exact renormalisation group equation if the curvature

term in (7.10) is taken into account.

7.2.2 Incorporating the background charge

The action (7.10) is defined on the Riemann sphere CU{oco} where all the curvature
is situated at infinity so that the topological invariant [ d?z./g(Z)R(i) = 8 is sat-
isfied. The Riemann surface CU{oco} cannot be covered by a single coordinate chart,
one chart is needed for the flat space and another in the neighborhood of infinity. We

take polar coordinates in flat space = (rsiné, r cos#) and define the contribution
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from infinity as in [144] by a limit value. We consider the theory on a disk I" with
radius 7 — oo so that all curvature is at the boundary 0I'. From the Gauss-Bonnet
theorem lim, o0 [, d0 rR(r) = 87 so that R(r) = 2 on OI'. We define as in [144]
the contribution from infinity to be doo = limy 00 g [ dl ¢ = lim, 0 5= [, d6 ¢
and similarly for the vertex operators. The effect of the background term is seen by
evaluating the exact renormalisation group equation at infinity where the curvature

is non-vanishing. Hence we replace [ d*z in (7.23) by lim, 51; far df. Only the

term %% in the exact renormalisation group equation (7.15) will give an addition-
al term proportional to e=#%/V4™ when the background charge is added. This term
becomes
22(v/2)%(1)%op 4
lim — d0 /d2y6 |z —y> — A7?) (V2)*(i)*ao (L,3) rR(r)e Z\/Qa(l""")qb(y)ﬁ(t)
T—00 LT 87!'
= (2)3000(1 3§(t) lim / dé / — A?)eV2ramdE—v)
r=00 for 27

dé
~ 22@00(1,3)!?(75) lim 27 eiV2a1,58(x) —

r—=00 faopr 27r - 2 aoa(l 3 ( )‘/(1 3)( )

The second to last equation holds in the limit 7 — oo where r > A~!. When
the coefficient of e~#%/V4™ from this term is added to (7.24) then (7.25) is again
obtained, but it now holds to all orders in the coupling g.

This shows how the change in scaling behaviour due to the background charge
is seen in the exact renormalisation group equation when it is evaluated at a point
with non-zero curvature. Equation (7.25) is then valid to all orders in perturbation

theory for the chosen truncation of the operator space. Hence, in

9(t) = yg(t) — mCss(3(1), )3(t)" 5 (7.26)

higher order terms appear via the off-critical structure constant C2,(§(t),t). The
structure constant C24(3(t),t) is regular in the coupling § [145, 146, 147]. The
wilsonian effective action (7.10) is for zero coupling equal to the Coulomb gas repre-
sentation (7.3) of the minimal model M,,. The structure constant therefore has the
following expansion C24(5(t),t) = C2, + O(§(t)), where C2, is the structure con-
stant for the vertex operators V{; 3) in the minimal model M,,. V{13(1)V(1,3(0) =
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1+ C~'§¢V(1,3)(0) + -+ and the structure constant for ®(; 3) is thus Cgs = N(_l,l3)6~'§,’q,
(135, 104], which is given in (5.58). C2,(3(t),t) can in principle be calculated in con-
formal perturbation theory [147, 145, 146 for strictly relevant perturbations (y > 0),
and for small ¢ it is given by [147]

Ceo(d) = Coo — QW/ d?2(Vi1,3)(00) Vi3 (2) Vi3 (D) Vi 3y (0)) m, + O(3%). (7.27)

The four-point function is the first non-trivial correlator and it can be evaluated
by pairing the fields and inserting the short distance expansion. There is then a
crossing symmetry and this leads to the bootstrap equation for the structure con-
stants which expresses the associativity of the operator algebra. In the Coulomb
gas representation monodromy invariance of physical correlators is used to get the
form of the four-point function which is written in terms of structure constants and
conformal blocks. Unfortunately no closed form has been found for the conformal
blocks with two screening charges ((V(1,3)V(1,3)V(1,3)V(1,3)) requires the screening Q2
for the overall charge to be 2ap). When only one screening @ _ is needed a closed
expression of the conformal blocks can be found in terms of hyper-geometric func-
tions using Euler’s integral representation [84]. In the marginal case y = 0 the
four-point function can be written in a closed form as the conformal blocks become
meromorphic functions of z [42], but conformal perturbation theory is only defined
for strictly relevant perturbations with y > 0.

It follows from (7.26) by inserting C24(3(t),t) = C25 +O(§(t)) that the infra-red
fixed point coupling vanishes in the limit m — oo, and this limit can therefore be
compared with the perturbative renormalisation group equation. For large m (7.26)
becomes § = yg — mCasg” + O(g®) where ¢ = N33, and this has the infra-red
fixed point g;r = —%— as obtained in [94, 98], and chapter five.

[3
Cdﬂb

7.3 Conclusions

We studied in this chapter the exact renormalisation group equation for a two di-

mensional quantum field theory. It was approximated by only including relevant
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operators of exponential form together with a background charge at infinity in the
wilsonian effective action. The effective action does not contain any derivatives
in the field and the approximation is therefore similar to the local potential ap-
proximation. The non-linear term in the exact renormalisation group equation is
approximated by the operator product expansion. We showed that the effect of
the background charge can be incorporated into the exact renormalisation group
equation by evaluating it at a point of non-zero curvature.

Using the equivalence between the unitary minimal models perturbed by @ 3
and the quantum group restricted sine-Gordon model, the obtained renormalisation
group equation was argued to describe the renormalisation group flow for the per-
turbed unitary minimal models from M,, to M,,_;. The resulting renormalisation
group equation is valid to all orders in the coupling for our truncation of the op-
erator space, and for all m > 3. The higher order terms in the coupling appear in
the off-critical structure constant. In the limit of large m, where the ultra-violet
and infra-red fixed points approach each other, the renormalisation group equation

agrees with the well known perturbative result.
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8

The self-gravitating bosonic

membrane

In this chapter we will consider the field theory of an extended object, namely the
bosonic membrane with an Einstein—Hilbert term.

Extended objects play a role in different areas of physics e.g. condensed matter
physics and hydro-dynamics (see e.g. [148]), and have also showed to be important
in the theories describing the fundamental interactions. The only present candidate
for quantum gravity includes extended objects like strings and membranes!. The
membrane was first described by Dirac in [149] where a spherical charged membrane
was used as a model for the electron. In [150, 151, 152] the supermembrane in 11
dimensions was described and in [153] it was shown that the ITA superstring can be
obtained from it by a dimensional reduction [154]. In [155] the supermembrane was

shown to be a solution of the field equations of 11 dimensional supergravity?.

! The efforts to unify general relativity and the three interactions in the standard model in a local
quantum field theory have failed for different, reasons. The main one being the non-renormalisability
of the Einstein—Hilbert term which shows that such a local theory can only be an effective one that
has to be replaced by a more fundamental theory at high energies, such as in the early universe
and for black holes where quantum gravity is relevant. Another problem is the understanding of

quantum field theory when the space-time background is dynamical.
2For these reasons it is believed to play an important role in M-theory [156]. M-theory is

a conjectured theory in 11 dimensions that has the five 10 dimensional superstring theories as
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8 The self-gravitating bosonic membrane

In this chapter we will consider a membrane with its dynamics determined by a
minimization of the world-volume together with the world-volume scalar curvature.
The action can then be written as a sum over the world-volume Dirac-Nambu—-Goto
action and an Einstein-Hilbert term: S = vol + [ R. In chapter three we saw that
all terms respecting the symmetries of a theory should be included in the action.
The motivation for studying the model given by S is that the Einstein-Hilbert term
is the simplest world-volume diffeomorphism invariant and target-space Poincaré
invariant term that can be added to the Dirac-Nambu—Goto action, and S can
therefore be seen as an approximation to the low energy effective action for the
bosonic membrane.

The solution of a semi-classical approximation of the model is determined, where
the field equations are linearized around a toroidal background. We follow the paper
[159] closely, there a semi-classical quantisation around this background is described

for the supermembrane.

8.1 The bosonic membrane

The Dirac-Nambu—Goto [149, 160, 161] action for a p dimensional extended object

is given by its p + 1 dimensional world-volume

S =Tyu1 [ @6/~ det(n,0X (€)X (€) (8.1

where £, i = 1,... ,p+1 are the world-volume coordinates and X#(¢), p=1,...,d
describe the embedding of the p dimensional object into d dimensional Minkowski
space-time (target space) with the metric 7,,. T,y is the p brane tension. In
this chapter we will take 7,, = (—,+,...,+) which is the standard convention in

theories with extended objects. The equations of motion that are derived from (8.1)

different limits and 11 dimensional supergravity as its low energy limit. The supermembrane is

non-renormalisable, but, can be regularized by rewriting it as the large N limit of SU(N) Yang-Mills

theory, and this is one way of getting the matrix-model proposal for M-theory [156, 154, 157, 158].
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can equivalently be obtained from the action® [162, 163, 164, 165]
p+1 1 g yug. yv p—1
S=Tpn | &€ /—g —59 0, X" 0; X 1y + 5 (8.2)

where ¢;;(€) is an auxiliary variable. (8.2) is invariant under Poincaré transfor-
mations of X* and diffeomorphisms in £', and for the string p = 1 there is also
invariance under the Weyl transformations g;; — (£)%g;;. We are here considering

the membrane, i.e. p = 2, in 11 dimensions and the equations of motion become

6S
5gij

1 .. L 1 i
=0= ,/-—g (Eg”gklakX“alX”nuu — glkgﬂakX”alXU'r/uu) = —2'\/ _gglja (83)

thus taking the trace gives ¢¥9;X*9;X"n,, = 3 and g;; is therefore the induced
metric on the membrane g;; = 0,X*0;X"n,,. (2.16) then shows that in this case

the energy-momentum tensor vanishes T;; = 0. The other field equations are

45

SXE 0= 0;(v _ggijanunw) = 0. (8.4)

We will use the light-cone-Hoppe gauge as in [159] and it is useful to write the metric
in the ADM (Arnowitt-Deser-Misner [166, 167]) decomposition:

—N2+ NaNb Ne
9ij = ( Jeb Yab , a=1,2. (8.5)
Na7ab Yab
& = (1,0,p) and Ya = gap is the metric on the membrane, i.e. on the surface

determined by X*#(r, 0, p) for fixed 7. N and N® are the shift and the lapse functions
that determine the foliation of the membrane world-volume into constant 7 surfaces,
Yy, = 62 and /=g = N,/7. (8.2) can then be written as

S="T, / d*¢ N/ <—%fy“"6,1X"0bX”nm, + N73(X — N°9,X)? + %) . (8.6)

This action is independent in the choice of world-volume foliation hence the number

of dynamical degrees of freedom become 11 — 3 = 8. The light cone coordinates are

3Which is often called the Polyakov action.
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X* =

over [

X0+ X19) g0 that X? = XtX, = —X+X~ — X~ X* + X'X!, summing

B
=3,...,9, and the light-cone-Hoppe gauge is

Xt=p"1, 90a=0, goo=—7. (8.7)

The last condition holds for all 7 as the equation of motion for X in this gauge
shows that (97(9_—03)1/2 =0. goa = X“@aX“ = 0 then fixes X~ in terms of X'

_ 1 ,
0. X =F(6aX’)X’. (8.8)

One gauge degree of freedom is left unfixed until after the field equations are line-

arized as in [159).

8.2 The self-gravitating bosonic membrane

Let us now consider the action

1
S = T3/d3§\/ ( 9"8: X" 0; X Ny + = 5+ GR) , GeR, (8.9)

where R is the scalar curvature on the membrane world-volume, it contains deriva-
tives in 7y, which is therefore now a dynamical field. The number of degrees of
freedom becomes 11 — 3 + 3 = 11, and viewing (8.9) as 2 + 1 dimensional gravity
with 11 minimally coupled scalar fields this counting simply becomes 0 + 11 4. Due
to the non-linearity of (8.9) we will make a semi-classical approximation of the field
equations where they are linearized around a classical solution that is taken to be a

flat torus following [159]. Taking space-time to be S! x S! x R? a classical solution

4Pure 2 + 1 dimensional gravityris specified by the three components of the spatial metric
~Yab together with its embedding given by the three components of the exterior curvature Ky, in
addition there are three constraints from diffeomorphism invariance and three initial constraints for

the Einstein equations [44]. There are thus no local degrees of freedom, and pure 2+ 1 dimensional

gravity can be seen as a topological field theory [168, 169].
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is obtained by wrapping the membrane around S x S! with a flat metric

Xg=hRio, Xi=LRyp, X)=0 1=3...,9,
12
%000 (8.10)
gel = 0 k% 0 R k)(), lﬁ, kQ e R.
0 0 k3

o,p € [0,27] and Ry, Ry are the radii of the torus and [1,l; € Z are the winding
numbers. (8.10) is clearly a solution to 9;(/—g¢“9;X*) = 0 and the Einstein

equations that become Tj; = 0 (because the curvature vanishes), where
1 1
T;j = T3 (@Xﬂ(‘?j){"mu — gij (igklakX“alX”nlw — 5)) . (811)

(get)i; is therefore the induced metric and (8.10) together with the gauge condi-
tion (8.7) shows that k1 = 1Ry, ko = bRy and ko = kiko, (8.8) sets X~ =

2—;—;(l1R1l2R2)27. The perturbation around the classical solution is written as

X=X, 427 i=1,...,9,

—(hRiLR)? 0 0 S0 0 0 v 0 0
9ij = 0 (LRy)? 0 +1 0 1 Y2l =| 0 vy m2|>
0 0 (l2Ry)? 0 Y2 Y2 0 2 7

where v = 711722 — 75,. X and g;; are then inserted into the field equation-
s keeping terms up to O((Z%)?, (Ya)?, Z*9as). (8.8) no longer holds and we set
X =X, = 51—)1;-(11R112R2)27' which is always a solution because of go, = 0 and
goo = —7- The solution to the field equations that we consider below requires that
(LhR))? = (I3R,)? = 1 so that R = I_llfl’ Ry, = L and we set LR, = l5R; = 1 from

[L2]
now on.

8.2.1 Solution to the semi-classical approximation

Using that v/—g =y =1+ 91, + Y22 and

1—5 =
’y“b _ ~’)’11 ’)’12 ’ (8.12)
—Y2 1 — Y2
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the field equations for X# become

Zl=(2+00z', I=3,...,9,
Z' = (82 + 1) Z" + 0ym2 — Oy, (8.13)
ZQ = (ag -+ 8§)Z2 + ap;j’ll - 8g’?12.

The field equations for 7,; are the Einstein equations
2GT; (Rab - %gabR> =2GT3E, = Ty (8.14)
Ffj is already first order in 7., hence to first order Ry, = 0.I'¢, — 3,I';, and
R = g7Rij = 1 + Yoo — (02 + 82) (11 + F22) — 02922 — 82911 + 20,0,%12- (8:15)

The components of the Einstein tensor are

Ey . 92 02402 0 i
Eyp | = 5 02 —02+0% 0 a2 (8.16)
Er —0,0, —0,0, 02 \ M2

and
En . 0 -0,0, 0,0, 11
Eoz | =35 -0,0, 0 0,05 Yoz | - (8.17)
Foo —2 - 20,0,) \Aws

The (0,1) and (0,2) components of the Einstein equations (8.14) then become

A G(ap})IlZ - 30'3'22)’ (8.18)
Z2 = G(aa’LYm - 3;5’11)-

Hence, Z' = G(8,712 — O05722) + h'(p, 0) for some function ' and we can use the
remaining gauge freedom to set h!(p, o) = 0 [159]. The field equations are symmetric
under p < o, LR, <> IRy, Z' +» Z? and we demand the solution to have the same

symmetry so that

Z' = G(8,12 — Os722),

X ) ! (8.19)
Z° = G(ag’)’u — 6,,’)’11).
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Substituting (8.19) into (8.13) for G # 0:

.. 1
Z'= (0 + )2 — 521,
.. 1
7P = (02 +02)2% — 522,

and the field equations for Z', Z? and Z' decouple®. The (0,0) component of (8.14)
is seen to be automatically satisfied using (8.19), and the (1,1), (2,2) and (1,2)

(8.20)

components give

= - 1.
Yab = (ag‘ + 612))70.() - 67&6’ a7b € {1) 2} (821)

again using (8.19). The dynamical equations therefore all decouple and have the
same form. The diagonal Einstein equations require that (I;R;)%? = (lbR3)?> = 1 to
get the oscillatory behaviour in (8.21) otherwise a constant term is added. From
the periodicity in o and p the solutions are given by a Fourier expansion and using

that Z* and 7, are real they become

Zj — Z ei(ma+np) ((azn’n)teiwmnr + a’ e—iwmn-r) ’ ] — 1’ 2,

—m,—n

mnez (8 22)
Jap = €mr4n0) ((Bob YleiomnT 4 gt emwmnT) | g,b e (1,2},

m,nel

where Wy, = /m?+n? + 1/G, and

ZI = Zé + PIT + Z ei(ma+np) ((avln,n)Teiw/mnT + al_m,—ne_iwlm"T) , I= 3,...,9,
m24n2£0

(8.23)

with w’ = v/m? + n?. The solution to the semi-classical approximation is therefore
a sum of oscillating toroidal membranes with a metric that oscillates around the
flat metric. Taking the two constraints (8.19) into account the number of degrees of

freedom becomes 9 +3 — 2+ 1 =11 as X~ is not constrained.

>Note that taking the limit G — 0 does not lead to the equations for the bosonic sector of the
supermembrane. For the membrane the equations G = 0 = Tj; = 0 are solved exactly before

linearizing taking g;; to be the induced metric.
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8.3 Discussion and conclusions

In [159] a semi-classical quantisation of the supermembrane is performed by a Dirac
quantisation where af and « are interpreted as creation and annihilation operators,
where states are created acting with of on a vacuum that is annihilated by a.
Supersymmetry seems to be essential for a consistent quantisation of the membrane,
the vacuum-energy contributions for example cancel out between the bosonic and
fermionic sectors [159]. It would be interesting to try and extend the above semi-
classical solution to include either space-time or world-volume supersymmetry, and
if the analogy with the supermembrane carries through the solutions of the linearized
fermionic equations will be similar to (8.22) and (8.23). It would also be interesting
to consider a generalization with a cosmological constant in (8.9) thus linearizing
around de Sitter or anti de Sitter space.

To conclude, in this chapter we have determined a solution to the dynamical
equations of a membrane action with an Einstein—Hilbert term linearized around
a flat torus. The solution is an oscillation around the toroidal membrane with the

metric oscillating around the flat metric.
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9

Conclusions

In this thesis we have studied the scaling behaviour of different quantum field the-
ories given by the renormalisation group.

We have shown how perturbative calculations of the infra-red limit can be im-
proved using general analyticity properties valid for all unitary quantum field theo- .
ries. It was also shown how the exact renormalisation group equation together with
the operator product expansion can be used to get equations describing the scaling
of theories with a background charge. Finally, it was shown how new solutions to
a semi-classical approximation of the bosonic membrane can be found studying the
low energy effective action.

In chapter four the infra-red limit of a physical quantity is shown to equal the lim-
iting value of the Borel transform in the scale parameter, where the order of the Borel
transform is related to the analyticity domain of the physical quantity in a complex
scale parameter. In chapter five this was used to develop an approximation method
for the infra-red central charge of a perturbed conformal field theory. Improving
a one loop perturbative calculation, for the unitary minimal models perturbed by
®(1,3), the approximation is very close to the exact results when maximizing the
domain of analyticity.

In chapter six the critical exponents of ¢* theory in three dimensions are ap-

proximated using the method from chapter four together with a conformal mapping
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and a Padé approximation. The results are within the limits of other calculations.
It would be interesting to use the result in chapter four to calculate the infra-red
limit of other physical quantities in theories with a flow between an ultra-violet and
an infra-red fixed point. Examples could be the theories discussed in [170] where
there is a renormalisation group flow between two different WZW models in two
dimensions, or the theory in [171] where there is a flow between different three di-
mensional conformal field theories constructed so that the ultra-violet and infra-red
fixed points are S-dual.

In chapter seven using the equivalence between the quantum group restricted
sine-Gordon model and the perturbed unitary minimal models together with the
exact renormalisation group equation and the operator product expansion, an equa-
tion is obtained describing the flow between unitary minimal models, also when they
are not infinitesimally close in coupling space. By combining the operator product
expansion and the exact renormalisation group equation higher order corrections in
the coupling are moved into the off-critical structure constants (operator product
expansion coefficients). This seems to be a useful way of studying the renormali-
sation group in theories where higher order corrections for the structure constants
can be calculated, e.g. using the methods developed in [147, 146, 145] or solving to
lowest order the renormalisation group equations for the structure constants.

As already mentioned at the end of chapter eight, it would also be interesting
to try to extend the solutions of the linearized equations of motion for the bosonic
membrane to a theory with space-time supersymmetry. If a solution can be found
the spectrum from a semi-classical quantisation can then be compared with the
spectrum for the supermembrane in [159], and it can be checked if such a self-
gravitating supermembrane is still a solution to 11 dimensional supergravity. Finally,
additional terms can be considered in the lagrangian like a cosmological term and
the equation of motions can be linearized around different backgrounds.

Quantum field theories are organized according to their scaling behaviour, and
the study of scaling is therefore essential when trying to understand the structure

of quantum field theory.
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