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ABSTRACT
The theory of open quantum systems is one of the most essential tools for the development of quantum technologies. Furthermore, the
Lindblad (or Gorini-Kossakowski-Sudarshan-Lindblad) master equation plays a key role as it is the most general generator of Markovian
dynamics in quantum systems. In this paper, we present this equation together with its derivation and methods of resolution. The presentation
tries to be as self-contained and straightforward as possible to be useful to readers with no previous knowledge of this field.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5115323., s

I. INTRODUCTION
Open quantum system techniques are vital for many studies in

quantum mechanics.1–3 This happens because closed quantum sys-
tems are just an idealization of real systems (the same happens with
closed classical systems), as in Nature nothing can be isolated. In
practical problems, the interaction of the system of interest with
the environment cannot be avoided and we require an approach
in which the environment can be effectively removed from the
equations of motion.

The general problem addressed by open quantum theory is
sketched in Fig. 1. In the most general picture, we have a total sys-
tem that conforms a closed quantum system by itself. We are mostly
interested in a subsystem of the total one (we call it just “system”
instead of “total system”). Therefore, the whole system is divided
into our system of interest and an environment. The goal of open
quantum theory is to infer the equations of motions of the reduced
system from the equation of motion of the total system. For prac-
tical purposes, the reduced equations of motion should be easier to
solve than the full dynamics of the system. Because of his require-
ment, several approximations are usually made in the derivation of
the reduced dynamics.

One particular, and interesting, case of study is the dynamics
of a system connected to several baths modeled by a Markovian
interaction. In this case, the most general quantum dynamics is gen-
erated by the Lindblad equation (also called Gorini-Kossakowski-
Sudarshan-Lindblad equation).4,5 It is difficult to overemphasize

the importance of this master equation. It plays an important
role in fields as quantum optics,1,6 condensed matter,7–10 atomic
physics,11,12 quantum information,13,14 decoherence,15,16 and quan-
tum biology.17–19

The purpose of this paper is to provide basic knowledge about
the Lindblad master equation. In Sec. II, the mathematical require-
ments are introduced, while in Sec. III, there is a brief review of
quantum mechanical concepts that are required to understand the
paper. Section IV includes a description of a mathematical frame-
work, the Fock-Liouville space (FLS) that is especially useful to work
in this problem. In Sec. V, we define the concept of completely posi-
tive and trace-preserving maps (CPT-maps), we derive the Lindblad
master equation from two different approaches, and we discus sev-
eral properties of the equation. Finally, Sec. VI is devoted to the res-
olution of the master equation using different methods. To deepen
the techniques of solving the Lindblad equation, an example con-
sisting of a two-level system with decay is analyzed, illustrating the
content of every section. The problems proposed are solved by the
use of Mathematica notebooks that can be found in Ref. 20.

II. MATHEMATICAL BASIS
The primary mathematical tool in quantum mechanics is the

theory of Hilbert spaces. This mathematical framework allows
extending many results from finite linear vector spaces to infinite
ones. In any case, this tutorial deals only with finite systems and,
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FIG. 1. A total system divided into the system of interest, “system” and the
environment.

therefore, the expressions “Hilbert space” and “linear space” are
equivalent. We assume that the reader is skilled in operating in
Hilbert spaces. To deepen the field of Hilbert spaces, we recom-
mend the book by Debnath and Mikusińki.21 If the reader needs
a brief review of the main concepts required for understanding
this paper, we may recommend Nielsen and Chuang’s Quantum
Computing book.22 It is also required some basic knowledge about
infinitesimal calculus, such as integration, derivation, and the reso-
lution of simple differential equations. To help the readers, we have
made a glossary of the mostly used mathematical terms. It can also
be used as a checklist of terms that the reader should be familiar
with.

Glossary:

● H represents a Hilbert space, usually the space of pure states
of a system.

● ∣ψ⟩ ∈ H represents a vector of the Hilbert space H (a column
vector).

● ⟨ψ∣ ∈ H represents a vector of the dual Hilbert space of H
(a row vector).

● ⟨ψ∣ϕ⟩ ∈ C is the scalar product of vectors |ψ⟩ and |ϕ⟩.
● |||ψ⟩|| is the norm of vector |ψ⟩. ∣∣∣ψ⟩∣∣ ≡

√
⟨ψ∣ψ⟩.

● B(H) represents the space of bounded operators acting on
the Hilbert space B : H→ H.

● 𝟙H ∈ B(H) is the identity operator of the Hilbert space H s.t.
𝟙H∣ψ⟩ = ∣ψ⟩, ∀∣ψ⟩ ∈ H.

● ∣ψ⟩⟨ϕ∣ ∈ B(H) is the operator such that (∣ψ⟩⟨ϕ∣)∣φ⟩ =
⟨ϕ∣φ⟩∣ψ⟩, ∀∣φ⟩ ∈ H.

● O† ∈ B(H) is the Hermitian conjugate of the operator O ∈
B(H).

● U ∈ B(H) is a unitary operator iff UU† = U†U = 𝟙.
● H ∈ B(H) is a Hermitian operator iff H = H†.

● A ∈ B(H) is a positive operator (A > 0) iff ⟨ϕ∣A∣ϕ⟩ ≥ 0,
∀∣ϕ⟩ ∈ H.

● P ∈ B(H) is a projector iff PP = P.
● Tr[B] represents the trace of operator B.
● ρ(L) represents the space of density matrices, meaning the

space of bounded operators acting on H with trace 1 and
positive.

● |ρ⟩⟩ is a vector in the Fock-Liouville space.
● ⟨⟨A∣B⟩⟩ = Tr[A†B] is the scalar product of operators A, B ∈

B(H) in the Fock-Liouville space.
● L̃ is the matrix representation of a superoperator in the

Fock-Liouville space.

III. (VERY SHORT) INTRODUCTION TO QUANTUM
MECHANICS

The purpose of this chapter is to refresh the main concepts
of quantum mechanics necessary to understand the Lindblad mas-
ter equation. Of course, this is NOT a full quantum mechanics
course. If a reader has no background in this field, just reading this
chapter would be insufficient to understand the remaining of this
tutorial. Therefore, if the reader is unsure of his/her capacities, we
recommend to go first through a quantum mechanics course or to
read an introductory book carefully. There are many great quan-
tum mechanics books in the market. For beginners, we recommend
Sakurai’s book23 or Nielsen and Chuang’s Quantum Computing
book.22 For more advanced students, looking for a solid mathemat-
ical description of quantum mechanics methods, we recommend
Galindo and Pascual.24 Finally, for a more philosophical discussion,
you should go to Peres’ book.25

We start stating the quantum mechanics postulates that we
need to understand the derivation and application of the Lindblad
master equation. The first postulate is related to the concept of a
quantum state.

Postulate 1. Associated with any isolated physical system, there
is a complex Hilbert space H, known as the state space of the system.
The state of the system is entirely described by a state vector, which is
a unit vector of the Hilbert space (∣ψ⟩ ∈ H).

As quantum mechanics is a general theory (or a set of theories),
it does not tell us which is the proper Hilbert space for each system.
This is usually done system by system. A natural question to ask is
if there is a one-to-one correspondence between unit vectors and
physical states, meaning that if every unit vector corresponds to a
physical system. This is resolved by the following corollary that is
a primary ingredient for quantum computation theory (see Ref. 22,
Chapter 7).

Corollary 1. All unit vectors of a finite Hilbert space correspond
to possible physical states of a system.

Unit vectors are also called pure states. If we know the pure state
of a system, we have all physical information about it and we can cal-
culate the probabilistic outcomes of any potential measurement (see
the next postulate). This is a very improbable situation as experimen-
tal settings are not perfect, and in most cases, we have only imperfect
information about the state. Most generally, we may know that a
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quantum system can be in one state of a set {∣ψi⟩} with probabilities
pi. Therefore, our knowledge of the system is given by an ensemble
of pure states described by the set {∣ψi⟩, pi}. If more than one pi is
different from zero, the state is not pure anymore and it is called a
mixed state. The mathematical tool that describes our knowledge of
the system, in this case, is the density operator (or density matrix),

ρ ≡∑
i

pi∣ψi⟩⟨ψi∣. (1)

Density matrices are bounded operators that fulfill two mathemati-
cal conditions,

1. A density matrix ρ has unit trace (Tr[ρ] = 1).
2. A density matrix is a positive matrix ρ > 0.

Any operator fulfilling these two properties is considered a density
operator. It can be proved trivially that density matrices are also
Hermitian.

If we are given a density matrix, it is easy to verify if it belongs
to a pure or a mixed state. For pure states, and only for them, Tr[ρ2]
= Tr[ρ] = 1. Therefore, if Tr[ρ2] < 1, the system is mixed. The quan-
tity Tr[ρ2] is called the purity of the states, and it fulfills the bounds
1
d ≤ Tr[ρ2] ≤ 1, being d the dimension of the Hilbert space.

If we fix an arbitrary basis {∣i⟩}N
i=1 of the Hilbert space, the

density matrix in this basis is written as ρ = ∑N
i,j=1 ρi,j∣i⟩⟨ j∣ or

ρ =
⎛
⎜⎜⎜
⎝

ρ00 ρ01 ⋯ ρ0N
ρ10 ρ11 ⋯ ρ1N
⋮ ⋮ ⋱ ⋮
ρN0 ρN1 ⋯ ρNN

⎞
⎟⎟⎟
⎠

, (2)

where the diagonal elements are called populations (ρii ∈ R+
0 and

∑i ρi,i = 1), while the off-diagonal elements are called coherences
(ρi,j ∈ C and ρi,j = ρ∗j,i). Note that this notation is base-dependent.

Example 1: State of a two-leve system (qubit).
The Hilbert space of a two-level system is just the two-

dimensional linear space H2. Examples of this kind of system are
1
2 -spins and two-level atoms. We can define a basis of it by the
orthonormal vectors, {∣0⟩, ∣1⟩}. A pure state of the system would be
any unit vector of H2. It can always be expressed as |ψ⟩ = a|0⟩ + b|1⟩
with a, b ∈ C s.t. |a|2 + |b|2 = 1.

A mixed state is therefore represented by a positive unit trace
operator ρ ∈ O(H2),

ρ = (ρ00 ρ01
ρ10 ρ11

) = ρ00∣0⟩⟨0∣ + ρ01∣0⟩⟨1∣ + ρ10∣1⟩⟨0∣ + ρ11∣1⟩⟨1∣, (3)

and it should fulfill ρ00 + ρ11 = 1 and ρ01 = ρ∗10.
End of example.

Once we know the state of a system, it is natural to ask about
the possible outcomes of experiments (see Ref. 23, Sec. 1.4).

Postulate 2. All possible measurements in a quantum system are
described by a Hermitian operator or observable. Due to the spectral
theorem, we know that any observable O has a spectral decomposition
in the form (for simplicity, we assume a nondegenerated spectrum)

O =∑
i

ai∣ai⟩⟨ai∣, (4)

being ai ∈ R the eigenvalues of the observable and |ai⟩ their corre-
sponding eigenvectors. The probability of obtaining the result ai when
measuring the property described by observable O in a state |ψ⟩ is
given by

P(ai) = ∣⟨ψ∣ai⟩∣2. (5)

After the measurement, we obtain the state |ai⟩ if the outcome ai was
measured. This is called the postmeasurement state.

This postulate allows us to calculate the possible outputs of
a system, the probability of these outcomes, as well as the after-
measurement state. A measurement usually changes the state, as it
can only remain unchanged if it was already in an eigenstate of the
observable.

It is possible to calculate the expectation value of the outcome of
a measurement defined by operator O in a state |ψ⟩ by just applying
the simple formula,

⟨O⟩ = ⟨ψ∣O∣ψ⟩. (6)

With a little algebra, we can translate this postulate to mixed states.
In this case, the probability of obtaining an output ai that corre-
sponds to an eigenvector |ai⟩ is

P(ai) = Tr[∣ai⟩⟨ai∣ρ], (7)

and the expectation value of operator O is

⟨O⟩ = Tr[Oρ]. (8)

Example 2: Measurement in a two-level system.
A possible test to perform in our minimal model is to measure

the energetic state of a system, assuming that both states have a dif-
ferent energy. The observable corresponding to this measurement
would be

H = E0∣0⟩⟨0∣ + E1∣1⟩⟨1∣. (9)

This operator has two eigenvalues {E0, E1} with two corresponding
eigenvectors {∣0⟩, ∣1⟩}.

If we have a pure state ψ = a|0⟩ + b|1⟩, the probability of mea-
suring the energy E0 would be P(E0) = |⟨0|ψ⟩|2 = |a|2. The probability
of finding E1 would be P(E1) = |⟨1|ψ⟩|2 = |b|2. The expected value of
the measurement is ⟨H⟩ = E0|a|2 + E1|b|2.

In the more general case of having a mixed state ρ = ρ00|0⟩⟨0|
+ ρ01|0⟩⟨1| + ρ10|1⟩⟨0| + ρ11|1⟩⟨1|, the probability of finding the
ground state energy is P(0) = Tr[∣0⟩⟨0∣ρ] = ρ00 and the expected
value of the energy would be ⟨H⟩ = Tr[Hρ] = E0ρ00 + E1ρ11.
End of example.

Another natural question to ask is how quantum systems
evolve. The time-evolution of a pure state of a closed quantum
system is given by the Schrödinger equation (see Ref. 24, Sec. 2.9).

Postulate 3. Time evolution of a pure state of a closed quantum
system is given by the Schrödinger equation,

d
dt
∣ψ(t)⟩ = −ih̵H∣ψ(t)⟩, (10)

where H is the Hamiltonian of the system and it is a Hermitian oper-
ator of the Hilbert space of the system state (from now on we avoid
including Planck’s constant by selecting the units such that h̵ = 1).
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The Hamiltonian of a system is the operator corresponding to
its energy, and it can be nontrivial to realize.

The Schrödinger equation can be formally solved in the follow-
ing way. If at t = 0, the state of a system is given by |ψ(0)⟩; at time t,
it will be

∣ψ(t)⟩ = e−iHt ∣ψ(0)⟩. (11)

As H is a Hermitian operator, the operator U = e−iHt is unitary. This
gives us another way of phrasing postulate 3.

Postulate 3′. The evolution of a closed system is given by a
unitary operator of the Hilbert space of the system,

∣ψ(t)⟩ = U∣ψ(0)⟩, (12)

with U ∈ B(H) s.t. UU† = U†U = 𝟙.

It is easy to prove that unitary operators preserve the norm of
vectors and, therefore, transform pure states into pure states. As we
did with the state of a system, it is reasonable to wonder if any unitary
operator corresponds to the evolution of a real physical system. The
answer is yes.

Lemma 1. All unitary evolutions of a state belonging to a finite
Hilbert space can be constructed in several physical realizations such
as photons and cold atoms.

The proof of this lemma can be found in Ref. 22.
The time evolution of a mixed state can be calculated just by

combining Eqs. (10) and (1), giving the von Neumann equation

ρ̇ = −i[H, ρ] ≡ Lρ, (13)

where we have used the commutator [A, B] = AB − BA and L is the
so-called Liouvillian superoperator.

It is easy to prove that the Hamiltonian dynamics does not
change the purity of a system,

d
dt

Tr[ρ2] = Tr[dρ2

dt
] = Tr[2ρρ̇] = −2iTr[ρ(Hρ − ρH)] = 0, (14)

where we have used the cyclic property of the trace. This result illus-
trates that the mixing rate of a state does not change due to the
quantum evolution.

Example 3: Time evolution of a two-level system.
The evolution of our isolated two-level system is described by

its Hamiltonian,

Hfree = E0∣0⟩⟨0∣ + E1∣1⟩⟨1∣. (15)

As the states |0⟩ and |1⟩ are Hamiltonian eigenstates, if at t = 0 the
atom is at the excited state |ψ(0)⟩ = |1⟩ after a time t, the state would
be ∣ψ(t)⟩ = e−iHt ∣1⟩ = e−iE1t ∣1⟩.

As the system was already in an eigenvector of the Hamilto-
nian, its time-evolution consists only in adding a phase to the state,
without changing its physical properties. (If an excited state does not
change, why do atoms decay?) Without losing any generality, we can
fix the energy of the ground state as zero, obtaining

Hfree = E∣1⟩⟨1∣, (16)

with E ≡ E1.
To make the model more interesting, we can include a driving

that coherently switches between both states. The total Hamiltonian
would be then

H = E∣1⟩⟨1∣ + Ω(∣0⟩⟨1∣ + ∣1⟩⟨0∣), (17)

where Ω is the frequency of driving.
By using the von Neumann equation (13), we can calculate

the populations (ρ00, ρ11) as a function of time. The system is
then driven between the states, and the populations present Rabi
oscillations, as it is shown in Fig. 2.
End of example.

Finally, as we are interested in composite quantum systems, we
need to postulate how to work with them.

Postulate 4. The state-space of a composite physical system,
composed by N subsystems, is the tensor product of the state space
of each component H = H1 ⊗H2 ⊗ ⋯ ⊗HN . The state of the com-
posite physical system is given by a unit vector of H. Moreover, if each
subsystem belonging to Hi is prepared in the state |ψi⟩, the total state
is given by |ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗⋯⊗|ψN⟩.

The symbol ⊗ represents the tensor product of Hilbert spaces,
vectors, and operators. If we have a composited mixed state where
each component is prepared in the state ρi, the total state is given by
ρ = ρ1 ⊗ ρ2 ⊗⋯⊗ ρN .

States that can be expressed in the simple form |ψ⟩ = |ψ1⟩ ⊗
|ψ2⟩, in any specific basis, are very particular and they are called sep-
arable states.38 In general, any arbitrary state should be described
as |ψ⟩ = ∑i ,j|ψi⟩ ⊗ |ψj⟩ (or ρ = ∑i ,jρi ⊗ ρj for mixed states).
Nonseparable states are called entangled states.

Now, that we know how to compose systems, but we can be
interested in going the other way around. If we have a system belong-
ing to a bipartite Hilbert space in the form H = Ha ⊗Hb, we can be
interested in studying some properties of the subsystem correspond-
ing to one of the subspaces. To do so, we define the reduced density
matrix. If the state of our system is described by a density matrix
ρ, the reduced density operator of the subsystem a is defined by the
operator,

ρa ≡ Trb[ρ], (18)

FIG. 2. Population dynamics under a quantum dynamics (parameters are Ω = 1
and E = 1). The blue line represents ρ11 and the orange one ρ00.
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where Trb is the partial trace over subspace b and it is defined as22

Trb

⎡⎢⎢⎢⎢⎣
∑
i,j,k,l
∣ai⟩⟨aj∣⊗ ∣bk⟩⟨bl∣

⎤⎥⎥⎥⎥⎦
≡∑

i,j
∣ai⟩⟨aj∣Tr

⎡⎢⎢⎢⎢⎣
∑
k,l
∣bk⟩⟨bl∣

⎤⎥⎥⎥⎥⎦
. (19)

The concepts of reduced density matrix and partial trace are essen-
tial in the study of open quantum systems. If we want to calculate
the equation of motions of a system affected by an environment, we
should trace out this environment and deal only with the reduced
density matrix of the system. This is the main idea of the theory of
open quantum systems.

Example 4: Two two-level atoms.
If we have two two-level systems, the total Hilbert space is given

by H = H2 ⊗ H2. A basis of this Hilbert space would be given by
the set {∣00⟩ ≡ ∣0⟩1 ⊗ ∣0⟩2, ∣01⟩ ≡ ∣0⟩1 ⊗ ∣1⟩2, ∣10⟩ ≡ ∣1⟩1 ⊗ ∣0⟩2,
∣11⟩ ≡ ∣1⟩1 ⊗ ∣1⟩2}. If both systems are in their ground state, we can
describe the total state by the separable vector,

∣ψ⟩G = ∣00⟩. (20)

A more complex, but still separable, state can be formed if both
systems are in superposition,

∣ψ⟩S =
1√
2
(∣0⟩1 + ∣1⟩1)⊗

1√
2
(∣0⟩2 + ∣1⟩2)

= 1
2
(∣00⟩ + ∣10⟩ + ∣01⟩ + ∣11⟩). (21)

An entangled state would be

∣ψ⟩E =
1√
2
(∣00⟩ + ∣11⟩). (22)

This state cannot be separated into a direct product of each subsys-
tem. If we want to obtain a reduced description of subsystem 1 (or
2), we have to use the partial trace. To do so, we need first to calculate
the density matrix corresponding to the pure state |ψ⟩E,

ρE = ∣ψ⟩⟨ψ∣E =
1
2
(∣00⟩⟨00∣ + ∣00⟩⟨11∣ + ∣11⟩⟨00∣ + ∣11⟩⟨11∣). (23)

We can now calculate the reduced density matrix of the subsystem 1
by using the partial trace,

ρ(1)E = ⟨0∣2ρE∣0⟩2 + ⟨1∣2ρE∣1⟩2 =
1
2
(∣00⟩⟨00∣1 + ∣11⟩⟨11∣2). (24)

From this reduced density matrix, we can calculate all the measure-
ment statistics of subsystem 1.
End of example.

IV. THE FOCK-LIOUVILLE HILBERT SPACE.
THE LIOUVILLE SUPEROPERATOR

In this section, we revise a useful framework for both analytical
and numerical calculations. It is clear that some linear combinations
of density matrices are valid density matrices (as long as they pre-
serve positivity and trace 1). Because of that, we can create a Hilbert
space of density matrices just by defining a scalar product.39 This
allows us to define a linear space of matrices, converting the matri-
ces effectively into vectors (ρ → |ρ⟩⟩). This is called Fock-Liouville
space (FLS). The usual definition of the scalar product of matrices

ϕ and ρ is defined as ⟨⟨ϕ∣ρ⟩⟩ ≡ Tr[ϕ†ρ]. The Liouville superopera-
tor from Eq. (13) is now an operator acting on the Hilbert space of
density matrices. The main utility of the FLS is to allow the matrix
representation of the evolution operator.

Example 5: Time evolution of a two-level atom.
The density matrix of our system (25) can be expressed in the

FLS as

∣ρ⟩⟩ =
⎛
⎜⎜⎜
⎝

ρ00
ρ01
ρ10
ρ11

⎞
⎟⎟⎟
⎠

. (25)

The time evolution of a mixed state is given by the von Neumann
equation (13). The Liouvillian superoperator can now be expressed
as a matrix,

L̃ =
⎛
⎜⎜⎜
⎝

0 iΩ −iΩ 0
iΩ iE 0 −iΩ
−iΩ 0 −iE iΩ

0 −iΩ iΩ 0

⎞
⎟⎟⎟
⎠

, (26)

where each row is calculated just by observing the output of the
operation −i[H, ρ] in the computational basis of the density matri-
ces space. The time evolution of the system now corresponds to the
matrix equation d∣ρ⟩⟩

dt = L̃∣ρ⟩⟩, which in matrix notation would be

⎛
⎜⎜⎜
⎝

ρ̇00
ρ̇01
ρ̇10
ρ̇11

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

0 iΩ −iΩ 0
iΩ iE 0 −iΩ
−iΩ 0 −iE iΩ

0 −iΩ iΩ 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

ρ00
ρ01
ρ10
ρ11

⎞
⎟⎟⎟
⎠

. (27)

End of example.

V. CPT-MAPS AND THE LINDBLAD MASTER EQUATION
A. Completely positive maps

The problem we want to study is to find the most general
Markovian transformation set between density matrices. Until now,
we have seen that quantum systems can evolve in two ways by a
coherent evolution (postulate 3) and by collapsing after a measure-
ment (postulate 2). Many efforts have been made to unify these two
ways of evolving,16 without giving a definite answer so far. It is rea-
sonable to ask what is the most general transformation that can be
performed in a quantum system and what is the dynamical equation
that describes this transformation.

We are looking for maps that transform density matrices into
density matrices. We define ρ(H) as the space of all density matri-
ces in the Hilbert space H. Therefore, we are looking for a map of
this space onto itself, V : ρ(H) → ρ(H). To ensure that the out-
put of the map is a density matrix, this should fulfill the following
properties:

● Trace preserving. Tr[VA] = Tr[A], ∀A ∈ O(H).
● Completely positive (see below).

Any map that fulfills these two properties is called a completely
positive and trace-preserving map (CPT-maps). The first property
is quite apparent, and it does not require more thinking. The sec-
ond one is a little more complicated, and it requires an intermediate
definition.
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Definition 1. A map V is positive iff ∀A ∈ B(H) s.t. A ≥ 0 ⇒
VA ≥ 0.

This definition is based on the idea that, as density matrices are
positive, any physical map should transform positive matrices into
positive matrices. One could naively think that this condition must
be sufficient to guarantee the physical validity of a map; it is not.
As we know, there exist composite systems, and our density matrix
could be the partial trace of a more complicated state. Because of
that, we need to impose a more general condition.

Definition 2. A map V is completely positive iff ∀n ∈ N, V⊗ 𝟙n
is positive.

To prove that not all positive maps are completely positive, we
need a counterexample. A canonical example of an operation that
is positive but fails to be completely positive is the matrix transpo-
sition. If we have a Bell state in the form ∣ψB⟩ = 1

√
2
(∣01⟩ + ∣10⟩), its

density matrix can be expressed as

ρB =
1
2
(∣0⟩⟨0∣⊗ ∣1⟩⟨1∣ + ∣1⟩⟨1∣⊗ ∣0⟩⟨0∣ + ∣0⟩⟨1∣⊗ ∣1⟩⟨0∣ + ∣1⟩⟨0∣⊗ ∣0⟩⟨1∣),

(28)
with a matrix representation

ρB =
1
2
{(1 0

0 0)⊗ (
0 0
0 1) + (0 0

0 1)⊗ (
1 0
0 0)

⊗(0 0
1 0)⊗ (

0 1
0 0) + (0 1

0 0)⊗ (
0 0
1 0)}. (29)

A little algebra shows that the full form of this matrix is

ρB =
⎛
⎜⎜⎜
⎝

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎞
⎟⎟⎟
⎠

, (30)

and it is positive.
It is easy to check that the transformation 𝟙 ⊗ T2, meaning

that we transpose the matrix of the second subsystem leads to a
nonpositive matrix

(𝟙⊗ T2)ρB =
1
2
{(1 0

0 0)⊗ (
0 1
0 0) + (0 0

0 1)⊗ (
0 0
1 0)

⊗(0 0
1 0)⊗ (

0 0
1 0) + (0 0

0 1)⊗ (
0 1
0 0)}. (31)

The total matrix is

(𝟙⊗ T2)ρB =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎞
⎟⎟⎟
⎠

, (32)

with −1 as an eigenvalue. This example illustrates how the non-
separability of quantum mechanics restricts the operations we can
perform in a subsystem. By imposing these two conditions, we can
derive a unique master equation as the generator of any possible
Markovian CPT-map.

B. Derivation of the Lindblad equation from
microscopic dynamics

The most common derivation of the Lindblad master equation
is based on open quantum theory. The Lindblad equation is then
an effective motion equation for a subsystem that belongs to a more
complicated system. This derivation can be found in several text-
books such as Breuer and Petruccione’s2 as well as Gardiner and
Zoller’s.1 Here, we follow the derivation presented in Ref. 26. Our
initial point is displayed in Fig. 3. A total system belonging to a
Hilbert space HT is divided into our system of interest, belonging
to a Hilbert space H, and the environment living in HE.

The evolution of the total system is given by the von Neumann
equation (13),

ρ̇T(t) = −i[HT , ρT(t)]. (33)

As we are interested in the dynamics of the system, without the
environment, we trace over the environment degrees of freedom to
obtain the reduced density matrix of the system ρ(t) = TrE[ρT]. To
separate the effect of the total Hamiltonian in the system and the
environment, we divide it in the form HT = HS⊗𝟙E +𝟙S⊗HE +αHI ,
with H ∈ H, HE ∈ HE, and HI ∈ HT , and being α a measure of the
strength of the system-environment interaction. Therefore, we have
a part acting on the system, a part acting on the environment, and
the interaction term. Without losing any generality, the interaction
term can be decomposed in the following way:

HI =∑
i

Si ⊗ Ei, (34)

with Si ∈ B(H) and Ei ∈ B(HE).40

To better describe the dynamics of the system, it is use-
ful to work in the interaction picture (see Ref. 24 for a detailed

FIG. 3. A total system (belonging to a Hilbert space HT , with states described by
density matrices ρT , and with dynamics determined by a Hamiltonian HT ) divided
into the system of interest, “system,” and the environment.
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explanation about Schrödinger, Heisenberg, and interaction pic-
tures). In the interaction picture, density matrices evolve with time
due to the interaction Hamiltonian, while operators evolve with
the system and environment Hamiltonian. An arbitrary operator
O ∈ B(HT) is represented in this picture by the time-dependent
operator Ô(t), and its time evolution is

Ô(t) = ei(H+HE)t O e−i(H+HE)t . (35)

The time evolution of the total density matrix is given in this
picture by

dρ̂T(t)
dt

= −iα[ĤI(t), ρ̂T(t)]. (36)

This equation can be easily integrated to give

ρ̂T(t) = ρ̂T(0) − iα∫
t

0
ds[ĤI(s), ρ̂T(s)]. (37)

By this formula, we can obtain the exact solution, but it still has the
complication of calculating an integral in the total Hilbert space. It
is also a troublesome fact that the state ρ̃(t) depends on the integra-
tion of the density matrix in all previous time. To avoid that, we can
introduce Eq. (37) into Eq. (36) giving

dρ̂T(t)
dt

= −iα[ĤI(t), ρ̂T(0)] − α2 ∫
t

0
ds[ĤI(t), [ĤI(s), ρ̂T(s)]].

(38)

By applying this method one more time, we obtain

dρ̂T(t)
dt

= −iα[ĤI(t), ρ̂T(0)]

−α2 ∫
t

0
ds[ĤI(t), [ĤI(s), ρ̂T(t)]] + O(α3). (39)

After this substitution, the integration of the previous states of the
system is included only in the terms that are O(α3) or higher. At this
moment, we perform our first approximation by considering that the
strength of the interaction between the system and the environment
is small. Therefore, we can avoid high-orders in Eq. (39). Under this
approximation, we have

dρ̂T(t)
dt

= −iα[ĤI(t), ρ̂T(0)] − α2 ∫
t

0
ds[ĤI(t), [ĤI(s), ρ̂T(t)]].

(40)

We are interested in finding an equation of motion for ρ, so we trace
over the environment degrees of freedom,

dρ̂(t)
dt
= TrE[

dρ̂T(t)
dt
] = −iαTrE[ĤI(t), ρ̂T(0)]

−α2 ∫
t

0
dsTrE[ĤI(t), [ĤI(s), ρ̂T(t)]]. (41)

This is not a closed time-evolution equation for ρ̂(t) because the
time derivative still depends on the full density matrix ρ̂T(t). To
proceed, we need to make two more assumptions. First, we assume
that at t = 0 the system and the environment have a separable state
in the form ρT(0) = ρ(0) ⊗ ρE(0). This means that there are not
correlations between the system and the environment. This may be
the case if the system and the environment have not interacted at

previous times or if the correlations between them are short-lived.
Second, we assume that the initial state of the environment is ther-
mal, meaning that it is described by a density matrix in the form
ρE(0) = exp(−HE/T)/Tr[exp(−HE/T)], being T the temperature
and taking the Boltzmann constant as kB = 1. By using these assump-
tions, and the expansion of HI (34), we can calculate an expression
for the first element of the rhs of Eq. (41),

TrE[ĤI(t), ρ̂T(0)] =∑
i
(Ŝi(t)ρ̂(0)TrE[Êi(t)ρ̂E(0)]

− ρ̂(0)Ŝi(t)TrE[ρ̂E(0)Êi(t)]). (42)

To calculate the explicit value of this term, we may use that ⟨Ei⟩
= Tr[EiρE(0)] = 0 for all values of i. This looks like a strong
assumption, but it is not. If our total Hamiltonian does not fulfill
it, we can always rewrite it as HT = (H + α∑i⟨Ei⟩Si) + HE + αH′i ,
with H′i = ∑i Si ⊗ (Ei − ⟨Ei⟩). It is clear that now ⟨E′i⟩ = 0, with
E′i = Ei − ⟨Ei⟩, and the system Hamiltonian is changed just by the
addition of an energy shift that does not affect the system dynamics.
Because of that, we can assume that ⟨Ei⟩ = 0 for all i. Using the cyclic
property of the trace, it is easy to prove that the term of Eq. (42) is
equal to zero and the equation of motion (41) reduces to

˙̂ρ(t) = −α2 ∫
t

0
dsTrE[ĤI(t), [ĤI(s), ρ̂T(t)]]. (43)

This equation still includes the entire state of the system and envi-
ronment. To unravel the system from the environment, we have to
make a more restrictive assumption. As we are working in the weak
coupling regime, we may suppose that the system and the environ-
ment are noncorrelated during all the time evolution. Of course,
this is only an approximation. Due to the interaction Hamiltonian,
some correlations between system and environment are expected to
appear. On the other hand, we may assume that the time scales of
correlation (τcorr) and relaxation of the environment (τrel) are much
smaller than the typical system time scale (τsys), as the coupling
strength is very small (α≪). Therefore, under this strong assump-
tion, we can assume that the environment state is always thermal
and is decoupled from the system state, ρ̂T(t) = ρ̂(t) ⊗ ρ̂E(0).
Equation (43) then transforms into

˙̂ρ(t) = −α2 ∫
t

0
dsTrE[ĤI(t), [ĤI(s), ρ̂(t)⊗ ρ̂E(0)]]. (44)

The equation of motion is now independent for the system and local
in time. It is still non-Markovian, as it depends on the initial state
preparation of the system. We can obtain a Markovian equation by
realizing that the kernel in the integration decays fast enough and
that we can extend the upper limit of the integration to infinity
with no real change in the outcome. By doing so, and by chang-
ing the integral variable to s → t − s, we obtain the famous Redfield
equation41

˙̂ρ(t) = −α2 ∫
∞

0
dsTrE[ĤI(t), [ĤI(s − t), ρ̂(t)⊗ ρ̂E(0)]]. (45)

It is known that this equation does not warrant the positivity of the
map, and it sometimes gives rise to density matrices that are nonpos-
itive. To ensure complete positivity, we need to perform one further
approximation, the rotating wave approximation. To do so, we need
to use the spectrum of the superoperator H̃A ≡ [H, A], ∀A ∈ B(H).
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The eigenvectors of this superoperator form a complete basis of
space B(H), and, therefore, we can expand the system-environment
operators from Eq. (34) in this basis,

Si =∑
ω

Si(ω), (46)

where the operators Si(ω) fulfill

[H, Si(ω)] = −ωSi(ω), (47)

being ω the eigenvalues of H̃. It is easy to take also the Hermitian
conjugated

[H, S†
i (ω)] = ωS†

i (ω). (48)

To apply this decomposition, we need to change back to the
Schrödinger picture for the term of the interaction Hamiltonian act-
ing on the system’s Hilbert space. This is done by the expression Ŝk
= eitHSke−itH . By using the eigenexpansion (46), we arrive to

H̃i(t) =∑
k,ω

e−iωtSk(ω)⊗ Ẽk(t) =∑
k,ω

eiωtS†
k(ω)⊗ Ẽ†

k(t). (49)

To combine this decomposition with Redfield equation(45), we first
may expand the commutators,

˙̂ρ(t) = −α2Tr[∫
∞

0
ds ĤI(t)ĤI(t − s)ρ̂(t)⊗ ρ̂E(0)

−∫
∞

0
ds ĤI(t)ρ̂(t)⊗ ρ̂E(0)ĤI(t − s)

−∫
∞

0
ds ĤI(t − s)ρ̂(t)⊗ ρ̂E(0)ĤI(t)

+∫
∞

0
ds ρ̂(t)⊗ ρ̂E(0)ĤI(t − s)ĤI(t)]. (50)

We now apply the eigenvalue decomposition in terms of Sk(ω) for
ĤI(t − s) and in terms of S†

k(ω
′) for ĤI(t). By using the permutation

property of the trace and the fact that [HE, ρE(0)] = 0, and after
some nontrivial algebra, we obtain

˙̂ρ(t) = ∑
ω,ω′
k,l

(ei(ω′−ω)t Γkl(ω)[Sl(ω)ρ̂(t), S†
k(ω

′)]

+ ei(ω−ω′)t Γ∗lk(ω′)[Sl(ω), ρ̂(t)S†
k(ω

′)]), (51)

where the effect of the environment has been absorbed into the
factors,

Γkl(ω) ≡ ∫
∞

0
ds eiωsTrE[Ẽ†

k(t)Ẽl(t − s)ρE(0)], (52)

where we are writing the environment operators of the interaction
Hamiltonian in the interaction picture (Êl(t) = eiHEtEle−iHEt). At
this point, we can already perform the rotating wave approxima-
tion. By considering the time-dependency on Eq. (51), we conclude
that the terms with ∣ω − ω′∣ ≫ α2 will oscillate much faster than
the typical time scale of the system evolution. Therefore, they do not
contribute to the evolution of the system. In the low-coupling regime

(α→ 0), we can consider that only the resonant terms, ω = ω′, con-
tribute to the dynamics and remove all the others. By applying this
approximation to Eq. (51) reduces to

˙̂ρ(t) =∑
ω
k,l

(Γkl(ω)[Sl(ω)ρ̂(t), S†
k(ω)] + Γ∗lk(ω)[Sl(ω), ρ̂(t)S†

k(ω)]).

(53)

To divide the dynamics into Hamiltonian and non-Hamiltonian,
we now decompose the operators Γkl into Hermitian and non-
Hermitian parts, Γkl(ω) = 1

2γkl(ω) + iπkl, with

πkl(ω) ≡
−i
2
(Γkl(ω) − Γ∗kl(ω)),

γkl(ω) ≡ Γkl(ω) + Γ∗kl(ω) = ∫
∞

−∞
dseiωsTr[Ê†

k(s)Elρ̂E(0)].
(54)

By these definitions, we can separate the Hermitian and non-
Hermitian parts of the dynamics and we can transform back to the
Schrödinger picture,

ρ̇(t) = −i[H + HLs, ρ(t)] +∑
ω
k,l

γkl(ω)

×(Sl(ω)ρ(t)S†
k(ω) −

1
2
{S†

kSl(ω), ρ(t)}). (55)

The Hamiltonian dynamics now is influenced by a term HLs =
∑ω,k,l πkl(ω)S†

k(ω)Sl(ω). This is usually called a Lamb shift Hamil-
tonian, and its role is to renormalize the system energy levels due to
the interaction with the environment. Equation (55) is the first ver-
sion of the Markovian master equation, but it is not in the Lindblad
form yet.

It can be easily proved that the matrix formed by the coef-
ficients γkl(ω) is positive as they are the Fourier’s transform of a
positive function (Tr[Ê†

k(s)Elρ̂E(0)]). Therefore, this matrix can be
diagonalized. This means that we can find a unitary operator, O, s.t.

Oγ(ω)O† =
⎛
⎜⎜⎜
⎝

d1(ω) 0 ⋯ 0
0 d2(ω) ⋯ 0
⋮ ⋮ ⋱ 0
0 0 ⋯ dN(ω)

⎞
⎟⎟⎟
⎠

. (56)

We can now write the master equation in a diagonal form,

ρ̇(t) = −i[H + HLs, ρ(t)]

+∑
i,ω
(Li(ω)ρ(t)L†

i (ω) −
1
2
{L†

i Li(ω), ρ(t)}) ≡ Lρ(t). (57)

This is the celebrated Lindblad (or Lindblad-Gorini-Kossakowski-
Sudarshan) master equation. In the simplest case, there will be
only one relevant frequency ω and the equation can be further
simplified to

ρ̇(t) = −i[H + HLs, ρ(t)] +∑
i
(Liρ(t)L†

i −
1
2
{L†

i Li, ρ(t)}) ≡ Lρ(t).

(58)

The operators Li are usually referred to as jump operators.
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C. Derivation of the Lindblad equation as a CPT
generator

The second way of deriving the Lindblad equation comes from
the following question: What is the most general (Markovian) way
of mapping density matrix onto density matrices? This is usually the
approach from quantum information researchers that look for gen-
eral transformations of quantum systems. We analyze this problem
following mainly Ref. 28.

To start, we need to know what is the form of a general
CPT-map.

Lemma 2. Any map V : B(H) → B(H) that can be written in
the form Vρ = V†ρV with V ∈ B(H) is positive.

The proof of the lemma requires a little algebra and a known
property of normal matrices.

Proof. If ρ ≥ 0 ⇒ ρ = A†A, with A ∈ B(H). Therefore, Vρ =
V†ρV ⇒ ⟨ψ∣V†ρV ∣ψ⟩ = ⟨ψ∣V†A†AV ∣ψ⟩ = ∣∣AV ∣ψ⟩∣∣ ≥ 0. Therefore,
if ρ is positive, the output of the map is also positive.
End of the proof.

This is a sufficient condition for the positivity of a map, but it
is not necessary. It could happen that there are maps that cannot be
written in this form, but they are still positive. To go further, we need
a more general condition and this comes in the form of the following
theorem:

Theorem 1. Choi’s theorem.
A linear map V : B(H) → B(H) is completely positive iff it can

be expressed as

Vρ =∑
i

V†
i ρVi, (59)

with Vi ∈ B(H).

The proof of this theorem requires some algebra.

Proof. The “if” implication is a trivial consequence of Lemma
2. To prove the converse, we need to extend the dimension of our
system by the use of an auxiliary system. If d is the dimension of the
Hilbert space of pure states, H, we define a new Hilbert space of the
same dimension HA.

We define a maximally entangled pure state in the bipartition
HA ⊗H in the way,

∣Γ⟩ ≡
d−1

∑
i=0
∣i⟩A ⊗ ∣i⟩, (60)

being {∣i⟩} and {∣i⟩A} arbitrary orthonormal bases for H and HA,
respectively.

We can extend the action of our original map V that acts on
B(H) to our extended Hilbert space by defining the map V2 :
B(HA)⊗ B(H)→ B(HA)⊗ B(H) as

V2 ≡ 𝟙B(HA) ⊗ V. (61)

Note that the idea behind this map is to leave the auxiliary subsystem
invariant while applying the original map to the original system. This

map is positive because V is completely positive. This may appear
trivial, but as it has been explained before complete positivity is a
more restrictive property than positivity, and we are looking for a
condition to ensure complete positivity.

We can now apply the extended map to the density matrix
corresponding to the maximally entangled state (60), obtaining

V2∣Γ⟩⟨Γ∣ =
d−1

∑
i,j=0
∣i⟩⟨j∣⊗ V∣i⟩⟨j∣. (62)

Now, we can use the maximal entanglement of the state |Γ⟩ to relate
the original map V and the action V2∣Γ⟩⟨Γ∣ by taking the matrix
elements with respect to HA,

V∣i⟩⟨j∣ = ⟨i∣A(V2∣Γ⟩⟨Γ∣)∣ j⟩A. (63)

To relate this operation to the action of the map to an arbitrary
vector ∣ψ⟩ ∈ HA ⊗H, we can expand it in this basis as

∣ψ⟩ =
d−1

∑
i=0

d−1

∑
j=0

αij∣i⟩A ⊗ ∣ j⟩. (64)

We can also define an operator V∣ψ⟩ ∈ B(H) s.t. it transforms |Γ⟩ into
|ψ⟩. Its explicit action would be written as

(𝟙A ⊗ V∣ψ⟩)∣Γ⟩ =
d−1

∑
i,j=0

αij(𝟙A ⊗ ∣ j⟩⟨i∣)(
d−1

∑
k=0
∣k⟩⊗ ∣k⟩)

=
d−1

∑
i,j,k=0

αij(∣k⟩⊗ ∣ j⟩)⟨i∣k⟩ =
d−q

∑
i,j,k=0

αij(∣k⟩⊗ ∣ j⟩)δi,k

=
d−1

∑
i,j=0

αij∣i⟩⊗ ∣j⟩ = ∣ψ⟩. (65)

At this point, we have related the vectors in the extended space HA⊗
H to operators acting onH. This can only be done because the vector
|Γ⟩ is maximally entangled. We go now back to our extended mapV2.
Its action on |Γ⟩⟨Γ| is given by Eq. (62), and as it is a positive map, it
can be expanded as

V2(∣Γ⟩⟨Γ∣) =
d2
−1

∑
l=0
∣vl⟩⟨vl∣, (66)

with ∣vl⟩ ∈ HA ⊗H. The vectors |vl⟩ can be related to operators in H
as in Eq. (65),

∣vl⟩ = (𝟙A ⊗ Vl)∣Γ⟩. (67)

Based on this result, we can calculate the product of an arbitrary
vector ∣i⟩A ∈ HA, with |vl⟩,

⟨i∣A∣vl⟩ = ⟨i∣A(𝟙A ⊗ Vl)∣Γ⟩ = Vl

d−1

∑
k=0
⟨i∣k⟩A ⊗ ∣k⟩. (68)

This is the last ingredient we need for the proof.
We come back to the original question, we want to characterize

the map V. We do so by applying it to an arbitrary basis element
|i⟩⟨ j| of B(H),
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V(∣i⟩⟨j∣) = (⟨i∣A ⊗ 𝟙A)V2(∣Γ⟩⟨Γ∣)(∣ j⟩A ⊗ 𝟙A)

= (⟨i∣A ⊗ 𝟙A)
⎡⎢⎢⎢⎢⎣

d2
−1

∑
l=0
∣vl⟩⟨vl∣

⎤⎥⎥⎥⎥⎦
(∣ j⟩A ⊗ 𝟙A)

=
d2
−1

∑
l=0
[(⟨i∣A ⊗ 𝟙A)∣vl⟩][⟨vl∣(∣ j⟩A ⊗ 𝟙A)]

=
d2
−1

∑
l=0

V†
l ∣i⟩⟨j∣Vl. (69)

As |i⟩⟨ j| is an arbitrary element of a basis, any operator can be
expanded in this basis. Therefore, it is straightforward to prove that

Vρ =
d2
−l

∑
l

VlρV†
l .

End of the proof.

Thanks to Choi’s theorem, we know the general form of CP-
maps, but there is still an issue to address. As density matrices should
have trace one, we need to require any physical maps to be also
trace-preserving. This requirement gives as a new constraint that
completely defines all CPT-maps. This requirement comes from the
following theorem:

Theorem 2. Choi-Kraus’ theorem.
A linear map V : B(H)→ B(H) is completely positive and trace-

preserving iff it can be expressed as

Vρ =∑
l

V†
l ρVl, (70)

with Vl ∈ B(H) fulfilling

∑
l

VlV
†
l = 𝟙H. (71)

Proof. We have already proved that this is a completely positive
map and we only need to prove that it is also trace-preserving and
that all trace preserving-maps fulfill Eq. (71). The “if” proof is quite
simple by applying the cyclic permutations and linearity properties
of the trace operator,

Tr[Vρ] = Tr
⎡⎢⎢⎢⎢⎣

d2
−1

∑
l=1

V†
l ρVl

⎤⎥⎥⎥⎥⎦
= Tr
⎡⎢⎢⎢⎢⎣

⎛
⎝

d2
−1

∑
l=1

VlV
†
l
⎞
⎠
ρ
⎤⎥⎥⎥⎥⎦
= Tr[ρ]. (72)

We have to prove also that any map in the form (70) is trace-
preserving only if the operators V l fulfill (71). We start by stating
that if the map is trace-preserving by applying it to an any arbitrary
element of a basis of B(H), we should obtain

Tr[V(∣i⟩⟨j∣)] = Tr[∣i⟩⟨ j∣] = δi,j. (73)

As the map has a form given by (70), we can calculate this same trace
in an alternative way,

Tr[V(∣i⟩⟨j∣)] = Tr
⎡⎢⎢⎢⎢⎣

d2
−1

∑
l=1

V†
l ∣i⟩⟨j∣Vl

⎤⎥⎥⎥⎥⎦
= Tr
⎡⎢⎢⎢⎢⎣

d2
−1

∑
l=1

VlV
†
l ∣i⟩⟨j∣

⎤⎥⎥⎥⎥⎦

=∑
k
⟨k∣
⎛
⎝

d2
−1

∑
l=1

VlV
†
l ∣i⟩⟨j∣

⎞
⎠
∣k⟩ = ⟨j∣

⎛
⎝

d2
−1

∑
l=1

VlV
†
l
⎞
⎠
∣i⟩, (74)

where {∣k⟩} is an arbitrary basis of H. As both equalities should be
right, we obtain

⟨j∣
⎛
⎝

d2
−1

∑
l=1

VlV
†
l
⎞
⎠
∣i⟩ = δi,j, (75)

and therefore, condition (71) should be fulfilled.
End of the proof.

Operators V i of a map fulfilling condition (71) are called Krauss
operators. Because of that, sometimes CPT-maps are also called
Krauss maps, especially when they are presented as a collection of
Krauss operators. Both concepts are ubiquitous in quantum infor-
mation science. Krauss operators can also be time-dependent as long
as they fulfill relation (71) for all times.

At this point, we already know the form of CPT-maps, but we
do not have a master equation that is a continuous set of differential
equations. This means that we know how to perform an arbitrary
operation in a system, but we do not have an equation to describe
its time evolution. To do so, we need to find a time-independent
generator L such that

d
dt
ρ(t) = Lρ(t), (76)

and therefore our CPT-map could be expressed as V(t) = eLt . The
following calculation is about founding the explicit expression of L.
We start by choosing an orthonormal basis of the bounded space
of operators B(H), {Fi}d2

i=1. To be orthonormal, it should satisfy the
following condition:

⟨⟨Fi∣Fj⟩⟩ ≡ Tr[F†
i Fj] = δi,j. (77)

Without any loss of generality, we select one of the elements of the
basis to be proportional to the identity, Fd2 = 1

√
d
𝟙H. It is trivial to

prove that the norm of this element is one, and it is easy to see from
Eq. (77) that all the other elements of the basis should have trace
zero,

Tr[Fi] = 0 ∀i = 1, . . . , d2 − 1. (78)

The closure relation of this basis is 𝟙B(H) = ∑i ∣Fi⟩⟩⟨⟨Fi∣. Therefore,
the Krauss operators can be expanded in this basis by using the Fock-
Liouville notation,

Vl(t) =
d2

∑
i=1
⟨⟨Fi∣Vl(t)⟩⟩∣Fi⟩⟩. (79)

As the map V(t) is in the form (59), we can apply (79) to obtain (For
simplicity, in this discussion, we omit the explicit time-dependency
of the density matrix.)

V(t)ρ =∑
l

⎡⎢⎢⎢⎢⎣

d2

∑
i=1
⟨⟨Fi∣Vl(t)⟩⟩Fi ρ

d2

∑
j=1

F†
j ⟨⟨Vl(t)∣Fj⟩⟩

⎤⎥⎥⎥⎥⎦
=

d2

∑
i,j=1

ci,j(t)FiρF†
j ,

(80)

where we have absorbed the summation over the Krauss operators
in the terms ci ,j(t) = ∑l⟨⟨Fi|V l⟩⟩⟨⟨V l|Fj⟩⟩. We go back now to the
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original problem by applying this expansion into the time-derivative
of Eq. (76),

dρ
dt
= lim

Δt→0

1
Δt
(V(Δt)ρ − ρ) = lim

Δt→0

⎛
⎝

d2

∑
i,j=1

ci,j(Δt)FiρF†
j − ρ
⎞
⎠

= lim
Δt→0

⎛
⎝

d2
−1

∑
i,j=0

ci,j(Δt)FiρF†
j +

d2
−1

∑
i=1

ci,d2 FiρF†
d2

+
d2
−1

∑
j=1

cd2 ,j(Δt)Fd2ρF†
j + cd2 ,d2(Δt)Fd2ρF†

d2 − ρ
⎞
⎠

, (81)

where we have separated the summations to take into account that
Fd2 = 1

√
d
𝟙H. By using this property, this equation simplifies to

dρ
dt
= lim

Δt→0

1
Δt
⎛
⎝

d2
−1

∑
i,j=1

ci,j(Δt)FiρF†
j +

1√
d

d2
−1

∑
i=1

ci,d2(Δt)Fiρ

+
1√
d

d2
−1

∑
j=1

cd2 ,j(Δt)ρF†
j +

1
d

cd2 ,d2(Δt)ρ − ρ
⎞
⎠

. (82)

The next step is to eliminate the explicit dependence with time. To
do so, we define new constants to absorb all the time intervals,

gi,j ≡ lim
Δt→0

ci,j(Δt)
Δt

(i, j < d2),

gi,d2 ≡ lim
Δt→0

ci,d2(Δt)
Δt

(i < d2),

gd2 ,j ≡ lim
Δt→0

cd2 ,j(Δt)
Δt

( j < d2),

gd2 ,d2 ≡ lim
Δt→0

cd2 ,d2(Δt) − d
Δt

.

(83)

Introducing these coefficients in Eq. (82), we obtain an equation with
no explicit dependence in time,

dρ
dt
=

d2
−1

∑
i,j=1

gi,jFiρF†
j +

1√
d

d2
−1

∑
i=1

gi,d2 Fiρ +
1√
d

d2
−1

∑
j=1

gd2 ,jρF†
j +

gd2 ,d2

d
ρ.

(84)

As we are already summing up over all the Krauss operators, it is
useful to define a new operator,

F ≡ 1√
d

d2
−1

∑
i=1

gi,d2 Fi. (85)

Applying it to Eq. (82),

dρ
dt
=

d2
−1

∑
i,j=1

gi,jFiρF†
j + Fρ + ρF† +

gd2 ,d2

d
ρ. (86)

At this point, we want to separate the dynamics of the density matrix
into a Hermitian (equivalent to the von Neumann equation) and
an incoherent part. We split the operator F into two to obtain a
Hermitian and anti-Hermitian part,

F = F + F†

2
+ i

F − F†

2i
≡ G − iH, (87)

where we have used the notation H for the Hermitian part for
obvious reasons. If we take this definition to Eq. (86), we obtain

dρ
dt
=

d2
−1

∑
i,j=1

gi,jFiρF†
j + {G, ρ} − i[H, ρ] +

gd2 ,d2

d
ρ. (88)

We now define the last operator for this proof, G2 ≡ G + gd2 ,d2

2d , and
the expression of the time derivative leads to

dρ
dt
=

d2
−1

∑
i,j=1

gi,jFiρF†
j + {G2, ρ} − i[H, ρ]. (89)

Until now, we have imposed the complete positivity of the map, as
we have required it to be written in terms of Krauss maps, but we
have not used the trace-preserving property. We impose now this
property, and by using the cyclic property of the trace, we obtain a
new condition,

Tr[dρ
dt
] = Tr

⎡⎢⎢⎢⎢⎣

d2
−1

∑
i,j=1

F†
j Fiρ + 2G2ρ

⎤⎥⎥⎥⎥⎦
= 0. (90)

Therefore, G2 should fulfill

G2 =
1
2

d2
−1

∑
i,j=1

gi,jF†
j Fiρ. (91)

By applying this condition, we arrive at the Lindblad master
equation,

dρ
dt
= −i[H, ρ] +

d2
−1

∑
i,j=1

gi,j(FiρF†
j −

1
2
{F†

j Fi, ρ}). (92)

Finally, by definition of the coefficients, gi ,j can be arranged to form
a Hermitian, and therefore diagonalizable, matrix. By diagonalizing
it, we obtain the diagonal form of the Lindblad master equation,

d
dt
ρ = −i[H, ρ] +∑

k
Γk(LkρL†

k −
1
2
{LkL†

k , ρ}) ≡ Lρ. (93)

D. Properties of the Lindblad master equation
Some interesting properties of the Lindblad equation are the

following:

● Under a Lindblad dynamics, if all the jump operators are
Hermitian, the purity of a system fulfills d

dt (Tr[ρ2]) ≤ 0. The
proof is given in A.

● The Lindblad master equation is invariant under unitary
transformations of the jump operators,

√
ΓiLi →

√
Γ′i L
′
i =∑

j
vij
√
ΓjLj, (94)

with v representing a unitary matrix. It is also invariant
under inhomogeneous transformations in the form

Li → L′i = Li + ai,

H → H′ = H +
1
2i∑j

Γj(a∗j Aj − ajA†
j ) + b,

(95)
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where ai ∈ C and b ∈ R. The proof of this can be found in
Ref. 2 (Sec. III).

● Thanks to the previous properties, it is possible to find
traceless jump operators without loss of generality.

Example 6: A master equation for a two-level system with decay.
Continuing our example of a two-level atom, we can make it

more realistic by including the possibility of atom decay by the emis-
sion of a photon. This emission happens due to the interaction of the
atom with the surrounding vacuum state. (This is why atoms decay.)
The complete quantum system would be in this case the “atom + vac-
uum” system, and its time evolution should be given by the von Neu-
mann equation (13), where H represents the total “atom + vacuum”
Hamiltonian. This system belongs to an infinite-dimension Hilbert
space, as the radiation field has infinite modes. If we are interested
only in the time dependence of the state of the atom, we can derive
a Markovian master equation for the reduced density matrix of the
atom (see for instance, Refs. 1 and 2). The master equation we will
study is

d
dt
ρ(t) = −i[H, ρ] + Γ(σ−ρσ+ − 1

2
{σ+σ−, ρ}), (96)

where Γ is the coupling between the atom and the vacuum.
In the Fock-Liouvillian space [following the same ordering as

in Eq. (25)], the Liouvillian corresponding to evolution (96) is

L =
⎛
⎜⎜⎜
⎝

0 iΩ −iΩ Γ
iΩ −iE − Γ

2 0 −iΩ
−iΩ 0 −iE − Γ

2 iΩ
0 −iΩ iΩ −Γ

⎞
⎟⎟⎟
⎠

. (97)

Expressing explicitly the set of differential equations, we obtain

ρ̇00 = iΩρ01 − iΩρ10 + Γρ11,

ρ̇01 = iΩρ00 − (iE − Γ
2
)ρ01 − iΩρ11,

ρ̇10 = −iΩρ00(−iE − Γ
2
)ρ10 + iΩρ11,

ρ̇10 = −iΩρ01 + iΩρ10 − Γρ11.

(98)

End of example.

VI. RESOLUTION OF THE LINDBLAD MASTER
EQUATION
A. Integration

To calculate the time evolution of a system determined by a
master equation in the form (96), we need to solve a set of equations
with as many equations as the dimension of the density matrix. In
our example, this means to solve a 4 variable set of equations, but the
dimension of the problem increases exponentially with the system
size. Because of this, for bigger systems, techniques for dimension
reduction are required.

To solve systems of partial differential equations, there are
several canonical algorithms. This can be done analytically only
for a few simple systems and by using sophisticated techniques
as damping bases.29 In most cases, we have to rely on numerical

approximated methods. One of the most popular approaches is the
4th-order Runge-Kutta algorithm (see, for instance, Ref. 30, for
an explanation of the algorithm). By integrating the equations of
motion, we can calculate the density matrix at any time t.

The steady-state of a system can be obtained by evolving it
for a long time (t →∞). Unfortunately, this method presents two
difficulties. First, if the dimension of the system is big, the comput-
ing time would be huge. This means that for systems beyond a few
qubits, it will take too long to reach the steady-state. Even worse is
the problem of stability of the algorithms for integrating differential
equations. Due to small errors in the calculation of derivatives by
the use of finite differences, the trace of the density matrix may not
be constantly equal to one. This error accumulates during the prop-
agation of the state, giving nonphysical results after a finite time.
One solution to this problem is the use of algorithms specifically
designed to preserve the trace, as the Crank-Nicholson algorithm.31

The problem with this kind of algorithm is that they consume more
computational power than Runge-Kutta, and therefore they are not
useful to calculate the long-time behavior of big systems. An analysis
of different methods and their advantages and disadvantages can be
found in Ref. 32.

Example 7: Time dependency of the two-level system with decay.
In this section, we show some results of solving Eq. (96) and

calculating the density matrix as a function of time. A Mathemat-
ica notebook solving this problem can be found in Ref. 20. To
illustrate the time behavior of this system, we calculate the evolu-
tion for different state parameters. In all cases, we start with an
initial state that represents the state being excited ρ11 = 1, with
no coherence between different states, meaning ρ01 = ρ10 = 0. If
the decay parameter Γ is equal to zero, the problem reduces to
solve the von Neumann equation, and the result is displayed in
Fig. 2. The other extreme case would be a system with no coher-
ent dynamics (Ω = 0) but with decay. In this case, as shown in Fig. 4,
we observe an exponential decay of the population of the excited
state.

Finally, we can calculate the dynamics of a system with both
coherent driving and decay. In this case, both behaviors coexist and
there are oscillations and decay. This is displayed in Fig. 5.
End of example.

FIG. 4. Population dynamics under a pure incoherent dynamics (Γ = 0.1, n = 1, Ω
= 0, and E = 1). The blue line represents ρ11 and the orange one ρ00.
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FIG. 5. Population dynamics under a pure incoherent dynamics (Γ = 0.2, n = 1, Ω
= 0, and E = 1). The blue line represents ρ11 and the orange one ρ00.

B. Diagonalization
As we have discussed before, in the Fock-Liouville space, the

Liouvillian corresponds to a matrix (in general complex, non-
Hermitian, and nonsymmetric). By diagonalizing it, we can calculate
both the time-dependent and the steady-state of the density matri-
ces. For most purposes, in the short time regime, integrating the dif-
ferential equations may be more efficient than diagonalizing. This is
due to the high dimensionality of the Liouvillian that makes the diag-
onalization process very costly in computing power. On the other
hand, in order to calculate the steady-state, the diagonalization is the
mostly used method due to the problems of integrating the equation
of motions discussed in Sec. VI A.

Let us see first how we use diagonalization to calculate the time
evolution of a system. As the Liouvillian matrix is non-Hermitian,
we cannot apply the spectral theorem to it and it may have differ-
ent left and right eigenvectors. For a specific eigenvalue Λi, we can
obtain the eigenvectors ∣ΛR

i ⟩⟩ and ∣ΛL
i ⟩⟩ s.t.

L̃ ∣ΛR
i ⟩⟩ = Λi∣ΛR

i ⟩⟩,
⟨⟨ΛL

i ∣ L̃ = Λi⟨⟨ΛL
i ∣.

(99)

An arbitrary system can be expanded in the eigenbasis of L̃ as1,33

∣ρ(0)⟩⟩ =∑
i
∣ΛR

i ⟩⟩⟨⟨ΛL
i ∣ρ(0)⟩⟩. (100)

Therefore, the state of the system at a time t can be calculated in the
form

∣ρ(t)⟩⟩ =∑
i

eΛit ∣ΛR
i ⟩⟩⟨⟨ΛL

i ∣ρ(0)⟩⟩. (101)

Note that in this case to calculate the state a time t we do not need to
integrate into the interval [0, t], as we have to do if we use a numer-
ical solution of the differential set of equations. This is an advantage
when we want to calculate long-time behavior. Furthermore, to cal-
culate the steady-state of a system, we can look to the eigenvector
that has zero eigenvalue, as this is the only one that survives when
t →∞.

For any finite system, Evans’ theorem ensures the existence of
at least one zero eigenvalue of the Liouvillian matrix.34,35 The eigen-
vector corresponding to this zero eigenvalue would be the steady-
state of the system. In exceptional cases, a Liouvillian can present

FIG. 6. Spectrum of the Liouvillian matrix given by (97) for the general case of both
coherent and incoherent dynamics (Γ = 0.2, n = 1, Ω = 0, E = 1).

more than one zero eigenvalues due to the presence of symmetry
in the system.26,27,36 This is a nongeneric case, and for most pur-
poses, we can assume the existence of a unique fixed point in the
dynamics of the system. Therefore, diagonalizing can be used to cal-
culate the steady-state without calculating the full evolution of the
system. This can be done even analytically for small systems, and
when numerical approaches are required, this technique gives better
precision than integrating the equations of motion. The spectrum
of Liouvillian superoperators has been analyzed in several recent
papers.33,37

Example 8: Spectrum-analysis of the Liouvillian for the two-level
system with decay.

Here, we diagonalize (97) and obtain its steady state. A Math-
ematica notebook solving this problem can be downloaded from
Ref. 20. This specific case is straightforward to diagonalize as the
dimension of the system is very low. We obtain 4 different eigen-
values, two of them are real while the other two form a conjugated
pair. Figure 6 displays the spectrum of the superoperator L given
in (97).

As there is only one zero eigenvalue, we can conclude that there
is only one steady-state, and any initial density matrix will evolve to
it after an infinite-time evolution. By selecting the right eigenvector
corresponding to the zero-eigenvalue and normalizing it we obtain
the density matrix. This can be done even analytically. The result is
the matrix,

ρSS =
⎛
⎜
⎝

(1+n)(4 E2+(Γ+2n Γ)2
)+4(1+2n)Ω2

(1+2n)(4 E2+(Γ+2n Γ)2+8Ω2)

2(−2 E−i(Γ+2nΓ))Ω
(1+2n)(4 E2+(Γ+2n Γ)2+8 Ω2)

2(−2 E+i(Γ+2n Γ))Ω
(1+2n)(4 E2+(Γ+2n Γ)2+8Ω2)

n(4E2+(Γ+2nΓ)2
)+4(1+2n)Ω2

(1+2n)(4 E2+(Γ+2nΓ)2+8 Ω2)

⎞
⎟
⎠

.

(102)

End of example.
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APPENDIX: PROOF OF d
dtTr[ρ

2] ≤ 0
In this Appendix, we proof that under the Lindblad dynam-

ics given by Eq. (93), the purity of a density matrix fulfills that
d
dt Tr[ρ2] ≤ 0 if all the jump operators of the Lindblad dynamics are
Hermitian.

We start just by interchanging the trace and the derivative. As
the trace is a linear operation, it commutes with the derivation, and
we have

d
dt
(Tr[ρ2]) = Tr[dρ2

dt
] = Tr[2ρρ̇], (A1)

where we have used the cyclic property of the trace operator. (This
property is used along all the demonstration without explicitly men-
tioning it.) By inserting the Lindblad Eq. (93) into the rhs of (A1),
we obtain

d
dt
(Tr[ρ2]) = − i

h̵
Tr[(2ρ(Hρ − ρH))] + 2∑

k
ΓkTr[ρLk ρL†

k]

− 2∑
k
ΓkTr[ρ2L†

kLk]. (A2)

The first term is zero. Therefore, the inequality we want to prove
becomes equivalent to

∑
k
ΓkTr[ρLk ρL†

k] ≤∑
k
ΓkTr[ρ2L†

kLk]. (A3)

As the density matrix is Hermitian, we can diagonalize it to obtain its
eigenvalues (Λi ∈ R) and its corresponding eigenvectors (|Λi⟩). The
density matrix is diagonal in its own eigenbasis and can be expressed
as (this eigenbasis changes with time, of course, but the proof is valid
as the inequality should be fulfilled at any time)

ρ→ ρ̃ =∑
i
Λi∣Λi⟩⟨Λi∣, (A4)

where we assume an ordering of the eigenvalues in the form Λ0 ≥ Λ1
≥⋯ ≥Λd.

We rename the jump operators in this basis as L̃i a. Expanding
each term of the inequality (A3) in this basis, we obtain

∑
k
ΓkTr[ρLk ρL†

k] =∑
k
ΓkTr
⎡⎢⎢⎢⎢⎣
(∑

i
Λi∣Λi⟩⟨Λi∣)L̃k

⎛
⎝∑j

Λj∣Λj⟩⟨Λj∣
⎞
⎠

L̃k

⎤⎥⎥⎥⎥⎦

=∑
k
Γk∑

i,j
ΛiΛjTr[L̃†

k ∣Λi⟩⟨Λi∣L̃k∣Λj⟩⟨Λj∣]

=∑
k
Γk∑

i,j
ΛiΛjTr[∣⟨Λi∣L̃k∣Λj⟩∣

2]

=∑
k
Γk∑

i,j
ΛiΛjx(k)ij , (A5)

where we have introduced the coefficients x(k)ij ≡ ∣⟨Λi∣L̃k∣Λj⟩∣
2. As the

operators Lk are Hermitian, these coefficients fulfill x(k)ij = x(k)ji .

The second term is expanded as

∑
k
ΓkTr[ρ2L†

kLk] =∑
k
ΓkTr
⎡⎢⎢⎢⎢⎣
(∑

i
Λi∣Λi⟩⟨Λi∣)

⎛
⎝∑j

Λj∣Λj⟩⟨Λj∣
⎞
⎠

L̃†
k L̃k

⎤⎥⎥⎥⎥⎦
=∑

k
Γk∑

ij
ΛiΛjTr[L̃k∣Λi⟩⟨Λj∣L̃†

k⟨Λi∣Λj⟩]

=∑
k
Γk∑

i
Λ2

i Tr[L̃k∣Λi⟩⟨Λi∣L̃†
k ]

=∑
k
Γk∑

i
Λ2

i Tr
⎡⎢⎢⎢⎢⎣

L̃k∣Λi⟩⟨Λi∣L̃†
k
⎛
⎝∑j
∣Λj⟩⟨Λj∣

⎞
⎠

⎤⎥⎥⎥⎥⎦
=∑

k
Γk∑

ij
Λ2

i Tr[⟨Λj∣L̃k∣Λi⟩ + ⟨Λi∣L̃k∣Λj⟩]

=∑
k
Γk∑

ij
Λ2

i xij, (A6)

where we have used the closure relation in the density matrix
eigenbasis, 𝟙H = ∑j ∣Λj⟩⟨Λj∣. The inequality can now be written as

∑
k
Γk∑

ij
ΛiΛjxij ≤∑

k
Γk∑

ij
Λ2

i xij. (A7)

As xij = xji, we can reorder the ij sum in the following way:

∑
k
Γk∑

i

⎛
⎝∑j≤i

2ΛiΛjx(k)ij + Λ2
i x(k)ii
⎞
⎠

≤∑
k
Γk∑

i

⎛
⎝∑j<i
(Λ2

i + Λ2
j )x(k)ij + Λ2

i x(k)ii
⎞
⎠

. (A8)

Therefore, we can reduce the proof of this inequality to the proof of
a set of inequalities,

2ΛiΛjx(k)ij ≤ (Λ
2
i + Λ2

j )x(k)ij , ∀(k, i, j). (A9)

It is obvious that (A9)⇒ (A8) (but not the other way around). The
inequalities (A9) are easily proved just by taking into account that
x(k)ij ≥ 0 and applying the triangular inequality.
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