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Abstract

Understanding the dynamic properties of quantum chromodynamics (QCD) and other strongly

coupled field theories has remained a challenging task. Yet, accurate knowledge of their real-

time behavior is crucial for describing the evolution of heavy-ion collisions, particularly the

strongly coupled quark-gluon plasma phase. To this end, we develop a method based on

Gaussian processes in order to reconstruct spectral functions from Euclidean correlation func-

tions. This approach enables the extraction of real-time information from non-perturbative

calculations, either on the lattice or within functional approaches. We introduce several ex-

tensions of this framework that enable the incorporation of additional physical input into the

reconstruction of the spectral function, such as normalization constraints, asymptotic behav-

ior, and higher-dimensional data. These extensions lead to a versatile method that can be

applied to a wide range of different problems, and we have therefore implemented it in a

Python package called fredipy.

We present multiple applications of this method to QCD problems. First, we reconstruct the

spectral functions of four-point gluon correlation functions in pure Yang-Mills theory, allow-

ing us to extract the glueball masses of the scalar and pseudoscalar glueball states, which are

in very good agreement with results from lattice and other functional methods. In a second

application of the method, we reconstruct the strong coupling in QCD and compare it to a

direct calculation using previously reconstructed ghost and gluon propagators. This is useful

for calculating S-matrix elements of non-perturbative QCD processes, and can be used in

further calculations of spectral functions or bound states. Finally, as a third application, we

reconstruct the thermal photon rate in QCD from lattice data. We compare different recon-

struction methods and find excellent agreement between them. Together, these applications

demonstrate that the Gaussian process reconstruction method effectively captures the key

features of spectral functions while offering significant flexibility to incorporate a wide range

of physical prior information.

Additionally, we investigate out-of-time ordered correlators in O(N) models. These corre-

lators quantify the scrambling of quantum information, and hence we expect that thermal-

ization time scales are related to their exponential growth. As a first exploration, we study

their behavior using classical statistical lattice simulations around the phase transition and
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diagrammatic weak coupling methods, with a special focus on the spatial spreading of in-

formation. We can relate the resulting Lyaponov exponents to more familiar quantities in

thermal field theories.
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Zusammenfassung

Die genaue Bestimmung dynamischer Eigenschaften der Quantenchromodynamik und an-

derer stark gekoppelter Feldtheorien ist nach wie vor eine Herausforderung für theoretische

Methoden. Die genaue Kenntnis ihres dynamischen Verhaltens ist jedoch wichtig für die

Beschreibung der zeitlichen Entwicklung von Schwerionenkollisionen, insbesondere während

der stark gekoppelten Quark-Gluon-Plasmaphase. In dieser Arbeit entwickeln wir eine auf

Gaußschen Prozessen basierende Methode zur Rekonstruktion von Spektralfunktionen aus

euklidischen Korrelationsfunktionen. Dieser Ansatz ermöglicht die Berechnung dynamis-

cher Observablen aus euklidischen Daten von nicht-perturbativen Gittersimulationen oder

funktionaler Methoden. Wir stellen verschiedene Erweiterungen dieser Methode vor, die

es ermöglichen, physikalische Eigenschaften direkt in die Rekonstruktion einzubinden, wie

z. B.Normalisierung, asymptotisches Verhalten und Daten in mehreren Dimensionen. Diese

Erweiterungen führen zu einer vielseitigen Methode, die auf ein breites Spektrum physikalis-

cher Problemstellungen angewendet werden kann. Daher haben wir sie in einem Python-Paket

namens fredipy implementiert.

Wir präsentieren mehrere Anwendungen dieser Methode auf QCD-Probleme. Als erste An-

wendung rekonstruieren wir die Spektralfunktionen von Vierpunkt-Gluon-Korrelationsfunk-

tionen in reiner Yang-Mills-Theorie. Dadurch können wir die Glueballmassen der skalaren

und pseudoskalaren Glueballzustände extrahieren, die sehr gut mit Ergebnissen aus Gitter-

und anderen funktionalen Methoden übereinstimmen. In einer zweiten Anwendung der Meth-

ode rekonstruieren wir die starke Kopplung der QCD und vergleichen sie mit einer direkten

Berechnung unter Verwendung zuvor rekonstruierter Ghost- und Gluonpropagatoren. Dies

ist nützlich für die Berechnung von S-Matrix-Elementen nicht-perturbativer QCD-Prozesse

oder kann für weitere Berechnungen von Spektralfunktionen oder gebundenen Zuständen ver-

wendet werden. Schließlich rekonstruieren wir in einer dritten Anwendung die thermische

Photonenrate in der QCD aus Gitterdaten. Wir vergleichen verschiedene Rekonstruktion-

smethoden und stellen eine hervorragende Übereinstimmung fest. Zusammen zeigen diese

Anwendungen, dass die Gaußschen Prozess Rekonstruktionsmethode die wichtigsten Merk-

male von Spektralfunktionen effektiv erfasst und gleichzeitig eine hohe Flexibilität bietet, um

ein breites Spektrum physikalischer Vorinformationen zu berücksichtigen.
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Zusätzlich untersuchen wir zeitlich nicht geordnete Korrelatoren in O(N)-Modellen. Diese

Korrelatoren quantifizieren die Ausbreitung von Quanteninformation. Daher erwarten wir,

dass die Thermalisierungszeitskalen mit ihrem exponentiellen Wachstum zusammenhängen.

Zunächst untersuchen wir ihr Verhalten mithilfe klassischer statistischer Gittersimulationen

im Umfeld des Phasenübergangs sowie diagrammatischer Methoden bei schwacher Kopplung.

Die daraus resultierenden Lyapunov-Exponenten lassen sich mit bekannten Größen aus der

thermischen Feldtheorie in Beziehung setzen.
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1. Introduction

Relativistic heavy-ion collisions allow the study of matter under extreme conditions in the

laboratory, most importantly at high temperature and density. Such conditions have existed

only in the early universe, a few microseconds after the Big Bang [4]. During this period,

quarks and gluons constituted the fundamental degrees of freedom, forming a quark-gluon

plasma (QGP) [5]. After cooling down, the QGP undergoes a phase change at around 155MeV

[6–8] to a hadronic phase, where quarks and gluons are confined into hadrons, such as protons

and neutrons, which are the building blocks of atomic nuclei.

The existence of the QGP was predicted in the mid-1970s [9–11] and was first experimentally

confirmed by four collaborations at the Relativistic Heavy Ion Collider (RHIC) [12–15]. The

phase diagram of the underlying theory, quantum chromodynamics (QCD), in the plane of

temperature and baryon chemical potential, has been studied extensively in recent years, both

theoretically and experimentally. In this phase diagram of QCD, multiple interesting features

are predicted to exist, such as the critical end point, where the crossover ends in a first-

order phase transition line [16]. This critical point is expected to be located at a high baryon

chemical potential of 600−700MeV and a temperature of around 110MeV [17–20]. We show a

schematic overview of the QCD phase diagram in Figure 1.1. Other proposed phenomena are

a color superconducting phase [21–23] with crystalline [24] or other inhomogeneous features,

and a moat regime [25] at high chemical potentials, where possible spatial modulations can

be explained via the presence of a non-trivial minimum in dispersion relations. The QCD

phase diagram, characterized by this wealth of nontrivial phenomena, constitutes an area of

active and ongoing research, with numerous fundamental questions yet to be resolved through

theoretical and experimental approaches [26].

Experimentally, the phase diagram of QCD is studied at RHIC in Brookhaven National Labo-

ratory (BNL) and the Large Hadron Collider (LHC) at CERN in different heavy-ion collision

(HIC) systems, such as gold-gold (Au-Au) and lead-lead (Pb-Pb) collisions. Currently, the

FAIR experiment at GSI Darmstadt is under construction, which will further explore the
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Critical End Point
Crossover
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T

Hadron Gas

Quark-Gluon Plasma

aaaFirstaO
rd
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Figure 1.1: Projected phase diagram of QCD in the plane of temperature T and baryon chemical

potential µB. At small baryon chemical potential, there is a crossover transition from the

QGP to the hadronic phase. At higher chemical potentials, a first-order phase transition

is expected to occur, ending in a critical point. For very high chemical potentials, a color

superconducting (CSC) phase is expected to exist.

QCD phase diagram, especially at high baryon chemical potential in order to probe the re-

gion of the critical end point [27]. Such collisions produce extremely hot and dense matter,

that quickly expands and cools down. Therefore, during the evolution after the collision,

the resulting matter traverses the phase diagram of QCD and carries information about the

different phases and their transitions. Understanding the exact evolution of the produced

matter is crucial for understanding the QCD phase diagram.

These collisions of heavy ions are complex processes, consisting of several different stages, il-

lustrated in Figure 1.2. For a review on HICs, see [28]. Directly after the collision, the system

is far from equilibrium. Since the initial system has a high energy density and temperature,

weak coupling descriptions have been successfully applied to early stages [29]. These have

been expanded significantly since then to include more sophisticated methods and give more

quantitative predictions [30, 31]. After this short period of pre-equilibrium dynamics, that

lasts around 1 fm/c, the system approaches a prethermal or hydrodynamic attractor [32, 33].

From this point on, the system is dominated by hydrodynamic modes, which describe the

collective evolution of the system of the initial hot QGP. During the hydrodynamic evolution,

the system cools down and expands. It therefore traverses the crossover phase transition

line and hadronizes. Consequently, the fluid is converted into hadron distribution functions,

described by a hadron gas [34, 35]. Then it continues to cool down and reaches the thermal

freeze out, where the produced hadrons then freely stream to the detectors. Since the early

2000s, predictions based on hydrodynamic evolution have been remarkably successful in de-

scribing final state observables of heavy-ion collisions, such as particle spectra and elliptic

flow [36–38]. However, describing the full evolution of HICs is still an active area of research

and several frameworks are being developed to model the different stages of the evolution, see

2
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Figure 1.2: Schematic overview of the evolution of a heavy-ion collision and the different stages that

occur during the evolution. The figure is taken from [26].

e.g. [39–41].

For such frameworks, a wide range of theoretical input is required to describe the dynamics

of such a complex system. On the one hand, it is essential to understand the spectrum of the

involved microscopic degrees of freedom, such as hadrons or also other more exotic states of

matter. On the other hand, collective degrees of freedom emerge during the hydrodynamic

evolution, which need to be described; different orders of the hydrodynamic expansion are nec-

essary to describe the system and their respective transport coefficients have to be computed

from the underlying microscopic theories. These theoretical inputs need to be calculated from

first-principles methods and serve as an important theory input for these simulations.

Since QCD is a strongly coupled theory, first-principle calculations of such quantities are

not possible using perturbation theory. Only at very large scales, e.g. a large temperature or

chemical potential, perturbation theory can be applied, since QCD becomes weakly coupled.

For other regions of the phase diagrams, the regions of interest for HICs, non-perturbative

methods are needed. Very successful first-principle methods used to study QCD are lattice

QCD and non-perturbative functional methods, such as the functional renormalization group

(fRG), Dyson-Schwinger equations (DSE), or nPI methods. In lattice QCD, the QCD La-

grangian is discretized on a four-dimensional Euclidean lattice with a finite volume and Monte

Carlo methods are used to sample field configurations in order to compute the path integral.

For reviews on different aspects of lattice QCD see [42–45].

These non-perturbative methods are excellent for computing static properties of QCD such

as the position of the crossover phase transition at zero chemical potential. Such quanti-

ties can be computed in Euclidean space-time, or equivalently imaginary time, where these

methods are much more efficient. However, transport properties of QCD or the early-time

3



1 Introduction

behavior in HICs are inherently dynamical objects and need to be understood in a real-time

framework, while these non-perturbative methods are formulated in Euclidean space-time.

When going to real time in lattice QCD, the sign problem is encountered: the path integral

becomes complex and the Monte Carlo sampling of field configurations becomes infeasible,

as sampling oscillatory contributions becomes numerically NP-hard [46]. There are several

approaches to improving the lattice algorithm for studying QCD in real time, such as complex

Langevin [47–49] or utilizing Lefschetz thimbles to perform the complex integration [50, 51].

However, both methods have severe challenges, such as not converging to physical solutions

or being numerically expensive. Functional methods, such as the fRG do not suffer from such

conceptional problems as the sign problem in lattice methods and real-time computations

are generally feasible. Although the formulation of functional equations in Minkowski space-

time is significantly more involved, a lot of progress has been made in recent years in this

area. Some advancements include the calculation of spectral functions from spectral func-

tional approaches [52–57], analytically continued fRG calculations [58–60] or formulations of

fRG directly in real time on the Keldysh-Schwinger closed time-path [61–73]. Although these

methods yield impressive results for critical dynamics and real-time correlation functions,

fully dynamical QCD calculations remain highly challenging to this day.

In this work, we will focus on a method that does not attempt to solve the theory directly

in Minkowski space-time. Instead, we will utilize spectral reconstruction in order to extract

real-time correlation functions from non-perturbative Euclidean correlation functions. How-

ever, this is still a hard problem, since reconstructing the spectral function from Euclidean

correlation functions is – technically speaking – an ill-conditioned problem. By performing

the reconstruction of the real-time correlator from data at imaginary time, we can capitalize

on the breadth of available non-perturbative data from lattice QCD and functional methods.

From QCD spectral functions, transport coefficients are directly accessible, such as dilepton or

photon rates, diffusion coefficients, or shear viscosity [74]. Since around the phase transition,

QCD is strongly coupled, these serve as essential inputs for the hydrodynamic evolution of

HICs, with the goal of understanding the phase structure of QCD. High precision across

a broad range of temperatures and chemical potentials is crucial for accurately predicting

final-state observables, which in turn enables a meaningful comparison between theoretical

predictions and experimental data. It is therefore essential to employ spectral reconstruction

methods that are able to consistently produce reliable results, by incorporating different data

sets and the full extent of available theoretical input. In this work, we develop a method based

on Gaussian process models to reconstruct spectral functions, and extend this framework to

include multiple different constraints and data sets. Utilizing this method, we will reconstruct

different spectral functions important for QCD applications in order to compute observables

like the glueball masses or the thermal photon rate.

Another question that we will investigate in this thesis, is the process of thermalization in

quantum systems, such as in HICs. In order to understand the process of thermalization,

4



we will utilize a well-understood concept from classical mechanics, namely chaos. In general,

classical many-body systems that thermalize, usually do so via chaotic dynamics. We want to

apply this concept to quantum systems by utilizing the proposed out-of-time ordered corre-

lators (OTOC) [75] and the associated Lyapunov exponent in order to measure and quantify

the chaotic behavior of quantum field theories. The underlying idea is that the Lyapunov

exponent can be related to the fast relaxing modes of the system, describing the timescales

of the initial relaxation towards a prethermal state or hydrodynamic attractor. We would

expect that the Lyapunov exponent leads to time scales that are comparable to the hydro-

dynamization timescale [40]. As a first step towards this goal, we will study the OTOC in

the O(4) model. While this does not provide us with direct quantitative results relevant for

HICs, it serves as a first step towards understanding OTOCs and their behavior in a system

that has the same critical dynamics as chirally symmetric QCD.

This thesis is organized as follows: In Chapter 2, we introduce the necessary fundamental

concepts and establish a consistent notation that will be used throughout the work. Chap-

ter 3 presents the method for reconstructing spectral functions from Euclidean correlation

functions using Gaussian processes. We detail the underlying mathematical framework, the

implementation of the method, and discuss several extensions that allow for the incorpora-

tion of additional physical properties. Furthermore, we introduce the Python package fredipy,

which provides an accessible implementation of the Gaussian process reconstruction method.

In Chapter 4, we apply this method to compute glueball masses in pure Yang-Mills theory

using four-point gluon correlation functions. Chapter 5 focuses on reconstructing the strong

coupling in QCD from ghost and gluon propagators, comparing two distinct reconstruction

approaches. In Chapter 6, we analyze the thermal photon rate in QCD using lattice data

and assess the consistency of various reconstruction methods. Chapter 7 explores out-of-time

ordered correlators in the O(N) model, investigating their behavior and their relation to quan-

tum chaos in field theories. Finally, Chapter 8 summarizes the main findings of this thesis

and outlines potential directions for future research.
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analysis was performed by Greg Jackson. This is not part of the author’s doctoral project,

and hence is not discussed in this thesis, apart from comparing the results in the final figures.

For the software package fredipy, the author has taken a leading role, written most of the

code, and has written the documentation.

In Chapter 7, we present two unpublished projects on OTOCs. The project on OTOCs

with classical statistical simulations was initiated in collaboration with Nicolas Wink. All

calculations and the manuscript were completed by the author. The project on OTOCs at

weak coupling was initiated in collaboration with Derek Teaney. The author has performed

all calculations and written to the manuscript.
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2. Fundamentals

Quantum field theory (QFT) is a versatile framework, that can describe many different physi-

cal systems, ranging from solid-state systems to high-energy particle physics. In this chapter,

we will introduce some fundamental concepts of QFT dynamics and establish the notation to

be used throughout this thesis. We will also give a brief overview of quantum chromodynam-

ics, the theory of the strong interaction, which is the main focus of this thesis.

2.1 Dynamics of Quantum Fields

In the path integral formalism, the central object of interest is the generating functional. For a

general quantum field theory, it is given by the path integral over different field configurations

in the presence of a source

Z[J ] =

∫
Dϕ eiS[ϕ]+i

∫
d4xJ(x)ϕ(x) , (2.1)

where S[ϕ] is the action of the field theory, ϕ is the quantum field1, and J is a source term. The

path integral is a functional integral over all possible field configurations ϕ, and by taking the

functional derivative of the generating functional w.r.t. the source term, all n-point correlation

functions can be obtained. In particular, the two-point function is given by

⟨Tϕ(x)ϕ(y)⟩ =
1

Z[0]

δ2Z[J ]

δJ(x)δJ(y)

∣∣∣∣
J=0

, (2.2)

where T is the time ordering operator. In order to facilitate real-time computations, we

will use the Keldysh-Schwinger formalism [77, 78], which is a general approach to computing

correlation functions, even in non-equilibrium situations. For introductions to the formalism,

that are the basis for the following overview, see [76, 79–82]. Here, we will focus on sketching

1In this section, we will derive the dynamics for bosonic fields only. When discussing fermionic fields,

we obtain very similar equations, often with different signs or Fermi-Dirac statistics instead of Bose-Einstein

statistics, due to the anti-commutation relations of fermions. These relations can be found in, e.g. [76].
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0 ∞

C

t

−iβ

Figure 2.1: Keldysh-Schwinger contour C in the complex time plane.

the main ideas and introduce the notation. When studying the dynamics of QFT, we want to

compute the time evolution of operators, denoted by Ô. Their time-dependent expectation

value is given in the Heisenberg representation by

⟨Ô(t)⟩ = tr
(
ρ0 ÔH(t)

)
= tr

(
ρ0 Û(0, t) Ô Û(t, 0)

)
, (2.3)

where ρ0 is the initial density matrix at an initial time t0 = 0, and we define Û(t0, t) =

T exp(−i
∫ t
t0
dt′ Ĥ(t′)) as the time evolution operator with the (possibly time-dependent)

Hamiltonian operator Ĥ of the system. If we assume that the system is initially in a thermal

state, the initial density matrix is given by ρ0 = exp(−βĤ)/Z, where β = 1/T is the inverse

temperature, and Z = Z[0]. For a constant Hamiltonian, the density matrix can be written

in terms of the time evolution operator as ρ0 = Û(−iβ, 0)/Z and the expectation value can

be expressed as

⟨Ô(t)⟩ =
1

Z
tr
(
Û(−iβ, 0) Û(0, t) Ô Û(t, 0)

)
. (2.4)

From this, we can realize that the time evolution, from right to left in (2.4), can be written as

a closed time contour C in the complex time plane. It goes from t = 0 to some final time t and

back to t = 0, and then from 0 to −iβ and since we can insert any identity operator in terms

of time evolution operators, the time contour can be extended to ∞ and consequently closed.

We show such a Schwinger-Keldysh contour in Figure 2.1. Such a contour is often referred to

as close time path contour when closed at infinity or Kadanoff-Baym contour when a thermal

branch is added along the imaginary axis. The expectation value of the operator is then given

on such a contour as

⟨Ô(t)⟩ =
1

Z
tr
(
TC e−i

∫
C Ĥ Ô(t)

)
, (2.5)

where TC is the time ordering operator on the closed contour and
∫
C denotes the integration

over the closed contour. Here, the operator Ô(t) is not the time-dependent operator in the

Heisenberg representation, but rather the operator inserted at the time t on the closed contour.

10



2.1 Dynamics of Quantum Fields

We can therefore compute expectation values by inserting operators on the closed contour.

For example, when inserting an operator on the complex, temperature part of the contour,

we recover the equilibrium thermal expectation value of the operator.

The main advantage of this formalism is that it enables us to compute correlation functions

away from thermal equilibrium. In usual path integral computations, the initial and final

eigenstates are only allowed to differ by a phase factor. This holds in equilibrium but breaks

down for non-equilibrium initial conditions. The Keldysh-Schwinger formalism allows for the

computation of correlation functions in such cases, by only ever making a reference to the

initial state.

We can then define the Green’s functions or two-point correlators, the central objects for

solving QFTs, on the Keldysh-Schwinger contour. In order to distinguish between the different

branches of the contour, we will denote the upper branch of the contour as C1 and the lower

branch as C2. The Green’s function then has four different choices of operator insertions on

either of the segments of the contour, which we denote as Gij , where i, j = 1, 2 are the indices

of the contour segments. The four different Green’s functions are then given by

GC =

(
G11 G12

G21 G22

)
=

(
GF G<

G> GF̄

)
, (2.6)

where GF/F̄ are the Feynman and anti-Feynman propagators, respectively, and G</> are the

lesser/greater propagators that capture cross-contour correlations. They are explicitly given

as

iGF (t, t
′) = ⟨T (ϕ(t)ϕ(t′))⟩ , (2.7)

iGF̄ (t, t
′) = ⟨T̄ (ϕ(t)ϕ(t′))⟩ , (2.8)

iG<(t, t′) = ⟨ϕ(t′)ϕ(t)⟩ , (2.9)

iG>(t, t′) = ⟨ϕ(t)ϕ(t′)⟩ , (2.10)

where T̄ denotes the anti-time ordering operator, and we have suppressed the spatial argu-

ments for clarity. From these correlators, the well-known retarded and advanced Green’s

functions and the Keldysh function can be defined as

GR(t, t
′) = −iθ(t− t′)⟨[ϕ(t), ϕ(t′)]⟩ = GF −G< , (2.11)

GA(t, t
′) = iθ(t′ − t)⟨[ϕ(t), ϕ(t′)]⟩ = GF −G> , (2.12)

GK(t, t′) = −i⟨{ϕ(t), ϕ(t′)}⟩ = G< +G> = GF +GF̄ , (2.13)

where [·, ·] and {·, ·} are the commutator and anti-commutator.

11
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2.1.1 The Spectral Function

With these definitions, we can define the central quantity of interest for this thesis, the spectral

function, which is defined as

ρ(t, t′) = i(G<(t, t′)−G>(t, t′)) = i(GA(t, t
′)−GR(t, t

′)) = ⟨[ϕ(t), ϕ(t′)]⟩ , (2.14)

where we again suppress the spatial arguments.

In order to gain a better physical intuition of the spectral function, we will first focus on the

spectral function in vacuum, i.e. in the absence of any external sources or heat baths. Hence,

we take a complete set of states, which are time-independent, and are denoted by |n⟩ with

energy eigenvalues En. We insert this into the expectation value of the commutator in (2.14),

and take the expectation value w.r.t. the vacuum state |0⟩. This leads to

ρ(t, t′) =
∑
n

(
e−iEn(t−t′) − eiEn(t−t′)

)
|⟨0|ϕ(0)|n⟩|2 . (2.15)

The Fourier transform of the spectral function w.r.t. the time difference is then given by

ρ(ω) = 2π
∑
n

(δ(ω − En)− δ(ω + En)) |⟨0|ϕ(0)|n⟩|2 , (2.16)

where we immediately see, that the spectral function is an odd function of ω. Writing the

spectral function in terms of eigenstates gives a clear interpretation of the spectral function.

The spectral function describes the density of states of the system. It gives the probability

of exciting a state with energy ω from the vacuum state. This is illustrated in Figure 2.2,

where we show an example spectral function for a theory with a physical mass peak – a

single-particle state – and a scattering continuum. In vacuum, isolated peaks in the spectral

function correspond to states with a physical mass given by the position of the peak. When

the energy is sufficient to allow for higher-order processes, the spectral function develops a

continuum, since the final state spatial momenta can take any value. In a scalar ϕ4 theory

without symmetry breaking this threshold is given by 3 times the physical mass in order to

have a 1 → 3 scattering process, see e.g. [56]. At finite temperature, energy can be taken

or deposed from the heat bath, leading to a broadening of the delta peaks in the spectral

function.

The complex argument Green’s function is defined in terms of the spectral function as

G(ω) =

∫
R

dz

2π

1

z − ω
ρ(z) . (2.17)

This is called the spectral representation of the Green’s function. It is defined for all ω ∈ C,
and is analytic everywhere except on the real axis, where it can have poles and cuts. All the

other Green’s functions can be obtained by evaluating this Green’s function in this complex

plane. The retarded propagator is obtained, by evaluating the complex Green’s function on

the upper half plane, i.e.GR(ω) = G(ω + iϵ), and the advanced propagator is obtained by
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0 m mth

ω
ρ
(ω

)

Figure 2.2: Illustration of some spectral function ρ(ω) in vaccum. At the physical mass m, we have

a delta peak, which corresponds to the single-particle state. We have then plotted a

continuum of states starting at some mass threshold mth, which corresponds to the lowest

energy that is necessary to create multiple particles. Since these particles can carry space-

like momentum, the spectrum becomes continuous. For finite temperature, all features of

the spectral function are broadened due to the thermal fluctuations, and delta peaks are

smeared into Breit-Wigner distributions.

evaluating the complex Green’s function on the lower half plane, i.e.GA(ω) = G(ω− iϵ), while
the Feynman propagator comes from both these contributions GF (ω) = G(ω + iϵ sign(ω)).

These prescriptions then lead to the right causality properties of the respective propagators,

as defined in (2.7), (2.11) and (2.12). From the spectral representation (2.17), we immediately

obtain the spectral function as2

ρ(ω) = 2 Im(G(ω + iϵ)) . (2.18)

This relation between the imaginary part of the complex argument Green’s function and the

spectral function is known as the Kramers-Kronig relation, which is a general statement about

complex functions with analyticity requirements, cf. [76].

In non-perturbative simulations, the Euclidean propagator is typically computed, as calcu-

lating correlators in real time is extremely challenging or even infeasible. This Euclidean

version arises from a Wick rotation, replacing real time t with imaginary time τ via t→ −iτ .
In vacuum, the Euclidean propagator in momentum space is given by evaluating the com-

plex Green’s function on the imaginary axis, i.e.GE(ω) ≡ G(iω). The spectral function can

be connected to the Euclidean propagator via the Källén-Lehmann spectral representation

[83, 84], that follows from the spectral representation (2.17) by utilizing the antisymmetry of

the spectral function. It follows

GE(ω) =

∫ ∞

0

dω′

π

ω′

ω′2 + ω2
ρ(ω′) . (2.19)

2using the identity 1
x±iϵ

= ∓iπδ(x) + P.V. 1
x
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2 Fundamentals

Note, that in vacuum, we have Lorentz symmetry. Therefore, the spectral function and the

propagators only depend on sign(ω), and the four-momentum squared. We can therefore write

the spectral representation in vacuum (2.19), also in terms of the – Euclidean or Minkowskian3

– four-momenta.

Going to finite temperature T = 1/β, the Euclidean propagator is defined on a finite interval

τ ∈ [0, β], and is periodic in imaginary time. Therefore, when going to frequency space, the

Euclidean propagator is evaluated on discrete Matsubara frequencies, which are given by ωn =
2πn
β for bosons and ωn = (2n+1)π

β for fermions. The Källén-Lehmann representation (2.19) is

still valid by simply replacing the continuous ω with the discrete Matsubara frequencies ωn,

and we obtain

GE(ωn) =

∫ ∞

0

dω′

π

ω′

ω′2 + ω2
n

ρ(ω′) . (2.20)

The relation between the Euclidean propagator at imaginary time and the spectral function

requires some care. A detailed derivation is provided in Appendix A, from which we obtain

the spectral representation

GE(τ) =

∫ ∞

0

dω

2π

cosh (ω(τ − β/2))

sinh (ωβ/2)
ρ(ω) for 0 ≤ τ ≤ β . (2.21)

The factor of 1/(2π) is a normalization factor, that can differ depending on the conventions.

Note that in Chapter 6, we will use a different normalization, which is given by 1/π, since

this is consistent with other works on thermal photon rates.

Calculating these spectral functions from Euclidean propagators is one of the central objectives

of this thesis. We will discuss the difficulties of this task in Section 3.1 and present a method

to reconstruct the spectral function from Euclidean correlators in Section 3.3.

2.1.2 KMS Relations

In thermal equilibrium, the different Green’s functions are related to each other via the Kubo-

Martin-Schwinger (KMS) relations. These provide a powerful tool to relate the different real-

time Green’s functions to each other and to the spectral function. Using the cyclicity of the

trace and ρ−1
0 ϕ(t)ρ0 = ϕ(t − iβ), we arrive at the KMS relation for the lesser and greater

Green’s functions

G<(t, t′) = tr
(
ρ0ϕ(t

′)ϕ(t)
)

= tr
(
ρ0ρ

−1
0 ϕ(t)ρ0ϕ(t

′)
)
= G>(t+ iβ, t′) . (2.22)

The KMS relation states that the equilibrium Green’s functions are periodic in imaginary

time and consequently lead to discrete Matsubara frequencies in momentum space. When

3We use the ”mostly minus” convention for the metric: gµν = diag(1,−1,−1,−1)
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2.2 Fundamentals of Quantum Chromodynamics

taking the Fourier transform w.r.t. the time difference, we can write the KMS relation as

G<(ω) = e−βωG>(ω) . (2.23)

This KMS relation can be used to relate Green’s functions and provides an abstract definition

of equilibrium states, i.e. states that fulfill the KMS relations are in equilibrium. Additionally,

the fluctuation-dissipation theorem can be immediately derived from this relation as

GK(ω) = (GR(ω)−GA(ω)) coth

(
βω

2

)
. (2.24)

This can then be connected to the spectral function, by noting that GR(ω)
∗ = GA(ω). We

can then write the spectral function in frequency space as

ρ(ω) = iGK(ω) tanh

(
βω

2

)
= iG<(ω)

(
eβω − 1

)
. (2.25)

Consequently, in equilibrium, all the propagators and the spectral function are related to

each other via the KMS relations. The spectral function – or, by that logic, any other of the

Green’s functions – contains all the information about the dynamics.

2.2 Fundamentals of Quantum Chromodynamics

Quantum chromodynamics describes the strong interaction, one of the four fundamental forces

in the standard model, which acts between quarks and gluons. QCD is a non-abelian gauge

theory based on the gauge group SU(3). The non-abelian nature of QCD allows the force

carriers, the gluons, to have self-interactions, leading to rich and complex dynamics. Already,

pure SU(3) Yang-Mills (YM) theory, i.e. QCD without fermions and only considering gluons,

is a non-trivial theory, which is strongly coupled at low energies and asymptotically free at

high energies. This leads to the phenomenon of color confinement: the asymptotic states

of QCD are color singlets. Quarks and gluons, which are charged under SU(3), are never

observed in the physical spectrum. Confinement can be associated with the conjectured mass

gap of YM theory, although the fundamental degrees of freedom are massless on the level of

the classical field equations. A rigorous proof of the existence of YM theory and the mass gap

is still an open problem in mathematical physics and is one of the millennium prize problems,

see [85] and references therein. However, the emergence of a dynamical mass gap in the

gauge sector of QCD, which physically manifest as the lightest glueballs, has been observed

in multiple lattice simulations, see e.g. [86–91], and in continuum methods, see e.g. [92–103].

In Chapter 4, we will present a study of the glueball spectrum of YM theory using spectral

reconstruction techniques and functional renormalization group methods.

We obtain the full QCD Lagrangian similarly as in other gauge theories, such as quantum

electrodynamics (QED), by requiring local gauge invariance of the action. In the case of QED,
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2 Fundamentals

the gauge group is U(1), here we consider the gauge group SU(3). When we have the Dirac

action for the free quarks of the form

SDirac =

∫
d4x ψ̄(i/∂ −m)ψ , (2.26)

where /∂ = γµ∂µ and γµ are the Dirac matrices, the action is not invariant under local SU(3)

transformations of the form ψ → Uψ, where U ∈ SU(3), since the partial derivative acts on

the local transformation. To make the action gauge invariant, we replace the partial derivative

with the gauge-covariant derivative given by

Dµ = ∂µ − igAµ , (2.27)

where Aµ ∈ su(3) is the gauge field, and g is the gauge coupling. The gauge fields Aµ are

in the adjoint representation of the gauge group and elements of the Lie algebra su(3) with

generators ta, such that

Aµ = Aa
µt

a, with a = 1, . . . , N2
c − 1 = 8 . (2.28)

For SU(3), the generators are the Gell-Mann matrices, and in general, they satisfy the com-

mutation relations

[ta, tb] = ifabctc , (2.29)

where fabc are the structure constants of the Lie algebra, and they are normalized such that

tr(tatb) = 1
2δ

ab, where the trace is in the fundamental representation. The structure constants

fully determine the Lie algebra, and consequently, the group structure. As the name suggests,

the covariant derivative (2.27) transforms covariantly under gauge transformations U ∈ SU(3),

from which, we can derive the transformations of the gauge field

Dµ → UDµU† and Aµ → UAµU† +
i

g
U∂µU† . (2.30)

We introduce the field strength tensor or curvature tensor Fµν , which is defined as the com-

mutator of the covariant derivative

Fµν =
i

g
[Dµ, Dν ] = ∂µAν − ∂νAµ − ig[Aµ, Aν ] . (2.31)

The field strength tensor also transforms covariantly under gauge transformations. The full

action of QCD is then given by

SQCD =

∫
d4x

[
ψ̄(i /D −m)ψ − 1

4
trFµνF

µν

]
, (2.32)

where we have a term that describes the dynamics of the gauge fields in terms of the field

strength tensor, and we take the trace w.r.t. the color indices. Due to the cyclicity of the

trace, the action is invariant under gauge transformations. When considering abelian gauge
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theories, the commutator of the gauge fields vanishes in (2.31) and the product of the field

strength tensors does not produce any self-interactions of the gauge fields, i.e. there are no

photon self-interactions on the level of the classical field equations in QED. However, in non-

abelian gauge theories, the YM term leads to self-interactions of the gauge fields – on the

level of the classical action we have three and four-point interactions – which are responsible

for the rich dynamics of QCD.

Since the YM action (and also the full QCD action) is gauge invariant, all physical observ-

ables are gauge invariant. However, when computing the generating functional of YM theory,

an integration over all possible gauge field configurations is performed. These configura-

tions include infinitely many physically equivalent configurations, that are related by gauge

transformations. This problem can be immediately seen in the breakdown of the classical

propagator of the gauge fields; due to its transversality, the two-point function has a vanish-

ing eigenvalue and can therefore not be inverted, in order to obtain the gluon propagator. In

methods that rely on the gauge-dependent fields as the fundamental degrees of freedom, such

as functional methods, it is therefore necessary to fix a gauge. There are different gauge fixing

conditions, such as covariant gauges, axial gauges, and Coulomb gauges, which are used in

different contexts. In this work, we will use the Landau gauge, which is a covariant gauge,

and is defined by the condition

∂µA
µ = 0 . (2.33)

Such a gauge fixing condition corresponds to choosing a representative from each gauge orbit,

up to possible Gribov copies [104]. In general, gauge fixing conditions split the general path

integral measure dA into an integration over physically inequivalent, gauge fixed contributions

Agf and the corresponding gauge transformation U , such that

dA = J dAgf dU , (2.34)

where J is the Jacobian of the integral transformation and dU is the Haar measure of the

gauge group. The computation of such a coordinate transformation, including the Jacobian

is done via Faddeev-Popov quantization, introduced in [105]. This leads to the introduction

of ghost fields c, Grassmann valued fields that are unphysical degrees of freedom emerging

from the gauge fixing procedure. The gauge fixed YM action then reads

SYM =

∫
d4x

[
−1

4
F a
µνF

a,µν +
1

2ξ
(∂µA

a,µ)2 + c̄a∂µD
ab,µcb

]
, (2.35)

where ξ is the gauge fixing parameter. Choosing the Landau gauge corresponds to setting

ξ = 0. This can be understood intuitively: In the path integral, all gauge field configura-

tions with ∂µA
µ ̸= 0 are suppressed by a weight limξ→0 exp(− 1

2ξ (∂µA
µ)2) and consequently

only gauge configurations with ∂µA
µ = 0 contribute. Other gauges, such as Feynman gauge

(ξ = 1) do not have such simple interpretations, but they can be useful in different contexts.

For example, Feynman gauge simplifies perturbative calculations. By construction, the gauge
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fixing procedure, and specifically the gauge fixing term, explicitly breaks gauge invariance.

However, this information about the gauge symmetry of YM is not lost, it is encoded in the

BRST (Becchi-Rouet-Stora-Tyutin) symmetry. This symmetry can be understood heuristi-

cally as a symmetry that leads to a compensation of the gauge variance of the gauge fixing

term by the ghost fields.

As mentioned before, QCD is strongly coupled at low energies and asymptotically free at

high energies. This is a consequence of the running of the strong coupling g2 given by the β

function at one-loop order as

β(g) = − g3

(4π)2

(
11

3
Nc −

2

3
Nf

)
, (2.36)

where Nc is the number of colors and Nf is the number of flavors. For sufficiently small

Nf , the β function is negative, which means that the coupling decreases with increasing

energy scale. This phenomenon of asymptotic freedom has been first described by Gross,

Wilczek, and Politzer in 1973 [106, 107] and has been awarded the Nobel prize in physics in

2004. Since then, the perturbative running of this coupling has been confirmed by multiple

collider experiments [108]. However, at small energies the coupling grows, perturbation theory

encounters a Landau pole and perturbation theory breaks down. The theory becomes strongly

coupled, and non-perturbative methods are necessary. Many advancements have been made

in the last decades by performing studies of QCD on the lattice and with functional methods

such as Dyson-Schwinger equations and the functional renormalization group. For the current

status of QCD calculations with fRG methods, see [109], and references therein, and for

reviews on lattice QCD, see [42–45].

At small energies, where the coupling becomes large, the gluons and quarks are confined to

bound states, which are color singlets. The physical spectrum of QCD below the phase tran-

sition is therefore composed of hadrons. We can distinguish between two types of hadrons:

One type is baryons, which consist of an odd number of quarks, which include protons and

neutrons, and therefore make up most of the observed mass in the universe, apart from dark

matter. The second type is mesons, which are composite states made of an even number

of quarks, usually quark-antiquark pairs. They are usually short-lived, and in contrast to

baryons, they do not obey fermionic statistics, but have an integer valued spin and are there-

fore bosons. As bosons, they can be viewed as force carriers of a residual strong or electroweak

force between baryons, which is mediated by the exchange of mesons. The lightest mesons are

pions. They appear as the Goldstone modes of the spontaneously broken chiral symmetry.

Since this symmetry is also explicitly broken due to finite quark masses, the pions are not

massless but have a small mass of about 135MeV for the π0. Still, they are significantly

lighter than the other hadrons. Hence, at low energies the pions are the most relevant degree

of freedom, dominating the low energy dynamics of QCD. Knowing the spectral function of

the lightest mesons is therefore crucial for understanding the low energy dynamics of QCD

[110, 111].
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When knowing the spectral function of the important degrees of freedom – below the phase

transition these are the light mesons and above the phase transition the conserved currents –

we can use these to extract bound state masses, decay widths, and other important dynamical

properties of the system. Notably, using Kubo relations [112, 113], we can relate real-time

correlation functions – and therefore spectral functions – to transport coefficients using the

fluctuation-dissipation theorem (2.25). We conclude, that the spectral function is a central

object in QCD, and knowing it enables us to extract important physical properties of the

system. Therefore, this will be a large focus in the following chapters.

19



2 Fundamentals

20



3. Spectral Reconstruction

As discussed in the previous chapter, the spectral function is a crucial quantity in many

fields of physics. When knowing the spectral functions, the whole imaginary plane of the

Green’s function is available, and the spectral function can be used to calculate many impor-

tant real-time observables. In non-perturbative calculations, the spectral function must be

reconstructed from the Euclidean correlator, which is connected to the spectral function via

the inverse of the Källén-Lehmann spectral representation (2.19).

In this chapter, we will discuss the difficulties of spectral reconstruction and give an overview

of different approaches developed in the context of QCD in Section 3.1. We will focus on

a method that is supposed to systematically alleviate some of the problems that arise in

spectral reconstruction, namely Gaussian processes (GPs). To do so, we will introduce the

basic concepts of GPs in Section 3.2, and discuss how they can be used for simple regression

problems. The explicit application of GPs to inverse problems, such as spectral reconstruction,

is then discussed in Section 3.3. We will demonstrate how GPs can be used to reconstruct

the spectral function from the Euclidean correlator and discuss the advantages of this method

and the difficulties associated with spectral reconstruction. In Section 3.4, we will introduce

the Python package fredipy, which is a tool for solving linear inverse problems, especially

spectral reconstruction, using GPs. We will discuss specific spectral reconstruction examples

and provide a brief overview of the package. In the following Chapters 4 – 6, we will then

apply this method to different problems in QCD.

3.1 Spectral Reconstruction: An Ill-Conditioned

Problem

The problem of spectral reconstruction is an inverse problem, where the objective is to invert

the Källén-Lehmann spectral representation, cf. (2.19) and (2.21), to extract the spectral

function from the Euclidean correlator. Interestingly, the problem of spectral reconstruction
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3 Spectral Reconstruction

in the context of QFTs is a special problem in the more general class of problems with the

purpose of inverting Fredholm integral equations of the first kind, commonly defined as∫ b

a
dyK(x, y)f(y) = g(x) , (3.1)

where K(x, y) is some known continuous kernel function, f(y) is the unknown function we

want to reconstruct, and g(x) provides the data we want to fit. This is a ubiquitous problem in

many fields of physics and engineering, such as optics, geophysics, and medical imaging [114].

In general, many of such problems are ill-posed, meaning that the solution is not unique [115].

Due to the inherent difficulty of such problems, a variety of methods have been developed to

address them. For some general overviews, see [114–117].

As already established earlier, in the context of QFTs, the spectral function is a crucial quan-

tity when studying dynamical observables, such as transport coefficients, or when calculating

the bound states of the theory. Although it can be shown, that the spectral function can be

uniquely determined from the Euclidean propagator in the limit of infinite data points with

infinite precision [118], this limit is usually not feasible. Consequently, the inversion of the dis-

cretized version of the Källén-Lehmann spectral representation is an ill-conditioned problem.

Due to the presence of close-to-zero modes in the operator that is inverted, small changes in

the data can lead to significant changes in the prediction. In practice, however, the Euclidean

data comes from lattice or functional QFT simulations. Such simulations inherently involve

statistical and numerical noise, and in the case of lattice simulations, the number of available

data points is strictly constrained by the finite lattice size. When having finite, noisy data,

the inversion of the Källén-Lehmann spectral representation produces an amplification of the

noise up to several orders of magnitude. Consequently, the spectral representation can not

be naively inverted, and we need to perform some regularization procedure to stabilize the

inversion.

One of the most straightforward approaches to regularize the inversion is to use a Tikhonov

regularization, which adds a penalty term to the inversion problem. The most naive realization

of Tikhonov regularization in the context of discrete inversion, i.e.matrix inversion, is to add

a scalar multiple of the identity matrix before the inversion, such that

Ax = b ⇒ x ∼ (A+ λ1)−1b , (3.2)

where A is some near-singular, and in this example, square matrix. This improves the stability

of the inversion, but it can be hard to quantify the effect of the regularization on the recon-

structed function. One of the goals of this thesis is to introduce a more systematic approach

to regularizing this problem.

Since the problem of spectral reconstruction is present in many important areas of QCD,

a wide range of methods have been developed and utilized to tackle this problem. The

aforementioned Tikhonov regularization method is one of the most widely used methods [119–

121]. However, in the context of spectral reconstruction, in some cases, a significant amount
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of prior information can be inferred about the spectral function, which strictly limits the

possible solutions, and the functional form of the spectral function can be assumed. Therefore,

explicit fits to some functional form [122–125] or expansions in some basis functions [126,

127] are often applied. Another method for regularizing the inversion is the Backus-Gilbert

method [128–132], where the problem is regularized by reconstructing a smoothed version

of the spectral function. In recent years, statistical or Bayesian methods have been gaining

popularity, such as the maximum entropy method [133–136], Bayesian inference techniques

[137–139] or kernel ridge regression related methods [140, 141]. Recently, neural network

approaches have become a popular tool for spectral reconstruction [142–152], as the forward

problem is efficient and stable and therefore allows the construction of large datasets, that can

be used to train the neural networks. Some spectral reconstruction approaches additionally

make use of spatial correlator data [153, 154], which can effectively constrain the properties

of the spectral function.

Instead of using the Källén-Lehmann spectral representation, one can also use the Padé ap-

proximation [155, 156] to perform the analytic continuation (2.18) directly. Other methods

make use of Nevanlinna theory [157–161], constructing a continuous fraction expansion for

the analytic continuation. The methods mentioned above are only a small selection of the

many approaches that have been developed to tackle the problem of spectral reconstruction.

One important aspect, that most of the methods mentioned above have in common, is that

it can be difficult to quantify the systematic uncertainty introduced by the regularization

procedure, either through some smoothing or the assumption of a fixed functional basis. This

generally introduces uncontrollable systematic uncertainties. Additionally, depending on the

method it can be difficult, or even impossible, to include additional prior information about

the spectral function. For example, it is currently not possible to include information about

the normalization of the spectral function in Backus-Gilbert methods. In order to alleviate

some of these problems, we will introduce a new method for spectral reconstruction based on

Gaussian processes in the following sections.

3.2 Gaussian Processes

In this section, we will introduce the basic concepts of Gaussian processes (GPs) on a technical

level, and understand how they can be used for simple regression problems. Since spectral re-

construction is, in essence, a regression problem with no direct information about the spectral

function, but only about some integrated correlator, we will first focus on direct regression.

With these examples, we will be able to understand the basic concepts of Gaussian processes,

and only later apply them to inverse problems.

Originally, Gaussian processes were developed in the field of Geophysics, in order to interpolate

irregularly distributed and noisy data, that is abundant in experimental measurements over

different spatial and/or temporal scales. Today, Gaussian processes are used in many fields,
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such as machine learning, statistics, and physics. Especially in the context of machine learning

Gaussian processes have been experiencing a surge in interest in the last two decades. One

of the connections between GPs and machine learning is the fact, that in the limit of infinite

width, a single-layer fully connected neural network with an i.i.d.Gaussian prior on the weights

is equivalent to a Gaussian process [162]. Furthermore, GPs can be used as supervised non-

parametric models for regression and classification in different machine learning tasks and deep

Gaussian process models, cf. [163–166] for some notable examples in the extensive literature.

In the following, we will give a brief introduction to Gaussian processes. We mainly follow

[163], [167] and [168], but a wide range of high-quality literature exists, that have excellent

introductions to the broad field of Gaussian processes such as [169–172].

Gaussian processes are a type of stochastic process commonly used to model and predict

an observable variable y based on input variables x. As in general Bayesian models, the

conditional distribution p(y |x) can then describe this connection, and if y ∈ R, such a model

is called a regression model. In this work, we will only discuss regression models, but GPs can

be used in classification as well, see e.g. [163]. Instead of doing a direct regression, we assume

that we can separate the model into a systematic and a random part. The systematic part is

given by a function f(x) and the sampling distribution or likelihood is then

p(y | f(x)) . (3.3)

We therefore assume that y and x are connected by some latent function f and the probabilistic

part captures the uncertainty in the model. Note, that the conditional distribution does not

explicitly depend on the input x, only indirectly through the function f(x). Additional

parameters σ can be added to the regression model. One common parameter is the noise

level since in most regression problems we have some experimental or numerical data that

does not exactly reproduce the function f(x). For example, when performing regression,

where we have some normal noise with variance σ2n on the data, the likelihood is extended to

p(y | f(x),σ) = N (y | f(x), σ2n) , (3.4)

where we denote a normal distribution with mean µ and covariance Σ as N (µ,Σ).

The aim of regression, i.e. the goal of Gaussian process regression, is then to find the form of the

function f based on input data and prior assumptions. There are (infinitely) many approaches

to any regression problem, but we will focus on two ways of thinking about this problem. One

very straightforward way is to restrict ourselves to a finite set of basis functions, such as a

finite number of polynomials, e.g.ϕ(x) = (1, x, x2, x3, . . . )⊤. Finding each coefficient wi of

the basis functions then gives an estimate of the desired function as f(x) =
∑

iwiϕi(x). This

is in essence, what is done in Bayesian linear regression: we map the input to a set of basis

functions and then perform regression on the level of the parameters of the basis functions,

such as the prefactors of a polynomial model. However, such a parametric regression model
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has the disadvantage that the accuracy at which we can predict the underlying function f

is bounded by the function having exactly that structure. So when we do not know prior

information that highly restricts the number of basis functions, we can artificially restrict

ourselves to potentially wrong models.

Another approach is to perform regression not on the level of parameters, but instead on

the level of the function directly. Gaussian process models utilize Gaussian processes as a

prior on f , giving a prior distribution over all possible functions. Such a Gaussian process is

non-parametric in the sense that we formulate a prior on the function values directly instead

of assuming some finite set of parameters that are essentially fitted to the data. This is

done via the kernel trick, where we define a covariance function that describes the similarity

between points in the input space, which allows for models that do not explicitly formulate

an underlying basis of functions. This is discussed in detail in Section 3.2.3. In essence, the

Gaussian process is a distribution over functions, and the regression problem is then to find

the posterior distribution over functions that are consistent with the data. Gaussian processes

are the generalization of Gaussian probability distributions to infinite dimensions. Instead of

describing the probability distribution over a set of points x, the evaluation of a stochastic

process returns a function value f(x) for every x ∈ X ⊆ R.

A Gaussian process is with a mean µ(x) and a covariance function, or kernel, k(x, x′) is then

denoted as

f(x) ∼ GP(µ(x), k(x, x′)) . (3.5)

Such a Gaussian process can be evaluated at every continuous point x ∈ X , the evaluation at

a finite set of points x̃ = (x1, ..., xn) is given by a multivariate normal distribution, i.e.

p(f | x̃) = N (µ, K) , (3.6)

where we denote f = (f(x1), ..., f(xn))
⊤ with the mean µ = (µ(x1), ..., µ(xn))

⊤, and the

covariance K = (k(xi, xj))i,j=1,...,n. From this, we can straightforwardly see that a Gaussian

process is an infinite-dimensional generalization of a multivariate normal distribution: Instead

of a finite number of points, a GP can be evaluated at every point in the input space. The

covariance function or kernel of the Gaussian process usually introduces additional parameters,

that we denote by θ. We will discuss in Section 3.2.1, how the choice of kernel and its

parameters impacts the regression model and in Section 3.2.3 specify how the choice of the

kernel function can restrict or broaden the set of possible functions are described by the

Gaussian process. Optimizing the kernel choice and the associated parameters is a pivotal

step in the regression process. However, we will defer this discussion to later sections and

focus on the basic concepts of Gaussian processes in this section. For now, we will just

extend the distributions by a parameter θ, and assume a fixed model that is specified by this

parameter(s).
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We can use Gaussian processes to construct a probabilistic model and condition such a model

on some data set D = {(xi, yi) | i = 1, ..., n′}, where n′ is the number of samples. With data

at hand, we can then calculate the conditional posterior distribution using Bayes’ rule

p(f |y,θ) =
p(y | f) p(f |θ)

p(y |θ) , (3.7)

where f = (f(x1), ..., f(xn′))⊤ is now evaluated at the sample points. In Bayesian statistics,

p(f |θ) is the prior distribution, which quantifies the probability of the model producing a

certain draw. The term p(y | f) is called the likelihood, it quantifies how likely some random

draw from the prior reproduces the data. And the denominator p(y |θ) is the marginal

likelihood, which is the probability of the model reproducing the data. It is called marginal

likelihood, since it is the likelihood of the data marginalized over the latent function values,

i.e. the numerator integrated over all possible latent function values f. Since the posterior of

the process is a pivotal ingredient of the regression, we will outline the calculation of it in the

following. Note, that the posterior predictive distribution p(f |y,θ) is also often written as

p(f | D,θ), where, in a sense, x appears on both sides and is therefore redundant. However,

the meaning is the same, and we will use both notations interchangeably.

The simplest case for deriving the posterior distribution is to assume that the data is noise-

free and reproduces the function exactly y = f(x). In this case the posterior on f is p(f |y) =

δ(f − y). However, in most practical cases, we expect some noise on the data. In order for

the model to remain analytically traceable, we have to assume that the noise is Gaussian

distributed. The observed data often given by y = f(x) + ϵ, where the noise ϵ ∼ N (0, σ2n1)

is i.i.d.Gaussian distributed. In general, we can also assume correlated Gaussian noise on the

data set and have a full covariance matrix Cn, possibly with non-zero off-diagonal entries. We

therefore reintroduce the additional parameter Cn to the likelihood, see (3.4). The posterior

on f is then given by Bayes’ rule (3.7) as

p(f |y, θ, Cn) ∼ p(y | f, Cn) p(f |x, θ) . (3.8)

For a Gaussian process, the likelihood of f with some noise, as discussed above, is given by

p(y | f, Cn) = N (y | f, Cn) . (3.9)

The prior distribution in (3.8) has already been discussed above, e.g. in (3.6). In order to

simplify the derivation we will set the prior mean to zero, i.e.µ(x) = 0. Choosing any different,

non-zero mean function merely introduces a shift in the results. One can equivalently subtract

the mean function from the data, perform the regression assuming a zero mean, and then add

the mean back to the predictions, yielding the same outcome as incorporating the mean

function directly into the regression. With a zero mean the prior distribution of f is then

given by

p(f |x, θ) = N (0, K) . (3.10)
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With these two distributions, we can calculate the posterior distribution

p(f |y, θ) ∼ exp

(
−1

2
(y− f)⊤C−1

n (y− f)− 1

2
f⊤K−1f

)
∼ exp

(
−1

2
f⊤
(
C−1

n +K−1
)
f+ f⊤C−1

n y

)
∼ exp

(
−1

2
(f− u)⊤Σ−1(f− u)

)
, (3.11)

where the covariance Σ is

Σ = (C−1
n +K−1)−1

= CnK(Cn +K)−1 , (3.12)

and the mean u is

u = C−1
n Σy = K(Cn +K)−1y . (3.13)

Since the product of two multivariate normal distributions is again a multivariate normal

distribution, the right normalization immediately follows and the posterior distribution of the

Gaussian process is

p(f |y, θ) = N (u, Σ) = N
(
K(K+Cn)

−1y, σ2K(K+Cn)
−1
)
. (3.14)

From this posterior distribution, the posterior predictive distribution can be calculated in

order to make predictions for the function f at new points x∗. The vector of latent function

values is denoted by f∗, and its predictive distribution is obtained by marginalizing over the

posterior uncertainty in the latent function values

p(f∗ | D, x∗, θ) =

∫
df p(f∗ | f, x∗, θ) p(f |y, θ) , (3.15)

where on the left-hand side, we restored the dependence on the data D, and not only y, since

the data locations are not already specified in the latent function values. Next, we calculate

the first term in the integral, which describes the dependency of f∗ on f. This captures the

dependency of the regression on the GP prior. We calculate this conditional distribution from

the joint prior distribution of f and f∗. This is again a multivariate normal distribution and

given by

p(f, f∗ |x, x∗, θ) = N


 f

f∗

∣∣∣∣∣
 µ

µ∗

 ,

 K K∗

K⊤
∗ K∗∗


 , (3.16)

where K and K∗∗ are the prior covariance matrices of f and f∗, respectively, and K∗ is the

covariance matrix between f and f∗. Obtaining the conditional distribution f∗ | f from the joint

27



3 Spectral Reconstruction

0 2 4 6 8 10

x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

Samples

Figure 3.1: Plot of a Gaussian process prior with mean zero, µ(x) = 0 and a squared exponential kernel

k(x, x′) = σ2 exp
(
− 1

2ℓ2 (x− x′)2
)
, with σ = 0.3 and ℓ = 0.8. The blue shaded area indicates

the 95% confidence interval. We have drawn some samples from the Gaussian process, in

order to illustrate the fact that Gaussian processes are distributions over functions.

prior distribution is a standard result in the context of multivariate normal distributions, see

e.g. [170], and given by

p(f∗ | f, x∗, θ) = N (f∗ |µ∗ +K⊤
∗ K

−1(f− µ), K∗∗ −K⊤
∗ K

−1K∗) . (3.17)

The second part under the integral of the posterior predictive distribution in (3.15), i.e. the

posterior distribution of the process depends on the given data D. Finally, collecting all the

equations and inserting (3.17) and (3.14) into (3.15), a calculation presented in Appendix B.1

leads to the posterior predictive distribution of the Gaussian process

p(f∗ | D, x∗, θ, σ) = N
(
f∗ |K⊤

∗ (K+Cn)
−1y, K∗∗ −K⊤

∗ (K+Cn)
−1K∗

)
. (3.18)

For regression problems, we use this posterior predictive distribution to make predictions at

new points x∗, and the covariance matrix quantifies the uncertainty of the prediction. The

impressive feature of this result is that the predictive distribution is analytically traceable.

We can calculate the mean and variance via simple matrix operations instead of numerically

optimizing parameters.

The above argument directly generalizes to arbitrary inputs x∗ and therefore, we can write

the predictive distribution as a Gaussian process, that can be evaluated at arbitrary x ∈ X

f(x) | D ∼ GP(µ∗(x), k∗(x, x′)) . (3.19)

The mean and covariance directly generalize from (3.18) to

µ∗(x) = k(x)⊤(K+Cn)
−1y (3.20)

k∗(x, x′) = k(x, x′)− k(x)⊤(K+Cn)
−1k(x′) , (3.21)

28



3.2 Gaussian Processes

0 2 4 6 8 10

x

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

GP mean

Data

Samples

Figure 3.2: Plot of the Gaussian process posterior conditioned on some noisy data, denoted by black

crosses. We perform this regression with the GP prior presented in Figure 3.1,i.e. with

mean zero, µ(x) = 0 and a squared exponential kernel k(x, x′) = σ2 exp
(
− 1

2ℓ2 (x− x′)2
)
,

with σ = 0.3 and ℓ = 0.8. The blue solid line is the posterior mean of the GP and the blue

shaded area indicates the 95% confidence interval. We have drawn some samples from the

Gaussian process, in order to illustrate the fact that Gaussian processes are distributions

over functions.

where k(x) = (k(x1, x), ..., k(xn, x))
⊤ is the vector of covariances between the data and the

test point(s). Therefore, we can make predictions at any point x utilizing the posterior of

the Gaussian process and immediately propagate the error on the data through the process.

Note, that in practice we do not compute the explicit inverse of the covariance matrix in

(3.20) and (3.21), but instead use the Cholesky decomposition to solve the linear system, for

details see Appendix B.2. This provides a numerically more stable and efficient algorithm

since we invert a positive definite and symmetric matrix [163].

In Figure 3.1 we show an example of a Gaussian process prior (3.10) with a zero mean and

some kernel function k(x, x′). To gain some intuition, we can think about the Gaussian process

as a normal distribution at each point in the input space, so at each x–slice we have a normal

distribution, with the variance given by the diagonal entries of the kernel function. If they

were uncorrelated Gaussian distributions at each point, we would have uncorrelated random

draws at each x. However, in contrast to normal distributions, draws at different values of x

are correlated, since the off-diagonal entries of the kernel function are usually non-zero. The

length and structure of such correlations is precisely quantified by the kernel function. In this

example, we have chosen a squared exponential kernel, meaning that points that are close in

the input space are in return close in the output space and vice versa. As a result, we obtain

smooth functions, when we take draws from the Gaussian process. Another point illustrated

by these samples is that a Gaussian process represents a distribution over functions. However,

in subsequent plots, we will omit the samples and focus solely on the mean and variance.
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We then use this GP prior and condition it on some noisy data. The resulting posterior

predictive distribution is shown in Figure 3.2, where we can see how the mean interpolates

the data while the diagonal of the covariance matrix gives the uncertainty of the prediction.

Again, we can draw samples from the GP posterior. These samples are functions that, with

a high probability, are consistent with the data. This visualizes that the GP posterior is a

distribution over the functions in the GP prior that are consistent with the data.

3.2.1 Covariance Functions

In the previous section, we have seen that the choice of the covariance function, the kernel,

is the only prior information that we have to specify in order to perform regression with

Gaussian processes. Therefore, it is important to carefully consider the influence of the kernel

and understand the potential biases it may introduce into the model. In the following, we will

introduce the general properties of kernel function and discuss some common kernel choices.

Afterwards, we will discuss, how kernels can be extended and how kernel parameters are

optimized.

The kernel captures the dependencies between function values, i.e. the covariance between

f(x) and f(x′)

k(x, x′) = cov(f(x), f(x′)) . (3.22)

As mentioned beforehand, the kernel quantifies the strength and structure of the correlation

between the function values.

For k to be a valid kernel, it needs to map the pair of inputs (x, x′) into R, and it has to be

symmetric and positive semi-definite

k(x, x′) = k(x′, x) and

∫
dxdx′ k(x, x′)f(x)f(x′) ≥ 0 , (3.23)

for all f ∈ L2. If a kernel function fulfills these properties, a valid corresponding covariance

matrix (K)ij = k(xi, xj) can be constructed.

A kernel is called stationary if it only depends on the difference of the inputs, i.e. k(x, x′) =

k(x − x′). More specifically, if the kernel only depends on the (Euclidean) distance between

the inputs |x − x′|, it is called isotropic. Since the kernel only depends on the distance, it is

invariant under translations and rotations and often called radial basis function (RBF). The

squared exponential kernel, introduced in the examples in Figures 3.1 and 3.2, is a widely

used RBF (and therefore isotropic and stationary) kernel.

An instructive example of a GP kernel function is the linear kernel k(x, x′) = σ1 + σ2(x −
c)(x′ − c). In this case, the Gaussian process coincides with a Bayesian linear regression

model. Calculating the posterior predictive distribution, we find that the mean is a linear

fit of the data. Of course, using GPs for linear regression is not the most computationally
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efficient way, but such kernels can be used to construct more complex kernels. Additionally,

we can see that other, more specialized, regression models can be constructed as special cases

of Gaussian processes, by choosing the appropriate kernel function.

In general, it can be difficult to show that a given kernel is positive semi-definite. There are

some general rules, however, that allow for new kernels k to be constructed from existing,

positive semi-definite kernels k1 and k2, such as

k(x, x′) = c1k1(x, x
′) + c2k2(x, x

′) for c1, c2 ≥ 0

k(x, x′) = k1(x, x
′)k2(x, x′) . (3.24)

Another useful transformation is to apply a function to the inputs, i.e. k(ϕ(x), ϕ(x′)), where

the only requirement is that k is positive semi-definite on the target space of ϕ. Using this,

we can perform prior data analysis, and for example, transform the input space into a space

where the data is more easily separable.

In the following, we will discuss some common kernel functions that are used in practice and

discuss their properties and use cases. For an interactive introduction to some of these kernel

classes, an excellent is provided exists in [172].

The aforementioned squared exponential kernel is given by

k(x, x′) = σ2 exp

(
− 1

2ℓ2
(x− x′)2

)
, (3.25)

where σ controls the variance and ℓ is some length scale. Especially the length scale ℓ has

an intuitive interpretation in the context of regression. It controls the smoothness of the

function, smaller values of ℓ lead to more oscillations in the interpolation or regression, while

larger values of ℓ lead to smoother functions. We compare function draws from a GP with

different length scales in Figure 3.3b. When doing regression, this kernel is often used as a

default choice. It correlates points that are close in the input space, while points that are far

away in x-direction are uncorrelated, which is usually a good assumption for many problems.

This leads to interpolations that are smooth functions and otherwise do not assume other

prior information. Note that the squared exponential kernel is infinitely differentiable, which

leads to draws from the GP being in C∞, see the discussion in Section 3.2.3.

Since such a strong smoothness assumption can be too restrictive for some problems in re-

gression, another widely used kernel is the Matérn kernel class. It is given by

k(x, x′) = σ2
21−ν

Γ(ν)

(√
2ν

ℓ
|x− x′|

)ν

Kν

(√
2ν

ℓ
|x− x′|

)
, (3.26)

where Kν is a modified Bessel function of the second kind and Γ is the gamma function. The

variance σ, the length scale ℓ, and the smoothness parameter ν are positive parameters. While

σ and ℓ have the same interpretation as in the squared exponential kernel, the parameter ν
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Figure 3.3: Plots of different functions drawn from Gaussian processes with differing kernels and zero

mean. In (a), we compare sample paths from the squared exponential kernel and the

Matérn kernel with ν = 1/2, 3/2 and 5/2. In (b), we show the behavior of the squared

exponential kernel for different length scales. The variance is set constant for all draws,

σ = 1.

controls the differentiability of the function. A GP with a Matérn kernel in ν − 1 times

differentiable, meaning that small values of ν lead to rougher functions. For ν → ∞, the

Matérn kernel converges to the squared exponential kernel. The Matérn kernel is mostly

used at small half-integer values of ν, such as ν ∈ {1/2, 3/2, 5/2}, since these values are

computationally more efficient to calculate and are distinct from the squared exponential

kernel. In these cases the kernel is

kν=1/2(x, x
′) = σ2 exp

(
−|x− x′|/ℓ

)
, (3.27)

kν=3/2(x, x
′) = σ2

(
1 +

√
3|x− x′|/ℓ

)
exp

(
−
√
3|x− x′|/ℓ

)
, (3.28)

kν=5/2(x, x
′) = σ2

(
1 +

√
5|x− x′|/ℓ+ 5|x− x′|2/(3ℓ2)

)
exp

(
−
√
5|x− x′|/ℓ

)
. (3.29)

In Figure 3.3a, we show the different behavior of the Matérn kernel for different values of ν.

3.2.2 Model Selection and Parameter Optimization

In the previous section, we have discussed the GP kernel and some examples of common

kernels. We have seen that different kernels or different kernel parameters, i.e. different re-

gression models, lead to widely different results, see Figure 3.3. It is therefore crucial to

develop consistent methods for model selection and find objects that quantify the quality of

the regression model. In general, model selection incorporates the choice of the kernel function

and the kernel parameters. In this work, however, we will focus on the kernel parameters,

since the choice of the kernel class in the interpolation problems treated here, has turned out

to be less crucial, or we have explicit prior information about the functional form and want
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3.2 Gaussian Processes

to explicitly keep the kernel class fixed, see Section 3.3.3. Generally useful kernels, like the

squared exponential kernel, have been proven powerful in many problems, and changing this

kernel usually does not lead to significant improvements in the regression quality, apart from

specialized problems, e.g. periodic functions. Still, different methods have been developed for

automatic kernel selection, see e.g. [173, 174] and might be a future extension to this work.

The parameter optimization of the GP kernel is often called training, especially in the context

of machine learning.

Since we only treat the kernel parameters as unknowns, we distinguish different models by the

kernel parameters denoted by θ. We use the marginal likelihood p(D |θ), i.e. the denominator

in Bayes’ rule (3.7), to compare different models. The marginal likelihood quantifies the

probability of generating the observed data D given the model parameters θ and given by

marginalizing over the likelihood times the prior

p(D |θ) =

∫
df p(D | f) p(f |θ) . (3.30)

As discussed previously the prior of the GP is given by f |θ ∼ N (0, K) and the likelihood is

given by D | f ∼ N (f, Cn). The log marginal likelihood is then given by

log p(D |θ) = log

∫
df N (f |0, K)N (D | f, Cn)

= logN (D |0, K+Cn)

= −1

2
y⊤(K+Cn)

−1y− 1

2
log |K+Cn| −

n

2
log 2π . (3.31)

These three terms have intuitive interpretations in the context of optimization. The first term

is the only one that explicitly depends on the observed targets y and quantifies the quality of

the data fit. The second term acts as a complexity penalty and only depends on the kernel

function. It penalizes models that are too complex, e.g. very small length scales in the squared

exponential kernel leading to almost diagonal K, and prevents overfitting. The last term is

a normalization term only depending on the number of data points n, and is therefore not

relevant to parameter optimization.

Note that the optimized kernel parameters can include the noise covariance matrix Cn, or in

simpler cases the signal variance σn with Cn = σ2n1. However, it has been shown, that opti-

mization on the noise parameter σn and the variance of the kernel σ2k(x, x′) simultaneously,

can lead to numerical instabilities and especially overfitting [175]. Therefore, we will keep the

noise fixed and only optimize the kernel parameters in the context of this work.

In Figure 3.4, we show an example of hyperparameter optimization. In the simple exam-

ple of two kernel parameters, we can use common minimizers to find the minimum of the

negative log-marginal likelihood. Or for very simple problems, we can perform scans of the

two-dimensional parameter space, as shown in the figure. For more advanced models, the

number of parameters can grow rapidly, leading to a high-dimensional optimization problem.
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Figure 3.4: GP regression with optimized hyperparameters with the same data as in Figure 3.2. In

(a), we show the GP regression with the likelihood-optimized hyperparameters ℓ = 0.32

and σ = 0.95 for the squared exponential kernel. The blue solid line is the posterior mean

of the GP and the blue shaded area indicates the 95% confidence interval. In (b), we show

a parameter scan of the corresponding negative log-marginal likelihood (NLL). The red

cross indicates the optimized hyperparameters.

Additionally, apart from simple examples, the optimization problem is non-convex, and the

optimization algorithm can get stuck in local minima. This makes finding the right hyper-

parameters typically the most involved part of the regression process. In order to calculate

the log-marginal likelihood (3.31), we need to invert the covariance matrix in each optimiza-

tion step. The computational complexity of matrix inversion grows as O(n3), where n is the

number of data points. This is the main drawback of Gaussian processes: the computational

cost grows rapidly with the number of data points, while especially in machine learning ap-

plications, the number of data points is generally very large1. However, the optimization can

be performed more efficiently with gradient-based optimization methods. The gradient of the

marginal likelihood w.r.t. the hyperparameters is given by

∂

∂θi
log p(D|θ) =

1

2
y⊤(K+Cn)

−1∂K

∂θi
(K+Cn)

−1y− 1

2
tr

(
(K+Cn)

−1∂K

∂θi

)
, (3.32)

with an additional computational cost of calculating the gradient of the order O(n2). Thus,

choosing gradient-based optimization methods is generally advantageous.

3.2.3 Kernel Eigenfunctions

In this section, we will have a close look at the mathematical structure underlying Gaussian

processes. This will help to understand the impact of the kernel function on the regression

and lead to modifications that incorporate prior information about the function. As another

1A major part of research on GPs is devoted to finding ways around this problem by using methods like

sparse Gaussian processes, for a review on different methods, see [176].
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perspective on Gaussian processes, we will introduce reproducing kernel Hilbert spaces (RKHS)

and lay out how these concepts are related. For a thorough introduction to the general theory

of RKHS and kernel eigenfunctions, we refer to [177], while [169] gives an introduction with

a stronger connection to GPs. For a more detailed and mathematical introduction [178] is a

great resource, focussing on more general kernel methods.

We use the definition of a kernel function as a symmetric, positive semi-definite function that

maps the input space into R, i.e. k : X × X → R. We can then define the RKHS as

Definition 3.2.1 (Reproducing Kernel Hilbert Space). A Hilbert space Hk of functions on

X equipped with an inner product ⟨·, ·⟩Hk
is called a reproducing kernel Hilbert space with

reproducing kernel k, if for all x ∈ X , we have k(x, ·) ∈ Hk and for all f ∈ Hk and x ∈ X ,

we have f(x) = ⟨f, k(x, ·)⟩Hk
.

The RKHS can be constructed from some kernel k as

Hk =

{
f(x) =

∞∑
i=1

αik(x, xi) |αi ∈ R, xi ∈ X , such that ⟨f, f⟩ <∞
}
, (3.33)

where the inner product is given by

⟨f, g⟩Hk
=

∞∑
i=1

∞∑
j=1

αiβjk(xi, xj) . (3.34)

From this construction, we can see that the bases of the RKHS are the kernel functions k(x, xi)

and the functions in the RKHS inherit the properties from the kernel, such as smoothness or

differentiability. Additionally, an RKHS Hk is unique for every positive semi-definite kernel

function k by the Moore-Aronszajn theorem [179].

It follows immediately that a kernel function defining the covariance of a Gaussian process has

an associated RKHS. When examining the posterior predictive mean of a Gaussian process

(3.20), we can see that the mean can be written as a linear combination of the kernel functions

µ∗(x) =

n∑
i=1

αi k(xi, x) , (3.35)

where the coefficients α = (K+Cn)
−1y are constants w.r.t. the test point x and only depend

on the training data y and the kernel function at the training points. The posterior mean

of the Gaussian process is therefore in the RKHS of the kernel function. So it is pivotal to

understand the properties of the RKHS in order to understand how regression with Gaussian

processes behaves2.

This can be further understood by looking at Mercer’s theorem [181]:

2Note, that while the posterior mean lies in the RKHS of the GP kernel, sample paths of the GP prior do

not necessarily – and for many kernels almost surely not – lie within the RKHS. For a GP, a sample path does

not belong to the corresponding RKHS with probability 1, if Hk is infinitely dimensional [169]. Sample paths

are generally rougher or less regular than RKHS functions. However, they are still connected, as GP sample

spaces can be constructed as powers of RKHS [180].
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Theorem 3.2.1 (Mercer’s Theorem). Suppose that a continuous, symmetric, positive semi-

definite kernel function k : X × X → R is bounded, i.e. |k(x, x′)| < ∞ for all x, x′ ∈ X . We

then define the integral operator Tk as

Tkf(x) =

∫
X
k(x, x′)f(x′)dx′ . (3.36)

Such operators are called Hilbert-Schmidt operators. Since Tk is compact, positive, and self-

adjoint, the spectral theorem (see e.g. [178], Theorem A.5.13) guarantees that an eigendecom-

position (ϕi, λi), where ϕi are the eigenfunctions and λi the eigenvalues, exists

Tkϕi = λiϕi . (3.37)

The number of eigenvalues is equal to the dimension of the associated RKHS, and they are

positive. The kernel function k can then be expressed in terms of the eigenvalues and eigen-

functions as

k(x, x′) =
∑
i=1

λiϕi(x)ϕi(x
′) . (3.38)

The proof of this theorem can be found in [182].

The eigenfunctions are therefore an orthogonal basis of the RKHS. Since the posterior mean is

in the RKHS, we can understand the interpolation that is performed by the Gaussian process

as a projection of the data onto the eigenfunctions of the kernel. As a result, the behavior of

the interpolation can be understood by analyzing the set of eigenfunctions of the kernel.

Before we continue the discussion of the eigenfunctions of specific kernels, we will discuss the

kernel trick, which is a powerful tool in machine learning and statistics. It is, in a sense, the

reverse of the above constructions, where we construct a RKHS from a kernel function. We

define a feature map φ : X → H, where H is a Hilbert space called feature space. A kernel is

then defined as the inner product in feature space

k(x, x′) = ⟨φ(x), φ(x′)⟩H , (3.39)

where k is symmetric and positive semi-definite by the definition of an inner product. The

natural example that arises from Mercer’s theorem is φi(x) =
√
λiϕi(x), with an inner product

⟨φ(x),φ(x′)⟩H =
∑
i

λiϕi(x)ϕi(x
′) = k(x, x′) . (3.40)

However, in general, we construct kernels without explicitly knowing the eigenfunctions of

the feature map. This has a major computational advantage: we do not have to calculate

high orders in the feature space, e.g.φi(x) = cix
i, i ∈ {0, . . . , N} for polynomial kernels up to

order N , but can implicitly formulate our problem in terms of kernels. This is widely used in

machine learning, where the feature space can be of very high dimension or even infinite, and
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the kernel trick allows for efficient calculations. In the context of interpolation, if we know the

basis of the function that we interpolate, we can construct a kernel that is the inner product

of the basis functions, and we can perform the interpolation in the RKHS of the kernel. We

discussed this in Section 3.2.1, where GP regression reproduces linear regression for a linear

kernel, and we will revisit this when constructing special kernels that incorporate asymptotics

of the function in Section 3.3.3.

We have seen, that RKHS can have very different sizes; small RKHS can be spanned by a few

eigenfunctions, in order to prevent overfitting when we have clear prior information about the

underlying data. Another powerful class of kernels referred to as universal kernels are defined

as:

Definition 3.2.2 (Universal Kernels). A kernel k on X is called universal if the associated

RKHS Hk is dense in C(X ), the space of continuous functions on X , i.e. for all f ∈ C(X )

and ϵ > 0, there exists a function g ∈ Hk such that

∥f − g∥∞ < ϵ . (3.41)

Such kernels allow for the approximation of any continuous function with arbitrary precision.

They are extremely flexible and can be used to continuously interpolate data without any

prior assumptions.

It can be shown (from [183], Theorem 9), that kernels of the Taylor type are universal.

Theorem 3.2.2 (Universal Taylor Kernels). Let f : R → R be a C∞ function that can be

Taylor expanded at 0 as

f(x) =
∞∑
i=0

aix
i . (3.42)

If we have ai > 0 for all i, and some scalar product ⟨·, ·⟩ : X × X → R+, then the kernel k

given by

k(x, x′) = f(⟨x, x′⟩) , (3.43)

is a universal kernel.

This means that the exponential kernel k(x, x′) = exp(−∥x − x′∥/ℓ) and the squared ex-

ponential kernel k(x, x′) = exp(−∥x − x′∥2/(2ℓ2)), presented in Section 3.2.1, are universal

kernels. This is one of the reasons, such kernels are so widely used: They can approximate

any continuous function, and we do not make prior assumptions.

Note that, although the squared exponential kernel is a universal kernel, its associated RKHS

does not have to contain all continuous functions. For example, the constant, non-zero func-

tion, and any polynomial function are not contained in the RKHS [184, 185]. However, for

practical purposes, this usually does not pose a problem since the RKHS is dense in the space
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of continuous functions. Hence, we can get arbitrarily close to these functions. This can be-

come problematic in the limit of an infinite number of data points and the error approaching

zero. In such cases, the convergence towards the true function can be slow.

3.3 Spectral Reconstruction with Gaussian Process

Regression

In the previous section, we introduced Gaussian processes as a tool for regression and dis-

cussed the mathematical properties of GPs and their kernels. Since the spectral reconstruc-

tion problem is, at heart, a regression problem, it is natural to consider GPs for spectral

reconstruction. In this section, we will introduce the last prerequisites for tackling spectral

reconstruction problems with GPs and derive the predictive posterior distribution for spec-

tral reconstruction. This will allow the systematic incorporation of prior information about

the spectral function, such as asymptotic behavior or normalization information, into the

inversion.

The inversion of Fredholm integral equations of the first kind with Gaussian processes has been

introduced in [168, 186] and independently developed in [187] and [139, 188, 189]. Apart from

the applications presented in this thesis, this method has been applied to several inversion

problems in the context of QCD in recent years [190–194].

3.3.1 Gaussian Processes under Linear Transformations

As in the section beforehand, we start by assuming a function f(x), that we can model with

a Gaussian process as

f(x) ∼ GP(µ(x), k(x, x′)) . (3.44)

We then define a linear operator L̂ that maps f to a new function g(x), i.e. g(x) = L̂[f ](x). For

example, such linear operators can be derivatives or integrals of the function. Since Gaussian

distributions are closed under linear transformations, meaning that Gaussian statistics are

preserved under linear transformation of the random variables, the new function g(x) can

also be described by a Gaussian process

g(x) ∼ GP(µ̃(x), k̃(x, x′)) , (3.45)

with a new mean and a new kernel, that are given by

µ̃(x) = L̂[µ](x)

k̃(x, x′) = L̂2[k](x, x′) . (3.46)

Where the notation L̂2 for the transformed covariance indicates, that one operator acts on

the first argument and the other on the second argument.
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3.3 Spectral Reconstruction with Gaussian Process Regression

A widely used example is the derivative of a Gaussian process [163]. We consider the derivative

operator L̂ = ∂x and the above GP of f(x). Then the GP of the derivative of f is given by

∂xf(x) ∼ GP(∂xµ(x), ∂x∂x′k(x, x′)) . (3.47)

With this, we can then condition the posterior on some function value data, but also on the

derivative of the function at some points. Additionally, we can directly extract the derivative

interpolation of the function from the GP, even when only having information about the

function and not its derivatives, including error estimates at every point.

Similarly, the Källén-Lehmann spectral representation (2.19) is a linear transformation of the

spectral function3

G(p0) =

∫ ∞

0

dω

π

ω

ω2 + p20
ρ(ω) ≡

∫ ∞

0
dω K(ω, p0) ρ(ω) , (3.48)

where we will call K the kernel of the integral transformation or, more specifically, the kernel

of the spectral representation. In contrast to the previous section, we will now call the

dataset D = {(pi, Gi)|i = 1, . . . , n}, where Gi = G(pi), since in practice, we have data on the

Euclidean correlator at different momenta. As we have done previously, we now assume that

the spectral function can be written as a GP, i.e.

ρ(ω) ∼ GP(µ(ω), k(ω, ω′)) . (3.49)

As already noted in (3.45), the prior for the Euclidean propagator can then be written as a

GP with the correct integral insertions in terms of the spectral function GP as

Gi ∼ N
(∫ ∞

0
dωK(ω, pi)µ(ω),

∫ ∞

0

∫ ∞

0
dω dω′K(ω, pi)k(ω, ω

′)K(ω′, pj)
)
. (3.50)

Then, we can write down the joint prior distribution of the data and the spectral function,

while accounting for some Gaussian noise Cn on the data and a prior mean µ(ω), as G

ρ(ω)

 ∼ N


 κ

µ(ω)

 ,

K∗∗ +Cn K∗(ω′)

K⊤
∗ (ω) k(ω, ω′)


 , (3.51)

where we have defined

(κ)i =

∫ ∞

0
dω′K(ω′, pi)µ(ω′) ,

(K∗(ω))i =

∫ ∞

0
dω′K(ω′, pi)k(ω′, ω) ,

(K∗∗)ij =

∫ ∞

0

∫ ∞

0
dω′ dω′′K(ω′, pi)K(ω′′, pj)k(ω′, ω′′) . (3.52)

3Here, we present the reconstruction for the spectral function at zero temperature. The exact same is true

for the finite temperature spectral representation for the Euclidean propagator in imaginary time (2.21), e.g. in

Chapter 6, since this is also a linear transformation of the spectral function.
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As already discussed in Section 3.2, we can now directly calculate the posterior predictive

distribution for the spectral function ρ(ω) from the joint prior distribution and arrive at

[168, 187]

ρ(ω)|G ∼ GP
(
µ(ω) +K⊤

∗ (ω)(K∗∗ +Cn)
−1(G− κ),

k(ω, ω′)−K⊤
∗ (ω)(K∗∗ +Cn)

−1K∗(ω′)
)
. (3.53)

This is the main result of this section. We can encode our knowledge about the underlying

spectral function ρ(ω) in terms of correlator data G. This poster distribution is the distri-

bution over all possible spectral functions that are consistent with the correlator data. The

mean then gives the most probable spectral function and the covariance provides the uncer-

tainty of the prediction. When we do not have a clear constraint on the spectral function

from the correlator data, we recover the prior distribution of the GP spectral function. In

essence, we perform all the different possible interpolations of the spectral function at the

same time and obtain the distribution over these fits. As discussed in Section 3.2.3, GPs

with universal kernels can approximate any continuous function. Consequently, using GPs

for spectral reconstruction makes minimal prior assumptions about the spectral function.

Doing spectral reconstruction with GPs shifts the objective from finding the best fit param-

eters and having a distribution over these fit parameters to having a distribution over the

spectral functions themselves. In a sense, this embraces the ill-conditioning of the inversion

problem, discussed in Section 3.1, as the posterior distribution contains all possible func-

tions that the model can fit to the given correlator data. However, in practice, the problem

of ill-conditioning is not solved by this. We usually obtain wide ranges of possible spectral

functions, that are consistent with the data, but do not provide any meaningful predictions,

since the deviation from the prior is often minimal. GPs only provide a consistent tool that

does not arbitrarily regularize our problem. The remaining challenge is to equip the model

with enough prior information to make the prediction meaningful by constraining the possible

spectral functions to a physically motivated subset.

Note, that here we take a different approach for deriving the predictive posterior distribution

compared to Section 3.2, where we derived the posterior from Bayesian statistics. Here,

we have used the well-known results for marginalizing over Gaussian joint distributions [170].

Although this is less intuitive, it allows for easier generalization and the inclusion of additional

information in the model. For example, we can assume that we have some direct data on the

spectral function Ddirect = {(ω̃i, ρ̃i)|i = 1, . . . ,m} with some Gaussian noise with covariance

Cdirect. Additionally, we can also add first derivative data of the spectral function Dderiv =

{(ω̄i, γ̄i)|i = 1, . . . , k} with Gaussian noise covariance Cderiv at some points to complement the

data on the correlator. For simplicity, we set the prior mean to zero in the following. We can
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then include this additional data in the joint prior distribution as

G

γ̄

ρ̃

ρ(ω)


∼ N


0 ,



K∗∗ +Cn K∗† K∗(ω̃⊤) K∗(ω′)

K⊤
∗† K†† +Cderiv K†(ω̃⊤) K†(ω′)

K⊤
∗ (ω̃) K⊤

† (ω̃) k(ω̃, ω̃⊤) +Cdirect k(ω̃, ω′)

K⊤
∗ (ω) K⊤

† (ω) k(ω, ω̃⊤) k(ω, ω)




, (3.54)

where a separate (possibly full) covariance matrix is included for all the different data sets.

The matrices are defined analogously to the previous case, with the additional data points

included and defined as

(K∗†)ij =

∫ ∞

0
dω′K(ω′, pi) ∂2 k(ω′, ω̄j) ,

(K††)ij = ∂1∂2 k(ω̄i, ω̄j) ,

(K†)i(ω) = ∂1 k(ω̄i, ω) , (3.55)

where ∂1 and ∂2 denote the partial derivatives w.r.t. the first and second argument of the

kernel respectively, and when the kernel is evaluated at vectors of data, the result is a vector

or a matrix, e.g. (k(ω̃, ω̃⊤))ij = k(ω̃i, ω̃j). We can now collect the different matrices and

vectors of the data covariances and means into a single matrix and vector each and use the

same formula as in (3.53) to calculate the posterior distribution of the spectral function. Any

linearly connected data can be included in this way and the posterior distribution then gives a

consistent estimate of the spectral function that is consistent with all the different constraints.

Therefore, it is straightforward to include additional data about the spectral function, such

as normalization or the behavior at ω = 0, prior information that is often known from the

definition of the spectral function.

3.3.2 Spectral Reconstruction in Higher Dimensions

In general, the spectral reconstruction problem can be a multidimensional problem, since the

spectral function can change with temperature T , chemical potential µB, or spatial momen-

tum p. The spectral function is a function of multiple variables: ρ(ω, T, µB,p). For most

practical cases, we expect the spectral function to change continuously with these additional

parameters. We can use this to our advantage and include additional data points in the

Gaussian process regression while demanding that the spectral function is continuous in the

additional parameters. This can additionally regularize the problem and therefore improve

the reconstruction.

In order to be general, we will introduce the additional dimensions as a vector X, such that

ρ(ω,X). In that case, we have correlator data (G)i = G(pi,Xi). The kernel function now

quantifies correlations in a higher dimensional space, i.e. k(ω,X; ω′,X′). Generally, we want
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to modify the kernel, to respect that the spectral function can have different parameters in

different directions. For example, the length scale can differ, or the data can be more sparse

in certain directions. Here, we will exemplify this on the squared exponential kernel, where

we introduce a length scale for each dimension

k(ω,X;ω′,X′) = σ2 exp

−(ω − ω′)2

2ℓ2ω
−

dim(X)∑
k=1

(Xk −X ′
k)

2

2ℓ2Xk

 . (3.56)

We can now insert the data G and the new kernel into (3.51), and calculate the posterior

distribution of the spectral function. In order to obtain the different covariances in the joint

prior, we only integrate over the first dimension, i.e.ω, while keeping the other dimensions

fixed. Note, that we can also include additional data points in the higher dimensional space,

e.g. direct spectral function information Ddirect = {(ω̃i,Xi; ρ̃i)}, or derivatives, to further con-

strain the spectral function.

3.3.3 Asymptotic Behavior of the Spectral Function

In many cases of spectral reconstruction, the asymptotic behavior in the ultraviolet (UV) or

infrared (IR) regime is known. Either perturbation theory or operator product expansions can

often provide information about the behavior of the spectral function in the UV. We aim to

incorporate this information into the Gaussian process model to improve the reconstruction.

In Section 3.2.1, we have seen that the kernel function of a GP can be seen as the inner

product of the basis functions of the RKHS. Since the posterior mean of the GP is a function

in the RKHS, we can understand the interpolation as a projection of the data onto the

basis functions. In the case of universal kernels, the RKHS is dense in the space of continuous

functions; such kernels allow for very flexible interpolation. On the contrary, in certain regions,

we want to restrict the possible spectral functions to a subset that is physically motivated.

We therefore introduce separate kernels for different regions of the spectral function. For

example, when we have information about the spectral function asymptotics at high or small

energies, as ρIR/UV(ω), we can construct the kernel as

kIR/UV(ω, ω
′) ∼ ρIR/UV(ω)ρIR/UV(ω′) . (3.57)

There is usually an additional intermediate region, where we do not have any prior informa-

tion, and we can use some universal kernel kuniversal in this region. Since these kernels dominate

different regimes, we can construct the full kernel as a sum of the individual contributions,

while defining some function that interpolates between the different regions, e.g. a step func-

tion or a sigmoid function. In order to avoid any non-differentiable points in the spectral

function, in this work we take the smooth step function as a transition function with the form

θ±(ω;µ, ℓ) =
1

1 + exp(±2(ω − µ)/ℓ)
. (3.58)
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This function has a midpoint at µ and the steepness of the transition is controlled by ℓ. The

full kernel can then be written simply as a sum of the individual contributions

k(ω, ω′) = kintermediate(ω, ω
′) + kIR(ω, ω

′) + kUV(ω, ω
′) , (3.59)

where

kintermediate(ω, ω
′;σ, µIR, ℓIR, µUV, ℓUV)

= θ+IR(ω;µIR, ℓIR) θ
+
IR(ω

′;µIR, ℓIR) θ
−
UV(ω;µUV, ℓUV) θ

−
UV(ω

′;µUV, ℓUV) kuniversal(ω, ω
′;σ)

kIR(ω, ω
′;µIR, ℓIR) = θ−IR(ω;µIR, ℓIR) θ

−
IR(ω

′;µIR, ℓIR) ρIR(ω) ρIR(ω
′)

kUV(ω, ω
′;µUV, ℓUV) = θ+UV(ω;µUV, ℓUV) θ

+
UV(ω

′;µUV, ℓUV) ρUV(ω) ρUV(ω
′) .

The midpoints of the transition functions θIR/UV are specified by µIR/UV and their steepness is

controlled by ℓIR/UV. The set of universal kernel parameters is denoted by σ.

By having a smooth transition function between the different regions, we can ensure that the

interpolation is differentiable. Moreover, in practice, the asymptotics do not abruptly start at

some point but do gradually dominate the functional form of the spectral function. A smooth

spectral function incorporates that and also allows for some deviation in the asymptotic

regimes due to the remnant of the universal kernel. Such a construction is able to capture the

asymptotic behavior while allowing for some flexibility in order to limit the amount of prior

bias introduced by the modifications of the kernel.

Since each of the smooth step functions introduced here has two free parameters, µ and

ℓ, we can include these in the hyperparameters of the GP and optimize them along with

the other hyperparameters. This allows for the data to determine the exact form of the

transition between the different regions. In particular, optimizing the onset of the asymptotic

behavior can have interesting physical interpretations and can be determined by comparing

the fit quality by minimizing the negative log-likelihood or the χ2 error of the fit. By finding

the distribution of transition parameters, we can also quantify the systematic error that is

introduced to the GP by the restriction of the interpolation basis to the asymptotic behavior.

This discussion has centered on asymptotic behavior, but in a similar manner, prior knowledge

can be incorporated into the Gaussian process through combinations of various kernels and

appropriate transition functions. Also, different transition functions can be used for different

regions or different directions, as long as the full kernel remains symmetric. Consequently,

there is a large flexibility, that can be adjusted to the specific problem at hand, where, for

example, the tails of the universal kernel behavior can have algebraic instead of exponential

falloff into the tails of the reconstructed spectral function.

3.4 Numerical Implementation: An Introduction to fredipy

Motivated by the wide range of applications, not only in QCD but also across other fields of

science, where solutions to linear inverse problems are needed, we have developed a Python

43



3 Spectral Reconstruction

package based on Gaussian process regression, called Fredholm inversion in Python: fredipy.

The goal is to invert Fredholm integral equations of the first kind, i.e. equations of the form

g(x) =

∫
dx′K(x, x′)f(x′) , (3.60)

where K is some known function, and the objective is to find the function f(x) using some

data on g. As discussed in Section 3.1, this is a common problem in many fields of science

and engineering. The Python package fredipy is designed to make the method of Gaussian

process regression for solving such problems accessible to a wider audience, while still providing

flexible tools in order to address different inverse problems. In the following, we provide an

overview of the package, discuss relevant numerical subtleties, and present simple examples

demonstrating the application of Gaussian process regression to spectral reconstruction.

Since Gaussian processes are a widely applied method in machine learning and probabilistic

modeling, many packages provide tools for Gaussian process regression. For python, such

packages include GPy [195], a native Python implementation, or GPflow [196], that is build

on the utilities of TensorFlow [197], or GPyTorch [198], that is build on PyTorch [199], or

GPJax [200], that utilizes JAX [201]. Other packages that are not specialized toward Gaussian

processes, but general machine learning or Bayesian inference applications often provide some

basic GP functionality, such as scikit-learn [202], pystan [203] or pymc [204].

Implementing methods for solving Fredholm integral equations of the first kind with Gaus-

sian processes as outlined in Section 3.3 in these frameworks is not straightforward, since

integration operators are not a standard utility and the APIs generally do not provide enough

flexibility to include these constraints manually. The package fredipy is designed to provide

a simple interface to solve this and allow for the inclusion of different constraints. However,

in contrast to many of the aforementioned packages, fredipy is not designed to be a general-

purpose machine learning package but is specialized in (inverse) regression problems. To

install fredipy, one can use the Python package manager pip by running

pip install fredipy

or directly clone the repository from GitHub4 and install it manually. The only dependencies

are the standard Python packages numpy [205] and scipy [206] in order to perform efficient

matrix operations and random sampling.

To introduce the package, we will present some examples of reconstructing Breit-Wigner

peaks, which provide a good model for resonances in relativistic high-energy physics. We will

invert the zero temperature Källén-Lehmann spectral representation

GBW(p) =

∫ ∞

0

dω

π

ω

ω2 + p2
ρBW(ω) , (3.61)

4https://github.com/JonasTurnwald/fredipy
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where the Breit-Wigner propagator GBW is given by

GBW(p) =
A

m2 + (p+ Γ)2
, (3.62)

and the associated spectral function ρBW is analytically known as

ρBW(ω) =
4AΓω

4Γ2ω2 + (Γ2 +m2 − ω2)2
. (3.63)

We can proceed to generate mock data and use the package to reconstruct the spectral func-

tion. The following code snippet shows how to use the package to perform the reconstruction.

First, we define our data as a dictionary where we have some noisy data on the correlator

(3.62) denoted by G_err at momenta p and an error estimate err, which, in this example, is

taken constant for all data.

1 data = {

2 'x': p,

3 'y': G_err,

4 'cov_y': err**2}

This data array always has the same structure and has to be defined for every type of constraint

such as derivative or direct constraints separately. It always needs to contain the data points

'x', the data 'y'. The data can also be given as a list or numpy.ndarray of these data

arrays. If no explicit error is given, the error is taken to be zero. The error can also be given

as a full covariance matrix if the errors are correlated. In the next steps, we will perform the

reconstructing by importing the fredipy package, defining the kernel, the type of constraint,

and then performing the GP regression with the given data:

5 import fredipy as fp

6

7 # define the kernel

8 kernel = fp.kernels.RadialBasisFunction(variance=0.3, lengthscale=0.4)

9

10 # define the integrator method to use, with upper and lower bounds and number of points

11 integrator = fp.integrators.Riemann_1D(omega_min=0, omega_max=100, int_n=1000)

12

13 # define the operator, the integration with the källen lehmann kernel

14 integral_op = fp.operators.Integral(kl_kernel, integrator)

15

16 # define the full constraint using the data on the propagator

17 constraints = [fp.constraints.LinearEquality(integral_op, data)]

18

19 # now we can define the model using the constraints and the GP kernel

20 model = fp.models.GaussianProcess(kernel, constraints)

21

22 # ... and do a prediction on the points w_pred

23 _rho, _rho_err = model.predict(w_pred)

45



3 Spectral Reconstruction

The fp.kernels class provides different kernels that can be used for regression. Here we use

the squared exponential or radial basis function kernel (3.25) with some fixed variance and

length scale. The Matérn kernels introduced in (3.27) – (3.29) are also predefined in the pack-

age. Additional kernels can be manually defined by inheriting from the fp.kernels.Kernel

class and implementing the make method that returns the matrix of the kernel function be-

tween two input arrays.

In line 11, we define the integration method to use. The package provides two different in-

tegrators, the Riemann sum and the Simpson rule, both in general dimensions as Riemann

and Simpson. In one dimension, we can make significant speed improvements by using the

Riemann_1D and Simpson_1D integrators, which are optimized for this case. We do not use

general-purpose integrators like scipy.integrate.quad for two reasons. First, we can sig-

nificantly improve the speed by using a small number of matrix operations, instead of doing

a large number of similar integrations over the kernel function. In this way, the overhead

of general-purpose integrators can be avoided. Second, but most importantly, using integra-

tors that do not have a fixed set of grid points that are used for all integrations, can lead

to inconsistencies in the GP regression. Since the inversion of the kernel matrix can have

a large condition number, the resulting difference due to integration errors does not cancel

exactly and the GP regression can become unstable. This can result in isolated spikes in the

regression; however, such artifacts can be entirely avoided by using the exact same integra-

tion routine consistently across all steps of the reconstruction. Note, that we perform the

numerical integration up to an upper limit of 100 for the examples shown in this section. This

is a reasonable choice, since the integrand decreases with 1/ω4 for large ω, and the integral

converges quickly. For other applications, it might be useful to transform the integration

variables, e.g. ω̃ = ω
1−ω , in order to have a finite domain of integration. The usefulness of such

transformations heavily depends on the specific problem and must be implemented by the

user.

Next, we define the operator that connects the data to the interpolated function in line 14.

In this case, the spectral function is connected to the correlator data via integration over the

Källén-Lehmann kernel (3.61), here denoted by kl_kernel. This kernel is defined by the user

and must be a function that takes the integration variable as the last argument and the data

point as the first argument. In our case, the kernel is defined as

def kl_kernel(p, omega):

return omega / (omega**2 + p**2) / np.pi

The kernel has to take a numpy.ndarray as input and return the same type. We then define

the operator by passing the kernel and the integrator to the fp.operators.Integral class.

There are different operators that are currently implemented, such as the derivative operator,

the integral operator, or the direct operator, that can be used to include different types of

constraints on the regression. As a first introduction, we only use integral constraints, but we
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will extend this in the course of the section.

We can now define an array of different constraints. Here we only have one constraint, the

integral constraint, but we can extend the list to incorporate different data that might be avail-

able. Note that we additionally wrap the operator in a fp.constraints.LinearEquality

class. This means, that we have data that is linearly connected to the spectral function and

that comes in the form of equality constraints. In the published version of this package, no

other type constraints are available, but as described in Section 3.5, inequality constraints

are an important extension. They are currently not available in the official branch of the

package, since it remains a challenge to implement them in a way that consistently provides

meaningful results.

The final GP model is then built by passing the kernel and the constraints to the predefined

fp.models.GaussianProcess class. The kernel of the Gaussian process must be in the

form of a fp.kernels.Kernel object, while the constraints must be a list or an array of

fp.constraints.Constraint objects. We can make predictions on the spectral function at

some points w_pred by calling the predict method of the model. The result is the mean

and the standard deviation of the spectral function at the given points. Again, the explicit

computation is performed by Cholesky decomposition of the kernel matrix, as described in

Appendix B.2. With the keyword argument full_cov=True, the full covariance matrix of the

prediction can be obtained. We show the result of such a reconstruction in Figure 3.5a with

some mock data shown in Figure 3.5b. The reconstruction is done with the squared expo-

nential kernel and the integral operator, as described above. We see that the reconstruction

of such a simple spectral function is rather accurate, however, the propagator data does not

constrain the large ω regime of the spectral function. In this region, we obtain the GP prior

and consequently do not learn much about the spectral function. This is a common problem

in spectral reconstruction, where the data is insufficient to constrain the spectral function in

all regions. Including additional constraints can help to improve the reconstruction, as we

will see in the following examples. In order to make sure that the reconstruction actually

reproduces the data, we can also use fredipy to predict the data points that we have used for

the reconstruction. This is done by calling the predict_data method of the model

_G, _G_err = model.predict_data()

where we can again use the keyword argument full_cov=True to obtain the full covariance

matrix of the prediction. The resulting prediction is shown in Figure 3.5b, and the data points

are well reproduced by the GP model, confirming that the reconstruction is consistent with the

data. In the following, we will subsequently improve the reconstruction by adding additional

constraints to the model and show the effects of these constraints on the reconstruction.
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(a) Reconstruction of a Breit-Wigner peak.
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(b) Interpolation of the correlator data.

Figure 3.5: Reconstruction of a Breit-Wigner peak using fredipy with parameters A = 1.6, m = 1 and

Γ = 0.8. In (a), we show the reconstruction of the spectral function as a solid line and

the variance of the prediction as the shaded area. The reconstruction compares well with

the true spectral function, denoted by the dashed line. In (b), we show the associated

interpolation of the correlator data. The variance of the correlator reconstruction is too

small to be visible.

3.4.1 Additional Constraints in fredipy

As mentioned before, we can include a wide variety of additional constraints that are linearly

connected to the underlying spectral function in the reconstruction. There are currently

three different types of linear equality constraints that can be implemented in fredipy : direct

constraints, derivative constraints, and integral constraints, which were already introduced.

Direct constraints are constraints on the spectral function itself, i.e. data on the spectral

function, while derivative constraints are constraints on the derivative of the spectral function.

For both types of constraints, we have to define a data dictionary, as we have done for

the correlator data in line 1. Here, we construct them as data_direct and data_deriv

respectively. We can then include these constraints in the list of previous constraints that we

pass to the model as

24 identity_op = fp.operators.Identity()

25 derivative_op = fp.operators.Derivative()

26

27 constraints = [fp.constraints.LinearEquality(integral_op, data),

28 fp.constraints.LinearEquality(identity_op, data_direct),

29 fp.constraints.LinearEquality(derivative_op, data_deriv)]

Here we define the identity operator identity_op that is used for direct constraints since

they are connected to the spectral function via the identity, and the derivative operator

derivative_op that is used for derivative constraints. Both of these operators are predefined

in the package and can be used directly. The derivative operator calls the derivative of the GP

kernel function as introduced in (3.55). Therefore, the derivative of the kernel function must
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(a) Reconstruction with additional direct constraints.
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(b) Reconstruction with additional derivative con-

straints.

Figure 3.6: Reconstruction of a Breit-Wigner peak using fredipy with the same correlator data used

in the reconstruction presented in Figure 3.5. In (a), we have added direct data on the

spectral function with some Gaussian noise, denoted by the black crosses. In (b), we have

added derivative data of the spectral function with some Gaussian noise. The position

in ω of these data points is denoted by the red lines on the ω-axis. For both examples,

we can observe that the additional data points significantly improve the reconstruction in

the regions where they are added while having an insignificant impact on the rest of the

spectral function.

be implemented in the fp.kernels.Kernel class. At the moment, this is only implemented

for the squared exponential kernel but can be easily extended to other kernels, by defining the

dK_dx, dK_dy and dK_dxdy methods in the kernel class. The full joint prior covariance matrix

is then built as described in (3.54) and the posterior distribution is calculated as before. The

constraints list can be extended as needed, and the constraints can be combined in any way,

as long as the type of constraint is implemented. One can also add multiple constraints of the

same type, e.g. when having multiple separate data sets of the same type. We continue with

the Breit-Wigner example from the section before and show the effects of the reconstruction

with additional direct and derivative constraints in Figure 3.6.

3.4.2 Asymptotic Behavior of the Spectral Function in fredipy

Another important extension of the GP model is the inclusion of asymptotics of the spectral

function in the model. This can be done by modifying the kernel function as described in

Section 3.3.3. This is implemented in fredipy by defining a kernel that includes the asymptotic

behavior of the spectral function and then performing the reconstruction.

1 # define the functional form of the asymptotics

2 def uv_asymptotics(w):

3 return 1 / w**3

4

5 # define the kernel function of the non-asymptotic regimes
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6 kernel = fp.kernels.RadialBasisFunction(variance=0.3, lengthscale=0.3)

7

8 # define the asymptotic kernel

9 asymptotic_kernel = fp.kernels.AsymptoticKernel(kernel)

10

11 # add the known asymptotic form to the kernel

12 asymptotic_kernel.add_asymptotics(region='UV', asymptotics=uv_asymptotics)

13 asymptotic_kernel.set_params([1.0, 3.0])

14

15 # now we can define the model using the constraints from before and additionally

16 # the asymptotic GP kernel

17 model = fp.models.GaussianProcess(asymptotic_kernel, constraints)

In this example, the asymptotic behavior of the Breit-Wigner spectral function is 1/ω3 in

the UV. We define a function that returns the asymptotic behavior for a given ω in line

2. The kernel is then defined by passing the non-asymptotic kernel (in this example, the

squared exponential kernel) to the fp.kernels.AsymptoticKernel class. We can then add

the asymptotic behavior to the kernel by calling the add_asymptotics method. The keyword

argument region specifies the region of the asymptotics, which can be either 'UV' or 'IR'

and the keyword argument asymptotics specifies the functional form. The implementation of

the asymptotics is done via smooth step functions and follows the description in Section 3.3.3

exactly. In line 13, we set the parameters of the step functions, i.e.µ = 3.0 and ℓ = 1.0 in

(3.58). We can then perform the reconstruction as before by using the previously defined

constraints and the asymptotic_kernel in order to define the GP model and perform the

prediction at some test points with the predict method. In Figure 3.7, we show the result of

the reconstruction with the asymptotic kernel. As expected, the inclusion of the asymptotic

behavior significantly improves the reconstruction in the asymptotic regime. However, one

has to be careful with interpreting the error band in this case. Whereas the GP model with a

universal kernel was extremely flexible and introduced a minimal prior bias, the asymptotic

kernel introduces a strong bias in the regimes where it applies. Therefore, the statistical error

that is shown here, can be misleading, as its model dependence is far greater and a significant

systematic error can be introduced. To achieve a more reliable error estimate, one would have

to perform a more detailed analysis by varying the parameters of the asymptotic kernel and,

for example, average over the resulting spectral functions. We will discuss the optimization of

the asymptotic parameters in more detail when we discuss applications in Chapters 5 and 6.

3.4.3 Higher Dimensional Reconstruction in fredipy

As discussed in Section 3.3.2, GPs are easily extended to interpolation in more than one

dimension. In fredipy we have implemented such an extension by allowing for additional

dimensions in the data and the kernel function. As a practical example, we can simply

modify the Breit-Wigner example from before to include an additional dimension k in the
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Figure 3.7: Reconstruction of a Breit-Wigner peak using fredipy with the same correlator data used

in the reconstruction presented in Figure 3.5. We have added the asymptotic behavior of

the spectral function ∼ 1/ω3 in the UV regime to the kernel. The reconstruction is highly

improved in the UV regime, where otherwise the correlator data does not provide much

information.

spectral function and the correlator as

Gmod(p, k) = (1 + k2)GBW(p), ρmod(ω, k) = (1 + k2)ρBW(ω) . (3.64)

The code for constructing the appropriate arrays and performing the reconstruction is pre-

sented in Appendix B.3. In essence, the only modification that has to be made is to define

the data and test arrays in the appropriate dimensions. Additionally, the kernel function can

now have multiple length scales, one for each dimension. The reconstruction of the modified

spectral function ρmod is then performed as before, and the result is shown in Figure 3.8.

In general, the inclusion of additional dimensions improves the posterior error of the recon-

struction, as expected, since we have more data that constrains the spectral function. We

emphasize, that although we only show the reconstruction of the spectral function in two di-

mensions, the package is designed to be able to handle any number of additional dimensions.

Currently, the only implementation is for additional dimensions like the modification in (3.64),

i.e. additional dimensions in the argument of the correlator and the spectral functions. Other

types of additional dimensions, such as modifications to the kernel function, are not imple-

mented in the package at the moment. This can become important when considering the

reconstruction of spectral functions with an additional temperature direction, since both the

Källén-Lehmann kernel and the spectral function become dependent on the temperature, see

(2.21). Such a modification provides no conceptual challenge, and we will implement this

when the need arises.

3.4.4 Hyperparameter Optimization in fredipy

As discussed in Section 3.2.2, the optimization of the hyperparameters of the GP model is an

important step in the reconstruction process. However, optimizing the kernel hyperparame-
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Figure 3.8: Reconstruction of the modified Breit-Wigner spectral function (3.64) using fredipy with

the same parameters as the examples above in Figures 3.5 – 3.7. The reconstruction is

performed in two dimensions, and we recover the examples above at k = 0. For visual

clarity, we do not show the reconstruction error here, but it is of the order of the other

examples, albeit smaller than the reconstruction error of the one-dimensional example

without additional derivative or direct constraints.

ters is a highly problem-specific task and different methods can lead to significantly different

results. In fredipy, we therefore do not provide a general optimization routine, since the re-

sults can be highly misleading when not carefully interpreted. Instead, we provide users with

the tools to perform the optimization in a manner tailored to their specific problem. The

fp.models.GaussianProcess class provides the log_likelihood method that returns the

logarithm of the marginal likelihood of the data given the model, given in (3.31). We can

maximize this likelihood (or minimize the negative log-likelihood) in order to find the optimal

hyperparameters of the model. For a small number of hyperparameters, e.g. two parameters

in case of the standard squared exponential kernel, we can use simple grid scans to find the

optimal hyperparameters, see Figure 3.4b. The complexity grows quickly when introducing

additional dimensions with separate parameters, as in Sections 3.3.2 and 3.4.3 or when in-

cluding asymptotic behavior, as in Sections 3.3.3 and 3.4.2. In these cases, the optimization

routines have to find the minimum in high-dimensional parameter space and it becomes more

likely for local minima in the negative log-likelihood to develop. In Appendix B.4, we have

provided a simple example of how to perform the optimization of the hyperparameters of the
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kernel function in fredipy using the scipy.optimize.minimize routine.

Since we update the parameters of the model after each optimization step using the set_params

method, we need to compute the inverse of the kernel matrix after each step. As discussed in

Section 3.2.2 this can be computationally expensive, especially for large data sets, since the

inversion of the kernel matrix scales as O(N3), where N is the number of data points. One

method to speed up the optimization is to use the gradient of the log-likelihood, defined in

(3.32), which is given by the log_likelihood_grad method of the model. Computing this

gradient makes use of the precomputed inverse of the kernel matrix and only scales as O(N2)

per hyperparameter. It is therefore highly recommended to use gradient-based optimization

routines.

In the chapters, where Gaussian processes are applied to spectral reconstruction problems, cf.

Chapters 4 – 6, we will apply and discuss different methods of hyperparameter optimization.

However, this is not conclusive, as these optimization routines can still be improved and are

in general highly problem-specific. There exist many other, very sophisticated and useful

methods for optimizing the hyperparameters of a GP model. A comprehensive overview of

these methods, along with their respective advantages and disadvantages, is beyond the scope

of this work.

3.5 Inequality Constraints

One important extension of the GP model is the inclusion of inequality constraints, meaning

that the reconstructed spectral function should be constrained by inequalities of the form

a(ω) ≤ ρ(ω) ≤ b(ω) , (3.65)

where a and b are some known functions. In many applications, especially in the context of

spectral reconstruction in high-energy physics, many of the reconstructed spectral functions

are positive definite, i.e. ρ(ω) ≥ 0. This is the case for all spectral functions associated

with a physical degree of freedom, such as the spectral function of the pion or the vector

current correlator in QCD. However, demanding such constraints on a GP model that are

not equality constraints does not come naturally. Gaussian processes excel when providing

linearly connected data points, but inequality information is a non-linear constraint leading

to many challenges when implementing this into the current framework.

We have implemented two different methods that attempt to include inequality constraints in

the GP model. The first method is to introduce virtual observations. It was first introduced

in [207] in the context of standard GP regression with monotonicity constraints. Another

method is to utilize non-Gaussian processes and reconstruct the logarithm of the spectral

function, or the square of the spectral function, and then transform the result back after

the reconstruction. This results in a non-linear reconstruction problem. We will discuss
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both methods in the following and show the results of the reconstruction of a simple spectral

function with inequality constraints.

3.5.1 Linear Inequality Constraints with Virtual Observations

The method of virtual observations provides a very flexible framework to include inequality

constraints in the GP model. The idea provided in [207] is as follows: When having inequality

constraints of the form (3.65), we assume that these constraints do not necessarily have to

hold for all ω, but only for a finite set of points ωv
i for i = 1, . . . , N , called virtual observation

locations. For every virtual observation location we introduce c(ωv
i ) = ρ(ωv

i ) + εvi , a finite

width on the spectral function at these locations, with εvi ∼ N
(
0, σ2v1

)
. Then, we define the

event, that the constraint a(ω) ≤ c(ω) ≤ b(ω) is satisfied at all virtual observation locations

ωv = (ωv
1 , . . . , ω

v
N ), denoted as

C(ωv) = ∩N
i=1 {a(ωv

i ) ≤ c(ωv
i ) ≤ b(ωv

i )} . (3.66)

We therefore have to find the posterior distribution of the GP model conditioned not only on

the propagator data G, but also conditioned on the event C(ωv) as

p(ρ(ω) |G, C(ωv)) = N
(
µ(C̃), Σ

)
. (3.67)

Now, the posterior mean depends on the additional constraint, that the inequality constraints

are satisfied at the virtual observation locations, i.e. C̃ = c |G, C(ωv). The distribution c |G is

still a Gaussian distribution since the GP model is linear in the data points. The nonlinearity

is then introduced by the inequality constraints: c |G is conditioned to exclusively lie on

the hyperrectangle defined by the inequality constraints at the virtual observation locations.

Therefore, the result is a truncated Gaussian

p(c |G, C(ωv)) = T N
(
µ∗(ωv), Σ∗(ωv, ω

′v), a(ωv), b(ωv)
)
, (3.68)

where µ∗ and Σ∗ are standard posterior mean and covariance, e.g. as described in (3.20), (3.21)

and (3.53), and T N (·, ·, a, b) denotes the truncated Gaussian distribution to the interval [a, b].

The posterior predictive distribution (3.67) of such a constrained GP model is not a purely

Gaussian distribution anymore, but a compound or mixture Gaussian distribution; its mean

depends on a truncated Gaussian. The explicit derivation of the expressions for the mean

and covariance of the posterior distribution is, in principle, very similar to the derivation of

the marginal likelihood with additional constraints from a joint prior distribution described

in Section 3.3.1. However, since the resulting distribution is not strictly Gaussian anymore,

the evaluation of the posterior can not be done analytically anymore. We therefore sample

the posterior of the constraint distribution (3.68) and then sample the posterior (3.67) using

these samples in the mean of the GP model. The full expressions for the posterior distribution

can be found in [207], Lemma 1&2.
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Figure 3.9: Reconstruction of the Breit-Wigner spectral function with the same data as in previous

examples, see Figure 3.5b. In both reconstructions, virtual observation locations are added

to the model in order to achieve local positivity, where the location of these virtual obser-

vations is indicated by vertical dashes on the ω-axes. The results are compared to both, the

true spectral function and the unconstrained reconstruction. In (a), the virtual observation

locations are optimized to a target probability of satisfying the constraint with ptarget = 0.8.

With these optimized virtual observation locations, a positive spectral function is achieved,

while adding significant numerical and systematic noise to the reconstruction. For a larger

number of virtual observation locations, in (b), a smoother reconstruction is achieved,

while adding a significantly higher numerical cost to the computation while avoiding the

optimization procedure. The propagator data compared to the integral on the constrained

spectral functions shows significant deviation, as discussed in the main text.

Up to now, we have assumed some fixed virtual observation locations ωv. However, the choice

of these locations is crucial for the regression or reconstruction problem. It is not possible

to have infinitely dense virtual observation locations, since the computational cost of the GP

model scales as O(N3), and the virtual observations add to these costs. Following [207], we

implement an optimization procedure to find the optimal virtual observation locations: We

compute the probability of the spectral function to satisfy the inequality constraints as

pc(ω) = p (a(ω) ≤ (ρ(ω) |G, C(ωv)) ≤ b(ω)) . (3.69)

We then find the minimum of the probability pc(ω) for the given inequality constraints. When

the minimum is below a certain target probability ptarget, we add a new virtual observation

at this location. This procedure is repeated until the minimum of the probability pc is above

the target probability.

In Figure 3.9, we show the result of the BW reconstruction example from the previous section,

with the inclusion of the introduced virtual observations. We can see, that the reconstructed

spectral function is now positive. The optimization procedure introduces a significant nu-

merical cost to the reconstruction since the probability of the spectral function to satisfy

the inequality constraints is computed at every step of the optimization, which has to be
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performed at every addition of a virtual observation. The noise on the reconstruction with

the optimized virtual observation locations in Figure 3.9a is due to the irregularity in the

positions of the virtual observation locations. This can be avoided by using a fixed set of vir-

tual observation locations, as shown in Figure 3.9b, which also circumvents the optimization

procedure. However, there are two major drawbacks to this method: We must select a finite

interval for the virtual observation locations; in the example above, this interval was chosen

as [0, 10]. However, the positivity constraint in this example and in many practical spectral

reconstruction applications is a global constraint. Especially when reconstructing a spectral

function with an asymptotic approach to zero, as in the example, a global optimization of

virtual observations will not converge. Otherwise, adding a large number of equally spaced

virtual observation locations adds significant numerical cost to the reconstruction, and only

works on finite intervals. A second, and even more drastic, drawback of this method is the

observation, that the reconstructed spectral function is not guaranteed to satisfy the inequal-

ity constraints at all points, i.e. the data is not as well reproduced by the integrated mean of

the posterior spectral functions in Figure 3.9, compared to the unconstrained reconstruction.

This is due to the fact, that this method is essentially a resampling of the GP model under

the constraint of positivity, or in practice under the constraint of positivity at the virtual

observation locations. Naively, we could take the unconstrained GP model, take samples, and

only accept those samples that satisfy the inequality constraints. This, however, is highly

inefficient when acceptance rates become small, and the method of virtual observations pro-

vides a computationally efficient way to sample such a distribution. In the above example,

we mostly sample the edges of the original distribution, since positive spectral functions are

not very common in the unconstrained GP model. Much more common are spectral func-

tions that oscillate around zero for large ω. Therefore, the resulting mean of the constrained

posterior distribution lies further away from the input data, compared to the unconstrained

GP model. One reason the constrained model’s posterior mean fails to reproduce the data

accurately is the assumption that the spectral function follows a Gaussian model. For a model

of a spectral function to approach zero while being positive, intuitively, we would expect other

distributions to describe the spectral function better, that are able to have zero, or close to

zero mean values, while random samples only lie above the positive axis. Such distributions

then have to be non-Gaussian, as will be discussed next.

3.5.2 Reconstruction with Non-Gaussian Processes

An alternative method to include inequality constraints in GP models is the use of non-

Gaussian processes. Here, we will restrict ourselves to the case of positivity constraints,

i.e. ρ(ω) ≥ 0, but this can be generalized to any constant inequality constraint. This method

can therefore not cover all cases that can be considered from (3.65) and the method utiliz-

ing virtual observations. However, constant inequality constraints, and especially positivity

constraints, are the most important constraints in the practical application of spectral recon-
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struction in high-energy physics-related problems.

In order to achieve a non-negative spectral function, we can reconstruct a transformed spectral

function ϱ(ω), which is not constrained to be positive. When inverting the transformation,

we can then obtain the positive spectral function ρ(ω), i.e.

ρ(ω) = f(ϱ(ω)) with f : R → R+ . (3.70)

The transformation f is chosen such that the positivity constraint on ρ is satisfied, while

the function ϱ does not have to satisfy any additional constraints. Possible choices for the

transformation are e.g.

f(ϱ) = exp(ϱ) or f(ϱ) = ϱ2 . (3.71)

Such transformations have already been used for standard GP regression, in order to pro-

duce non-negative predictions, log-Gaussian processes e.g. in [208] and squared GPs in [209].

Recently, the special case of the squared spectral function has also been discussed in [194]

in the context of the reconstruction of PDFs. This transformation, however, introduces new

difficulties: The reconstruction problem becomes non-linear, since such transformations are,

as expected for inequality constraints, non-linear. In the case of the exponential transforma-

tion, the posterior distribution of the GP model is not Gaussian anymore, but a log-Gaussian

distribution. However, the logarithm maps spectral function values approaching zero to neg-

ative infinity. This can lead to numerical instabilities in the sampling of the GP model. Since

many physical spectral functions have either explicit zeros, e.g. ρ(0) = 0, or asymptotically

approach zero for large ω, the logarithm transformation is generally not suitable for spectral

reconstruction.

Reconstructing the square root of the spectral function, i.e. ϱ =
√
ρ, however, is a more

suitable transformation for the problem at hand. We define the transformed spectral function

to be described by a Gaussian processes

ϱ(ω) ∼ GP
(
µ(ω), k(ω, ω′)

)
. (3.72)

The objective is then to obtain the posterior distribution of the transformed spectral func-

tion, conditioned on some propagator data Gdata and some noise covariance matrix Cd, as

described in Sections 3.2 and 3.3. From Bayes’ theorem (3.7), the posterior distribution of

the transformed spectral function is given by

p(ϱ |G) ∼ p(G |ϱ) p(ϱ) . (3.73)

The prior p(ϱ) is still a Gaussian distribution, by definition of the GP model (3.72), and

only depends on the model hyperparameters. However, the likelihood p(G |ϱ) is now a non-

Gaussian distribution of the transformed spectral function. Since the propagator data is
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assumed to have Gaussian noise the integral of the spectral function has to obey this dis-

tribution and is therefore given by a Gaussian distribution in terms of the propagator data

as

p(G |ϱ) ∼ exp

(
−1

2
(G∗ −Gdata)

⊤C−1
d (G∗ −Gdata)

)
, (3.74)

where we have defined

(ϱ)i = ϱ(ωi)

(G∗)i =

∫
dωK(ω, pi) f(ϱ(ω)) . (3.75)

The likelihood has therefore a non-Gaussian contribution ∼ exp(−f(ϱ)C−1
d f(ϱ)). The full

posterior distribution of the transformed spectral function is then given, similar to the deriva-

tion for the usual GP regression (3.11), by

p(ϱ |G) ∼ exp

(
−1

2
ϱ⊤K−1ϱ− 1

2
(G∗ −Gdata)

⊤C−1
d (G∗ −Gdata)

)
, (3.76)

where (K)ij = k(ωi, ωj) is the kernel matrix of the transformed spectral function. Since the

resulting posterior distribution is non-Gaussian, it is not possible to evaluate the posterior

mean and covariance analytically. As a result, we must resort to numerical methods to

sample the posterior distribution. The computation of the posterior mean becomes a dim(ϱ)-

dimensional optimization problem, i.e. the number of points in the evaluated spectral function.

This becomes computationally expensive, especially since the likelihood depends on an integral

over the function f(ϱ). Therefore, we need to evaluate the function f(ϱ) on enough points ω

to obtain a good approximation of the integral, and dim(ϱ) is typically of the order of 102 to

103.

We sample from this distribution using a custom Hamiltonian Monte Carlo (HMC) implemen-

tation. We perform the optimization on the level of the transformed spectral function, and

then transform the result back to the spectral function using the inverse of the transforma-

tion f−1. The action of the HMC procedure is given by the negative log-posterior distribution

(3.76), so we have p(ϱ |G) ∼ exp(−S(ϱ)). Since HMC is a gradient-based method, we have

to compute the gradient of the action, which is given by

∇ϱS(ϱ) = K−1 ϱ+ 2 G̃∗C
−1
d (G∗ −Gdata) , (3.77)

where

(G̃∗)ij = K(ωi, pj)ϱ(ωi) . (3.78)

In other common HMC implementations, the initial momentum is drawn from a Gaussian

distribution at each step of the HMC sampling procedure. However, the Gaussian process

prior (3.72) demands that the resulting transformed spectral function is smooth, and therefore

58



3.5 Inequality Constraints

0 2 4 6 8 10

ω

0.0

0.5

1.0

1.5

2.0

ρ
(ω

)
True Spectral Function

0.0

0.2

0.4

0.6

0.8

1.0

N
i/
N

sa
m

p
le

s

(a) HMC burn-in

0 2 4 6 8 10

ω

0.0

0.5

1.0

1.5

2.0

ρ
(ω

)

Spectral Function Samples

True Spectral Function

Mean Spectral Function

(b) HMC samples

Figure 3.10: Reconstruction of the Breit-Wigner spectral function from previous examples with the

non-Gaussian process method. The spectral function is reconstructed by sampling the

posterior distribution (3.76) with HMC as described in the text. In (a), we show the burn-

in phase of the HMC sampling, where the samples are not yet converged to the posterior

distribution. The burn-in phase is shown for the first Nsamples = 10000 samples and the

samples are color-coded by their iteration number. We initialize the spectral function

relatively far away from its true value with ϱ0(ω) = 0.5 and still achieve convergence to

the true spectral function. In (b), we show Nsamples = 10000 samples after the burn-in

phase. Again, the samples agree with the true spectral function. Particularly in the large

ω region, where the error of the reconstruction was usually large, we achieve excellent

agreement with the true spectral function.

the momentum has to be drawn from a distribution that respects this smoothness. Other-

wise, neighboring points in the spectral function become very different, e.g. when the initial

momentum has different signs for neighboring points ωi and ωi+1, and the acceptance rate

of such an HMC sampling is usually close to zero, as the GP prior excludes such solutions.

We therefore draw the initial momentum from a multivariate Gaussian distribution with a

covariance matrix given by the squared exponential kernel.

In Figure 3.10, we show the result of the reconstruction of the BW spectral function using the

non-Gaussian process method. We can see that the samples of the posterior distribution agree

very well with the true spectral function, and the resulting spectral function has the correct,

positive behavior. The agreement of the correlator data with the integral of the spectral

function is also within errors, in contrast to the reconstruction with the virtual observation

method. Even when starting away from the true spectral function, the HMC sampling can

converge to the true spectral function, as shown in Figure 3.10a. It is important to note that

this is not always the case, as the posterior distribution often contains local minima where

the HMC sampling can become trapped and fail to converge to the true spectral function.

For illustrative purposes, we have selected an example where the method works well and

the optimization remains relatively stable, though this stability cannot be guaranteed in

general. HMC parameters, such as the step size and the number of leapfrog steps, must be
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carefully tuned for each problem, and some initial guesses for the spectral function may prevent

convergence altogether. This challenge is common to many optimization problems but can

be mitigated by employing more robust optimization techniques. Additionally, a significant

issue arises due to the symmetry introduced when taking the square root of the spectral

function, complicating the sampling process further. We therefore have, by construction, two

degenerate minima at ϱ = ±√
ρ. This produces local minima, where the transformed spectral

function ϱ has positive and negative regions. The resulting zero-crossing introduces a kink in

the spectral function, which is not physical. Depending on the sampling parameters, this can

lead to a large number of such non-physical samples and distort the final result. Again, in

Figure 3.10, we have chosen an example where the sampling has worked out well, but this is

not guaranteed in general.

Due to the aforementioned subtleties, we have not yet published the associated code in the

context of the fredipy package, however, this approach is very promising, and we will continue

to work on this method in the future. The primary goal is to improve the optimization

algorithm and prevent the doubling problem in the transformed spectral function.

3.6 Conclusion

In this chapter, we have discussed the spectral reconstruction problem and presented a method

that offers a consistent approach to this problem. Since many methods have significant prob-

lems of either providing realistic systematic error estimates or are not able to incorporate the

full range of available prior information, the need for further improvements in the spectral re-

construction problem is evident. To address some of these issues, we have presented a method

based on Gaussian processes that consistently incorporates the available, and physically mo-

tivated prior information and enables more reliable quantification of systematic errors. We

have reviewed the central properties of Gaussian processes and have significantly expanded

on the method of using Gaussian processes for spectral reconstruction.

We have presented the implementation of the Gaussian process method in the fredipy package,

which is a Python package for spectral reconstruction and analysis of spectral functions. This

package provides utilities in order to account for the different prior information, that is usually

available in the spectral reconstruction problem in QCD, namely data on the spectral function,

normalization, asymptotic information, and higher-dimensional reconstruction.

One important aspect of spectral functions, that is not yet implemented in the package, is

the conditioning on inequality constraints. We have discussed two different methods to in-

clude such constraints in the GP model, one based on virtual observations and one based on

non-Gaussian processes. These methods both provide promising results and a path forward to

include such constraints. However, they both come with their specific challenges and are there-

fore not yet implemented in the fredipy package. Especially the non-Gaussian process method

is able to provide promising results and by improving the optimization algorithm, we expect
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to be able to include this method in the package in the future. With these improvements, we

expect to be able to provide a consistent and flexible framework for spectral reconstruction in

QCD and other applications, that can incorporate all available prior information and provide

realistic systematic error estimates.

In the following chapters, we apply the Gaussian process method to various spectral recon-

struction problems in QCD to demonstrate its flexibility and reliability. We present different

parameter optimization methods, each becoming more sophisticated with subsequent appli-

cations. Generally, identifying the appropriate optimization routine for the hyperparameters

is the most challenging aspect of the reconstruction process and offers the greatest potential

for improvement.
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4. Yang-Mills Glueball Masses

This chapter is based on the publication [1].

In this chapter, we present the first application of the Gaussian process framework for spectral

reconstruction, which was established in the previous chapter. We utilize this framework for

the determination of glueball masses in Yang-Mills theory. The hadronic spectrum of Yang-

Mills theory and QCD includes purely gluonic bound state contributions, the glueballs. The

experimental verification of their existence is an important test of QCD; however, it is not

yet conclusive [210–213] as these states are difficult to access due to their large overlap with

other hadronic resonances. Different possible experimental candidates have been proposed,

including the various f0 states, some of which are expected to appear in decay channels of

J/ψ [214, 215]. The overlap with other states also complicates their theoretical determination

when considering QCD; for corresponding lattice calculations see [216–218]. In Yang-Mills

theory, the situation is much simpler and the first few lightest states are well known; for lattice

results see e.g. [86–91]. For computations with functional approaches – in particular with a

combination of Dyson-Schwinger equations (DSE) and Bethe-Salpeter equations (BSE) – see

e.g. [96, 98–103].

Here, we put forward a self-consistent functional ansatz for computing masses of bound states

by exploiting their overlap with resonant interaction channels of gauge-fixed correlation func-

tions. The approach is then used to determine the masses of the scalar (JPC = 0++) and

pseudo-scalar (JPC = 0−+) Yang-Mills glueballs, utilizing the fact that these states have

overlap with channels of the four-gluon vertex that carry the respective symmetries, where

they appear as peaks of the corresponding spectral functions. We use the Gaussian pro-

cess framework presented in the previous Chapter 3 to compute these spectral functions by

reconstructing Euclidean correlators obtained within the functional renormalization group

framework in [219].

This chapter is organized as follows. In Section 4.1, we discuss the spectral representation of

Euclidean dressing functions in Yang-Mills theory. In Section 4.2, we present the four-gluon
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Figure 4.1: fRG equation for the s-channel four-gluon vertex dressing. Wiggly orange lines correspond

to fully dressed gluon propagators; black dots indicate fully dressed vertices. Permutations

include the various possible configurations of external legs as well as permutations of the

regulator insertion (indicated by a crossed circle). Due to projections onto specific tensor

structures, the ghost loop analytically drops out.

correlation function, its spectral representation, and the tensor structures that are relevant

for the glueball. An overview of the fRG setup used to compute the four-gluon vertex dressing

functions is given in Section 4.3. In Section 4.4, the resulting spectral functions are presented,

the GP parameter optimization is discussed, and we report the masses of the scalar and

pseudo-scalar glueballs. We conclude in Section 4.5.

4.1 Spectral Representations of Yang-Mills Correlation

Functions

As previously discussed in Section 2.1, correlation functions of physical states, and in par-

ticular the two-point functions, admit a spectral representation. For the propagator – the

inverse 1PI two-point function – this is the Källén-Lehmann (KL) representation (2.19). The

spectral functions of asymptotic states are positive semi-definite and admit the interpretation

of a probability density. In gauge theories, however, the situation becomes more complicated.

To begin with, even the existence of a KL representation is not settled for ghost and gluon

propagators, and may feature additional structures in the complex momentum plane; for a

detailed discussion see [219, 220]. Moreover, in the Landau gauge, the gluon and ghost spec-

tral functions exhibit negative infrared and ultraviolet tails; see [127]. These properties can

be inferred from the respective IR and UV asymptotic behavior of the Euclidean correlation

functions [127, 221, 53, 219], and these relations also hold true for the present analysis involv-

ing four-gluon vertices. Note also that while gauge-fixed correlation functions may not permit

a KL representation, the scattering matrix elements are directly constructed in terms of these

correlators and obey the KL representation. Hence, features that are in direct correspondence

to observables – such as bound states – can still be extracted from such gauge-fixed correlation

functions.
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4.2 Four-Gluon Correlation Function

Here, we consider single interaction channels that have overlap with the bound states of

interest. In these channels, the respective bound states appear as resonances in the spectral

functions. The spectral representations of these channels follow directly from the structure of

the full, analytically continued correlation functions; see e.g. [222]. Up to minor modifications,

they are given by the Källén-Lehman spectral representation (2.19): for the relevant scalar

dressings of the four-gluon vertex, we use [52]

λA4(p2) = λA4,0 +

∫ ∞

0

dω

π

ω

p2 + ω2
ρA4(ω) . (4.1)

The constant part λA4,0 accounts for the classical contribution.

In order to access the masses of the scalar JPC = 0++ and pseudo-scalar JPC = 0−+ glueball,

we have to determine tensor structures and momentum channels that overlap with these

states. In general, it is desirable that the chosen channels have overlap only with the states of

interest, as any reconstruction method faces increasing problems with multi-peak structures

due to the exponential suppression of heavier states in the Euclidean data. Accordingly, their

resolution requires an exponentially increasing accuracy, contributing to the ill-conditioned

nature of the reconstruction problem.

For the scalar glueball, the above requirement is particularly simple to satisfy, since it is the

lightest excitation and the classical tensor structure suffices, i.e.

τabcdcl,µνρσ = fabef cde(δµρδνσ − δµσδνρ)

+ facef bde(δµνδρσ − δµσδνρ)

+ fadef bce(δµνδρσ − δµρδνσ) . (4.2)

In Landau gauge, the longitudinal part of the correlation functions is related to the redundant,

gauge fixing degrees of freedom, while the transversal part carries the physical information

[223, 219]. Additionally, the transversal part of the flow equation of any n-point correlation

function is closed, i.e. it only depends on other, fully transversal, correlation functions. We

therefore project onto the transversal part of the 4-gluon vertex, with the transverse projection

operator given by

Π⊥
µν(p) = δµν −

pµpν
p2

. (4.3)

The full projection operator for obtaining the scalar glueball mass is simply a contraction

with the transverse part of the classical tensor structure, given by

Pabcd
s,µνρσ(p, p,−p,−p) =

[
Π⊥(p)Π⊥(p)Π⊥(−p)Π⊥(−p)τA4,cl(p, p,−p)

]abcd
µνρσ

Π⊥(p)Π⊥(p)Π⊥(−p)Π⊥(−p)τA4,cl(p, p,−p)τA4,cl(p, p,−p)
. (4.4)
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Indices are suppressed for simplicity and the external momenta are already matched to the

momentum parametrization of the four-gluon vertex,

p1 = p2 = −p3 = −p4 ≡ p . (4.5)

We have restricted ourselves to a single exchange momentum and the external (incoming and

outgoing) momenta are chosen to have the same magnitude, and for the scalar glueball, they

are chosen to be parallel. For the calculation of the mass of the pseudoscalar glueball, we use

τabcdps,µνρσ(p1, p2) =
ϵµναβp

α
1 p

β
2√

p21p
2
2

ϵρσγδp
γ
1p

δ
2√

p21p
2
2

(δabδcd + δacδbd + δadδbc) (4.6)

as a projection operator, which has the correct transformation properties (see e.g. [96, 101]),

and does not overlap with the scalar glueball. In (4.6), εµνρσ denotes the fully antisymmetric

tensor and the momenta are chosen to be orthogonal, p1 ·p2 = 0. It therefore projects onto the

part of the four-gluon vertex that carries the quantum numbers of the pseudoscalar glueball.

The pseudo-scalar projection operator is defined by the tensor structure (4.6) and given by

Pabcd
ps,µνρσ(p1, p2,−p1,−p2) =

[
Π⊥(p1)Π⊥(p2)Π⊥(−p1)Π⊥(−p2)τA4,ps(p1, p2)

]abcd
µνρσ

Π⊥(p1)Π⊥(p2)Π⊥(−p1)Π⊥(−p2)τA4,ps(p1, p2)τA4,ps(p1, p2)
,

(4.7)

where the in- and outgoing external momenta are chosen to be orthogonal,

p1 = −p3, p2 = −p4, (4.8)

p1 · p2 = 0, p21 = p22 = p2 . (4.9)

We note that the projection onto the ghost loop part of the flow analytically vanishes for both

projections on the momentum configurations under consideration. This was observed for a

similar momentum configuration in [224].

4.3 fRG Setup

The master equation of the fRG is the flow equation of the scale-dependent 1PI effective

action. It is obtained by introducing an IR cutoff with a cutoff scale k via a momentum-

dependent mass function Rk(p
2) that is added to the inverse propagator. The respective flow

equation is derived by taking a derivative of the generating functions w.r.t. the cutoff scale k,

∂tΓk[Φ] =
1

2
Tr

1

Γ
(2)
k [Φ] +Rk

∂tRk, t = log

(
k

Λ

)
, (4.10)

where t is the RG-time, and the trace in (4.10) sums over species of fields, space-time (momen-

tum), Lorentz indices, and group indices. The regulator functions carry the classical dispersion
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Figure 4.2: In (a), we show the Euclidean dressing of the four-gluon vertex λA4,sc with the projection

to obtain the scalar glueball mass, see Section 4.2, from the fRG (black crosses). This

is compared to the reconstruction from the GP (green line). The corresponding spectral

function ρA4,sc over frequency ω obtained with GPR is shown in (b). The light green band

represents the 1σ region.

of the ghost and gluon fields as well as a dimensionless shape function. The present results

are computed with the usual exponential shape function,

r(p2/k2) =
e−p2/k2

1− e−p2/k2
, (4.11)

and an additional wave function renormalization ZA,k or Zc,k; for more details see [219]. For

a recent review of the fRG see e.g. [225] and references therein.

Our general setup in Landau gauge Yang-Mills theory follows [226, 219]. The flow of the

four-point vertex is obtained by taking the fourth derivative of (4.10) w.r.t. the gluon field.

In this work, we are only interested in certain channels of the four-gluon vertex. Hence, we do

not solve the full system self-consistently, but take the flow of all other correlation functions

such as the gluon propagators and the gluon vertex dressings from [219] as input.

The fRG equation for the four-gluon vertex solved in the present work is depicted in Figure 4.1.

This flow is integrated on the solution of the correlation functions obtained in [219]. There,

different IR closures of correlation functions in the Landau gauge have been computed, and

the present work utilizes the scaling solution. The independence of this choice has recently

been shown in [101], where both solutions – decoupling and scaling – were considered in the

context of glueballs. The approximation used in [219] only includes the primitively divergent

(classical) tensor structures, which leads to semi-quantitative results. Further details can be

found in [219].

We use the k-dependent dressing functions from [219] as input. Their parametrizations are
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Figure 4.3: In (a), we show the Euclidean dressing of the four-gluon vertex λA4,ps with the projection to

obtain the pseudo-scalar glueball mass, see Section 4.2, from the fRG (black crosses). This

is compared to the reconstruction from the GP (green line). The corresponding spectral

function ρA4,ps over frequency ω obtained with GPR is shown in (b). The light green band

represents the 1σ region.

given by

Γ
(2),ab
AA,µν(p) = δabΠ⊥

µν(p)ZA(p)(p
2 +m2

T ),

Γ
(3),abc
A3,µνρ

(p1, p2) = ifabcλA3(p̄)
[
(p1 − p2)ρδµν + perm.

]
,

Γ
(4),abcd
A4,µνρσ

(p1, p2, p3) = λA4(p̄)
[
fabnf cdnδµρδνσ + perm.

]
,

(4.12)

where we approximate the full momentum dependence of the vertices with the symmetric

point configuration p̄, see e.g. [226], defined by

p̄2 =
1

n

n∑
i=1

p2i , (4.13)

with n = 3, 4 is the number of external momenta.

We remark in this context that correlation functions in Landau gauge Yang-Mills theory

computed within sophisticated truncations to the fRG pass all available lattice benchmark

tests; see [226, 219]. This concerns in particular the ghost and gluon propagators, whereas

lattice results for vertices still exhibit large uncertainties. Nevertheless, since state-of-the-

art functional results for correlation functions fully agree with lattice calculations within

statistical errors, any reconstruction based on the former approaches is consistent with the

latter.
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(a) Kernel parameters, scalar channel. (b) Bias parameters, scalar channel.

(c) Kernel parameters, pseudo-scalar channel. (d) Bias parameters, pseudo-scalar channel.

Figure 4.4: Grid scans of the NLL (3.31) of the reconstructions for both channels. Note that the

optimizations are performed subsequently, starting with the squared exponential kernel

and followed by the bias parameters. The red lines indicate the trajectories in parameter

space used for comparing the variance in the spectral functions; see Figures 4.5 and 4.6.

The red cross indicates the NLL optimized parameters; see Table 4.1.

4.4 Results

We calculate the vertex dressings with the fRG as was just outlined in Section 4.3. The

resulting Euclidean dressing functions for the scalar and pseudo-scalar projections are shown

in Figures 4.2a and 4.3a, respectively.

As mentioned before, in the channels considered here, the ghost loops drop out due to the

combination of projection and momentum configuration; similarly to [224]. Hence, these chan-

nels are free of the IR divergences that are in general present in the four-gluon vertex and we

can utilize the constraint ρA4(0) = 0 in the GP reconstruction. We use the standard squared

exponential kernel (3.25) for the GP prior. Furthermore, an additional bias is introduced in

order to suppress unphysical oscillations at the tails of the spectral function. Similar to the
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(a) Scan of the flat direction in the kernel parameters. (b) Scan around optimal bias parameters.

Figure 4.5: Spectral function of the scalar channel. The bands show the variance with respect to the

flat directions of the parameter space; see Figures 4.4a and 4.4b. The peak position is

observed to be robust, even under large parameter changes. The overall magnitude on the

other hand shows considerable variation for both sets of parameters.

(a) Scan of the flat direction in the kernel parameters. (b) Scan around optimal bias parameters.

Figure 4.6: Spectral function of the pseudo-scalar channel. The bands show the variance with respect

to the flat directions of the parameter space; see Figures 4.4c and 4.4d. The peak posi-

tion is observed to be robust under variations of the standard squared exponential kernel

parameters but shows significantly stronger deviations compared to the scalar channel for

different values of the bias parameters.

procedure applied in [187], this is achieved by rescaling the frequency with a soft step function

ω → ω̃ =
1

exp(−2(ω − ω0)/ℓ0) + 1
, (4.14)

where the parameter ℓ0 controls the steepness and ω0 the position of the midpoint. This

rescaling can be understood as the introduction of a frequency-dependent length scale in

the standard squared exponential kernel, with smaller values around ω0 and larger values

at the tails of the spectral function. We note that the resonances of interest are already

observed at the same position without introducing this additional bias. However, the peaks
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are enhanced by this procedure while the reconstruction of the correlator remains in good

agreement with the input data. We have extensively tested the impact of this rescaling

and found that changes to the functional form of the kernel do not significantly alter the

peak position of the spectral function, as long as the qualitative features remain similar.

While this parametrization suppresses additional structures (such as excited glueball states

at higher energies; see e.g. [101]), even without the rescaling (4.14) no additional features

beyond the dominant peak corresponding to the bound state are observed, apart from the

usual oscillatory behavior at the tail of the spectral function, which can not be distinguished

from reconstruction artifacts. This implies that higher excited states exhibit at most sub-

leading contributions to these vertex projections. Resolving these structures therefore requires

either more sophisticated projections of the tensor structures or a significantly higher precision

in the calculation of the vertex itself.

The parameters of the standard squared exponential kernel and frequency rescaling are op-

timized by minimizing an objective function, conventionally taken to be the negative log-

likelihood (NLL) (3.31). The optimal parameters are found by performing grid scans in the

parameter space of the kernel and bias parameters. When optimizing the parameters of the

squared exponential kernel (3.25) and the frequency rescaling bias (4.14) simultaneously, the

parameters favor values that tend to nullify the bias, such as ℓ0 becoming large. Hence, the

parameters are first optimized only considering the bare squared exponential kernel in order

to obtain baseline values. Subsequently, the bias is introduced, and its parameters are op-

timized given the squared exponential kernel calculated beforehand. This way, the position

and size of the dynamical region of the spectral function are also subject to optimization.

Unsurprisingly, the NLL shows a flat direction where some parameters are unconstrained; see

Figure 4.4. This can be interpreted as a manifestation of the ill-conditioned nature of the

inverse problem, and may be treated by imposing a hyperprior; a similar procedure has been

performed in [187]. We observe that changing the parameters in this direction has negligible

impact on the resonant peak position; see Figures 4.5 and 4.6. Hence, the seemingly heuristic

use of a generic hyperprior is well justified in this context as it does not introduce a bias for

the quantity of interest. However, the overall magnitude of the spectral function is sensitive

to these parameters and consequently, this quantity is not well constrained by the model.

Predictions of other features such as the peak position, width, and overall shape are robust

as the NLL diverges quickly when considering non-optimal parameters. Scanning the spectral

functions in the plane of the bias parameters on the other hand reveals a more drastic change

in the peak position, as observed in Figures 4.5 and 4.6. However, these parameters are re-

stricted to a much smaller region by the likelihood and the stability of the peak position is

retained. The optimal hyperparameters are given in Table 4.1 below.

71



4 Yang-Mills Glueball Masses

JPC σ ℓ ω0 ℓ0

0++ 19.56 0.155 0.908 0.508

0−+ 16.93 0.152 1.476 0.534

Table 4.1: Optimized GP hyperparameters for the kernel and rescaling functions, (3.25) and (4.14).

The intrinsic error estimate of the GP posterior is fixed to σn = 10−2, corresponding to

an upper bound on the uncertainty of the fRG calculation. σn is not optimized as this

diminishes the significance of the likelihood for the other parameters [175], as already discussed

in Section 3.2.2. We have extensively tested different parameter optimization strategies,

that attempt to optimize the parameters of the squared exponential kernel and the bias

simultaneously, or in a different order. However, we find that the above procedure yields the

most stable results, in particular for the peak position of the spectral function. Methods, that

optimize the squared exponential kernel and the bias simultaneously intuitively have a similar

problem as the optimization of variance and error estimate. These parameters have strong

interdependencies, and optimization will never converge, due to cancellations in the NLL and

resulting flat direction. We can also observe, that the NLL has multiple local minima in the

two-dimensional scan, especially for the bias parameters, cf. Figures 4.4b and 4.4d. As we go

to higher dimensional parameter spaces, such local minima pose a more significant problem,

as they become harder to identify.

The reconstructed dressings are compared to the fRG input data in Figures 4.2a and 4.3a,

with the associated spectral functions shown in Figures 4.2b and 4.3b, respectively. From a

Hubbard–Stratonovich transformation it can be inferred that the vertex dressing corresponds

to the negative dressing function of the bound state under consideration. Hence, the spectral

functions ρsc/ps are computed from the negative vertex dressing. Consequently, the positive

peak indicates an asymptotic state that is interpreted as the respective glueball resonance.

We also observe negative structures in the spectral function since the four-gluon vertex itself is

not a gauge-invariant object. The reconstruction of the vertex dressing largely reproduces the

fRG data within errors. For high momenta, the result deviates more strongly, in particular for

the scalar glueball. This is due to the additional bias introduced to the kernel that specifically

suppresses any dynamics in the UV regime.

The glueball masses are extracted from the dominant peak positions of the spectral func-

tions. We obtain ω̂sc = 0.93GeV for the scalar and ω̂ps = 1.35GeV for the pseudo-scalar

channel. Since we work within the s-channel approximation and have two incoming momenta

each with the magnitude p, the peak position corresponds to the half of the glueball mass,

i.e.msc/ps = 2 ω̂sc/ps. Hence, we obtain the masses msc = 1870(75)MeV for the scalar and

mps = 2700(120)MeV for the pseudo-scalar glueball. The reported errors are a combination
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JPC lattice DSE-BSE this work

0++

1760(70) [88] 1850(130) [101] 1870(75)

1740(70) [89] 1640 [98]

1651(23) [90]

1618(26)(25) [91]

0−+

2650(60) [88] 2580(180) [101] 2700(120)

2610(70) [89] 4530 [98]

2600(40) [90]

2483(61)(55) [91]

Table 4.2: Comparison of scalar (JPC = 0++) and pseudo-scalar (JPC = 0−+) glueball masses

from different methods. The results of [88, 89] are rescaled to match [90, 91] with

r0 = 1/418(5)MeV. The errors of [88, 89] are a combination of statistical as well as sys-

tematic uncertainties stemming from the lattice anisotropy and the scale r0. The errors for

[90] are statistical only. For [91], the quoted values are the statistical as well as systematic

uncertainties for the continuum extrapolation, respectively. For [101], the error comes from

the extrapolation method.

of the standard deviations computed from the GP posterior and an additional 3% error from

the scale setting procedure of the input data. We compare our results with masses obtained

from independent lattice and DSE/BSE studies of the glueball spectrum in Table 4.2 and find

them to be in reasonable agreement, in particular for the pseudo-scalar channel where they

match well within the provided uncertainties.

4.5 Conclusion

We put forward a self-consistent approach for the extraction of bound state information from

gauge-fixed correlation functions. Key to this framework is the spectral reconstruction of

interaction channels in Euclidean space-time that have overlap with the corresponding gauge-

invariant bound state. The method is applied to low-lying glueball states in Yang-Mills theory,

extracted from the dressing functions of the Euclidean four-gluon vertex. With appropriate

projection operators of the four-gluon vertex, we obtain access to the masses of the scalar and

pseudo-scalar glueballs.

The Euclidean dressings are obtained with the functional renormalization group, utilizing

earlier results for correlation functions from [219]. The respective spectral functions are then

computed via Gaussian process regression and their resonance peaks are identified with the
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glueball masses. For the scalar and pseudo-scalar glueballs, we arrive at 1870(75)MeV and

2700(120)MeV, respectively. The results agree well with independent studies of the glueball

spectrum, lending further credibility to our proposed method of computing bound state prop-

erties from vertex dressing functions via spectral reconstruction. The present approach can

also be directly applied to higher glueball states in Yang-Mills theory, as well as glueball and

other hadronic states in QCD.
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5. Strong Coupling at Timelike

Momenta

This chapter is based on the publication [2].

As laid out before, knowing the spectral function of a correlator, i.e. knowing the correlator

in the full complex plane, allows the computation of other important quantities using Bethe-

Salpeter equations in order to determine bound states, or serves as an input for spectral func-

tional approaches that enable the computation of new spectral functions of different degrees

of freedom of the theory. Additionally, in the calculation of physical scattering amplitudes,

the strong coupling in Minkowski space can be a necessary ingredient.

Since we have established, the spectral function of the ghost and the gluon coupling in an

earlier work, cf. [187], we can use this knowledge to compute the spectral function of other

QCD observables. Specifically, we establish a spectral representation for the strong coupling

constant and compute its spectral function. In this chapter, we will compare results from the

spectral reconstruction of the strong coupling constant with results from a direct calculation

of the spectral function, utilizing the ghost and gluon spectral functions as input. This

non-trivial benchmark of our reconstruction method yields remarkable agreement between

the direct and indirect results, thereby making a strong case for the reliability of spectral

reconstruction via probabilistic inversion with GP models. For the first time, we will apply

the method of including asymptotics in the Gaussian process, cf. Section 3.3.3, to the spectral

reconstruction.

This chapter is organized as follows. In Section 5.1, we give a motivation for the calculation

of the strong coupling at timelike momenta, by calculating a standard S-matrix element

and derive the spectral representation for the strong coupling constant. The reconstruction

procedure, the specifics of the inclusion of the asymptotic information, and the resulting

spectral functions are presented in Section 5.2. We conclude in Section 5.3.
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q

q̄

q

q̄

Figure 5.1: qq̄-scattering process with a one-gluon exchange. At sufficiently large timelike exchange

momenta, this process plays an important role in its respective S-matrix elements. Con-

sequently, all internal quantities are dressed. Blue blobs represent full vertices, and the

wiggly internal line is a full gluon propagator.

5.1 Scattering Processes & the Timelike QCD Coupling

Scattering processes and decays in QCD are described in terms of S-matrix elements. At low

energies, the operators of the physical in and out states are complicated objects in terms of the

fundamental QCD degrees of freedom. For instance, a description of the Compton scattering

of protons requires the definition of the proton or, more generally, the nucleon operator in

terms of its partonic constituents. Since, on the fundamental level, the partons are related to

quarks and gluons, the building blocks of the respective S-matrix elements are quark-gluon

and quark-photon scattering processes.

In most partonic models the fundamental scattering processes are approximated by effective

models for the exchange process, such as one-gluon exchange potentials that carry the quali-

tative property of the gluon mass gap in QCD in terms of an effective mass. Ideally, however,

they should be constructed from tree-level processes in QCD with full propagators and ver-

tices, both of which carry on-shell, timelike, and spacelike momenta. The final S-matrix is

gauge-invariant, while the tree-level components making up the individual S-matrix element

contributions are not. Moreover, the S-matrix admits a spectral representation, which is not

necessarily present for the gauge-fixed correlation functions.

5.1.1 Cross-Section of Quark–Anti-Quark Scattering Events and

the S-Matrix Element

In the present work, we undertake a first step towards such a determination of non-perturbative

S-matrix building blocks in QCD. To that end, we compute the timelike strong coupling in

2+1 flavor QCD that governs the quark–anti-quark scattering process depicted in Figure 5.1.

This diagram is at the core of many of the scattering processes used to determine the strong

running coupling, defined as

αs(p) =
g2s(p)

4π
. (5.1)

It is also one of the fundamental building blocks of scattering processes in the Pomeron

model [227–230] – such as the aforementioned Compton scattering of the proton – where it
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is typically estimated by one-gluon exchange models. For a review, see [231]; for a recent

application related to the present work, see [232].

Assuming the incoming and outgoing quarks q(p) and anti-quarks q̄(p̄) to be on-shell, qq̄-

scattering is similar to e+e− scattering. We expect this analogy to hold for sufficiently large

timelike exchange momenta p2 ≳ 1GeV2, whereas for p2 ≲ 1GeV2 we enter the hadronic,

strongly correlated regime. There, the non-trivial embedding of the scattering quarks and

anti-quarks in hadrons becomes increasingly relevant, and quark–anti-quark scattering should

be also considered off-shell alongside further, more complicated processes; for a formulation

in functional approaches, see [229].

Here, we concentrate on the one-gluon exchange diagram as one of the building blocks of the

full S-matrix element. The associated tree-level process shown in Figure 5.1 consists of two full

quark-gluon vertices, Γ
(3)
qq̄A(p1, p2, p) with the on-shell momenta p1, p2 for the incoming as well

as Γ
(3)
qq̄A(p3, p4,−p) with on-shell −p3,−p4 for the outgoing quark and anti-quark, respectively.

The relative minus sign is due to the notational convention in functional computations treating

all momenta as incoming. The momentum p is that of the exchange gluon with the full gluon

propagator GA(p). In combination, this process can be expressed as

⟨q(p3)q̄(p4)|S |q(p1)q̄(p2)⟩ ≃
4∏

i=1

Z−1/2
q (pi)×

{[
ūq(p3)Γ

(3)
qq̄A(p3, p4, p)vq(p4)

]a
µ

GA(p) δ
ab

(
gµν − pµpν

p2

)[
v̄q(p2)Γ

(3)
qq̄A(p1, p2,−p)uq(p1)

]b
ν

}
, (5.2)

where the (on-shell) quark wave functions Zq originate in the LSZ reduction formula. Note

that the quark and gluon wave functions are defined such that the quark and gluon propaga-

tors Gq(p), GA(p) are proportional to 1/Zq(p), 1/ZA(p), respectively. The scalar parts of the

Euclidean propagators read

GA(p) =
1

ZA(p)

1

p2
, Gq(p) =

1

Zq(p)

1

p2 +M2
q (p)

, (5.3)

where the full propagators are proportional to the identity in color space in the adjoint

(gluon) and fundamental (quark) representations. The gluon propagator in the Landau gauge

also carries the projection operator on the transverse subspace (see (5.2)), and the quark

propagator is multiplied by i /p +Mq(p). With (5.3), the standard LSZ factors carrying the

pole residues are simply Z
−1/2
q , as already used in (5.2).

The S-matrix element (5.2) is renormalization group (RG) invariant, as required. To see

this explicitly, we reparametrize the vertices in terms of wave functions of the legs and an

RG-invariant core,

Γ
(3)
qq̄A(pi, pj , p) = Z

1
2
q (pi)Z

1
2
q (pj)Z

1
2
A (p) Γ̄

(3)
qq̄A(pi, pj , p) , (5.4)
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(a) Spacelike Taylor coupling αs(p). (b) Spectral function ρα(ω) of αs(p).

Figure 5.2: Spacelike Taylor coupling αs in QCD (a) and its spectral function ρα(ω) (b). We compare

the spectral function computed directly via (5.14) (red) to that obtained via reconstruction

with GPs (blue). The direct calculation uses the reconstruction results for gluon and ghost

spectral functions from [187]. For the reconstruction, we use the gluon and ghost propaga-

tor data in 2+1 flavor lattice QCD from [233, 234]. Both the input spectral functions and

the corresponding lattice data are displayed in Figure 5.3. The coupling spectral functions

obtained via these two complementary approaches share all qualitative features, such as

peak positions and heights as well as asymptotic behavior. The peak structure can be

connected to the respective peak structure of the gluon spectral function; see Figure 5.3b.

The error band of the reconstruction result accounts for the change in the spectral function

when varying the GP kernel parameters, whereas that of the direct calculation originates

from propagating the uncertainty of the input. The Euclidean lattice data for the Taylor

coupling αs are displayed as gray squares in Figure 5.2a. We compare it to the data from

its spectral representation (5.12) (red) as well as the reconstruction result (blue), showing

that the representation holds and that the reconstruction accurately describes the lattice

data.

where Γ̄
(3)
qq̄A has the transformation properties of a running coupling and naturally occurs in

the S-matrix element. Inserting (5.4) into the S-matrix element (5.2) leads us to

⟨q(p3)q̄(p4)|S |q(p1)q̄(p2)⟩ ≃[
ūq(p3)Γ̄

(3)
qq̄A(p3, p4, p)vq(p4)

]a
µ

1

p2
δab
(
gµν − pµpν

p2

)[
v̄q(p2)Γ̄

(3)
qq̄A(p1, p2,−p)uq(p1)

]b
ν
. (5.5)

We restrict ourselves to the limit of large transfer momentum p2 ≡ s of the scattering event

with p1p3 = p2p4 = s(1−cos θ)/4 and scattering angle cos θ = p1p3/(|p1||p3|). For small s, we

approach the reliability limit of our approximations. We return to the respective discussion

after deriving our results.

Additionally, in a last approximation step, we concentrate on the classical tensor structure

γµ T
a in the full quark-gluon vertex,[

Γ̄
(3)
qq̄A(pi, pj , p)

]a
µ
≈ i γµT

a
√

4παs(s) . (5.6)
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5.1 Scattering Processes & the Timelike QCD Coupling

Here, T a is the SU(3) generator in the fundamental representation, and αs(s), defined in

(5.1), is the strong coupling of the quark-gluon scattering process in the s-channel. On the

equation of motion, the /pi terms vanish, and we obtain

|ūq(p3)γµT avq(p4) v̄q(p2)γµT
auq(p1)|2 → s2

9

(
1 + cos2 θ

)
, (5.7)

in the high energy limit. In (5.7), we have performed an average/sum over spins and color in

the initial/final state. With (5.5) and (5.7), we arrive at

|⟨q(p3)q̄(p4)|S |q(p1)q̄(p2)⟩|2 → 1

9
[4παs(s)]

2 (1 + cos2 θ
)
. (5.8)

with αs(p) defined in (5.1). Equation (5.8) highlights the importance of the strong coupling

constant αs(s) for physical scattering processes. For the remainder of this work, we adopt the

linear momentum argument p =
√
s for the coupling.

In the present work, we shall compute the strong coupling αs(p) and, hence, the above S-

matrix element from its spectral representation for general complex frequencies, including the

timelike momenta relevant for (5.8). We utilize that the strong coupling can be computed

from the quark-gluon vertex, the three- and four-gluon vertices, as well as the ghost-gluon

vertex. The computation involves the wave functions Zq(p), ZA(p) of quarks and gluons as

defined in (5.3) and the ghost wave function Zc(p) from

Gc(p) =
1

Zc(p)

1

p2
. (5.9)

The avatars of the strong couplings are then defined as the (symmetric point) dressings of the

classical tensor structures, see (5.4) and (5.6).

A final definition of the strong coupling in the Landau gauge is given by the propagator

or Taylor coupling, which utilizes Taylor’s non-renormalization theorem for the ghost-gluon

vertex. This leads to the Taylor coupling, solely defined by the ghost and gluon dressing

functions,

αs(p) =
g2s
4π

1

ZA(p)Z2
c (p)

. (5.10)

All strong coupling avatars have the same universal two-loop running but differ for infrared

momenta; see [235]. For an evaluation of the infrared differences between the Taylor coupling

and the quark-gluon coupling, see [236]. The latter regime is not accessible within the present

approximation. Hence, we use the Taylor coupling (5.10) for the evaluation of (5.8). Its

corresponding spectral function ρα is depicted in Figure 5.2. It allows us to compute the

coupling αs(p) for complex frequencies including timelike momenta; see Figure 5.6. Timelike

results for the strong coupling in the perturbative domain can be found, e.g., in [237, 238].
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(a) Ghost spectral function. (b) Gluon spectral function.

Figure 5.3: The continuous parts of the ghost (a) and gluon (b) spectral functions obtained in [53] (see

also Section 5.1.3), used here as input for the calculation of the coupling spectral function

shown in Figure 5.2a via its spectral representation (5.12). Shaded areas represent 1σ-

bands of the statistical error of the mean prediction based on the available observations

and precision. Note that for the calculation of the gluon spectral function, the UV and IR

asymptotic regimes are assumed to be maximally large. This leads to a small reconstruction

error without accounting for systematics; see Section 5.2 for a detailed discussion.

5.1.2 Spectral Representation

For the computation of (5.10), and hence of (5.8), we require the ghost and gluon propagators

for timelike momenta, the Källén-Lehmann spectral representation (2.19). Note, that for

propagators of ‘unphysical’ fields, such as gauge fields, positive semi-definiteness is no longer

required and the spectral representation reduces to a statement about the analytic structure

of the corresponding correlation function; see, e.g., [239–241, 127, 221, 53, 220]. The ghost

propagator is known to exhibit a massless particle pole in the origin, entailing a delta pole

at vanishing frequency in its spectral function ρc [53]. The gluon spectral function ρA is

continuous along the whole real frequency axis and is not expected to show distributional

contributions. Taking into account the explicit forms of the spectral functions, the ghost and

gluon dressing functions can be expressed as

1

ZA(p)
= p2

∫ ∞

0

dω

π

ω ρA(ω)

ω2 + p2
,

1

Zc(p)
=

1

Z0
c

+ p2
∫ ∞

0

dω

π

ω ρ̃c(ω)

ω2 + p2
, (5.11)

where 1/Z0
c is the residue of the massless delta pole of ρc, and ρ̃c denotes the continuous part

of the spectral function.

Given the existence of a spectral representation – for a deeper discussion on this, we refer to

[220] – the associated correlation function must obey certain symmetries and fulfill require-

ments about its infrared and ultraviolet asymptotics. It can be shown that the existence of
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5.1 Scattering Processes & the Timelike QCD Coupling

spectral representations for the ghost and gluon propagators implies the existence of such a

representation also for the Taylor coupling as defined in (5.10). Specifically, it is given by

αs(p) = p2
∫ ∞

0
dω

ω

ω2 + p2
ρα(ω) . (5.12)

With (5.12), the strong coupling spectral function is obtained from its retarded correlator via

ρα(ω) = − 2

ω2
Imαs

(
− i(ω + i0+)

)
. (5.13)

Now we use the definition of the Taylor coupling (5.10) and insert the spectral representations

of ghost and gluon dressing functions (5.11). Then, the spectral function (5.13) of the coupling

can be written as

ρα(ω) = − 2 Im

[(∫ ∞

0

dλ

π

λ ρA(λ)

λ2 − ω2 + i0+

)

×
(

1

Z0
c

− ω2

∫ ∞

0

dλ

π

λ ρ̃c(λ)

λ2 − ω2 + i0+

)2 ]
. (5.14)

Since the Taylor coupling decays logarithmically in the UV, its spectral function obeys a

superconvergence condition [53, 221], given by∫ ∞

0
dω ωρα(ω) = 0 . (5.15)

In the case of the gluon propagator, this is the well-known Oehme-Zimmermann condi-

tion [242, 243].

A treatment of the analytic low-frequency behavior of continuous parts of the spectral func-

tions has been initiated in [127]. In particular, it was shown that for correlation functions

obeying a KL representation, a simple relation between the IR asymptotics of the correlator

and its spectral function can be derived by differentiating with respect to the frequency. For

the Taylor coupling, we explicitly find

lim
ω→0+

∂ωρα(ω) = −2 lim
p→0+

∂p
αs(p)

p2
. (5.16)

Hence, if the coupling approaches zero in the origin faster than p2, we expect the spectral

function to approach zero from below, and vice versa.

For the gluon and the ghost propagators, the leading order IR and UV asymptotics are known

analytically; see [127] and references therein. In the infrared, the decoupling solution of the

ghost is characterized by a constant propagator dressing Zc ≡ Zc(p = 0). On the other hand,

the gluon propagator is dominated by the ghost loop polarization diagram in the IR, since

the gluon propagator itself has a mass gap and decouples in the infrared. This results in a

p2 log p2 contribution in the IR regime; for a detailed discussion thereof, see [127].
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5 Strong Coupling at Timelike Momenta

Using the definition of the strong coupling (5.10), we see that it has the same, but negative, IR

behavior as the inverse gluon dressing, up to a constant contribution from the ghost dressing.

From (5.16), we can then infer the asymptotic behavior of the spectral function as

ρα,IR(ω) ∼ ω2 , (5.17)

analogously to [127]. The UV asymptotic behavior of the strong coupling is well-known from

perturbative calculations and reads

αs,UV(p) ∼ 1

log(p2)
. (5.18)

The asymptotic behavior of the spectral function follows directly from (5.13), and we obtain

ρα,UV(ω) ∼ − 1

ω2(π2 + log(ω2)2)
. (5.19)

5.1.3 Lattice Data

During the past two decades, lattice QCD results for Landau gauge two-point functions have

advanced to an impressive quantitative level of precision; see, e.g. [244–259]. A recent review

of lattice and functional results can be found in [260]. The lattice ghost dressing function and

gluon propagator data used in this work have been obtained from recent calculations with

2+1 dynamical fermion flavors at the physical point [233, 234]. In particular, the ensembles of

gauge configurations were generated by the RBC/UKQCD collaboration in [261–265], lever-

aging the Iwasaki gauge action [266] and the domain wall fermion action [267, 268] with a

pion mass of 139MeV.

The continuum limit of the lattice data is only obtained with proper treatment of discretization

effects. For the Landau gauge propagators, this is achieved by an analysis of the physical

scaling violation as described in [269], leading to continuum extrapolated propagators with

the correct momentum running. The resulting gluon propagator and ghost dressing data

are displayed in the insets of Figure 5.3. These data combined with results from functional

Yang-Mills theory and QCD [226, 235, 17, 236] have also been reconstructed in [187].

Since the lattice data for the propagators are available only on different momentum grids,

the coupling as defined in (5.10) is computed from interpolations of the respective dressings.

These are obtained by direct GP reconstruction and therefore assume no general features of

the underlying correlators apart from continuity. We compute the coupling including errors for

600 logarithmically spaced points between 0.23GeV and 2.69GeV. For technical convenience,

the coupling is extended perturbatively at large momenta in order to control the amplitude of

the UV asymptotics; see Section 5.1.2. A subset of these data is shown in Figure 5.2a. Here,

we replace the error with the difference between the values computed as described above, and

the coupling obtained from the product of the ghost and gluon spectral functions, described

around (5.14) and in Section 5.2.
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Figure 5.4: Behavior of the spectral function when varying the midpoints µIR/UV of the transition ker-

nels to the asymptotic IR (a) and UV regimes (b). The respective values of the parameters

are color-coded. The resulting scan of the spectral functions is compared to the final result

with maximally enhanced asymptotics, displayed with a dashed blue line. The error band

obtained by varying the parameters of the asymptotics – as indicated in Figure 5.5 – is

given by the shaded blue area.

5.2 Results

Our main result, the spectral function of the Taylor coupling (5.13) in QCD, is displayed in

Figure 5.2b. It shows two variants: ρGP
α from the reconstruction of the lattice QCD data via

GP reconstruction, and ρspecα from the direct calculation based on the spectral representations

of ghost and gluon propagators (5.14). The associated input spectral functions are shown

in Figure 5.3. In this context, we have improved the reconstruction of the gluon propagator

reported in [187] by explicitly incorporating the known IR and UV asymptotics with the

method described in Section 3.3.3. The error band of ρspecα is obtained by propagating the

errors of these input data. Importantly, the coupling spectral functions obtained via these two

different approaches agree well within errors and share all qualitative features, such as peaks

and asymptotic behavior. In both results, we can identify two prominent peaks of similar size

in positive and negative direction at roughly ∼ 0.6GeV and ∼ 0.8GeV, along with a smaller

positive peak at ∼ 1.1GeV. The spectral function ρspecα (5.14) allows for a direct interpretation

of this behavior: it is connected to the peak structure of the gluon spectral function, which

carries information about the gluon mass gap; see Figure 5.3b. This information is extracted

reliably from the lattice data with the GP reconstruction.

In the reconstruction of the coupling, the correct asymptotic behavior is enforced by smooth

step functions at transition points µIR and µUV, while fully retaining the flexibility in the

enclosed region where the GP kernel remains unrestricted and universal, see Section 3.3.3 for

details. This procedure has also been applied to the reanalysis of the gluon spectral functions

used here. It significantly enhances the stability and reliability of the prediction by connect-
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Figure 5.5: Scans of the bias parameters defined in (3.59). We compare the quality of the dressing

reconstruction – quantified by χ2 – when varying the midpoint positions of the bias tran-

sition µIR/UV (a) as well as its steepness ℓIR/UV (b). The values of the bias parameters

chosen for the reconstruction are marked by crosses. This choice maximizes the size of the

regions dominated by the coupling infrared and ultraviolet asymptotics while producing

small χ2 reconstructions of the data. Additionally, the parameters are then scanned in the

flat directions, indicated by the horizontal bars, in order to obtain the error estimation for

the reconstruction results shown in Figure 5.2.

ing it to analytic results at low and high frequencies, ensuring agreement with functional

and perturbative results in the relevant limits without reducing the expressivity of the GP

model in the domain of interest. While the prediction shows some variation with the choice

of the transition midpoints, the peak positions and heights remain remarkably stable; see

Figure 5.4. The kernel hyperparameters are optimized as follows: First, the parameters of

the squared exponential are optimized by minimizing the NLL, cf. (3.31), of the GP without

any asymptotics. Then, the asymptotics, specified in Section 5.1.2, are added to the kernel.

The parameters of the asymptotic kernel are then optimized by minimizing the χ2 of the

reconstruction while keeping the parameters of the squared exponential fixed. We observe,

that the χ2 of the reconstruction remains relatively flat for a large range of parameters and

has a shallow minimum, before rapidly increasing, see Figure 5.5. We therefore choose the

optimal parameters to be in the minimum of the χ2 scan, indicated by the crosses in Fig-

ures 5.5a and 5.5b respectively. As an error estimate, we vary the asymptotic parameters

over the region, where the χ2 remains small, indicated by the horizontal bars in Figures 5.5a

and 5.5b. Changing the parameters controlling the transition to the asymptotic behavior

accounts for the majority of the variation in the spectral function while changing the pa-

rameters of the RBF kernel produces errors at least one order of magnitude smaller. We

therefore do not include the latter error in the final error band. The numerical values of all

kernel hyperparameters are listed in Table 5.1. We can observe, that the parameters tend to
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(a) Real part of the Taylor coupling αs(ω). (b) Imaginary part of the Taylor coupling αs(ω).

Figure 5.6: Taylor coupling αs(ω) of 2+1 flavour QCD defined in (5.10) in the complex frequency

right half plane (positive real frequencies), real (a) and imaginary part (b). The imaginary

part explicitly shows the branch cut along the real frequency axis. The spectral function

corresponds to the imaginary part of αs at the upper half plane boundary of the branch

cut, divided by ω2. Both, the real and imaginary parts, exhibit distinctive peaks that can

be connected to the peak structure of the gluon spectral function; see Figure 5.3b. The

coupling decays logarithmically for increasing |ω|.

Parameter σ l µUV ℓUV µIR ℓIR

Value 67.399 0.074 0.890 0.137 0.637 0.090

Table 5.1: Hyperparameters for the combined RBF and fixed-asymptotics kernel, as defined in (3.25)

and (3.59).

favor values maximize that the region of asymptotic behavior. Accordingly, the size of the

dynamical region carrying information about the QCD mass gap is minimized, supporting the

gluonic quasi-particle picture employed in various applications such as bound state studies

and transport computations. Specifically, this suggests dismissing smaller negative peaks close

to the dominant quasi-particle peak – they merely reflect the asymptotic behavior and the

superconvergence condition (5.15). As such, they are sensitive to changes in the gauge fixing

parameter and infrared closure. This suggests that they carry physically relevant information

only on a subleading level.

In Figure 5.2a, we compare the reconstructed Euclidean Taylor couplings to the result com-

puted from the lattice data for the ghost and gluon propagators, as described in Section 5.1.3.

Using the dressing function data obtained in this way, the resulting coupling is shown to decay

towards small and large momenta. In correspondence to the scale of the peaks of the spectral

function – reflecting the mass gap of the theory – also the peak of the coupling itself appears

at ∼ 0.6GeV.

The blue curve in Figure 5.2a represents the GP reconstruction of the Taylor coupling lattice
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data, corresponding to ρGP
α . The red curve represents the coupling obtained via its spectral

representation (5.12) using the directly computed spectral function ρspecα . The calculation

involves finite precision, both in the input data and in the integration. Hence, we expect

a small, but not negligible, relative error. The decent agreement between this result and

the lattice/GP reconstruction result provides a highly non-trivial benchmark check. The

error is well within our expectations since the result obtained from the directly computed

spectral function depends on the reconstructions of the gluon and ghost propagators. If the

ghost and gluon spectral functions were describing their respective propagator data to infinite

precision, we would also expect perfect agreement from analytic considerations. Hence, the

small difference can be attributed to systematic uncertainties present in the calculation. Please

note that they do not contribute to the error bands, corresponding to the purely statistical

error, shown in Figure 5.2.

In the inset of Figure 5.2a, we also show the Taylor coupling divided by p2 for small Euclidean

momenta p. The derivative of this quantity is connected to the asymptotic behavior of the

spectral function in the IR by (5.16). We observe that in the region where lattice data are

available, the slope of αs/p
2 is negative. In accordance with the analytic requirement (5.16),

the slope of the spectral function is observed to be positive in this regime.

Finally, in Figure 5.6 we display the real and imaginary parts of the coupling in the full

complex momentum plane. The data are obtained by evaluating the coupling spectral rep-

resentation (5.12) with the directly calculated spectral function ρspecα in the complex plane.

The branch cut in the imaginary part, responsible for the spectral representation, is clearly

visible. As expected, no further non-analyticities in the complex plane are encountered and

the coupling shows the expected decay behavior towards large frequencies.

5.3 Conclusion

In this chapter, we have presented results for the spectral function of the strong coupling

constant in QCD obtained through a direct calculation as well as a reconstruction via Gaus-

sian processes. Assuming spectral representations for the ghost and gluon, we have derived

the spectral representation of the Taylor coupling, which is fully determined by the ghost

and gluon dressing functions. With this relation, we have calculated the associated spectral

function as well as the coupling itself in the full complex plane; see Figures 5.2 and 5.6. The

required ghost and gluon spectral functions have been obtained using the same reconstruction

method, explicitly taking into account the known asymptotic IR and UV behavior of the gluon

spectral function; see Figure 5.3. This modification substantially improves the reliability of

the approach by properly encoding the analytically tractable regimes into the prediction while

preserving the expressivity and universality of the GP model in the region of interest.

A comparison of the results from the direct calculation and GP reconstruction shows excellent

agreement between both approaches; see Figure 5.2b. This independent verification provides
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strong support for the accuracy of the computed spectral function and also underlines the

power of probabilistic inversion with GP models as a spectral reconstruction approach. In par-

ticular, the findings demonstrate that uncertainty estimates obtained within this framework

are reasonable, allowing to reliably quantify the expected errors in potential downstream ap-

plications based on reconstruction results. Possible future extension can entail to also analyze

the quark-gluon vertex coupling directly based on available lattice data; see e.g. [270].

Our results find direct application in the calculation of non-perturbative, physical scattering

processes, where the strong coupling constant needs to be known at timelike momenta. While

neglecting angular dependencies, the Taylor coupling considered here carries the correct RG

running and hence scale-dependence of the strong coupling constant. Furthermore, it encodes

genuine non-perturbative information through the input ghost and gluon dressing functions

obtained from 2+1 flavor lattice QCD. This work hence paves the way for incorporating non-

perturbative information from lattice field theory to functional methods in the calculation of

timelike scattering processes.
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6. Thermal Photon Rate

This chapter is based on parts of the publication [3].

In this chapter, we will present results from reconstructions of the thermal photon rate from

the quark-gluon plasma (QGP). As has been discussed in Chapter 1, above the pseudo-

critical temperature of Tpc = 156.5 ± 1.5MeV [6–8], QCD matter can be described by a

quark-gluon plasma (QGP), where quarks and gluons are the relevant degrees of freedom.

Since the photons and dileptons that are produced in heavy-ion collisions travel from the

production point to the detector with relatively little interaction with the medium, they can

provide valuable information about the properties of the QGP [271]. Importantly, they carry

local information about temperature and density during the QGP phase. However, photons

and dileptons are produced not only at high energies but also at lower energies, where the

formation of a QGP is not expected These electromagnetic probes are produced in collisions

of charged particles or from hadronic decays such as π0, η → γ γ and contribute to a large

portion of photons measured in experiment [272].

Experimental setups for heavy-ion collisions, namely Au-Au collisions at PHENIX [273] and

Pb-Pb collisions at ALICE [274] have revealed large yields of this hadronic background. These

direct photons have to be separated from the thermal photons that are produced in the QGP

in order to extract the properties of interest [275]. Especially at high transverse momentum

pT , these direct photons dominate the spectrum. However, at low pT an excess of photons

is observed, which is attributed to in-medium effects from the QGP. Measurements of direct

photons and dileptons also reveal a large azimuthal anisotropy, quantified by v2 and often

referred to as elliptical flow [276–279]. Connecting theoretical calculations to these dynamic

observables has been a challenge for many years [280]. Simulations have revealed that the

‘slopes’ of the pT spectrum (for photons) and the invariant mass spectrum (for dileptons) can

be systematically related to an average temperature of the fireball [281–283]. The anisotropic

flow of direct photons and dileptons has been shown to be sensitive to the initial conditions

and shear viscosity [284–286]. Such calculations require the differential photon or dilepton
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production rate at every stage of the evolution as an input to hydrodynamic simulations. Since

hydrodynamic expansion assumes local thermal equilibrium, such hydrodynamic quantities

can be extracted from equilibrium field theory calculations at the appropriate temperatures.

Numerous studies have investigated the thermal photon rate, both perturbatively and non-

perturbatively, using lattice techniques. Perturbative results were established in [287, 288],

and later extended to establish the full O(αemαs) result [289, 290]. More recently, next-to-

leading-order results have been obtained in [291].

For lattice QCD calculations, the challenge is similar to other hydrodynamic observables:

they require real-time information about QCD correlators and are therefore not directly cal-

culable on the lattice. As in the sections above, we therefore apply spectral reconstruction

techniques to obtain the thermal photon rate. In a previous study [123], the photon rate was

estimated using the vector channel correlator, wherein the UV part of the spectral function

was calculated perturbatively, while the IR part was fixed using lattice data. Since the UV

tail diverges, the information about the relevant region of the spectral function is extremely

hard to quantify. Therefore, a new correlator was proposed in [292], based on the difference

between the transverse and longitudinal channels. Such a construction leads to a correlator

that is free of the UV divergence, and the spectral function can be calculated in a more

controlled way. A similar method was employed in another study [293], where the photon

rate was estimated from the transverse channel correlator. Recently, a novel idea has been

proposed for calculating the photon rate. In this method, the photon production rate is stud-

ied using the imaginary momentum correlator, which does not require spectral reconstruction

[294, 295]. With this method, the first two moments of the spectral function are calculated

at lightlike kinematics in Euclidean spacetime, which is realized by employing an imaginary

spatial momentum, and the photon rate is estimated from these moments. These can provide

further constraints on the photon rate in the future.

Here, following [292], we estimate the thermal photon rate from the QGP using the differ-

ence between the transverse and longitudinal correlators. For the spectral reconstruction, we

present various techniques, ranging from physics-informed model fits and the Backus-Gilbert

method to Gaussian processes. Here, we will focus mainly on the reconstructions using Gaus-

sian processes and compare them with other methods. With these methods, we calculate the

thermal photon rate from the lattice correlator for light quarks in two different scenarios:

Quenched QCD at a temperature of 470MeV (1.5Tc), and (2+1)-flavor QCD at a tempera-

ture of 220MeV (1.22Tpc). For the quenched QCD scenario, there is continuum extrapolated

correlator data, which means that our prediction for the photon production rate is also at

the continuum. For the full QCD scenario, our results are at a finite lattice spacing. We

investigate the dependence of the photon rate on the lattice spacing for quenched QCD and

from this infer its dependence on the lattice spacing for full QCD.

This chapter is organized as follows. After introducing the thermal photon rate and its connec-
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tion to the spectral function in Section 6.1, we will discuss the lattice details in Section 6.2. In

Section 6.3, we will present the spectral reconstruction methods that are used to reconstruct

the thermal photon rate from this data and compare the results in Section 6.4.

6.1 Thermal Photon Rate from QCD Spectral Functions

The thermal photon rate is defined as the number of photons radiated from the plasma per

unit time and per unit volume at a fixed temperature T . In the thermalized plasma, the

photon production is due to the Nf = 3 degenerated quark flavors that couple to the photons

via the electromagnetic current

Jµ = e
∑
f

Qf ψ̄fγ
µψf , (6.1)

where Qf is the quark charge fraction and ψf is the quark field of flavor f . The square of the

S-matrix element of a transition of an initial hadronic state to a final hadronic state with the

emission of a photon is then related to the correlator of such a current [296], i.e.⟨Jµ(x)Jν(0)⟩β.

If we consider the three flavor case, Nf = 3, where f = u, d, s, then
∑

f Qf = 0 and
∑

f Q
2
f =

2
3 . Under these conditions, to leading order in the QED coupling αem, this rate can be

calculated as [297]

dΓγ

d3k
= − αemnb(k)

2π2k

{∑Nf

i=1Q
2
i

}
gµνρµν

(
ω = |k|, k

)
, (6.2)

where nb(ω) = 1/(eω/T − 1) is the Bose distribution function. In this expression, ρµν denotes

the connected part of the vector current spectral function for a single flavor. Since we are

interested in the thermal photon rate, and photons are massless, the spectral function is

evaluated on the light cone, i.e.ω = |k|. Note that other interesting quantities such as the

dilepton rate are frequency dependent and require the spectral function at momenta inside

the light cone. Although this expression of the thermal photon rate is only valid up to leading

order in the electromagnetic coupling it captures all orders in the strong coupling.

As introduced in Section 2.1.1, the spectral function ρµν(ω,k) can be calculated through

analytic continuation, see (2.18), from the Matsubara frequency modes (ωn = 2πTn , n ∈ Z),
i.e. ρµν(ω,k) = Im[GE

µν(ωn → −i(ω+i0+),k)], where the Euclidean current correlator is given

by

GE
µν(ωn,k) =

∫
d3x

∫ β

0
dτ ei(ωnτ−k·x)⟨Jµ(τ,x)Jν(0,0)⟩ , (6.3)

and β = 1/T is the temporal extent.

On the lattice, real-time calculations are not feasible due to the sign problem, so we calculate

the Euclidean correlation function GE
µν(τ,k) = T

∑
n exp(iωnτ)G

E
µν(ωn,k). As introduced
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before, cf. (2.21), the correlator can be written in terms of its associated finite temperature

spectral function as

GE
µν(τ,k) =

∫ ∞

0

dω

π

cosh (ω(τ − β/2))

sinh (ωβ/2)
ρµν(ω,k) . (6.4)

One major challenge is therefore, similar to the sections before, the extraction of the spec-

tral function from the Euclidean correlator. In the case of the extraction of the contracted

(or ”vector channel”) spectral function gµνρµν , this inversion does not only suffer from the

ill-conditioned nature of the problem but also from the fact that the spectral function is pro-

portional to ω2 in the ultraviolet domain. As a result, the lattice correlator, determined by

the integration in (6.4), receives a significant contribution from the UV part of the spectral

function. This presents an additional challenge for reconstructing the spectral function, as the

thermal photon rate is primarily governed by its infrared component. Therefore, the interest-

ing information about the IR part is buried under the UV tail that dominates the correlator

data. When reconstructing the thermal photon rate directly from such a correlator, small

deviations in the UV tail would lead to significant deviations in the interesting IR regime.

This consequently produces large errors, often spanning large parts of the interesting regime,

see e.g. [123–125, 298] for reconstructions encountering this obstacle.

Recently, an approach has been proposed to circumvent this problem by constructing a cor-

relator that is free of the UV divergence [292]. The idea is to consider the difference between

the transverse and longitudinal part of the spectral function, which leads to a spectral func-

tion that is heavily suppressed in the UV. This special combination, referred to as the T-L

spectral function, has a corresponding Euclidean correlator that is governed by the IR part of

the spectral function, and the actual information we want to access has a significantly larger

contribution to the correlator.

In order to obtain the T-L part, the spectral function ρµν is decomposed in terms of ρT (the

transverse component) and ρL (the longitudinal component), leading to

ρµν(ω,k) = P T
µνρT (ω,k) + PL

µνρL(ω,k) . (6.5)

Here, P T
µν and PL

µν are the transversal and longitudinal projection operators, given explicitly

by

P T
ij (ω,k) = −gij −

kikj

k2 ,

P T
0i = P T

i0 = P T
00 = 0 ,

PL
µν(ω,k) = −gµν +

KµKν

K2
− P T

µν(ω,k) , (6.6)

where K = (ω,k) is the associated four-momentum. The projection operators satisfy the

following relations: P 2
T = PT , P

2
L = PL, and PTPL = PLPT = 0. In terms of these components,
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the vector channel spectral function is given by

gµνρµν = ρµµ = −2ρT − ρL . (6.7)

On the light cone, i.e.k2 = ω2, we can see, that gµνPL
µν(ω = |k|,k) = 0. This means, that

the longitudinal part of the vector channel spectral function vanishes on the light cone, which

is a manifestation of current conservation [292]. The photon production rate therefore only

depends on the transverse part of the current spectral function dΓγ ∼ ρT (ω = |k|,k). This

allows us to calculate the photon production using any combination of the transversal and

longitudinal parts of the spectral function. A practical choice is the T-L spectral function,

given by

ρH(ω,k) = 2 [ ρT (ω,k)− ρL(ω,k) ] . (6.8)

In the zero temperature limit, which is the same as the infinite ω limit, we recover Lorentz

invariance. Together with current conservation, this implies that [292]

ω2ρ00(ω,k)− kikjρij(ω,k) = 0 . (6.9)

Therefore, the T-L spectral function vanishes for all ω and k at zero temperature and displays

purely thermal effects at finite temperature. At finite temperature, no new divergences are

introduced and the T-L spectral function stays finite. Therefore, we can do an Operator

Product Expansion (OPE): by power counting, it can be shown that in the domain where

ω ≫ k, π T , this spectral function behaves asymptotically like [299, 300]

ρH(ω,k) ∼ k2⟨O4⟩
ω4

, ω ≫ k, π T , (6.10)

where O4 is a dimension four operator O4. Another consequence of this is that this spectral

function satisfies a sum rule ∫ ∞

0
dω ω ρH(ω) = 0 . (6.11)

We should note that the photon production rate (6.2) is often (equivalently) expressed as

dΓγ

d3k
=

αemnb(k)χq

π2

{∑Nf

i=1Q
2
i

}
Deff(k) , (6.12)

where the effective diffusion coefficient is defined by

Deff(k) ≡ ρH
(
|k|, k

)
2χq|k|

. (6.13)

Here χq is the quark number susceptibility. In the hydrodynamic regime of large wavelengths,

Deff(k) approaches the well-known diffusion coefficient D, i.e. limk→0Deff(k) = D.
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6.2 Lattice Details

Here, we briefly describe the lattice details for the calculation of the T-L propagator. For a

more detailed discussion, we refer to the accompanying publication [3].

In lattice calculations, space-time is discretized and has a finite spatial extent (L). There-

fore, the (spatial) momenta are also discrete and given by k =
(
2πnx
L ,

2πny

L , 2πnz
L

)
, where

(nx, ny, nz) ∈ Z. On the lattice, we then calculate the correlator in different directions,

i.e.Gxx, Gyy, Gzz, and Gττ . If the momentum is in the x direction i.e. k = (k, 0, 0), then the

correlator for ρH is given by [300]

GH(τ, kx = k) =Gyy(τ, kx = k) +Gzz(τ, kx = k)

− 2
(
Gxx(τ, kx = k)−Gττ (τ, kx = k)

)
. (6.14)

This correlator is symmetric under τ → β − τ and invariant under rotations, i.e.GH(τ, kx =

k) = GH(τ, ky = k) = GH(τ, kz = k). Therefore, we can compute the T-L correlator as the

average of all these different combinations as

GH(τ, k) =
1

6

(
GH(τ, kx = k) +GH(τ, ky = k) +GH(τ, kz = k) + (τ → β − τ)

)
. (6.15)

We calculate this correlator for two different scenarios: quenched QCD at a temperature of

470MeV (1.5Tc), and (2+1)-flavor QCD at a temperature of 220MeV (1.22Tpc). An overview

of the lattice parameters can be found in Table 6.1.

The quenched configurations are generated using a standard Wilson gauge action with heat-

bath and overrelaxation updates. The correlator is then calculated using Clover-improved

Wilson fermions and the scale has been set by r0 = 0.47 fm [301] and the Tc is obtained by

Tc = 0.7457/r0 [302]. The pure gauge configurations are generated for three different lattice

spacings, which allows us to perform a continuum extrapolation of the correlators.

In the case of full QCD, we use gauge field configurations generated by the HotQCD col-

laboration using Highly Improved Staggered Quarks (HISQ) [303] and a tree-level improved

Lüscher-Weisz gauge action [304, 305]. The hopping parameter value κ is tuned to match the

pion mass, which in this study is unphysical and equal to 320MeV with ml = ms/5. The

scale is determined by r1 = 0.3106 fm and Tpc = 180MeV is obtained from disconnected chiral

susceptibility, cf. [306], as in [298].

6.3 Spectral Reconstruction

In this section, we present the spectral reconstruction techniques used to obtain the T-L spec-

tral function from the lattice correlator. Since the reconstruction problem is ill-conditioned,

there are generally large uncertainties in the reconstructed spectral function. As discussed

earlier, this issue can be addressed using inversion methods that regularize the problem, such
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Nf T β0 κ N3
σ ×Nτ confs a−1 [GeV]

0 1.5Tc

7.394 0.13407 1203 × 30 1950 14.1

7.192 0.13440 963 × 24 2000 11.3

7.035 0.13467 803 × 20 1824 9.39

2 + 1 1.2Tpc 8.249 0.13515 963 × 32 1750 7.04

Table 6.1: Details of the lattices studied, where β0 is the coefficient of the Wilson plaquette and κ is

the hopping parameter. The critical temperature Tc = 313MeV for the quenched, Nf = 0,

case and the pseudo critical temperature is Tpc = 180MeV for the QCD, Nf = 2+ 1, case.
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Figure 6.1: Continuum extrapolated lattice data for the Euclidean T-L correlator GH for the quenched,

Nf = 0, case at 1.5Tc for different spatial momenta k/T .

as Tikhonov regularization, or by fitting a functional form to the data. The drawback of such

regularization techniques is that they introduce bias, which can result in significant systematic

uncertainties that are often difficult to quantify. For instance, when fitting a functional model

to the data, obtaining a realistic estimate of systematic uncertainty would require considering

a wide range of models or using a model with many parameters. However, these approaches

are typically impractical, as they are either susceptible to overfitting or computationally de-

manding.

Instead of doing an error analysis of the systematic uncertainties, we compare different re-

construction methods and use the spread of the results as an estimate of the systematic un-

certainties. In this work, we compare three different methods: two different physics-informed

model fits, the Backus-Gilbert method, and the Gaussian process regression. Note that while

the fits and the Backus-Gilbert method do not provide systematic uncertainties, the recon-
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Figure 6.2: Lattice data for the Euclidean T-L correlator GH for the full QCD, Nf = 2 + 1, case at

1.22Tpc at finite lattice spacing for different spatial momenta k/T .

struction with GPs covers the full uncertainty of the reconstruction. This will be discussed

in greater detail in Section 6.3.3. Before that, we will briefly introduce the model fits and the

Backus-Gilbert method.

6.3.1 Physics-Informed Model Fits

We consider two different model fits to the lattice data. Firstly, a polynomial fit, that separates

the spectral function into two parts separated at some fixed ω0. The ultraviolet region ω ≥ ω0

is modeled by ρpolyUV , which is constructed from inverse even powers of ω (starting with 1/ω4)

in order to satisfy the large ω OPE result (6.10). The infrared region ω ≤ ω0 is modeled by

ρpolyIR , where we adopt the same polynomial put forward in [123]. The two regions are matched

continuously

ρpolyH (ω) = ρpolyIR (ω)Θ(ω0 − ω) + ρpolyUV (ω)Θ(ω − ω0) , (6.16)

where Θ is the Heaviside step function. The two parts of the spectral function are given by

ρpolyIR (ω) =
βω3

2ω3
0

(
5− 3

ω2

ω2
0

)
− γω3

2ω2
0

(
1− ω2

ω2
0

)
+
δ ω

ω0

(
1− ω2

ω2
0

)2

, (6.17)

ρpolyUV (ω) = − β ω4
0

7ω4

(
54
ω4
0

ω4
− 94

ω2
0

ω2
+ 33

)
+

γ ω5
0

140ω4

(
−81

ω4
0

ω4
+ 92

ω2
0

ω2
− 11

)
(6.18)

− 16 δ ω4
0

35ω4

(
1− ω2

0

ω2

)2

, (6.19)

where β, γ, and δ are free parameters. Since the spectral function is expected to be smooth

and differentiable across the lightcone [307], the two parts of the spectral function are chosen

to match at ω0 and its first derivative is continuous. The parameter β is the value of the
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spectral function at ω0, while γ is the value of the first derivative at ω0. The slope at ω = 0

is controlled by δ, and therfore δ > 0. Finally, the error of the reconstruction is obtained by

varying ω0 =
√
k2 + ν(πT )2, between different values of ν = {1, 2, 5}.

The second model of the T-L spectral function is a Padé-like ansatz that has already been

applied to the reconstruction problem in [292] and therefore allows for a direct comparison

between the different lattice computations. This spectral function model is given by

ρPadé
H (ω) =

A tanh(ωβ/2)
(
1 +Bω2

)
(ω2 + a2)

[
(ω + ω0)2 + b2

][
(ω − ω0)2 + b2

] . (6.20)

In the infrared regime this model reproduces the hydrodynamic expectation ρH(ω) ∼ Aω
ω2+a2

[74]. The remaining part of the spectral function is inspired by qualities from AdS/CFT (see

e.g. [308]) and is consistent with the OPE asymptotics (6.10) at large ω. In order to satisfy

the sum rule, B becomes a function of ω0, a and b (here the parameter ω0 is not the same as

the one from (6.16)). The fit then is performed with respect to A, a, b, ω0 by minimizing the

uncorrelated χ2 in each of the bootstrap samples. The error of the reconstruction is obtained

by the largest and smallest values of Deff obtained from the different bootstrap samples.

For more details on the model fits, we refer to [3], where different reconstructed spectral

functions are shown, and compared to the perturbative predictions.

6.3.2 Backus-Gilbert Method

As a second approach to the reconstruction, we use the Backus-Gilbert (BG) method. This

method has been, similarly to Gaussian processes, developed in the context of geophysics [128].

The BG method is an inversion technique that allows for the reconstruction of a function from

noisy data, and has been commonly applied to QCD problems in the past, see the discussion

in Section 3.1. In order to regularize the ill-conditioned problem, the idea is to compute a

smeared estimator for the spectral function ρBG(ω,k), by introducing a set of weights q(ω,k)

such that∑
i

qi(ω,k)GH(τi,k) =

∫ ∞

0
dω′ ρH(ω′,k)

∑
i

qi(ω,k)K(ω′, τi) ≡ ρBG(ω,k) , (6.21)

where

δ(ω, ω′) =
∑
i

qi(ω,k)K(ω′, τi) , (6.22)

is called the resolution function. This means that the smeared version ρBG is obtained by

convoluting the true spectral function with the resolution function. By tuning the weights

q, the implied averaging kernel can be varied, and the resolution function can be made more

or less narrow. Usually, the optimization objective for finding these weights is to bring the

smeared estimator as close as possible to the true spectral function. This is achieved by
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Figure 6.3: Projection of the Metropolis-Hastings scan of the negative log-likelihood for the GP re-

construction of the T-L spectral function. The scan is performed in the five-dimensional

parameter space of the GP-kernel. Here, we only show the projections onto the ℓω-ℓk plane

on the left and onto the ℓω-σ plane on the right. The color coding indicates the value of

the NLL. We can see a clear minimum in the length scale parameters of the squared expo-

nential kernel, while the onset of the UV kernel, parametrized by ν, has an open direction

towards 0 and an explicit cutoff has to be introduced.

bringing the resolution function as close as possible to the delta function. For this, we define

some measure of the distance between the resolution function and the delta function and

minimize this distance. For the explicit details, we refer to [3]. We note here, that the

Backus-Gilbert method and Gaussian Process regression can be, under specific choices of the

respective kernels and distance metric, equivalent [168, 189].

In order to include information about the asymptotics of the spectral function, we rescale the

Källén-Lehmann kernel K(ω, τ) by a factor f(ω,k) such that

GH(τ,k) =

∫ ∞

0
dω

ρ(ω,k)

f(ω,k)
K̃(ω, τ) , (6.23)

where

K̃(ω, τ) ≡ f(ω,k) cosh (ω(β/2− τ))

π sinh(ωβ/2)
. (6.24)

The function f incorporates prior information about the asymptotic behavior of the spectral

function and is therefore chosen as

f(ω,k) =
(ω0

ω

)4
tanh

(
ω

ω0

)5

, (6.25)

where we take ω0 =
√
k2 + ν(πT )2 as for the model fits and we vary ν = {0, 0.5, 1, 2, 5, 8}.

Again, the explicit spectral functions can be found in [3].
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Figure 6.4: Reconstructed spectral functions for the quenched, Nf = 0 case at 1.5Tc using Gaussian

processes. The associated lattice data is shown in Figure 6.1. The shaded area represents

the error of the reconstruction, which is a combination of the propagated error on the

lattice data and the systematic error from the GP reconstruction.

6.3.3 Reconstruction with Gaussian Processes

Since we have data for several spatial momenta, the reconstruction of the spectral function

is not only performed in the ω, but also simultaneously in the k-direction. This ensures

continuity in both directions and consequently increases the stability of the reconstruction.

However, apart from continuity, we do not assume any additional structure of the spectral

function in the momentum direction. For the reconstruction, we include the lattice data for

all the available spatial momenta as well as the sum rule (6.11).

Similarly to the previous reconstructions, the squared exponential kernel (3.25) is used. In

order to include the known UV asymptotics, ρUV
H (ω) ∼ 1/ω4, the GP-kernel is modified in the

UV regime to restrict the functional basis to the asymptotic behavior resulting in a UV part

of the spectral function given by

kUV(ω, ω
′) = (ω ω′)−4 . (6.26)

The transition from the universal squared exponential kernel to the UV kernel is controlled

by smooth step functions, as described in Section 3.3.3. Combining the squared exponential

kernel in two dimensions with the asymptotic kernel results in a total number of five GP-

kernel parameters: ℓω, ℓk, σ, ℓUV, ν. The lenghtscale in k and ω direction is controlled by ℓk

and ℓω respectively, while σ gives a prior estimate on the variance of the GP. The position

of the transition from the squared exponential kernel towards the UV kernel is controlled by

ω0 =
√
k2 + ν(πT )2, where ν is varied, in analogy to the polynomial fit ansatz, and ℓUV is

the smoothness of the transition between the two kernels.

Again, these parameters are optimized by minimizing the associated negative log-likelihood
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Figure 6.5: Reconstructed spectral functions for the full QCD, Nf = 2 + 1 case at 1.22Tpc using

Gaussian processes. The associated lattice data is shown in Figure 6.2. The shaded area

represents the error of the reconstruction, which is a combination of the propagated error

on the lattice data and the systematic error from the GP reconstruction.

as introduced in Section 3.2.2. When optimizing the parameters for the one-dimensional GP,

i.e. for one fixed spatial momentum, we notice that the overall magnitude σ of the kernel

decreases with 1/k2, while the other parameters fluctuate, but do not have a qualitatively

different behavior. We therefore rescale the magnitude parameter for the two-dimensional

reconstruction as σ → σ/k2. Since this optimization is performed in a five-dimensional

parameter space and the parameters are not fully independent, this optimization generally

does not converge consistently, and we find local minima in the NLL. We perform a Metropolis-

Hastings sampling of the NLL in the five-dimensional parameter space, see Figure 6.3 for a

projection of the parameter scan on two different planes. The parameter space is limited to

values of ν ≥ 1, since the perturbative behavior is not expected to reach this far into the

IR. However, these solutions are still represented by the universal squared exponential kernel;

we simply aim to avoid imposing overly restrictive constraints on the kernel in this region of

the spectral function. Additionally, the length scale of the transition is also restricted from

below, ℓUV ≥ 0.1, in order to avoid sharp edges in the reconstructed spectral function at

the transition point. These open directions in the parameter space can be attributed to the

inversion problem being ill-conditioned. Additionally, other choices of the transition function

might be more suitable for the transition, especially functions that become exactly zero faster

than the smooth step function (3.58). We find a mild dependence of the spectral function on

the length scales and the magnitude of the squared exponential kernel, e.g. ℓω, ℓk, σ, while

the dependence on the asymptotic parameters, as expected, introduces the majority of the

systematic error. While the error on the lattice data is propagated through the GP and is

given by the covariance of the posterior predictive distribution of the GP, the systematic error

is estimated by the uncertainty in the parameters while minimizing the associated NLL. The
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Figure 6.6: Effective diffusion coefficient Deff for the quenched, Nf = 0, case at T = 470 MeV = 1.5Tc.

We compare the perturbative result at NLO + LPMLO from [309], indicated by the blue

shaded area with the spectral reconstructions from non-perturbative lattice calculations.

The orange line represents the result from the GP reconstruction, which provides a con-

tinuous estimate of Deff, since the reconstruction was performed in ω and k-direction

simultaneously. The other reconstruction methods are shown as individual data points,

where for better visibility, they are slightly shifted in k-direction.

systematic error, captured by varying these hyperparameters has similar magnitudes, as the

error propagation on the error of the underlying lattice data, i.e. the statistical error. The final

error estimate on the spectral function from the GP reconstruction is given by a combination

of these two contributions.

The resulting spectral functions corresponding to the quenched lattice correlator data are

presented in Figure 6.4 and the full QCD results can be found in Figure 6.5. In order to

compare with the reconstructions from the fits and the BG method, we have evaluated the

spectral functions at the spatial momenta k, where the lattice data is available. In general,

however, the GP provides a statistical estimate for all momenta in between the available data.

This provides a continuous estimate of the thermal photon rate not only at the given spatial

momentum values but also in between. The validity of the interpolation between data points

has been additionally confirmed by reconstructing the effective diffusion coefficient while dis-

regarding lattice data for a single spatial momentum. This results, as expected, in very similar

values for the effective diffusion coefficient with an increased error around this momentum

value. Although the interpolation in momentum direction gives reliable estimates, the ex-

trapolation towards smaller or higher momenta comes with large uncertainties. Ultimately,

when extrapolating towards k = 0, to extract the diffusion coefficient, we recover the GP

prior as the current assumptions about the spectral function do not allow for a systematic

extrapolation.

101



6 Thermal Photon Rate

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

k [GeV]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
e
ff

[G
eV
−

1
]

Perturbative

Gaussian Process

Backus Gilbert

Polynomial Fit
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Figure 6.7: Effective diffusion coefficient DeffT for the quenched, Nf = 0, case at 1.5Tc. We compare

the perturbative result at NLO+LPMLO from [309], indicated by the blue shaded area with

the spectral reconstructions from non-perturbative lattice calculations. The orange line

represents the result from the GP reconstruction, which provides a continuous estimate of

Deff, since the reconstruction was performed in ω and k-direction simultaneously. The other

reconstruction methods are shown as individual data points, where for better visibility, they

are slightly shifted in k-direction.

6.4 Results

With these methods, we reconstructed the T-L spectral function for the quenched and full

QCD cases. As discussed in Section 6.1, the effective Diffusion coefficients Deff(k) can be

extracted from the spectral function on light cone, i.e. ρH(ω = |k|,k). We compare the

extracted values of Deff from the different methods in Figure 6.6 for the quenched case and in

Figure 6.7 for the full QCD case. In both cases, we also compare the reconstructed effective

diffusion coefficient with a perturbative computation. This perturbative calculation of the

spectral functions is at next-to-leading order (NLO) in the coupling constant away from

the light cone, while leading order Landau-Pomeranchuk-Migdal resummation (LPMLO), as

proposed in [289, 310], was used near the light cone. The full procedure is described in [309]

and more details can be found in the accompanying publication [3].

In Figure 6.6 and Figure 6.7, we present the results of the effective diffusion coefficient Deff for

the quenched and full QCD cases, respectively. For both lattice data sets, the reconstruction

becomes more difficult with smaller momenta. This is expected, as for smaller momentum

the T-L correlator becomes completely flat, and the spectral function ρH approaches a delta

function at zero frequency. Since the slope of the spectral function grows, the error on the

reconstruction increases. This also makes an extrapolation of the diffusion coefficient towards

k = 0 not feasible.
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In the case of quenched QCD, see Figure 6.6, we find that the GP reconstruction and the

polynomial fit ansatz yield consistent results. We find an excellent agreement in both the

high and low momentum regimes, while the Backus-Gilbert method agrees with both of these

results, except for the lowest momentum. However, all these methods agree within error

bars. As expected the errors shrink drastically with increasing momentum. However, while

the Padé-like ansatz agrees with the other methods within error bars, it gives a greater error

estimate. This is due to the observation that the distribution of the spectral functions over

the bootstrap samples is broad, indicating a near-degenerate minimum in χ2. A similar

observation has been made in [300], so instead of taking the standard mean and variance as

the prediction and error, we take the maximum and minimum of the resulting Deff as the error

estimate. Consequently, this results in larger errors for the Padé-like ansatz. When comparing

the results to the perturbative estimate, we find a qualitative agreement; the perturbative

estimate has a similar shape and partly agrees with the non-perturbative results within error

bars. However, the non-perturbative results still significantly deviate from the perturbative

estimate, especially at small momenta. Since, on the light cone, the four-momentum squared

is zero, the perturbative scale is set only by the temperature, the perturbative estimate and

the lattice reconstruction are therefore not expected to coincide when going to higher spatial

momenta.

For the full QCD case, see Figure 6.7, we do not have continuum extrapolated lattice data,

as we have for the quenched case. Currently, we only have data for a single lattice spacing,

in comparison to the quenched case, where we have data for three different lattice spacings,

see Table 6.1. In order to estimate the error coming from the finite lattice spacing, we have

performed the reconstruction using the GP reconstruction method and the polynomial fits

for these different lattice spacing for the quenched data. The specific results are presented

in Appendix C. There, we can see, that for small momenta, the finite lattice reconstructions

agree extremely well and the systematic error due to finite lattice spacing is small. For larger

momenta, the deviation at finite lattice spacing increases. This is expected as with increasing

momentum, cutoff effects become more pronounced, see the discussion in [3]. Therefore,

we have only considered relatively small spatial momenta for the full QCD reconstruction

in this study. We find a good agreement between the different methods, most notably the

Padé-like ansatz now has a similar uncertainty as the other methods. We find that the GP

result has a bigger relative error compared to the quenched case, due to fewer data being

available in the k-direction. This is mostly due to the systematic error; we find a larger

parameter space, and more local minima that are able to correctly model the lattice data.

When comparing with the perturbative prediction, we find that, similarly to the quenched

case, a qualitative agreement, but the effective diffusion coefficient decreases significantly

faster with increasing spatial momentum. This aligns with the fact that, in units of the

respective transition temperature, quenched QCD is at approximately 25% higher temperature

than full QCD. As a result, one would expect that the quenched QCD result will be closer to
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k/T Polynomial Padé Backus-Gilbert Gaussian process

1.57 0.549± 0.035 0.469± 0.368 0.302± 0.175 0.552± 0.129

3.14 0.161± 0.092 0.129± 0.123 0.119± 0.057 0.140± 0.039

4.71 0.087± 0.048 0.089± 0.067 0.054± 0.031 0.061± 0.016

6.28 0.054± 0.018 0.058± 0.044 0.022± 0.018 0.048± 0.012

7.85 0.041± 0.007 0.066± 0.066 0.016± 0.016 0.033± 0.010

9.42 0.031± 0.007 0.074± 0.045 0.013± 0.013 0.020± 0.009

Table 6.2: Extracted values of DeffT from different methods for Nf = 0 .

k/T Polynomial Padé Backus-Gilbert Gaussian process

2.09 0.369± 0.040 0.206± 0.085 0.197± 0.127 0.404± 0.219

4.19 0.102± 0.034 0.062± 0.058 0.063± 0.047 0.055± 0.048

6.28 0.031± 0.013 0.010± 0.010 −0.011± 0.047 0.004± 0.027

Table 6.3: Extracted values of DeffT from different methods for Nf = 2 + 1 .

the perturbative result than the full QCD case.

Qualitatively, we can compare our dynamical results with other lattice studies of Deff. Our

results are in qualitative agreement with the study in [292] at a temperature of 254MeV (1.2

Tpc). At the lowest momentum (k = 0.4GeV), Deff ranges from 0.5GeV−1 to 2.7GeV−1,

which agrees with the results obtained in this work. At the highest available momentum, the

results are consistent with zero within the error bars. However, the error on Deff presented

in [292] is significantly larger. Although one of the reconstruction methods used in this work,

the Padé-like ansatz, is very similar to the one used in [292], we find these deviations. This

could be due to the different systematics involved in the spectral reconstruction methods,

as well as the fact that the results in [292] are from continuum-extrapolated 2-flavor QCD

correlators, whereas the dynamical results in this paper are from (2+1)-flavor QCD at a fixed

lattice spacing. In [293], the photon production rate is estimated from the transverse channel

of the correlator, i.e. only the ρT part in (6.8), with the same lattice configurations as in [292].

Similarly, we find a good agreement at the lowest momentum, while the results at the larger

momenta are larger than the results obtained here.
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6.5 Conclusion

In this chapter, we have presented the reconstruction of the thermal photon rate from Eu-

clidean lattice correlators for quenched QCD (T = 470MeV) and full QCD (T = 220MeV)

with an unphysical pion mass of 320MeV. As discussed in Section 3.1, different methods exist

for reconstruction, but many of them introduce an uncontrollable bias that can lead to large

systematic uncertainties. To mitigate such biases, we employ different methods and from the

spread of the results, we can make an estimate of the possible systematic uncertainties. We

compare physics-informed model fits, the Backus-Gilbert method, and spectral reconstruction

with Gaussian processes. As discussed in the previous chapters, GP reconstruction stands out

as a method that is able to simultaneously include all the different available data points and

constraints on the spectral function, such as the sum rule, asymptotics, and the lattice data in

two dimensions. This already gives a reliable result for the thermal photon rate, formulated

in terms of the effective diffusion coefficient, Deff, at the available spatial momenta and in

between. The comparison shows that all methods yield consistent results, especially at higher

momenta. Polynomial fits in particular reproduce the spectral function well, whereas the

Padé-like ansatz exhibits larger uncertainties. For a more in-depth discussion of the quality

of the polynomial fits, especially when compared to perturbative computations, we refer to

the accompanying publication [3]. The quenched lattice data used here are continuum ex-

trapolated, while the full QCD data are currently available only at a single lattice spacing.

Nevertheless, the small-momentum regime shows no significant discretization effects, allowing

for a reliable reconstruction of the spectral function even in the full QCD case at finite lattice

spacing. We have presented the resulting effective diffusion coefficient for the quenched and

full QCD cases and compared them to perturbative estimates in Figures 6.6 and 6.7, while

we give the extracted values in Tables 6.2 and 6.3 respectively. The results show a qualitative

agreement with the perturbative estimates, but the effective diffusion coefficient decreases

significantly faster with increasing spatial momentum. The disagreement with the pertur-

bative estimate is expected, since this estimate becomes more reliable only with increasing

temperature, and the temperatures considered here, 1.5Tc and 1.2Tpc, are still comparatively

small. The results are in qualitative agreement with other lattice studies of Deff, but the

error on the results is smaller than in other studies. This work has shown the potential of

Gaussian processes to capture the full error of the reconstruction, statistical and systematic,

and therefore provide reliable estimates for QCD observables from lattice data.

Future directions are straightforward. Continuum extrapolated results for full QCD with a

physical pion mass are the first steps that can be made. An important first step is obtaining

continuum-extrapolated results for full QCD with a physical pion mass. In addition, access-

ing dilepton rates, which are also important for describing the evolution of the quark-gluon

plasma, requires the reconstruction of the original current correlator. This process involves

addressing the divergent tail of the correlator, which remains a significant challenge.
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7. Out-of-time Ordered

Correlators

Since the first description of chaos in the field of meteorology, more specifically, the chaotic

behavior of the Lorenz equations, a system of coupled differential equations, chaos has been a

topic of interest in many different fields. In the context of classical mechanics, the concept of

chaos builds a bridge between classical and statistical mechanics. The chaotic evolution of a

classical system leads to ergodicity of the system, meaning that the system explores its entire

phase space, and therefore, the time averages of observables are equal to the ensemble averages.

Ergodicity or, equivalently, the description of a system in terms of statistical ensembles,

is the definition of thermal equilibrium. Consequently, chaos is an important indicator of

thermalization in classical systems. Chaos also implies a certain timescale, at which the

system forgets about its initial conditions. This is a central concept for kinetic Boltzmann

equations, that describe the time evolutions of thermodynamic systems. With the assumption

of molecular chaos, the collision kernel of the Boltzmann equation only depends on two-body

collisions.

Since classical chaos plays such a crucial role in the thermalization of classical systems, it is

natural to ask if there is a similar concept in quantum systems. A precise understanding of

these microscopic mechanisms responsible for the local equilibration of energy and momentum

in heavy-ion collisions is crucial for describing how and when these systems thermalize. First

explorations of chaos in Yang-Mills theories have been performed in [311–314]. However, in

recent years, with rapid developments in many-body theory, new concepts, such as eigenstate

thermalization and out-of-time ordered correlators (OTOCs), have been introduced to the

field of quantum chaos. In this chapter, we will introduce the concept of quantum chaos

and demonstrate how out-of-time ordered correlators can be used to quantify the exponential

spread of information in quantum systems. The goal is to compute Lyapunov exponents in

order to estimate transport and thermalization timescales in quantum field theories.

In this work, we will focus on the O(4) model in 3+1 space-time dimensions, which can exhibit

a second-order phase transition at finite temperature. This model is relevant in the context of
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QCD, since in the limit of two massless flavors, the chiral phase transition is expected to be in

the O(4) universality class [315]. Additionally, lattice QCD simulations have suggested that

the scaling of the chiral susceptibilities is consistent with O(4) scaling behavior [316]. Note

that recent functional QCD studies have suggested that this scaling regime may in fact be

significantly smaller than previously thought [317]. The O(N) model is not only relevant in

the context of QCD but also serves as a description of many other physical systems, such as

general spin systems like the Ising or Heisenberg model, or as a model for the Higgs sector of

the Standard model. We will therefore, as a first exploration, compute the Lyapunov exponent

in the O(4) model at finite temperature with two different methods and try to connect the

results to the thermalization of the system.

We will first introduce the concept of quantum chaos and OTOCs in Section 7.1. Then, we will

discuss the classical statistical simulations of the O(4) model in Section 7.2, where we compute

the OTOCs and the corresponding Lyapunov exponents. These results will be compared to

diagrammatic, weak coupling expansions in Section 7.3, where we will compute the Lyapunov

exponent in the O(4) model at finite spatial momentum. Finally, we will conclude with a

summary and an outlook in Section 7.4.

7.1 Quantum Chaos and OTOCs

The work of Wigner [318] on the connection between the eigenstate distribution of the Hamil-

tonian of a quantum system and the eigenvalues of random matrices played a pioneering role

in the study of quantum chaos. The idea originated in the context of trying to understand

the spectra of heavy nuclei. Since it is difficult to calculate the full spectrum of such complex

quantum systems analytically, the idea was to describe them statistically. When looking at

a small energy window, the density of states is approximately constant. Such a spectrum

is then described by the eigenspectrum of a random matrix [319]. Therefore, studying the

rather generic properties of random matrices, that still adhere to the fundamental symme-

tries of the Hamiltonian, can give us insight into the properties of complex quantum systems.

Explicitly, the level spacing distribution of a chaotic system is expected to behave accord-

ing to the Wigner-Dyson distribution. This idea led to the description of quantum systems

in terms of random matrix theory (RMT) and was experimentally confirmed for spectra of

heavy nuclei, see e.g. [320]. Intuitively, this can be understood as follows: In a chaotic sys-

tem, it is not possible to find a set of quantum numbers such that the associated energy

levels are independent. This leads to off-diagonal matrix elements and consequently, to an

interaction between the levels. A consequence of this interaction is that the levels have a

minimum spacing, depending on the strength of the interaction – the levels repel each other.

The level statistics of non-integrable many-body quantum systems can then be described by

the eigenvalue distribution of matrices with random entries, i.e. RMT, which is characterized

by the Wigner-Dyson distribution. This realization was generalized to any complex system,
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via the Bohigas-Giannoni-Schmit (BGS) conjecture [321], which states that the eigenvalue

distribution of a quantum system whose classical counterpart is chaotic will be described by

random matrix theory.

Complementary to this, the level spacing of integrable quantum systems is expected to behave

according to Poisson statistics, as stated in the Berry-Tabor conjecture [322]. The levels of

integrable systems are expected to behave like a sequence of independent random variables

since they do not interact with each other, and therefore the level spacing distribution is

expected to be Poissonian.

Strongly connected to RMT and the level-spacing statistics is the eigenstate thermalization

hypothesis (ETH) [323–327]. It relates the matrix elements of the observables in the energy

eigenstates of the system with the microcanonical ensemble. It conjectures that the diagonal

entries of the matrix elements of observables are equal to their thermal averages and vary little

between different energy eigenstates. Time averages are therefore described by a thermal

ensemble, and we recover the definition of thermal equilibrium. Additionally, off-diagonal

matrix elements are exponentially suppressed. The off-diagonal matrix elements are not

necessary for obtaining absolute statements about thermalization, but describe the approach

to equilibrium [327]. In terms of matrix elements of observables Omn = ⟨Em|Ô|En⟩, the ETH
is given by

Omn = ⟨Ô⟩micro,Enδmn + e−S((En+Em)/2)f(En, Em)Rnm , (7.1)

where ⟨·⟩micro,En denotes the microcanonical ensemble average at energy En, S is the entropy,

f is a smooth function of the energy that goes towards zero for large energy differences, and

Rnm is a random variable with zero mean and unit variance. The ETH is expected to hold for

all physical observables in generic non-integrable quantum systems [328] and has been tested

numerically in many-body quantum systems [325, 329]. Recently, progress has been made

towards understanding the ETH in non-abelian gauge theories, cf. [330].

While all of these classifications of thermalization in quantum systems are very useful and pow-

erful, eigenstate spectra are not an intuitive concept in the context of relativistic quantum field

theories. Although level-spacing statistics and ETH are used as indicators for so-called quan-

tum chaos, they do not share many conceptual similarities with classical chaos. In quantum

systems, localized trajectories in phase space are not possible due to Heisenberg’s uncertainty

principle. Therefore, naively generalizing the classical concept of chaos, namely the diver-

gence of trajectories with infinitesimally small differences in initial conditions, to quantum

systems is generally not possible. However, in recent years, a new concept of quantum chaos

has emerged, which is based on out-of-time-order correlators [75]. OTOCs regained interest

in the context of black hole information scrambling [331–334], and subsequently became a

popular measure of chaos in many-body quantum systems and QFTs.

Out-of-time-order correlators are defined – as the name suggests – as correlators of operators

that are not time-ordered, compared to the typical set of time-ordered correlators, which are
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used to solve quantum field theories and compute all fundamental correlation functions. In

order to diagnose the effect of perturbations of some operator V̂ on later measurements of

some other operator Ŵ , we define the OTOC in terms of the commutator. Additionally, since

we generally take thermal averages, we take the absolute value, or the squared value of the

commutator in order to avoid cancellations. This leads to the definition of the OTOC as [334]

C(t) = −⟨[Ŵ (t), V̂ (0)]2⟩ . (7.2)

In the late-time limit, the exponential growth of the OTOC is connected to quantum chaos

and the exponentially fast scrambling of information, with a characteristic Lyapunov exponent

λL.

In order to gain intuition about such an – admittedly quite obscure – quantity, we can look

at the classical limit of the OTOC, cf. [335]. Classical chaos is defined as the sensitivity of

the system to perturbations in the initial conditions. This can be expressed as a derivative of

the trajectory x(t) with respect to the initial conditions x0∣∣∣∣∂x(t)∂x0

∣∣∣∣ ∼ eλLt , (7.3)

where λL > 0 is the characteristic Lyapunov exponent. When expressing the derivative as a

classical Poisson bracket, this becomes

∂x(t)

∂x0
= {x(t), p0}poisson , (7.4)

and canonically quantizing the Poisson bracket leads to the commutator and the momentum

and position are promoted to operators

[x̂(t), p̂0] . (7.5)

In order to avoid cancellations, we take the square of the commutator, which corresponds

to the absolute value in (7.3). When generalizing this to any arbitrary operators, instead

of the position and momentum operators, we then obtain the definition of the OTOC (7.2).

Consequently, in the classical limit, the OTOC is a measure of chaos. In quantum systems,

the OTOC is a measure of the spread of information in a quantum system, which is often

referred to as information scrambling [336, 332, 337]. This can be intuitively understood by

looking at a system with one spatial dimension, cf. [338, 339]. When the two operators Ŵ

and V̂ are separated in space, their initial commutator will be zero

[Ŵ (t = 0, x), V̂ (0, y)] = 0 for |x− y| > 0 . (7.6)

The time evolution of Ŵ in the Heisenberg picture can be expanded in terms of nested

commutators as [338]

Ŵ (t) = eiĤtŴ (0)e−iĤt =
∞∑
n=0

(it)n

n!
[Ĥ, . . . [Ĥ, Ŵ ] . . . ] . (7.7)
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In a system with, for example, nearest-neighbor interactions, each order in this expansion

adds more interacting sites. With growing time, higher orders of this expansion become

relevant, and more sites will become affected by the initial operator Ŵ . When the OTOC

of two spatially separated operators becomes non-zero after some time, this indicates that

the information about the initial state has spread to the other operator. Complementary

to the Lyapunov exponent, the speed of this information spreading is then defined as the

butterfly velocity vB. This butterfly velocity, the speed limit for information spreading, is of

course bound by the speed of light in relativistic systems or by the Lieb-Robinson bound in

non-relativistic spin systems [340, 341]. The expected behavior of an OTOC, a function of

position and time, in a chaotic system at late or intermediate times is therefore proposed to

be given by [342]

C(t, x) ∼ eλL(t−x2/(v2Bt)) . (7.8)

After Fourier transforming the spatial part of the OTOC, this becomes

C(t, k) ∼ eλL(k)t with λL(k) = λL(k = 0)−DLk
2 , (7.9)

where we have defined a prefactor DL with the dimension of a diffusion coefficient, given by

DL =
v2B

4λL(k = 0)
. (7.10)

Note, that depending on the convention, the Lyapunov exponent can differ by a factor of

two, since the OTOC is defined as the square of the commutator. Additionally, the spatial

dependence of the OTOC, proposed in (7.8), is not a priori given and is merely an observa-

tion. We will therefore numerically confirm this behavior in the context of the O(4) model. In

holographic models, it has been shown that the butterfly velocity controls diffusive transport

[343–345], and the thermal diffusivity is given by DE ∼ v2B/(2πT ). The diffusion coefficient

is an important quantity for understanding the thermalization of systems, and it is a cru-

cial input for the hydrodynamic description of heavy-ion collisions [346, 130]. See also the

discussion in Chapter 6.

In [334], a universal bound on the Lyapunov exponent has been conjectured for general quan-

tum systems, that only depends on the temperature of the system

λL ≤ 2π

β
. (7.11)

The bound is saturated by different systems, most prominently holographic models with

gravity, describing a black hole in Einstein gravity [331, 332, 347] and the SYK model [348–

350]. The SYK model is a 0 + 1 dimensional model of N ≫ 1 fermions with random quartic

interactions between all pairs of fermions. The realization, that the bound is saturated by both

such theories, which are very different in nature, suggested for many, that large N systems

saturating this bound have an Einstein gravity dual, at least in some regions [334]. Up to
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t

β

Figure 7.1: Doubled Keldysh-Schwinger contour in order to accommodate for the out-of-time ordering

of the operators. We denote the two operators at different times by the two different colors,

i.e.W (t) is denoted by the red dot, while the operator V (0) is denoted by the blue dot.

There are 3 additional permutations of these operators resulting from the square of the

commutator in (7.2), with different signs, that are not shown here. Following standard

conventions in the OTOC literature (cf. [334, 351, 352]), we separate the two timefolds by

half the thermal circle, leading to C(t) = −tr
(√

ρ[Ŵ (t), V̂ (0)]
√
ρ[Ŵ (t), V̂ (0)]

)
.

now, this duality has not been proven, and it remains an open question if the saturation of

this bound is a sufficient condition for such a duality to exist.

Since there has been an ongoing debate about the validity of the OTOC as a measure of

quantum chaos, we will attempt to clarify some of the ambiguities in the following. As

noted, in the classical limit, the OTOC grows exponentially, with a Lyapunov exponent.

However, an absolute upper bound on (7.2) can be asserted by using the triangular identity

(∥ab∥ ≤ ∥a∥ ∥b∥), namely

C(t) ≤ 4∥V ∥ ∥W∥ . (7.12)

This means, that for bounded operators, the OTOC reaches an upper bound, after some

scrambling time t∗ [334]. It is therefore, in contrast to the classical case, where the phase-

space trajectories diverge exponentially with no late-time saturation, only a transient effect.

When investigating local observables in finite fermionic systems, operators are often strictly

bounded and the exponential growth of the OTOC can be hard to observe [353]. However,

for systems with a well-defined classical limit or in the thermodynamic limit, the OTOC can

be used as a measure of quantum chaos to quantify the scrambling of information and the

time scales at which a system thermalizes. It can also be, in some cases, directly connected

to the ETH, a well-understood indicator of quantum chaos [354, 355].

The introduction of out-of-time ordered operators leads to significant complications, as the

Keldysh-Schwinger formalism, introduced in Section 2.1, can only account for time-ordered op-

erators. This anomalous time-ordering needs to be accounted for, by augmenting the Keldysh-
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Schwinger contour with an additional timefold, see [352]. The square of the commutator in

(7.2) results in a total of 4 terms, where we show one exemplary combination of operators on

the appropriate contour in Figure 7.1. In the case of the squared commutator (7.20), we need

one additional branch to account for the time-ordering of the four operators. Any arbitrary

time-ordering of four operators needs up to one additional timefold, six operators need up to

two additional timefolds, and so on. This can be generalized to any number of out-of-time

ordered operators, cf. [356, 357] for systematic studies.

In the context of relativistic quantum field theories, OTOCs remain relatively unexplored.

However, many concepts and even results in the context of many-body quantum systems

can be transferred to field theories of interest in the context of QCD. Early works consist

of weak coupling O(N) symmetric matrix models [351, 358, 359], that utilize diagrammatic

resummation techniques, leading to a Boltzmann equation, similar to earlier works on the

calculation of transport coefficients, cf. [360]. The Lyapunov exponents can then be extracted

from the eigenvalue spectrum of this equation. This was extended to a strongly coupled O(N)

model in [361], where the equations for a Lyapunov exponent at finite spatial momentum were

introduced in two dimensions. In this work, we will continue this line of research and compute

the Lyapunov exponent in the O(N) model in d = 3 spatial dimensions, and away from the

critical point in the symmetric phase. We will present a first comprehensive study of the

momentum dependence of the Lyapunov exponent in a relativistic quantum field theory.

Additionally, in [362], OTOCs were computed in a d = 2 dimensional Z2 scalar model at

finite temperature, using classical statistical simulations. We have followed this approach

and computed the OTOCs in the O(N) model in d = 3 spatial dimensions, with the goal of

obtaining a clearer picture on the behavior of OTOCs around the phase transition. During

the writing of this thesis, a similar approach was recently published in [363], for a d = 3

dimensional Z2 scalar model around the phase transition.

The last and overarching goal of this chapter is to gain a more intuitive understanding of

how the OTOCs relate to known concepts in thermal field theories. In the current literature,

OTOCs remain a rather abstract quantity that is not well-connected to intuitive physical

concepts. As this work could not be completed in its entirety, we present preliminary results

here, highlighting some key findings and outlining directions for future work.

7.2 Classical Statistical Simulations

As a first step, we will perform classical statistical simulations of the O(N) model in 3 spatial

dimensions. Its Lagrangian is given by

L =
1

2
∂µφ

a∂µφa − 1

2
m2φaφa − λ

4!N
(φaφa)2 , (7.13)

where φa is a N -component scalar field and λ is the coupling constant. We discretize this

Lagrangian on a 3-dimensional lattice with N3
L sites, with a finite lattice spacing as. Since we
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perform a classical simulation, we introduce a momentum field πa conjugate to the field φa.

The Hamiltonian of the system is then given by

H =
∑
x

a3s

[
1

2
πa(x)πa(x)−

1

2a2s
φa(x)

∑
ei

(φa(x+ ei)− 2φa(x) + φa(x− ei))

+
m2

2
φa(x)φa(x) +

λ

4!N
(φa(x)φa(x))

2

]
, (7.14)

where the sum runs over all lattice sites x and ei are the unit vectors in the spatial directions,

in order to capture the nearest neighbor interactions. The time evolution of the system is

then given by the Hamilton equations of motion, which are given by the functional derivatives

w.r.t. the fields

π̇a(x) = − δH

δφa(x)

=∆φ(x)−m2φa(x)−
λ

3!N
(φb(x)φb(x))φa(x) ,

=
1

a2s

∑
ei

(φa(x+ ei)− 2φa(x) + φa(x− ei))

−m2φa(x)−
λ

3!N
(φb(x)φb(x))φa(x) ,

φ̇a(x) =
δH

δπa(x)
= πa(x) . (7.15)

These equations govern the classical time evolution of the system and can be solved numeri-

cally on the lattice. Such simulations of the classical equations of motion of the O(N) model

have been performed in order to study the thermalization of the system [364–367] and the

behavior of the spectral functions [368–373]. In classical statistical simulations, commutator

relations for propagators or the spectral functions or the propagators, cf. Section 2.1, become

Poisson brackets, as already introduced in Section 7.1. Consequently, the spectral functions

are given by, cf. [362]

ρab(t, x) = −⟨{φa(t, x)φb(0, 0)}Poisson⟩cl =
〈
δφa(t, x)

δπb(0, 0)

〉
cl

, (7.16)

where ⟨· · · ⟩cl denotes the average over the ensembles in the classical statistical simulation1.

Similarly, the OTOC is then given in terms of Poisson brackets as

Cab(t, x) = −⟨{φa(t, x), φb(0, 0)}2Poisson⟩cl =
〈(

δφa(t, x)

δπb(0, 0)

)2
〉

cl

. (7.18)

1It is usually more elegant to compute the spectral functions using the classical fluctuation-dissipation

relation [368, 370]

ρab(t, x) = − 1

T
∂t⟨φa(t, x)φb(0, 0)⟩cl . (7.17)
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Figure 7.2: Time evolution of OTOCs for the O(4) model at different temperatures around the phase

transition. After relaxation of the initial conditions, the OTOCs show a clear exponential

growth at late times, which is consistent with the expected behavior of a chaotic system.

The only difference between the spectral function and the OTOCs is therefore, the square of

the Poisson bracket, which is taken before taking the ensemble average. We can therefore,

in the classical case, interpret the OTOC as a measure of the statistical fluctuations of the

ensembles, quantifying the variance of the spectral function in the late-time limit, as the

spectral function becomes zero. In the following, we will only compute the OTOCs for the

diagonal components, i.e. a = b.

Following [362], we compute the OTOC (7.18) by evolving the linearized equations of motion

for some small perturbation δφa in parallel

∂2t δφa(x) = ∆δφa(x)−m2δφa(x) +
λ

3!
(φb(x)φb(x))δφa(x) +

λ

3
(φb(x)δφb(x))φa(x) . (7.19)

With a perturbation in the initial momenta δπa(x), we can then compute the OTOC (7.18)

and average over initial conditions. While the FDR does only hold in equilibrium – as already

mentioned in Section 2.1 – computing the spectral function or the OTOC via the Poisson

bracket is defined irrespective of the equilibrium state of the system.

7.2.1 Numerical Implementation

We perform the classical statistical simulations of the O(4) model in 3+1 dimensions on

a lattice with N3
L sites and periodic boundary conditions. The simulations are performed

using the programming language Julia [374] and the simulations are performed on GPUs

on the Lichtenberg cluster at the TU Darmstadt. The lattice is distributed over the GPUs

using the Julia packages ParallelStencil.jl [375], a package that parallelizes the lattice

over the GPU – or also CPUs – optimizing for the memory layout. Additionally, we use

ImplicitGlobalGrid.jl [376], which allows for parallelization of the lattice over multiple

GPUs, with efficient MPI communication, where an outer shell of the stencil is computed

first, and the MPI communication happens, while the inner part is computed.
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We calculate the configurations on a square lattice with periodic boundary conditions. First,

we compute the equilibrium configurations of the system using a Hybrid Monte Carlo (HMC)

algorithm. We follow the standard procedure of drawing some initial momentum configu-

rations πa(x) from a Gaussian distribution, and then performing a time evolution via the

classical equations of motion, cf. (7.15), with a Leapfrog time-stepping algorithm. With an

accept/reject step, we then make sure to sample the right ensemble given by the action and

consequently arrive at the equilibrium configurations of the full quantum system.

After obtaining the equilibrium configurations, we compute the classical evolution of the

system using the classical equations of motion (7.15). Parallel to the time evolution of the

fields φa(x), we also compute the time evolution of the perturbations δφa(x) and δπa(x) using

(7.19). We initialize the perturbations with a delta function in the momentum perturbation,

i.e. δπa(x, t = 0) = cδx0, where c is a random number. In order to improve statistics, we

apply the same perturbations to all field directions and later average over the different field

components. We then compute the observables, most importantly the OTOC, by averaging

over different time evolutions with independent initial equilibrium configurations and with

random initial perturbations.

In order to estimate the Lyapunov exponent, we fit the late-time behavior of the OTOC to

an exponential function. We perform this for several independent batches of the resulting

OTOC samples and then take the variance and mean of the resulting Lyapunov exponents as

the final result.

7.2.2 Results

In Figure 7.2, we show the time evolution of the OTOC for different temperatures around

the phase transition. The OTOCs show a clear exponential growth at late times, and the

Lyapunov exponent can be extracted with an exponential fit to the late-time behavior of the

OTOC. These samples were computed on a 1263 lattice2, a lattice spacing of a = 0.4 and a

time step of at/a = 0.005. The coupling was chosen as λ = 1 and the dimensionless mass

was set to m2a2 = −1. With these parameters, the critical temperature was confirmed to be

aTc ≈ 17.4 [370]. In Figure 7.3, we show the Lyapunov exponents for different temperatures

around the phase transition. We note a very clear linear growth of the Lyaponov exponents

with temperature above the critical temperature, i.e. in the symmetric phase. The linear

growth of the Lyapunov exponent is small, and with a value of λL ∼ 0.00256T , significantly

smaller than the conjectured upper bound (7.11). Around the phase transition, the Lyapunov

exponent shows a local maximum. A similar behavior was independently found in [363] around

the phase transition of a Z2 model in three spatial dimensions, but more pronounced than

the results for the O(4) model.

2We reserve the boundaries of the lattice for the effective communication of the boundary conditions.

Therefore, all lattice sizes in this work have the unusual size of 2n − 2 with n ∈ N.
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Figure 7.3: Lyapunov Exponents for the O(4) model at finite temperature, computed using classical

statistical simulations at m2a2 = −1 and λ = 1. (a) shows the Lyapunov exponents for

different temperatures around the phase transition. Lyapunov exponents, obtained by

fitting the lattice simulation results are shown as blue dots with 2σ error bars. We can

immediately see a linear dependence on the temperature in the symmetric phase, where a

linear fit of these data points is shown as a dashed line. Around the critical temperature,

some small deviations from this linear behavior appear. The box around the region in (a)

is shown in (b), where we can see that the Lyapunov exponent has a local maximum at

the critical temperature.

When measuring the Lyapunov exponent, we take relatively small lattices and still compute

the OTOC up to late times t > L. Due to the periodic boundary conditions, at such late

times, we measure higher n-point functions. However, we have checked for larger lattices, and

the exponential growth and the value of the Lyapunov exponent do not change.

When computing the butterfly velocity, i.e. when investigating the spatial dependence of the

OTOC, we need larger lattices, since can only use data on the OTOC up to times t < L/2.

Otherwise, the spatially spreading OTOC overlaps with itself, due to the periodicity of the

boundary conditions. We do this for the same parameters as above, i.e.m2a2 = −1, λ = 1

and as = 0.4, however, we take a larger lattice with NL = 254. Note, that the statistics

for these runs are worse, and for these runs, we currently do not have the full error analysis

available, hence we do not show error bars here. In Figure 7.4, we show the ballistic spread of

the OTOC at T/Tc = 1.15. We can clearly see the exponential growth towards late times and

the onset of chaotic exponential growth at approximately the light cone. For every time-slice

in Figure 7.4a, we then fit different functions to the spatial direction and find that the OTOC

is described by the proposed form (7.8). We then extract the variance σ from the Gaussian fit

and compute the diffusion coefficient DL from the time-dependent variance σ(t) = 1/(4DLt).

For the specific range of parameters used, we find that the diffusion coefficient decays with

temperature as DL ∼ 1/T . Together with the Lyapunov exponent, we can use (7.10) to

compute the butterfly velocity. Since the Lyapunov exponent grows approximately linearly

with temperature in this parameter regime, we find that the butterfly velocity is approximately

117



7 Out-of-time Ordered Correlators

−100 −50 0 50 100

x/a

0

50

100

150

200

t/
a

cc

10−10

10−8

10−6

10−4

10−2

C
(x
,t

)

(a)

1.0 1.2 1.4 1.6

T/Tc

10

12

14

16

D
L
T
c

(b)

Figure 7.4: In (a), we show the OTOC at T/Tc = 1.15 as a function of time and distance from the

initial perturbation. The OTOC shows a clear exponential growth at late times, with a

ballistic spread of the OTOC in space. We show the light cone as a dashed line and find

that the butterfly velocity approximately coincides with the speed of light c. In (b), we

show the diffusion coefficient DL as a function of temperature. We find an approximate

inverse dependence of the diffusion coefficient on the temperature, DL ∼ 1/T .

constant, with a value of vB ≈ c. Due to statistical noise and potential errors introduced by

the fit procedures, we find a spread of the butterfly velocity of approximately 0.96c – 1.06c.

Since the butterfly velocity should be bounded by the speed of light, the error on this result

should therefore be larger than 6%. The results do not indicate any temperature dependence

of the butterfly velocity, however, this needs to be confirmed with a more thorough error

analysis and better statistics.

Since the OTOC essentially measures, how perturbations on the initial conditions evolve,

they can also measure lattice artifacts. We therefore find a dependence on the time step,

even for small time steps, and hence take the very small step size of at/a = 0.005. We

have checked that at this point the results do not change significantly when compared to

the statistical error. Alternatively, as an improvement, one could use more sophisticated

higher-order symplectic time-stepping algorithms, to reduce the time step dependence of the

results. Additionally, considering next-to-nearest neighbor interactions would be an important

improvement, especially around the critical point, where the correlation length diverges.

7.3 OTOCs at Weak Coupling

In the previous section, we have computed the OTOCs in the O(N) model at finite tem-

perature using classical statistical simulations. This has produced Lyapunov exponents and

OTOCs that are consistent with the expected behavior of a chaotic system. However, the

classical statistical simulations do not give a good intuition about the general behavior of
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OTOCs. In order to gain a better intuition about OTOCs and their behavior, we will now

compute the OTOCs in the O(N) model, given in (7.13), at weak coupling using diagrammatic

resummation techniques.

We will follow the approach of [351, 345, 361, 342, 359], where the OTOCs are computed

using a Boltzmann equation. Here, we will briefly recap the results of [351] in the context of

the O(N) model. The OTOC, we are interested in is defined as

C(t,x) = − 1

N2

∑
ab

tr (
√
ρ [φa(t,x), φb(0,0)]

√
ρ [φa(t,x), φb(0,0)]) , (7.20)

where ρ is the density matrix. Splitting the density matrix into two factors and putting the

two commutators on opposite sides of the thermal circle simplifies the calculation, while not

affecting the Lyapunov exponent [334, 351]. Otherwise, short-distance divergences can appear

in the OTOC, and this prescription regulates them.

In order to calculate the late-time behavior of (7.20), we compute the OTOC at different

orders of the coupling λ. As an essential ingredient, we need the retarded and Wightman

propagators, GR and GW respectively, which are given in momentum space as

GR(k) =

∫
dω

2π

ρ(ω, |k|)
k0 − ω + iϵ

, (7.21)

GW (k) =
ρ(k)

2 sinh(k0β/2)
. (7.22)

Here, we use the (2.11) and (2.17) for the definition of the retarded propagator. TheWightman

propagator is defined similar to the greater propagator (2.10) but with the density matrix split

into two factors, as in the definition of the OTOC (7.20). In momentum space, this leads

to the relation GW (k) = eβk
0/2G>(k), and using KMS relations (2.25) to the form of the

Wightman propagator given above.

In the free theory limit, the spectral function is given by

ρ(ω,k) =
π

Ek
(δ(ω − Ek)− δ(ω + Ek)) , (7.23)

where Ek =
√

k2 +m2 is the dispersion relation of the free theory. In this case, we simply

sum over the four contributions, one of these shown in Figure 7.1, and the OTOC is then

given by

C(t,x) = − 1

N
GR(t,x)

2 . (7.24)

At order λ we simply get one-loop corrections to the retarded propagators, resulting in a

renormalization of the mass. The only consequence of this is that the mass in the final

expressions has to be understood as the renormalized, and not the bare mass.

At order λ2, we get different contributions. First, when the two vertices are on the same branch

of the contour, we get an additional, albeit small contribution to the mass from the real part.
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Figure 7.5: One rung contribution to the OTOC, see (7.26).

From the imaginary part, we get an exponential decay of the correlation function due to single

particle decay, quantified by the decay width Γ. This leads to a retarded propagator of the

form

GR(k) ≈ 1

2Ek

(
1

k0 − Ek + iΓk
− 1

k0 + Ek + iΓk

)
. (7.25)

The first interesting term arises when the two vertices are on different branches of the contour.

It connects the two branches of the contour via a rung, as shown in Figure 7.5. This diagram

is given by

C(k) =

∫
d4ℓ

(2π)4
d4ℓ′

(2π)4
GR(k − ℓ)GR(ℓ)R(ℓ− ℓ′)GR(k − ℓ′)GR(ℓ

′) , (7.26)

where the rung function R is the internal loop of the diagram, and the two ends of the diagram

in Figure 7.5 are closed. The rung function, as indicated in Figure 7.5, only has Wightman

propagators as internal lines and is given by

R(ℓ) =
λ2

N

∫
d4p

(2π)4
GW (ℓ/2− p)GW (ℓ/2 + p) . (7.27)

Note, that depending on the theory, and the number of fields – and, of course, the convention

of the coupling normalization – the prefactor of the rung function can differ, cf. [351, 359].

At higher orders in λ, we get additional contributions, that can be computed by considering

dressed ladders. These are diagrams, similar to the one shown in Figure 7.5, but with ad-

ditional, identical rungs. These then give corrections at least to order λ2n with n being the

number of rungs. There are diagrams that are not accounted for, e.g. interactions between the

rungs, but we drop these contributions here, for a discussion, see [351]. In order to perform

this ladder summation, we define the function f as

C(k) =
1

N

∫
d4p

(2π)4
f(k, p) . (7.28)
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= +f f

Figure 7.6: Implicit equation for the OTOC, (7.29), resulting from summing over the dressed ladder

diagrams. The inhomogeneous term is neglected at late times, and the equation then states

that the late-time behavior is unchanged if we add one extra rung.

The resulting sum of ladders is shown in Figure 7.6. This Bethe-Salpeter equation captures

the chaotic behavior that is seeded by the interaction via the rungs. The ladder summation

leads to

f(k, p) = GR(p)GR(k − p)

[
1 +

∫
d4ℓ

(2π)4
R(ℓ− p)f(k, p)

]
. (7.29)

At large t, since we expect exponential growth from the rungs, we can neglect the inhomoge-

neous, zero–rung, term. The equation then states that the late-time behavior is unchanged if

we add one extra rung. We will now first establish the equations for computing the Lyapunov

exponents at zero momentum, which were already derived in [351], and afterward extend this

to finite momentum.

This structure of the equation, consisting of retarded and advanced correlators that interact

via the rungs, already gives some intuition about the OTOC. In essence, the OTOC measures

how the system behaves when we perturb it after some time evolution, and then evolve

the system back in time. This leads to experimental proposals for measuring OTOCs such

as [377, 378], by observing the change of some observable after such a forward and then a

backward time evolution.

7.3.1 Zero Spatial Momentum

For calculating the Lyapunov exponent at zero momentum, i.e. k = (k0, 0, 0, 0), we first need

to understand the dominant contributions at late times. When looking at the first rung (7.26),

we can see that the late-time behavior is dominated by poles in the propagators. Explicitly,

performing the p0 integration over the product of the two propagators in (7.26) is given by

the sum of the residues of the poles, and leads to terms proportional to (k0)−1, (k0 − 2Ep)
−1

and (k0 + 2Ep)
−1. The late-time behavior is dominated by the (k0)−2 contribution from the

product of the two pairs of retarded propagators. It leads to a late-time growth proportional

to t, while the other, non-singular terms do not lead to late-time growth. We, therefore, make
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the replacement

GR(p
0,p)GR(k

0 − p0,p) → iπ

2E2
p

(
δ(p0 − Ep) + δ(p0 + Ep)

k0 − iϵ

)
, (7.30)

where we refer to [351] for more details. In order to account for the self-energy we again make

the replacement of the iϵ with the decay width i2Γp.

The integral equation (7.29) can then be written for zero spatial momentum as

(−ik0 + 2Γp)f(k
0, p) ≈ π

Ep
δ((p0)2 − E2

p)

∫
d4ℓ

(2π)4
R(ℓ− p)f(k0, p) . (7.31)

Because of the delta functions coming from the pairs of propagators, f(k0, p) will entirely be

supported on-shell, and we replace

f(k0, p) = f(k0,p) δ
(
(p0)2 − E2

p

)
. (7.32)

Going to real time by replacing −ik0 → ∂t and evaluating the delta functions, leads to the

final Boltzmann equation at zero spatial momentum as

∂tf(t,p) = − 2Γpf(t,p)

+

∫
d3ℓ

(2π)3
1

4EpEℓ
(R(Ep + Eℓ,p− ℓ) +R(Ep − Eℓ,p− ℓ)) f(t, ℓ) . (7.33)

The real parts of the eigenvalues of this equation then dominate the late-time behavior of

this equation, and if there are positive real parts, these are identified as Lyapunov exponents.

Note, that the rung function is isotropic, i.e.R(ℓ) = R(|ℓ0|, |ℓ|), and f(t, |p|) as well. We can

therefore perform the angular integral numerically and the remaining one-dimensional integral

over the magnitude of the momentum, when discretized, leads to an eigenvalue problem,

∂tf = Mf , where M is the matrix of the discretized integral. The Lyapunov exponent is

then given by the largest eigenvalue of this matrix. For additional details on the angular

integration, we refer to [351], Appendix C.

The Boltzmann equation (7.33) has an interpretation of information spreading by the kinetic

collision of particles, which is similar to epidemic spreading [379, 351, 358]. When we add

some perturbation to the system and follow the information spreading in the system, we can

also think of it as adding an infected particle to an ensemble and following the spread of

the infection, via kinetic collisions. We can interpret f(t,p) as the probability of finding an

infected particle with momentum p at time t. The Lyapunov exponent λL then describes the

rate at which the infected particles spread through this ensemble. The finite decay width Γp

can suppress this growth, by removing infected particles. The sum of rungs then describes

the creation of infected particles/holes via scattering with particles in the ensemble. It can

therefore be interpreted as the gross exchange of particles in a thermal ensemble, that grows

exponentially in time, up to the point, where the whole system is infected. For further

discussion of the epidemic analogy, we refer to [351, 358].
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Figure 7.7: Lyapunov exponent λL at zero spatial momentum for the O(4) model at weak coupling.

The results are consistent with the results of [351] for a matrix model. At small masses

or large temperatures, βm≪ 1, the functional form of the Lyapunov exponent is given by

(7.34). For masses larger than the temperature, the Lyapunov exponent is exponentially

suppressed.

We have calculated the Lyapunov exponent at zero spatial momentum for different values of

the coupling λ and the mass m. The results are shown in Figure 7.7 and reproduce the results

of [351] for a matrix model. We can see that for a small mass compared to the temperature,

βm≪ 1, we find

λL ≈ 0.008
λ2

Nβ2m
. (7.34)

Since in this approximation, the only difference between the Boltzmann equations of the

two models is the number of diagrams contributing to the rungs, the only difference is the

prefactor in (7.27). When comparing to the existing literature, we find that the functional

form of the Lyapunov exponent at large temperatures coincides with the plasmon damping

rate [380–382] which is exactly γ ∼ λ2/(β2m) for a classical Z2 scalar theory. This gives a

direct interpretation of the results: The Lyapunov at zero momentum describes the fastest

possible decay time of the system. We sum over the whole space and therefore consider all

possible modes. We therefore find the decay time of the fastest decaying mode of the classical

system, the collective mode of the plasmon.

For small masses, we find that the Lyapunov exponent would diverge. However, for exactly

these values, where the classical mass becomes small compared to the temperature, βm≪ 1,

the temperature contribution to the mass has to be taken into account [351]. By including

the one-loop thermal mass m2
th = λ/24β2 [113], we find the Lyapunov exponent in the case of

(almost) massless fields as

λL ≈ 0.039
λ3/2

Nβ
. (7.35)
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This result is proportional to the thermal width of particles in hot scalar theories [360, 383]

for soft on-shell momenta and to the one-loop improved plasmon damping rate at high tem-

peratures [380, 382]. This correspondence is already suggested by the interpretation of this

equation as the spreading of an infection in a thermal ensemble, via the kinetic collision of

particles. The timescale between collisions is given by the inverse thermal width, and therefore

the Lyapunov exponent is given by the inverse of this timescale.

7.3.2 Finite Momentum

A similar study has been performed in [361] for a strongly coupled O(N) model at finite

momentum in two spatial dimensions. Here, we build on this and extend these results to

three spatial dimensions and weak coupling.

One of the changes when going to finite spatial momenta, is in the product of the propagators.

Similar to (7.30), we replace the product of the two propagators with

GR(p
0,p)GR(k

0 − p0,k− p)

→ iπ

2EpEk−p

(
δ(p0 − Ep)

k0 − (Ep − Ek−p) + iϵ
+

δ(p0 + Ep)

k0 + (Ep − Ek−p) + iϵ

)
. (7.36)

Note, that there is a larger number of terms, but we only consider the most divergent here,

in order to capture the late-time behavior. As before, we can replace the iϵ with the decay

width 2Γp−k, in order to account for the finite decay width. From the two delta functions,

f is only supported on-shell, and we can write, where we now have to separate the two delta

functions as

f(k0,k, p) =
f+(k

0,k,p)

2Ep
δ(p0 − Ep) +

f−(k0,k,p)
2Ep

δ(p0 + Ep) . (7.37)

We insert the propagators and the on-shell ansatz into the Boltzmann equation (7.29), and

obtain

f+(k
0,k,p)

2Ep
δ(p0 − Ep) +

f−(k0,k,p)
2Ep

δ(p0 + Ep) =

πi

2EpEk−p

[
δ(p0 − Ep)

k0 − (Ep − Ek−p) + 2iΓp−k
+

δ(p0 + Ep)

k0 + (Ep − Ek−p) + 2iΓp−k

]
∫

d4ℓ

(2π)4
R(ℓ− p)

[
f+(k

0,k, ℓ)

2Eℓ
δ(ℓ0 − Eℓ) +

f−(k0,k, ℓ)
2Eℓ

δ(ℓ0 + Eℓ)

]
. (7.38)

From the delta functions, we then get two separate equations for the two contributions, one

for f+

(−ik0 + i(Ep − Ek−p) + 2Γp−k)f+(k
0,k,p) =

1

2Ek−p

∫
d3ℓ

(2π)3

[
f+(k

0,k, ℓ)

2Eℓ
R(Eℓ − Ep, ℓ− p) +

f−(k0,k, ℓ)
2Eℓ

R(−Eℓ − Ep, ℓ− p)

]
, (7.39)
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and one for f−

(−ik0 − i(Ep − Ek−p) + 2Γp−k)f−(k
0,k,p) =

1

2Ek−p

∫
d3ℓ

(2π)3

[
f+(k

0,k, ℓ)

2Eℓ
R(Eℓ + Ep, ℓ− p) +

f−(k0,k, ℓ)
2Eℓ

R(−Eℓ + Ep, ℓ− p)

]
. (7.40)

These equations can be decoupled by interpreting the f+ and f− as an analogue of the particle

and hole densities respectively. Then, we can make the ansatz, that the density of holes and

particles at opposite momenta are equal, i.e. f−(k0,k,p) = f+(k
0,k,−p). This leads to the

following equation for f+

(−ik0 + i(Ep − Ek−p) + 2Γp−k)f+(k
0,k,p) =∫

d3ℓ

(2π)3
1

4EℓEk−p
[R(Eℓ − Ep, ℓ− p) +R(Eℓ + Ep, ℓ+ p)] f+(k

0,k, ℓ) , (7.41)

and a similar equation for f−. In order to numerically solve this equation, we need to write out

the full angle dependence of (7.41). The spatial momenta are parametrized by the standard

spherical coordinates, and we note that the rung functions only depend on the absolute value of

the spatial momentum. We fix k = (0, 0, k)⊤ and φp = 0, leading to p = p (sin θp, 0, cos θp)
⊤.

From this, we obtain the following combination of momenta

|ℓ± p| =
(
ℓ2 + p2 ± 2pℓ cos θℓ cos θp ± 2pℓ cosφℓ sin θℓ sin θp

)1/2
|k− p| =

(
k2 + p2 − 2kp cos θp

)1/2
. (7.42)

Leading to the following Boltzmann equation for f+

(−ik0+i(Ep − Ek−p) + 2Γp−k)f+(k
0, k, p, θp) =

∫ ∞

0
dℓ ℓ2

∫ 2π

0
dφℓ

∫ π

0
dθℓ sin θℓ

1

(2π)3
1

4EℓEk−p
[R(Eℓ − Ep, |ℓ− p|) +R(Eℓ + Ep, |ℓ+ p|)] f+(k0, k, ℓ, θl) . (7.43)

As before, we can replace −ik0 with ∂t, and compute the eigenvalues of this equation. Note,

that we have explicitly checked, that the equation for f− leads to the same Lyapunov exponent,

as the equation for f+.

As opposed to the case of zero spatial momenta, f now depends on the angle θp. We perform

the angular integral over φℓ numerically and are left with a two-dimensional integral over

the momentum magnitude and the angle. This is again written as a matrix equation, and

we compute the eigenvalues of this matrix, in order to find the Lyapunov exponent. The

integral is discretized over Np = 1000 points in the momentum space and Nθ = 20 points in

the angular direction. Note, that since we now have two integrals, the eigenvalue problem

becomes significantly larger: we have to compute the eigenvalue of an N × N matrix with

N = NP ·Nθ and the computational complexity is O(N3).
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Figure 7.8: Lyapunov exponent λL at finite spatial momentum for the O(4) model at λ = 0.1 for

different temperatures larger than the mass, i.e.βm < 1. The Lyapunov exponent shows

the same functional form for all temperatures, i.e.λL(k) = λL(k = 0)−DLk
2. The resulting

diffusion coefficient DL is shown in Figure 7.9.

Another complication, that arises, is the observation, that the coupling λ is not only a pref-

actor, as in the case of zero spatial momentum, where we can factor out the λ2 from the

eigenvalue problem. We therefore have to calculate the Lyapunov exponent for fixed values

of λ and explicitly investigate the exact dependencies numerically.

7.3.3 Results

In Figure 7.8, we show the Lyapunov exponent at finite spatial momentum for different values

of the spatial momentum k at fixed coupling λ = 0.1. We find, that the momentum depen-

dent Lyapunov exponent has the same form we already confirmed with classical statistical

simulations, see (7.9) and Section 7.2.2, i.e.

λL(k) = λL(k = 0)−DLk
2 . (7.44)

Note, that we only compute the largest eigenvalue of the matrix, which becomes negative

for large enough momenta. We have confirmed, that it remains negative for larger momenta,

so we interrupt the calculation as soon as the largest eigenvalue becomes negative. From

this data, we can extract the prefactor DL, by fitting the data in Figure 7.8 to a quadratic

function. For a fixed λ = 0.1, we find an approximate behavior of the Lyapunov exponent

DL ≈ 1.5 · 104 · β2m. (7.45)

Additionally, we compute the Lyapunov exponent for different values of the coupling λ at

a fixed βm = 0.1. These results are shown in Figure 7.10. We find again, that for the pa-

rameters investigated the Lyapunov exponent has the same functional form as in Figure 7.8

and decreases quadratically with the momentum. The resulting diffusion coefficients DL are
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Figure 7.9: Diffusion coefficient DL, obtained from fitting the momentum dependent Lyapunov ex-

ponent λL(k) to a quadratic function, as shown in Figure 7.8, for different values of the

dimensionless combination βm. We find a clear quadratic dependence of m DL on βm,

and show the fit as a dashed line.

shown in Figure 7.11 and show an inverse quadratic dependence on the coupling λ. Note, that

at such large values of the coupling, higher order-corrections to the correlators can become

important, and the current results are not valid anymore. Nevertheless, the parameter depen-

dence of the equations remains a valid observation. We therefore find – for small couplings

and the investigated range of βm – the approximate behavior of the diffusion coefficient

DL ≈ 29.3 · Nβ
2m

λ2
. (7.46)

For all momentum dependent Lyapunov exponents, we find that the butterfly velocity, given

by vB =
√
4DLλL, cf. (7.10), is close to the speed of light, vB ≈ 0.95 – 0.97 c, for βm < 0.5

and the couplings λ investigated here. As a result, the diffusion coefficient is approximately

inversely proportional to the Lyapunov exponent, DL ≈ 1/4λL. The small changes in the

butterfly velocity do not significantly affect the diffusion coefficient in this regime, and this

approximation holds.

Since we expect there to be a qualitative difference between the high and low temperature

regime, i.e.βm ≪ 1 and βm ≫ 1, we also compute the Lyapunov exponent for larger values

of βm. We present these results in Figure 7.12. At these larger values of βm, or equivalently,

smaller temperatures, we find that the butterfly velocity is no longer constant, but decreases

with increasing mass of decreasing temperature. With the currently available data, we cannot

determine the exact functional form of this dependence, however, it is clear that the butter-

fly velocity decreases with increasing mass and is compatible with 1/
√
βm. The Lyapunov

exponent at zero momentum is exponentially suppressed for larger values of βm, as shown

in Figure 7.7. This makes it numerically challenging to compute the Lyapunov exponent at

larger values of βm since the numerical precision is bound by the finite size of the matrix.
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Figure 7.10: Lyapunov exponent λL at finite spatial momentum for the O(4) model at βm = 0.1 for

different values of the coupling λ. The Lyapunov exponent shows the functional form

λL(k) = λL(k = 0) −DLk
2 for couplings approximately smaller than 0.6. The resulting

diffusion coefficients DL are shown in Figure 7.11.

7.4 Conclusion and Outlook

In this chapter, we have explored the behavior of OTOCs in a relativistic framework. In the

context of relativistic systems, OTOCs remain relatively unexplored, and we have therefore

focused on gaining first insights by understanding the general behavior of OTOCs and how

they relate to physical quantities important for the evolution of quantum systems. We have

investigated the exponential growth of OTOCs in the O(4) model using classical statistical

lattice simulations and diagrammatic weak coupling methods, and find that the O(4) model

exhibits exponentially fast information spreading and classical chaos, as diagnosed by the

OTOC.

In the classical statistical simulations, we observe that for temperatures above the phase

transition, the Lyapunov exponent increases approximately linearly with temperature, see

Figure 7.3. However, near the phase transition, we find that the Lyapunov exponent reaches

a local maximum. This non-trivial behavior suggests interesting dynamics at the critical

point and qualitatively agrees with the Z2 results, that were independently obtained in [363].

However, we note that, in order to make conclusive statements about the Lyapunov exponent

at the critical point, one would need to extend the lattice simulation analysis. This entails

verifying time-step independence and ensuring that the results are not affected by finite-

size effects, especially in the vicinity of the phase transition. At present, a full analysis of

these dependencies is still lacking; they are assessed only qualitatively and exclusively in the

symmetric phase.

Next, we compute the Lyapunov exponent at zero spatial momentum using the diagrammatic

weak coupling approach, similar to [351]. The behavior of the Lyapunov exponent for weak
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Figure 7.11: Diffusion coefficient DL, obtained from fitting the momentum dependent Lyapunov ex-

ponent λL(k) to a quadratic function, as shown in Figure 7.10, for different values of the

coupling λ and βm = 0.1. We find an inverse quadratic dependence of DL on λ, and

show the fit as a dashed line.

coupling has two qualitatively different regimes, the high temperature and the low temperature

regime, i.e.βm≪ 1 and βm≫ 1. In the high temperature regime, the one-loop thermal mass

dominates, and the zero momentum Lyapunov exponent grows linearly with the temperature,

λL ∼ T , cf. (7.35). This dependence agrees with the results of the lattice simulations. In

the low temperature regime, this Lyapunov exponent is exponentially suppressed, as shown

in Figure 7.7. Note that the results obtained for the Lyapunov exponents at zero spatial

momentum have the same parameter dependence, but are around 40 times larger than the

plasmon damping rate for a classical Z2 scalar theory [381, 382].

When comparing the two methods, it is important to note that the Lyapunov exponents are

computed in different parameter regimes when comparing the two methods. The weak cou-

pling results apply in the regime of small coupling, and either at large mass or at temperatures

where the one-loop thermal mass dominates, see (7.35). These are typically the conditions

under which the Lyapunov exponent is small. Measuring such small exponents via classical

statistical simulations is challenging, as the signal is small and oscillations emerging from the

slow relaxation of initial conditions dominate.

At higher temperatures, Lyapunov exponents increase and become easier to measure in clas-

sical statistical simulations. Additionally, thermal effects dominate, and we would expect the

classical simulation to approach the full quantum description. While we compute the Lya-

punov exponent for different small couplings in this regime, the results do not allow for a

quantitative comparison with the weak coupling results, as the Lyapunov exponents rapidly

deviate from each other for larger couplings. We find similar results for the Lyapunov expo-

nents at very small couplings, λ < 0.1, but direct quantitative comparison between the two

approaches is not possible at this stage. Nevertheless, finding common ground between these

two approaches remains an important direction for future research.
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Figure 7.12: Butterfly velocity vB =
√
4DLλL(k = 0) for the O(4) model at different values of βm for

a fixed λ = 0.1. We find a qualitative difference between the high temperature regime,

βm ≪ 1, and the low temperature regime, βm ≫ 1. In the high temperature regime,

the butterfly velocity is close to the speed of light, while in the low temperature regime,

the butterfly velocity decreases with increasing mass or decreasing temperature. This

decrease aligns with the intuitive expectation that the butterfly velocity should scale

with the average velocity of the particles in a gas, v̄ ∼ 1/
√
βm. We show a fit of the data

for βm ≥ 4 to a function proportional to 1/
√
βm as a dashed line. The data allows for

different negative powers of βm, so we can not make a conclusive statement about the

exact functional form, but we can exclude a linear dependence.

We compute the spatial spread of the OTOC using both classical statistical simulations and

the diagrammatic method, and find that in the parameter regimes investigated, the momen-

tum dependent Lyapunov exponent has the form

λL(k) = λL(k = 0)−DLk
2 . (7.47)

From this, we can extract the butterfly velocity, defined as vB =
√

4DLλL(k = 0). At high

temperatures, with both approaches, we find that the butterfly velocity is approximately

constant and close to the speed of light, vB ≈ c, as shown in Figure 7.12. This can be explained

by the fact that at these temperatures, the mass of the particles is small when compared to

the temperature, and they can propagate at almost the speed of light. Additionally, for small

couplings, the mean free time of these particles is large, and they can propagate over large

distances before scattering. We expect, that the Lyapunov exponent is inversely proportional

to the mean free time, and therefore would expect a modification to the butterfly velocity for

faster scrambling systems.

At the phase transition and in the symmetry broken regime, using classical statistical simula-

tions, we also obtain a butterfly velocity that is close to the speed of light. In these regimes,

we have massless Goldstone modes, and at the critical point, the correlation length diverges.

This means that information is able to spread over the whole system at the speed of light.

Only in the low temperature regime, i.e.βm ≫ 1, using the diagrammatic weak coupling
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method, we find that the butterfly velocity is no longer at almost the speed of light, but

decreases with increasing mass, as shown in Figure 7.12. A naive expectation would be

that the butterfly velocity is proportional to the average velocity of the particles in a gas,

v̄ ∼ 1/
√
βm. Such a functional form agrees with the results shown in Figure 7.12, however,

the data allows for different negative powers of βm, so we can not make a conclusive statement

here.

The diffusion coefficientDL quantifies the diffusion of information over the system. In strongly

coupled holographic models, it was found that this diffusion coefficient is exactly the energy

or charge diffusion coefficient, or at least proportional to it [343, 384, 345]. It would be

interesting to investigate whether this is also the case in the O(4) model.

At the critical point, the theory becomes strongly coupled, and the diagrammatic weak cou-

pling results are not valid. However, the diagrammatic strong coupling analysis in [361]

suggests that the Lyapunov exponent is significantly larger than the weak coupling results,

although these results are obtained in 2+1 dimensions and therefore not directly quantitatively

comparable to the results presented in this chapter. Additionally, it would be interesting to

extend the diagrammatic analysis to the symmetry-broken regime. Since the weak coupling

results for the Lyapunov exponent are inversely proportional to the mass, and the Goldstone

modes do not acquire a thermal mass, some different scaling must emerge. The first steps have

been taken towards calculating the Lyapunov exponent at small coupling with both massive

and massless fields, but final results could not be obtained before the writing of this thesis.

There are several highly interesting extensions to this work. The diagrammatic approach can

be extended to QCD at weak coupling, and since QCD has massless modes, the behavior of the

Lyapunov exponent is particularly interesting. However, an OTOC of fundamental degrees

of freedom in QCD, such as the quark or gluon fields, is not a gauge invariant quantity. It

therefore needs to be carefully evaluated, which operators to use, in order to obtain physically

meaningful quantities. Especially then, it would be possible to compare the Lyapunov expo-

nents that have been obtained for classical dynamics of Yang-Mills theory by earlier studies

[311–314] and more recently [363]. However, in the case of the gauge theory, the exponential

growth of a distance measured between two gauge configurations was used as a measure of

chaos, and it is not a priori clear how and if the respective Lyapunov exponent is related to the

growth of OTOCs. Additionally, the computation of OTOCs can be extended to pion effec-

tive theories [385, 386], low energy effective theories of QCD, in order to study the Lyapunov

exponent in this physically relevant phase.

The Bethe-Salpeter equation for the OTOC, i.e. Figure 7.6 and (7.29), can be extended to

not only include the two-loop propagators, but also higher order corrections. Utilizing the

spectral function of non-perturbative propagators and vertices, it is possible to calculate the

OTOC away from the weak coupling limit. For example, since we have already calculated

the spectral function of ghost and gluon propagators in [187], and the spectral function of
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the strong coupling in Chapter 5, we could use these results to compute the OTOC in the

strong coupling regime of YM theory. Of course, this would again be a gauge-dependent

quantity, and its physical interpretation would have to be carefully evaluated. Still, this can

give insight into the scrambling behavior of non-perturbative QCD and help us understand

the thermalization behavior of the theory.

Another interesting research direction would be to investigate prethermalization [32, 387, 388],

and how OTOCs behave, when the system approaches such an attractor solution away from

equilibrium. This can provide insight into which modes are equilibrating first, and which

modes survive until the system is described by hydrodynamics. First studies have been

performed in this context, e.g. [389], and it would be interesting to investigate this from a

relativistic QFT perspective.

Beyond OTOCs, there exist many different diagnostics for quantum chaos, as already men-

tioned in Section 7.1. One of these, which should be suitable in the context of relativistic

QFTs, is the spectral form factor [390, 319]. The spectral form factor essentially captures the

fluctuation of the partition function, and a linear time dependence growth at intermediate

times is a signature of spectral rigidity. This essentially means that long range fluctuations

in the eigenvalue spectrum are suppressed, and the system is chaotic. Understanding the

concepts developed in the context of quantum many-body systems, such as ETH, the spectral

form factor, Krylov complexity, or fidelity susceptibility can be interesting to understand the

thermalization of relativistic quantum systems.
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8. Summary and Outlook

In this thesis, we have explored various approaches to understanding the dynamics of quantum

field theories. While a particular emphasis was placed on QCD in the context of heavy-ion

collisions, the methods developed here are broadly applicable to a wide range of physical

systems. To investigate the dynamical properties of QCD, access to real-time information,

specifically the evolution of two-point correlation functions, is essential. In the first part

of the thesis, we introduced a method for reconstructing spectral functions from Euclidean

correlation functions. This approach enables the extraction of real-time dynamics from non-

perturbative calculations performed in Euclidean spacetime, such as those used in lattice and

functional methods, by solving an inverse problem.

In Chapter 3, we have introduced a method based on Gaussian processes in order to ap-

proach this ill-conditioned inverse problem. This method allows to utilize a wide range of

prior information about the Euclidean correlation functions, while simultaneously providing

a probabilistic framework to quantify the uncertainty on the reconstructed spectral function.

We extended this method to include higher-dimensional data, normalization conditions, and

the known asymptotic behavior of the spectral function. This leads to a versatile method,

that does not make any strong a priori assumptions about the spectral function but only relies

on physical information in order to constrain the solution space of possible spectral functions.

To make this method available to a wider audience, we have implemented this method in a

Python package called fredipy in Section 3.4. This package is available on GitHub and PyPI,

and can be used to reconstruct spectral functions from Euclidean correlation functions in a

user-friendly way, and implements all of the methods presented beforehand.

While Gaussian processes can be conditioned on many different prior information, inequality

constraints are not straightforward to implement. These non-linear constraints, however,

are essential to describe some of the physically relevant spectral functions. In Section 3.5,

we have tested two different methods to implement such constraints. Especially the second

method, using non-Gaussian processes in order to capture the non-linear constraints, has

133



8 Summary and Outlook

shown to be a promising approach. Due to the non-Gaussian nature of the posterior, it can

not be described analytically, but the distribution over spectral function predictions has to

be sampled numerically. This increases the computational cost of the method but leads to

positive definite spectral functions, which is essential for the physical interpretation of the

results. Although further optimizations are still necessary, and its success still depends on

careful tuning of prior parameters for the sampling, it has already produced promising results

in the examples discussed in this section. This method is not yet included in the current

public release of fredipy, but the package is under active development and may be extended

to support this approach in the future.

In the subsequent three chapters, we apply the GP reconstruction method to different prob-

lems in QCD. In Chapter 4, we have applied the GP reconstruction method to the calculation

of glueball masses in pure Yang-Mills theory. For this purpose, we have calculated the four-

point gluon correlation function using the fRG for special projections onto tensor structures

that have the relevant quantum numbers of the glueball states. Since we expect the resonant

glueball states to appear as peaks in the spectral functions of the four-point functions, we

reconstruct the spectral functions using the GP method. We observe that these correlators

show clearly dominant peaks, from which we can extract the glueball masses, for the two

lowest lying spin zero glueball states, the scalar and the pseudoscalar glueball. These masses

are in very good agreement with results from lattice and other functional methods.

Secondly, we have applied the reconstruction method to the calculation of the real-time be-

havior of the strong coupling in QCD in Chapter 5. This can be useful, when calculating

S-matrix elements of non-perturbative QCD processes, or can be used in further calculation

of spectral function or bound states, for example using Bethe-Salpeter equations. We pursue

two approaches: in the first, we compute the strong coupling using the spectral functions of

the gluon and ghost propagators, reconstructed from lattice data via GPs; in the second, we

directly reconstruct the strong coupling from the Taylor coupling, which is derived from the

same propagators. Directly reconstructing this data leads to very similar results, and shows

that the GP reconstruction method is able to give consistent results.

As a third application, in Chapter 6, we have applied the GP reconstruction method to the

calculation of the thermal photon rate in QCD. This is a relevant quantity in the context of

heavy-ion collisions, as it carries important information about the quark-gluon plasma. For

this, we use the T-L current correlator computed for quenched and full QCD on the lattice.

This particular correlator has the advantage, that it does not have the usual divergent UV tail,

which significantly simplifies the reconstruction of the spectral function, while still yielding the

right thermal photon rate when evaluated on the lightcone. We apply multiple reconstruction

techniques, namely functional fits, Backus-Gilbert inversion, and the GP method. For both

data sets, we find excellent agreement between the different methods, showing that the data

quality is very high, and the T-L correlator significantly improves the reconstruction quality.

This is an important cross-check for the GP method and the functional fits, as it shows that
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these two methods, which are very different in their approach, lead to consistent results. GPs

only make very general assumptions about the spectral function, while functional fits rely on a

specific functional form, and therefore highly restrict the range of possible spectral functions.

This shows that the GP method is able to capture the relevant features of the spectral function,

even when no specific functional form is assumed. Another important physical observable

for describing the evolution of the QGP is the thermal dilepton rate. However, this rate

is not accessible from this T-L correlator, and the full current spectral function has to be

reconstructed. Therefore, exactly and consistently implementing the divergent UV behavior

of the spectral function is an important step for future work.

In Chapter 7, we focused on information scrambling in relativistic quantum field theories

by studying out-of-time ordered correlators as diagnostics of quantum chaos. While OTOCs

remain relatively unexplored in QCD and relativistic systems more broadly, we investigated

their properties in the simpler scalar O(N) model as a prototypical example, with particular

attention to their spatial dependence.

To this end, we employed two methods. First, classical-statistical lattice simulations were used

to compute OTOCs near the O(4) critical point. These simulations revealed a local maximum

of the Lyapunov exponent near the phase transition, while more generally, the Lyapunov ex-

ponent grows approximately linearly with temperature above the critical point. This suggests

interesting dynamics near criticality that deserve further numerical investigation.

Second, using diagrammatic weak-coupling methods, we computed Lyapunov exponents, and

performed a first comprehensive study of their momentum dependence. We found that the

Lyapunov exponent scales proportionally with temperature, in regimes where the thermal

mass dominates, consistent with the classical-statistical results in the symmetric phase. Cru-

cially, we connected the zero-momentum Lyapunov exponent to physical quantities such as

the plasmon damping rate and the thermal width of excitations in the O(N) model. This

connection anchors the OTOCs to established thermalization and transport scales, providing

a pathway to a more intuitive picture of scrambling in these systems.

Beyond temporal behavior, we studied the spatial spread of OTOCs by analyzing the mo-

mentum dependence of the Lyapunov exponent. The data fits well to a negative quadratic

dependence on the momentum, indicating diffusive spreading of information characterized by

a diffusion coefficient. From this, we extracted the butterfly velocity, which approaches the

speed of light at high temperatures and decreases as the mass surpasses the thermal scale.

This suppression aligns with the intuitive picture of finite particle velocities in a gas, scaling

roughly as the inverse square root of the mass.

Overall, our results indicate a strong interplay between thermal properties and quantum chaos:

information scrambling as measured by OTOCs is closely related to physical thermal scales

and transport properties of the system.
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Looking ahead, many open questions remain. Extending these analyses to strongly cou-

pled systems such as QCD is a promising but challenging direction. Further development of

diagrammatic approaches incorporating non-perturbative spectral functions – potentially re-

constructed with Gaussian process techniques – may enable the study of Lyapunov exponents

beyond weak coupling.

In summary, this thesis has presented a versatile method to reconstruct spectral functions

from Euclidean correlation functions using Gaussian processes, has applied this method to

various problems in QCD, and has explored the properties of out-of-time ordered correlators

as a measure of information scrambling.
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A. Spectral Representation for

Propagators in Euclidean Time

Here, we provide some details on the derivation of the spectral representation of the Euclidean

correlator in imaginary time, and at finite temperature, cf. (2.21).

The Euclidean correlator in imaginary time is given by

GE(τ) =
1

β

∞∑
n=−∞

exp(−iωnτ)GE(ωn) , (A.1)

where ωn are the Matsubara frequencies. We can then express the Euclidean correlator in

terms of spectral representation (2.17) using the spectral function ρ(ω) as

GE(τ) =
1

β

∞∑
n=−∞

exp(−iωnτ)

∫
R

dω

2π

1

ω − iωn
ρ(ω) . (A.2)

Hence, we want to calculate

Kβ(τ, ω) =
1

β

∞∑
n=−∞

exp(−iωnτ)
1

ω − iωn
(A.3)

We use the well-known trick of replacing the infinite sum by a complex integral with poles at

the Matsubara frequencies, i.e.

Kβ(τ, ω) =

∮
C

dz

2πi

exp(zτ)

ω − z
nB(z) , (A.4)

where C is a contour in the complex plane that encloses the poles at z = iωn. This is

possible, since the Bose distribution function nB(z) = 1/(exp(βz) − 1) has simple poles at

z = iωn = i2πn/β – the bosonic Matsubara frequncies – with residues equal to 1
β , and is

analytic everywhere else in the complex z-plane. Now we can deform the contour: instead of

closing the contour around the poles on the imaginary axis in z, we can close it around the

poles on the real axis in ω. We close the contour around the positive, real half-plane and use

the residue theorem to evaluate the integral at the pole z = ω. This leads to

Kβ(τ, ω) = exp(ωτ)nB(ω) , (A.5)
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Plugging this back into the spectral representation of the Euclidean correlator leads to

GE(τ) =

∫
R

dω

2π

exp(ωτ)

exp(ωβ)− 1
ρ(ω)

=

∫ ∞

0

dω

2π

exp(ωτ) + exp(−ωτ + ωβ)

exp(ωβ)− 1
ρ(ω)

=

∫ ∞

0

dω

2π

cosh(ω(τ − β/2))

sinh(βω/2)
ρ(ω) . (A.6)

In the second line, we have used the antisymmetry of the spectral function ρ(ω) = −ρ(−ω),
and in the last line, we just use the definition of the hyperbolic cosine and sine functions.

This is the spectral representation of the Euclidean correlator in imaginary time, which is

used in the reconstruction methods discussed in this thesis. This derivation can also, and

more quickly, be performed, by using the KMS relation (2.25), doing a Fourier transform, and

performing a Wick rotation to imaginary time.
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B. Gaussian Process Details

B.1 Gaussian Process Posterior

Here we sketch the derivation of the posterior predictive distribution of a Gaussian process.

To simplify notation, we denote

a = K−1K∗ , (B.1)

b = K∗∗ −K⊤
∗ K

−1K∗ , (B.2)

c = K(K+Cn)
−1y , (B.3)

d = σ2K(K+Cn)
−1 . (B.4)

Inserting (3.17) and (3.14) into (3.15) leads to

p(f∗ | D, x∗, θ, σ) ∼
∫
df exp

(
−(f− a⊤f)2

2b
− (f− c)⊤d−1(f− c)

2

)
(B.5)

∼
∫
df exp

(
−(f∗)2

2b
− 1

2

(
f⊤
(
d−1 +

aa⊤

b

)
− 2

(
d−1c+ f∗

a

b

)
f

))
(B.6)

∼ exp

(
−1

2

(
1− a⊤(bd−1)−1a

b
(f∗)2 − 2a⊤(bd−1 + aa⊤)−1d−1cf∗

))
, (B.7)

where we have calculated a rather tedious Gaussian integral. We can see that the above is a

Gaussian distribution with mean and covariance given by

µ∗ =
ba⊤(bd−1aa⊤)−1d−1cf∗
1− a⊤(bd−1aa⊤)−1a

, (B.8)

σ∗ =
1

1− a⊤(bd−1aa⊤)−1a
. (B.9)

We use the Sherman-Morrison-Woodbury formula given by

(A+ UV ⊤)−1 = A−1 −A−1U(1 + V ⊤A−1U)−1V ⊤A−1 , (B.10)
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to rewrite

(bd−1 + aa⊤)−1 =
1

b

(
d− daa⊤d

b+ a⊤da

)
. (B.11)

Inserting this into (B.8) and doing some algebra leads to

µ∗ = a⊤cf∗ = K⊤
∗ (K+Cn)

−1 y . (B.12)

And the covariance (B.9) can be rewritten as

σ∗ = b+ a⊤da (B.13)

= K∗∗ −K⊤
∗ (K+Cn)

−1K∗ , (B.14)

where in between we had to use the Sherman-Morrison-Woodbury formula (B.10) again. The

expressions (B.12) and (B.13) are the posterior predictive mean and covariance of the Gaussian

process.

B.2 Cholesky Decomposition

Instead of directly inverting the matrix in the posterior of the Gaussian process, we use

Cholesky decomposition to solve the linear system of equations. We precompute the quantities

L = cholesky(K+Cn) , (B.15)

α = L⊤\(L\y) , (B.16)

v(x) = L\k(x) , (B.17)

where L is the lower triangular matrix from the Cholesky decomposition, Cn is the noise

covariance matrix, y is the data vector, and k(x) is the kernel vector for a new point x.

The notation x = A\b denotes the solution of the linear system Ax = b. The Cholesky

decomposition is a numerical method to decompose a positive definite matrix K + Cn into

the product of a lower triangular matrix L and its transpose, such that K+Cn = LL⊤. This

decomposition is numerically stable and efficient, especially for large matrices. This allows us

to compute the posterior mean and covariance in (3.20) and (3.21) as

µ∗(x) = k(x)⊤α , (B.18)

k∗(x, x′) = k(x, x′)− v(x)⊤v(x′) . (B.19)
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B.3 Higher Dimensional Reconstruction Code

Here we show an example code for the higher dimensional reconstruction of spectral functions

using the fredipy package. Note, that the momentum array needs to be carefully constructed.

1 import numpy as np

2 import fredipy as fp

3

4 # prepare the arrays for the 2D case

5

6 # ... in k direction

7 k = np.linspace(0, 2, 20)

8 # ... and in w direction

9 w = np.linspace(0.1, 10, 100)

10

11 # mesh them together

12 ww, wk = np.meshgrid(w, k)

13 w_pred = np.c_[ww.ravel(), wk.ravel()]

14

15 # ... and in p direction

16 p = np.linspace(0.1, 10, 30)

17 pp, kk = np.meshgrid(p, k)

18 p_data = np.c_[pp.ravel(), kk.ravel()]

19

20 # example data

21 a, m, g = 1.6, 1, 0.8

22 rho = get_rho2d(w_pred[:,0], w_pred[:,1], a, m, g)

23 G = get_BW2d(p_data[:,0],p_data[:,1], a, m, g)

24

25 err = 1e-4

26

27 data2d = {

28 'x': p_data,

29 'y': G + err * np.random.randn(len(G)),

30 'dy': err}

31

32 # we do the same as before

33 kernel = fp.kernels.RadialBasisFunction(0.3, [0.3, 0.3])

34 integrator = fp.integrators.Riemann(0.01, 20, 1000)

35 integral_op = fp.operators.Integral(kl_kernel, integrator)

36 constraints = [fp.constraints.LinearEquality(integral_op, data2d)]

37 model = fp.models.GaussianProcess(kernel, constraints)

38

39 # ... and do a prediction

40 _rho, _rho_err = model.predict(w_pred)
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B.4 Optimization of Kernel Parameters Code

Here we present a minimal example for optimizing the kernel parameters of a Gaussian pro-

cess model by minimizing the NLL (3.31) using the fredipy package. We simply use the scipy

package to perform the optimization using standard minimization routines. In general, how-

ever, more advanced optimization methods can be used, see the discussions in the respective

chapters, where reconstructions are explicitly performed, e.g. Chapter 6.

1 from scipy import optimize

2

3 def optimize_kernel_parameters(

4 gp: fp.models.GaussianProcess, # a Gaussian Process Model

5 guess: list[float], # some initial guess on the parameters

6 bound_min: float = 1e-4 # minimal value for the parameters (we want to avoid 0)

7 ):

8 # wrapper function

9 def optimized_function(params):

10 gp.set_kernel_params(params)

11 return - gp.log_likelihood()

12

13 num_params = len(guess)

14 bounds = [(bound_min, None)]*num_params

15 res = optimize.minimize(optimized_function, guess, bounds = bounds, method = 'L-BFGS-B')

16

17 if res.success:

18 print(' Optimized parameters are: ', res.x)

19 gp.set_kernel_params(res.x)

20 else:

21 print('No convergence in optimization!')

22

23 optimize_kernel_parameters(model, [0.2, 0.1])
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C. Thermal Photon Rate at Finite

Lattice Spacing

In this appendix, we will compare the estimate of the effective diffusion coefficient from dif-

ferent lattice spacings in order to estimate the cutoff effects on the reconstruction. This will

be illustrated for the polynomial ansatz of the spectral function and the GPR reconstruction.

A comparison of the different Deff values from the polynomial ansatz can be found in Fig-

ure C.1, while the same comparison for the GPR reconstruction can be found in Figure C.2.

We observe that for both methods the results for small spatial momenta agree remarkably

well, as different values remain consistent in the margin of error. For the polynomial ansatz

and spatial momenta k/T > 4.71, we observe mild cutoff effects on Deff, while in the GP

reconstruction, the error generally grows for higher momenta. This outcome aligns with the

expectation, considering that cutoff effects are already minimal in the correlator.
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Figure C.1: Effective diffusion coefficient, Deff obtained from the polynomial estimate for different

lattice spacing along with continuum extrapolated value. Here Nf = 0 .
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Figure C.2: Effective diffusion coefficient, Deff obtained from the GP regression model for different

lattice spacing along with continuum extrapolated value. Here Nf = 0 .
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Ryan, and J.-I. Skullerud, News from bottomonium spectral functions in thermal QCD,

PoS LATTICE2019, 076 (2019), arXiv:1912.12900 [hep-lat].

[141] S. Offler, G. Aarts, C. Allton, B. Jäger, S. Kim, M.-P. Lombardo, B. Page, S. M.
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Running Coupling from the Gauge Sector of Domain Wall Lattice QCD with Physical

Quark Masses, Phys. Rev. Lett. 122, 162002 (2019), arXiv:1902.08148 [hep-ph].

[234] Z.-F. Cui, J.-L. Zhang, D. Binosi, F. de Soto, C. Mezrag, J. Papavassiliou, C. D. Roberts,
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S. Zafeiropoulos, Gluon propagator and three-gluon vertex with dynamical quarks, Eur.

Phys. J. C 80, 154 (2020), arXiv:1912.12086 [hep-ph].

[258] A. C. Aguilar, F. De Soto, M. N. Ferreira, J. Papavassiliou, and J. Rodŕıguez-
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