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Chapter 1

Introduction

General Relativity and the Standard Model

The 20th century has seen an astonishing progress in the description of fundamental
physics. We can now accurately describe many phenomena with the theory of General
Relativity and the Standard Model of elementary particles.

General Relativity is Einstein’s theory of gravity, originating from his early 20th
century publications. It describes how space-time is curved by the presence of matter,
and how matter moves in a curved space-time. Early successes include the prediction
of Mercury’s perihelion precession and the deflection of starlight. Later indications for
its correctness led to the development of cosmology, which uses General Relativity to
study the universe as a whole. It has been tested thoroughly, especially in the weak field
limit, such as in most astrophysical systems. The 1993 Nobel prize was awarded for
the discovery of a binary star system, whose energy loss due to gravitational radiation
is in excellent agreement with General Relativity, and provides one of the strongest
arguments for its validity.

The Standard Model is the culmination of research on particle physics. In the early
20th century, Max Planck’s work on black body radiation gave birth to quantum me-
chanics. Subsequent work of Einstein on the photo-electric effect and of Bohr on the
atomic model led to further confirmation of quantum mechanics as a theory of particle
physics. A full quantum treatment of relativistic electrodynamics led to the develop-
ment of quantum field theories. The Standard Model is a quantum field theory which
aims to describe all fundamental physical phenomena, excluding gravity. Many of its
predictions are being tested to astonishing precision in particle accelerators. At the time
of writing, the Large Hadron Collider at CERN is running experiments, with the hope
of detecting the Higgs boson - the last undiscovered Standard Model particle.

Despite these great successes, there are many open questions in theoretical physics.
A direct puzzle is the fact that General Relativity cannot consistently be written in the
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language of quantum mechanics. Besides being theoretically unsatisfying, it makes it
impossible to study a regime where both theories are important. One of these areas is
the study of black holes, where quantum effects on gravity are important, and the Big
Bang, the event which created our universe. Other questions come from cosmological
observations that indicate that Standard Model matter is only 4% of all matter in our
universe. The remaining matter is believed to consist of dark matter and dark energy,
neither of which is satisfactorily explained by the Standard Model or General Relativ-
ity. Dark matter consists of particles which are not described by the Standard Model.
Dark energy can be described by the cosmological constant, which is a parameter in
Einstein’s equations. Its value has profound implications for the dynamics of our uni-
verse. Current observations predict a small, positive value for this constant. However,
a combination of General Relativity and the Standard Model would predict a very large
value.

To address some of these open questions, we need a theory that can reconcile the
principles of quantum mechanics with those of General Relativity - a theory of quantum
gravitation.

String theory

One of the leading candidates for a theory of quantum gravitation is string theory,
whose development started around 1970. A main ingredient is the idea that the fun-
damental degrees are not point-like, as in the Standard Model, but are strings. The
particles we observe, such as quarks, electrons and gravitons, are believed to be oscil-
lations of these strings. Using these strings and other extended objects, string theory
can incorporate General Relativity in a quantum mechanical theory. Books on string
theory include the famous Green, Schwarz and Witten book [1, 2], the books by Polchin-
sky [3, 4] and the book by Becker and Schwarz [5].

An area where string theory has proven itself a serious candidate is the study of
black holes. It extends the General Relativity description with a quantum mechanical
interpretation, providing insight into their thermal properties, their evolution and the
information loss paradox [6, 7].

Another development which originated from string theory is gauge/gravity dual-
ity [8], based on earlier work of ’t Hooft [9, 10]. This conjecture states that a system
without gravity can be described in terms of a system with gravity, living one dimen-
sion higher. Both theories contain a coupling constant, which measures the strength of
the interaction. The interesting aspect is that the duality maps a theory with a large
coupling constant to a theory with a small coupling constant, which basically maps a
difficult problem to an easier problem. Utilizing this, one studies strongly coupled QFTs
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employing string theory in four dimensions. Examples of these are the studies of quark
gluon plasmas and condensed matter systems.

Supersymmetry and supergravity

All fundamental particles in a high-energy quantum theory can be divided into two
types: bosons and fermions. They differ in the quantum statistics they obey: only one
fermion can occupy a quantum state at a given time, whereas there is no such condition
for bosons. In the Standard Model, the quarks and electrons are fermions, whereas the
Higgs particle, the photons and the other force-carrying particles are bosons. Super-
symmetry relates these two different types of particles. Each boson has a fermionic
partner, and vice versa, which are called the superpartners. Although the Standard
Model contains both bosons and fermions, they cannot be superpartners of each other,
so we would need to add additional particles to make this theory supersymmetric. One
such example is the Minimal Supersymmetric Standard Model.

Supersymmetry has many attractive features. The superpartners of the Standard
Model particles have not been discovered, they are a natural candidate for dark matter,
where supersymmetry explains the stability of these particles. At the time of writing,
experiments are carried out at the Large Hadron Collider, which might be able to dis-
cover supersymmetry. The amount of supersymmetry is denoted with the letterN . The
simplest theories have N = 1, but we will mainly study N = 2 theories, which have
more supersymmetry. The higher amount of symmetry of these theories makes them
easier to study. Examples of N = 1 and N = 2 supersymmetric field theories will be
discussed in chapter 2.

Many of the predictions of string theory concern physics on very high energy scales.
The exact region which is considered high differs between models, but a rough indi-
cation of these energies is the Planck energy, which is approximately 1019 GeV. The
highest energy a particle accelerator has reached so far is at the Large Hadron Collider
at CERN, which has a maximum of 1.4 × 104 GeV, which is about 15 orders of magni-
tude below the Planck scale. It is therefore more interesting to study the dynamics of
string theory at lower energy scales. These dynamics are described by a quantum field
theory. Besides the presence of gravity, another feature of these theories is that they are
supersymmetric, just as the string theories they originate from. Due to the presence of
gravity and supersymmetry, these theories are called supergravity theories.

Questions in string theory

Although string theory has it successes in explaining puzzles of quantum gravity, it
also raises its own questions. A direct issue is that supersymmetric string theories
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are only well-defined in ten dimensions, which does not directly agree with the four-
dimensional appearance of our world. A possible resolution is that we only observe
four dimensions, but the world is truly ten dimensional. The remaining dimensions
are curled up into an internal space, which is so small that they are not observed. We
can then produce a theory that only describes the physics in four dimensions, using
a method that is called compactification. A popular choice for the internal space is a
so-called Calabi-Yau threefold, which is a six-dimensional, compact space. Compact-
ification of type II string theories on a Calabi-Yau threefold gives a four-dimensional
theory with N = 2 supersymmetry.

One of the questions of compactification is that there is a large variety of options for
the compact six dimensions, but which options will lead to a description of the world as
we know it? So far, it still is a challenge to find a compactification of string theory that
yields the Standard Model. A related question is: what do the other options, that yield
different four-dimensional physics, represent? How should one think about these? The
interpretation of this so-called landscape of possible solutions leads to border of physics
and philosophy, and will not be discussed in this thesis.

Nevertheless, even if one chooses a specific compactification, there can be small
differences in the six-dimensional space when one moves through space-time. These
changes manifest themselves finally as massless particles in the low-energy spectrum,
which are called moduli. Such massless particles are not observed in nature. What can
we change in such a way that these massless particles will not be present?

A possible mechanism to address the problems of moduli is via flux compactifica-
tions (for some reviews, see [11–13]). In such a setup, there is a flux (similar to the well-
known electric and magnetic fluxes of Maxwell theory) in the internal space. The small
differences in the six-dimensional space, which were the origin of the moduli fields, will
now cost some energy. Their vacuum expectation values will be determined by a local
energy minimum, and as fluctuations around these values cost energy, this gives the
moduli their masses. If the masses are now heavy enough, there is no longer a contra-
diction with experiment: the particles are simply to heavy to be observed. Furthermore,
the expectation values of the moduli are also interesting. One of the moduli is called the
dilaton, and its expectation value determines the string coupling constant. What is the
expectation value of the moduli?

The flux compactifications eventually lead to scalar potentials for the moduli. At
fixed values of the moduli, the potential serves as a cosmological constant, which might
make them interesting cosmological models. What will be the value of this cosmological
constant? How can we obtain the small, positive value that we presently see?

Another issue concerns the construction of the supergravity theory out of the string
theory. Although we are only interested in the four-dimensional, low-energy dynamics,
there still is an influence of the higher-dimensional, high-energy dynamics. While string
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theory was originally formulated as a theory of strings, we now know that there are
more objects in the theory. A class of these objects are D-branes, which are extended
objects on which strings can end. These manifest themselves as corrections to the four-
dimensional supergravity, and their effects can be important. Without these quantum
corrections, the moduli are usually not stabilized. How can we compute these quantum
corrections? What is their effect on the program of moduli stabilization?

Content of this thesis

In chapter 2 we introduce supersymmetry and supergravity theories. We will show the
structure of N = 1 and N = 2 gauged supergravity theories in four dimensions, and
illustrate how they can be obtained from string theory.

In chapter 3 we start with the study of N = 2 theories. The advantage of N = 2

theories over N = 1 is that in the latter, many quantum effects arise, which are largely
unknown, whereas the extra symmetry of the former keeps these contributions under
somewhat better control. In this chapter, we find a classification of the fully supersym-
metric solutions of gaugedN = 2 theories. There are many other solutions, but not all of
them will preserve the full supersymmetry. Finding the supersymmetric configurations
is important for several reasons. If one makes a string theory compactification which
preserves N = 2 supersymmetry, one must be able to find this vacuum again in the
four-dimensional effective theory. Knowledge of the supersymmetric configurations
gives therefore insight in the possible N = 2 compactifications. So far, it is not so clear
how many compactifications preserve the full amount of supersymmetry, so this is an
important issue to study.

Another important property of these configurations is that black holes are often
solutions that interpolate between two different N = 2 configurations, located at the
horizon and at spatial infinity. Finally, applications such as the gauge/gravity duality
mentioned above, also require knowledge of the supersymmetric configurations. We
perform a systematic analysis of the supersymmetry transformations and see which
conditions they imply. Using these, we are able to classify all the fully supersymmetric
solutions. There are basically only three configurations: Minkowski space, a negatively
curved space known asAdS4, and a combination of such a negatively curved space with
a sphere, to form AdS2 × S2.

In chapter 4 we search for black hole solutions of gaugedN = 2 theories. They solve
the equations of motion, but they only preserve half of the N = 2 symmetry, or less.
One of the motivations is to understand the microscopic entropy of (asymptotically flat)
black holes. In ungauged supergravity, arising e.g. from Calabi-Yau compactifications,
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this is relatively well understood in terms of counting states in a weakly coupled D-
brane set-up [6, 14], and then extrapolating from weak to strong string coupling. In flux
compactifications, with effective gauged supergravity actions, this picture is expected
to be modified. The most dramatic modification is probably when the dilaton is stabi-
lized by the fluxes, such that one cannot extrapolate between strong and weak string
coupling.

Another motivation stems from the AdS/CFT correspondence and its applications
to strongly coupled field theories. Here, finite temperature black holes that asymptote
to anti-de Sitter space-time describe the thermal behavior of the dual field theory. Often,
like e.g. in holographic superconductors, see e.g. [15, 16] for some reviews or [17, 18] for
more recent work, charged scalar fields are present in this black hole geometry, provid-
ing non-trivial scalar hair that can be computed numerically. Therefore, one is in need of
finding large classes of asymptoticallyAdS black holes with charged scalars. This is one
of the aims of this chapter. Although we mostly work in the context of supersymmetric
black holes, some of our analysis can be carried out for finite temperature black holes as
well.

The N = 2 theories contain many particles, which are organized in multiplets, ac-
cording to their supersymmetry properties. One of these is a hypermultiplet, which
contains four scalar fields. In known solutions so far, the hypermultiplet scalars are
neutral and take constant values; we initiate the extension to general gauged super-
gravities in which the hyperscalars are charged. We find black hole solutions that arise
after spontaneous symmetry breaking of the gauged theory. Using this method, we can
embed known black holes. When searching for new solutions, we only find solutions
where the metric has ripples and the vector multiplet scalars become ghost-like.

In chapter 5 we look at compactifications of eleven-dimensional supergravity. Eleven
dimensions is the highest possible dimension for a supergravity theory (without par-
ticles of spin higher than two) to exist. It is presumed to be the low-energy limit of
some (membrane) theory, dubbed M-theory, but this is still largely unknown. One can
compactify M-theory on a Calabi-Yau three-fold to yield a five-dimensional theory. This
can be further compactified on a circle to give a four-dimensional theory. We want
to investigate how one can stabilize moduli in such a scenario. This will be done by
performing a Scherk-Schwarz compactification on the circle. Alternatively, this can be
seen as a compactification of eleven-dimensional supergravity on a seven-dimensional
space, which is made by a non-trivial fibration of the Calabi-Yau manifold over a circle.
This procedure leads to a gauged four-dimensional N = 2 supergravity.

When compactifying type II string theory on a Calabi-Yau threefold, one can choose
to orientifold the theory. In such a scenario, there is an orientifold operator acting
on the string states. The states are then required to have a definite parity under this
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operator. This projects out half of the states, and reduces the preserved supersymmetry
from N = 2 to N = 1. As we do not have a microscopic description of M-theory, we
cannot directly perform an orientifold compactification. We can, however, use these as
inspiration to define a truncation of the four-dimensional theory. In this chapter we
perform this truncation and show that this yields anN = 1 theory. Although we do not
have a microscopic understanding of this procedure, it does give a new way to produce
N = 1 theories, for which we compute the superpotential.

In chapter 6 we study the stabilization of moduli. Besides the dilaton, mentioned
above, another important modulus is the volume of the internal manifold. In the ef-
fective supergravity approximation, one assumes that curvatures are small and hence
the volume of the internal space is large compared to the scale set by the string length
ls = 2π

√
α′. Stabilization by finding the minima of the scalar potential of the low-energy

effective action must therefore lead to a large value for the volume for this approach to
make sense. This is one of the basic assumptions in the KKLT scenario [19], or the more
recent so-called ‘Large volume scenarios’ (LVS) [20, 21].

In a classical compactification, the volume modulus is usually not stabilized. To
change this, we study a class of corrections to the scenario of compactification. Be-
sides the D-branes mentioned earlier, string theory also contains objects known as NS5-
branes, which have a six-dimensional world-volume. When they completely live in
the internal six dimensions, they are instantons from the four-dimensional perspective.
These non-perturbative effects give corrections to the four-dimensional action which
depend on the volume V of the internal six dimensions. They might therefore be useful
to stabilize V . In this chapter, we analyze these corrections, and study their effects on the
program of moduli stabilization. The main conclusion is that their effects are important
in certain regimes of parameter space, but other corrections, arising from loop effects
in string theory, become equally important. Not all of these effects are known, which
makes it difficult to compare their effects to the ones from the NS5-branes.





Chapter 2

Supergravity

This chapter gives an introduction to supersymmetry and supergravity. Given the
number of topics we have to cover, we will only be brief. A thorough introduction
to supersymmetry can be found in [22–24], whereas supergravity is covered in [25–
28]. The connection between the four- and ten-dimensional supergravities is reviewed
in [11–13].

We will start with supersymmetric field theories in four space-time dimensions,
and show some examples of N = 1 supersymmetric theories. This symmetry can be
made local to give rise to supergravity theories. We discuss N = 1 and N = 2 super-
gravity theories, and show how one can deform those by gauging isometries. Finally,
we indicate how the four-dimensional theories can be obtained by compactifying ten-
dimensional theories.

2.1 Supersymmetry

A supersymmetric theory is, by definition, invariant under transformations with a con-
stant, fermionic parameter. In a quantum field theory, such a fermionic parameter is
represented by a spinor. In four space-time dimensions, a general Dirac spinor has 8
(real) degrees of freedom. This representation is however reducible. We can impose a
reality condition, which leads to Majorana spinors, or a chirality condition, which leads
to Weyl spinors. In four dimensions, it is impossible to impose them both, so we can
choose to work with Majorana spinors, or Weyl spinors (also called chiral spinors), but
not with Majorana-Weyl spinors. Both choices are equivalent, and in this thesis we work
with Weyl spinors.

Invariance under supersymmetry gives a number of conserved charges, which are
called supercharges. The number of supercharges divided by the dimension of the
smallest possible spinor representation is denoted by N . The smallest amount of su-
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persymmetry possible is therefore denoted byN = 1, which has four supercharges. We
will introduce some notation that is easily extended to the forthcoming case of N = 2

supersymmetry and refer to appendix A.1 for our conventions. A chiral fermion is
denoted as λ• and has positive chirality (γ5λ•= λ•). Its complex conjugate λ•≡ λ∗• has
negative chirality. We use the conjugate λ• ≡ (λ•)tγ0.

The simplest example of a supersymmetric action is given by the N = 1 chiral
multiplet [29]. It consists of a complex scalar z and a chiral fermion λ•. The free action
is then given by

S =

∫
d4x

(
∂µz∂

µz − iλ•γµ∂µλ•
)
, (2.1)

which is invariant under the transformations

δz = λ•ε• ,

δλ• = i∂µzγ
µε•,

(2.2)

where ε• is a constant spinor.
The supersymmetry transformations form an algebra, called the super-Poincaré al-

gebra, which contains supersymmetry transformations, Lorentz transformations and
translations. The anti-commutator of two such transformations, acting on λ•, gives two
terms: a translation of the spinor, and a term proportional to the equations of motion of
the spinor. The algebra only closes if one imposes the equations of motion. The trans-
formations (2.2) therefore only form an on-shell representation of the supersymmetry
algebra. This reflects itself in the counting of degrees of freedom: the complex scalar
z has two real degrees of freedom, whereas the chiral spinor λ• has four. However, its
equation of motion, which is the massless Dirac equation, halves the degrees for the
spinor, so there is a match of degrees of freedom. It is also possible to add extra fields,
called auxiliary fields, to obtain a representation which closes off-shell; in this case the
degrees of freedom also match off-shell.

The second example of a supersymmetric action is an N = 1 vector multiplet, con-
taining a chiral fermion χ• and a vector field Aµ. The free action is given by

S =

∫
d4x (FµνF

µν − iχ•γµ∂µχ•) , (2.3)

where Fµν = 1
2 (∂µAν − ∂νAµ). This action is invariant under the transformations

δχ• =
1

2
F−µνγ

µνε• ,

δAµ = iχ•γµε
• − iε•γµχ• ,

(2.4)
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where F−µν is the anti-self-dual component of the field strength Fµν , which is defined as
F±µν = 1

2 (Fµν ± i
2εµνρσF

ρσ), see also appendix A.1.
The final example consists of a theory with n chiral fields. We denote the scalars as

zi, with i = 1, . . . , n. The action is given by [30]

S =

∫
d4x

(
gi̄∂µz

i∂µz̄ − igi̄ χ•jγµ∇µχi• −
1

4
Rijk̄ ¯̀χk•χ

i
•χ
`
•χ
j
•

)
, (2.5)

where gi̄ is a hermitian matrix, which can depend on zi and z̄. One can see gi̄ as
a (fixed) metric on the space of the fields zi; this space is called the target space. The
covariant derivative is∇µχi• = ∂µχ

i
•+Γjk

i∂µz
jχk• , andRijk̄ ¯̀ is the Riemann tensor, com-

puted from gi̄. The requirements of supersymmetry force gi̄ to be a Kähler metric [30].
This property implies that gi̄ is locally the derivative of a real function K

gi̄ = ∂i∂̄K , (2.6)

where ∂i = ∂
∂zi . The function K is called the Kähler potential. Besides supersymmetry,

the action (2.5) is also invariant under the transformations δzi = ki, if the (zi-dependent)
field ki is an isometry of the Kähler metric. The function K, as used in (2.6), is not
unique, as the metric gi̄ remains the same under the Kähler transformation

K → K + f(z) + f̄(z̄) . (2.7)

The metric gi̄ typically depends on the fields zi, and could contain regions in field space
where it is no longer positive definite. Therefore, one has to restrict the fields to the so-
called positivity domain, where the metric is positive definite.

It is possible to add a so-called superpotential to the theory, while keeping the the-
ory supersymmetric. This is a function W (z), holomorphic in the scalar fields zi. The
supersymmetry transformations get modified to

δεz
i = λi•ε• ,

δελ
i
• = i∂µz

iγµε• − gi̄∂̄Wε• .
(2.8)

The bosonic terms in the Lagrangian become

L = gi̄∂µz
i∂µz̄ − V , (2.9)

where the scalar potential V is given by

V = gi̄∂iW∂̄W . (2.10)
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2.2 Local symmetries and supergravity

The theories discussed so far are invariant under constant supersymmetry variations.
Such an invariance is often called rigid supersymmetry. In this section, we will discuss
theories invariant under local symmetries.

There is a systematic technique to construct an action and transformation rules, in-
variant under a local symmetry, starting from an action and transformations, invariant
under a global symmetry. This technique is called the Noether procedure.

We will not discuss this in detail, but as an example, we consider the free action of a
complex scalar field ϕ

S =

∫
d4x ∂µϕ∂µϕ . (2.11)

This action is invariant under the global transformation ϕ → eiαϕ, which has an in-
finitesimal form δϕ = iϕα. Going through the Noether procedure, we find the action

S =

∫
d4x

(
DµϕDµϕ− FµνFµν

)
, (2.12)

with a covariant derivative Dµϕ = ∂µϕ − iϕAµ. The term FµνF
µν was not needed

to make the action invariant under the local symmetry, but it makes the field Aµ a
propagating field. This action is now invariant under the local transformations

δϕ = iϕα ,

δAµ = ∂µα .
(2.13)

One can perform the same procedure with one of the supersymmetric actions in
section 2.1. The first step is to specify the gauge field for local supersymmetry transfor-
mations, analogous to the gauge field Aµ above. We therefore expect a transformation
rule

δψ•µ = ∂µε• . (2.14)

From this, one sees that the gravitino field ψ•µ carries a vector index (as it is a gauge
field) and a spinor index • (as the right-hand side is spinor-valued). A kinetic term,
which is also invariant under the transformation (2.14), is given by the Rarita-Schwinger
action

S =

∫
d4x ψ•µγ

µνρ∂νψ•ρ , (2.15)

Now that we have the gauge field, the next step is to embed it into a supersymmetric
multiplet. When we have local supersymmetry transformations, the super-Poincaré
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algebra, mentioned earlier, becomes an algebra of local transformations, and therefore
includes local coordinate transformations. The theory we obtain therefore incorporates
gravity, and we obtain the theory of pure supergravity [31], defined by

S =

∫
d4x
√
−g
(

1

2
R+ iψ•µγ

µνρDνψ•ρ

)
. (2.16)

The covariant derivative Dν contains the spin connection and terms quadratic in the
gravitino. Up to higher order in the fermions, the derivative reads

Dνψ•ρ = ∂νψ•ρ −
1

4
ωabν γabψ•ρ . (2.17)

Some more details on the spin connection ωabν can be found in (A.7).
The normalization of the gravity term in (2.16) implies that we have chosen units

such that Newton’s constant κ is fixed as κ2 = 1, which is used in the remainder of this
thesis. The gravitino ψ•µ and the metric gµν form the on-shell content of the graviton
multiplet. We will show the supersymmetry transformations in the next chapter, when
we discuss N = 2 supergravity.

The final step is to couple the other multiplets, such as the chiral or the vector multi-
plet, to the graviton multiplet. In principle, this can be done with the Noether method,
but in practice, more efficient methods have been developed, such as superconformal
multiplet calculus [32] or superspace inspired methods [28]. We will not explain these
methods, but we will only use their results.

2.3 N = 2 supergravity

The theories in previous sections were invariant under transformations with a single
spinor. It is also possible to construct theories with more supersymmetry, which is
called extended supersymmetry. In this thesis, we work with N = 2 supersymmetry.
There is a group of transformations that leave the supersymmetry algebra invariant,
which is called the R-symmetry group. For N = 2 this is given by SU(2) and the two
supersymmetry parameters form a doublet εA under SU(2), withA = 1, 2. We will now
discuss some multiplets of N = 2 supergravity.

2.3.1 The N = 2 graviton and vector multiplets

TheN = 2 graviton multiplet [33, 34] consists of the graviton gµν , a doublet of gravitinos
ψAµ with positive chirality and a gauge field A0

µ, which is called the graviphoton. As
always in this thesis, the negative chirality fermions are given by ψAµ ≡ (ψAµ)∗. The
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N = 2 vector multiplet is a combination of an N = 1 chiral multiplet with an N = 1

vector multiplet, and contains a complex scalar z, a doublet of chiral fermions λA with
positive chirality, called the gauginos, and a vector field Aµ.

We now couple a number nV of vector multiplets, with an index i = 1, . . . , nV , to the
graviton multiplet. We use a common index Λ = 0, . . . , nV to group the gauge fields A0

µ

and Aiµ together. From this point onward, we write S =
∫
d4x
√
−gL. The bosonic terms

in the Lagrangian are given by

L =
1

2
R(g) + gi̄∂

µzi∂µz̄
̄ + IΛΣ(z)FΛ

µνF
Σµν +

1

2
RΛΣ(z)εµνρσFΛ

µνF
Σ
ρσ . (2.18)

The first term is the Einstein-Hilbert term for gravity and the second is a non–linear
sigma model for the complex scalars zi. The third term is the kinetic term for the gauge
fields, and the last term is a generalization of the θ-angle term of Maxwell theory. The
supersymmetry transformations will be given below; we will first discuss the various
objects appearing in (2.18).

Special geometry

Supersymmetry requires that the space, described by the metric gi̄, is a special Kähler
space [35]. This means that there are sections XΛ and FΛ, which are holomorphic func-
tions of zi. The Kähler potential K for the metric gi̄, as in (2.6), is then given by

K(z, z̄) = − ln
[
iX̄ΛFΛ − iXΛF̄Λ

]
. (2.19)

From the sections XΛ and FΛ, we can construct

LΛ ≡ eK/2XΛ , MΛ ≡ eK/2FΛ , (2.20)

fΛ
i ≡ eK/2(∂i + ∂iK)XΛ , hΛ|i ≡ eK/2(∂i + ∂iK)FΛ , (2.21)

where ∂iK ≡ ∂
∂ziK. A further requirement of special Kähler geometry is then

XΛhΛ|i − FΛf
Λ
i = 0 . (2.22)

The terms proportional to ∂iKmake fΛ
i and hΛ|i transform covariantly under Kähler

transformations (2.7). These terms define the U(1) Kähler connection

Aµ ≡ −
i

2
(∂iK∂µzi − ∂ı̄K∂µz ı̄) . (2.23)

The period matrix NΛΣ is defined by the properties

FΛ = NΛΣX
Σ, hΛ|̄ı = NΛΣf

Σ
ı̄ . (2.24)
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It can be shown [36] that the matrix (LΛ fΛ
ı̄ ) is invertible, which gives the expression

NΛΣ =

(
hΛ|̄ı
MΛ

)
·
(
fΣ
ı̄

LΣ

)−1

, (2.25)

and one can show that NΛΣ is symmetric. We then define

IΛΣ = ImNΛΣ , RΛΣ = ReNΛΣ , (2.26)

and these matrices appear as couplings in the Lagrangian (2.18). It can be shown [36]
that IΛΣ is invertible and negative definite, and therefore each gauge field has a kinetic
term with a positive sign.

Some further identities one can derive are

LΛIΛΣL̄
Σ = −1

2
, LΛIΛΣf

Σ
i = 0 , (2.27)

fΛ
i IΛΣL

Σ = 0 , fΛ
i IΛΣf

Σ
̄ = −1

2
gi̄ , (2.28)

and

fΛ
i g

i̄fΣ
̄ = −1

2
IΛΣ − L̄ΛLΣ . (2.29)

It is sometimes possible to specify the sections XΛ and FΛ in terms of a single holo-
morphic function F (XΛ), called the prepotential. In applications to supersymmetry, F
is then given as F = 1

2X
ΛFΛ, and is homogeneous of second degree. We then have

FΛ = ∂XΛF and zi = Xi/X0.
Using the period matrix, we define the linear combinations

T−µν = 2iLΛIΣΛF
Σ−
µν ,

Gi−µν = −gi̄fΛ
̄ IΛΣF

Σ−
µν ,

(2.30)

which are called the graviphoton and matter field strengths, respectively. These rela-
tions can be inverted to yield

FΛ−
µν = iL̄ΛT−µν + 2fΛ

i G
i−
µν . (2.31)

Examples

A simple example of special geometry is given by the prepotential

F = − i
2

(X0X0 −X1X1) . (2.32)
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Using a coordinate z = X1/X0, and choosing the gauge X0 = 1, the sections XΛ and
FΛ read

X0 = 1 , X1 = z , F0 = −i , F1 = iz , (2.33)

which are clearly holomorphic functions of z. The metric gi̄ can easily be computed
from (2.19) and reads g = (1 − zz̄)−2 dz dz̄ . We see we have to restrict ourselves to
|z| < 1, and we recognize this as the metric on the Poincaré disk.

Another important class of examples, which arise in Calabi-Yau compactifications
(which will be introduced in section 2.5), is given by

F = −1

6

KijkXiXjXk

X0
, (2.34)

where the Kijk are constant, real numbers, determined by the topology of the Calabi-
Yau manifold.

2.3.2 Hypermultiplets

A hypermultiplet is formed by combining two chiral N = 1 multiplets. The on-shell
contents are four real scalars qu and two chiral fermions ζα. With nH hypermultiplets,
we have bosonic fields qu, with u = 1, . . . , 4nH and fermions ζα with α = 1, . . . , 2nH .
The bosonic Lagrangian for the hypermultiplets is a non-linear sigma model

L = huv∂µq
u∂µqv. (2.35)

Supersymmetry [37] now requires the 4nH -dimensional metric huv to be a quaternionic-
Kähler space, of negative scalar curvature1. This requires that there are three almost
complex structures Jx, x = 1, 2, 3, that satisfy a quaternionic algebra

JxJy = −δxy + εxyzJz. (2.36)

The metric huv is Hermitian with respect to each Jx, and we can define three quater-
nionic two-forms Kx

uv = huw(Jx)wv . They are not closed, but they are covariantly
constant with respect to an SU(2) connection ωx:

DKx ≡ dKx − εxyzωy ∧Kz = 0 . (2.37)

The SU(2) connection ωx defines the SU(2) curvature Ωx≡dωx−1
2ε
xyzωy ∧ωz , and then

we have the relation

Ωx = λKx , (2.38)

1A quaternionic-Kähler space need not be Kähler, and by a slight abuse of nomenclature, we will refer to
them as quaternionic spaces.
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where λ is a non-zero2 constant. Supersymmetry requires this constant to be related to
Newton’s constant (defined below (2.16)) as λ = −κ2, and therefore we have λ = −1.
With these units, the Ricci scalar curvature of the quaternionic manifold is given as
R = −8nH(nH + 2), and is therefore always negative.

We can decompose the metric huv in quaternionic vielbeine UAαu as

huv = UAαu UBβv CαβεAB , (2.39)

where Cαβ and εAB are the antisymmetric symplectic and SU(2) tensors.

The universal hypermultiplet

As an example of a quaternionic space, we discuss the so-called ‘universal hypermul-
tiplet’. In a Calabi-Yau compactification of type II string theory (which will be more
discussed in section 2.5), one finds a number of hypermultiplets. One of these is always
present, and is therefore called the universal hypermultiplet.

It is possible to construct a compactification such that it is also the only hypermulti-
plet. The metric is then the coset space SU(2, 1)/U(2), which can be written in terms of
the real coordinates {r, χ, ϕ, σ} as

ds2 =
1

r2

(
dr2 + r (dχ2 + dϕ2) +

(
dσ + χdϕ

)2)
. (2.40)

The field r is called the dilaton and the metric is restricted to the region where r > 0.
Its expectation value 〈r〉 determines the string coupling constant gs via gs = V〈r〉−1/2,
where V is the volume of the Calabi-Yau space.

2.3.3 The N = 2 supersymmetry transformations

The bosonic part of the complete ungauged N = 2 Lagrangian is given by addition
of (2.18) and (2.35). The fermionic part is lengthy [28], and we will not give it here. It
contains the usual Dirac kinetic terms for the fermions, terms quartic in the fermions (as
in (2.5)) and scalar-fermion-fermion couplings. It is invariant under the transformations

δεψAµ = ∇µεA + T−µνγ
νεA ,

δελ
iA = i∂µz

iγµεA +Gi−µνγ
µνεABεB ,

δεζα = iUBβu ∂µq
uγµεABCαβεA ,

(2.41)

up to terms higher in fermions. The covariant derivative reads

∇µεA =
(
∂µ −

1

4
ωabµ γab

)
εA +

i

2
AµεA + ωµA

BεB . (2.42)

2When λ = 0, we have a hyper-Kähler manifold, which features in the rigidN = 2 hypermultiplet.



26 CHAPTER 2. SUPERGRAVITY

The connections Aµ and ωµAB are discussed in (2.23) and (2.37). We used a general rule
to convert SU(2) indices for the SU(2) connection

ωµA
B ≡ i

2
ωxµ ≡

i

2
∂µq

uωxu . (2.43)

2.4 Gauging isometries and superpotentials

The N = 1 and N = 2 supergravity theories are invariant under a set of global trans-
formations. As we have seen, the chiral, the N = 2 vector and hypermultiplets contain
a non-linear sigma model. If their target space metrics allow for isometries, then they
are invariances of the theory. It is possible to make some of these symmetries local,
while preserving supersymmetry, if we make some modifications to the Lagrangian
and supersymmetry transformations. We start with the situation in N = 2 and finish
with the N = 1 theory.

N = 2 vector multiplets

We first consider the N = 2 vector multiplets and assume the scalar sector to be invari-
ant under the isometries

δGz
i = −gkiΛαΛ, (2.44)

where αΛ are the parameters of the transformations, and we have included a coupling
constant g. This is the generalization of the first equation in (2.13). To preserve su-
persymmetry when we gauge these isometries, the Killing vector fields kiΛ must be
holomorphic.

To close the gauge algebra on the scalars, the Killing vector fields must span a Lie-
algebra with commutation relations

[kΛ, kΣ] = fΛΣ
ΓkΓ , (2.45)

and structure constants fΛΣ
Γ of some Lie-group G that one wishes to gauge. Not all

holomorphic isometries can be gauged withinN = 2 supergravity. The induced change
on the sections needs to be consistent with the symplectic structure of the theory, and
this requires the holomorphic sections to transform as

δG

(
XΛ

FΛ

)
= −gαΣ

[
TΣ ·

(
XΛ

FΛ

)
+ rΣ(z)

(
XΛ

FΛ

)]
. (2.46)

The first term on the right-hand-side of (2.46) contains a constant matrix TΣ that acts on
the sections as infinitesimal symplectic transformations. For electric gaugings, which
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we consider in this thesis, we mean, by definition, that the representation is of the form

TΛ =

(
−fΛ 0

cΛ f tΛ

)
, (2.47)

where fΛ denotes the matrix (fΛ)Σ
Π = fΛΣ

Π and f tΛ is the transposed. The tensor
cΛ,ΣΠ ≡ (cΛ)ΣΠ is required to be symmetric for TΛ to be a symplectic generator. More-
over, there are some additional constraints on the cΛ in order for the TΛ to be symplecti-
cally embedded within the same Lie-algebra as in (2.45). One can easily derive them, for
explicit formulae see [38], or (2.64). The second term induces a Kähler transformation
on the Kähler potential

δGK(z, z̄) = gαΛ
(
rΛ(z) + r̄Λ(z̄)

)
, (2.48)

for some holomorphic functions rΛ(z). Finally, closure of the gauge transformations on
the Kähler potential requires that

kiΛ∂irΣ − kiΣ∂irΛ = fΛΣ
ΓrΓ . (2.49)

We summarize some other identities on vector multiplet gauging in appendix C.
Magnetic gaugings allow also non-zero entries in the upper–right corner of TΛ, but

we will not consider them here. The gauged action, in particular the scalar potential,
that we consider below is not invariant under magnetic gauge transformation. To re-
store this invariance, one needs to introduce massive tensor multiplets, but the most
general Lagrangian with both electric and magnetic gauging is not fully understood yet
(for some partial results see [39–43]).

Given a choice for the gauge group (2.47), one can reverse the order of logic and
determine the form of the Killing vectors, and therefore the gauge transformations of the
scalar fields zi. This analysis was done in [27], and the result is written in the appendix,
see (C.6).

In the Lagrangian, one replaces the partial derivatives with the covariant derivatives

∇µzi = ∂µz
i + gkiΛA

Λ
µ , (2.50)

where the gauge fields AΛ
µ transform as δGAΛ

µ = ∂µα
Λ. Furthermore, the Lagrangian

contains the full non-Abelian field strengths

FΛ
µν =

1

2
(∂µAν − ∂νAµ) +

1

2
fΣΓ

ΛAΣ
µA

Γ
ν . (2.51)

Finally, to preserve supersymmetry, we have to modify the supersymmetry transfor-
mations and add additional terms to the Lagrangian [28], such as mass terms for the
fermions. Also, a scalar potential has to be added, which is given by

V = g2gi̄k
i
Λk

̄
ΣL̄

ΛLΣ . (2.52)
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Hypermultiplets

Similar to the vector multiplet scalars, the hypermultiplet Lagrangian (2.35) has its
isometries as global symmetries, and we can gauge them. The transformation of the
scalars is denoted as

δGq
u = −gk̃uΛαΛ , (2.53)

and these Killing vectors k̃uΛ form a representation of the same gauge algebra as in (2.45):

[k̃Λ, k̃Σ] = fΛΣ
Γk̃Γ . (2.54)

These gaugings again introduce additional fermionic terms and a scalar potential, which
will be given in (2.72).

Moment maps

The Killing vectors kiΛ are holomorphic. Using the Killing equation, one finds that they
can be written as

kiΛ = −igi̄∂̄PΛ , (2.55)

where the real, scalar functions PΛ are called moment maps. For special Kähler spaces,
it is convenient to use instead a definition

PΛ ≡ i(kiΛ∂iK + rΛ) , (2.56)

where rΛ was defined in equation (2.46). Since the Kähler potential satisfies (2.48), it is
easy to show that PΛ is real. From this definition, it is easy to verify (2.55). Hence the
PΛ can be called moment maps, but they are not subject to arbitrary additive constants.
Using (2.49) and (2.56), it is now easy to prove the relation

kiΛgi̄k
̄
Σ − k

i
Σgi̄k

̄
Λ = ifΛΣ

ΓPΓ , (2.57)

also called the equivariance condition. The U(1) Kähler connection also gets additional
terms due to the gauging and reads

Aµ ≡ −
i

2

(
∂iK∇µzi − ∂ῑK∇µz̄ῑ

)
− i

2
gAΛ

µ(rΛ − r̄Λ) . (2.58)

Although the quaternionic spaces are not complex, we can still define moment maps
for the quaternionic Killing vectors. The moment maps P xΛ are defined by

Kx
uvk

v
Λ = DuP

x
Λ ≡ ∂uP xΛ − εxyzωyuP xΛ . (2.59)
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Using these, we find the equivariance condition

Kx
uvk

u
Λk

v
Σ +

1

2
εxyzP yΛP

z
Σ =

1

2
fΛΣ

ΓP xΓ . (2.60)

The SU(2) connection gets modified to

ωµA
B ≡ ∂µquωuAB + gAΛ

µPΛA
B , (2.61)

where PΛA
B = i

2σ
x
A
BP xΛ . In absence of hypersmultiplets, nH = 0, and for suitable

structure constants fΛΣ
Γ, it is possible to keep P xΛ as non-zero constants. This is only

possible if the gauge group contains SU(2) or U(1) factors. Such constants are called
Fayet-Iliopoulos (FI) terms.

Gauge invariance

Under the gauge transformations (2.44), the period matrixNΛΣ transforms. From (2.25)
one finds

δGNΛΣ = −gαΠ
(
fΠΛ

ΓNΓΣ + fΠΣ
ΓNΓΛ + cΠ,ΛΣ

)
. (2.62)

To compensate for this transformation, we need to add an additional term to the La-
grangian [38], which involves the cΛ tensor, which will be given in (2.65). There are
some additional constraints on this tensor. In the abelian case, the only constraint is that
the totally symmetrized c-tensor vanishes, i.e.

cΛ,ΣΠ + cΠ,ΛΣ + cΣ,ΠΛ = 0 . (2.63)

This implies that for a single vector field, the cΛ tensor term vanishes. The additional
constraints for nonabelian gaugings involve the structure constants [38]:

fΛΣ
ΓcΓ,ΠΩ + fΩΣ

ΓcΛ,ΓΠ + fΠΣ
ΓcΛ,ΓΩ + fΛΩ

ΓcΣ,ΓΠ + fΛΠ
ΓcΣ,ΓΩ = 0 . (2.64)

2.4.1 Gauged N = 2 supergravity

The bosonic part of the gauged N = 2 Lagrangian, which is the most general N = 2

theory we consider in this thesis, is given by

L =
1

2
R(g) + gi̄∇µzi∇µz̄̄ + huv∇µqu∇µqv + IΛΣF

Λ
µνF

Σµν +
1

2
RΛΣε

µνρσFΛ
µνF

Σ
ρσ

− 1

3
g cΛ,ΣΠ ε

µνρσAΛ
µA

Σ
ν

(
∂ρA

Π
σ −

3

8
fΩΓ

ΠAΩ
ρA

Γ
σ

)
− V (z, z̄, q) . (2.65)

The first term on the second line is the additional term discussed below (2.62).
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The supersymmetry transformations are (again, up to higher order in fermions)

δελ
iA = i∇µziγµεA +G−iµνγ

µνεABεB + gW iABεB , (2.66)

δεζα = iUBβu ∇µquγµεABCαβεA + gNA
α εA , (2.67)

δεψµA = ∇µεA + T−µνγ
νεABε

B + igSABγµε
B . (2.68)

The matrices W iAB , NA
α and SAB are called the gaugino, hyperino and gravitino mass

matrices respectively, and are given by

W iAB = kiΛL̄
ΛεAB + igi̄fΛ

̄ P
x
Λσ

AB
x , (2.69)

NA
α = 2UAαuk̃uΛL̄Λ , (2.70)

SAB =
i

2
P xΛL

ΛσxAB . (2.71)

Due to the gauging, a scalar potential has to be added to the Lagrangian, and reads

V = g2
[
(gi̄k

i
Λk

̄
Σ + 4huvk

u
Λk

v
Σ)L̄ΛLΣ + (gi̄fΛ

i f̄
Σ
̄ − 3L̄ΛLΣ)P xΛP

x
Σ

]
. (2.72)

The first three terms are non-negative, whereas the last one is non-positive. The scalar
potential can be written in terms of the mass matrices as

V = −6SABSAB +
1

2
gi̄W

iABW ̄
AB +NA

αN
α
A . (2.73)

2.4.2 Gauged N = 1 supergravity

Similar to the N = 2 situation, the holomorphic isometries of the non-linear sigma
model in (2.5) can be gauged. To do this, we first couple these chiral multiplets to
gravity and add additional N = 1 vector multiplets to the theory. The bosonic terms in
the ungauged Lagrangian read [44]

L =
1

2
R+ gi̄∂µz

i∂µz̄ + Re fΛΣ(z)FΛ
µνF

Σ|µν +
1

2
Im fΛΣ(z)εµνρσFΛ

µνF
Σ
ρσ − V . (2.74)

The gauge-coupling matrix fΛΣ(z) is holomorphic in the zi, and its real part should be
invertible. The scalar potential V is given by

V = eK
(
gi̄DiWD̄W − 3|W |2

)
, (2.75)

which is the supergravity version of (2.10). In supergravity, under the Kähler transfor-
mations (2.7), the superpotential W changes as W → e−fW . The Kähler covariant
derivative DiW is given by DiW ≡ (∂i + ∂iK)W , and the scalar potential (2.75) is
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invariant under Kähler transformations. Due to these Kähler transformations, it can
be seen that the potential only depends on the invariant combination G ≡ eK|W |2, but
we find it convenient to write it in terms of K and W . Comparison of this potential with
the potential in rigid supersymmetry (2.10) also shows the addition of a negative term,
which is a typical feature of supergravity.

Gauging the isometries of gi̄ now leads to the N = 1 Lagrangian [45–47]

L =
1

2
R+ gi̄∇µzi∇µz̄ + Re fΛΣ(z)FΛ

µνF
Σ|µν +

1

2
Im fΛΣ(z)εµνρσFΛ

µνF
Σ
ρσ

− 1

3
g cΛ,ΣΠ ε

µνρσAΛ
µA

Σ
ν

(
∂ρA

Π
σ −

3

8
fΩΓ

ΠAΩ
ρA

Γ
σ

)
− V .

(2.76)

The term proportional to cΛ,ΣΠ is again needed to restore gauge invariance when fΛΣ(z)

transforms non-trivially under gauge transformations. In N = 1, one does not need to
impose condition (2.63) (although (2.64) is still required), as the completely symmetric
part of cΛ,ΣΠ can be canceled by an anomaly in the chiral fermion spectrum. For a
modern account on these terms in N = 1 we refer to [48]. The N = 1 scalar potential is
then given by

V = eK
(
gi̄DiWD̄W − 3|W |2

)
+

1

2
Re f−1|ΛΣDΛDΣ . (2.77)

The DΛ are again moment maps, and hence real solutions to the equation

kiΛ = −igi̄∂̄DΛ . (2.78)

The last term in (2.77) is called the D-term, and the first two are called the F-terms.

2.5 Compactifications

The four-dimensional supergravities can sometimes be related to higher-dimensional
theories. If one studies the low energy dynamics of string theory, one finds a higher-
dimensional supergravity theory. In this thesis, we use the type IIA and IIB superstring
theories, which give a ten-dimensional supergravity theory. We also study eleven-
dimensional supergravity theory.

There is a way in which these ten- and eleven-dimensional theories could describe
our four-dimensional world. One assumes that six or seven dimensions are compact
and very small, so they are not observed in our nature. The remaining four dimensions
are non-compact, and describe our world. Using this assumption, one can form an
effective theory of the four-dimensional dynamics. This procedure is called compactifi-
cation.
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As an example, consider a scalar field φ in D+1 dimensions, satisfying the Klein-
Gordon equation

(�D+1 −m2)φ = 0 . (2.79)

Suppose now that one of these dimensions is a circle of radius R, with a coordinate z.
We then expand the field φ in Fourier modes as

φ(xµ, z) =
∑
n

φn(xµ)einz/R , (2.80)

where xµ label the other D dimensions. Using this in the Klein-Gordon equation, we
obtain ∑

n

(
�Dφn −

(
m2 +

n2

R2

)
φn

)
einz/R = 0 . (2.81)

The various modes φn(xµ) decouple in the equations of motion. The mass of each mode
gets an addition term, increasing with |n|. WhenR is very small, the masses of all modes
will be very large, except for the mode φ0(xµ). To study the low-energy dynamics, one
can integrate out the other modes, and keep only φ0.

2.5.1 Kaluza-Klein theory

This simple example can be generalized to more complicated fields and more compli-
cated space-times. One such example is Kaluza-Klein theory. Here one starts with pure
gravity in five dimensions

S =
1

2

∫
d5x
√
−ĝR̂(ĝ) , (2.82)

where we use hats to indicate five-dimensional quantities. One now assumes that one
of the spatial dimensions has the topology of a circle S1 with radius R. We decompose
the five-dimensional metric as

ĝ =

(
k−1gµν +R2AµAν −R2Aµ

−R2Aν R2

)
. (2.83)

Here we have defined a four-dimensional metric g and a gauge fieldAµ, and we assume
that none of these fields depend on the circle coordinate. The symmetries of the five-
dimensional metric precisely yield the correct symmetries in four-dimensions, such that
Aµ has a gauge degree of freedom. Inserting this ansatz into (2.82) one computes

S =
1

2

∫
d4x

∫
S1

√
−ĝR̂(ĝ) =

1

2

∫
d4x
√
−g
(
R(g)− 3

2
k−2∂µR∂

µR−R3FµνF
µν

)
,

(2.84)
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where Fµν is the gauge field associated with Aµ. We see that a theory of only gravity in
five dimensions gives a theory with gravity, a gauge field and a scalar in four dimen-
sions. This does not capture the full dynamics of the five-dimensional theory, as we
have left out the massive modes in the ansatz (2.83).

As supergravity contains gravity, the compactifications of supergravity are gener-
alizations of this Kaluza-Klein reduction. The other fields in the theory are then also
expanded, using an ansatz as (2.83). If one reduces the eleven-dimensional supergravity
on a small circle, one precisely finds the ten-dimensional IIA supergravity theory.

2.5.2 Scherk-Schwarz compactifications

A related method is given by the Scherk-Schwarz compactifications. Suppose we have
a five-dimensional, complex free scalar field φ̂

L = ∂µ̃φ̂∂µ̃φ̂ . (2.85)

We now assume that φ̂ has a non-trivial dependence on the circle coordinate z:

∂zφ̂ = iαφ̂ , (2.86)

where α is a constant. This dependence is chosen such that it corresponds to a symmetry
of the scalar field. One can combine this ansatz with the complete tower of Kaluza-
Klein states of (2.80); this will be discussed in the introduction of section 5. Although φ̂
depends on z, the five-dimensional Lagrangian (2.85) does not, so we can evaluate the
action at some fixed z = z0 and perform the integral over the circle. Using the same
metric ansatz (2.83), one computes∫

d4x

∫
S1

dz
√
−g̃∂µ̂φ̂ ∂µ̂φ̂ =

∫
d4x
√
−g
(
DµφDµφ+R−3α2|φ|2

)
, (2.87)

whereDµφ = ∂µφ+iαAµ. We see that the massless five-dimensional scalar gives a four-
dimensional, gauged scalar and we have generated a scalar potential. This construction
could therefore give masses to moduli fields and will be studied in section 5.

2.5.3 Calabi-Yau compactifications

A next step is to compactify the ten-dimensional action to four dimensions. One could
compactify on six circles, but it is far more interesting to compactify on different spaces.
A popular choice is to compactify on a compact Calabi-Yau (CY) three-fold. This is a
six-dimensional space which admits a Ricci-flat Kähler metric. The Ricci-flatness im-
plies that this is a solution to the ten-dimensional field equations. For constant gauge
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fields, with vanishing field strengths, these equations state the vanishing of the ten-
dimensional Ricci tensor, RMN = 0. The product space R3,1×CY solves this condition,
as both factors are Ricci-flat. Furthermore, they admit covariantly constant spinors,
which ensures that they preserve some supersymmetry. Compactification of a maxi-
mally supersymmetric theory in ten dimensions, which has 32 supercharges, yields a
four-dimensional theory with 8 supercharges, which is an N = 2 theory.

We now turn to some geometrical concepts of Calabi-Yau manifolds; we refer to [49,
50] for more detail and background. As a complex space, a CY manifold has a holomor-
phic exterior derivative ∂ and an anti-holomorphic ∂̄. Their (equal) cohomology groups
are denoted by Hp,q , and their dimensions by the Hodge numbers hp,q .

As the CY manifold is Kähler, the Laplacian ∆ constructed out of ∂ equals the one
constructed from ∂̄ and (up to a factor 2) the one from d = ∂ + ∂̄. An harmonic form
ω satisfies ∆ω = 0. An important result is that the dimension of harmonic p, q-forms
equals hp,q ; in particular it is finite. The numbers h1,1 and h2,1 completely specify the
number of harmonic forms on a simply-connected CY three-fold: there always is only
one zero-form, and the number of p-forms is equal to the number of (6−p)-forms. There
are no one-forms as it is simply connected. The number of harmonic two-forms is then
given by h1,1 and the number of harmonic three-forms by 2h2,1 + 2.

Similar to (2.80), we expand our fields as

φ(xµ, yi) =
∑
n

φn(xµ)ωn(yi) , (2.88)

where yi are coordinates on the Calabi-Yau threefold, and ωn is a basis of harmonic
forms on this space. If the field φ(xµ, yi) has additional indices (such as with a gauge
field), these will also appear on φn and ωn. As we only keep harmonic forms in this
expansion, this will only produce the massless modes. This expansion is then inserted
into the Lagrangian, and the integration over the coordinates yi is performed. The re-
sulting four-dimensional action then only contains fields that depend on xµ. Although
the geometry of a CY is complicated, we do know enough about the harmonic forms
ωn to do the expansions and integration. Such a compactification is done in detail in
section 5.2.1.

We will only highlight some important points. Suppose we study the expansion of
the ten-dimensional two-form B̂2. We expand this as

B̂2(x, y) = b2(x) + bi(x)ωi(y) , (2.89)

where b2(x) is a two-form in four dimensions, bi are scalars and ωi are harmonic two-
forms on the CY space. We now look at the field-strength Ĥ3 ≡ dB̂2. This is given
by

Ĥ3 = db2 + dbi ∧ ωi . (2.90)
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Here we have used that ωi is closed, dωi = 0. As the ten-dimensional action is writ-
ten in terms of Ĥ3, we can insert this expansion into the action. Ignoring the terms
proportional to b2 for clarity, we find∫

R3,1

∫
CY

Ĥ3 ∧?10 Ĥ3 =

∫
R3,1

gij dbi ∧?4 dbj , (2.91)

where gij ≡
∫
CY

ωi∧?6 ωj . As there are no mass-terms, the scalars bi are massless scalars
and are part of the moduli.

2.5.4 Flux compactifications

A possible construction to give masses to the moduli is via a flux compactification. We
now give the ten-dimensional field strengths a non-trivial expectation value. This is
very similar to the electric and magnetic fluxes of Maxwell theory (see e.g. section IID
of [12]). The ten-dimensional field equations imply that the internal space cannot be a
Calabi-Yau manifold anymore, due to the backreaction of the fluxes on the geometry.
We therefore need different spaces to use in the compactification.

A popular choice are manifolds with SU(3) or with SU(3)×SU(3) structure, as they
have a globally defined spinor (for more details on this, see section 3.2 in [11]). A sub-
class of these models are the conformal Calabi-Yau manifolds. In these models [51],
the Calabi-Yau metric is multiplied with an overall scalar function, called the warp
factor. It is then shown that for large volume V , the warp factor becomes constant. This
construction led to the development of the ‘large volume scenario’ (LVS) [20], where
the volume is stabilized at an exponentially large value. For more information on flux
compactifications, we refer to the reviews [11–13].





Chapter 3

Fully supersymmetric vacua

3.1 Introduction

In this chapter, we consider four-dimensional N = 2 gauged supergravities, and study
the configurations that preserve maximal supersymmetry, i.e. eight supercharges. We
only consider electric gaugings because magnetic gaugings require in addition massive
tensor multiplets which have not been fully constructed yet. In the ungauged case,
N = 2 models arise e.g. from Calabi-Yau compactifications of type II string theories, or
K3×T 2 compactifications of the heterotic string. Both models are known to have a rich
dynamical structure with controllable quantum effects in both vector- and hypermul-
tiplet sectors that are relatively well understood. Gaugings in N = 2 supergravity are
well studied and have a long history [28, 35, 38, 52–56]. Their analysis in terms of string
compactifications with fluxes started in [57–59], and is an ongoing research topic. For a
(partial) list of references, see [60–67].

In the ungauged case, a complete classification of all the supersymmetric solutions
already exists [68–71], while there also are solutions in the gauged case for (abelian)
vector multiplets [72–74]. We extend this by taking completely general vector- and
hypermultiplet sectors. Since we concentrate only on the maximally supersymmetric
solutions, we use different methods than the ones in the above references. In fact the
space-time conditions we obtain for our solutions closely resemble other maximally
supersymmetric solutions in different theories such as [75].

Plan of this chapter

The plan of this chapter is as follows. In section 2, we analyze the supersymmetry rules
and derive the conditions for maximally supersymmetric vacua. The possible solutions
divide in two classes of space-times, with zero scalar curvature and with negative scalar
curvature, and we explicitly list all the possible outcomes. We give the Lagrangian
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and the scalar potential for the obtained vacua in section 3, paying special attention to
the Chern-Simons-like term determined by the c-tensor of the electric gauging. This
term generically exists in N = 2 supergravity and string theory compactifications and
we show how it influences the maximally supersymmetric vacua. In section 4, we
discuss explicit cases from string theory compactifications and general supergravity
considerations that exemplify the use of our maximal supersymmetry conditions. Some
definitions of our conventions and notations are given in the appendices, where we also
present some intermediate and final formulae that are important for our results.

3.2 Supersymmetry transformations

It can be seen by inspection that the maximally supersymmetric configurations3 are
purely bosonic, and the fermions need to be zero. This follows from the supersymmetry
variations of the bosonic fields, which can be read off from [28]. Therefore, we can
restrict ourselves to the supersymmetry variations of the fermions only.

3.2.1 Gauginos

As seen in section 2.4.1, the transformation of the gauginos is given by

δελ
iA = i∇µziγµεA +Gi−µνγ

µνεABεB + gW iABεB , (3.1)

up to terms that are higher order in the fermions and which vanish for purely bosonic
configurations.

A maximally supersymmetric configuration preserves the full eight supercharges,
hence the variation of the fermions should vanish for all choices of the supersymmetry
parameters. Since at each point in spacetime they are linearly independent, the first
term on the right hand side of (3.1) must vanish separately from the others,

∇µzi ≡ ∂µzi + gAΛ
µk

i
Λ = 0 . (3.2)

It implies the integrability condition4

FΛ
µν k

i
Λ = 0 , (3.3)

and complex conjugate. Here, FΛ
µν is the full non-abelian field strength, given by

FΛ
µν =

1

2
(∂µAν − ∂νAµ) +

1

2
fΣΓ

ΛAΣ
µA

Γ
ν . (3.4)

3In this paper we use interchangeably the terms maximally supersymmetric configurations and BPS con-
figurations, meaning the field values that are invariant under all eight supercharges in the theory.

4We will assume in the remainder of this chapter that the gauge coupling constant g 6= 0. The case of g = 0

is treated in the literature in e.g. [70, 71].
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The second and third term in the supersymmetry variation of the gauginos, equation
(3.1), need also to vanish separately, since they multiply independent spinors of the
same chirality. For the second term, this leads to

Gi−µν = 0 , (3.5)

where gi̄ is the inverse Kähler metric, with Kähler potential K from (2.19).
Finally, setting the third term in the supersymmetry variation to zero leads to

W iAB ≡ kiΛL̄ΛεAB + igi̄fΛ
̄ P

x
Λσ

AB
x = 0 . (3.6)

Close inspection of (3.6) shows that both terms are linearly independent in SU(2)R
space, hence they must vanish separately,

kiΛL̄
Λ = 0 , P xΛf

Λ
i = 0 , (3.7)

and their complex conjugates.

3.2.2 Hyperinos

The hyperinos transform as

δεζα = iUBβu ∇µquγµεAεABCαβ + gNA
α εA , (3.8)

again, up to terms that are of higher order in the fermions. The hyperino mass matrix
NA
α is defined by

NA
α ≡ 2UAαuk̃uΛL̄Λ . (3.9)

Similarly as for the gauginos,N = 2 supersymmetric configurations require the two
terms in (3.8) to vanish separately. Since the quaternionic vielbeine are invertible and
nowhere vanishing, the scalars need to be covariantly constant,

∇µqu ≡ ∂µqu + gAΛ
µ k̃

u
Λ = 0 , (3.10)

implying the integrability conditions

FΛ
µν k̃

u
Λ = 0 . (3.11)

Furthermore, there is a second condition from (3.8) coming from the vanishing of the
hyperino mass matrix NA

α . This leads to

k̃uΛL
Λ = 0 , (3.12)

and complex conjugate.
In the absence of hypermultiplets, i.e. when nH = 0, the N = 2 conditions from the

variations of the hyperinos disappear. However, the second condition in (3.7) remains,
with the moment maps replaced by FI parameters. Our formalism therefore automati-
cally includes the case nH = 0.
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3.2.3 Gravitinos

The supersymmetry transformations of the gravitinos are (up to irrelevant higher order
terms in the fermions)

δεψµA = ∇µεA + T−µνγ
νεABε

B + igSABγµε
B . (3.13)

Here,∇µεA is the gauged supercovariant derivative (specified in equation (2.4.1)).
Notice again that for nH = 0, in fact even also in the absence of vector multiplets

when nV = 0, the gravitino mass-matrix SAB can be non-vanishing and constant. In the
Lagrangian, which we discuss in the next section, this leads to a (negative) cosmological
constant term. The anti-selfdual part of the graviphoton field strength Tµν satisfies the
identity (2.31)

FΛ−
µν = iL̄ΛT−µν + 2fΛ

i G
i−
µν , (3.14)

with Gi−µν defined in (2.30). From the vanishing of the gaugino variation, we have that
Gi−µν = 0, so a maximally supersymmetric configuration must satisfy FΛ−

µν = iL̄ΛT−µν , or

FΛ
µν = iL

Λ
T−µν − iLΛT+

µν . (3.15)

Using this, we then see that equation (3.12) implies the integrability conditions (3.11) in
the hypermultiplet sector. For the integrability equations in the vector multiplet sector,
the situation is more subtle, as the Killing vectors are complex and holomorphic. Now,
the BPS condition (3.7) only implies that

kiΛF
Λ
µν = −ikiΛLΛT+

µν . (3.16)

In appendix C we show that kiΛL
Λ = 0 is an identity of the theory, and hence the in-

tegrability condition is always satisfied. The integrability condition might only locally
be sufficient, but this is fine for our purposes. One might however check in addition
whether the covariant constancy of the vector multiplet scalars imposes further (global)
restrictions.

To solve the constraints from the gravitino variation, we must first look at the gauged
supercovariant derivative on the supersymmetry parameter, given by (2.42)

∇µεA = (∂µ −
1

4
ωabµ γab)εA +

i

2
AµεA + ωµA

BεB . (3.17)

Besides the spin connection ωabµ , there appear two other connections associated to the
special Kähler and quaternion-Kähler manifolds. We need to compute their curvatures
since they enter the integrability conditions that follow from the Killing spinor equa-
tions. The first one is called the gauged U(1) Kähler-connection, defined by [27, 28]

Aµ ≡ −
i

2

(
∂iK∇µzi − ∂ῑK∇µz̄ῑ

)
− i

2
gAΛ

µ(rΛ − r̄Λ) . (3.18)
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Under a gauge transformation, one finds that

δGAµ =
i

2
g ∂µ

[
αΛ(rΛ − r̄Λ)

]
. (3.19)

The curvature of this connection can be computed to be

Fµν = igi̄∇[µz
i∇ν]z̄

̄ − gFΛ
µνPΛ , (3.20)

where PΛ is the moment map, defined in (2.56), and we have used the equivariance con-
dition (2.57). For maximally supersymmetric configurations, the scalars are covariantly
constant and hence the curvature of the Kähler connections satisfies Fµν = −gFΛ

µνPΛ.
The second connection appearing in the gravitino supersymmetry variation is the

gauged Sp(1) connection of the quaternion-Kähler manifold (2.61). It reads

ωµA
B ≡ ∂µquωuAB + gAΛ

µPΛA
B , (3.21)

where ωuAB is the (ungauged) Sp(1) connection of the quaternion-Kähler manifold,
whose curvatures are related to the three quaternionic two-forms. The effect of the
gauging is to add the second term on the right hand side of (3.21), proportional to the
triplet of moment maps of the quaternionic isometries, with PΛA

B = i
2P

x
Λ(σx)A

B . The
curvature of (3.21) can then be computed to be

Ωµν A
B = 2Ωuv A

B∇[µq
u∇ν]q

v + gFΛ
µνPΛA

B , (3.22)

where Ωuv A
B is the quaternionic curvature. For fully BPS solutions, we therefore have

Ωµν A
B = gFΛ

µνPΛA
B .

We can now investigate the integrability conditions that follow from the vanishing
of the gravitino transformation rules (3.13). From the definition of the supercovariant
derivative (3.17), we find5

[∇µ,∇ν ]εA = −1

4
Rµν

abγab εA − igFΛ
µνPΛεA + 2gFΛ

µνPΛA
BεB , (3.23)

where we have used the covariant constancy of the scalars. We recall that PΛ are the
moment maps on the special Kähler geometry, whereas PΛA

B are the quaternion-Kähler
moment maps. Alternatively, we can compute the commutator from the vanishing of
the gravitino variations spelled out in (2.68). By equating this to the result of (3.23),
we get a set of constraints. Details of the calculation are given in appendix C, and the

5Strictly speaking, we get the supercovariant curvatures appearing in (3.23), which also contain fermion
bilinears. Since the fermions are zero on maximally supersymmetric configurations, only the bosonic part of
the curvatures remains.
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results can be summarized as follows. First of all, we find the covariant constancy of the
graviphoton field strength6

DρT
+
µν = 0 . (3.24)

Secondly, we get that the quaternionic moment maps must satisfy

εxyzP yP z = 0 , P x ≡ LΛP xΛ . (3.25)

Moreover, there are cross terms between the graviphoton and the moment maps, which
enforce the conditions

T+
µν P

x = 0 . (3.26)

This equation separates the classification of BPS configurations in two sectors, those
with a solution of P x = 0 at a particular point (or locus) in field space, and those with
non-vanishing P x (for at least one index x) but Tµν = 0. We will see later on that this
distinction corresponds to zero or non-zero (and negative) cosmological constant in the
spacetime.

Another requirement that follows from the gravitino integrability conditions is

FΛ
µνPΛ = 0 , (3.27)

where PΛ is defined in (2.56), and is real. Using (3.15), this is equivalent to the condition

L̄ΛPΛT
−
µν = LΛPΛT

+
µν , (3.28)

which is satisfied as PΛL
Λ = 0, so (3.27) does not lead to any new constraint.

Finally, there is the condition on the spacetime Riemann curvature. It reads

Rµνρσ = 4T+
µ[σT

−
ρ]ν + g2P xP xgµσgνρ − (µ↔ ν) . (3.29)

It can be checked that this leads to a vanishing Weyl tensor, implying conformal flatness.
From the curvature, we can compute the value of the Ricci-scalar to be

R = −12g2P xP x . (3.30)

Hence, the classification of fully supersymmetric configurations separates into negative
scalar curvature with P xP x 6= 0, and zero curvature with P x = 0 at the supersymmetric
point. In both of these cases there are important simplifications.

6Recall that T+ and T− are related by complex conjugation, and hence the vanishing of DT+ implies
DT = 0.



43

Negative scalar curvature

The case of negative scalar curvature is characterized by Tµν = 0 and P xP x 6= 0 at the
supersymmetric point. Since the BPS conditions imply that then both Tµν and Gi−µν = 0

(see equation (3.5)), we find that all field strengths should be zero: FΛ
µν = 0. The gauge

fields then are required to be pure gauge, but can still be topologically non-trivial. Fur-
thermore, because of the vanishing field strengths, the integrability conditions on the
scalar fields are satisfied, and a solution for the sections XΛ(z) is obtained by a gauge
transformation on the constant (in spacetime) sections. Finally, the Riemann tensor is
given by

Rµνρσ = g2P xP x (gµσgνρ − gνσgµρ) , (3.31)

which shows that the space is maximally symmetric, and therefore locally AdS4. The
scalar curvature is R = −12g2P xP x.

Zero scalar curvature

The class of zero curvature is characterized by configurations for which P x = 0 at the
supersymmetric point. In this case, we can combine the conditions P xΛf

Λ
i = 0 and

P x ≡ P xΛLΛ = 0 into

P xΛ

(
L̄Λ

fΛ
i

)
= 0 . (3.32)

The matrix appearing here is the invertible matrix of special geometry (as used in (2.25)),
hence we conclude that P xΛ = 0. The Riemann tensor is then

Rµνρσ = 4T+
µ[σT

−
ρ]ν − (µ↔ ν) . (3.33)

From the covariant constancy of the graviphoton, condition (3.24), we findDρRµνστ = 0.
Spaces with covariantly constant Riemann tensor are called locally symmetric, and they
are classified, see e.g. [75–77]. In our case we also have zero scalar curvature, and then
only three spaces are possible:

1. Minkowski space M4 (Tµν = 0)

2. AdS2 × S2

3. The pp-wave solution

The explicit metrics and field strengths for the latter two cases (M4 and AdS4 are well-
known and have vanishing field strengths) are listed in appendix A.2.
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3.2.4 Summary

Let us now summarize the results. There are two different classes: negative scalar cur-
vature (leading to AdS4) and zero scalar curvature solutions (leading to M4, AdS2 × S2

or the pp–wave).
The result of our analysis is that all the conditions on the spacetime dependent part

are explicitly solved7, and the remaining conditions are purely algebraic, and depend
only on the geometry of the special Kähler and quaternionic manifolds. The solutions to
these algebraic equations define the configuration space of maximally supersymmetric
configurations. There are two separate cases:

Negative scalar curvature (AdS4)

This case is characterized by configurations for which P xP x 6= 0 at the supersymmetric
point. The BPS conditions are

kiΛL
Λ

= 0 , k̃uΛL
Λ = 0 ,

P xΛf
Λ
i = 0 , εxyzP yP z = 0 ,

which should be satisfied at a point (or a locus) in field space. The field strengths are
zero, FΛ

µν = 0, and the space–time is AdS4 with scalar curvature R = −12g2P xP x.

Zero scalar curvature (M4, AdS2 × S2 or pp–wave)

In this case, the BPS conditions are

kiΛL
Λ

= 0 , k̃uΛL
Λ = 0 ,

P xΛ = 0 .

We remind that, when Tµν = 0 (Minkowski space), all field strengths are vanishing
(FΛ
µν = 0).

7This is apart from the scalar fields and Killing spinors, which are spacetime dependent. The integrability
conditions that we have imposed guarantee locally the existence of a solution, although we did not explicitly
construct it. Its construction cannot be done in closed form in full generality, but can be worked out in any
given example [77].
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3.3 Examples

In this section we list some (string theory motivated) examples ofN = 2, D = 4 theories,
leading to N = 2 supersymmetric configurations. We will first mention briefly some
already known and relatively well-understoodN = 2 vacua from string theory and then
concentrate on our two main examples in subsections 3.3.1 and 3.3.2 that exhibit best the
different features discussed above. In the last subsection we include some supergravity
models, not necessarily obtained from string compactifications, leading to AdS4 vacua
that can be of interest.

Obtaining gauged N = 2, D = 4 supergravity seems to be important for string the-
ory compactifications since it is an intermediate step between the more realistic N = 1

models and the mathematically controllable theories. Thus in the last decade there
has been much literature on the subject. An incomplete list of examples consists of
[60, 64–67] and it is straightforward to impose and solve the maximal supersymmetry
constraints in each case. In some cases the vacua have been already discussed or must
exist from general string theory/M-theory considerations.

For example, it was found that the coset compactifications studied in [66] do not
lead to N = 2 supersymmetric configurations. This can also be seen from imposing the
constraints in section 3.2.4. In contrast, the compactification on K3 × T 2/Z2 presented
in [60] does exhibit N = 2 solutions with non-trivial hypermultiplet gaugings. The
authors of [60] explicitly found N = 2 Minkowski vacua by satisfying the same susy
conditions as in section 3.2.4. From our analysis, it trivially follows that also the pp-
wave and the AdS2 × S2 backgrounds are maximally supersymmetric.

A similar example is provided by the (twisted) K3 × T 2 compactification of the
heterotic string, recently analyzed in [67]. For abelian gaugings, one can verify that
the three zero scalar curvature vacua are present in these models.

We now turn to discuss the remaining models in more detail.

3.3.1 M-theory compactification on SU(3) structure manifolds

There is a very interesting model for N = 2, D = 4 supergravity with non-abelian
gauging of the vector multiplet sector, arising from compactifications of M-theory on
seven-manifolds with SU(3) structure [64]. More precisely, they consider Calabi-Yau
(CY) threefolds fibered over a circle. The c-tensor, introduced in (2.62)-(2.63), is non-
trivial in these models. These models will be extended in chapter 5. For the precise
M-theory set-up, we refer the reader to section 5.4 or the original paper [64]; here we
only discuss the relevant data for analyzing the maximal supersymmetry conditions:
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• The vector multiplet space can be parametrized by special coordinates,XΛ =(1, ti),
ti = bi + ivi, and prepotential

F (X) = −1

6
Kijk

XiXjXk

X0
, (3.34)

with the triple intersection numbers Kijk that depend on the particular choice of
the CY-manifold. This gives the Kähler potential

K = − log
[ i

6
κijk(ti − t̄i)(tj − t̄j)(tk − t̄k)

]
≡ − logV , (3.35)

where V denotes the volume of the compact manifold. The gauge group is non-
abelian with structure constants

fΛΣ
0 = 0 = fij

k, fi0
j = −M j

i , (3.36)

and a c-tensor whose only non-vanishing components are

ci,jk =
1

2
M l
iKljk . (3.37)

The constant matrix M j
i specifies the Killing vectors and moment-maps of the

special Kähler manifold:

kj0 = −M j
kt
k , kji = M j

i , (3.38)

and
P0 = −M j

i t
i∂jK , Pi = M j

i ∂jK . (3.39)

Not for any choice of M j
i is the Killing equation satisfied. As explained in [64],

this is only the case when the relation (2.63) holds. This also ensures that (2.64) is
satisfied, as one can easily check.

• Generally in this class of compactifications there always appear hypermultiplet
scalars, but there is no gauging of this sector, so the Killing vectors and the mo-
ment maps P xΛ are vanishing.

The scalar potential in this case reduces to the simple formula

V = − 8

V2
Mk
i M

l
jKklmvivjvm , (3.40)

which is positive semi-definite.
Analyzing the susy conditions is rather straightforward. Since P x = 0, the only

allowed N = 2 vacua are the ones with zero-scalar curvature. What is left for us to
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check are the conditions kiΛL̄
Λ = 0 and PΛL

Λ = 0. The latter is very easy to check and
holds as an identity at every point in the special Kähler manifold. Also, it is equivalent
to the relation kiΛL

Λ = 0 which is satisfied whenever there exists a prepotential [54]. The
condition kiΛL̄

Λ = 0 eventually leads to

M i
j(t

j − t̄j)
V

= 2i
M i
jv
j

V
= 0 , ∀i . (3.41)

The solution to the above equation that always exists is the decompactification limit
when V → ∞. The other more interesting solutions depend on the explicit form of the
matrix M . In case M j

i is invertible there are no further solutions to (3.41). On the other
hand, when M has zero eigenvalues we can have N = 2 M-theory vacua, given by (a
linear combination of) the corresponding zero eigenvectors of M . For the supergravity
approximation to hold, one might require that this solution leads to a non-vanishing
(and large) volume of the CY three-fold. Each eigenvector will correspond to a flat
direction of the scalar potential, and with V = 0 along these directions. The case where
the full matrixM is zero corresponds to a completely flat potential, the one of a standard
M-theory compactification on CY × S1 without gauging.

Thus it is clear thatM j
i is an important object for this type of M-theory compactifica-

tions and we now give a few more details on its geometrical meaning [64]. In the above
class of M-theory compactifications we have a very specific fibration of the Calabi-Yau
manifold over the circle. It is chosen such that only the second cohomology H(1,1)(CY )

is twisted with respect to the circle, while the third cohomology H3(CY ) is unaffected.
Thus the hypermultiplet sector remains ungauged as in regular CY × S1 compactifi-
cation, while the vector multiplets feel the twisting and are gauged. This twisting is
parametrized exactly by the matrix M , as it determines the differential relations of the
harmonic (on the CY manifold) two-forms:

dωi = M j
i ωj ∧ dz , (3.42)

where z is the circle coordinate.
Let us now zoom in on the interesting case when we have nontrivial zero eigenvec-

tors of M , corresponding to non-vanishing volume of the CY manifold. For a vanishing
volume, or a vanishing two-cycle, the effective supergravity description might break
down due to additional massless modes appearing in string theory8. Therefore the
really consistent and relevant examples forN = 2 vacua are only those when the matrix
M is non-invertible with corresponding zero eigenvectors that give nonzero value for
every vi.

To illustrate this better, we consider a particular example, given in section 2.5 of [64],
of a compactification where the CY three-fold is a K3-fibration. In this setting one can

8For a detailed analysis of the possibilities in a completely analogous case in five dimensions see [78].
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explicitly construct an M -matrix, compatible with the intersection numbers Kijk. Here
one can find many explicit cases where all of the above described scenarios happen. As a
very simple and suggestive example we consider the 5-scalar case withK144 = K155 = 2,
K123 = −1, and twist-matrix

M =


0 0 0 0 0

0 4 0 −2 −2

0 0 −4 2 2

0 1 −1 0 0

0 1 −1 0 0

 . (3.43)

The general solution of M · ~v = 0 is

~v = λ


1

0

0

0

0

 + µ


0

1

1

2

0

 + ν


0

1

1

0

2

 , (3.44)

and the resulting volume is

V = 8λ
(
2µ2 + 2ν2 + (µ− ν)2

)
, (3.45)

which is clearly positive semi-definite. In the case when either µ or ν vanishes we have
a singular manifold that is still a solution to the maximal supersymmetry conditions.
When all three coefficients (that are essentially the remaining unstabilized moduli fields)
are non-zero, we have a completely proper solution both from supergravity and string
theory point of view, thus providing an example of SU(3) structure compactifications
with zero-curvature N = 2 vacua. This example can be straightforwardly generalized
to a higher number of vector multiplets, as well as to the lower number of 4 scalars
(there cannot be less than 4 vector multiplets in this particular case).

Finally we note that a special case of the general setup described above was already
known for more than twenty years in [38] (3.21), whereM1

1 = −2,M2
2 = 1, andK122 = 2.

It was derived purely from 4d supergravity considerations, but it now seems that one
can embed it in string theory.

3.3.2 Reduction of M-theory on Sasaki-Einstein7

There has been much advance in the last years in understanding Sasaki-Einstein man-
ifolds and their relevance for M-theory compactifications, both from mathematical and
physical perspective. A metric ds2 is Sasaki-Einstein iff the cone metric, defined as
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ds2
cone ≡ dr2 + r2ds2, is Kähler and Ricci-flat. These spaces are good candidates for

examples of the AdS4/CFT3 correspondence and an explicit reduction to D = 4 has
been recently obtained in [65]. Originally the effective Lagrangian includes magnetic
gauging and a scalar-tensor multiplet, but after a symplectic rotation it can be formu-
lated in the standard N = 2 formalism discussed here. After the dualization of the
original tensor to a scalar we have the following data for the multiplets, needed for
finding maximally supersymmetric vacua:

• There is one vector multiplet, given by XΛ = (1, τ2) and F (X) =
√
X0(X1)3,

leading to FΛ = ( 1
2τ

3, 3
2τ

2) and Kähler potential

K = − log
i

2
(τ − τ̄)3 . (3.46)

There is no gauging in this sector, i.e. kiΛ = 0 and PΛ = 0 for all i,Λ. This also
means that both fΛΣ

Π and cΛ,ΣΠ vanish.

• The hypermultiplet scalars are {r, χ, ϕ, σ} with the universal hypermultiplet met-
ric9, introduced in (2.40):

ds2 =
1

r2

(
dr2 + r(dχ2 + dϕ2) + (dσ + χdϕ)2

)
. (3.47)

We have an abelian gauging, given by:

k̃0 = 24∂σ + 4
(
χ∂ϕ − ϕ∂χ +

1

2
(φ2 − χ2)∂σ

)
,

k̃1 = 24∂σ ,
(3.48)

and the moment maps, calculated in the appendix (D), are

P 1
0 =

4χ√
r
, P 2

0 =
4ϕ√
r
, P 3

0 = −12

r
+ 4− χ2 + ϕ2

r
,

P 1
1 = 0 , P 2

1 = 0 , P 3
1 = −12

r
. (3.49)

We can now proceed to solving the maximal supersymmetry constraints. The condi-
tions involving vector multiplet gauging are satisfied trivially, while from k̃uΛL

Λ = 0 we
obtain the conditions χ = ϕ = 0 and 1 + τ2 = 0. Therefore τ = i (the solution τ = −i

9The relation with the coordinates {ρ, σ, ξ, ξ̄} used in [65, 79] is given by ρ = r, σtheirs = σhere + 1
2
uv and

ξ = 1
2

(χ + iϕ). Furthermore, there is an overall factor 1
4

in their definition of the universal hypermultiplet.
Finally, they use a different SU(2) frame to calculate the moment maps PxΛ , which is why they are rotated
with respect to the ones displayed here.
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makes the Kähler potential ill-defined) and K = − log 4. However, not all the moment
maps at this vacuum can be zero simultaneously, leaving AdS4 as the only possibility
for a N = 2 vacuum solution. One can then see that εxyzP yP z = 0 is satisfied, so the
only remaining condition is P 3

Λf
Λ
τ = 0. This fixes r = 4. Therefore we have stabilized

all (ungauged) directions in moduli space: χ = ϕ = 0, τ = i, r = 4. The potential is
nonzero in this vacuum since P 3 = 2, which means the only possibility for the space-
time is to be AdS4 with vanishing field strengths. This is indeed expected since SE7

compactifications of M-theory lead to an N = 2 AdS4 vacuum, the one just described
by us in the dimensionally reduced theory.

One can verify that this vacuum is stable under deformations in the hypermultiplet
sector of the type discussed in [80, 81]. To show this, first observe that the condition
k̃uΛL

Λ = 0 for u = χ and u = ϕ always ensures vanishing χ and ϕ. Secondly, one may
verify that the deformations to the quaternionic moment maps are proportional to χ or
ϕ, and hence the remaining N = 2 conditions from section 3.2.4 are satisfied. It would
be interesting to understand if this deformation corresponds to a perturbative one-loop
correction in this particular type of M-theory compactification.

3.3.3 Other gaugings exhibiting AdS4 vacua

Another example of an AdS4 supersymmetric vacuum can be obtained from the univer-
sal hypermultiplet. In the same coordinates {r, χ, ϕ, σ} as used in the previous example,
the metric is again given by (3.47). This space has a rotational isometry acting on χ

and ϕ, given by k̃1 − k̃0 in the notation of (3.48). We leave the vector multiplet sector
unspecified for the moment, and gauge the rotation isometry by a linear combination of
the gauge fields AΛ

µ . This can be done by writing the Killing vector as

k̃uΛ = αΛ

(
0, ϕ,−χ,−1

2
(ϕ2 − χ2)

)
, (3.50)

for some real constant parameters αΛ. The quaternionic moment maps are given by (see
appendix D)

P xΛ = αΛ

(
4ϕ√
r
,

4χ√
r
,−12

r
+ 4− ϕ2 + χ2

r

)
. (3.51)

It can be seen that there are no points for which P xΛ = 0,∀x, so this means that only
AdS4 N = 2 vacua are possible. To complete the example, we have to specify the vector
multiplet space, and solve the conditions P xΛf

Λ
i = 0 and k̃uΛL

Λ = 0. The latter can
be solved as χ = ϕ = 0, and then also εxyzP yP z = 0. The first one then reduces to
αΛf

Λ
i = 0. This condition is trivially satisfied when e.g. nV = 0. A more complicated

example is to take the special Kähler space of the previous subsection with no gauging
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in the vector multiplet sector. There is one complex scalar τ , a section XΛ = (1, τ2)

and a prepotential F =
√
X0(X1)3. We then find a solution for τ = i

√
−3α0

α1
, under

the condition that α0 and α1 are non-vanishing real constants of opposite sign. More
complicated examples with more vector multiplets may be constructed as well. It would
be interesting to study if such examples can be embedded into string theory.

A similar situation arises in the absence of hypermultiplets. As mentioned in the
end of section 3.2.2, we can have non-vanishing moment maps that can be chosen as
P xΛ = αΛδ

x3. Then we again need to satisfy the same condition αΛf
Λ
i = 0 as above, and

we already discussed the possible solutions.





Chapter 4

Black holes in gauged supergravity

4.1 Introduction

One of the interesting predictions of general relativity is the existence of black hole
solutions. There is strong indication for the presence of black holes in the galaxy. Black
holes are objects where gravity becomes strong enough to let not even light escape.
There is an event horizon, and particles that move inside the horizon can (classically)
never return to the original space-time.

In 1974, Stephen Hawking discovered that black holes do emit radiation [82], due to
quantum effects. Due to this radiation, black holes follow the rules of thermodynamics,
and one can derive their entropy [82, 83]. It is then a challenge for a theory of quantum
gravitation to provide for the microscopic description of this entropy.

The Reissner-Nordström solution

We start our discussion of black holes with the Reissner-Nordström solution. This de-
scribes a charged black hole solution in the theory of general relativity with a Maxwell
field. The gauge field has non-vanishing components

At =
2Q

r
, Aφ = −2P cos θ , (4.1)

where Q is the electric and P the magnetic charge of the black hole.
The metric can be written as

ds2 = V dt2 − dr2

V
− r2

(
dθ2 + sin2 θdφ2

)
, (4.2)

with the metric function

V (r) = 1− 2M

r
+
Z2

r2
, Z2 ≡ Q2 + P 2 . (4.3)
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In the limit as r goes to infinity the metric approaches flat Minkowski space; also the
electric and magnetic fields computed from (4.1) vanish at infinity. Besides the point
r = 0, which is a true singularity, there are other possible values of r where V (r) = 0.
Although the metric (4.2) does not behave well at these points, it turns out that these
surfaces are coordinate singularities; by a different choice of coordinates the metric
remains well-defined.

The event horizons follow from the equations

r± = M ±
√
M2 − Z2 , (4.4)

which could have two, one or zero real solutions for r±.

M2 > Z2

In this case, there are two different roots of V , given by r = r±. There is an inner
and an outer horizon.

M2 = Z2

If the charge balances the mass, we call the black hole an extremal black hole. The
real singularity is shielded by the event horizon at r = r+ = r−.

M2 < Z2

If the charge exceeds the mass, there are no roots of V , and any observer can travel
to the real singularity at r = 0, which is not shielded by an event horizon. This is
called a naked singularity, and is deemed unphysical. Such a configuration will
not form under gravitational collapse of a spherical mass shell, see e.g. [84].

We therefore find a mass bound on physical solutions. For the remainder, we will
only look at the extremal black hole. We redefine the radial coordinate as r → r + M ,
and then the metric is given by

ds2 =
r2

(r +M)2
dt2 − (r +M)2

r2

(
dr2 + r2

(
dθ2 + sin2θ dφ2

))
. (4.5)

The true singularity is now at r = −M , and the horizon is at r = 0. Close to the horizon,
we can approximate r +M 'M , and we find

ds2 =
r2

M2
dt2 − M2

r2
dr2 +M2

(
dθ2 + sin2θ dφ2

)
. (4.6)

The metric becomes a product metric: we have an AdS2 space, parametrized by t and r,
and an S2 space, parametrized by θ and φ. The massM determines the curvature of both
spaces, which are equal in magnitude; as AdS2 has negative curvature and S2 positive,
the total curvature at the horizon is zero.
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Black holes in supergravity

The extremal Reissner-Nordström black hole is a solution of N = 2 supergravity the-
ory [85, 86] and preserves N = 1 supersymmetry. For very small and very large values
of r, the space-time approaches the fully supersymmetric configurations AdS2 × S2

and flat Minkowski space, respectively, as explained in section 3.2.4. The non-extremal
solution, with M2 > Z2 is a solution as well, but breaks all supersymmetry.

Black holes are interesting for a variety of reasons. The solutions one finds in su-
pergravity can often be constructed in the full-fledged string theory. If string theory is a
viable theory of quantum gravity, it should provide a complete, microscopic description
of a black hole. One can compare this with the macroscopic description in supergravity,
which is its low energy effective action. For instance, in the macroscopic picture, one
can compute the entropy. In the microscopic picture, one can now count the number of
microstates [6], which reproduces the same entropy.

Black holes in AdS spacetime

One can generalize the RN solution above to the AdS-RN solution. One keeps (4.1)
and (4.2), where the metric function V (r) is now given by

V (r) = 1− 2M

r
+
Z2

r2
− 1

3
Λr2 , (4.7)

where Λ is the cosmological constant, which is negative in AdS.
This configuration preserves half the supersymmetry when Λ is negative (for Λ = 0

one recovers the original RN solution), the magnetic charge vanishes (P = 0) and the
BPS bound is satisfied (Q2 = M2). However, one sees that in this case the function V (r)

does not have any zeros, so there are no horizons that shield the true singularity at r = 0.
Recent developments in the AdS/CFT correspondence suggest that holographic super-
conductors are related to non-extremal static black holes in the presence of a charged
scalar, which makes them interesting to study.[15–18].

Black holes with hypermultiplets

The main aim of this chapter is the search for supersymmetric four-dimensional black
holes in gaugedN = 2 supergravities in the presence of hypermultiplets, charged under
an abelian gauge group. In the original references on BPS black holes in D = 4,N = 2

supergravity [68, 86–89], and subsequent literature, see e.g. [69–71, 90, 91], one usually
considers ungauged hypermultiplets, which then decouple from the supersymmetry
variations and equations of motion for the vector multiplet fields. We want to explore
how the story changes when the hypers couple non-trivially to the vector multiplets via
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gauge couplings and scalar potentials that are allowed within gaugedN = 2 supergrav-
ity [28, 35, 38, 52–54, 56]. For the simpler case of minimally gauged supergravity, where
no hypermultiplets are present but only a cosmological constant or Fayet-Iliopoulos
terms, asymptotically anti-de Sitter BPS black holes can be found. This has been dis-
cussed in the literature, starting from the early references [92, 93], or more recently in
[94, 95]. We initiate here the extension to general D = 4,N = 2 gauged supergravities,
including hypermultiplets.

Plan of this chapter

The plan of this chapter is as follows. First, in section 4.2, we give a brief summary of the
known black hole solutions in N = 2 supergravity with neutral hypermultiplets, mak-
ing a clear distinction between the asymptotically flat and asymptotically AdS space-
times. We then explain the model with gauged hypermultiplets we are interested in
and how this fits within the framework of N = 2 gauged supergravity.

In section 4.3 we first explain how one can use a Higgs mechanism for spontaneous
gauge symmetry breaking, in order to obtain effective N = 2 ungauged theories from
a general gauged N = 2 supergravity. We keep the discussion short since these results
follow easily from chapter 3. Then we show how this method can be used to embed
already known black hole solutions into gauged supergravities and explain the physical
meaning of the new solutions. We illustrate this with an explicit example of a static,
asymptotically flat black hole with the well-known STU model and one gauged hyper-
multiplet (the universal hypermultiplet). We also give examples of AdS black holes
with charged scalars, that may have applications in the emerging field of holographic
superconductivity [15–18].

In section 4.4 we discuss in more general terms asymptotically flat, stationary space-
times preserving half of the supersymmetries. We analyze the fermion susy variations
in gauged supergravity after choosing a particular ansatz for the Killing spinor. One
finds two separate cases, defined by T−µν = 0 and P xΛ = 0, respectively. Whereas the
former case contains only Minkowski and AdS4 solutions, the latter leads to a class of
solutions that generalize the standard black hole solutions of ungauged supergravity.
We analyze this in full detail in section 4.4.6 and give the complete set of equations that
guarantees a half-BPS solution. We then explain how this fits to the solutions obtained
in section 4.3.

Finally, in section 4.5, we study asymptotically flat black holes with scalar hair10 .

10By scalar hair, in this thesis, we mean a scalar field that is zero at the horizon of the black hole, but non-
zero outside of the horizon. According to this definition, the vector multiplet scalars subject to the attractor
mechanism inN = 2 ungauged supergravity, do not form black holes with scalar hair. The solutions that we
discuss in section 4.5, however, will have hair.
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We find two separate classes of such solutions. One is a purely bosonic solution with
scalar hair, but with the shortcoming of having ghost modes in the theory. The other
class of solutions has no ghosts but along with scalar hair we also find fermionic hair,
i.e. the fermions are not vanishing in such a vacuum.

Some of the more technical aspects of this chapter, including explicit hypermultiplet
gaugings, are presented in the appendices.

4.2 Review of supersymmetric black holes

In the first part of this section, we set our notation and briefly review the BPS black
hole solutions in four-dimensional ungauged N = 2 supergravity. In the second part,
we review some of the BPS black holes that asymptote to anti-de Sitter spacetime. For
a review of N = 2 (gauged) supergravity we refer to [28], which notation we closely
follow.

4.2.1 Black holes in asymptotically Minkowski spacetime

Asymptotically flat and stationary BPS black hole solutions of ungauged supergravity
have been a very fruitful field of research in the last decades. In absence of vector mul-
tiplets (nV = 0), with only the graviphoton present, the supersymmetric solution is just
the well-known extremal Reissner-Nordström (RN) black hole. This solution was later
generalized to include a number of vector multiplets [86]. The most general classifica-
tion of the BPS solutions, including multicentered black holes, was given by Behrndt,
Lüst and Sabra [68] and we will refer to those as BLS solutions. The hypermultiplet
scalars qu do not mix with the other fields (apart from the graviton) at the level of the
equations of motion, and it is therefore consistent to set them to a constant value. We
will briefly list the main points of the solutions, as they will play an important role in
what follows.

To characterize the black hole solutions, we first denote the imaginary parts of the
holomorphic sections by

H̃Λ ≡ i(XΛ − X̄Λ) , HΛ ≡ i(FΛ − F̄Λ) . (4.8)

We assume stationary solutions with axial symmetry parametrized by an angular coor-
dinate φ. The result of the BPS analysis is that the metric takes the form11

ds2 = eK(dt+ ωφdφ)2 − e−K
(
dr2 + r2dΩ2

2

)
, (4.9)

11Note that all the results are in spherical coordinates, see [68, 70] for the coordinate independent results.
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where K is the Kähler potential (2.19) of special geometry. The metric components and
the symplectic vector

(
H̃Λ, HΛ

)
only depend on the radial variable r and the second

angular coordinate θ, and the BPS conditions imply the differential equations on ωφ

1

r2 sin θ
∂θωφ = HΛ∂rH̃

Λ − H̃Λ∂rHΛ , − 1

sin θ
∂rωφ = HΛ∂θH̃

Λ − H̃Λ∂θHΛ . (4.10)

From this follows the integrability condition HΛ�H̃Λ − H̃Λ�HΛ = 0, where � is the
3-dimensional Laplacian.

What is left to specify are the gauge field strengths FΛ
µν . First we define the magnetic

field strengths

GΛµν ≡ RΛΣF
Σ
µν −

1

2
IΛΣ εµνγδF

Σγδ , (4.11)

such that the Maxwell equations and Bianchi identities take the simple form

εµνρσ∂νGΛρσ = 0, εµνρσ∂νF
Λ
ρσ = 0 , (4.12)

such that (FΛ, GΛ) transforms as a vector under electric-magnetic duality transforma-
tions.

For the full solution it is enough to specify half of the components of FΛ and GΛ,
since the other half can be found from (4.11). In spherical coordinates, the BPS equations
imply the non-vanishing components12

FΛ
rφ =

−r2 sin θ

2
∂θH̃

Λ, FΛ
θφ =

r2 sin θ

2
∂rH̃

Λ, (4.13)

and

GΛrφ =
−r2 sin θ

2
∂θHΛ, GΛθφ =

r2 sin θ

2
∂rHΛ. (4.14)

From (4.12) it now follows that HΛ and H̃Λ are harmonic functions. With the above
identities we can always find the vector multiplet scalars zi, given that we know explic-
itly how they are defined in terms of the sections XΛ and FΛ. The integration constants
of the harmonic functions specify the asymptotic behavior of the fields at the black hole
horizon(s) (the constants can be seen to be the black hole electric and magnetic charges)
and at spatial infinity.

The complete proof that these are indeed all the supersymmetric black hole solutions
with abelian vector multiplets and no cosmological constant was given in [70]. Note
that the BLS solutions describe half-BPS stationary spacetimes with (only for the multi-
centered cases) or without angular momentum. The near-horizon geometry around

12The BPS conditions also imply FΛ
rθ = GΛrθ = 0 due to axial symmetry.
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each center is always AdS2 × S2 with equal radii of the two spaces, determined by the
charges of the black hole. All solutions exhibit the so-called attractor mechanism [86].
This means that the (vector multiplet) scalar fields get attracted to constant values at the
horizon of the black hole that only depend on the black hole charges. As the scalars can
be arbitrary constants at infinity we also find the so-called attractor flow, i.e. the scalars
flow from their asymptotic value to the fixed constant at the horizon. This phenomenon
seems not to be related with supersymmetry, but rather with extremality, since attractor
mechanisms have been discovered also in non-supersymmetric (but extremal) solutions.
The full classification of non-BPS solutions and attractors is, however, more involved
and is still in progress.

4.2.2 Gauged supergravity

We now turn to the bosonic Lagrangian (2.65) for gauged N = 2 supergravity in pres-
ence of nV abelian vector multiplets and nH hypermultiplets, charged under the abelian
gauge group.

The fully N = 2 supersymmetric configurations obtained from (2.66)-(2.68) were
analyzed in chapter 3. Two possibilities arise, namely for zero or nonzero cosmological
constant in the vacuum. For zero cosmological constant, the different supersymmetric
spacetimes are either Minkowski or AdS2×S2 (or its Penrose limit, the supersymmetric
pp-wave), whereas for nonzero cosmological constant only AdS4 can be fully BPS. In
the former case, additional constraints arise on the scalar fields, namely (for abelian
gaugings)

k̃uΛL
Λ = 0 , P xΛ = 0 , (4.15)

together with FΛ
µν = 0 (Minkowski) and k̃uΛF

Λ
µν = 0 (AdS2 × S2). In the latter case, for

AdS4, one has the conditions

k̃uΛL
Λ = 0 , P xΛf

Λ
i = 0 , εxyzP yP z = 0 , (4.16)

with vanishing field strengths, FΛ
µν = 0, and negative scalar curvature for AdS4 space-

time, R = −12g2P xP x, where P x ≡ P xΛLΛ. In all these cases, the scalars are constant or
covariantly constant. The fully supersymmetric configurations will play an important
role in the construction of 1/2 BPS black hole solutions, since both their near horizon
and asymptotic region fall into this class. We will discuss this in detail in the following
sections.

A particular class of supergravities arises in the absence of hypermultiplets. This
situation is interesting since it allows for a bare negative cosmological constant in the
Lagrangian, through the moment maps P xΛ that appear in the scalar potential. It is well-
known that, for nH = 0 and abelian gauge groups, these moment maps can be replaced
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by constants (similar to Fayet-Iliopoulos terms), giving rise to a potential

V = (gi̄fΛ
i f

Σ
̄ − 3L̄ΛLΣ)P xΛP

x
Σ , (4.17)

with P xΛ numerical constants. When also nV = 0, one can take the sections LΛ to
be constants as well, such that the potential is negative and given by V = −Λ, with
Λ = 3P xP x.

4.2.3 Asymptotically AdS4 black holes with nH = 0

The construction of BPS black holes in AdS4 spacetimes is technically more involved
due to the presence of the gauged hypermultiplets, and at present there is no complete
analysis for this case. Until now, only the case with no hypermultiplets, nH = 0, but
with a bare cosmological constant or a potential of the type (4.17) has been investigated
in the literature [72–74, 93–95]. Static and spherically symmetric (non-rotating) black
hole solutions preserving some supersymmetry have been constructed, but they seem
to suffer from naked singularities [92, 96, 97] or from scalar ghosts inside the horizon.
On the other hand there are proper BPS black holes when one allows for a non-zero
angular momentum [93, 98]. The non-BPS and non-extremal solutions, however, do
allow for proper horizons also in the non-rotating case.

Let us illustrate some of these issues in the case of static spacetimes in gauged super-
gravities with no vector multiplets, so there is only a single gauge field, the graviphoton.
Here we have the AdS generalization of the Reissner-Nordström black holes (RNAdS).
More explicitly, the metric in our signature is

ds2 = V dt2 − dr2

V
− r2(dθ2 + sin2 θdφ2), (4.18)

with

V (r) = 1− 2M

r
+
Q2 + P 2

r2
− Λr2

3
. (4.19)

Here, Λ is the (negative) cosmological constant and Q and P are the electric and mag-
netic charge respectively. The field strengths are given by

F−tr =
1

2r2
(Q− iP ) , F−θφ =

sin θ

2
(P + iQ) . (4.20)

For the 1/2 BPS solution the magnetic charge is vanishing, P = 0 and M = Q [92].
Of course, this example describes naked singularities rather than black holes. This is
because V (r) has no zeroes for Λ < 0, so no horizons, and therefore a naked singularity
appears at r = 0. For a genuine AdS4 black hole solution we have to break the full
supersymmetry, i.e. the mass has to be free to violate the BPS bound. If M is within
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a certain range, as explained in detail in e.g. [98], the solution has a proper horizon
and describes a thermal AdS4 black hole. There are some BPS generalizations of these
solutions to the case of arbitrary number of vector multiplets [96, 97], but the problem
of naked singularities remains. For some further references on four-dimensional AdS
black holes, including the non-extremal ones, see e.g. [99, 100].

Interestingly, recent developments in the AdS/CFT correspondence suggest that
holographic superconductors are related to non-extremal static black holes in the pres-
ence of a charged scalar. Such cases will arise in N = 2 supergravity only when the
hypermultiplets are gauged. Thus we will be able to give some statements about this
interesting class of black holes, which we leave for section 4.3.2. In the rest of the chapter
we will mainly concentrate on the asymptotically flat BPS solutions with gauged hypers.

4.3 Black holes and spontaneous symmetry breaking

In this section we explain how to obtain a class of black hole solutions in gauged su-
pergravity, starting from known solutions in ungauged supergravity. The main idea is
simple: In gauged supergravity, one can give expectation values to some of the scalars
(from both the vector and hypermultiplets) such that one breaks the gauge symmetry
spontaneously in a maximally supersymmetricN = 2 vacua, specified by the conditions
(4.15) or (4.16). Let us suppose for simplicity that the vacuum has zero cosmological
constant, the argument can be repeated for N = 2 preserving anti-de Sitter vacua. Due
to the Higgs mechanism some of the fields become massive, and as a consequence of
theN = 2 preserving vacua, the gravitinos remain massless and the heavy modes form
massive N = 2 vector multiplets. As a second step, we can set the heavy fields to zero,
and the theory gets truncated to an ungauged N = 2 supergravity. These truncations
are consistent due to the fact that supersymmetry is unbroken. Black hole solutions can
then be found by taking any solution of the ungauged theory and augmenting it with
the massive fields that were set to zero. In fact, it is clear from this procedure that one can
even implement a non-BPS black hole solution of the ungauged theory into the gauged
theory. It is also clear that this procedure works for non-abelian gaugings, as long as it
is broken spontaneously to an abelian subgroup with residual N = 2 supersymmetry.
But for simplicity, and to streamline with subsequent sections, we will however only
consider abelian gaugings. What is perhaps less clear, is to see if this procedure gives
the most general black hole solutions. In other words, one can look for other solutions
in which the massive scalars are non-trivial (i.e. with scalar hair). This is the subject of
section 4.4.6, where we investigate the conditions for which new BPS black holes with
scalar hair exist.
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Let us now illustrate the above mechanism in some more detail. We restrict ourselves
first to spontaneous symmetry breaking in Minkowski vacua, where one has 〈P xΛ〉 = 0

and 〈k̃uΛLΛ〉 = 0 according to (4.15). At such a point, the resulting potential is zero, see
(2.72), as required by a Minkowski vacuum. After the hypermultiplet scalar fields take
their vacuum expectation value, the Lagrangian (2.65) contains a mass-term for some of
the gauge fields, given by

LVmass = MΛΣA
Λ
µA

µΣ , MΛΣ ≡ g2〈huvk̃uΛk̃vΣ〉 . (4.21)

There is no contribution to the mass matrix for the vector fields coming from expectation
values of the vector multiplet scalars, since the gauging was chosen to be abelian. The
number of massive vectors is then given by the rank of MΛΣ, and as huv is positive
definite, one has rank(MΛΣ) = rank(k̃uΛ). Hence, the massive vector fields are encoded
by the linear combinations k̃uΛA

Λ
µ . Similarly, some of the vector and hypermultiplet

scalars acquire a mass, determined by expanding the scalar potential,

V = 4huvk̃
u
Λk̃

v
ΣL̄

ΛLΣ +
(
gi̄fΛ

i f
Σ
̄ − 3L̄ΛLΣ

)
P xΛP

x
Σ , (4.22)

to quadratic order in the fields. Then one reads off the mass matrix, and in general there
can be off-diagonal mass terms between vector and hypermultiplet scalars. Massive
vector multiplets can then be formed out of a massive vector, a massive complex scalar
from the vector multiplet, and 3 hypermultiplet scalars. The fourth hypermultiplet
scalar is the Goldstone mode that is eaten by the vector field. We will illustrate this
more explicitly in some concrete examples below.

Upon setting the massive fields to zero (or integrating them out), one obtains a
supergravity theory with only massless fields. Because of 〈P xΛ〉 = 0, the mass matrix
for the gravitinos is zero as follows from (2.71). Therefore, the resulting theory is an un-
gauged supergravity theory of the type discussed in section 2.3.3. Black hole solutions
can then be simply copied from the results in section 4.2.1. By going through the Higgs
mechanism in reverse order, one can uplift this solution easily to the gauged theory by
augmenting it with the necessary expectation values of the scalars. It is then clear that
the black hole solution is not charged with respect to the gauge fields that acquired a
mass.

The situation for spontaneous symmetry breaking in an AdS vacuum is similar. To
generate a negative cosmological constant from the potential (2.72), we must have a
〈P xΛ〉 6= 0 in the vacuum. The conditions for unbroken N = 2 supersymmetry are given
in (4.16). After expanding the fields around this vacuum, one can truncate the theory
further to a Lagrangian with a bare cosmological constant, in which one can construct
black hole solutions of the type discussed in section 4.2.3. We will discuss an example
at the end of this section.



63

4.3.1 Solution generating technique

We now elaborate on constructing the black hole solutions more explicitly. As explained
above, the general technique is to embed a (BPS) solution in ungauged supergravity
into a gauged supergravity. The considerations in this subsection also apply for the
more general case of non-abelian gaugings, although we are mainly interested here
in the abelian case. First, to illustrate the systematics of our procedure, we analyze a
simpler setup in which we embed solutions from pure supergravity into a model with
vector multiplets only. Then we extend the models to include both hypermultiplets
and vector multiplets, i.e. the most general (electrically) gauged supergravities. We
always consider solutions with vanishing fermions, i.e. the discussion concerns only
the bosonic fields.

Vector multiplets

We start from pure N = 2 supergravity, i.e. only the gravity multiplet normalized as
L = 1

2R(g)− 1
2FµνF

µν −Λ. Let us assume we have found a solution of this Lagrangian,
which we denote by g̊µν , F̊µν . We can embed this into a supergravity theory with only
vector multiplets as follows. If we have a theory with (gauged) vector multiplets we can
find a corresponding solution to it by satisfying

∇µzi = 0 , Giµν = 0 , kiΛL̄
Λ = 0 . (4.23)

Note that the integrability condition following from ∇µzi = 0 is always satisfied given
the other constraints 13. We further have the relations

gµν = g̊µν ,
√

2IΛΣL̄ΛL̄Σ T−µν = F̊−µν . (4.24)

The last equality is to be used for determining T−µν . Then we can find the solution for our
new set of gauge field strengths by FΛ−

µν = iL̄ΛT−µν since we already know that Giµν = 0.
The new configuration will, by construction, satisfy all equations of motion of the

theory and will preserve the same amount of supersymmetry (if any) as the original
one. This can be checked explicitly from the supersymmetry transformation rules (2.66)
and (2.68) combined with the results from section 3. Indeed (4.23) comes from imposing
the vanishing of (2.66), while (4.24) is required by the Einstein equations. We will give
a more explicit realization of this procedure in section 4.3.2.

13Also note that we have used the Killing vectors kiΛ that specify a gauged isometry∇µzi = ∂µzi+gkiΛA
Λ
µ

on the vector multiplet scalar manifold. These automatically vanish if the isometry is abelian, and therefore
will not be discussed further in this chapter. The formulas here are still valid for any gauged isometry.
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Hypermultiplets

Given any solution ofN = 2 supergravity with no hypermultiplets, we can obtain a new
solution with (gauged) hypermultiplets preserving the same amount of supersymmetry
as the original one. We require the theory to remain the same in the other sectors
(vector and gravity multiplets with solution g̊µν , F̊

Λ
µν , z̊

i) and impose some additional
constraints that have to be satisfied in addition to the already given solution. We then
simply require the fields of our new theory to be

gµν = g̊µν , FΛ
µν = F̊Λ

µν , zi = z̊i , (4.25)

under the following restriction that has to be solved for the hypers. Here we are left with
two cases: the original theory was either with or without Fayet-Iliopoulos (FI) terms
(cosmological constant). In absence of FI terms, a new solution after adding hypers is
given by imposing the constraints:

∇µqu = 0 ⇒ k̃uΛF
Λ
µν = 0 , P xΛ = 0 , k̃uΛL

Λ = 0 , (4.26)

while in the case of original solution with FI terms we have a solution after adding
hypers (thus no longer allowing for FI terms but keeping P xΛL

Λ the same) with:

∇µqu = 0⇒ k̃uΛF
Λ
µν = 0 , P xΛf

Λ
i = 0 , εxyzP yΛP

z
ΣL

ΛL̄Σ = 0 , k̃uΛL
Λ = 0 . (4.27)

The new field configuration (given it can be found from the original data) again satis-
fies all equations of motion and preserves the same amount of supersymmetry as the
original one. This is true because the susy variations of gluinos and gravitinos remain
the same as in the original solution, and also the variations for the newly introduced
hyperinos are zero.

Vector and hypermultiplets

This case is just combining the two cases above. If we start with no FI terms the new
solution will be generated by imposing equations (4.26) and (4.23). If we have a solution
with a cosmological constant we need to impose (4.27) and (4.23). Then the integrabil-
ity condition following from ∇µqu = 0 is automatically satisfied in both cases, using
relations (4.24).

4.3.2 Examples

The STU model with gauged universal hypermultiplet

Here we discuss an example to illustrate explicitly the procedure outlined above. Let us
consider an N = 2 theory with the universal hypermultiplet (UHM). Its quaternionic
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metric and isometries are given in D, and isometry 5 is chosen to be gauged. This allows
for asymptotically flat black holes, since we can find solutions of (4.26), as we shall see
below14. The quaternionic Killing vector and moment maps are given by

k̃Λ = aΛ (2r∂R + χ∂χ + ϕ∂ϕ + 2σ∂σ) , (4.28)

~PΛ = aΛ

{
− χ√

R
,
ϕ√
R
,−

σ + 1
2ϕχ

R

}
, (4.29)

with aΛ arbitrary constants. In this chapter we will use R to denote the coordinate on
the UHM, to avoid confusion with the radial, space-time coordinate r.

In the vector multiplet sector we take the so-called STU model, based on the prepo-
tential

F =
X1X2X3

X0
, (4.30)

together with zi = Xi

X0 ; i = 1, 2, 3. The gauge group is U(1)3, but it will be broken
to U(1)2 in the supersymmetric Minkowski vacua, in which we construct the black
hole solution. The conditions for a fully BPS Minkowski vacuum require F vev

µν = 0,
zivev = 〈zi〉 = 〈bi〉 + i〈vi〉, χvev = ϕvev = σvev = 0, Rvev = 〈R〉, with arbitrary
constants 〈zi〉 and 〈R〉. Moreover, from (4.15), the vector multiplets scalar vevs must
obey (aΛL

Λ)vev = 0 (which is an equation for the 〈zi〉’s). Then, after expanding around
this vacuum, the mass terms for the scalar fields are given by the quadratic terms in
(4.22). Now, if we make the definition z ≡ aΛL

Λ, we have zvev = 0. Expanding the first
term in (4.22) gives the mass term for z,(

4huvk̃
u
Λk̃

v
ΣL̄

ΛLΣ
)quadratic

= 16zz̄.

Expanding the second term to quadratic order gives the mass for three of the hypers:

(
gi̄fΛ

i f̄
Σ
̄ P

x
ΛP

x
Σ

)quadratic
=

a2
i 〈vi〉2

〈v1v2v3〉〈R〉

(
χ2 + ϕ2 +

(σ + 1
2χϕ)2

〈R〉

)
, (4.31)

while the third term vanishes at quadratic order and does not contribute to the mass
matrix of the scalars.

Therefore two of the six vector multiplet scalars become massive (i.e. the linear
combination given by our definition for z), together with three of the hypers. The fourth
hyper R remains massless and is eaten up by the massive gauge field aΛA

Λ
µ (with mass

4 given by (4.21)). Thus we are left with an effective N = 2 supergravity theory of

14A suitable combination of isometries 1 and 4 would also do the job. Note that typically in string theory
isometry 5 gets broken perturbatively while 1 and 4 remain also at quantum level. For the present discussion
it is irrelevant which one we choose since we are not trying to directly obtain the model from string theory.
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one massive and two massless vector multiplets and no hypermultiplets, which can be
further consistently truncated to only include the massless modes. One can then search
for BPS solutions in the remaining theory and the prescription for finding black holes is
again the one given by Behrndt, Lüst and Sabra and explained in section 4.2.1.

We now construct the black hole solution more explicitly, following the solution
generating technique of section 4.3.1. For this, we need to satisfy (4.25) and (4.26). The
condition P xΛ = 0 fixes χ = ϕ = σ = 0 and the remaining non-zero Killing vectors are
kRΛ = 2RaΛ. Now we have to satisfy the remaining conditions k̃uΛX

Λ = 0 and k̃uΛF
Λ
µν = 0.

To do so, we use the BLS solution of the STU model. For simplicity we take the static
limit ωm = 0, discussed in detail in section 4.6 of [68]. The solution is fully expressed in
terms of the harmonic functions

H0 = h0 +
q0

r
, H̃i = hi +

pi

r
, i = 1, 2, 3 , (4.32)

under the condition that one of them is negative definite. The sections then read

X0 =

√
−H̃

1H̃2H̃3

4H0
, Xi = −i H̃

i

2
, (4.33)

with metric function

e−K =

√
−4H0H̃1H̃2H̃3. (4.34)

In this case F 0
mn = 0 and the F imn components (here m,n are the spatial indices) are

expressed solely in terms of derivatives of H̃i. After evaluating the period matrix we
obtain F imt = 0 and F 0

mt are given in terms of derivatives of H0, H̃
i. Thus the equations

k̃RΛX
Λ = 0 and k̃RΛF

Λ
µν = 0 lead to

a0 = 0 , aih
i = 0 , aip

i = 0 . (4.35)

The solution is qualitatively the same as the original one, but the charges pi and the
asymptotic constants hi are now related by (4.35). So effectively, the number of in-
dependent scalars and vectors is decreased by one, consistent with the results from
spontaneous symmetry breaking. The usual attractor mechanism for the remaining,
massless vector multiplet scalars holds while for the hypermultiplet scalars we know
that χ = ϕ = σ = 0 andR is fixed to an arbitrary constant everywhere in spacetime with
no boundary conditions at the horizon. In other words the hypers are not ‘attracted’.

Our construction can be generalized for non-BPS solutions as well. In the particular
case of the STU model, we can obtain a completely analogous, non-BPS, solution by
following the procedure described in [101]. We flip the sign of one of the harmonic
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functions in (4.8) such that

e−K =

√
4H0H̃1H̃2H̃3 . (4.36)

This solution preserves no supersymmetry, but it is extremal. By following our proce-
dure above, we can embed this solution into the gauged theory.

Asymptotically AdS black holes

Here we give a simple but yet qualitatively very general example of how to apply the
procedure outlined above to find asymptotically anti-de Sitter black hole solutions with
gauged hypers, starting from already known black hole solutions without hypers. In
this case we start from a solution of pure supergravity and add abelian gauged vector
multiplets and hypermultiplets. Alternatively, one can think of it as breaking the gauge
symmetry such that all hyper- and vector multiplets become massive, and one is left
with a gravity multiplet with cosmological constant. Here we already know the full
classification of black hole solutions, as described in section 4.2.3.

An already worked out example in section 3.3.2 is the case of the gauged super-
gravity, arising from a consistent reduction to four dimensions of M-theory on a Sasaki-
Einstein7 manifold [65]. The resulting low-energy effective action has a single vector
multiplet and a single hypermultiplet (the universal hypermultiplet). The special ge-
ometry prepotential is given by

F =
√
X0(X1)3,

with XΛ = {1, τ2}, where τ is the vector multiplet scalar, and the isometries on the
UHM are given by

k̃0 = 24∂σ + 4
(
χ∂ϕ − ϕ∂χ +

1

2
(ϕ2 − χ2)∂σ

)
,

k̃1 = 24∂σ ,
(4.37)

which is combination of isometries 1 and 4 from appendix D. The corresponding mo-
ment maps, see appendix D, are given by

P 1
0 =

4χ√
R
, P 2

0 =
4ϕ√
R
, P 3

0 = −12

R
+ 4− χ2 + ϕ2

R
,

P 1
1 = 0 , P 2

1 = 0 , P 3
1 = −12

R
. (4.38)

Maximally supersymmetricAdS4 vacua were found in section 3.3.2. The condition (4.16)
fixes the values of the vector multiplet scalar τvev ≡ (τ1 + iτ2)vev = i and two of the four
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hypers χvev = ϕvev = 0. The third ungauged hyper, which is the dilaton, is fixed to the
constant non-zero value Rvev = 4. The remaining hypermultiplet scalar is an arbitrary
constant σvev = 〈σ〉. All the gauge fields have vanishing expectation values at this fully
supersymmetric AdS4 vacuum. If we now expand the scalar field potential (4.22) up to
second order in fields we obtain the following mass terms

V quadratic = −12 + 138(τ2
1 + τ2

2 ) +
3

4
R2 + 6Rτ2 + 10(χ2 + ϕ2) . (4.39)

We can see that three of the hyperscalars and the (complex) vector multiplet scalar
acquire mass. There is also a mass term m2 = 36 for the gauge field A0 + A1, this
field thus eats up the remaining massless hyperscalar σ. So we observe the formation
of a massive N = 2 vector multiplet consisting of one massive vector and five massive
scalars, and we can consistently set all these fields to zero. The resulting Lagrangian
is that of pure N = 2 supergravity with a cosmological constant Λ = −12. Using the
static class of black hole solutions of (4.18), it is straightforward to provide a solution of
the gauged supergravity theory. All the solutions described in section 4.2.3 will also be
solutions in our considered model as they obey the Einstein-Maxwell equations of pure
supergravity.

4.4 1/2 BPS solutions

In this section we will take a more systematic approach to studying the supersymmet-
ric solutions of (2.65). We search for a solution where the expectation values of the
fermions are zero. This implies that the supersymmetry variations of the bosons should
be zero. The vanishing of the supersymmetry variations (2.66)-(2.68) then guarantees
some amount of conserved supersymmetry. Depending on the number of independent
components of the variation parameters εA we will have different amount of conserved
supersymmetry. Here we will focus on particular solutions preserving (at least) 4 su-
percharges, i.e. half-BPS configurations. A BPS configuration has to further satisfy
the equations of motion in order to be a real solution of the theory, so we also impose
those. The fermionic equations of motion vanish automatically, so we are left with the
equations of motion for the graviton gµν , the vector fields AΛ

µ , and the scalars zi and qu.
We will come to the relation between the BPS constraints and the field equations in due
course, but we first introduce some more relations for the Killing spinors εA.

4.4.1 Killing spinor identities

We will make use of the approach [102] where one first assumes the existence of a Killing
spinor. From this spinor, various bilinears are defined, whose properties constrain the
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form of the solution to a degree where a full classification is possible. We use this
method in D = 4,N = 2, which is generalizing the main results of [70, 71] to include
hypermultiplets in the description. As it later turns out, we cannot completely use this
method to classify all the supersymmetric configurations, but the method nevertheless
gives useful information.

We define εA to be a Killing spinor if it solves the gravitino variation δεψµA = 0,
defined in (2.68), and assume εA to be a Killing spinor in the remainder of this article.
Such spinors anti-commute, but we can expand them on a basis of Grassmann variables
and only work with the expansion coefficients. This leads to a commuting spinor, which
we also denote with εA, and we define15

εA ≡ i(εA)†γ0 ,

X ≡ 1

2
εABεAεB ,

Vµ
A
B ≡ iεAγµεB ,

ΦABµν ≡ εAγµνεB .

(4.40)

We now show that this implies that V µ ≡ V µAA is a Killing vector. For its derivatives
we find

∇µVνAB = iδAB(T+
µνX − T−µνX̄)− gµν(SACεCBX − SBCεACX̄)

− i(εACT+
µ
ρΦCBρν + εBCT

−
µ
ρΦACνρ)− (SACΦCBµν + SBCΦACµν) .

(4.41)

The second and third term are traceless, so they vanish when we compute ∇µVν . The
other terms are antisymmetric in µν, so this proves

∇µVν +∇νVµ = 0 , (4.42)

thus Vµ is a Killing vector. We make the decomposition V ABµ = 1
2Vµδ

A
C + 1√

2
σxABV

x
µ

and using Fierz identities one finds

Vµ
A
BVν

B
A = VµVν −

1

2
gµνV

2 . (4.43)

One can show that VµV µ = 4|X|2, which shows that the Killing vector Vµ is timelike or
null. For the remainder of this chapter we restrict ourselves to a timelike Killing spinor
Ansatz, defined as one that leads to a timelike Killing vector. We make this choice, as our
goal is to find stationary black hole solutions, which always have a timelike isometry.
In this case, by definition, VµV µ = 4|X|2 6= 0, so we can solve (4.43) for the metric as

gµν =
1

4|X|2
(
VµVν − 2V xµ V

x
ν

)
. (4.44)

15We will be brief on some technical points of the discussion, and refer to [70, 71] for more information.
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It follows that

Vµ = gµνV
ν = Vµ −

1

2|X|2
V xµ (V xν V

ν) , (4.45)

so V xµ V µ = 0. We define a time coordinate by V µ∂µ =
√

2∂t, which implies V xt = 0.
We decompose Vµdxµ = 2

√
2XX̄(dt + ω), where the factor in front of dt follows from

V 2 = 4XX̄ and ω has no dt component. The metric is then given by

ds2 = 2|X|2(dt+ ω)2 − 1

2|X|2
γmndxmdxn , (4.46)

where |X|, ω and γmn are independent of time.
Now we are ready to make a relation between the susy variations (2.66)–(2.68) and

the equations of motion, using an elegant and simple argument of Kallosh and Ortin
[103] that was later generalized in [70, 71]. Assuming the existence of (any amount of)
unbroken supersymmetry, one can derive a set of equations relating the equations of
motion for the bosonic fields with derivatives of the bosonic susy variations. For our
chosen theory these read:

EµΛif
Λ
i γµε

AεAB + EiεB = 0 ,

Eµa (−iγaεA) + EµΛ
(
2L̄ΛεBε

AB
)

= 0 ,

EuUuαAεA = 0 ,

(4.47)

where E is the equation of motion for the corresponding field in subscript. More pre-
cisely, Eµa is the equation for the vielbein eaµ (the Einstein equations), EµΛ corresponds to
AΛ
µ (the Maxwell equations), Eu corresponds to qu and Ei to zi. Now, let us assume that

the Maxwell equations are satisfied, EµΛ = 0. If we multiply each of the remaining terms
in the three equations by εB and γνεB and use the fact that the Killing spinor is timelike
such that X 6= 0 we directly obtain that the remaining field equations are satisfied. So,
apart from the BPS conditions, only the Maxwell equations

εµνρσ∂νGΛρσ = −ghuvk̃uΛ∇µqv , (4.48)

need to be satisfied.

4.4.2 Killing spinor ansatz

Contracting the gaugino variation (2.66) with εA we find the condition

0 = −2iX̄∇µzi + 4iG−iρµV
ρ − igkiΛL̄ΛVµ −

√
2ggi̄f̄Λ

̄ P
x
ΛV

x
µ . (4.49)
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Using this to eliminate∇µzi and plugging back into δλiA = 0 we find16

Gi−ρµγ
µ
(
2iV ρεA − X̄γρεABεB

)
+ ggi̄f̄Λ

̄ P
x
Λ

(
− 1√

2
V xµ γ

µεA + iX̄σxABεB

)
= 0 . (4.50)

It is here that we find an important difference with the ungauged theories. In the latter
case, g = 0, and the second term is absent. Then, assuming that the gauge fields Gi−ρµ are
non-zero, one can rewrite equation (4.50) as

εA + ie−iαγ0ε
ABεB = 0 , (4.51)

where eiα ≡ X
|X| . One has thus derived the form of the Killing spinor, which is not an

ansatz anymore.
In gauged supergravity, g 6= 0, so there are various ways to solve equation (4.50).

One could, for instance, generalize (4.51) to

εA = bγ0εABεB + axmγ
mσxABεB . (4.52)

Plugging this back into (4.50), one obtains BPS conditions on the fields which one can
then try to solve. While this is hard in general, it has been done in a specific case.
Namely, the ansatz used for the AdS-RN black holes in minimally gauged supergravity
(with a bare cosmological constant), as analyzed by Romans [92], fits into (4.52), but not
in (4.51). In fact, we will see later that with (4.51) one cannot find AdS black holes.

In the remainder of this article, we will use (4.51) as a particular ansatz, hoping to
find new BPS black hole solutions that are asymptotically flat. The reader should keep
in mind that more general Killing spinors are possible, even for asymptotically flat black
holes, and therefore our procedure will most likely not be the most general. The search
for BPS black holes that asymptote toAdS4, and their Killing spinors, will be postponed
for future research.

4.4.3 Metric and gauge field ansatz

We will further make the extra assumption that the solution for the spacetime metric,
field strengths and scalars, is axisymmetric, i.e. there is a well-defined axis of rotation,
such that ω = ωϕdϕ lies along the angle of rotation (we choose to call it ϕ) in (4.46).
For a stationary axisymmetric black hole solution the symmetries constrain the metric
not to depend on t and ϕ. These symmetries also constrain the scalars and gauge field
strengths to depend only on the remaining coordinates, which we choose to call r and
θ. We further assume FΛ

rθ = 0, such that (after also using the gauge freedom) we can set
AΛ
r = AΛ

θ = 0 for all Λ.

16One could, as done in e.g. [70, 71], eliminate the gauge fields Gi−ρµ to obtain an equivalent relation.
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4.4.4 Gaugino variation

Plugging the ansatz (4.51) into the gaugino variation δλiA = 0 gives

P xΛf
Λ
i = 0 , (4.53)

and (
e−iα∂µz

iγµγ0 +G−iµνγ
µν
)
εA = 0 . (4.54)

The latter condition can be simplified further, but we will see in what follows that it
automatically becomes simpler or gets satisfied in certain cases, so we will come back to
(4.54) later. We will make use of condition (4.53) when solving the gravitino integrability
conditions.

4.4.5 Hyperino variation

With the ansatz (4.51), setting the hyperino variation to zero gives the condition

e−iα∇µquγµγ0 + 2gk̃uΛL̄
Λ = 0 . (4.55)

Using the independence of the gamma matrices, one finds

∇rqu = ∇θqu = 0 ,

∇φqu = ωφ∇tqu ,

∇tqu = −
√

2gk̃uΛ
(
XL̄Λ + X̄LΛ

)
,

0 = k̃uΛ
(
X̄LΛ −XL̄Λ

)
.

(4.56)

Using axial symmetry and the gauge choice for the vector fields,AΛ
r = AΛ

θ = 0, it follows
that ∇rqu = ∂rq

u and ∇θqu = ∂θq
u, and these both vanish from the BPS conditions.

Furthermore, the hypers cannot depend on t and φ, because this would induce such
dependence also on the vector fields and complex scalars via the Maxwell equations
(4.48). Thus the hypers cannot depend on any of the space-time coordinates, so they are
constant. This will be important when we analyze the gravitino variation.

4.4.6 Gravitino variation

The gravitino equation reads

∇µεA = −e−iα
(
T−µργ

ρδA
C + gSABε

BCγµ
)
γ0εC . (4.57)
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We study the integrability condition which follows from this equation. The explicit
computation is presented in appendix B.3. The main result that we will first focus on is
equation (B.9),

T−µνP
x
ΛL

Λ = 0 , (4.58)

so that there are two separate cases: T−µν = 0 or P xΛL
Λ = 0. We will study these two

cases in different subsections.

Case 1: T−µν = 0

In this case the integrability conditions imply that the space-time is maximally sym-
metric with constant scalar curvature P xΛL

Λ, as further explained in appendix B.3.1 .
This corresponds either to Minkowski space when P xΛL

Λ = 0, or AdS4 when the scalar
curvature is non-zero. Although there might be interesting half BPS solutions here, they
will certainly not describe black holes.

Case 2: P xΛ = 0

The second case is P xΛL
Λ = 0. We combine this identity with P xΛf

Λ
i = 0 from (4.53). We

now obtain

P xΛ

(
L̄Λ

fΛ
i

)
= 0 . (4.59)

The matrix between brackets on the left hand side is invertible. This follows from
the properties of special geometry, and we used it also in the characterization of the
maximally supersymmetric vacua in [79]. We therefore conclude that P xΛ = 0. Next, we
show that in this case we have enough information to solve the gravitino variation and
give the metric functions.

From the definition (2.42) for ∇µεA, the quaternionic Sp(1) connection ωµA
B van-

ishes, as the hypers are constant by the arguments in section 4.4.5. Combining this with
P xΛ = 0, we see that the gravitino variation (2.68) is precisely the same as in a theory
without hypermultiplets and vanishing FI-terms. Thus our problem reduces to finding
the most general solution of the gravitino variation in the ungauged theory. The answer,
as proven by [70, 71], is that this is the well-known BLS solution [68] for stationary black
holes (or naked singularities and monopoles in certain cases). Thus we can use the BLS
solution, which in fact also solves the gaugino variation (4.54). We now only have to
impose the Maxwell equations, which are not the same as in the BLS setup, due to the
gauging of the hypermultiplets.
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The sections are again described by functionsHΛ and H̃Λ, as in (4.8), although not all
of them are harmonic. The metric and field strengths are given by (4.9), (4.13) and (4.14).
In terms of our original description (4.46), we have that γmn is three-dimensional flat
space and

eK = 2|X|2 . (4.60)

In the ungauged case the Maxwell equations have no source term and the field strengths
are thus described by harmonic functions, while now in our case they will be more
complicated. We can then directly compare to the original BLS solution described in
section 4.2.1 and see how the new equations of motion change it. At this point we have
chosen the phase α in (4.51) to vanish, just as it does in the BLS solution. We can do this
without any loss of generality since an arbitrary phase just appears in the intermediate
results for the symplectic sections (4.8), but drops out of the physical quantities such as
the metric and the field strengths.

We repeat that the Maxwell equations are given by (4.48),

εµνρσ∂νGΛρσ = −ghuvk̃uΛ∇µqv , (4.61)

with Gµν defined as in (4.11). Since our Bianchi identities are unmodified, and the
same as in BLS, we again solve them by taking the H̃Λ’s to be harmonic functions. The
difference is in the Maxwell equations.

We plug in the identities from (4.56), (4.9) and (4.14). The components of (4.61) with
µ 6= t are then automatically satisfied. The only non-trivial equation follows from µ = t,
and reads

�HΛ = −2g2e−Khuvk̃
u
Λk̃

v
ΣX

Σ .

Here, � is again the three-dimensional Laplacian in flat space. The left hand side is real,
and so is the right hand side, as a consequence of the last equation in (4.56) and the fact
that we have chosen the phase in X/|X| (see (4.51) to vanish. In other words, X is real,
and therefore also k̃uΛX

Λ is real.
We furthermore have a consistency condition for the field strengths. The gauge

potentials appear in (4.56), but also in (4.14), and these should lead to the same solution.
These consistency conditions were not present in the ungauged case, since in that case
there are no restrictions on FΛ from the hyperino variation. The constraints can be easily
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derived from the integrability conditions of (4.56), and are given by

k̃uΛH̃
Λ = 0 ,

k̃uΛF
Λ
rφ = −k̃uΛ∂r

(
ωφeKXΛ

)
,

k̃uΛF
Λ
θφ = −k̃uΛ∂θ

(
ωφeKXΛ

)
,

k̃uΛF
Λ
rt = −k̃uΛ∂r

(
eKXΛ

)
,

k̃uΛF
Λ
θt = −k̃uΛ∂θ

(
eKXΛ

)
.

(4.62)

The first condition can always be satisfied as it merely implies that some of the har-
monic functions H̃Λ depend on the others (remember that the hypermultiplet scalars
are constant, and therefore also the Killing vectors k̃uΛ). In more physical terms, this
constraint decreases the number of magnetic charges by the rank of k̃uΛ. The other
constraints have to be checked against the explicit form of the field strengths (4.13) and
(4.14). This cannot be done generically and has to be checked once an explicit model is
taken.

In section 4.3, we explained how the vanishing of k̃uΛL
Λ and k̃uΛAµ led to a BPS solu-

tion using spontaneous symmetry breaking. We can see that also from the equations of
this section. When k̃uΛL

Λ = 0, the right hand side of (4.4.6) is zero. This equation is then
solved by harmonic functionsHΛ. Furthermore, as k̃uΛ is constant, we can move it inside
the derivatives in (4.62), so the right hand sides are zero. The left hand sides are zero as
well, as k̃uΛF

Λ
µν = 0. Finally, the condition k̃uΛH̃

Λ = 0 is satisfied as k̃uΛL
Λ is already real.

4.5 Solutions with scalar hair

In this section, we search for solutions of the above BPS conditions that do not fall in
the class described in section 4.3. They describe asymptotically flat black holes and
would have non-trivial profiles for the massive vector and scalar fields, i.e. they would
be distinguishable by the scalar hair degrees of freedom outside the black hole hori-
zon. Remarkably, we could not find models with pure scalar hair solutions without the
need to introduce some extra features, such as ghost modes or non-vanishing fermions.
Below, we describe two examples of solutions that lead to at least one negative eigen-
value of the Kähler metric. We show that if we require strictly positive definite kinetic
terms in the considered models, one cannot find scalar hair solutions, but only the ones
described in section 4.3. It is of course hard to justify these ghost solutions physically.
However, there have been cases in literature where this is not necessarily a problem,
e.g. in Seiberg-Witten theory [104, 105] one has to perform duality transformation such
that the kinetic terms remain positive definite. Whether a similar story holds in our case
remains to be seen. If such duality transformations exist they will have to map the ghost
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black hole solutions of our abelian electrically gauged supergravity to proper black hole
solutions, possibly of magnetically gauged supergravity. However, we cannot present
any direct evidence for such a possibility.

4.5.1 Ghost solutions

Before we present our examples, we start with a general comment. We can obtain some
more information from the Einstein equations. The trace of the Einstein equations reads

R = T q + T z + 4V , (4.63)

where R is the Ricci scalar, and we have defined

T q = −2huv∇µqu∇µqv , T z = −2gi̄∂µz
i∂µz̄̄ . (4.64)

Using the BPS conditions in (4.56), one quickly finds T q = −2V . Furthermore, as
∂tz

i = 0, we find17 T z ≥ 0, and V ≥ 0 by equations (2.72) and the condition P xΛ = 0. We
therefore find

R = T z + 2V ≥ 0 , (4.65)

as long as the metric gi̄ is positive definite. So the BPS conditions forbid the Ricci scalar
R to become negative. In our examples below, the metric components will show some
oscillatory behavior, as a consequence of the non-linear differential equation (4.4.6).
Therefore, their derivatives, and hence the Ricci scalar, will oscillate between positive
and negative values. This would contradict the positivity bound (4.65), unless the
Kähler metric gi̄ contains regions in which it is not positive definite. We now discuss
this in detail with two examples.

Quadratic prepotential

We start with two simple models, which have only one vector multiplet. They are
described by the two prepotentials

F = − i
2

(
X0X0 ±X1X1

)
. (4.66)

These lead to the special Kähler metrics

gzz̄ =
∓1

(1± zz̄)2
, (4.67)

17Recall that our spacetime signature convention is (+,−,−,−).
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where z = X1/X0. With the upper sign, we therefore get a negative definite Kähler
metric and the vector multiplet scalar is a ghost field. With the lower sign, we obtain
a positive definite metric. We couple this to the universal hypermultiplet, and gauge
isometry 5 from appendix D, using A1

µ as the gauge field. The condition P xΛ = 0 fixes
χ = ϕ = σ = 0 and the only non-vanishing component of the Killing vectors is then
k̃R1 = 2Ra1, where a1 is a constant.

From the relations (4.8) follows that X0 = 1
2 (H0−iH̃0) and X1 = 1

2 (±H1−iH̃1). The
Kähler potential (2.19) is then

e−K = 2
(
X0X̄0 ±X1X̄1

)
. (4.68)

As we do not use A0
µ for the gauging, X0 remains harmonic, such that even if the

solution forX1 is considerably different, we still have hope of producing a black hole by
havingX1 as a small perturbation of the leading termX0 in the metric function e−K. For
simplicity, we restrict ourself to the spherically symmetric single-centered case, so now
our constraints (4.62) lead to H̃1 = 0 and k̃uΛF

Λ
rt = −k̃uΛ∂r

(
eKXΛ

)
. The latter eventually

implies that H̃0 is constant. Since we can absorb this constant by rescaling H0, we will
set H̃0 = 0. Thus we are left with 2X0 = H0 =

√
2 + q0

r (q0 > 0), where we set the
constant of the harmonic function to

√
2 to obtain canonically normalized Minkowski

space as r →∞.

The metric is given by (4.9), where

e−K =
1

2

((√
2 +

q0

r

)2

±H2
1

)
. (4.69)

The only undetermined function is H1, which is subject to the only equation left to be
satisfied, (4.4.6), which in this case is given by

�H1 = ∓e−KH1 = ∓1

2

((√
2 +

q0

r

)2

±H2
1

)
H1, (4.70)

after setting g|k̃| = 1. Besides the trivial solutionH1 = 0 (belonging to the class solutions
from section 4.3), we could not find an analytic solution to these equations. We can
analyze the differential equation as r → 0 and r → ∞. As r → ∞, we require e−K → 1,
to obtain flat space at infinity. Likewise, we require, as r → 0, that e−K → q2r−2, to
obtain AdS2 × S2 at the horizon. The constant q (which is not necessarily equal to q0)
determines the (equal) radii of AdS2 and S2. If we solve (4.70) for large values of r, we
have to solve �H1 = ∓H1; for small values of r we have to solve �H1 = ∓ 1

2q
2r−2H1.



78 CHAPTER 4. BLACK HOLES IN GAUGED SUPERGRAVITY

• With the upper sign (the ghost model), we find the general solution

H1 = A
cos(r)

r
+B

sin(r)

r
, r →∞ , (4.71)

H1 = Cr−
1
2−

1
2

√
1−4q2

+Dr−
1
2 + 1

2

√
1−4q2

, r → 0 . (4.72)

As long as 4q2 < 1, all the asymptotics are fine.

• With the lower sign (the non-ghost model), we find the general solution

H1 = A
e−r

r
+B

er

r
, r →∞ , (4.73)

H1 = Cr−
1
2−

1
2

√
1+4q2

+Dr−
1
2 + 1

2

√
1+4q2

, r → 0 . (4.74)

When B is nonzero, this violates the boundary condition that e−K → 1 as r →∞,
so we have to set B = 0. Likewise, we have to set C = 0. We will now prove
that imposing such boundary conditions implies H1 = 0. To do this, we use the
identity∫ ∞

0

(rH1)∂2
r (rH1) dr = −

∫ ∞
0

∂r(rH1)∂r(rH1) dr + (rH1)∂r(rH1)
∣∣∣r=∞
r=0

. (4.75)

Using (4.73) and (4.74) one finds that, for B = C = 0, the boundary term vanishes.
On the left-hand side, we use (4.70), and we obtain (using �H1 = r−1∂2

r (rH1))∫ ∞
0

H1e−KH1 dr = −
∫ ∞

0

∂r(rH1)∂r(rH1) dr . (4.76)

The left-hand side is non-negative, whereas the right-hand side is non-positive, so
this proves H1 = 0. This argument can easily be repeated for solutions with only
axial symmetry.

We can plot the solution with the upper sign numerically with generic starting con-
ditions, and the result is shown on figure 4.1(a). The metric function gets oscillatory
perturbations, while having its endpoints fixed to the desired values as shown on fig-
ure 4.1(b).

The function H1 approaches zero as r → ∞ in an oscillatory fashion, which can be
seen in figure 4.1(a). To investigate the behavior near the horizon at r = 0, we also
checked that rH1 approaches zero, and hence H1 diverges slower than 1/r. Both are in
agreement with the asymptotic analysis above.

The numerics further show that the metric function for negative values of r yields
the expected singularity at r = − q0√

2
. We conclude that this is indeed a black hole space-

time, having one electric charge q0, and the fluctuations around the usual form of the
metric are due to the effect of the abelian gauging of the hypermultiplet.
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Figure 4.1: Plots of the solution to the differential equation (4.70) for q0 = 1, using
boundary conditions H1(1) = 10 and H ′1(1) = 1. The scalar z approaches zero at the
horizon at r = 0, and the Kähler potential e−K approaches 1 as r → ∞.

Let us now try to give a bit more physical interpretation of this new black hole
spacetime. After more careful inspection of the solution, we see that at the horizon
and asymptotically at infinity we again have supersymmetry enhancement, since the
vector multiplet scalars are fixed to a constant value. It is interesting that the electric
charge, associated to the broken gauge symmetry vanishes at the horizon, i.e. the black
hole itself is not charged with q1 exactly as in the normal case without ghosts. Yet there
is a non-zero charge density for this charge everywhere in the spacetime outside the
black hole, which is the qualitatively new feature of the ghost solutions. Clearly the fact
that there is non-vanishing charge density everywhere in space-time does not change
the asymptotic behavior, but it seems that it is physically responsible for the ripples
that can be observed in the metric function on figure 4.1(b) (of course this is all related
to the fact that we have propagating ghost fields). We should note that these are not
the first rippled black hole solutions, similar behavior is found in the higher derivative
ungauged solutions, e.g. in [106], where also one finds ghost modes in the resulting
theory. The detailed analysis in section 4 of [106] holds in our case, i.e. the main physical
feature of the ripples is that gravitational force changes from attractive to repulsive in
some space-time points.

Cubic prepotential

The example above shows already the general qualitatively new features of this class
of black holes with ghost fields, but is still not interesting from a string theory point of
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view, since Calabi-Yau compactifications lead to cubic prepotentials of the form

F = −KijkX
iXjXk

6X0
. (4.77)

The simplest case one can consider is the STU model of section 4.3.2. We coupled it
to the universal hypermultiplet with a single gauged isometry and found it impossible
to produce any new solutions. However, other choices of Kijk allow for interesting
numerical solutions of (4.4.6). For this purpose we consider a relatively simple model
with three vector multiplets:

F =
(X1)3 − (X1)2X2 −X1(X3)2

2X0
. (4.78)

We again use the universal hypermultiplet and gauge the same isometry as before, but
we now use only A3

µ for our gauging. Again, the condition P xΛ = 0 fixes χ = ϕ = σ = 0,
and the only non-vanishing component of the Killing vector is k̃R3 = 2Ra3. In parts
of moduli space this model exhibits proper Calabi-Yau behavior, i.e. the Kähler metric
is positive definite, but there are regions where gi̄ has negative eigenvalues (or e−K

becomes negative). There is no general expression for this so-called positivity domain;
one has to analyze an explicit model to find the conditions.

For simplicity, we set H̃i = H0 = 0, so the non-vanishing functions are Hi and H̃0.
Inverting (4.8) we obtain for the Kähler potential

e−K =
√

2H2

√
H̃0

(
H1 +H2 +

H2
3

4H2

)
. (4.79)

We see that, as is commonly encountered in these models, one has to choose the signs
of the functions Hi and H̃0 such that this gives a real and positive quantity. With these
we satisfy all conditions in (4.62) and are left to solve (4.4.6) that explicitly reads:

�H3 = −a2
3H̃

0

(
H1 +H2 +

H2
3

4H2

)
H3 , (4.80)

where H̃0, H1 andH2 are harmonic functions, and we have set g|k̃| = 1 for convenience.
We impose the same boundary conditions, so as r → ∞, we require e−K → 1, to

obtain flat space at infinity. Likewise, we require, as r → 0, that e−K → q2r−2, to obtain
AdS2 × S2 at the horizon. Using (4.79), we then find that we have to solve

�H3 = −a2
3q

2r−2H3 , as r → 0 , (4.81)

�H3 = −a2
3c

2H3 , as r →∞ , (4.82)
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where c2 is also a constant, specified by the asymptotics of H̃0, H1 and H2. We therefore
again find

H3 = A
cos(a3cr)

r
+B

sin(a3cr)

r
, as r →∞ . (4.83)

These functions are oscillating; therefore the Kähler potential (4.79) will also oscillate.
This causes the Ricci scalar to become negative, which is in violation of the bound (4.65).
Therefore, there is always a negative eigenvalue of the metric, corresponding to a ghost
mode.

We could only find a numerical solution to this equation, and the results are qualita-
tively the same as the ones on figure 4.1, so we will omit them for this model.

It is therefore possible to find black hole solutions in these Calabi-Yau models, but
they do contain regions in which scalars become ghost-like.

4.5.2 Fermionic hair

There is a different way of generating scalar hair with properly normalized positive-
definite kinetic terms. As such, we can thereby avoid the ghost-like behavior of the
previously discussed examples. The idea is simple and works for any solution that
breaks some supersymmetry. By acting with the broken susy generators on a bosonic
solution, we will turn on the fermionic fields to yield the fermionic zero modes. These
fermionic zero modes solve the linearized equations of motion and produce fermionic
hair. In turn, the fermionic hair sources the equations of motion for the bosonic field,
and in particular, the scalar field equations will have a source term which is bilinear
in the fermions. The solution of this equation produces scalar hair and can be found
explicitly by iterating again with the broken supersymmetries. This iteration procedure
stops after a finite number of steps and produces a new solution to the full non-linear
equations of motion. By starting with a BPS black hole solution of the type discussed in
section 4.3, one therefore produces new solutions with both fermionic and scalar hair.
For a discussion on this for black holes in ungauged supergravity, see [107].

The explicit realization of this idea is fairly complicated since it requires to explicitly
find the Killing spinors preserving supersymmetry. This can sometimes be done also
just by considering the possible bosonic and fermionic deformations of the theory, as
done in e.g. [108, 109] for black holes in ungauged supergravity. The extension of this
hair-analysis to gauged supergravities would certainly be an interesting extension of
our work.





Chapter 5

New potentials from Scherk-Schwarz
reductions

5.1 Introduction

Scherk-Schwarz reductions [110, 111] provide a way to construct gauged supergravities
from higher dimensional ungauged ones. They were quickly mentioned in the intro-
duction in section 2.5.2 and we will elaborate on this.

Suppose one studies a (D+1)-dimensional complex scalar field φ and assumes that
space-time is a D-dimensional space-time times a circle of radius R. One can then
expand the field as

φ(x, z) =

∞∑
n=−∞

φn(x)einz/R , (5.1)

where x is the D-dimensional coordinate and z is a coordinate on a circle. Scherk and
Schwarz noticed that this is not the most general ansatz possible: if the theory is invari-
ant under the global transformations φ→ eiαφ, one can extend this ansatz to

φ(x, z) = eiMz
∞∑

n=−∞
φn(x)einz/R . (5.2)

This is no longer single-valued on the (D + 1)-dimensional spacetime, as we have that
φ(x, z + 2πR) = e2πiMRφ(x, z), but we can remove the offending phase by acting with
the global symmetry. If we now keep M fixed and take the limit R → 0, we can ignore
all terms but S0, which will be a D-dimensional field of mass M . In this way we obtain
the example of section 2.5.2.

Scherk-Schwarz reductions typically lead to semi-positive definite potentials for the
scalar fields with local minima that can describe Minkowski or de Sitter vacua. Such
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models have been studied intensely over recent times in the context of compactifications
of string- and M-theory, with and without fluxes. For some background material and
earlier references, see e.g. [112–123].

Actually, there are two classes of Scherk-Schwarz reductions: the case of reductions
over a circle with a duality twist along the circle, as outlined above, and the case of
twisted tori (or twistings of other manifolds). In the latter setting, one expands in forms
that are not closed. For example, if we expand the ten-dimensional form B̂2 as

B̂2(x, y) = bi(x)ωi(y) , (5.3)

but now (in contrast with the Calabi-Yau compactifications of section 2.5.3) the forms ωi
are not closed. We then find

Ĥ3 = dbi ∧ ωi(y) + bidωi . (5.4)

Integrating now the ten-dimensional kinetic term Ĥ3 ∧ ?Ĥ3 over the internal space X
gives

V = bibj
∫
X
ωi ∧ ?ωj . (5.5)

This is a potential for the moduli fields bi; the problem is now computing it. In suitable
models, one can expand dωi again in a basis of harmonic three-forms, and one can
actually perform the integrations.

Sometimes, these two classes are related to each other, and reductions with duality
twists can be understood in terms of compactifications on twisted tori. For a discus-
sion on this, see e.g. [121]. This equivalence will also play a role in our investigation,
although we focus mostly on the reductions with a duality twist.

5.2 M-theory on Calabi-Yau manifolds

In this section, we review aspects of compactifications of eleven-dimensional supergrav-
ity on Calabi-Yau threefolds. Almost all material in this section is known, and collected
from various places in the literature, which we refer to below. We give this review
to recall some of the duality symmetries in five dimensions, and to set our notation
for subsequent sections. The reader who is very familiar with five-dimensional matter
coupled toN = 2 supergravity might skip this section and go straight to the next section
where we start the Scherk-Schwarz reduction to four dimensions.

The low-energy limit of M-theory can be described in terms of eleven-dimensional
supergravity. In form-notation, the bosonic part of this action reads [124]

Ŝ =
1

2

∫ (
R̂ ? 1− 1

2
F̂4 ∧ ?F̂4 −

1

6
F̂4 ∧ F̂4 ∧ Ĉ3

)
. (5.6)
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Here, R̂ denotes the eleven-dimensional Ricci scalar and ? stands for the eleven-dimen-
sional Hodge star operator. Furthermore, Ĉ3 is a three-form potential, F̂4 = dĈ3 de-
notes the corresponding field strength and we have set the eleven-dimensional Planck
constant to one.

In the following, we compactify M-theory on a simply-connected Calabi-Yau three-
fold X , which leads to a supergravity theory in five dimensions with eight (real) super-
charges [125].

5.2.1 Calabi-Yau manifolds and dimensional reduction

Notation

We begin by establishing some notation for the Calabi-Yau three-fold X . Let us denote
a basis of harmonic (1, 1)-forms on X by

ωA , A = 1, . . . , h1,1 , (5.7)

where here and in the following hp,q denote the Hodge numbers of the Calabi-Yau
threefold. The triple intersection numbers for X are defined by

KABC =

∫
X
ωA ∧ ωB ∧ ωC . (5.8)

For the third co-homology group H3(X ) we denote a real basis by{
αK , β

L
}
, K, L = 0, . . . h2,1 , (5.9)

which is chosen such that∫
X
αK ∧ βL = δK

L ,

∫
X
αK ∧ αL = 0 ,

∫
X
βK ∧ βL = 0 . (5.10)

The Calabi-Yau threefold is endowed with a Kähler form J and a holomorphic three-
form Ω. In terms of the bases (5.7) and (5.9), these can be decomposed in the following
way

J = vAωA , Ω = ZKαK −GKβK , (5.11)

where the expansion coefficients vA are real. The functions (ZK , GK) are the holomor-
phic sections of special geometry and depend on the complex structure moduli zr of the
Calabi-Yau manifold, where r = 1, . . . , h2,1. The volume of X can be expressed in terms
of the Kähler form J as follows

V =
1

3!

∫
X
J ∧ J ∧ J =

1

3!
KABCvAvBvC . (5.12)
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Ansatz for the compactification

To perform the dimensional reduction of the action (5.6), we make the following ansatz
for the eleven-dimensional metric

ĜMN =

(
g̃µ̃ν̃ 0

0 Gmn

)
,

µ̃, ν̃ = 0, . . . , 4 ,

m, n = 1, . . . , 6 ,
(5.13)

where g̃µ̃ν̃ denotes a five-dimensional metric and Gmn is the metric of a Calabi-Yau
threefold. For the three-form potential, we chose the expansion

Ĉ3 = c̃3 +AA ∧ ωA + C3 , C3 =
√

2 ξKαK −
√

2 ξ̃Kβ
K , (5.14)

with c̃3(x̃µ̃) a three-form in five dimensions which depends solely on the five-dimen-
sional coordinates x̃µ̃. Similarly, AA(x̃µ̃) are five-dimensional one-forms while ξK(x̃µ̃)

and ξ̃K(x̃µ̃) are five-dimensional scalars. We have separated the pure Calabi-Yau part
C3 from from c̃3 and AA for later convenience.

Dimensional reduction to five-dimensional supergravity

Let us begin with the dimensional reduction of the eleven-dimensional Ricci scalar ap-
pearing in the action (5.6). We first decompose (up to total derivatives)

1

2

∫
R̂ ? 1 =

1

2

∫
d11x̂

√
Ĝ

[
R(5) +RX −

1

4

(
Gab∂µ̃Gbc

)(
Gcd∂µ̃Gda

)
+

1

4

(
Gab∂µ̃Gab

)(
Gcd∂µ̃Gcd

) ]
,

(5.15)

where R(5) denotes the Ricci scalar computed from the five-dimensional metric g̃µ̃ν̃ ,
RX = 0 is the Ricci scalar of the Calabi-Yau manifold X and ∂µ̃ are derivatives with
respect to the five-dimensional coordinates x̃µ̃. We then split the Calabi-Yau metricGmn
into a constant background part G̊mn and fluctuations around this background

Gmn = G̊mn + δGmn . (5.16)

Following [126–129], the fluctuations (in a complex basis with holomorphic indices a, b
and anti-holomorphic indices a, b) can be expressed as

δGab = −i δvA (ωA)ab , A = 1, . . . , h1,1 ,

δGab =
V∫

X Ω ∧ Ω
zr (χr)aab Ωabb , r = 1, . . . , h2,1 ,

(5.17)
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where δvA are fluctuations around the background value v̊A of the expansion parame-
ters of the Kähler form given in (5.11). In the following, these will be combined into

vA = v̊A + δvA . (5.18)

Furthermore, χr denotes a basis of harmonic (2, 1)-forms on X , and the holomorphic
three-form Ω was introduced in (5.11). The volume V of the Calabi-Yau three-fold was
defined in equation (5.12). At lowest order in the fluctuations, χr in δGab does not
depend on the five-dimensional coordinates whereas zr (as well as δvA in δGab) are
functions of x̃µ̃. We also note the relation

G̊ab(ωA)ab =
i

2

KABCvBvC

V
, (5.19)

and we define and compute

g(5)AB ≡
1

4V

∫
X
ωA ∧ ?ωB = − 1

4V

(
KABCvC −

KACDvCvDKBEF vEvF

4V

)
, (5.20)

as well as

Grs ≡ −
∫
X χr ∧ χs∫
X Ω ∧ Ω

, r, s = 1, . . . , h2,1 . (5.21)

Up to second order in the fluctuations δG, we then find

1

2

∫
R4,1×X

R̂ ? 1 =

∫
R4,1

[
V
2
R(5) ?5 1− V g(5)ABdvA ∧ ?5dvB − V Grsdzr ∧ ?5dzs

+
V
2

d logV ∧ ?5d logV
]
. (5.22)

Let us next turn to the kinetic term for the three-form potential Ĉ3. Using the ansatz
(5.14), we compute

−1

4

∫
R4,1×X

F̂4 ∧ ?F̂4 = −1

4

∫
R4,1

[
V dc̃3 ∧ ?5dc̃3 + 4V g(5)AB dAA ∧ ?5dAB

− 2
(
ImM

)−1KL
(

dξ̃K −MKNdξN
)
∧ ?5

(
dξ̃L −MLMdξM

) ]
.

(5.23)

Here, we have employed the period matrixMKL which satisfies [130, 131]∫
X
αK ∧ ?6αL =

[
−
(
ImM

)
−
(
ReM

)(
ImM

)−1(
ReM

)]
KL

,∫
X
αK ∧ ?6β

L =
[
−
(
ReM

)(
ImM

)−1
] L

K
,∫

X
βK ∧ ?6β

L =
[
−
(
ImM

)−1
]KL

,

(5.24)
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with matrix products understood and {αK , βL} denoting the basis introduced in (5.9).
For the topological term in the action (5.6) we compute (up to total derivatives)

− 1

12

∫
R4,1×X

F̂4 ∧ F̂4 ∧ Ĉ3

= − 1

12

∫
R4,1

[
6 dc̃3 ∧

(
ξKdξ̃K − ξ̃KdξK

)
+KABC dAA ∧ dAB ∧AC

]
.

(5.25)

To dualize c̃3 to a scalar field, we introduce a Lagrange multiplier a for dc̃3 and add this
term to the combined action (5.23) and (5.25). After solving the equations of motion for
c̃3 and substituting them back into the action, the terms involving c̃3 become

− 1

4

∫
R4,1

V dc̃3 ∧ ?5dc̃3 + 2dc̃3 ∧ (ξ̃KdξK − ξKdξ̃K) + 2dc̃3 ∧ da

= − 1

4

∫
R4,1

1

V

(
da+ ξKdξ̃K − ξ̃KdξK

)
∧ ?5

(
da+ ξLdξ̃L − ξ̃LdξL

)
.

(5.26)

Finally, we combine the above expressions and perform a Weyl rescaling g̃µ̃ν̃ → V−
2
3 g̃µ̃ν̃

of the five-dimensional metric to arrive at

S5 =

∫
R4,1

[
+

1

2
R(5) ?5 1− 1

6
d logV ∧ ?5d logV − g(5)ABdvA ∧ ?5dvB

−Grsdzr ∧ ?5dzs − V 2
3 g(5)AB dAA ∧ ?5dAB

− 1

4V2

(
da+ ξKdξ̃K − ξ̃KdξK

)
∧ ?5

(
da+ ξLdξ̃L − ξ̃LdξL

)
+

1

2V
(
ImM

)−1KL
(

dξ̃K −MKNdξN
)
∧ ?5

(
dξ̃L −MLMdξM

)
− 1

12
KABC dAA ∧ dAB ∧AC

]
. (5.27)

As it turns out, the field V belongs to a hypermultiplet and so (5.27) contains terms
mixing hyper- and vector multiplets. To make contact with the standard formulation of
N = 2 supergravity in five dimensions, we introduce new fields

νA = V− 1
3 vA . (5.28)

By definition, these satisfy 1
6 KABCν

AνBνC = 1 and so there are h1,1 scalar fields νA

subject to one constraint, as well as the independent field V . We then arrive at the
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following form of the five-dimensional action [132, 133]

S5 =

∫
R4,1

[
+

1

2
R(5) ?5 1− 1

4
d logV ∧ ?5d logV +

1

4
KABCνCdνA ∧ ?5dνB

+
1

4

(
KABCνC −

1

4
KACDνCνDKBEF νEνF

)
dAA ∧ ?5dAB

− 1

12
KABC dAA ∧ dAB ∧AC −Grsdzr ∧ ?5dzs (5.29)

− 1

4V2

(
da+ ξKdξ̃K − ξ̃KdξK

)
∧ ?5

(
da+ ξLdξ̃L − ξ̃LdξL

)
+

1

2V
(
ImM

)−1KL
(

dξ̃K −MKNdξN
)
∧ ?5

(
dξ̃L −MLMdξM

) ]
.

The first term in this expression is the five-dimensional Ricci scalar, V is the volume
of the Calabi-Yau manifold and KABC denote the triple intersection numbers defined
in (5.8). Furthermore, the scalars νA are related to the expansion coefficients vA of the
Kähler form J by a rescaling with the volume (see equation (5.28)), such that they satisfy

1

6
KABCνAνBνC = 1 . (5.30)

Thus, there are h1,1−1 scalar degrees of freedom in these fields. Accordingly, the vector
fields AA comprise the graviphoton and h1,1 − 1 additional vector fields to form five-
dimensional vector multiplets. The remaining scalar fields {V, a, zr, zr, ξK , ξ̃K} form
h2,1 + 1 hypermultiplets that parametrize a quaternion-Kähler manifold [125].

5.2.2 Symmetries of the five-dimensional theory

Symmetries in the vector multiplet sector

We begin our discussion on the symmetries of (5.29) with the vector multiplets. Besides
the usual gauge invariances acting on the vector potentials, there are additional symme-
tries in the scalar sector. In particular, the scalars in the vector multiplets parametrize
a so-called real special geometry, whose isometries have been studied in [132]. As ex-
plained in [134], not all isometries extend to symmetries of the full Lagrangian, but only
transformations

δνA = MA
Bν

B , δAA = MA
BA

B , (5.31)

where the constant, real matrix MA
B is subject to the constraint

0 = KD(ABM
D
C) = KDBCMD

A +KADCMD
B +KABDMD

C , (5.32)
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lead to symmetries of the full action, including the Chern-Simons terms.
Generically, the real special manifolds parametrized by the scalars in the vector

multiplets need not be homogeneous, and solutions to (5.32) are not known in general.
However, for homogeneous spaces a classification can be found in [135, 136]. A special
subclass of the latter is given by the manifolds

SO(1, 1)× SO(n+ 1, 1)

SO(n+ 1)
, (5.33)

for any integer n, with isometry group SU(1, 1) × SO(n + 1, 1). This case arises in
compactifications in which the Calabi-Yau manifold is a K3-fibration over a base P 1. In
the present context, this situation has been studied in [64].

Symmetries in the hypermultiplet sector

To study the isometries for the hypermultiplets, we first introduce some notation. The
hypermultiplet scalars were given by {V, a, zr, zr, ξK , ξ̃K}, which parametrize a partic-
ular type of quaternionic manifolds called ‘very special’ in [136].

Since we consider M-theory on a Calabi-Yau manifold, the subspace of complex
structure deformations zr is described by special Kähler geometry, for which there exists
a prepotential. In the large complex structure limit, it is given by 18

G(Z) = − 1

3!
drst

ZrZsZt

Z0
, r, s, t = 1, . . . , h2,1 . (5.34)

Here, drst is a real symmetric tensor, the ZK appear in the expansion (5.11) of the
holomorphic three-form Ω and GK = ∂G(Z)/∂ZK . The connection to the scalars zr

is made by introducing projective coordinates

zr =
Zr

Z0
, r = 1, . . . , h2,1 . (5.35)

The corresponding Kähler potential reads

Kcs = − ln

(
i

∫
X

Ω ∧ Ω

)
= − ln

(
4

3

∣∣Z0
∣∣2 d) , (5.36)

where here and in the following we employ the notation

d = drstx
rxsxt , dr = drstx

sxt , drs = drstx
t , (5.37)

18We reserve the usual notation F and X for the special geometry in the vector multiplets.
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with xr = Im zr. From (5.36), we can then compute the Kähler metric as 19

Grs =
∂2

∂zr∂zs
Kcs = −3

2

drs
d

+
9

4

drds
d2

. (5.38)

With Grs denoting the inverse of (5.38), the curvature for this metric can be computed
as follows [136]

Rrst
v = δrsδ

v
t + δrt δ

v
s −

4

3
Crvudstu , where Crst =

27

64

1

d2
GruGsvGtw duvw .

(5.39)

Since the scalars zr appearing in the action (5.29) can be described by a Kähler po-
tential, their kinetic term is invariant provided that (5.36) does not change under the
transformations of interest.20 We then make the following ansatz for the transformation
of the sections (ZK , GK) appearing in the holomorphic three-form Ω

δ

(
ZK

GK

)
=

(
QKL RKL
SKL TKL

)(
ZL

GL

)
, (5.40)

where,Q,R, S and T are constant, real h2,1+1 square matrices. Imposing the invariance
of the Kähler potential (5.36) under this transformation, i.e.

δ

∫
X

Ω ∧ Ω = 0 , (5.41)

we are lead to the constraints

T = −QT , S = ST , R = RT , (5.42)

so the isometries are contained in the symplectic group Sp
(
2(h2,1 + 1),R

)
. However, as

we are considering a Calabi-Yau manifold, we know that the sections GK are related to
ZK through a prepotential G(Z) as GK = ∂G(Z)/∂ZK . Therefore, in the ansatz (5.40)
the transformation δGK is not independent of δZK , but we have to require

δGK =
∂GK
∂ZL

δZL . (5.43)

As GK is a homogeneous function of degree one, we have GK = (∂GK/∂Z
L)ZL. We

then infer from (5.43) that [136]

0 = GTQZ +GTRG− ZTS Z − ZTT G . (5.44)

19The identification of (5.38) with the metric (5.21) can be made by noting that χr = ∂zrΩ +
(
∂zrKcs

)
Ω as

well as that
∫
X ∂zrΩ ∧ Ω = 0.

20Strictly speaking, (5.36) should be invariant up to Kähler transformations, but we will ignore those in the
present analysis.
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Furthermore, to leading order in the large zr-expansion, for Calabi-Yau threefolds the
prepotential G(Z) is given by (5.34). The solution to (5.44) in this case can be found
in [136] which we briefly recall. In particular, the matrices Q,R,S and T appearing in
(5.40) can be parametrized as

QKL = −
(
T T
)K

L =

(
β as
br Brs + 1

3 β δ
r
s

)
,

SKL = −
(

0 0

0 drstb
t

)
, RKL = −

(
0 0

0 4
3 C

rstat

)
,

(5.45)

with β, br, as and Brs constant parameters. The matrix Brs is subject to the constraint

Br(sdtu)v = 0 , (5.46)

where (· · ·) denotes symmetrization and the constants as are constrained by

0 = asE
s
tuvw , where Estuvw = Cyzs dy(tudvw)z − δs(tduvw) . (5.47)

With this information, we can compute the transformation of the projective coordinates
zr introduced in (5.35). Employing (5.45) as well as (5.35), we find [136]

δzr = br − 2

3
β zr +Brsz

s − 1

2
Rrst

vzsztav , (5.48)

and we note that the condition (5.47) implies that Rrstvav is constant.
To promote the symmetry of the complex structure deformations zr to a symmetry

of the full hypermultiplets, and hence to isometries of the quaternionic space, we follow
again [136]. First we note that the period matrix M appearing in the action (5.29) (as
well as in equations (5.24)) satisfies the relation

GK =MKLZ
L . (5.49)

From the transformation of (ZK , GK) shown in (5.40), we infer thatM transforms as

δM = S + TM−MQ−MRM . (5.50)

Requiring the kinetic term of the scalars (ξK , ξ̃K) in (5.29) to be invariant implies the
following transformation

δ

(
ξK

ξ̃K

)
=

(
QKL RKL
SKL TKL

)(
ξL

ξ̃L

)
, (5.51)
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which also leads to the invariance of the
(
ξKdξ̃K − ξ̃KdξK

)
terms and agrees with [136].

Hence, just like (ZK , GK), the (ξK , ξ̃K) form a symplectic pair.
Finally, we should add that the hypermultiplet space in general possesses more sym-

metries than the ones described here, for instance the Heisenberg algebra of isometries
(which include the Peccei-Quinn shifts on (ξK , ξ̃K)) that act on the coordinates (ξK , ξ̃K)

and a only. Furthermore, there are additional isometries that act non-trivially on the
volume V and the axion a – for a complete classification see [136]. Including these in a
Scherk-Schwarz reduction would be an interesting extension of our work. We will not
consider them in our present discussion.

5.3 Scherk-Schwarz reduction to four dimensions

In this section, we compactify the five-dimensional theory given by (5.29) on a circle
of radius R. In addition we impose a non-trivial dependence on the coordinate of the
circle. Such a setup was studied first in [118] and, without hypermultiplets, further
worked out in [64].

5.3.1 Ansatz for the compactification

To perform the compactification from five to four dimensions, we split the five-dimen-
sional coordinates as

{x̃µ̃} −→ {xµ, z} ,
µ̃ = 0, . . . , 4 ,

µ = 0, . . . , 3 ,
(5.52)

where z denotes the coordinate of the circle normalized as z ∼ z+1. The dependence of
the five-dimensional scalars νA and the five-dimensional vectors AA on the coordinate
z is chosen in the following way

∂zν
A = MA

Bν
B , ∂zA

A = MA
BA

B , (5.53)

where MA
B satisfies (5.32). These expressions can be integrated to obtain

νA(z) =
[
exp(Mz)

]A
B
νB(0) , AA(z) =

[
exp(Mz)

]A
B
AB(0) , (5.54)

where the exponential of a matrix is understood as a matrix product and where only the
z-dependence of the fields is shown explicitly.

Clearly, the fields are not periodic around the circle, but are related to each other by
the duality transformations (5.31) generated by M . These duality transformations form
a group G, and therefore one should have

exp(M) ∈ G . (5.55)



94 CHAPTER 5. NEW POTENTIALS FROM SCHERK-SCHWARZ REDUCTIONS

Classically, the group G is taken over the real numbers, and hence the entries of M can
be taken as arbitrary real constants. They are related to the masses of the fields, and
are treated as continuous parameters which we can take arbitrary small values – or at
least values smaller than the masses of the Kaluza-Klein modes that we neglected. In
the quantized theory, we expect the duality group to be defined over the integers, and
hence the masses will be quantized in some units. This could lead to complications in
the truncation of the theory to the lightest modes, which we will ignore in this chapter.
For discussions on this issue for toroidal compactifications, see for instance [116, 121].

Turning to the hypermultiplets, for the dependence of the scalars (ξK , ξ̃K) on the
coordinate z of the circle we take

∂z

(
ξK

ξ̃K

)
=

(
QKL RKL
SKL TKL

)(
ξL

ξ̃L

)
, (5.56)

and for the complex structure moduli zr we choose in a similar fashion

∂zz
r = br − 2

3
β zr +Brsz

s − 1

2
Rrst

vavz
szt ≡ N r . (5.57)

The finite version of these transformations can easily be written down for (ξK , ξ̃K). For
zr, one first expresses them as transformations for the sections ZK , after which one can
integrate. We choose ∂za = ∂zV = 0.

Note that, since we have chosen the dependence of the fields on the circle coordinate
z such that they correspond to Killing vectors of the five-dimensional theory, the full
action does not depend on z and so we can evaluate the terms at a particular reference
point, say z0 = 0.

For the five-dimensional metric, we make the following ansatz for the dimensional
reduction

g̃µ̃ν̃ =

(
R−1gµν +R2A0

µA
0
ν −R2A0

µ

−R2A0
ν R2

)
, (5.58)

where gµν is the four-dimensional metric, R is the radius of the circle and where the
four-vector A0

µ will become the graviphoton. The factor R−1 is chosen such that we
end up in Einstein frame. For the five-dimensional gauge fields appearing in the action
(5.29), we choose

AA(5) = AA(4) + bA
(
dz −A0

)
, (5.59)

where we added subscripts to distinguish between five- and four-dimensional quanti-
ties. Using the above ansätze within the action (5.29), one can perform the dimensional
reduction.
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5.3.2 Reduction to the four-dimensional action

Computations

To perform the dimensional reduction of the five-dimensional action (5.29), we note that
the inverse of the metric (5.58) reads

g̃µ̃ν̃ =

(
Rgµν RA0µ

RA0 ν R−2 +RA0
ρA

0 ρ

)
, (5.60)

whereA0µ is the graviphoton with indices raised by the inverse of the four-dimensional
metric gµν . The determinant of g̃µ̃ν̃ is given by

det gµ̃ν̃ = R−2 det gµν . (5.61)

For the five-dimensional Ricci scalar, we then find∫
R4,1

1

2
R(5) ?5 1 =

∫
R3,1

[
1

2
R(4) ?4 1− 3

4
d logR ∧ ?4d logR− R3

4
dA0 ∧ ?4dA0

]
.

(5.62)

Under the symmetries (5.31) discussed in section 5.2.2, due to equation (5.32), the vol-
ume V is independent of z and so we have chosen ∂zV = 0. Upon dimensional reduc-
tion, the corresponding term in the action keeps the same form, i.e.∫

R4,1

[
−1

4
d logV ∧ ?5d logV

]
=

∫
R3,1

[
−1

4
d logV ∧ ?4d logV

]
. (5.63)

However, for the scalars νA there is a non-trivial dependence on the coordinate z of the
circle, which we have specified in equation (5.53). This leads to∫

R4,1

[
1

4
KABC νCdνA ∧ ?5dνB

]
=

∫
R3,1

[
1

4
KABCνCDνA ∧ ?4Dν

B +
1

4R3
KABCνC

(
MA

Dν
D
)(
MB

Eν
E
)
?4 1

]
,

(5.64)

where we have defined

DνA = dνA +A0MA
Bν

B . (5.65)

The computation for the remaining five-dimensional scalar fields in the action (5.29) is
completely analogous. On the other hand, the reduction of the five-dimensional vector
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fields is non-trivial. In particular, using (5.53) and (5.59), for the kinetic term one finds∫
R4,1

[
1

4

(
KABCνC −

1

4
KACDνCνDKBEF νEνF

)
dAA(5) ∧ ?5dAB(5)

=

∫
R3,1

[
1

4

(
KABCνC −

1

4
KACDνCνDKBEF νEνF

)
×

×
(
RFA(4) ∧ ?4F

B
(4) +

1

R2
DbA ∧ ?4Db

B
)
,

(5.66)

with the definitions

FA(4) = dAA(4) −M
A
BA

B
(4) ∧A

0 , DbA = dbA −MA
B

(
AB(4) − b

BA0
)
. (5.67)

For the Chern-Simons term in the five-dimensional action (5.29), employing the con-
straint (5.32), we find in agreement with [64]∫

R4,1

[
− 1

12
KABC dAA(5) ∧ dAB(5) ∧A

C
(5)

]
=

∫
R3,1

[
− 1

6
KABC FA(4) ∧M

B
D A

D
(4) ∧A

C
(4) −

1

4
KABCbCFA(4) ∧ F

B
(4)

+
1

6
KABCbBbCdA0 ∧ FA(4) −

1

12
KABCbAbBbCdA0 ∧ dA0

]
.

(5.68)

Standard form of N = 2 gauged supergravity

Let us now bring the above results into the standard form ofN = 2 gauged supergravity
in four dimensions, which was given in section 2.4.1. For ease of notation we will drop
all subscripts indicating four-dimensional quantities since this will be clear from the
context.

• The Einstein-Hilbert term shown in equation (5.62) is already in the standard form.

• Concerning the scalars νA and bA, we first define fields φA in the following way

φA = RνA , R3 =
1

6
KABCφAφBφC , (5.69)

where we have included the constraint (5.30) in terms of the φA. Collecting then
all kinetic terms involving φA and bA from above, we can express them as∫

R3,1

[
−gAB DtA ∧ ?4Dt

B
]
, (5.70)

where we employed the definitions (5.77) as well as (5.78).
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• For the four-dimensional vector fields AA and A0, we first recall the definitions
(5.83) and (5.84) for the combined field strengths and structure constants, respec-
tively. Next, we note that the period matrix derived from (5.81) reads

ImNAB = −4R3 gAB , ReNAB = −KABCbC ,

ImNA0 = +4R3 gABb
B , ReNA0 = + 1

2 KABCb
BbC ,

ImN00 = −R3
(

1 + 4gABb
AbB

)
, ReN00 = − 1

3 KABCb
AbBbC .

(5.71)

With Λ,Σ = 0, . . . , h1,1, the kinetic and topological terms for the vector fields are
then expressed as∫

R3,1

[
+

1

4
ImNΛΣ F

Λ ∧ ?4F
Σ +

1

4
ReNΛΣ F

Λ ∧ FΣ

]
. (5.72)

• In equation (5.68), there is one term not contained in (5.72) which can be brought
into the following form∫

R3,1

[
−1

6
AAMA

B ∧AC ∧ dADKBCD
]
. (5.73)

• For the hypermultiplets, we first note that the reduction from five to four dimen-
sions is very similar to the one presented in (5.64). Defining then

V = e−2φ , (5.74)

one arrives at the kinetic terms given in (5.85).

• Let us finally comment on the scalar potential. As one can see for instance from
(5.64), the non-trivial dependence of the scalar fields on the circle coordinate z will
lead to a scalar potential in four dimensions. Collecting these terms also for the
remaining scalar fields, one arrives at the potential given in (5.3.2).

In particular, the four-dimensional action takes the form

S4 =

∫
R3,1

[
1

2
R(4) ?4 1 +

1

4
ImNΛΣ F

Λ ∧ ?4F
Σ +

1

4
ReNΛΣ F

Λ ∧ FΣ

− gAB DtA ∧ ?4Dt
B − 1

6
AAMA

B ∧AC ∧ dADKBCD

−huvDqu ∧ ?4Dq
v − V

]
,

(5.75)
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where Λ,Σ = 0, . . . , h1,1 while A,B, . . . = 1, . . . , h1,1, and where we have omitted all
labels indicating four-dimensional quantities. We have furthermore defined

φA = RνA , V = e−2φ , (5.76)

as well as the complexified Kähler moduli and their derivatives

tA = bA + i φA , DtA = dtA −MA
B

(
AB − tBA0

)
, (5.77)

where bA appeared in (5.59). The Kähler metric gAB is written as

gAB = − 1

4R3

(
KAB −

KAKB
4R3

)
, (5.78)

where we have employed the following notation

KA = KABCφBφC , KAB = KABCφC , (5.79)

with KABC the triple intersection numbers defined in (5.8). Using these as well as (5.76)
in the constraint (5.30), we also find

R3 =
1

6
KABCφAφBφC . (5.80)

The metric (5.78) is a special Kähler metric and can be derived from the prepotential of
section 2.3.1

F = − 1

3!
KABC

XAXBXC

X0
, A,B,C = 1, . . . , h1,1 , (5.81)

where we employ coordinates {X0, XA} with XA = X0 tA. The corresponding Kähler
potential reads

Kvec ≡ − log
[
iX

Λ
FΛ − iXΣFΣ

]
= − log

[
8R3

]
, (5.82)

where due to the symmetries of the theory we can set X0 = 1. The expressions for the
period matrix NΛΣ are given in (5.71), and the field strengths appearing in (5.75) are
written as

FΛ = dAΛ +
1

2
fΛ

ΣΓA
Σ ∧AΓ , Λ,Σ,Γ = 0, . . . , h1,1 . (5.83)

The structure constants are [64, 118]

f0
AB = 0 , fCAB = 0 , fBA0 = −MB

A , (5.84)
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and they define the gauge group which we elaborate on in the next subsection.
We mention here that gauge invariance of the action (5.75) requires the presence of

Chern-Simons-like terms, which are inherited from the five-dimensional Chern-Simons
term. These arise when the matrix ReNΛΣ transforms nontrivially under the action of
the gauge group, in such a way that it needs to be compensated by an additional term
in the action, the last term on the second line in (5.75). The existence of such terms in
gauged supergravity was found in [38], and in the present context it was discussed in
[64]. Some further applications of these terms in the study of N = 2 supersymmetric
vacua can be found in section 3.3.1.

Turning to the hypermultiplet sector, we find that it is described by

huvDµq
uDµqv = GrsDµz

rDµzs + ∂µφ∂
µφ

+
e4φ

4

(
∂µa+ ξKDµξ̃K − ξ̃KDµξ

K
)(
∂µa+ ξLDµξ̃L − ξ̃LDµξL

)
− e2φ

2

(
ImM

)−1KL
(
Dµξ̃K −MKPDµξ

P
)(
Dµξ̃L −MLQD

µξQ
)
,

(5.85)

where µ = 0, . . . , 3 and Grs has been introduced in (5.38). The covariant derivatives
appearing here are

Dµz
r = ∂µz

r −N rA0
µ , Dµ

(
ξ

ξ̃

)
= ∂µ

(
ξ

ξ̃

)
−N

(
ξ

ξ̃

)
A0
µ , (5.86)

whereN r had been defined in (5.57), where appropriate indices for (ξ, ξ̃) are understood
and where the matrix N is given by

N =

(
QKL RKL
SKL TKL

)
. (5.87)

Finally, the scalar potential can be expressed in the following way

V =
1

R3
N rN s

Grs +
e4φ

4R3

[ (
ξ

ξ̃

)T
NT

(
ξ̃

−ξ

) ]2

− e2φ

2R3

(
ξ

ξ̃

)T
NT

(
M
−1

) (
ImM

)−1
(
M
−1

)T
N

(
ξ

ξ̃

)
− 1

4R6

(
MA

Cφ
C
) (
MB

Dφ
D
)
KAB ,

where matrix multiplication with correct contraction of indices is again understood. We
will study the properties of this potential in section 6.
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5.3.3 Gauged N = 2 supergravity formulation

The ungauged part of the Lagrangian (5.75) is already written in the usual form of
four-dimensional N = 2 supergravity. The only changes we have to explain are the
modifications due to the gauging, in particular the covariant derivatives for the scalars,
and the scalar potential.

The covariant derivatives are given by

Dµq
u = ∂µq

u + k̃uΛA
Λ
µ , Dµt

A = ∂µt
A + kAΛA

Λ
µ , (5.88)

where the quantities k̃uΛ and kAΛ are Killing vectors on the quaternionic and special
Kähler spaces, respectively. For the scalars tA in the vector multiplets, from (5.77) we
read off that

kA0 = MA
Bt
B , kAB = −MA

B ,

which means that on the special Kähler space defined by (5.81), the isometries we are
gauging are given by

δtA = −MA
Ba

B +MA
Bt
Ba0 , (5.89)

for some arbitrary parameters a0 and aA. That these are indeed isometries follows from
the analysis of the special Kähler subsector of the hypermultiplets given in (5.48), which
is completely analogous. Here, the symmetries (5.89) correspond to the first and third
term in (5.48), namely a shift in tA and a linear transformation with a matrix satisfying
(5.32). The gauge group is thus a subgroup of the duality group of isometries on the
special Kähler manifold. This duality group contains the one from the five-dimensional
theory, but in four dimensions it gets extended to a larger group [136]. The structure
constants of the gauge group are given by (5.84), and define a solvable Lie algebra which
is the semi-direct product of two Abelian subalgebras of dimension one (graviphoton)
and h1,1 (the other vector potentials) [64, 118].

The isometry group for the hypermultiplets can easily be read off from (5.86). It is a
U(1) group, though realized non-linearly on the scalars. The gauge group acts on it only
via the graviphoton.

The explicit form of the scalar potential is given in (5.3.2), and can be written in the
standard form of N = 2 supergravity 21

V = 2 eK
vec
(

4huvk̃
u
Λk̃

v
Σ + gAB k

A
Λ k

B
Σ

)
XΛXΣ , (5.90)

21The overall factor 2 compared to the potential of section 2.4.1 is due to the different normalization in (5.75).
When rescaling the four-dimensional metric in (5.75) as g → 1

2
g, one arrives at the form of section 2.4.1.
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whereKvec and gAB were defined in (5.82) and (5.78). In the general expression (2.72) for
the N = 2 scalar potential, there is an additional term proportional to the quaternionic
moment maps (see e.g. [28, 56])

V P = 2
(
gABfΛ

Af
Σ
B
− 3LΛLΣ

)
P xΛP

x
Σ . (5.91)

These moment maps in turn are proportional to a covariant derivative on k̃uΛ. However,
as can be seen from (5.86), the hypermultiplets are only gauged with the graviphoton
A0
µ. Therefore k̃uΛ = 0 for Λ 6= 0 and their covariant derivative also vanishes, so P xΛ = 0

for Λ 6= 0. The only term in (5.91) that can contribute is the term with Λ = 0. We
then utilize that the vector geometry is specified by (5.81), from which one calculates
gABf0

Af
0
B
− 3L0L0 = 0. Combining these properties, one finds that V P = 0. This

analogue of the N = 1 no-scale property reduces the full scalar potential to (5.90).
To see that (5.90) reproduces our scalar potential, we use kAΛX

Λ = 2iMA
BX

0φB , and
as (5.32) implies KAMA

Bφ
B = 0, with the help of (5.82) we find

2 eKgAB k
A
Λk

B
Σ XΛXΣ = − 1

4R6
KABMA

Cφ
CMB

Dφ
D . (5.92)

Employing the expressions for the covariant derivatives of the hyperscalars above, it is
then straight-forward to check that (5.90) reproduces (5.3.2).

5.4 M-theory on twisted seven-manifolds

The Scherk-Schwarz reduction described above, yielding the gauged supergravity La-
grangian (5.75), can also be obtained from a compactification of eleven-dimensional
supergravity on a seven-manifold. This point of view had also been taken in [64] for
the vector multiplets. We will briefly review and extend this procedure in the present
section to also include the hypermultiplet sector.

The seven-dimensional space we are going to compactify on, denoted by Y in the
following, is chosen as a fibration of a Calabi-Yau three-fold X over a circle S1.

X → Y
↓
S1

(5.93)

The coordinates of X will be denoted by y and the coordinate z of the circle is again
normalized such that z ∼ z + 1. At a particular reference point z0 = 0, we choose a
basis of harmonic two- and three-forms of the corresponding Calabi-Yau three-fold as
in section 5.2. We then must indicate how this data changes when moving around the
circle.
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In words, this can be explained as follows: instead of specifying the z-dependence in
the coefficient functions (i.e. the five-dimensional fields) as we do in the Scherk-Schwarz
reduction, we can move the same z-dependent terms from the fields into the basis of
two- and three-forms of X . This produces a non-trivial seven-dimensional manifold of
the type (5.93), which by construction is equivalent to the Scherk-Schwarz reduction.
We now explain this in some more detail.

Cohomology

Let us begin our discussion with the cohomology of the compactification space Y . Anal-
ogous to the harmonic (1, 1)-forms on X we introduce

ω̂A(y, z) , A = 1, . . . , h1,1(X ) . (5.94)

The dependence of ω̂A on the coordinate z of the circle is taken as

ω̂A(y, z) =
[
exp(zMT )

] B

A
ωB , (5.95)

where the exponential of the matrix (MT )A
B is understood as a matrix product and ωB

is a basis of harmonic (1, 1)-forms on the Calabi-Yau three-fold at a particular reference
point z0 = 0. The matrix MB

A is not arbitrary but, as explained in [64], has to satisfy
the constraint shown in (5.32). Infinitesimally, the relation (5.95) can be written as

dω̂A = (MT )A
Bω̂B ∧ dz , ω̂B(y, 0) = ωB , (5.96)

so we see that in general the forms ω̂A are not closed. Their non-closure will be the
origin of the gaugings in the resulting four-dimensional action. The triple intersection
numbers for the Calabi-Yau three-fold in the present context are given by

K̂ABC ≡
∫
Y
ω̂A ∧ ω̂B ∧ ω̂C ∧ dz =

∫
X
ωA ∧ ωB ∧ ωC = KABC , (5.97)

where the second equality follows by using (5.32).
Analogous to the second co-homology, for the third co-homology group we intro-

duce {
α̂K(y, z), β̂L(y, z)

}
, K, L = 0, . . . , h2,1(X ) . (5.98)

Their dependence on the coordinate z of the circle is chosen as(
α̂(y, z)

−β̂(y, z)

)
=
[
exp(zNT )

]( α

−β

)
, (5.99)
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where the matrix N was defined in (5.87) and proper contraction of indices is under-
stood. Furthermore, {αK , βK} denotes the basis of harmonic three-forms on the Calabi-
Yau manifold at a particular reference point z0 = 0, and the minus sign has been chosen
to match the results from the previous section. Infinitesimally, we can express (5.99) as

d

(
α̂

−β̂

)
= −NT

(
α̂

−β̂

)
∧ dz ,

(
α̂(y, 0)

−β̂(y, 0)

)
=

(
α

−β

)
, (5.100)

where proper contraction of indices is again understood. Finally, using (5.10) and (5.99),
one can show that∫

X
α̂K ∧ β̂L = δK

L ,

∫
X
α̂K ∧ α̂L = 0 ,

∫
X
β̂K ∧ β̂L = 0 . (5.101)

Dimensional reduction

For the dimensional reduction of the M-theory action (5.6) on the seven-manifold Y we
make the following ansatz for the space-time metric

ds2
11 = e

4
3φR−1gµν dxµdxν + e

4
3φR2

(
dz −A0

)2
+Gmndymdyn , (5.102)

where R is the radius of the circle satisfying (5.80), A0 denotes the graviphoton one-
form and Gmn is the metric of the Calabi-Yau threefold, whose fluctuations depend on
vA and zr. For the three-form potential Ĉ3 we consider an ansatz similar to [64] but are
more specific about the sector corresponding to the hypermultiplets. In particular, we
consider

Ĉ3 = c3 +B ∧ (dz −A0) + (AA − bAA0) ∧ ω̂A + bAω̂A ∧ dz + C3 ,

C3 =
√

2 ξK α̂K −
√

2 ξ̃K β̂
K ,

(5.103)

where c3 is a four-dimensional three-form, B denotes a four-dimensional two-form,
AA are one-forms and bA as well as (ξK , ξ̃K) are scalars in four dimensions. For the
corresponding field strength F̂4 = dĈ3, employing (5.96) as well as (5.100), one finds

F̂4 = dc3 + dB∧
(
dz −A0

)
−B ∧ F 0 + F a ∧ ω̂A − bAF 0 ∧ ω̂A

+DbA ∧ ω̂A∧
(
dz −A0

)
+
√

2

[
d

(
ξ

ξ̃

)T
−
(
ξ

ξ̃

)T
NTdz

]
∧
(

α̂

−β̂

)
,

(5.104)

where F 0 and FA are defined in (5.83). Using the above ansätze in the eleven-dimen-
sional action (5.6), one can perform the dimensional reduction. However, to make con-
tact with (5.75), we have to dualize B to a scalar a and c3 to a constant e0, chosen to be
zero. A non-zero choice for e0 would correspond to a non-trivial z-dependence for the
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five-dimensional field a in the Scherk-Schwarz reduction of section 5.3, which we did
not consider. Taking into account these remarks, we then recover the four-dimensional
action (5.75), as we have checked explicitly.

5.5 Truncation to N = 1 supersymmetry

We now perform a truncation of the theory studied in section 5.3.2 fromN = 2 toN = 1

supersymmetry. To motivate this truncation, we note that M-theory compactifications
on seven-manifolds of the form X × S1 can be related to orientifold compactifications
of type IIA string theory [137]. In particular, consider M-theory on

X × S1

(σ,−1)
, (5.105)

where σ is an anti-holomorphic involution acting on the Calabi-Yau three-fold X and
where (−1) acts on the circle coordinate as z → −z. Upon dimensionally reducing on
S1, the resulting theory is type IIA string theory on

X
(−1)FLΩ σ

, (5.106)

where FL is the left-moving space-time fermion number and Ω is the parity operator
on the string world-sheet. The quotient notation here means that one keeps the string
states which are invariant under the action of (−1)FLΩσ. Motivated by this observation,
in the present work we will impose a truncation similar to (5.105).

We also observe that σ being anti-holomorphic means that σ ∗Ω ∼ Ω, where Ω is
the holomorphic three-form of the Calabi-Yau manifold and σ ∗ denotes the action of σ
induced on the cohomology. Utilizing the relation

Ω ∧ Ω ∼ J ∧ J ∧ J , (5.107)

and applying σ ∗ to both sides, we infer that the Kähler form J has to be odd under the
anti-holomorphic involution σ ∗.

5.5.1 Defining the truncation

Cohomology

To define our truncation, we first consider an involution σ acting on a Calabi-Yau three-
fold X . The action σ ∗ induced on the cohomology groups of X splits them into even
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and odd sub-spaces. In particular, the basis of harmonic (1, 1)-forms introduced in (5.7)
can be separated as

σ ∗ωα = +ωα , α = 1, . . . , h1,1
+ ,

σ ∗ωa = −ωa , a = 1, . . . , h1,1
− ,

(5.108)

where h1,1
+ + h1,1

− = h1,1. Since the Kähler form is odd under σ ∗, also the volume form
on X is odd. Thus, some triple intersection numbers have to vanish which leads to

Kαβγ = Kαbc = 0 , Kαb = 0 , Kα = 0 . (5.109)

For the basis of the third cohomology group of X introduced in (5.9), we similarly
observe

σ ∗αk = +αk , σ ∗βk = −βk ,
σ ∗αλ = −αλ , σ ∗βλ = +βλ ,

(5.110)

where the indices k and λ jointly range from 0 to h2,1. For the period matrixM intro-
duced in equations (5.24), from (5.110) we then infer that

ReMκλ = 0 , ReMkl = 0 , ImMkλ = ImMλk = 0 . (5.111)

Truncation of vector multiplets

Motivated by our discussion at the beginning of this section about ordinary M-theory
compactifications, we will truncate our N = 2 supersymmetric theory by

Σ =
(
σ,−1

)
, (5.112)

where σ is the anti-holomorphic involution considered above and (−1) acts on the circle
coordinate as z → −z. As noted below (5.107), the Kähler form J is odd under σ ∗, which
we extend to every point on the circle:

Σ
∗
J = −J . (5.113)

In terms of the expansion J = vA(z)ωA,22 we find that equation (5.113), evaluated at
z = 0, yields vα(0) = 0 and therefore, using (5.28) and (5.76), we find

φα(0) = 0 . (5.114)

22To keep our notation short, we suppress the dependence of the fields on xµ but only indicate the depen-
dence on the circle coordinate z.
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For general values of z, we employ (5.54) and (5.28) to express J as

J(z) = va(0)
[
ezM

T
] B

a
ωB . (5.115)

Inserting this expansion into (5.113) leads to the constraint that Ma
b = 0. Concerning

the vector fieldsAA, we require that the M-theory three-form Ĉ3, given in (5.14), satisfies

Σ
∗
Ĉ3 = +Ĉ3 . (5.116)

In particular, the term involving the five-dimensional vector fields AA(5) has to be even

under Σ
∗
. Performing a similar analysis as for the Kähler form at z = 0, and using

equation (5.59), we obtain

Aa(4)(0) = 0 , bα(0) = 0 . (5.117)

Furthermore, requiring AA(5) ∧ωA to be even under Σ
∗

for all values of z and employing
(5.53) implies that Mα

β = 0. We thus arrive at

MA
B =

(
0 Mα

b

Ma
β 0

)
. (5.118)

Finally, recalling the five-dimensional metric (5.58) and requiring it to be invariant un-
der the action (5.113), we see that the graviphoton A0 is projected out, that is

A0 = 0 . (5.119)

Truncation of hypermultiplets

To define the truncation of the hypermultiplets, let us consider the action of the anti-
holomorphic involution on the holomorphic three-form Ω. Similarly as in [138], we
write

σ ∗Ω = e2iΘ Ω , (5.120)

where Θ is a constant phase. As for the Kähler form, we extend (5.120) to Σ in the
following way

Σ
∗
Ω = e2iΘ Ω . (5.121)

Employing then the expansion of Ω given in (5.11), at z = 0 the relation (5.121) implies
that Im(e−iΘZk(0)) = 0 and similar relations for Zλ, Gk and Gλ. However, for later
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convenience, let us introduce the compensator C, which is defined in terms of the four-
dimensional dilaton φ and the Kähler potential (5.36) for the complex structure moduli

C ≡ e−φeK
cs/2e−iΘ . (5.122)

Noting that φ as well as Kcs are invariant under Σ, equation (5.121) can be brought into
the form Σ

∗
(CΩ) = CΩ, whose implications at z = 0 read

Im
(
CZk(0)

)
= 0 , Re

(
CGk(0)

)
= 0 ,

Re
(
CZλ(0)

)
= 0 , Im

(
CGλ(0)

)
= 0 .

(5.123)

As carefully discussed in [138], the equations on the left in (5.123) project out h2,1 real
scalars, corresponding to half of the complex structure deformations. The set of equa-
tions on the right should not be interpreted as further truncations, but as constraints on
the triple intersection numbers drst in (5.34).

Next, requiring again C3 in the M-theory three-form Ĉ3 of (5.14) to be invariant
under Σ

∗
leads to

ξλ(0) = 0 , ξ̃k(0) = 0 . (5.124)

To study the five-dimensional three-form c̃3 in (5.14), we write

c̃3 = C3 + C2 ∧ dz , (5.125)

where C3 and C2 respectively are three- and two-forms in four dimensions. Since c̃3 has
to be even under Σ

∗
, we see that C2 is projected out. Furthermore, C3 in four dimensions

is dual to a constant e0, which in the analysis of section 5.3 and 5.4 we have chosen to
be zero. Therefore, the contribution of c̃3 in the truncated theory vanishes, that is

a = 0 . (5.126)

Combining then all these constraints, we see that 2h2,1 out of the 4(h2,1 + 1) original
hyperscalars survive the truncation. We will later show that these remaining scalars
form chiral multiplets and that their target space is Kähler.

Finally, in the above analysis we studied (5.116) and (5.121) at z = 0. To satisfy these
constraints for all values of z, additional restrictions on the matrices Q, R, S and T
introduced in (5.40) arise. In particular, employing (5.40) as well as (5.56), in a similar
fashion as in (5.115) one obtains

Qkl = 0 , Qλρ = 0 , Rkλ = Rλk = 0 ,

Tkl = 0 , Tλρ = 0 , Skλ = Sλk = 0 .
(5.127)
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5.5.2 Performing the truncation

After having specified the truncation of the fields appearing in the N = 2 theory (at
the point z = 0), we can now apply these results to (5.75). Note that this action was
obtained by evaluating all five-dimensional fields at a particular reference point z0 = 0.
Employing the results from section 5.5.1, we then find

Strunc.
4 =

∫
R3,1

[
1

2
R(4) ?4 1 +

1

4
ImNαβ dAα ∧ ?4dAβ +

1

4
ReNαβ dAα ∧ dAβ

− gab Dta ∧ ?4Dt
b − 1

6
AαMα

b ∧Aγ ∧ dAδ Kbγδ (5.128)

−GIJ dM I ∧ ?4dM
J − V trunc.

]
.

Kinetic terms

In the present case the covariant derivative acting on the complexified Kähler moduli ta

takes the form

Dta = dta −Ma
βA

β . (5.129)

Furthermore, using the explicit formulas for the period matrixN given in (5.71) as well
as (5.109), the gauge kinetic function for the vector fields is found as

fαβ = −iNαβ = iKαβctc , (5.130)

which is holomorphic in the chiral fields, as required by N = 1 supersymmetry.
The next step is the reduction of the hypermultiplets. Since the graviphoton A0 is

projected out, the hyperscalars become uncharged. For the truncation of the hypermul-
tiplets from N = 2 to N = 1, we can thus refer to the existing literature. In particular,
employing the results of appendix C in [138], the kinetic terms for the hypermultiplet
scalars are given by

−
∫
R3,1

GIJ dM I ∧ ?4dMJ , (5.131)

where M I = {Nk, Tλ} collectively denotes the chiral fields

Nk =
1

2
ξk + iRe(CZk) , Tλ = iξ̃λ − 2Re(CGλ) . (5.132)

The metric GIJ = ∂
MI∂MJKQ in (5.131) is Kähler and the corresponding Kähler poten-

tial KQ is given by [138]

KQ = −2 log

[
2

∫
X

Re
(
CΩ
)
∧ ?6Re

(
CΩ
)]

. (5.133)
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Potential

We now turn to the truncation of the scalar potential (5.3.2). For the scalars φA we
employ (5.114) and (5.118) to find

V (1) = − 1

4R6

(
Mα

c φ
c
) (
Mβ

d φ
d
)
Kαβ . (5.134)

For the truncation of the terms involving ξ and ξ̃ we use (5.124), (5.127) and (5.111).
These merely imply that we have to restrict the index ranges of ξ and ξ̃ in (5.3.2). For
later convenience, we express this result as

V (2) = − e2φ

2R3

(
ξ

ξ̃

)T
NT ΠN

(
ξ

ξ̃

)
+

e4φ

4R3

[ (
ξ

ξ̃

)T
NT∆

(
ξ

ξ̃

) ]2

, (5.135)

where we have defined

Π =

(
M
−1

) (
ImM

)−1
(
M
−1

)T
, ∆ =

(
0 1

−1 0

)
. (5.136)

As mentioned, these formulas are understood with the restrictions (5.124), (5.127) and
(5.111) applied.

To make the truncation of the potential for the complex structure moduli zr more
feasible, we first define

GLK = 2 (ImG)LK − 2
(ImG)LNZ

N (ImG)KMZ
M

ZN (ImG)NMZM
, (5.137)

with GLK = ∂ZLGK and where (ZL, GL) are the holomorphic sections introduced in
equation (5.11). Recalling then (5.57) as well as that zr = Zr

Z0 , we can write

V (3) =
1

R3
N rN s

Grs

=
eK

cs

R3|C|2
(
−CZKTKL + CGKRKL

)
GLM

(
QMNCZN +RMNCGN

)
,

(5.138)

where the restrictions (5.123) and (5.127) are understood. Note that to arrive at the sec-
ond line in (5.138) we utilized GLKZ

K
= 0, and that the compensator C was introduced

in equation (5.122).

5.5.3 Superpotential and D-terms

We will now bring the potentials (5.134), (5.135) and (5.138) into the standard form of
N = 1 supergravity, which was discussed in section 2.4.2. The scalar potential is given
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by 23

V = 2 eK
(
GÎĴDÎWD

Ĵ
W − 3|W |2

)
+
(
Ref

)−1|αβ
DαDβ = VF + VD , (5.139)

where we use M̂ Î = {Nk, Tλ, t
a} to label all chiral fields in the theory. Here, the Kähler

covariant derivatives reads DÎW = ∂ÎW + (∂ÎK)W , Refαβ is the real part of the gauge
kinetic function (5.130) and Dα are the moment maps associated with the gauging of
the chiral multiplets. The Kähler potential K in (5.139) is the sum of (5.82) subject to the
truncation (5.114), and KQ given in (5.133),

K = Kvec +KQ . (5.140)

D-term potential

The D-term potential arises as some of the chiral fields are gauged. In our case, as can
be inferred from (5.129), only the chiral fields ta arising from the projection of theN = 2

vector multiplets are gauged. We will therefore show that their potential term (5.134) is
given by the D-term potential.

To find an expression forDα, we can use the truncation of the original moment maps
PK on the special Kähler space, given in [118]. We then obtain

Dα = i(MT )α
a ∂taKvec = − 1

4R3
(MT )α

aKa . (5.141)

Noting that the Killing vectors after the truncation are given by kaα = Ma
α, we see that

the Dα’s obey

kaα = −igab∂bDα , (5.142)

as ∂b∂aKvec = gab, and they are therefore moment maps for the Killing vectors kaα.
Notice furthermore that the gauge group has now become abelian, G = U(1)h

1,1
+ ,

since the Killing vectors are constant and hence commute. However, as we will analyze
in section 5.6, the gauge group can be broken further due to a Higgsing of the gauge
fields.

Contracting then equation (5.32) with φbφc and restricting the index A to α, we find
KaMa

α = −2KαβMβ
aφ

a, which allows us to bring (5.141) into the form

Dα =
1

2R3
KαβMβ

aφ
a .

23Again, there is an overall factor 2 with respect to the standard literature; see footnote 21.
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Employing finally the expression (5.130) for the real part of the gauge kinetic function,
that is Refαβ = −Kαβ , we arrive at

VD =
(
Ref

)−1|αβ
DαDβ = − 1

4R6

(
Mα

c φ
c
) (
Mβ

d φ
d
)
Kαβ = V (1) . (5.143)

So indeed, as expected, in the truncated theory the potential term for the fields φa is a
D-term potential.

F-term potential

Next, we turn to the F-term potential. As the chiral fields (Nk, Tλ) are ungauged, the
contribution to their scalar potential terms has to come from the superpotential W . We
will now show that indeed their potential, V (2) + V (3), is described by

W =
1

2
UT∆N U .

We remind the reader that ∆ was defined in (5.136), the twisting matrix N had been
introduced in (5.87) and the restrictions (5.127) are imposed. Furthermore, we have
combined the chiral fields Nk and Tλ into the vector

U =

(
2iNk

Tλ

)
=

(
i ξk − 2Re(CZk)

i ξ̃λ − 2Re(CGλ)

)
= iUI + UR . (5.144)

To show that this superpotential (5.5.3) reproduces the scalar F-term potential, given
by V (2) + V (3), we first notice that

∂taW = 0 , ∂taKGab ∂tbK = 3 , (5.145)

which reduces VF in (5.139) to

VF = 2 eK
(
GIJDIWDJW

)
, (5.146)

with I labeling (Tλ, N
k). Next, we recall from [138] the expressions for the inverse

Kähler metric GIJ which are given by

GTκTλ = −2 e−2φ
[
ImM+ (ReM)(ImM)−1(ReM)

]
κλ
,

GTλN
k

= −i e−2φ
[
(ReM)(ImM)−1

] k

λ
,

GN
kN

l

= −1

2
e−2φ

[
(ImM)−1

]kl
,

(5.147)
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where in the present case (5.111) implies that some entries of ReM and ImM are van-
ishing. Furthermore, we have the contractions

GN
kM

I

∂
M
IK = −(Nk −Nk

) , GTλM
I

∂
M
IK = −(Tλ + Tλ) . (5.148)

Employing the above expressions as well as (5.82) and (5.133), one can bring equation
(5.146) into the following form

VF =
1

R3

1

UTR ΠUR

[
UTRNT∆T

(
Π−1 − UR UTR

UTR ΠUR

)
∆N UR

+ UTI NT∆T Π−1 ∆N UI +

(
UTI ∆N UI

)2
UTR ΠUR

]
,

(5.149)

where UR and UI had been defined in (5.144) and the matrices Π as well as ∆ had been
introduced in equation (5.136). To proceed, we compute

UTR ΠUR = −4
∣∣C∣∣2 ZK(ImM)KL Z

L = 2 e−2φ , (5.150)

and, by carefully taking (5.123) into account, one finds

Π−1 − α UR UTR
UTR ΠUR

=

(
1

M

)(
−(ImM)−1 + α

Z Z
T

ZT (ImM)Z

)(
1

M

)T
, (5.151)

where our case of interest is α = 0 and α = 1. With these relations, from the terms
involving UI one can now reproduce the potential V (2) for the fields ξ and ξ̃. For the
remaining terms, we note that the period matrixM can be expressed using the matrix
GLK = ∂ZLGK as follows

MKL = GKL + 2i
(ImG)KMZ

M ZN (ImG)NL
ZT (ImG)Z

. (5.152)

Employing then the relation (5.43), one can bring the terms involving UR into the form
(5.138).

In summary, we have outlined how the superpotential (5.5.3) indeed reproduces the
scalar potential V (2) + V (3).

5.5.4 Connection to manifolds with G2 structure

In this subsection, we indicate a connection of the truncated theory studied above to
compactifications of M-theory on seven-manifolds with G2 structure. A manifold has
G2 structure if its structure group is contained in G2, and if they feature a globally
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defined, G2-invariant, real and nowhere-vanishing three-form Φ. In our present setting,
we define the three-form Φ as

Φ =
√

2RV− 1
3 J ∧ dz + 4 Re(CΩ) , (5.153)

although we will not show that this actually defines a G2-structure. Using (5.153), one
can express the Kähler potential (5.155) and the superpotential (5.157) in the following
way

K = −3 ln

(
1

7

∫
Y

Φ ∧ ?7Φ

)
, W =

1

8

∫
Y

(√
2C3 + iΦ

)
∧ d7

(√
2C3 + iΦ

)
. (5.154)

These formulas agree with the those in the literature of M-theory on manifolds with
G2-structure [138–142].

To verify that the expressions in (5.154) indeed reproduce the Kähler potential and
superpotential of our truncated theory, we first note that the sum of (5.82) and (5.133)
can be brought into the form

K = − log
[

8R3
]
− 2 log

[
2V 1

3R−1

∫
Y

Re
(
CΩ
)
∧ ?7Re

(
CΩ
)]

. (5.155)

Note that in the second term the integral is over the seven-manifold Y and its prefactor
arises from the zz-component of the metric (5.58) by taking into account the Weyl rescal-
ing mentioned above equation (5.27). From (5.122) and (5.74), utilizing ?6ReΩ = ImΩ,
one also finds the relation

2V 1
3R−1

∫
Y

Re
(
CΩ
)
∧ ?7Re

(
CΩ
)

= 2

∫
X

Re
(
CΩ
)
∧ ?6Re

(
CΩ
)

= e−2φ = V . (5.156)

With the help of these, one indeed reproduces (5.155) from the Kähler potential in
(5.154). For the superpotential, we note that, employing (5.40) as well as (5.56), we
can express (5.5.3) in the following way

W =
1

4

∫
Y

Ωc ∧ d7Ωc , Ωc = C3 + i
√

8 Re(CΩ) , (5.157)

where Y is the seven-dimensional space given by (5.93) and C3, subject to the trunca-
tion (5.124), was defined in (5.103). One then shows that the superpotential in (5.154)
reproduces (5.157).

We finally remark that in the literature on M-theory compactifications on manifolds
with G2 structure, one usually does not find D-terms. Studying this question would be
an interesting extension of our work.
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5.6 Vacuum structure

The N = 2 theory

Let us now briefly analyze the vacuum structure of theN = 2 theory derived in section
5.3.2. In particular, to determine the minima of the potential (5.3.2) we first compute

φA
∂

∂φA
V = −3V , (5.158)

which means that the potential is a homogeneous function of degree three in the fields
φA. Thus, a necessary condition for a minimum is that the potential V vanishes. Since
the potential (5.3.2) is a sum of semi-positive terms, each of those has to vanish inde-
pendently. Thus, the non-degenerate solutions are

0
!
= N r = br − 2

3
β zr +Brsz

s − 1

2
Rrst

vavz
szt ,

0
!
= N

(
ξ

ξ̃

)
0

!
= MA

B φ
B .

(5.159)

Notice that, from the last two equations, the vacua are counted by the number of zero
eigenvalues of the twisting matricesN andM . The eigenvectors of these matrices define
a finite dimensional subspace, defining the flat directions of the scalar potential. In the
orthogonal directions, the moduli are stabilized.

Of course, there are also degenerate solutions which can lead to a vanishing poten-
tial. These include configurations such as (ξk, ξ̃λ)T = 0, φA = 0, φ → −∞, R → ∞, or
where the matrices Grs,M and KAB have zero eigenvalues.

Furthermore, since some of the scalar fields of the theory are gauged, a mass term
for the gauge fields AΛ can be generated. More concretely, one finds terms of the form∫

R3,1

[
MΛΣA

Λ ∧ ?4A
Σ

]
, (5.160)

where Λ = 0, . . . , h1,1 and the mass matrix MΛΣ has components

MAB = −
(
MT gM

)
AB

∣∣∣
min.

,

M0A = +
(
bTMT gM

)
A

∣∣∣
min.

,

M00 = −bTMT gMb
∣∣∣
min.

.

(5.161)

Here g = gAB denotes the Kähler metric (5.78), bA = Re (tA) and matrix products
are understood. Note that M00 contains an additional term proportional to the scalar
potential, which however vanishes in the minimum.
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The N = 1 theory

To study the vacua of the truncated theory, we first recall the D- and F-term potential
given in (5.143) and (5.146)

V = VD + VF = − 1

4R6

(
Mα

c φ
c
) (
Mβ

d φ
d
)
Kαβ + 2eK

(
GIJDIWDJW

)
. (5.162)

Similarly as for the N = 2 case, a necessary condition for minima in the fields φa is

0
!
= φa

∂

∂φa
V = −3V , (5.163)

which, since (5.162) is a sum of semi-positive definite terms, implies that VD = VF = 0.
The non-degenerate solution to VD = 0 is given by Dα = 0 which implies

Mβ
cφ
c = 0 , (5.164)

whereas the non-degenerate solution to VF = 0 leads to FI = 0. One configuration
satisfying this constraint reads

N U = 0 , (5.165)

where U is the vector of chiral coordinates of (5.144). Other solutions containing for
instance (ξk, ξ̃λ) = 0 are also possible.

For the mass terms of the vector fields we recall that the graviphoton A0 as well as
the fields Aa are projected out. We are thus left with∫

R3,1

Mαβ A
α ∧ ?4A

β , (5.166)

where the mass matrix Mαβ is found, employing (5.118), to be

Mαβ = −
(
MT gM

)
αβ

∣∣∣
min.

, (5.167)

with the metric gab taking indices a, b = 1, . . . , h1,1
− .





Chapter 6

Volume stabilization with NS5 branes

6.1 Introduction

When performing a compactification, one of the important quantities is the volume of
the internal dimensions. The scale set by the volume has important consequences for
low-energy physics, such as supersymmetry breaking and inflation, see e.g. [21, 143–
146]. However, in ordinary compactifications, the volume is usually not stabilized. It is
then the inclusion of quantum corrections that might provide a mechanism to stabilize
the moduli.

Quantum corrections

A simple example of the effect of quantum corrections can be illustrated with the univer-
sal hypermultiplet, which was shortly discussed in section 2.3.2. This space describes
the dilaton r and three moduli χ, ϕ, σ, and can be obtained by a compactification on
a Calabi-Yau (CY) three-fold X which has h2,1(X ) = 0. The metric, as presented in
section 2.3.2, is only the tree-level result. There is a one-loop correction [80, 81], which
corrects the metric to

ds2 =
1

r2

(
r + 2c

r + c
dr2 + (r + 2c) (dχ2 + dϕ2) +

r + c

r + 2c

(
dσ + χdϕ

)2)
. (6.1)

The constant c is given by c = −h
1,1

6π . With a typical value of h1,1 ' 100 we find
|c| ' 5. This quantum correction is therefore important when r ' 5, and would only
be negligible when r � 5. The latter condition is equivalent to Vg−2

s � 5, where gs is
the ten-dimensional string coupling constant and V is the volume of the CY. For large
volume and small string coupling constant this is clearly satisfied, but when one moves
to small coupling and/or small volume, these corrections can be important.
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The one-loop correction above turns out to be the only perturbative correction to
the UHM metric; all higher loop corrections can be absorbed into field redefinitions.
There are, however, non-perturbative corrections, which depend on the inverse of the
coupling constant. In type IIA and type IIB, such corrections come (among others) from
the wrapping of Euclidean D-branes and NS5-branes over cycles of the internal space.
D-branes can be seen as objects where strings can end on, but this is not the case for
NS5-branes, which makes them more difficult to study. They were first discovered as
supergravity backgrounds [147, 148]. Being six-dimensional objects, we can (after a
Wick rotation to an Euclidean brane) wrap them around a CY three-fold. These possi-
bilities give corrections to the four-dimensional effective action [149].

Volume stabilization

For type IIB flux compactifications on CY manifolds (and their orientifolds), the volume
is stabilized by non-perturbative effects, such as stringy D3-brane instantons whose
Euclidean worldvolume wraps a four-cycle in the CY. Such an instanton stabilizes the
volume of the corresponding four-cycle and therefore the associated Kähler modulus.
The relation between the four-cycle and two-cycle volumes is known in principle, but is
complicated in practice since it requires inverting a set of coupled quadratic equations
involving the triple intersection numbers, as we review in the next section. Therefore,
although stabilization of all Kähler moduli indeed stabilizes the entire volume of the
CY, it requires a case by case analysis to fix it at large values24, see for instance [145] for
a recent analysis.

The fact that a wrapped Euclidean p-brane can stabilize the volume of a p + 1-cycle
naturally raises the question of whether the overall CY-volume can be stabilized di-
rectly by wrapping a Euclidean fivebrane over the entire CY. From this point of view,
one could expect NS5-brane instantons to play an important role in relation to volume
stabilization 25. In case such instantons contribute to the low-energy scalar potential,
they will do so with exponentially suppressed terms of the form

exp [−SNS5 ] = exp

[
− V
g2
s

]
, (6.2)

24The situation might seem to look better in type IIA theories, since there one can stabilize the Kähler
moduli directly at the classical level by switching on fluxes [150]. However, the Kähler moduli are fixed again
by solving a set of quadratic equations involving the triple intersection numbers, see equation (4.36) in [150].
So to find large values for the total volume, one ends up with similar difficulties as in type IIB.

25In N = 2 compactifications of type IIB, one also expects D5-brane instantons to contribute. However,
after orientifold projection with O3/O7 planes, the D5 brane is not BPS and therefore harder to analyze.
Furthermore, we look for a mechanism that also applies to IIA and heterotic string theories.
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where SNS5 is the (real part of the) one-instanton action, V is the volume of the CY in
dimensionless units, and gs is the ten-dimensional string coupling constant. This can be
compared to the contribution of a D3-brane instanton, of the form

exp [−SD3 ] = exp

[
−vol(γ4)

gs

]
. (6.3)

Here, vol(γ4) is the volume of the four-cycle γ4.
At weak string coupling constant, one expects the D3-brane instantons to dominate

over the NS5-brane instantons, such that one can safely ignore the latter. The two
exponents only are of the same order of magnitude when

vol(γ4)

V
=

1

gs
. (6.4)

For small four-cycles and weak string coupling, gs ≤ 1, this is never satisfied. However,
there are plenty of CY manifolds which have four-cycles with larger volume than the
total volume, as we review in the next section, so some care is needed to make this
argument, especially when gs ∼ 1. Similar considerations hold for compactifications
of type IIA strings on CY threefolds, in which membrane instantons arise by wrapping
Euclidean D2-branes over three-cycles.

There is another reason to be careful in ignoring the fivebrane instantons. Assum-
ing that both instantons contribute to the scalar potential in the effective action and
vol γ4 < V , the exponents above can still be multiplied by prefactors to make them of
the same order, especially at intermediate string coupling gs ∼ 1. We will show this
more explicitly in the next section, for values V ≈ 100 (which are the typical values of
the original KKLT approach). The existing vacua of the LVS scenarios at V ≈ 1013 are
not affected by NS5-brane instantons. However, at smaller volumes V ∼ 100, additional
vacua can arise with interesting properties.

The purpose of this chapter is to analyze the effects of NS5-brane instantons in re-
lation to the stabilization of the volume modulus. In particular, we show that under
certain conditions, the contributions from NS5-brane instantons yield uplifting terms
in the scalar potential that can lead to meta–stable de Sitter vacua. Most of the work
on moduli stabilization has focused on N = 1 supersymmetry in four dimensions, as
they give rise to semi-realistic string vacua. In such models, like e.g. type IIB strings on
Calabi-Yau orientifolds, moduli can be stabilized by combining the effects of fluxes and
quantum corrections coming from perturbative corrections to the Kähler potential and
D3-brane instanton corrections to the superpotential. However, the Kähler potential is
subject to higher loop corrections in α′ and gs which are not known explicitly. For a
recent discussion on this, see [145, 151, 152]. As we will show, the non-perturbative
corrections of the form (6.2) also contribute to the Kähler potential, and are generically
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subleading with respect to the first perturbative corrections, but could compete with
next–to–leading perturbative corrections. For this reason, our investigations are more
meaningful in N = 2 models, since in that case higher order corrections are absent due
to the constraints from N = 2 supersymmetry. This fact also motivated the authors of
[61] to study N = 2 moduli potentials in type IIA flux compactifications. These toy
models can serve as good approximations for the more realistic N = 1 string vacua.
Moreover, for N = 2 theories in type IIA, there are some explicit results known about
the contribution of NS5-brane instantons [153–156] to the effective action for the hyper-
multiplets.

Plan of this chapter

The plan of this chapter is as follows. In section 2, we present the generic form of an
NS5–brane instanton correction to the scalar potential. We study this in the setting of
N = 1 supergravity in four dimensions, and investigate the relation with the KKLT
and LVS scenarios. In section 3, we discuss IIA strings compactified on a (rigid) CY, for
which there is some explicit knowledge on NS5-brane instantons. We investigate the
stability of the volume, and find the possibility that NS5-brane instantons can produce
de Sitter vacua. We then truncate this model preserving local N = 1 supersymmetry,
and determine the Kähler and superpotential.

6.2 Volume stabilization

In this section, we review certain aspects of the KKLT scenario and discuss some of
the subtleties that can arise in stabilizing the volume at large values in IIB orientifold
compactifications. We then include terms that mimic the contributions from NS5-brane
instantons to the Kähler potential, and re-analyze the stabilization of the volume mod-
ulus.

We consider an orientifold of type IIB string theory on a CY 3-fold with O3/O7
planes. The cohomology groups H(p,q) are split under the orientifold mapping into odd
and even forms, and hence their dimensions split as hp,q = hp,q+ + hp,q− . We follow the
notation of [157], although we change a few names and numerical factors.

Let us first list the various chiral fields. The field τ contains the axion and dilaton,
and is defined by τ = l + ie−φ10 . The fields Ti are defined by

Ti = τi + ihi − 2ζi, i, j = 1, . . . , h1,1
+ , (6.5)

where

ζj = − i

2(τ − τ̄)
KjabGa(G− Ḡ)b, Ga = ca − τba, a, b = 1, . . . , h1,1

− . (6.6)
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The τi capture the sizes of the even four–cycles under the orientifold projection and hi
are real fields that arise by expanding the C4 gauge field over these four–cycles. The
fields ba, ca are the expansions of the B2 and C2 forms respectively over the h1,1

− cycles.
Notice that the definition of ζi contains intersection numbers of even and odd two–
cycles.

The four–cycles τi are related to the two–cycles ti by the triple intersection numbers
Kijk as

τi = Kijktjtk . (6.7)

The total volume V is only implicitly known as a function of the N = 1 chiral
coordinates through the relation

V =
1

6
Kijktitjtk . (6.8)

To write the volume in terms of the chiral fields we first use the definitions (6.5), (6.6) to
find

τi =
1

2
(Ti + T̄i)−

i

2
Kiabbabb(τ − τ̄) , (6.9)

or in terms of the chiral fields

τi =
1

2
(Ti + T̄i)−

i

2

1

(τ − τ̄)
Kiab(G− Ḡ)a(G− Ḡ)b. (6.10)

One then solves the quadratic equations in equation (6.7) to obtain functions ti(τj), and
one obtains the volume V depending on the chiral fields via {τ − τ̄ , Ti + T̄i, (G− Ḡ)a}.

The type IIB Kähler potential is given by [157, 158]

K = Kcs(U, Ū) +Kk(τ, T,G) ,

Kk = − ln [−i(τ − τ̄)]− 2 ln
[
V(τ, T,G) + ξ Im(τ)3/2

]
.

(6.11)

The Kähler potential Kk in (6.11) is the tree-level expression, together with the lead-
ing perturbative α′ correction proportional to the parameter ξ = −χ(CY )ζ(3)

2(2π)3 , contain-
ing the Euler number χ(CY ) of the internal Calabi-Yau M (we use conventions where
ls = 2π

√
α′). The complex structure deformationsU are described byKcs, whose precise

form is not important. Higher string loop corrections could give a dilaton–dependence
to Kcs(U, Ū), but this is beyond the approximation we are working in.

The scalar potential for a Kähler potential K and superpotential W is given by

V = eK
(
Kαβ̄DαWDβ̄W − 3|W |2

)
, (6.12)

where the indices α, β̄ run over all chiral fields, with Kαβ̄ the inverse Kähler metric.
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6.2.1 Fluxes and D3–brane instantons

The tree–level superpotential is given by

W = W0(τ, U) =

∫
M

Ω ∧G3 , (6.13)

where G3 is the complex combination of the background three–form fluxes, given by
G3 = F3 − τH3.

We now assume that the complex structure moduli U and the axio-dilaton τ are sta-
bilized at a higher energy scale at a SUSY minimum, by demanding DτW = DUW = 0.
To stabilize the Kähler moduli we add the non-perturbative instanton corrections of
wrapping Euclidean D3–branes over four–cycles. The superpotential is given by [19]

W = W0 +
∑
i

Aie
−aiTi , (6.14)

where Ai and ai are treated as field–independent parameters. In the literature one
often considers the case where the Ga fields are absent. Using the expressions (6.11)
and (6.14), one finds the following scalar potential [158, 159]

V = eK
[
Kjk̄

(
ajAjakĀke−ajTj−akTk−

(
ajAje

−ajTjWKk̄ + c.c.
)

+KjKk̄|W |2
)
−3|W |2

]
,

(6.15)

where Ki̄ are the components of the inverse metric Kαβ̄ in the directions of the Kähler
moduli. In the absence of the Ga fields, there is no–scale structure at tree–level, leading
toKi̄KiK̄ = 3. This no–scale structure is broken when α′–corrections are included, and
one then finds (see [158], or for some further details of the calculation, see appendix E)

V = eK

[
Kjk̄

(
ajAjakĀke−ajTj−akTk −

(
ajAje

−ajTjWKk̄ + c.c.
))

+

3ξ
ξ2 + 7ξV + V2

(V − ξ)(2V + ξ)2
|W |2

]
.

(6.16)

The various studies (see for example [160]) of these potentials indicate a large vol-
ume AdS vacuum, which can be realized in explicit models. In the P4

[1,1,1,6,9] model,
for example, which yields two Kähler moduli, the volume is expressed in terms of the
4–cycle volumes τs, τb as

V =
1

9
√

2

(
τ

3/2
b − τ3/2

s

)
. (6.17)
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This already gives an example where a four–cycle volume can be bigger than the total
volume, as mentioned below (6.4)26.

To remain in the regime of a geometrical compactification, one needs τb > τs. To ob-
tain a large volume, one needs to arrange τb � τs. This is then solved self–consistently:
one assumes a cycle to be small and the other large, approximates the potential in this
regime and then searches for sets of vacua. In such a two–Kähler model this is doable,
but a more general model will have many different Kähler moduli. To express the
volume in terms of the four-cycles, one first has to solve the system of many coupled
quadratic equations (6.7) and use the explicit form of the triple intersection numbers.
Even for simple models with a few Kähler moduli, this can lead to equations which
are not solvable analytically. Numerical methods can be used, but have their own
limitations. One then has to find a limit on the four–cycles that leads to a large volume
V . This will be very difficult without any analytical control. Overall, it seems desirable
to have a different mechanism that stabilizes the volume at once, without the need to
stabilize the individual cycles that build up the total volume. A prime candidate for
such a mechanism is the NS5-brane instanton, to which we turn now.

6.2.2 Adding NS5-brane instantons

We now add a correction due to the wrapping of a Euclidean NS5–brane over the
entire CY. Such an instanton configuration contributes to correlators proportional to
exp(−V/g2

s), where gs is the 10–dimensional string coupling constant. The volume can
not be expressed as a holomorphic function of the N = 1 chiral fields. We therefore
expect that the NS5–brane does not correct the superpotential, but instead it will correct
the Kähler potential,

KNS5 = B Vn exp(−V/g2
s) = B Vn exp

(
1

4
V(τ − τ̄)2

)
. (6.18)

The factor of Vn represents the leading power of the instanton measure and the
one-loop determinant of the fluctuations around the instanton solution. There is a
proportionality factor B that could – in principle – depend on the moduli Ga and the
dilaton τ . We expect no dependence on the complex structure moduli U since the
NS5–brane cannot probe the individual 3–cycles. Furthermore, before the orientifold
projection, the NS5–branes correct the moduli space of Kähler deformations, and not
the complex structure deformations. The prefactor V is absent in an instanton corrected
superpotential: because the superpotential is a holomorphic function of the chiral fields
Ti, any non–trivial function Ai(T ) in (6.14) breaks the shift symmetry on the imaginary

26Take for example the values τs ∼ 4.6 and τb ∼ 120 which give a total volume V ∼ 100.
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parts hi completely and is therefore forbidden. Since instantons are expected to break
the shift symmetries to a discrete subgroup only, we can use superpotentials of the form
exp(−aiTi). The Kähler potential does not need to be holomorphic, and we can therefore
only use the real parts of the chiral fields Ti, which combine into powers of the volume
V .

A further argument in favor of (6.18) comes from the parent N = 2 theory. NS5-
branes correct the hypermultiplet moduli space even in the absence of fluxes [149]. In
IIB compactifications, the hypermultiplet moduli are counted by the Kähler moduli, and
the kinetic terms of these scalars receive corrections from NS5-brane instantons. After
the orientifold projection, one expects these corrections to survive, even after fluxes are
turned on. Our claim is that, to leading order, they enter the Kähler potential in the
way described in (6.18). We elaborate further on this in the next section for type IIA
compactifications, where we can determine the one–instanton NS5–brane contribution
explicitly in some special cases [153].

We have to ask in which regime this approach makes sense. We want to remain
in the one–instanton regime, and not consider multiple instanton contributions since
nothing is known about them. Because an NS5–brane instanton scales as exp(−V/g2

s),
this requires that

g2
s

V
< 1 . (6.19)

However, since the NS5-brane is the magnetic dual of the fundamental string, one also
has to consider perturbative effects, which we expect to organize into an expansion
in powers of g2

s/V . Besides that, there are also higher order α′ corrections which are
left out. Only the first perturbative correction is included in our analysis in (6.11). In
N = 2 theories these higher string-loop corrections are absent [80, 161], which makes
the discussion of the NS5-brane instanton more reliable. We discuss such models in the
next section. We take a pragmatic approach here and isolate the NS5-brane instanton
correction from all other corrections in the Kähler potential K0. Hence we write

K = K0(τ, T, U,G) +KNS5(τ, T,G) , (6.20)

and expand to leading order in KNS5. To obtain the expression for the inverse Kähler
metricKαβ̄ (where α = {τ, T,G, U} lists all the chiral fields) in the direction of the Kähler
moduli, we use

Ki̄ = Ki̄0 − (KNS5)i̄, Ki̄NS5 ≡ K
iᾱ
0 KNS5ᾱβKβ̄0 , (6.21)

and now Ki̄K̄k = δik +O
(
K2

NS5

)
.
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In principle, there could be a dependence in Ki̄NS5 on the fields ba, which enter
through the definition of the chiral fields Ga in (6.5) and (6.6). As explained at the
end of appendix E, the exact dependence on ba is subleading in Ki̄NS5.

To obtain the scalar potential, we work out equation (6.12), settingDτW =DUW = 0.
For simplicity, we now set Ga to zero. It would be interesting to consider the effects of
non–zero Ga, but this is beyond the scope of this article. Using this in (6.12) leads to

V = V0 + V0KNS5 − eK0Ki̄NS5 |D
(0)
i W |2 + eK0Ki̄0

(
∂iKNS5WD

(0)
̄ W + c.c.

)
. (6.22)

The potential in absence of KNS5 is denoted V0, D(0)
i W = ∂iW + (∂iK0)W and Ki̄0 is the

inverse of K0,αβ̄ in the directions of the Kähler moduli. Recall that all chiral fields are
labeled by α, β̄, and the Kähler moduli are a subsector thereof labeled by i, ̄. Formula
(6.22) in fact holds for any perturbation of the Kähler potential, labeled by KNS5.

From equations (6.21)–(6.22) we can see that we have to compute KNS5ᾱβ , so we
have to take derivatives with respect to all chiral fields. This is to be contrasted to the
situation in which one modifies the superpotential: the derivatives with respect to τ and
U are contained in DτW and DUW , which are set to zero.

Suppose for simplicity that W does not depend on the Kähler moduli (such as in
equation (6.13)), then D(0)

i W0 = K(0)
i W0 and hence

V = V0 + V0KNS5 − eK0Ki̄NS5 |∂iK0|2|W0|2 + eK0Ki̄0
(
∂iKNS5 ∂̄K0 + c.c.

)
|W0|2 . (6.23)

Using expression (6.11) forK0, we find thatKi̄0 is proportional to titj andKij (the in-
verse of Kij = Kijktk), and both ∂iK0 and ∂iKNS5 are proportional to Ki = Kijtj . Upon
contracting indices, this will combine nicely into powers of V . The precise calculation
can be found in appendix E. Ignoring the D3–brane instantons, and other subleading
corrections to the Kähler potential, the leading correction to V0 is found to be

VNS5 = −9

8
B|W0|2g−3

s Vn exp(−V/g2
s) ≡ B̂Vn exp(−V/g2

s) . (6.24)

In the last expression, we have absorbed all the constants into a new prefactor B̂.

6.2.3 Analysis of the model

We have motivated the scalar potential

V = V0(V) + B̂Vne−V/g
2
s , (6.25)

where B̂, n are constants.
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V

V0

V

VNS-5, n>0

V

VNS-5, n<0

Figure 6.1: General shape of the three terms in the potential. The first is the AdS minimum
of Vpert. The second and third are the NS5–brane contribution B̂Vne−V/g

2
s , with n positive and

negative, respectively. The possible signs of B̂ are given by the upper line (B̂ positive) and the
lower line (B̂ negative).

A general situation achieved in moduli stabilization is indicated on the left plot
below, which displays an AdS minimum. We will investigate the physics of the NS5–
brane contribution, depending on the signs of the parameters B̂ and n. The results are
summarized in the table below. The most interesting case is when n is positive and B̂ is
positive (the upper line in the middle graph). The exact location of the bump depends
on the value of n. Its value is at this point undetermined, but we will argue in the next
section that

n = −3− χ

12π
. (6.26)

This is the value obtained in the N = 2 theory, and we assume that its order of magni-
tude remains the same in the orientifolded N = 1 theory.

For n > 0, the contribution from the five–brane is positive and will therefore cer-
tainly increase the value of the potential at the minimum. Depending on the strength
B̂ and the location of the contribution it can produce new vacua or uplift the existing
minimum to a de Sitter vacuum. With n positive and B̂ negative, the five–brane yields
a negative energy contribution to the potential function. Depending on the parameters,
it will introduce new vacua or lower the potential energy at the location of the existing
vacuum. The situation is also interesting if the existing scenarios do not stabilize the vol-
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ume and we obtain a run–away potential which behaves as V0 ' Vm, with m negative.
A five–brane contribution with positive n can then provide the volume stabilization.
The possible signs of n and B̂ and their results are summarized in the table below.

n B̂ Result
+ + Increased vacuum energy (uplift), with de Sitter vacua
+ – Decreased vacuum energy, increased number of minima
– + Increased vacuum energy (uplift)
– – Decreased vacuum energy

We have outlined the model and the qualitative behavior, and will now investigate
the numerics. The general scenario is described by

V = V0(V) + VNS5, VNS5 = B̂Vne−V/g
2
s . (6.27)

We have not really specified V0 here; one can choose a favorite scenario in which the
Kähler moduli are stabilized, and then investigate the influence of the NS5–brane con-
tribution. The expression for VNS5 will, in general, be more complicated: if we take a
non–trivial W (e.g. including D3–brane instantons as in (6.14)), there will be mixing
terms consisting of Kähler perturbations and superpotential perturbation in terms like
|DiW |2. These terms are typically suppressed, or at most of the same order as in (6.27).
In both cases, the numerical analysis below remains the same.

The scalar potential (6.27) contains an overall term exp(Kcs(U, Ū)), whose exact value
depends on the details of the complex structure moduli stabilization. We set this factor
to unity to compare with other models 27. The KKLT scenario stabilizes the volume
at V = O(100) at a minimum of V0 = −2 · 10−15. The LVS on P4

[1,1,1,6,9] stabilizes the
volume at V = O(1012) with a value of V0 = −6 · 10−37 [145].

Using B = −10,W0 = 1 (implying B̂ = 90/8g−3
s ) and an Euler number of χ = −300,

we find (using (6.26)) the values

VNS5 V = 10 V = 13 V = 20 V = 60 V = 130

gs = 0.5 10−10 10−15 10−26 10−93 10−213

gs = 1 102 100 10−1 10−16 10−44

(6.28)

For very weakly coupled strings, gs < 0.5, the effect of the NS5–brane instanton is
negligible. For gs = 0.5 one sees from the table that a volume of order V ' 15 yields
corrections to the potential that cannot be ignored in a KKLT scenario. For higher values
of the string coupling constant, gs = 1, the corrections to the potential at V ' 60, are of
the same order as the value of the KKLT–potential at its minimum. In that case, NS5–
brane instantons cannot be ignored and can change the KKLT AdS vacuum to become
dS, although fine tuning is required.

27In VNS5 it was absorbed in the factor B̂.
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Quantum corrections (both in α′ and gs) become very important at those scales. The
exact form of those corrections is not known, but we can make some rough estimates.
The first correction in α′ scales as ξ̂3/V4, where ξ̂ = ξg

−3/2
s , and higher corrections

are expected to be further suppressed by factors ξ̂/V . For the values gs = 1, V = 50,
χ ∼ −300 we find ξ̂ ∼ 0.7 and

V NS5 ∼
ξ5

V6
. (6.29)

This can be of the same order as next–to–subleading corrections in α′.

6.2.4 Fivebranes and orientifold projections

We have shown the influence of a NS5–brane instanton on the scalar potential. There
is, however, a subtlety in the microscopic string theory that needs to be addressed.
The NS5–brane instanton arises from the wrapping of the 10–dimensional NS5–brane
soliton solution. In 10 dimensions, the NS5–brane is the magnetic source of the NS–NS
B2 field. Such a wrapping naturally arises when we compactify six internal dimensions.
In such a compactification, the 4–dimensional part of theB2 field is dualized to an axion
σ, and the NS5–brane instanton yields exponential corrections of the form

e
− V
g2
s
|Q|+iQσ

, (6.30)

where Q is the instanton charge. As usual, the instanton action contains an imaginary
part, that distinguishes between instantons (Q > 0) and anti–instantons (Q < 0). Micro-
scopically, this distinction arises when one has to specify the orientation of the wrapping
relative to the orientation of the CY. However, the field σ gets projected out in an ori-
entifold; see e.g. [138]. In the ten–dimensional picture, this corresponds to saying that
the space–time part of B2 gets projected out, but the NS5–brane couples magnetically
to this field. These considerations seem to lead, on the one hand, to the conclusion that
an NS5–brane instanton cannot exist, at least not in the traditional sense.

On the other hand, one could argue that at the level of the effective action, all even
combinations in σ survive the projection. Examples of such terms are exp(−V/g2

s) and
exp(−V/g2

s) cosσ. The last term can be interpreted as an instanton (Q = 1) – anti–
instanton pair (Q = −1). Such a pair would annihilate, unless some other mechanism
stabilizes the pair. They cannot be separated in the internal manifold as e.g. for D3–
branes, because they wrap the entire CY. This suggests that they cannot preserveN = 1

SUSY after the orientifold projection, but in the next section, we show that they still
can be written in an N = 1 supergravity action. So we are led to the conclusion that
instantons do remain present after taking the orientifold projection.
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The situation can be described with the following diagram:

II String theory/CY −→ N = 2, effective supergravity descriptiony orientifold
y orientifold

II String theory/CYor −→ N = 1, effective supergravity description

(6.31)

Starting from the full–fledged string theory in the top left, one can obtain an effective
N = 2 supergravity description, containing effects from NS5–brane instantons. We
then orientifold by simply putting σ = 0 (and other fields) in this action and obtain
an N = 1 theory. This procedure shows that there is a contribution from NS5–branes
consistent withN = 1 SUSY. However, one could argue that the correct way to proceed
is to incorporate the orientifold projection in string theory, and then calculate the low–
energy effects of a NS5–brane. It would be interesting to compare these two approaches;
we leave this question open for further investigation. The situation is better understood
before the orientifold projection, when we still have N = 2. We will now turn to this
setting.

6.3 The N = 2 scenario

In this section we will describe our results in the more stringent language of N = 2 su-
pergravity. In this setting we have good control over the possible quantum corrections.
Furthermore, there are no subtleties with the orientifold projection of the NS5–brane, as
discussed at the end of the previous section.

Although the previous section dealt with IIB string compactifications, we will change
in this section to type IIA models. The reason is of technical origin, as the dimension of
the hypermultiplet moduli space in IIA is given by 4(h1,2 + 1) (as opposed to 4(h1,1 + 1)

for IIB), and h1,2 can be set to zero for rigid CY’s. This yields a four–dimensional
moduli–space, which simplifies the analysis. Moreover, NS5–brane instantons were
analyzed in these models in [153, 154], and we will make use of these results. We expect
that the results for IIA carry over to IIB.

6.3.1 Gauged and ungauged N = 2 supergravity

In ungauged N = 2 supergravity, the moduli space has the local product structure

MK ×MQ . (6.32)
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For type IIA strings, the special Kähler manifoldMK has dimension equal to 2h1,1 and
is spanned by the scalars in the vector multiplets, corresponding to the deformation
of the Kähler form. The quaternionic-Kähler space MQ is spanned by the scalars in
the hypermultiplets and is 4(h1,2 + 1) dimensional. The manifoldMK is described in
terms of a prepotential F (XI), where I = 0, . . . , h1,1. In supergravity, this can be any
holomorphic function of the XI variables of degree two. The prepotentials obtained
from IIA string theory have the specific form

F (X) =
1

3!

KijkXiXjXk

X0
+
i

2
ζ(3)χ(CY )X0X0 − i

∑
ka

nkaLi3(e2πikaX
a/X0

) , (6.33)

where the first term is a tree–level contribution, the second is a perturbative one-loop
correction and the last terms are the non-perturbative worldsheet instanton contribu-
tions. Note that there is only one perturbative correction, so the perturbative regime is
under complete control. The geometry ofMQ is known at tree–level and at one–loop.
It is argued in [161] that higher loop corrections can be absorbed into field redefinitions,
and if so, the entire perturbative corrected geometry is known [80, 81, 161]. If we restrict
ourselves to a rigid CY manifold, which has h2,1 = 0 by definition, there is only one
hypermultiplet, which is called the universal hypermultiplet (UHM).

Gauged supergravities arise when isometries on the moduli space are gauged. They
give rise to scalar potentials that are consistent withN = 2 supersymmetry. Microscop-
ically, gauged supergravities arise when fluxes (in the RR and NS–NS sector) are turned
on. For the purpose of this chapter, it suffices to look at abelian isometry groups.

The scalar potential is determined by the geometrical data of the moduli space, such
as the choice of killing vectors kI and their corresponding moment maps ~µI . For further
details on the gauging, we refer to appendix E.1 and references therein. The result for
the scalar potential is

V =− 4
[
2Gαβ̄k

α
I k

β
J + 3~µI · ~µJ

] XIX̄J

NMNXM X̄N
− 4NMNX

M X̄NMIJN
IKNJL~µK · ~µL .

(6.34)

In this formula, Gαβ̄ is the metric on the hypermultiplet space. The gauged isometries
are represented by the Killing vectors kαI and their moment maps ~µI . The matricesNMN

andMIJ are defined by

NIJ = −iFIJ + iF̄IJ ,

MIJ =
1

[NMNXM X̄N ]2
[NIJNKL −NIKNJL] X̄KXL ,

(6.35)

where FI = ∂IF etc. In our conventions, both Gαβ̄ andMIJ are negative definite, so
the first term is a positive contribution. The second is negative, whereas the last one is



131

positive. There is an additional term in non-abelian gaugings which can be omitted for
our analysis.

6.3.2 Including NS5–brane corrections

We will now make those expressions explicit for the UHM. The perturbatively corrected
metric Gαβ on the UHM space is given by [80]

ds2
UHM =

r + 2c

r2(r + c)
dr2 +

r + 2c

r2
(dχ2 + dϕ2) +

r + c

r2(r + 2c)
(dσ + χdϕ)2 . (6.36)

The four bosonic fields are an axion σ from the dualization of the NSNS two-form B2,
two RR scalars χ, ϕ and the four–dimensional dilaton g4

r ≡ eφ4 =
1

g2
4

=
V
g2
s

. (6.37)

The relation between the four–dimensional string coupling constant g4 and the ten–
dimensional string coupling constant gs is important, as it will introduce factors of the
volume into our future expressions.

The constant c encodes the one–loop correction and is proportional to the Euler
number

c = −χ(CY )

12π
= −h

1,1

6π
, (6.38)

where the second equality holds on a rigid CY. The contributions from a single NS5–
brane instanton to the UHM metric have been derived in [153, 154]. To leading order in
the semi-classical approximation, the metric reads

ds2
UHM =

r + 2c

r2(r + c)
dr2 +

r + 2c

r2
(1− Y )dχ2 +

r + 2c

r2
(1 + Y )dϕ2

+
2

r
Ỹ dχdϕ+

r + c

r2(r + 2c)
(dσ + χdϕ)2. (6.39)

The quantities Y and Ỹ are defined as28

Y = 4C(2χ2 − 1)r−1−c cos(σ)e−r−
1
2χ

2−c,

Ỹ = 4C(2χ2 − 1)r−1−c sin(σ)e−r−
1
2χ

2−c.
(6.40)

The factor C is a numerical constant which could not be determined. This solution
has a shift symmetry associated with ϕ which we can gauge, using the graviphoton as

28Compared to [154] we have taken χ0 = 0. Its dependence can easily be restored.
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gauge field. The field ϕ is obtained by expanding the 10–dimensional RR field Ĉ3 over
one of the 2(h2,1 + 1) = 2 cycles in H3; gauging the isometry associated with ϕ has a
microscopic interpretation of adding NS flux over this cycle [162]. Moreover, the shift
symmetry is not broken by NS5-brane instantons, so there is no obstruction in gauging
this isometry by fluxes in the presence of instantons [163, 164].

The gauging of this isometry leads to a scalar potential of the type given in (6.34),
with a Killing vector k = ∂ϕ. Upon inserting the prepotential (6.33) without the world-
sheet instantons, one finds that the moment maps drop out of the equation for the
potential (6.34), and only the norm of the Killing vector remains. The only dependence
on the vector multiplet moduli comes from the factor (NMNX

MXN̄ )−1. The details of
this calculation can be found in appendix E.1.

Without the worldsheet instanton corrections, we then find the scalar potential

V =
2

4V + e

[
−2Gαβ̄k

αkβ
]

(6.41)

=
4

4V + e

(
4(r + 2c)2 + 4(r + c)χ2

r2(r + 2c)
+ 16Ce−c−r−χ

2/2r−2−c(2χ2 − 1) cos(σ)

)
,

where e = 1
2ζ(3)χ(CY ) and C is the undetermined overall constant. Reinstating all

volume factor dependencies using (6.37), this has the schematic form

V = V0 + C̃V−3−ce−V/g
2
s , (6.42)

where C̃ = 16Cg4+2c
s e−c−χ

2/2(2χ2− 1) cos(σ). We also neglect the correction due to e in
the 2nd term, because it is subleading.

We see how a NS5–brane contribution can be included into N = 2 type IIA su-
pergravity. It would be interesting to repeat this exercise including the worldsheet
instantons.

6.3.3 Truncation to N = 1

To clarify the relation to the previous section, we will now perform a truncation of this
theory. We make an orientifold inspired truncation to N = 1 at the level of the effective
action (see figure (6.31)). A similar truncation has been done in [159]. We follow the
orientifold rules from [138]. Because we merely truncate the theory, there should still
be a local product structure as in (6.32), but now the product is between two Kähler
manifolds. Furthermore, for simplicity we restrict ourself to the cubic prepotential and
therefore put e = 0.

The universal hypermultiplet loses half of its fields under truncation to become a
chiral N = 1 multiplet. We keep the four–dimensional dilaton r and project out the
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axion σ. From the RR scalars χ, ϕ we can choose which we keep. We gauged the
isometry on ϕ, which corresponds to a NS–flux on the cycle of ϕ. The relevant part
of the expansion of Ĥ3 and Ĉ3 is given by

Ĉ3 = χα+ ϕβ ,

Ĥ3 = pα+ q β .
(6.43)

The field Ĉ3 is expanded over a basis of the third cohomology group H3, given by
three–forms α, β, which give the four–dimensional fields χ, ϕ. The flux of B̂2 is likewise
expanded, with flux parameters p, q. Under an orientifold, the RR form Ĉ3 and the NS-
NS flux Ĥ3 = dB̂2 are even and odd respectively. We gauge the isometry associated
with ϕ, so we want to keep the flux parameter q. This implies that β should be an odd
cycle. In the expansion of the even form Ĉ3 we only keep even forms, and hence ϕ gets
projected out.

The metric then truncates to

ds2
UHM =

r + 2c

r2(r + c)
dr2 +

r + 2c

r2
(1− Y )dχ2 , (6.44)

where we have put σ = 0 in Y . The perturbatively corrected scalar potential is, with
e = 0

V0 =
4

V
(r + 2c)2 + (r + c)χ2

r2(r + 2c)
, (6.45)

and the NS5–brane instantons yields equation (6.41) with σ = 0

VNS5 =
16

V
Ce−c−r−χ

2/2r−2−c(2χ2 − 1) , (6.46)

where C is independent of vector multiplet scalars.
We want to express these quantities in terms of a Kähler and superpotential. The

Kähler potential K is a sum of the Kähler potential Kk for the truncated Kähler moduli
and a potential KQ for the truncated universal hypermultiplet. In the Kähler sector, we
have the Kähler potential [138]

Kk = − ln(V) , (6.47)

which follows from the choice of the cubic prepotential we made in the N = 2 cal-
culation, earlier in this section. The important property of this Kähler potential is its
no–scale structure (Kk)i̄Kk

iKk
̄ = 3.

For the scalar potential we use expression (6.12)

V = eK
(
Kαβ̄DαWDβ̄W − 3|W |2

)
=

1

V
eK

Q(
(KQ)zz̄DzWDzW

)
, (6.48)
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where the no–scale structure in directions orthogonal to the truncated universal hyper-
multiplet has been used.

The perturbative part of the metric (6.44) and the potential (6.45) are now exactly
reproduced by the Kähler potential and superpotential [165]

KQ = −2 ln
[
(z + z̄)2 − 16c

]
,

W = 16z .
(6.49)

These are formulated in terms of the chiral field z defined by

z = 2
√
r + c+ iχ . (6.50)

We use conventions for which ds2 = 4Kzz̄dzdz̄, as in [165].
We now also want to describe the NS5–brane instanton contribution. This scales as

exp

[
−r − χ2

2
− c
]

= exp

[
1

16
(z2 − 6zz̄ + z̄2)

]
, (6.51)

which is not holomorphic in z. Therefore, we cannot correct the superpotential with
such a term. The correction will take place in the Kähler potential and in the definition
of the N = 1 chiral field. Both the metric (6.44) and the potential (6.41) are reproduced
up to leading order by the chiral field and the Kähler potential

z = 2
√
r + c+ iχ+ 2Ce−r−

1
2χ

2−cr−2−c (√r(1− 2χ2) + iχ(2χ2 − 5)
)
, (6.52)

KQ = −2 ln
[
(z + z̄)2−16c

]
+ C exp

[
1

16
(z2−6zz̄+z̄2)

]
49+2c (z+z̄)−4−2c(1 + 1

2 (z − z̄)2)

(z−3z̄)(z̄ − 3z)
,

W = 16z .

Because our four–dimensional dilaton r contains a factor of the volume V , the leading
term in the Kähler potential is equal to

KQ = K0 +BVne−V/g
2
s , (6.53)

where we have defined

B = 64Ce−c−χ
2/2(1− 2χ2)g−2n

s , n = −3− c . (6.54)

The overall factor B can depend on other moduli. In this setting, the leading de-
pendence on χ is explicit in (6.54). We expect (6.53) to hold also for non–rigid CY with
h1,2 6= 0. In that case the factor B presumably depends on the other hypermultiplet
scalars. This confirms our proposal of (6.18) and (6.26), where we apply it to type IIB
string theory.
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Conclusions

In this thesis we have studied several aspects of compactifications and black holes in
four-dimensional supergravity.

The first chapter dealt with fully supersymmetric vacua. We have found simple,
algebraic conditions which need to be satisfied for an N = 2 supersymmetric vacuum.
These conditions are illustrated with several examples, which show that even complex,
interacting theories can have fully supersymmetric vacua. This work joins the the on-
going research on the structure of N = 1 vacua of N = 2 supergravity to provide
more insight in the vacuum structure of these theories. This research will give a better
understanding of the possible supersymmetric compactifications of higher-dimensional
supergravity theories.

A next topic were black holes, which play an important role in supergravity. Such
configurations are usually found in ungauged supergravities without hypermultiplets.
The second chapter studied black hole configurations in gauged supergravity with hy-
permultiplets. Using spontaneous symmetry breaking, we have shown how to embed
known, ungauged black hole solutions into the gauged theory. We have furthermore
searched for new solutions, but only found solutions where the scalars become ghost-
like. As we have made some assumptions in this computation, it could be possible that
a modification of these assumptions can lead to proper new solutions. Such config-
urations are interesting for e.g. the AdS/CFT correspondence, where black holes can
describe the thermal behavior of the dual field theory.

Over the last decade, many techniques to construct supersymmetric solutions have
been devised, but it is not so clear how these methods are related. It would be a ma-
jor step forward for the field if we could come to a systematic way of classifying all
supersymmetric solutions.
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The next area of research is part of the program of moduli stabilization. The ap-
pearance of massless scalars in e.g. Calabi-Yau compactifications is in direct conflict
with experiments and we need to resolve this issue. This should be possible using flux
compactifications, which have therefore seen a lot of research.

We studied compactifications of M-theory and showed that compactification to five
dimensions, followed by a Scherk-Schwarz reduction, leads to a gauged N = 2 theory.
We illustrated how this can also be obtained by a direct compactification on a seven-
dimensional space, constructed as a twisted Calabi-Yau threefold over a circle. Inspired
by orientifold compactifications, this theory can be truncated to an N = 1 theory, and
we derived the Kähler and superpotential for this theory. Interestingly, there are also
D-terms in these models. Although these models do not directly stabilize all moduli,
inclusion of quantum corrections might make them phenomenologically more relevant.

As a final project in the area of moduli stabilization, we studied the stabilization of
the volume of the internal space. The possibility of (Euclidean) NS5-branes that wrap
the entire internal space gives corrections to the effective four-dimensional action, which
depend on the volume of the internal space. We motivate how these instantons lead to
a correction of theN = 1 Kähler potential, and then study when these effects are impor-
tant. It is found that there are regimes in parameter space where they can be important,
but other (unknown) effects are expected to be important as well, so it remains difficult
to study their effects. The research in this direction should therefore either focus on
models with an (exponentially large) volume, where many of these effects are expected
to be negligible, or explicitly compute these corrections, which is a very challenging
problem.



Appendix A

Notation, conventions and spacetimes

A.1 Notation and conventions

We mainly follow the notation and conventions from [28]. In particular, our spacetime
has a {+,−,−,−} signature. Self-dual and anti-self-dual tensors are defined as

F±µν =
1

2

(
Fµν ±

i

2
εµνρσF

ρσ

)
, (A.1)

where ε0123 = 1.
Our gamma matrices satisfy

{γa, γb} = 2ηab ,

[γa, γb] ≡ 2γab ,

γ5 ≡ −iγ0γ1γ2γ3 = iγ0γ1γ2γ3 .

(A.2)

In addition, they can be chosen such that

γ†0 = γ0, γ0γ
†
i γ0 = γi, γ†5 = γ5, γ∗µ = −γµ , (A.3)

and an explicit example of such a basis is the Majorana basis, given by

γ0 =

(
0 σ2

σ2 0

)
, γ1 =

(
iσ3 0

0 iσ3

)
, γ2 =

(
0 −σ2

σ2 0

)
,

γ3 =

(
−iσ1 0

0 −iσ1

)
, γ5 =

(
σ2 0

0 −σ2

)
, (A.4)

where the σi are the Pauli matrices.
The action is defined by S =

∫ √
|g|L. We start with the (ungauged) Lagrangian,

whose Einstein-Hilbert and scalar derivative terms read

L =
1

2
R+ gi̄∂µz

i∂µz̄ + huv∂µq
u∂µqv . (A.5)
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We set the Newton constant κ2 = 1. As we use a {+,−,−,−} metric signature, we
have to choose gi̄ and huv positive definite to get positive kinetic terms for the scalars.

We compute the Riemann curvature as follows29

Rρσµν = ε
[
∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ

]
,

Rµν = Rρµρν , R = gµνRµν ,
(A.6)

where ε = 1 for Riemann spaces (the quaternionic and special Kähler target spaces) and
ε = −1 for Lorentzian spaces (space-time). The overall minus sign in the latter case is
needed to give AdS spaces a negative scalar curvature. This gives a sphere in Euclidean
space (with signature {+,+,+,+}) a positive scalar curvature.

The spin connection enters in the covariant derivative

Dµ = ∂µ −
1

4
ωabµ γab ,

ωabµ =
1

2
eµc
(
Ωcab − Ωabc − Ωbca

)
,

Ωcab =
(
eµaeνb − eµbeνa

)
∂µe

c
ν .

(A.7)

The Lagrangian (A.5) is only supersymmetric if the Riemann curvature of the hyper-
multiplet moduli space satisfies R(huv) = −8n(n + 2) , where n is the number of
hypermultiplets, so the dimension of the quaternionic manifold is 4n (in applications
to the universal hypermultiplet, we have n = 1 and hence R = −24).

Our conventions for the sigma matrices follow [28]; in particular they are symmetric
and satisfy

(
σxAB

)∗
= −σxAB , and we have the relation

σxABσ
yBC = −δCAδxy + iεABε

xyzσzBC . (A.8)

Indices on bosonic quantities are raised and lowered as

εABV
B = VA , εABVB = −V A . (A.9)

As mentioned in the main text, all fermions with upper SU(2)R index have negative
chirality and all fermions with lower index have positive chirality. We set γ5 to be purely
imaginary and then complex conjugation interchanges chirality.

A.2 Metrics and field strengths

• AdS2 × S2

The line element, in local coordinates {t, x, θ, φ}, is

ds2 = q2
0

(
dt2 − sin2(t)dx2 − dθ2 − sin2(θ)dφ2

)
, (A.10)

29Note that this definition, when applied to the Riemann curvature of the quaternionic manifold, differs
with a factor of 2 compared with [28, 55]. As a consequence, there one has R(huv) = −4n(n+ 2).
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where q0 is a real, overall constant which determines the size of bothAdS2 and S2.
From (3.29) we find the only non–vanishing components

T+
tx =

1

2
q0 sin(t)eiα ,

T+
θφ = − i

2
q0 sin(θ)eiα .

(A.11)

• The pp-wave
The line element of a four–dimensional Cahen-Wallach space [76], in local coordi-
nates {x−, x+, x1, x2}, is given by

ds2 = −2dx+dx− −Aijxixj(dx−)2 − (dxi)2 , (A.12)

where Aij is a symmetric matrix. Conformal flatness requires A11 = A22 and
A12 = 0. We denote A11 = −µ2 as A11 should be negative. This space is known as
the pp-wave. From (3.29) we find the only non–vanishing components

T+
x−x1 =

µ

2
eiα ,

T+
x−x2 = −iµ

2
eiα .

(A.13)
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Integrability conditions

B.1 Commutators of supersymmetry tranformations

A killing spinor εA satisfies

δεψµA = ∇µεA + T−µνγ
νεABε

B + igSABγµε
B = 0 , (B.1)

whence the commutator is

[∇µ,∇ν ]εA =− εABDµT
−
νργ

ρεB +
g

2
σxAB∇µP xγνεB − (µν)

+ T−νργ
ρT+
µσγ

σεA − (µν)

− g

2
T−νργ

ργµP
x
ΛL̄

ΛσxA
CεC +

g

2
T+
µργνγ

ρP xΛL
ΛσxA

CεC − (µν)

+
g2

2

(
δA

CP xP x − iεxyzσxACP yP z
)
γµνεC .

(B.2)

From the defintion (3.17) we obtain

[∇µ,∇ν ]εA =− 1

4
Rµν

abγabεA − gi̄∇[µz
i∇ν]z

̄εA − igFΛ
µνPΛ

+ 2iΩuvA
B∇[µq

u∇ν]q
vεB + igσxA

BFΛ
µνP

x
ΛεB .

(B.3)

B.2 Fully BPS vacua

In the fully BPS case, all terms with a covariant derivative in (B.2) and (B.3) vanish. We
furthermore see that (B.3) does not contain a term proportional to εAB , so DµT

−
νρ = 0.

Some algebra now yields the necessary and sufficient conditions to match the terms
proportional to σxAB :

T−µνP
x = 0 ,

εxyzP yP z = 0 ,
(B.4)
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which give the first conditions of section 2.3. The other conditions are obtained by
comparing the parts proportional to 1A

B .

B.3 Half BPS vacua

We use (4.51) to eliminate εA in terms of εA and for convenience define b ≡ −ieiα. The
remaining equation should hold for any choice of εA. We can then use the independence
of the gamma matrices and the SU(2) matrices εAB , σxAB to find the conditions

1. Terms proportional to εAB , no gamma.

bDµT
−
ν0 − (µν) = −gi̄∂[µz

i∂ν]z
̄ . (B.5)

2. Terms proportional to εAB , two gamma

bDµT
−
νργ

ρ0 + T−νρT
+
µσγ

ρσ − (µν) +
g2

2
P xP xγµν = −1

4
Rµν

abγab . (B.6)

3. Terms proportional to σxAB , no gamma

g

2
b∇µP xgν0 − (µν) + gT−µνP

x + gT+
µνP

x

= g
(
LΛT+

µν − L̄ΛT−µν − 2ifΛ
ı̄ G

i+
µν + 2ifΛ

i G
i−
µν

)
P xΛ ,

(B.7)

where we used that −Ωxuv∇[µq
u∇ν]q

v = 0, which follows from (4.56). Using
fΛ
i P

x
Λ = 0 from (4.53) we therefore find

g

2
b∇µP xgν0 − (µν) = −2gT−µνP

x
ΛL̄

Λ . (B.8)

We now take components µ = θ and use ∇θP x = 0 and gθ0 = 0. We then find
T−θνP

x = 0, whence P x = 0 or T−θν = 0. In the latter case also T−µν = 0, because of
the anti-self-duality property, and then Tµν = 0. We conclude

T−µνP
x
ΛL

Λ = 0 . (B.9)

4. Terms proportional to σxAB , two gamma. Using (B.9) we find

εxyzP yP zγµν = 0 . (B.10)

To summarize: we found two cases, one with T−µν = 0, the other with P x = 0. We
now list the remaining conditions for each case.
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B.3.1 Case A: F = 0

The remaining conditions are

g2

2
P xP xγµν = −1

4
Rµν

abγab ,

gi̄∂[µz
i∂ν]z

̄ = 0 ,

εxyzP yP z = 0 .

(B.11)

The first condition implies that the spacetime is maximally symmetric, with constant
curvature ∝ P xP x, and is then solved.

B.3.2 Case B: P x = 0

The remaining conditions are

bDµT
−
ν0 − (µν) = −gi̄∂[µz

i∂ν]z
̄ ,

bDµT
−
νργ

ρ0 + T−νρT
+
µσγ

ρσ − (µν) = −1

4
Rµν

abγab .
(B.12)

From the second condition we find the Riemann tensor

Rµνρσ = R−µνρσ +R+
µνρσ ,

R−µνρσ =− bDµT
−
νρe

0
σ + T−νρT

+
µσ − (µν)

− bDνT
−
µσe

0
ρ + T−µσT

+
νρ − (µν)

+ biερσ
λκDµT

−
νλe

0
κ + iερσ

λκT−νλT
+
µκ − (µν) .

(B.13)
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Isometries of special Kähler manifolds

In this appendix, we present some further relevant formulae that are used in the main
body of the paper. First, we have defined the moment maps on the special Kähler
manifold as follows. Given an isometry, with a symplectic embedding (2.46), we can
define the functions

PΛ ≡ i(kiΛ∂iK + rΛ) . (C.1)

Since the Kähler potential satisfies (2.48), it is easy to show that PΛ is real. From this
definition, it is easy to verify that

kiΛ = −igi̄∂̄PΛ . (C.2)

Hence the PΛ can be called moment maps, but they are not subject to arbitrary additive
constants. Using (2.49) and (2.56), it is now easy to prove the relation

kiΛgi̄k
̄
Σ − k

i
Σgi̄k

̄
Λ = ifΛΣ

ΠPΠ , (C.3)

also called the equivariance condition.
We can obtain formulas for the moment maps in terms of the holomorphic sections.

For this, one needs the identities

kiΛ∂iX
Σ = −fΛΠ

ΣXΠ + rΛX
Σ , kiΛ∂iFΣ = cΛ,ΣΠX

Π + fΛΣ
ΠFΠ + rΛFΣ , (C.4)

which follow from the gauge transformations of the sections, see (2.46). Using the chain
rule in (2.56), it is now easy to derive

PΛ = eK
[
fΛΠ

Σ(XΠF̄Σ + FΣX̄
Π) + cΛ,ΠΣX

ΠX̄Σ
]
, (C.5)

and similarly
kiΛ = −igi̄

[
fΛΠ

Σ(fΠ
̄ MΣ + hΣ|̄L

Π) + cΛ,ΣΠf̄
Π
̄ L

Σ
]
, (C.6)
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where we introduced MΛ ≡ eK/2FΛ and hΛ|i ≡ eK/2(∂i + Ki)FΛ. The Killing vectors
(C.6) are not manifestly holomorphic. This needs not be the case because otherwise we
would have constructed isometries for arbitrary special Kähler manifolds, since holo-
morphic vector fields obtained from a (real) moment map solve the Killing equation.

We now show that PΛL
Λ = 0, following the discussion in [73]. We start from

the consistency conditions on the symplectic embedding of the gauge transformations,
equations (C.4). We eliminate rΛ using (2.56), and rewrite them as

−fΛΠ
ΣLΠ = kiΛf

Σ
i + iPΛL

Σ , (C.7)

fΛΓ
ΣMΣ + cΛ,ΓΣL

Σ = kiΛhΓ|i + iPΛMΓ , (C.8)

with hΓ|i = eK/2DiFΓ. Multiplication of the first equation withMΣ and the second with
LΓ and subtracting leads to

2fΛΓ
ΣLΓMΣ + cΛ,ΓΣL

ΓLΣ = 0 , (C.9)

where we have used the identity fΣ
i MΣ − hΓ|iL

Γ = 0. Contracting equation (C.5) with
LΛ and using (C.9) and (2.63) one finds

PΛL
Λ = 0 , (C.10)

as announced below equation (3.16). Contrating the first equation of (C.7) with LΛ gives
LΛkiΛf

Σ
i = 0. It follows from contracting with ImNΓΣf

Σ
̄ that

LΛkiΛ = 0 . (C.11)

Here we have used the special geometry identities on the period matrix (2.27).



Appendix D

The universal hypermultiplet

The metric for the universal hypermultiplet is known to be

ds2 =
1

r2

(
dr2 + r (dχ2 + dϕ2) +

(
dσ + χdϕ

)2)
. (D.1)

It describes the coset space SU(2, 1)/U(2) and therefore there are eight Killing vectors
spanning the isometry group SU(2, 1). In the coordinates of (D.1), they can be written
as

ka=1 = ∂σ ,

ka=2 = ∂χ − ϕ∂σ ,
ka=3 = ∂ϕ,

ka=4 = −ϕ∂χ + χ∂ϕ +
1

2
(ϕ2 − χ2)∂σ ,

ka=5 = 2r∂r + χ∂χ + ϕ∂ϕ + 2σ∂σ , (D.2)

ka=6 = 2rϕ∂r + (−2σ + ϕχ)∂χ +
1

2
(−3r + ϕ2 − 3χ2)∂ϕ + (2σϕ+ 2rχ+ χ3)∂σ ,

ka=7 = 2rχ∂r +
1

2
(−4r − 3ϕ2 + χ2)∂χ + (2σ + 3ϕχ)∂ϕ +

ϕ

2
(ϕ2 − 3χ2)∂σ ,

ka=8 = r(2σ + ϕχ)∂r +
1

4
(−4rϕ− ϕ3 + 4σχ+ ϕχ2)∂χ +

1

4
(4rχ+ 4σϕ+ 3ϕ2χ+ χ3)∂ϕ

+
1

16
(−16r2 + 16σ2 + ϕ4 − 2(8r + 3ϕ2)χ2 − 3χ4)∂σ .

The moment maps P x are computed from

P x = ΩxuvD
ukv . (D.3)
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The quaternionic two-forms Ωx satisfy ΩxΩy = − 1
4δ
xy + 1

2ε
xyzΩz , and can be written as

Ω1 =
1

2r3/2
(dr ∧ dχ+ dϕ ∧ dσ) ,

Ω2 =
1

2r3/2
(−dr ∧ dϕ+ dχ ∧ dσ − χdϕ ∧ dχ) ,

Ω3 =
1

2r2
(dr ∧ dσ + χdr ∧ dϕ− rdϕ ∧ dχ) .

(D.4)

We then find the moment maps

Pa=1 =

{
0, 0,− 1

2r

}
,

Pa=2 =

{
− 1√

r
, 0,

ϕ

2r

}
,

Pa=3 =

{
0,

1√
r
,− χ

2r

}
,

Pa=4 =

{
ϕ√
r
,
χ√
r
, 1− χ2 + ϕ2

4r

}
,

Pa=5 =

{
− χ√

r
,
ϕ√
r
,−

σ + 1
2ϕχ

r

}
,

Pa=6 =

{
2σ − ϕχ√

r
,

4r + ϕ2 − 3χ2

2
√
r

,
−4σϕ− (12r + ϕ2)χ+ χ3

4r

}
,

Pa=7 =

{
−4r − 3ϕ2 + χ2

2
√
r

,
2σ + 3ϕχ√

r
,−−12rϕ+ ϕ3 + 4σχ+ 3ϕχ2

4r

}
,

Pa=8 =

{
−4rϕ+ ϕ3 − 4σχ− ϕχ2

4
√
r

,
4σϕ− 4rχ+ 3ϕ2χ+ χ3

4
√
r

,

− 16r2 + 16σ2 + ϕ4 + 16σχϕ+ 6ϕ2χ2 + χ4 − 24r(ϕ2 + χ2)

32r

}
.

(D.5)

These formulae are needed for some of the examples that we consider in the main text
of this paper.



Appendix E

Calculations with NS5-branes

In this appendix we give some details of the calculations which have been used in
chapter 6.

We want to calculate the derivatives and inverses for the Kähler potentials (6.11)

K0 = − ln(−i(τ − τ̄))− 2 ln

(
V +

ξ̂

2

)
, (E.1)

KNS5 = BVn exp
(
− Vτ2

2 ) , (E.2)

where we use

τ = l + ieφ,

τ2 = Im τ ,

6V = Kijktitjtk = Kijtitj = Kiti ,

ξ̂ = ξ(Im τ)3/2.

(E.3)

We introduce Kij as the inverse of Kij , and denote A := V + ξ̂/2. We first consider the
case where Ga = 0. From Ti = τi + ibi (equation (6.5) for Ga = 0) we find

∂tj

∂Ti
=

1

4
Kij , ∂V

∂Ti
=

1

8
ti. (E.4)
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We can then calculate

K0
Ti = −1

4

ti

A
, K0

τ = iτ−1
2

(
3ξ̂

4A
+

1

2

)
,

K0
TiT̄j

=
Gij

A2
, Gij = − 1

16
AKij +

1

32
titj ,

K0
iτ̄ =

3i

32A2
τ−1
2 ξ̂ti ,

K0
ττ̄ =

1

16
τ−2
2 A−2(4V2 + V ξ̂ + 4ξ̂2) .

(E.5)

This can be inverted to give

Kττ̄0 =
4V − ξ̂
V − ξ̂

τ2
2 ,

Kiτ̄0 = − 3iξ̂

V − ξ̂
τ2Ki ,

Ki̄0 = −8(2V + ξ̂)Kij +
4V − ξ̂
V − ξ̂

KiKj .

(E.6)

We then find a familiar result, which leads directly to (6.16):

Kαβ̄0 K0
αK0

β̄ = 3 +
3ξ̂(V2 + 7V ξ̂ + ξ̂2)

(V − ξ̂)(2V + ξ̂)2
. (E.7)

For the NS5–brane contribution we obtain (we write K5 = K5 = KNS5)

K5
ττ̄ = −1

4
K5V((τ − τ̄)2V + 2) ,

K5
iτ̄ =

i

8
B exp(−Vτ2

2 )Vn(−Vτ2 + n+ 1)τ2t
i ,

K5
i̄ =

1

64
BtitjVn−2

(
V2τ4

2 − V2nτ2
2 + (n− 1)n

)
exp(−Vτ2

2 ) .

(E.8)

We are interested in the leading term in the potential, so we want to investigate the
powers of the volume. If we denote volume powers with [·], then

[V] = 1 , [Kijk] = 0 , [ti] =
1

3
, [Kij ] =

1

3
. (E.9)

All the one–instanton terms are multiplied by exp(−Vτ2
2 ). To determine the leading

term, we have to find the highest power of the volume V in the polynomial which
appears in front of this exponent. Therefore, we do not include the factor exp(−Vτ2

2 )

in the counting, or equivalently we put [exp(−Vτ2
2 )] = 0.
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The various terms have the following leading volume dependencies:

[Ki̄0 ] = 4/3 [K5
i̄] = n+ 2/3 [Ki̄0 K5

̄kKk̄l0 ] = n+ 10/3

[Kiτ̄0 ] = −1/3 [K5
iτ̄ ] = n+ 4/3 [Kiτ̄0 K5

τ̄kKk̄l0 ] = n+ 7/3 (E.10)

[Kττ̄0 ] = 0 [K5
ττ̄ ] = n+ 2 [Kiτ̄0 K5

τ̄τKτ̄ l0 ] = n+ 4/3 .

The leading contribution is given by (we use' here to denote equality up to subleading
terms)

Ki̄5 = Kiᾱ0 K5
ᾱβK

β̄
0 ' Kil̄0K5

l̄kK
k̄
0 ' BVn+2g−4

s exp(−V/g2
s)KiKj . (E.11)

We remind that Ki̄5 is the inverse of K5,αβ̄ in the directions of the Kähler moduli. In the
potential we find then [Ki̄5 |∂iK0|2] = (n+ 10/3)− 2/3− 2/3 = n+ 2. The other term is
[Kij0 ∂iK5∂̄K0] = 4/3 + (n+ 1/3)− 2/3 = n+ 1, which is subleading with respect to the
terms above. Then the leading contribution to the scalar potential is given by

V ' −eK0Ki̄NS5 |∂iK0|2|W0|2

= −9

8
BVng−3

s |W0|2 exp(−V/g2
s) .

(E.12)

Let us now consider the effects of non-zero Ga, to clarify the statements made after
equation (6.21). From the definition (6.5)

Ti = τi + ibi +
i

τ − τ̄
KiabGa(G− Ḡ)c , (E.13)

we find that

∂tj

∂Ti
=

1

4
Kij , ∂ti

∂Ga
=

1

4
KijKjabbb ,

∂ti

∂τ
=
i

2
Kiabbabb , (E.14)

and hence

∂V
∂Ti

=
1

8
ti ,

∂V
∂Ga

=
1

2
tjKjacbc =

1

2
Kacbc ,

∂V
∂τ

=
i

4
tjKjabbabb =

i

4
Kabbabb . (E.15)

In the last two expressions the factor tj is bound with the factor Kjac and cannot com-
bine with a Kj to form a power of the volume.

The expression for (6.21) also contains inverse metrics. If we use the expressions for
the tree–level Kähler metric in [157], we can explicitly determine the volume depen-
dence, and we find

Kia0 K5
abK

bj
0 t

itj ∼ Vn+2 ,

Kik0 K5
klK

lj
0 t
itj ∼ Vn+4 ,

Kia0 K5
akK

kj
0 titj ∼ Vn+3 ,

(E.16)
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and the leading term does not contain the fields Ga. We do not know if this property
holds when we include quantum corrections to the Kähler potential, but as quantum
corrections are expected to be subleading in the volume, we expect this to be the case.

E.1 Potentials in N = 2

In this appendix we give some more details of the calculation in the N = 2 setting. This
appendix derives a general form of the scalar potential. The next appendix specializes
this to the UHM and the Przanowski metric.

We use the formalism from [56] with the vector prepotential

F =
1

3!

KijkXiXjXk

X0
+
i

2
ζ(3)χ(CY )X0X0 . (E.17)

From the prepotential we define

NIJ = −iFIJ + iF̄IJ = 2ImFIJ ,

MIJ =
1

[NMNXM X̄N ]2
[NIJNKL −NIKNJL] X̄KXL ,

(E.18)

and then the scalar potential is given by

V =− 4g2
[
2Gαβ̄k

α
I k

β
J + 3~µI · ~µJ

] XIX̄J

NMNXM X̄N
(E.19)

− g2NMNX
M X̄NMIJ

[
4N IKNJL~µL · ~µL −

f IKLX
KX̄L

NPQXP X̄Q

fJMNX
M X̄N

NPQXP X̄Q

]
,

where g is an overall factor to make the terms which are a result of the gauging more
explicit in the Lagrangian; we put g = 1 from now on. In general, each vector field in
the vector multiplets can be used to gauge one of the h1,1 +1 different killing vectors kI .
In our setting, there is only one isometry k, which we gauge by the graviphoton. The
index I therefore only attains the value 0. If we use ~µI = δ0

I~µ we obtain

V =− 4

NMNXM X̄N

( [
2Gαβ̄k

αkβ + 3~µ2
]
X0X̄0 + (NKLN

00 − δ0
Kδ

0
L)X̄KXL~µ2

)
,

and the term depending on f IKL is zero for abelian gaugings. We now use the prepoten-
tial

F =
1

3!
Kijk

XiXjXk

X0
+

1

2
eX0X0 , (E.20)
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where e = i
2ζ(3)χ(CY ) is purely imaginary. Using Xi/X0 = zi = bi + iti, we find

F00 =
1

3
Kijkzizjzk + e ImF00 = Kijkbibjtk −

1

3
Kijktitjtk

F0i = −1

2
Kijkzjzk ImF0i = −Kijkbjtk (E.21)

Fij = Kijkzk ImFij = Kijktk .

Using the abbreviations Kij = Kijktk,Ki = Kijtj , 6V = Kijktitjtk we find

N00 = 2Kijbibj − 4V ′ N00 =
−1

4V ′

N0i = −2Kijbj N0i =
−bi

4V ′
(E.22)

Nij = 2Kij N ij =
−bibj

4V ′
+

1

2
dij

e−K ≡ NIJXIX̄J = (8V + 2e)X0X̄0 ,

where we have written V ′ := V − 1
2e. For the scalar potential we then finally find

equation (6.41)

V = − 4

8V + 2e

([
2Gαβ̄k

αkβ + 3~µ2
]

+ (8V ′ −1

4V ′
− 1)~µ2

)
,

=
2

4V + e

[
−2Gαβ̄k

αkβ
]
. (E.23)

The scalar potential is positive definite.





Appendix F

The Przanowski metric

In this appendix we repeat some of the results of [153, 166], which are used to determine
the NS5–brane one–instanton corrected N = 2 moduli space in section 3.2.

In [166], it has been shown that a four-dimensional quaternionic-Kähler manifoldM
can be described in terms of a partial differential equation for a single, real function.
Locally, the metric takes the form

g = gαβ̄(dzα ⊗ dzβ̄ + dzβ̄ ⊗ dzα) (F.1)

= g11̄dz
1dz1̄ + g12̄dz

1dz2̄ + g21̄dz
2dz1̄ + g22̄dz

2dz2̄ + c.c. ,

where indices α, β, ᾱ, β̄ = 1, 2, and we have used the usual convention of complex con-
jugation zᾱ := zα. The Hermicity of this metric is encoded in the requirement gαβ̄ = gβᾱ.
The elements gαβ̄ are now defined in terms of a real function h = h(zα, zᾱ) via

gαβ = 2
(
hαβ̄ + 2δ2

αδ
2
β̄eh
)
, (F.2)

where the subscript α on hα indicates differentiation of the function with respect to zα.
We have changed the sign of our defining function hwith respect to the original function
u used by Przanowski, as it offers a slightly more convenient form to work with.

The differential equation which determines the function h is the non–linear partial
differential equation

h11̄h22̄ − h12̄h1̄2 + (2h11̄ − h1h1̄)eh = 0 . (F.3)

F.1 Solutions to the master equation

The equation (F.3) is a difficult partial differential equation. There have been various
approaches in the literature which found exact and approximate solutions to the master
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equation. By imposing additional symmetries on the manifold M , one can simplify
the master equation. Imposing one isometry reduces this equation to the Toda equa-
tion [166]. Upon imposing two commuting isometries one obtains the Calderbank-
Pedersen metrics [167].

In [153], solutions to the master equation where obtained which corresponded to
NS5–brane instantons. The relation between the complex coordinates and the real coor-
dinates is given by

z1 =
1

2
(u+ iσ) , z2 =

1

2
(χ+ iϕ) , u ≡ r − 1

2
χ2 + c log(r + c) . (F.4)

The leading term of the one–instanton contribution is captured by

h = h0 + Λ, h0 = log(r + c)− 2 log r ,

Λ = Cr−2−c cos(σ) exp

[
−r +

1

2
χ2

]
.

(F.5)

From the metric we only need the length of the Killing vector k = ∂ϕ, which can be
found from (F.1), (F.2) and (F.5) and is given by

−Gαβkαkβ =
4((r + 2c)2 + (r + c)χ2)

r2(r + 2c)
+ 16Cr−2−c(2χ2 − 1) exp(−c− r − χ2/2) .

Inserting this into (E.23) yields (6.41).

F.2 Moment maps

Although the moment maps are not present in the scalar potential, we include their cal-
culation for completeness. We follow the conventions on quaternionic-Kähler geometry
from [168].

We want to find vielbeins a, b for the metric (F.1) such that

a⊗ ā+ b⊗ b̄+ c.c. = ds2 . (F.6)

Using the Ansatz a = αdz1 + βdz2, b = γdz1 + δdz2 we find

a =
√

2h11̄ dz1 +
√

2
h1̄2√
h11̄

dz2 ,

b =
√

2eh/2

√
h1h1̄

h11̄

dz2 .

(F.7)
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From those, we determine the SU(2) connection one–forms

ω1 = i
eh/2√
h1h1̄

(h1̄dz2 − h1dz2̄) ,

ω2 = − eh/2√
h1h1̄

(h1̄dz2 + h1dz2̄) ,

ω3 = − i
2

(
h1 −

h11̄

h1̄

+
h11

h1

)
dz1

− i

2

(
h2 −

h1̄2

h1̄

+
h12

h1

)
dz2 + c.c. .

(F.8)

As a non-trivial check, we can use the tree-level UHM metric, and these one-forms agree
with the those obtained in [168]. Notice that the situation drastically simplifies when
there is an additional killing vector in the direction i(∂1 − ∂1̄), because then h1 = h1̄.

We now gauge the isometry associated with ϕ. In the complex coordinates, this is
the vector

k =
1

2
i(∂2 − ∂2̄), (F.9)

where the normalization is such that k = ∂ϕ. Calculations of the moment maps is now
straight-forward and after some algebra we find

~µ =


eh/2√
h1h1̄

(h1 + h1̄)

−i eh/2√
h1h1̄

(h1 − h1̄)

−h2

 , (F.10)

which are real (h2 = h2̄).
The square of the moment maps therefore reads

~µ2 = (4eh + h2
2) = 4eh + (∂χh)2 , (F.11)

where we have used ∂ϕh = 0. This last expression is valid in the coordinates (u, σ, χ, ϕ).
Changing to the coordinates (r, σ, χ, ϕ) amounts to changing the derivatives according
to

∂χ → ∂χ + χ
r + c

r + 2c
∂r . (F.12)





Nederlandse samenvatting

De theoretische natuurkunde probeert de wereld om ons heen te beschrijven en te
verklaren. Dit doet ze door theorieën op te stellen. In een theorie worden een aantal
aannames gemaakt, op basis waarvan bestaande verschijnselen verklaard en nieuwe
fenomenen voorspeld worden. Als dit goed werkt, wordt de theorie geaccepteerd. Als
blijkt dat dit niet goed werkt, wordt de theorie verworpen. Hoewel in de loop der jaren
al vele theorieën naar de prullenbak zijn verwezen, hebben we nu een redelijk goed
begrip van de natuurkunde om ons heen.

Klassieke mechanica

Klassieke mechanica is de natuurkundige theorie van Newton. Veel mensen van mijn
generatie die niks meer met natuurkunde te maken hebben, herinneren zich nog steeds
de formule ‘F = m × a’ van de middelbare school. Deze formule zegt dat een kracht,
ter grootte van F , een object met massa m een versnelling a zal geven. Vervolgens zijn
er afzonderlijke formules waarmee de grootte van een kracht berekend kan worden,
bijvoorbeeld voor zwaartekracht, elektrische kracht en wrijvingskracht.

De klassieke mechanica is een intuı̈tieve theorie, en werkt goed in alledaagse situ-
aties30. Onder alledaagse situaties verstaan we: snelheden klein ten opzichte van de
lichtsnelheid, objecten groter dan atomen en zwakke zwaartekracht.

Speciale en algemene relativiteitstheorie

Klassieke mechanica biedt echter geen volledige beschrijving van onze wereld. Zo blijkt
de snelheid van licht altijd hetzelfde te zijn: als je in een trein zit en een lichtsignaal met
de trein meestuurt, gaat deze net zo snel als wanneer je ’m tegen de richting van de
trein in stuurt. Dit is in sterk contrast met de situatie als je op een trein staat en een
balletje weggooit: iemand die op het perron staat zal zien dat het balletje harder gaat als

30Deze twee uitspraken zijn waarschijnlijk equivalent.
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je ’m naar voren gooit, en langzamer als hij naar achteren gaat. Einstein kon dit verk-
laren met behulp van zijn speciale relativiteitstheorie. In deze theorie worden de drie
ruimtelijke dimensies (lengte, breedte en hoogte) samengevoegd met de tijdsdimensie
tot vier ruimte-tijd dimensies.

Na het ontwikkelen van de speciale relativiteitstheorie bedacht Einstein hoe hij hier
vervolgens de zwaartekracht kon beschrijven. In 1915 publiceerde hij zijn algemene
relativiteitstheorie. De vier-dimensionale ruimte-tijd is hierin gekromd door de aan-
wezigheid van materie, en de kromming van de ruimte-tijd bepaalt vervolgens hoe de
materie beweegt. De theorie voorspelde een aantal nieuwe dingen, zoals het bestaan
van zwarte gaten, waarover later meer.

Andere voorspellingen van algemene relativiteitstheorie zijn goed getest: de baan
van Mercurius wijkt een beetje af van de klassieke mechanica, maar wordt nu correct
beschreven. Ook het afbuigen van licht door zwaartekracht en energieverlies door
zwaartekrachtsgolven zijn nauwkeurig gemeten en in overeenstemming met de theorie.
De tijdsmetingen die GPS-satelieten gebruiken krijgen een kleine correctie ten gevolge
van relativistische effecten; zonder deze correcties zou GPS minder nauwkeurig zijn.

Quantummechanica

Een andere ontwikkeling van de 20e eeuw was de quantummechanica, die de wereld
op atoomschaal beschrijft. De theorie heeft zijn oorsprong in het werk van Max Planck
uit 1900, waar hij straling beschreef door aan te nemen dat de energie die vrijkomt bij
straling niet continu is, maar in kleine ‘pakketjes’ verdeeld was, de energiequanta. Ein-
stein nam deze quantisatie serieus en beschreef hiermee hoe ook licht gequantiseerd is,
in lichtdeeltjes die fotonen heten. In het dagelijks leven komen gigantische hoeveelhe-
den fotonen voor, waardoor het ons niet opvalt dat het gequantiseerd is in individuele
fotonen. Later werd de quantummechancia door Niels Bohr gebruikt om een model
voor atomen te maken. De wereld van de quantummechancia is een bizarre wereld:
deeltjes hebben geen vaste locatie, maar hebben alleen maar een kans om ergens te zijn
op het moment dat er gemeten wordt. Het blijkt echter dat zodra men quantumme-
chanica toepast op alledaagse objecten, dit soort correcties compleet te verwaarlozen is,
waardoor we het quantumgedrag niet opmerken.

Quantumveldentheorie en het standaardmodel

De volgende stap was een volledige quantum-beschrijving van het elektro-magnetische
veld. Al snel bleek dat een dergelijke theorie ook de speciale relativiteitstheorie moest
bevatten. Het onderzoek leidde uiteindelijk tot de quantumveldentheorie. Het stan-
daardmodel is de quantumveldentheorie die bijna alle materie en krachten beschrijft.
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De theorie is uitvoerig getest, vooral in deeltjesversnellers, zoals bij CERN in Genève.
De enige kracht die ontbreekt in dit model is de zwaartekracht.

Open vragen

Hoewel de algemene relativiteitstheorie en het standaardmodel voortreffelijk werken,
zijn er nog steeds een aantal grote open vragen. Een direct probleem is dat het niet
mogelijk is om zwaartekracht consistent te schrijven als een quantumveldentheorie.
Hierdoor hebben we geen volledige beschrijving wanneer beide theorieën belangrijk
zijn, zoals het bestuderen van zwarte gaten of de oerknal.

Andere open vragen komen uit de kosmologie. Uit metingen blijkt dat de materie
van het standaardmodel maar 4% van alle materie in het helaal is. We denken dat de
overige 96% uit donkere materie en donkere energie bestaat, welke beiden niet door de
algemene relativiteitstheorie en het standaardmodel beschreven worden. Donkere ma-
terie zijn deeltjes die niet in het standaardmodel zitten. Donkere energie kan beschreven
worden door de kosmologische constante; dit is een parameter in de vergelijkingen van
Einstein. De waarde van deze constante is van groot belang voor de ontwikkeling van
het heelal. Huidige metingen wijzen op een kleine, positieve waarde voor deze con-
stante, maar een combinatie van algemene relativiteitstheorie en quantumveldentheorie
geeft echter een heel grote waarde.

Om deze open vragen te beantwoorden, hebben we een theorie nodig die zwaarte-
kracht en quantummechancia verenigt - een theorie van quantumzwaartekracht.

Snaartheorie, supersymmetrie en superzwaartekracht

Een van de meest veelbelovende theorieën voor quantumzwaartekracht is snaartheorie.
Deze theorie, ontstaan rond 1970, gaat er van uit dat de fundamentele bouwstenen geen
puntdeeltjes zijn, zoals in het standaardmodel, maar snaren. De deeltjes die we zien,
zoals quarks, elektronen en gravitonen, worden dan beschreven door trillingen van
deze snaren. Een recent verschenen Nederlandstalig, populair wetenschappelijk boek
is ‘Snaartheorie’ van Marcel Vonk [169], dat een uitgebreide introductie tot snaartheorie
geeft.

De fundamentele deeltjes in een quantumveldentheorie kunnen worden verdeeld
in twee types: bosonen en fermionen. Twee gelijke fermionen kunnen niet bij elkaar
zitten, terwijl bosonen dat juist wel kunnen. In het standaardmodel zijn de quarks
en elektronen fermionen, en het Higgs deeltje, het foton en andere krachten-dragende
deeltjes bosonen. Supersymmetrie is een symmetrie die de twee types relateert. In een
supersymmetrische theorie heeft elk boson een fermionische partner, en omgekeerd;
deze worden elkaars de superpartners genoemd. Hoewel het standaardmodel bosonen
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en fermionen bevat, zijn deze niet elkaars superpartners, maar moeten er extra deeltjes
worden toegevoegd om het standaardmodel supersymmetrisch te maken. De snaarthe-
orieën die het meest bestudeerd worden zijn ook supersymmetrisch.

Supersymmetrie heeft vele aantrekkelijke eigenschappen. De superpartners van het
standaardmodel zijn nog niet ontdekt, maar ze zijn wel een kandidaat voor donkere
materie; de supersymmetrie zou dan hun stabiliteit kunnen verklaren. Op dit moment
worden er experimenten uitgevoerd in de Large Hadron Collider van CERN, die hopen
om supersymmetrie te ontdekken.

Veel van de effecten van snaartheorie spelen zich af bij heel hoge energieën. Omdat
het technisch voorlopig onmogelijk is om experimenten bij zulke hoge energieën uit
te voeren, is het nuttig om naar een beschrijving te gaan waar alleen de effecten op
lagere energie in voorkomen. Een dergelijke beschrijving is een quantumveldentheorie
met zwaartekracht, die ook supersymmetrisch is, en daarom superzwaartekracht wordt
genoemd.

Compactificatie

Hoewel snaartheorie zijn successen heeft als theorie van quantumzwaartekracht, leidt
het ook tot nieuwe open vragen. Een direct probleem is dat de supersymmetrische
snaartheorieën uitgaan van tien ruimte-tijd dimensies, in plaats van de vier die wij
gewend zijn. Dit klinkt moeilijker dan het is. In ons dagelijks leven gebruiken we
vier coördinaten om een gebeurtenis aan te duiden: drie voor de plek en eentje voor
de tijd. In een tien-dimensionale wereld moeten er nog zes plaats-coördinaten bij om
een volledige beschrijving van de gebeurtenis te geven. Als deze zes extra dimensies
echter heel erg klein zijn (bijvoorbeeld in de orde van de Planck lengte, 10−35 m), dan
maakt het niet veel uit wat de locatie in deze zes dimensies is, en de wereld lijkt dan
weer vier-dimensionaal. Als we aannemen dat zes dimensies erg klein zijn, kunnen we
de snaartheorie beschrijven met een effectieve theorie in vier dimensies. Dit proces heet
compactificatie.

In dit proefschrift bekijk ik enkele open vragen rondom compactificatie. Zo is er
een groot aantal verschillende ruimtes voor de interne zes dimensies, en verschillende
keuzes leiden tot verschillende modellen. Zelfs voor een specifieke keuze kunnen er
kleine verschillen in de interne ruimte zijn als we deze vanuit twee verschillende plek-
ken in de vier-dimensionale ruimte bekijken. Deze verschillen komen uiteindelijk in de
vier-dimensionale theorie terug als massaloze deeltjes, die moduli genoemd worden.
Zulke moduli zijn echter niet waargenomen in ons universum. We moeten dus een
mechanisme bedenken dat deze moduli een massa geeft. Als deze massa groot genoeg
is, kan dit verklaren waarom de deeltjes tot nu toe niet waargenomen zijn.



163

Zwarte gaten

Een ander onderwerp van dit proefschrift zijn zwarte gaten. Een zwart gat ontstaat als
er heel veel materie in een heel klein volume komt: de zwaartekracht (of eigenlijk: de
kromming van de ruimte-tijd) wordt dan zo sterk dat er niks meer aan kan ontsnappen,
zelfs licht niet. De meeste astronomen zijn er van overtuigd dat er in het midden van
ons melkwegstelsel een zwart gat zit.

Stephan Hawking bestudeerde de theorie van quantummechanica in de omgeving
van een zwart gat en ontdekte dat er, door quantum-effecten, wél straling uit het zwarte
gat kan ontsnappen. Deze ontdekking leidde later tot grote discussie onder theoretisch
fysici over de vraag of de informatie van deeltjes die in het zwarte gat vallen, verloren
gaat. Men is er nu van overtuigd dat de informatie bewaard blijft. Zulke discussies laten
zien dat zwarte gaten belangrijk zijn voor de studie van quantumzwaartekracht, om-
dat het gebieden zijn waar algemene relativiteitstheorie en quantummechanica elkaar
tegenkomen.

Conclusie

In dit proefschrift heb ik een aantal vragen rondom compactificaties en zwarte gaten
bestudeerd. Allereerst hebben we de volledig supersymmetrische configuraties be-
schreven in bepaalde theorieën van vier-dimensionale superzwaartekracht. Vervolgens
gingen we op zoek naar nieuwe types zwarte gaten in deze theorieën. Hierna hebben
we laten zien hoe deze vier-dimensionale theorieën verkregen kunnen worden uit de
elf-dimensionale superzwaartekrachtstheorie. Een van de moduli is het volume van de
interne zes dimensies. We hebben bestudeerd hoe deze modulus een massa kan krijgen.

Hoewel er nog vele interessante open vragen blijven in de snaartheorie, hoop ik dat
dit proefschrift de antwoorden hierop dichterbij gebracht heeft.
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