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Abstract
Continuously monitored atomic spin-ensembles allow, in principle, for real-time sensing of
external magnetic fields beyond classical limits. Within the linear-Gaussian regime, thanks to the
phenomenon of measurement-induced spin-squeezing, they attain a quantum-enhanced scaling of
sensitivity both as a function of time, t, and the number of atoms involved, N. In our work, we
rigorously study how such conclusions based on Kalman filtering methods change when inevitable
imperfections are taken into account: in the form of collective noise, as well as stochastic
fluctuations of the field in time. We prove that even an infinitesimal amount of noise disallows the
error to be arbitrarily diminished by simply increasing N, and forces it to eventually follow a
classical-like behaviour in t. However, we also demonstrate that, ‘thanks’ to the presence of noise,
in most regimes the model based on a homodyne-like continuous measurement actually achieves
the ultimate sensitivity allowed by the decoherence, yielding then the optimal
quantum-enhancement. We are able to do so by constructing a noise-induced lower bound on the
error that stems from a general method of classically simulating a noisy quantum evolution,
during which the stochastic parameter to be estimated—here, the magnetic field—is encoded. The
method naturally extends to schemes beyond the linear-Gaussian regime, in particular, also to
ones involving feedback or active control.

1. Introduction

Optical magnetometers based on atomic spin-ensembles [1] are considered today as state-of-the-art
magnetic-field sensors competing head to head in sensitivity with SQUID-based devices [2] without need of
cryogenic cooling, while being already miniaturised to chip scales [3]. On one hand, they have been
demonstrated to be capable of revolutionising medical applications [4–7], on the other, when
interconnected into global networks, they are used in searches of new exotic physics [8, 9].

Despite constituting a prominent example of quantum sensors [10], the nominal sensitivity of atomic
magnetometers is commonly described within their ‘classical’ regime of operation as follows [1]—also
referred to as the ‘Equation One’ [11]:

Δ2B ≈ 1

(γTcoh)2
· Tcoh

T
· 1

N
(1)

where the (squared) error in sensing the value of the magnetic field, B, simply decreases (quadratically) with
respect to the time over which the sensor gathers information about the field while undergoing Larmor
precession—with the constant of proportionality given then by the effective gyromagnetic ratio γ. The
maximal value of such probing time, Tcoh, is dictated by the timescale within which the sensor can preserve
its coherence, with Tcoh being determined by dominant noise-mechanisms exhibited by the atomic
ensemble, e.g. spin-relaxation Tcoh = T∗

1 and/or spin-decoherence Tcoh = T∗
2 .1 Moreover, as ‘Equation One’

1 The ∗-notation is typically used to emphasise that these phenomenological quantities refer to the whole ensemble rather than each
individual atom [12].
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applies (only) in the limit when a sufficient number of measurements are performed over the total sensing
time T, it contains a division over the number of repetitions, T/Tcoh, in accordance with the central limit
theorem. For the same reason, Δ2B is further divided by the number of atoms N, as in the ‘classical’ regime
of operation the atoms within the ensemble can be treated as independent probes.

Although the derivation of ‘Equation One’ may be considered ‘hand-waving’, it can be formalised by
following the so-called frequentist approach to estimation theory [13], which, indeed, applies in the limit of
large number of repetitions (asymptotic statistics), here T � Tcoh. In particular, the lhs of equation (1)
formally corresponds to the mean squared error (MSE) of an (unbiased) estimator of B built basing on all
the collected measurement data [10], while its minimum can then be generally associated with the
Cramér–Rao bound [13], which effectively represents the rhs of equation (1). As a result, one can then
answer fundamental questions using techniques of quantum metrology [14, 15], in particular, by how much
can the sensitivity (1) be improved by allowing for arbitrary quantum states of the atomic ensemble and
measurements more general than the natural light-probing scheme based on the Faraday effect [16]. This
has lead to the seminal observation that ‘Equation One’ can be breached—in particular, its 1/N-behaviour
commonly referred to as the standard quantum limit (SQL)—by preparing the atomic ensemble in an
entangled state [17], so that the MSE can in principle attain the ultimate Heisenberg limit (HL) ∼ 1/N2

[18].
Unfortunately, such claims about the attainable scaling of precision with N have been proven to be

overoptimistic in the asymptotic N limit, whenever one accounts for decoherence—noise—whose strength
does not effectively decrease with the number of atoms2 [15, 20]. In particular, the noise when affecting
each atom in an uncorrelated manner constrains the quantum improvement to a constant factor beyond the
SQL [21, 22], while when disturbing the whole ensemble in a collective way enforces a positive lower bound
on Δ2B that cannot be overcome also when letting N →∞ [15, 23, 24]. Nonetheless, for finite but very
large atomic ensembles (N � 105), multiple optical-magnetometry experiments have spectacularly
demonstrated that sensitivities beyond SQL can be reached [25–27]. In such experiments, the
spin-ensemble is prepared in an (entangled) spin-squeezed state [28] every time before using it to sense the
external magnetic field, B, which importantly cannot vary over the process of performing the necessary
number of experimental repetitions.

The above paradigm, however, must be abandoned if the sensing task considered requires tracking of the
magnetic field in real time, and one cannot assure the same magnitude of the field to be probed sufficiently
many times. This may occur whenever the field follows a predetermined time-varying waveform subject to
stochastic fluctuations, or its behaviour in time is simply not known at all [29]. Still, the continuous
quantum measurement theory [30] allows one, in principle, to describe then the dynamics of an optical
magnetometer conditioned on the data collected in real time [31, 32]—also beyond the ‘classical’
regime—while the ability to perform quantum non-demolition measurements [33, 34] of the atomic
ensemble continuously in time [35–37] appears to be natural. Indeed, first experiments in this direction
have been conducted demonstrating the capability to preserve quantum enhancement when waveforms of a
known shape are being probed [38], or a fluctuating signal is sensed by a magnetometer operating in the
‘classical’ regime [39]. Moreover, the Bayesian approach to estimation theory [13] provides analogous tools
to constrain the attainable ‘single-shot’ precision—via the Bayesian Cramér–Rao bound (BCRB) [40] and its
variations [41]—that have been also generalised to the quantum setting [42].

In case of atomic magnetometry schemes in which spin-squeezing is realised continuously in time by
light-probing based on the Faraday effect [43], the Bayesian inference techniques strikingly predict the
average mean squared error (aMSE)3 to follow at short timescales the HL in absence of decoherence [44, 45]:

Δ2B̃ ∝ 1

γ2
· 1

t3
· 1

N2
, (2)

where in comparison to the (classical) ‘Equation One’ (1) also the scaling in time is improved from 1/T to
1/t3 —we use above small t instead to emphasise that it now represents the time along a single experimental
trajectory. Equation (2) has been subsequently adapted to account for stochastic fluctuations of the field
[46, 47]. However, it has never been rigorously generalised to take into account the impact of decoherence
beyond numerical considerations [45] and models that do not incorporate measurement back-action in real
time [48], also when allowing for arbitrary quantum measurements to be performed at the end of the
sensing procedure [49, 50].

In our work we tackle this problem by including the collective noise—general anisotropic decoherence
affecting the atomic spin-ensemble as a whole—into the analysis, while similarly considering the short

2 For complementary considerations of N-dependent decoherence models see e.g. [19].
3 Averaged in the Bayesian single-shot scenario over the prior knowledge about the B-field dynamics.
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timescales, i.e. the linear-Gaussian regime, for which equation (2) was derived [44, 45]. In particular, we
focus on the canonical optical magnetometry setup, in which all the atoms are initially polarised along one
direction before being continuously spin-squeezed in time via the mechanism of light-probing in a
perpendicular direction [31, 32, 44]. We explicitly account for the presence of collective noise, as well as
stochastic fluctuations of the field, and construct the optimal Bayesian estimator, i.e. the Kalman filter (KF)
[51, 52], whose minimal error we are able to resolve in time. Furthermore, we demonstrate how to
generalise and adapt the theoretical techniques previously developed to deal with noise within the
frequentist approach to quantum metrology [22, 53], in particular, the classical simulation (CS) method
[54], which allows us to establish fundamental upper bounds on the attainable precision dictated by the
decoherence. As a result, we are able to prove that, although at short timescales, when the collective
decoherence can be effectively ignored, the error Δ2B̃ follows the 1/t3-behaviour of equation (2), it is
subsequently degraded to 1/t once the impact of decoherence ‘kicks-in’. Moreover, at large times at which
the KF attains its optimal performance in tracking the fluctuating field—its steady state (SS)—the error
reaches the minimal value that is determined by both the decoherence rate and the strength of field
fluctuations. Focussing instead on the dependence of error on the ensemble size, we show that the
Heisenberg-like behaviour 1/N2 is similarly lost as N grows and the impact of collective noise becomes
significant. In particular, the error always approaches a constant value dictated by the decoherence rate.
However, our method allows us to crucially demonstrate that the precision achieved by the magnetometry
setup here considered saturates the ultimate bound for long times and large ensembles, and hence
should be considered as the optimal realistic scheme to track fluctuating magnetic fields in presence of
collective noise.

The manuscript is organised as follows. In section 2 we describe the atomic magnetometer of interest, in
particular, the corresponding experimental setup as well as the resulting dynamical model of the
spin-ensemble being probed continuously in time by light. This allows us to explain in detail in
subsection 2.3 the linear-Gaussian regime being considered, and discuss the impact of noise on the
evolution of the spin-squeezing parameter in subsection 2.4. The section 3 is then devoted to the
explanation and derivation of the KF as the optimal estimator, as well as the precision it achieves in real
time. In section 4 we present how the CS method can be utilised to derive the ultimate limit on precision
dictated by the decoherence, stemming from the BCRB. Consequently, in subsection 4.3 we discuss the
different regimes the error follows both in time and N, and give an intuitive explanation of their origin.
Moreover, we demonstrate that the continuous estimation scheme saturates the ultimate limit derived in
section 4 and, hence, may be regarded as optimal. Finally, we conclude our findings in section 5.

2. Atomic magnetometer model

2.1. Setup
The optical magnetometry scheme we consider, see figure 1(a), consists of an ensemble of N spin-1/2 atoms
prepared in a coherent spin state (CSS) polarised along the x-direction [28], so that the initial mean and
variance of the ensemble angular momentum operators, denoted by the vector Ĵ(t) = (̂Jx(t), Ĵy(t), Ĵz(t))T in
the Heisenberg picture, read 〈Ĵ(0)〉CSS = (J, 0, 0)T and 〈Δ2Ĵ(0)〉CSS = (0, J/2, J/2)T, respectively, where
J = N/2. As shown in figure 1(b), one may then naturally visualise the distribution of the angular
momentum with help of the Bloch sphere representation. The aim of the scheme is to measure and estimate
in real-time the magnetic field Bt being directed along y, which fluctuates according to the
Ornstein–Uhlenbeck (OU) stochastic process [55]:

dBt = −χBt dt + dWB, (3)

where by dWB we denote the Wiener noise of zero mean, E[dWB] = 0, variance E
[
dW2

B

]
= qB dt. The

magnetic field Bt induces a Larmor precession around the y-axis at the frequency ωL(t) = γBt, with γ being
the effective (constant) gyromagnetic ratio. However, as discussed in more detail below, in our analysis we
restrict to dynamics at small times in the presence of small magnetic fields, under which the angular
momentum operator Ĵ(t) deviates only slightly from pointing along the x-direction—the direction along
which the atoms are initially pumped. In principle, this regime could also be achieved over larger timescales
in experiments involving stroboscopic probing [56–59]. However, such implementations would then
require the atoms to be initially pumped in the direction perpendicular to the magnetic field, as depicted in
figure 1.
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Figure 1. Geometry of the atomic magnetometer. (a) The magnetometry scheme involves an atomic ensemble optically pumped
along the x-direction (red arrow) into a CSS. The magnetic field being sensed is directed along y, while the
Faraday-rotation-based continuous measurement is performed by using the light-probe propagating along z (blue arrow), which
yields a photocurrent signal y(t) being recorded. (b) Bloch sphere representation of the angular momentum of the ensemble
prepared in a CSS along x (with red and blue arrows indicating the pumping and probing directions, respectively).

2.2. System and measurement dynamics
The atomic ensemble is continuously monitored by exploiting the paramagnetic Faraday rotation effect
[16], which twists the linear polarisation of the (off-resonant) light propagating through the ensemble in
the z-direction—the light probe, see figure 1(a). As a result, a quantum non-demolition measurement is
realised [33, 34] that is undertaken continuously in time [35–37], which can be effectively described by
means of the homodyne-like continuous measurement [60] with the shot-noise in the measured signal
taking the form of a Wiener process [43, 61]. Note that, even if higher-spin atoms are considered, the
following measurement model still applies as long as the contribution from the atomic polarisability tensor
component can be suppressed [43, 62, 63]. In particular, the photocurrent being measured at time t is
proportional to the mean value of the collective atomic spin-component along the probe, 〈̂Jz(t)〉(c), i.e.:

y(t)dt = 2η
√

M〈̂Jz(t)〉(c) dt +
√
η dW , (4)

where η is the detection efficiency, M is the measurement strength, and dW is the Wiener differential
fulfilling E

[
dW2

]
= dt according to the Itô lemma [55].

Importantly, due to the active influence the continuous measurement (4) exerts on the atoms, the
ensemble dynamics becomes conditional—denoted by the subscript (c)—and the atoms evolve differently
depending on a particular trajectory of the measurement outcomes registered up to (and including) time
t, y�t = {y(τ )}0�τ�t [61]. In particular, the ensemble is characterized at time t by the quantum state
conditioned on the past measurement record, ρ(c)(t) ≡ ρ(t|y�t), which undergoes further conditional
dynamics described by a stochastic master equation:

dρ(c)(t) = −iγBt [̂Jy, ρ(c)(t)] dt +
∑

α=x,y,z

γαD[̂Jα]ρ(c)(t) dt (5)

+ MD[̂Jz]ρ(c)(t) dt +
√

MηH[̂Jz]ρ(c)(t) dW , (6)

where the superoperators D and H are defined as D[O]ρ = OρO† − 1
2 (O†Oρ+ ρO†O) and

H[O]ρ = Oρ+ ρO† − Tr[(O +O†)ρ]ρ for any (also non-Hermitian) operator O [30].
The first term in (5) arises simply from the free Hamiltonian, Ĥ = γBt Ĵy, responsible for the Larmor

precession of the ensemble spin. In contrast, both terms in (6) describe the continuous measurement of Ĵz

introduced above [31, 32], of which the former is responsible for measurement-induced decoherence, or the
backaction, while the latter constitutes the non-linear information gain provided when observing a
particular measurement signal in (4) [30]. Furthermore, in our analysis we model all possible, e.g.
environment-induced, decoherence mechanisms affecting the ensemble (as a whole) by introducing the
second term in (5) with three dissipative components being parametrised by distinct effective rates, γα, in
the three directions α ∈ {x, y, z}. Let us also emphasise that the Wiener differential, dW, appearing in (6) is
the same as in the measurement dynamics (4)—a particular fluctuation of the photocurrent in (4) after
being registered drives the conditional state of the ensemble according to (6).

Finally, let us highlight the difference between the fluctuations of the estimated magnetic field Bt, as
dictated by the OU process (3), and the collective decoherence introduced above in (5), of which only the
latter should be interpreted as a form of ‘noise’—in the statistical sense, forcing the quantum state of
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ensemble to lose its purity over time. In particular, due to its presence, the expectation value of
Ĵα (α = x, y, z) exponentially decreases with a rate of γα, whose inverse can be identified as the
phenomenological (ensemble) spin-decoherence time T∗

2 [12]. Within the theory of open quantum systems
[64], this may be associated with tracing out some environmental degrees of freedom or the environment
itself monitoring continuously each component Ĵα, whose stochastic trajectory of outcomes is inaccessible
and, hence, must be averaged out. On the contrary, the above dynamical model (3)–(6) describes the
evolution along a single trajectory of the fluctuating magnetic field. As a result, the impact of field
fluctuations on the performance in magnetometry should not be treated on equal grounds with the
decoherence of the atomic ensemble, but rather associated with the inability to perfectly estimate the field in
real time due to its stochastic nature. In fact, if one on purpose decided to ignore the field fluctuations and
rather consider the effective dynamics averaged over all possible field trajectories (see appendix F), one
would recover the above model of collective decoherence in the direction of the field (here, Ĵy), but with a
decoherence rate that accumulates as γy ∼ t2 over time.

2.3. Linear-Gaussian regime
In order to define the regime of interest in which the atomic sensor operates, let us first consider the
unconditional dynamics of the atomic ensemble,

dρ(t) = −iγBt [̂Jy, ρ(t)] dt +
∑

α=x,y,z

γαD[̂Jα]ρ(t) dt + MD[̂Jz]ρ(t) dt, (7)

which can be simply obtained by dropping the stochastic term in (5) and (6), so that it now describes the
evolution of the atomic state at time t, averaged over all the stochastic trajectories of the measured
outcomes, i.e. [55]:

ρ(t) = Ep(y�t)

[
ρ(c)(t)

]
=

∫
dy�t p(y�t) ρ(t|y�t), (8)

where by
∫

dy�t we denote the integral over all possible measurement records y�t = {y(τ)}0�τ�t. Using

equation (7) to define the dynamics of any observable Ô(t) in the Heisenberg picture, whose mean must

then obey 〈Ô(t)〉 = Tr
{

Ô(t)ρ
}
= Tr

{
Ôρ(t)

}
, we observe that the (unconditional) evolution of the mean

spin-component along the direction of pumping, 〈̂Jx(t)〉, is governed by the solution to the following set of
coupled differential equations:

d〈̂Jx(t)〉 = γBt 〈̂Jz(t)〉dt − 1

2
(M + γy + γz)〈̂Jx(t)〉dt, (9)

d〈̂Jz(t)〉 = −γBt 〈̂Jx(t)〉dt − 1

2
(γx + γy)〈̂Jz(t)〉dt, (10)

dBt = −χBt dt + dWB, (11)

of which the last (stochastic) one just corresponds to the OU process with E
[
dW2

B

]
= qB, describing the

magnetic-field fluctuations in (3).
Although this implies that the dynamics of 〈̂Jx(t)〉 is stochastic, we show in appendix A that, if one

focuses on short timescales such that ωL(t) t � 1, where ωL(t) = γ| Bt | is the time-averaged Larmor
frequency, then the mean spin-component along the direction of the pump must decay exponentially as
follows:

〈̂Jx(t)〉 ≈ Je−(M+γy+γz) t/2 = Je−r t/2 (12)

with an effective decay rate: r = M + γy + γz. For this to be true, not only the time-average value of the

magnetic field, Bt =
1
t

∫ t
0 dτBτ , must be small (|Bt | � 1

γt ), but also the distribution of Bt should be narrow

enough, which we ensure by verifying that
∣∣∣E[Bt

]
± 2

√
Var

[
Bt

]∣∣∣ � 1
γt according to the 68–95–99.7 rule

for normal distributions (see also figure 3(a)). We explicitly prove in appendix A that for approximation
(12) to hold it is sufficient to consider short timescales such that rt � 1, while also requiring the parameters
of the OU process in (11) (or (3)) to obey:

χ � 4 r

3
and qB � 3 r3

4γ2
. (13)

Furthermore, by restricting to short timescales at which the approximation (12) is valid, we effectively
deal with spin dynamics in the regime in which Ĵ(t) only slightly deviates from its initial x-polarisation.
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This allows us then to perform the Gaussian approximation [45, 65] and introduce the effective
(time-dependent) quadrature operators:

X̂(t) =
Ĵy√

|〈̂Jx(t)〉|
≈ Ĵy√

Je−rt/2
and P̂(t) =

Ĵz√
|〈̂Jx(t)〉|

≈ Ĵz√
Je−rt/2

, (14)

which satisfy the canonical commutation relationship [X̂(t), P̂(t)] = i Ĵx

|〈̂Jx(t)〉| ≈ i, as long as |〈̂Jx(t)〉| � 1

[45, 65], which is assured within the approximation (12) whenever J � 1—recall J = N/2 � 105 in
optical-magnetometry experiments [25–27]. As a consequence, it is enough to consider the evolution of the
first and second moments of the quadratures, so that when focussing on the probed spin-component in the

z-direction that fulfils Ĵz ≈
√

Je−rt/2P̂(t), its conditional dynamics (5) and (6) is completely described by
the following set of equations:

y(t)dt = 2η
√

M〈̂Jz(t)〉(c)dt +
√
η dW , (15)

dBt = −χBt dt + dWB (with E
[
dW2

B

]
= qB) (16)

d〈̂Jz(t)〉(c) = −γBtJe−rt/2 dt + 2
√
ηM〈Δ2 Ĵz(t)〉(c)dW , (17)

d〈Δ2Ĵz(t)〉(c) = −4Mη〈Δ2 Ĵz(t)〉2
(c)dt + γyJ2e−rt dt, (18)

which assume [X̂(t), P̂(t)] ≈ i to hold—satisfied whenever J � 1, rt � 1 and the conditions (13) are valid.
Note that equations (15)–(17) are linear with respect to one another, while equation (18) can be solved
independently. Moreover, they involve only Gaussian (in particular, Wiener) stochastic-noise terms, and are
derived based on the Gaussian approximation (14). Hence, we refer in short to the evolution described by
(15)–(18) as the (conditional) dynamics of Ĵz in the linear-Gaussian regime.

2.4. Continuous spin-squeezing
Firstly, let us note that within the linear-Gaussian regime, the equations of motion (15)–(17) are
independent of the decoherence rate γx, which is thus redundant. This is a consequence of the
approximation (12) (see also appendix A) and can be intuitively explained—deviations of Ĵ(t) from the
x-direction are then too small for the collective noise generated by the D[̂Jx]-term in equation (5) to have
any effect on the quadratures (14). Furthermore, the decoherence rate γz is also unnecessary, since by
transforming the parameters of the continuous measurement (4) as follows: M → M − γz,
η → ηM/(M − γz) and y → y

√
M/(M − γz); we retrieve the conditional dynamics (15)–(18) with γz = 0.

Hence, the impact of the collective noise generated by the D[̂Jz]-term in equation (5) instead, can always be
interpreted and incorporated into a modified form of the continuous measurement (4).

As a result, without loss of generality, we restrict the effective decay rate of 〈̂Jx(t)〉 introduced in (12) to
take the form r = M + γy, when considering the (conditional) dynamics of Ĵz in (15)–(17). We then solve

for the dynamics of 〈Δ2 Ĵz(t)〉(c) in (18), which constitutes a fully decoupled differential equation. For the
complete analytical solution we refer the reader to appendix B, where we also show that the
time-dependence of the (conditional) Ĵz-variance (satisfying 〈Δ2 Ĵz(0)〉(c) = 〈Δ2 Ĵz(0)〉CSS = J/2 at t = 0)
can be described by two distinct short-time and long-time behaviours:

where t∗ = (2J
√

Mγyη)−1 is the transition time between the two regimes.

Importantly, note that t � t∗ implies 2Jtγy �
√
γy/(ηM). Then, if also γy < ηM, we may infer

2Jtγy � 1 and approximate 1 + 2Jtγy ≈ 1 in (19a). As a result, we then recover the noiseless (γy = 0)
solution for the variance within the short-time regime, previously found by Geremia et al [44], i.e.:

〈Δ2Ĵz(t)〉(c) =
J

2

1 + 2Jtγy

1 + 2JtMη
e−(M+γy)t/2 ≈ J

2 + 4JtMη
, (20)

despite the actual presence of the noise (γy > 0). In fact, we prove also in appendix B that 〈Δ2 Ĵz(t)〉(c) is a
non-decreasing function at t ≈ 0 if γy � ηM. Hence, the noise may be considered negligible at small times
only if γy < ηM.

6



New J. Phys. 23 (2021) 123030 J Amorós-Binefa and J Kołodyński

Figure 2. Evolution of spin-squeezing in time. The squeezing parameter ξ2(t) defined in equation (21) is plotted as a function of
rescaled time tS = (M + γy)t for the case of γy = 10 mHz < M = 100 kHz (subplot (a)) and γy = 100 MHz > M = 100 kHz
(subplot (b)). The exact function ξ2(t) (solid blue) is compared with its two different regimes ξ2

<t∗ (t) and ξ2
>t∗ (dashed yellow and

green, respectively), as well as the noiseless solution when γy < M (dashed red). The other parameters used to generate the plots
are: J = 109, γ = 1 kHz mG−1, and η = 1.

The dynamics of 〈Δ2 Ĵz(t)〉(c) enables us to study the phenomenon of spin-squeezing of the atomic
ensemble [28] by directly computing the (conditional) squeezing parameter introduced by Wineland et al
[66] along the pumping x-direction:

ξ2(t) =
〈Δ2 Ĵz(t)〉(c)

〈̂Jx(t)〉2

[
〈Δ2Ĵz(0)〉CSS

〈̂Jx(0)〉2
CSS

]−1

=
2J〈Δ2 Ĵz(t)〉(c)

〈̂Jx(t)〉2
(21)

which when satisfying ξ2(t) < 1 indicates a gain in interferometric precision over the CSS [66]. In
particular, just like we decomposed 〈Δ2 Ĵz(t)〉(c) according to (19), we can similarly split the behaviour of
the squeezing parameter in the linear-Gaussian regime, in which 〈̂Jx(t)〉 ≈ Je−r t/2, as follows

From now on in all plots, in order to confirm that apart from (13) the condition rt � 1 (with now
r = M + γy) is satisfied and, hence, the linear-Gaussian approximation (12) is valid, we introduce the
rescaled time tS = (M + γy)t and limit its range to tS � 1, what assures the timescale of the linear-Gaussian
regime to always be consistently considered.

In figure 2 we present explicitly the exact dynamics of the squeezing parameter (21) for two important
cases: (a) when γy < ηM and the spin-squeezing (ξ2(t) < 1) occurs within a finite-time window (see
figure 2(a)); and (b) when γy � ηM for which spin-squeezing is forbidden (see figure 2(b)). In both cases, it

is evident that the exact solution for ξ2(t) very closely follows the two-regime behaviour in (22), with a clear
transition at t ≈ t∗. Moreover, as seen explicitly from the two-regime solution (22)—and the exact solution
that can be straightforwardly derived from the exact evolution of the Ĵz-variance (19) described in appendix
B—the dynamics of the squeezing parameter is specified solely by the properties of the continuous
measurement (η and M), collective decoherence (γy), and the number of atoms (J = N/2).

In what follows, we turn to the problem of sensing the magnetic field, Bt, in real time by constructing
the optimal estimator, B̃t , of its fluctuating value in the form of a KF [51, 52]. However, we have already
included in figure 3 the evolution of the corresponding minimal estimation error, Δ2B̃t , in order to
emphasise the fact that the stochasticity of the Bt-signal affects the estimation procedure, but not the
spin-squeezing phenomenon. In particular, for a given magnetic-field trajectory generated according to the
OU process (3)—of a magnitude that does not invalidate the linear-Gaussian regime, see figure 3(a)—we
obtain a measurement signal y(t) from which we can infer via (4) the conditional dynamics of the mean
spin-component 〈̂Jz(t)〉(c), see figure 3(b). Now, the evolution of its variance, 〈Δ2 Ĵz(t)〉(c), allows us to
compute the squeezing parameter ξ2(t), which, as described above, evolves in the linear-Gaussian regime in
the same manner for any particular stochastic trajectory of the magnetic field—see figure 3(c). In contrast,
the stochastic fluctuations of Bt affect the estimation procedure, so that the KF reaches a constant error (the
SS) after a certain time despite the atomic ensemble still being spin-squeezed (ξ2(t) < 1). This can be
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Figure 3. Dynamics along a single trajectory. Subplot (a) shows the simulated magnetic field along its time average (solid red)
and confidence intervals (orange and green) assuring validity of the linear-Gaussian approximation. Subplot (b) presents the
normalized conditional evolution of Ĵ z driven by the particular B-field trajectory depicted above. Subplot (c) compares the
squeezing parameter with (blue) and without (orange) decoherence present. Finally, subplot (d) juxtaposes the minimal
estimation error of the field (solid blue line) with its different scalings in time: noiseless-like (∝ 1/(t3J2), dashed blue),
‘classical’-like (∝ 1/t predicted by the CS limit, dashed black), and the one dictated by the SS (∝ 1, dashed red). All the plots are
made with respect to the rescaled time tS = (M + γy)t, and the other parameters used are: χ = 0, qB = 100 G2 s−1, η = 1,
γy = 10 mHz, M = 100 kHz, J = 109, and γ = 1 kHz mG−1.

directly seen by comparing the evolution of Δ2B̃t in figure 3(d) against the one of ξ2(t) in figure 3(c) for
tS � 10−3. The transition time when this occurs depends on the parameters of the OU process (3)—as later
shown in section 4.2.

3. Field estimation with Kalman filtering

The goal within the magnetometry scheme considered here is to most accurately infer the true value of the
magnetic field at a time t, given a particular measurement signal y�t recorded up to this time instance. In

order to do so, we seek the optimal estimator B̃t(y�t) of Bt that minimises the average (Bayesian) mean
squared error (aMSE) [13]:

Δ2B̃t = Ep(Bt ,y�t)

[
(Bt − B̃t(y�t))2

]
=

∫
dBt p(Bt) Ep(y�t |Bt )

[
(Bt − B̃t(y�t))2

]
, (23)

where by
∫

dBt we denote the integral over the values that the magnetic field may take at time t (only), i.e.
the random variable Bt with probability distribution:

p(Bt) =

∫
dB0 p(Bt |B0) p(B0), (24)

which for the OU process (3) can be determined once the a priori distribution p(B0) is specified, e.g. a
normal distribution of variance σ2

0 (see appendix E.1). From the Bayesian perspective, p(B0) should most
accurately describe the knowledge an experimentalist possesses about the field at t = 0, prior to taking any
measurements. Note that, as in our work we are interested in estimation of B in real time, we will not
consider the setting in which one seeks the optimal estimator for some time t

′
< t and accounts also for

‘future’ measurement-data collected in the time-window [t′, t]. In that case, one should resort to the

8
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inference methods of Bayesian smoothing [67–69], rather than to the filtering ones that are relevant for our
purpose.

The optimal estimator minimising the aMSE is always given by the mean of the posterior distribution
[40], i.e.:

B̃t(y�t) = Ep(Bt |y�t) [Bt] =

∫
dBt p(Bt |y�t) Bt = Ep(B�t |y�t) [Bt] , (25)

where in the last step we have used p(Bt|y�t) =
∫

dB<tp(B�t|y�t)—the fact that the probability of the
magnetic field taking at time t the value Bt, given a particular measurement trajectory y�t, can be obtained
by averaging over all past B-field stochastic trajectories up to (but not including) time t. However, since the
problem of interest is described by a set of equations (15)–(17) that are linear and Gaussian, the posterior
distribution p(Bt|y�t) does not have to be explicitly reconstructed. Instead, the optimal estimator (25) can
be determined by solving the so-called Kalman–Bucy equation [40] and is commonly referred to as the KF
[51, 52]. The name ‘filter’ originates from the fact that the optimal estimator (25) at time t can be
constructed basing solely on the previous-step estimate and the current measurement outcome yt, so there
is, in principle, no need to store all the measurement data.

In order to formulate the problem within the KF-framework [70, 71], we first define the state vector of
the variables 〈̂Jz(t)〉(c) and Bt to be estimated4 xt = (〈̂Jz(t)〉(c), Bt)T, as well as the measurement vector yt =∫ t

0 y(τ)dτ , which takes, however, a scalar form with only one d.o.f. being continuously measured.
Consequently, we then identify the corresponding noise vectors as dwt = (dW , dWB)T and dvt =

√
η dW ,

respectively, so that the system of equations (15)–(17) can be compactly rewritten as:

dxt = Ftxtdt + Btdwt , (26)

dyt = Ht xtdt + dvt , (27)

where

Ft =

(
0 −γJe−rt/2

0 −χ

)
, Bt =

(
2
√
ηM〈Δ2JZ(t)〉(c) 0

0 1

)
, Ht = 2

√
ηM

(
1 0

)
. (28)

The self- and cross-correlations between stochastic noise-terms are then given by

E
[
dwt dwT

s

]
= Qtδ(t − s)dt, (29)

E
[
dvt dvT

s

]
= Rtδ(t − s)dt, (30)

E
[
dwt dvT

s

]
= Stδ(t − s)dt, (31)

where

Qt =

(
1 0
0 qB

)
, Rt = η and St =

(√
η

0

)
, (32)

are the covariance and cross-correlation matrices (or scalars) of the process and measurement noises,
respectively. Let us note that we have used E[dWB dW] = E[dW dWB] = 0 in (31), as no cross-correlations
are present between the B-field fluctuations and the measurement noise; whereas, because qB � 0 and
η � 0, the covariances of process and measurement noises consistently satisfy Qt, Rt � 0.

As discussed in more detail in appendix C, the optimal estimator x̃t = (〈̃̂Jz(t)〉(c), B̃t)T that minimises the
overall aMSE—formally corresponding to the trace of the covariance matrix Σt = E

[
(xt − x̃t)(xt − x̃t)T

]
,

i.e. Tr{Σt} = E

[
‖xt − x̃t‖2

]
—is given by the correlated KF [70]. In particular, focussing on the optimal

covariance matrix that the filter yields, its dynamics is then determined by a non-linear differential equation
of the Riccati form [70]:

dΣt

dt
≡ Σ̇t =

(
Ft − BtStR

−1
t Ht

)
Σt +Σt

(
Ft − BtSt R−1

t Ht

)T

−ΣtH
T
t R−1

t HtΣt + Bt

(
Qt − St R−1

t ST
t

)
BT

t , (33)

where the initial condition reads Σ0 = diag(0,σ2
0) with σ2

0 being the variance of the Gaussian prior
distribution p(B0) in equation (24). In order to allow for analytic solutions in some parameter regimes, we

4 The KF-framework then naturally provides also the optimal estimate 〈̃̂Jz(t)〉(c) of the mean 〈̂Jz(t)〉(c).
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Figure 4. Average mean squared error of the KF (the optimal estimator) in the noiseless scenario, i.e. Δ2B̃HL
t (σ0) of

equation (36) for an infinitely wide prior (σ0 →∞) compared with its small- and long-time approximations (39), for
parameters: M = 100 kHz, η = 1, and γ = 1 kHz mG−1.

redefine the covariance matrix as Σt = YtX
−1
t , so that we may rewrite (33) as a system of coupled but linear

differential equations,

Ẋt = −
(

Ft − BtStR
−1
t Ht

)T
Xt + HT

t R−1
t HtYt , (34)

Ẏt =
(

Ft − BtStR
−1
t Ht

)
Yt + Bt

(
Qt − St R−1

t ST
t

)
BT

t Xt , (35)

with the initial condition now corresponding to X0 = 1 and Y0 = Σ0.

3.1. Solution in the absence of decoherence and field fluctuations
In the absence of collective noise and field fluctuations (γy = 0 and qB = χ = 0), the Riccati equation (33)

can be explicitly solved [44]. Since γy = 0, the conditional dynamics of the Ĵz-variance is then given by
equation (20). Moreover, since no fluctuations of the field are being considered, the noise correlation matrix
just reads Qt = diag(1, 0). As a result, the decoupled system of differential equations introduced in (34) and
(35) can be analytically solved, providing the solution for the minimal aMSE in estimating the B-field (23)
as

Δ2B̃HL
t (σ0) = [Σt]22 =

M2

16ηγ2J2

(1 + 2JMtη)

a(t)e−Mt + 4 (1 + 4Jη)e−Mt/2 + b(t)
, (36)

where we have emphasised its dependence on the width of the prior, σ0, and defined:

a(t) = −(1 + 2ηJ(4 + Mt)), (37)

b(t) =
M2

16ηγ2J2σ2
0

+
M3t

8γ2Jσ2
0

+ c(t). (38)

with c(t) = (Mt − 3) + 2ηJ(Mt − 4). Note that for an infinitely wide prior, σ0 →∞, b(t) = c(t) and the
aMSE (36) matches consistently the solution obtained in [44] with Δ2B̃HL

t (∞) exhibiting the non-classical
scaling in both t and J—following the HL ∼ 1/N2 with N = J/2—as mentioned already in equation (2).
This becomes clear after making the approximation summarised in figure 4, i.e.:

where the terms (39a) and (39b) are obtained by Taylor-expanding Δ2B̃HL
t (∞) in equation (36) to leading

order in time t and (JMt)−1, respectively.

4. Impact of noise

In figure 3(d) we have already presented (solid blue line) the behaviour of the minimal aMSE, Δ2B̃t , in
presence of noise (γy > 0), which we have determined by numerically solving the Riccati equation (33) after

10
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assuming no initial knowledge about the field (σ0 →∞), and setting γy < ηM. The latter condition is
necessary for the minimal aMSE to initially follow the noiseless solution introduced in (39) and, hence,
exhibit a ‘supraclassical’ scaling in time at short timescales, ∼1/t3, as only then the spin-squeezing induced
by the continuous measurement can occur—the conditional variance of Ĵz decreases with time, see (20) and
appendix B, so that ξ2(t) < 1 in equation (22), as depicted in figure 2(a).

Importantly, although the spin-squeezing is maintained at larger timescales (see figure 3(c)), the
noiseless behaviour of aMSE in figure 3(d) is quickly lost due to noise. In particular, the minimal
aMSE firstly follows a classical-like scaling, ∼ 1/t, before attaining a constant value at timescales tS ∼ 1, at
which still ξ2(t) < 1. In the upcoming sections we explicitly show how the presence of collective
decoherence and field fluctuations causes the ‘supraclassical’ scaling to be lost both in time t and the atom
number N(J = N/2). We achieve this by giving analytical solutions to what in figure 3(d) we refer to as the
CS limit and the SS.

4.1. No-go theorem for the Heisenberg limit: the classical simulation method
Within the Bayesian approach to estimation theory there exist various general lower bounds on the minimal
aMSE, which are commonly referred to as Bayesian (or global) Cramér–Rao Bounds (BCRBs) [72]. Still, in
the case of linear and Gaussian stochastic processes many of these simplify to a single form [40, 41]. When
interested in estimating the process at its last step—here, the magnetic field Bt at the final time t—the
applicable bound is the so-called marginal unconditional BCRB [41]:

Δ2B̃t � (JB)−1, (40)

where JB is the Bayesian information (BI) [40] evaluated at time t:

JB = Ep(Bt ,y�t )

[(
∂Bt log p(Bt , y�t)

)2
]
. (41)

The BI can be conveniently split into two terms:

JB = JP + JM , (42)

where JP represents our knowledge about Bt prior to any estimation, and JM accounts for the contribution
of the measurement record y�t. Formally, the BI associated with our prior knowledge, JP, corresponds to
the Fisher information (FI) [13] evaluated with respect to the estimated field value Bt for the distribution
p(Bt) defined in (24), i.e.:

JP = F[p(Bt)] = Ep(Bt )

[(
∂Bt log p(Bt)

)2
]
. (43)

In contrast, JM reads

JM = Ep(Bt ,y�t )

[(
∂Bt log p(y�t , Bt)

)2
]
=

∫
dBt p(Bt)F[p(y�t |Bt)], (44)

where
F[p(y�t |Bt)] = Ep(y�t |Bt )

[(
∂Bt log p(y�t |Bt)

)2
]

(45)

is now the FI of the distribution p(y�t|Bt) evaluated again with respect to Bt.
The prior contribution to the BI (43) can always be ignored by letting the prior distribution describing

our knowledge about the field at t = 0, p(B0), be of infinite width [40]—see appendix E.1 where we
demonstrate that JP = 0 for σ2

0 →∞. In contrast, the contribution of the measurement record to the BI
(44) in general requires one to explicitly evaluate the FI of p(y�t|Bt) for every value Bt may take. In this
work, we avoid doing so by constructing an upper-bound on F[p(y�t|Bt)] that is determined by the noise in
the atomic magnetometry scenario, which turns out to be independent of the form of the continuous
measurement and the initial state of the atoms.

In order to do so, we discretize the time evolution such that t = kδt—this does not prevent us from
obtaining the results in the continuous-time limit, which can be recovered by finally letting δt → 0 [30]. As
a result, the continuous-measurement record y�t can be described by a finite set of (time-ordered)
outcomes, yk = {y0, y1, . . . , yk}, collected at the end of each time interval indexed by j = 0, 1, . . . , k.
Similarly, the evolution of the magnetic field corresponds now to a discrete-time stochastic process,
Bk = {B0, B1, . . . , Bk}, with Bj representing the value taken by the B-field throughout the jth time interval.
Moreover, the conditional quantum state of the ensemble at time t = kδt, previously described by
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Figure 5. Concept of the CS method. The sensing scheme ((a), top) involving a continuous measurement can be interpreted as a
sequence of quantum channels ΛBi ((b), top)—each dependent on the value of the magnetic field Bj —interspersed by
instantaneous measurements forming a POVM, {E†

yj
Eyj}yj , for every j = 0, 1, . . . , k. As each ΛBj is equivalent to a mixture of

unitary channels Uωj ((b), bottom), where the mixing probability q(ωj|Bj) has a Bj-dependence, the whole scheme can effectively
be interpreted as if the consecutive field-values Bj (shaded in yellow) are first encoded into the mixing probabilities (a, bottom),
which only then determine the unitary channels to be applied in the sequence. As a result, any inference strategy with access to all
the random variables ωj (shaded in red) can only perform better than the one based on the actual measurement outcomes yj
(shaded in green).

ρ(c)(t) ≡ ρ(t|y�t) as the solution to the conditional dynamics (6), can now be explicitly written as

ρk ≡ ρ(t|yk) =
Eyk

ΛBk

[
. . . Ey1 ΛB1

[
Ey0 ΛB0 [ρ0] E†

y0

]
E†

y1
. . .

]
E†

yk

Tr
{

Eyk
ΛBk

[
. . .Ey1 ΛB1

[
Ey0 ΛB0 [ρ0] E†

y0

]
E†

y1 . . .
]

E†
yk

} , (46)

where the continuous measurement is formally described by a set of measurement operators5 Eyj that form

a positive-operator valued measure (POVM), i.e. {E†
yj

Eyj}yj with
∑

yj
E†

yj
Eyj = 1 for every j. In the expression

(46), every ΛBj denotes the quantum channel (a completely positive trace-preserving map) describing the
evolution of the atomic ensemble during the jth interval in between measurements. Such evolution will
then solely incorporate the Larmor precession under the magnetic field Bj (constant in that time interval),
and the collective decoherence. A scheme describing this sequence of channels interspersed with
measurements is depicted in figure 5(a) (top).

The denominator of the expression (46) should be interpreted as the probability of registering the
measurement record yk given a particular (discrete) trajectory of the B-field Bk, i.e.:

p(yk|Bk) = Tr
{

Eyk
ΛBk

[
. . .Ey1 ΛB1

[
Ey0 ΛB0 [ρ0] E†

y0

]
E†

y1
. . .

]
E†

yk

}
. (47)

Moreover, its marginal distribution can then be determined using the Bayes’ rule as

p(yk|Bk) =
p(yk, Bk)

p(Bk)
=

1

p(Bk)

∫
dBk−1 p(Bk) p(yk|Bk), (48)

5 However, the following construction is also valid for schemes in which the form of the continuous measurement (and, hence,

operators Eyj ) changes between time intervals, i.e. E(j)
yj �= E(j,′)

yj for j �= j′ .
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constituting the discrete-time equivalent of p(y�t|Bt) appearing in equation (44).
The crucial step in our construction is the observation that the dynamics of the atomic ensemble in

between measurements can be CS [22, 53, 54]. In particular, each quantum channel ΛBj in equation (46)
can be equivalently replaced by a probabilistic mixture of unitary evolutions such that only the classical
mixing probability depends on the instantaneous B-field value Bj —see figure 5(b). In other words, we ‘shift’
the encoding of the parameter Bt from a quantum channel to a classical probability, which we show to be
Gaussian. Namely, for any j = 0, 1, . . . , k:

ΛBj [ · ] =

∫
dωj q(ωj|Bj) Uωj,δt[ · ], (49)

where ωj is an auxiliary frequency-like random variable distributed according to the Gaussian distribution:

ωj ∼ q(ωj|Bj) = N
(
γBj,

γy

δt

)
, (50)

which parametrises now a noiseless Larmor precession of the ensemble within the jth time interval described
by the unitary transformation:

Uωj,δt[ · ] = e−iωjĤδt · eiωjĤδt (51)

with the Hamiltonian Ĥ = Ĵy consistent with the dynamics (5). A step by step demonstration of this
statement is presented in appendix E.2. Moreover, within the setting here considered, the random variable
Bj follows a (discrete-time) OU process (3), while the initial B0 is drawn from a Gaussian prior distribution
of variance σ2

0 .
As a consequence, by now defining the set of particular frequencies ωj chosen in each time interval,

ωk = {ω0,ω1, . . . ,ωk}, we can interpret the conditional distribution of the measurement record (47) as a
probabilistic average over the frequency-like parameters:

p(yk|Bk) = Eq(ωk|Bk)

[
p(yk|ωk)

]
=

∫
dωk q(ωk|Bk) p(yk|ωk), (52)

where q(ωk|Bk) =
∏k

j=0 q(ωj|Bj) is just a product distribution and

p(yk|ωk) = Tr
{

Eyk
Uωkδt

[
. . . Ey1Uω1δt

[
Ey0Uω0δt [ρ0] E†

y0

]
E†

y1
. . .

]
E†

yk

}
(53)

is now the conditional probability of detecting a set of measurement records yk, given a particular set of
frequencies ωk dictating subsequent unitary evolutions of the atomic ensemble within each time interval.

The decomposition (52) proves the equivalence between a circuit of non-unitary quantum channels
describing the noisy dynamics of the atomic ensemble, and the average (Eq(ωk|Bk)[. . .] denoted in figure 5
with 〈 . . . 〉) of circuits involving noiseless unitary evolutions, whose frequencies ωk are drawn from a
distribution q(ωk|Bk) containing all the information about the field trajectory Bk. We represent this
equivalence schematically in figure 5(a).

Focussing on the marginal distribution of interest (48), we substitute the decomposition (52) into it, in
order to obtain

p(yk|Bk) =

∫
dωk p(yk|ωk)

[
1

p(Bk)

∫
dBk−1 p(Bk) q(ωk|Bk)

]
= Sωk→yk

[
PBk

(ωk)
]

, (54)

where we can now identify Sωk→yk
[ · ] =

∫
dωk p(yk|ωk) · as a stochastic map independent of the estimated

Bk, and define the probability distribution function:

PBk
(ωk) =

1

p(Bk)

∫
dBk−1 p(Bk) q(ωk|Bk), (55)

which effectively describes the information about Bk contained within q(ωk|Bk).
Crucially, as the FI is generally contractive (monotonic) under the action of stochastic maps [13, 73], we

can now upper-bound F[p(y�t|Bt)] in (45) as follows

F[p(yk|Bk)] = F
[
Sωk→yk

[
PBk

(ωk)
]]

� F
[
PBk

(ωk)
]

, (56)

and evaluate the FI of PBk
(ωk), which we denote as PBt (ω<t) upon letting δt → 0 (with t = kδt) to recover

the continuous-time limit. In appendix E.3, we explicitly show that for the case of infinitely wide (σ0 →∞)
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Gaussian prior distribution p(B0), the FI reads

F
[
PBt (ω<t)

]
=

√
γ2

γyqB
tanh

(
t

√
qBγ2

γy

)
, (57)

and being independent of the estimated Bt directly sets an upper bound in JM, i.e.:

JM =

∫
dBt p(Bt)F[p(y�t |Bt)] (58)

�
∫

dBt p(Bt)F
[
PBt (ω<t)

]
=

√
γ2

γyqB
tanh

(
t

√
qBγ2

γy

)
. (59)

Hence, by using also the fact that JP = 0 when σ0 →∞, we conclude that

Δ2B̃t � (JP + JM)−1 = J−1
M (60)

�
√

γy qB

γ2
coth

(
t

√
qBγ2

γy

)
≡ Δ2B̃CS

t (qB) (61)

� 1

γ2

γy

t
= Δ2B̃CS

t (0), (62)

where the last inequality follows from x coth(x) � 1 for any x > 0 with the CS limit, Δ2B̃CS
t (qB),

monotonically increasing with qB —as expected, the error is predicted to deteriorate with an increase in the
strength of the field fluctuations.

Although we differ the full proof of the upper bound (59) to appendix E.3, let us note that in the
simplest scenario with the magnetic field being time-invariant, the CS limit can be straightforwardly
derived and takes the form Δ2B̃CS

t (0) as in equation (62). For a constant B-field, the probability distribution
(55) simplifies to the product PB(ωk) = q(ωk|B) =

∏k
j=0q(ωj|B), whose FI is now evaluated with respect to

B and reads:

F [PB(ωk)] = F

⎡
⎣ k∏

j=0

q(ωj|B)

⎤
⎦ =

k∑
j=0

F
[
q(ωj|B)

]
= k F

[
q(ωj|B)

]
= γ2 kδt

γy
= γ2 t

γy
, (63)

so that the CS limit (62) then directly follows.
In general, the CS limit Δ2B̃CS

t (qB) defined in (61) can always be approximated independently of the
value of qB by splitting the timescales into two regimes, as follows:

where the expression (64a) implies that the CS limit (61) always simplifies at short times to its form
applicable in absence of field fluctuations, i.e. Δ2B̃CS

t (0) in (62).
Finally, let us highlight that the derivation of the CS limit is independent of the measurement dynamics

and the initial state, and depends only on the form of the noisy quantum channel describing the evolution
of the system in each discretised step between subsequent measurements.

4.2. Steady-state solution of the Kalman filter
Returning to the particular measurement model and the estimation strategy considered, we determine the
SS solution of the KF derived in section 3, as it may then be directly compared with the fundamental CS
limit determined above. Still, for simplicity, we focus here only on the SS solution when the magnetic field
fluctuates according to the Wiener process [55], i.e. the special case of the OU process (3) with χ = 0. The
complete solution for χ > 0 is presented in appendix D.

In general, the SS is attained by the KF when its covariance matrix Σt no longer changes in time, so that
dΣt

dt = 0 in equation (33). This corresponds to the solution of equating the rhs of (33) to zero—solving the
corresponding (non-linear) algebraic Riccati equation [70]. In our case, finding the SS solution becomes
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Figure 6. Estimation error as a function of time for ‘large’ (main plot) and ‘small’ (inset) atomic ensembles: here for J = 109

and J = 105, respectively. Solid blue lines represent the aMSE of the KF, while the dashed lines of different colours denote: the
noiseless solution (red), the exact CS limit (black), the CS limit in the absence of field fluctuations (orange), and the SS solution of
the KF (green). Within the main plot the dashed vertical black lines mark the transition times, tCS and t ′CS defined in (68), between
the noiseless-like (∝ 1/t3, rośe), ‘classical’-like (∝ 1/t, orange) and steady-state (=

√
qBγy/γ, green) regimes. Within the latter

two, the CS limit (61) is importantly saturated. In contrast, for ‘small’ ensembles of J � γ

γy

√
qB/(ηM) (see the inset) the

aMSE of the KF saturates, directly after exhibiting the noiseless-like behaviour, the SS solution (65) at tSS defined in (68), without
attaining the CS limit at all. Other parameters are set to: M = 100 kHz, γ = 1 kHz mG−1, qB = 100 G2 s−1, γy = 100 mHz,
χ = 0 and η = 1, while the rescaled time is defined as tS = (M + γy)t.

much easier after noting that for t � t∗ (guaranteed as t →∞ for SS) 〈Δ2 Ĵz(t)〉(c) ≈ V>t∗(t), as in (19b).
Then, the SS solution for Δ2B̃t = [Σt]22 can be shown (see appendix D) to read

Δ2B̃SS
t =

⎛
⎝qBγy

γ2
+

1

γJ

√
q3

B

Mη
e(M+γy)t/2

⎞
⎠

1/2

, (65)

whose second term in the parenthesis—the one surviving in the absence of noise (γy = 0)—has been
derived previously in [46]. In contrast, it is the first term arising due to the decoherence considered here
(γy > 0) that always dominates for large J.

In particular, at the relevant timescales t � (M + γy)−1 whenever J� γ
γy

√
qB/(ηM), the second term

within the brackets in (65) becomes negligible and the SS solution (65) coincides with the CS limit (64b)
valid at long timescales, i.e.:

Δ2B̃SS
t =

J�1
Δ2B̃CS

∞ (qB) =
√

qBγy

γ
, (66)

which moreover implies that—see also the main plot of figure 6—Δ2B̃SS
t ≈ Δ2B̃CS

t (qB), as long as further
t � 1

γ

√
γy/qB for which the CS limit takes the form (64b).

Note that this proves that in presence of decoherence (γy > 0) for large enough ensemble size
(J = N/2 � 1) the chosen type of continuous measurement (homodyne-like model) and the initial state of
the atomic ensemble (CSS) always give the best possible precision in estimating the fluctuating magnetic
field (qB > 0) in the SS regime—bearing in mind that the linear-Gaussian approximation made throughout
our work must hold. Crucially, this conclusion holds for large atomic ensembles also at short timescales at
which the SS solution does not apply, as we will now explicitly show.

4.3. Different regimes exhibited by the estimation error
Once the CS limit and the SS solution of the KF have been explicitly derived, we finally have all the
information we need to fully understand the evolution of the estimation error in figure 3(d), which we
supplement now with additional plots of the aMSE with respect to time and ensemble size (J = N/2) in
figures 6 and 7, respectively.

4.3.1. Estimation error as a function of time

We depict the time evolution of the estimation error, i.e. the aMSE of the KF, in figure 6. Importantly, as
shown in the main plot, for ‘large’ ensembles (we quantify ‘large’ below) the aMSE attains the fundamental
CS limit (61) that holds for any potential measurement and estimation strategy, hence, proving that the
magnetometry scheme achieves then the ultimate precision dictated by the decoherence.
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Figure 7. Estimation error as a function of the ensemble size at ‘short’ (main plot) and ‘long’ (inset) timescales: here at
tS = 10−4 and tS = 10−2 rescaled times, respectively. The solid blue lines represent the aMSE of the KF, while the dashed lines of
different colours denote: the noiseless solution (red), the CS limit (black), the CS limit in the absence of field fluctuations
(orange), and the SS solution of the KF (green). At ‘short’ timescales of t �

√
γy/(γ2qB) (main plot) the SS solution does not

apply even for J →∞. The aMSE, after initially following with J the Heisenberg-like behaviour (∝ 1/J2, shaded in rośe), saturates
around JCS (defined in (69) and marked with a black dashed vertical line) at a constant value—given by the CS limit γy/(γ2t)
derived in (64a). In contrast, at ‘long’ timescales (inset) the aMSE of the KF is explicitly given by its SS solution (65) for all J
above JSS defined in (69) (green-shaded area). As a result, the aMSE, after following with J initially the Heisenberg-like behaviour
up to JSS, firstly scales as 1/

√
J before saturating around J ′CS defined in (67) again at the CS limit, which is now given by the

expression (64b) instead. As in figure 6, we set the other parameters to: M = 100 kHz, γ = 1 kHz mG−1, qB = 100 G2 s−1,
γy = 100 mHz, χ = 0 and η = 1, while the rescaled time is defined as tS = (M + γy)t.

In such a setting, the behaviour of error as a function of time can be intuitively explained. Firstly, at very
short timescales for which the atomic decoherence can be ignored, the aMSE follows the noiseless-like (or
supra-classical) scaling of 1/t3. Once the impact of decoherence ‘kicks in’, its behaviour transitions to a
‘classical’-like regime exhibiting 1/t scaling, as determined by the CS limit in (64a). At long times, at which
the field fluctuations are optimally compensated by the KF, it reaches its SS and the error saturates at a
constant value

√
qBγy/γ. However, let us emphasise again that this value arises due to the presence of

decoherence (γy > 0), which in this case dominates the SS solution of the KF in equation (66) and, in fact,
assures the error to attain the ultimate CS limit, in particular, its long-time behaviour (64b).

In contrast, for ‘small’ ensembles, as presented in the inset, the aMSE does not reach the CS limit. It is so,
as the impact of the atomic decoherence can then be actually neglected in comparison to the field
fluctuations. As a consequence, the KF reaches quickly with time its SS solution, which is now effectively
independent of the decoherence, i.e. Δ2B̃SS

t ≈ 4
√

q3
B/(Mηγ2J2) in equation (65). One can then interpret the

magnetometer to operate in a ‘perfect’ manner, with its precision being dictated fully by just the
characteristics of the field.

Note that the above two settings are formally distinguished by whether the SS solution in (65) attains or
not the long-time CS limit (64b)—or, in other words, whether the green line can cross the black line in
figure 6. Hence, this condition defines naturally what constitutes a ‘large’ or ‘small’ ensemble above, i.e.
J � J ′CS or J � J ′CS, respectively, where

J ′CS =
γ

γy

√
qB

ηM
(67)

follows from the derivation of equation (66).
Moreover, by evaluating the times at which the dominant behaviours of the error appearing in figure 6

cross one another, we explicitly determine the transition times between all the different regimes:

tCS =
1

J

√
3

ηMγy
, t′CS =

1

γ

√
γy

qB
, tSS =

31/3

γ2J2ηMqB
, (68)

which are valid as long as t � (M + γy)−1 (and the linear-Gaussian approximation holds). In particular, tCS

marks the transition time of the aMSE from the noiseless-like to the ‘classical’-like regime, whose later
transition to the steady-state regime occurs then at t′CS. Similarly, for ‘small’ ensembles tSS indicates when
the aMSE reaches its SS.

4.3.2. Estimation error as a function of the number of atoms
The aMSE as a function of the ensemble size (J = N/2) is presented in figure 7, where we show two distinct
scenarios differentiated by the timescales considered. Still, we observe that the ultimate CS limit dictated by
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the decoherence is attained in both cases as long as a sufficiently large ensemble is considered—proving
then the measurement scheme and the estimation procedure to be optimal.

In particular, for ‘short’ timescales (main plot), the error as a function of J initially follows the
Heisenberg-like scaling 1/J2 before attaining the short-time CS limit (64a) once the effect of the collective
noise becomes significant. For ‘long’ timescales (inset), the KF optimally compensates for the field
fluctuations and its SS solution applies as long as J is sufficiently large. Still, the long-time CS limit (64b) is
achieved as J →∞, as it dictates in this case the SS solution (66) affected by the collective noise (γy > 0).
The time threshold differentiating between these two cases, t′CS, is then given by (64)—coinciding
consistently with the definition in (68).

Importantly, both when the aMSE (solid blue line) attains the CS limit at ‘short’ timescales t � t′CS (the
main plot of figure 7), or at ‘long’ timescales t � t′CS (the inset of figure 7), it saturates at a constant value as
J is increased. In each case, that occurs at different ensemble sizes: JCS and J ′CS, respectively. In the latter case,
one can also identify a threshold value JSS, above which the aMSE exhibits a 1/

√
J-scaling before saturating

at J ′CS. All these can be determined by comparing the dominant behaviours of the error within each regime,
and read:

JCS =
1

t

√
3

ηMγy
, JSS =

32/3

γt2
√
ηMqB

, (69)

while J ′CS coincides consistently with the definition (67).

5. Conclusions

We have studied the problem of sensing a magnetic field in real time within the canonical atomic
magnetometry setting—a polarised spin-ensemble is being continuously probed in the perpendicular
direction to induce spin-squeezing of the atoms, so that a quantum-enhanced precision in estimating the
field can be maintained. Within our model we have importantly incorporated both the stochastic
fluctuations of the field (in the form of an OU process) as well as collective decoherence (affecting the
ensemble as a whole) into the magnetometer conditional dynamics, depending on a particular
measurement record collected continuously in time.

As a result, while considering the magnetometer evolution at short timescales within the linear-Gaussian
regime, we have computed explicitly the optimal estimator—the KF—and studied the behaviour of its
error both in time, t, as well as the effective size of the atomic ensemble, J = N/2 with N being the total
number of atoms. Moreover, we have developed a CS method thanks to which we have established a
fundamental limit on the precision that is induced solely by the decoherence. Crucially, as the so-obtained
limit applies to any type of state-preparation and continuous-measurement scheme—as long as the
conditional dynamics of the magnetometer in between subsequent measurements is not changed—it has
allowed us to prove that the continuous measurement model of our interest may often be considered to be
optimal in presence of any, even infinitesimal, noise.

In particular, the corresponding aMSE of the KF, which at short timescales always follows the
quantum-enhanced behaviour in both time and the number of atoms, i.e. 1/t3 and 1/N2, respectively, is
bound to saturate eventually the limit dictated by the noise. From the perspective of the time dependence,
the noise constrains the aMSE to follow a ‘classical’-like 1/t scaling before the KF reaches its steady-state
solution—which, in fact, coincides with the ultimate long-time precision induced by the decoherence for
large atomic ensembles. If instead we focus on the dependence of the aMSE with respect to the number of
atoms N, we observe that the impact of the collective noise is even more drastic, as the aMSE (after
following the Heisenberg-like behaviour 1/N2) saturates eventually at a constant value—whether or not the
KF operates within the steady-state regime. Furthermore, our analysis allows to straightforwardly estimate
both the times and the numbers of atoms at which the transitions between such regimes occur.

Our work paves the way for finding new methods of incorporating effects of decoherence in real-time
sensing protocols, while stemming from Bayesian inference techniques combined with tools previously
developed within noisy quantum metrology. In particular, as the CS method we have invoked relies on
properties of the effective quantum channel describing the dynamics, and not the design of the
continuous-measurement scheme under study, e.g. any adaptive control operations that it incorporates, it
should also be directly applicable to sensing protocols involving quantum feedback [74]. On the other hand,
although within our work we have focussed on the estimation task in which only past measurement data
may be used for inference (filtering), we believe that our results can be naturally extended to smoothing
protocols [67–69] that include also retrodiction of data, and have been recently implemented
experimentally [58, 59]. Moreover, although we have dealt here with the setting of atomic magnetometry,
let us stress that the techniques we have presented can also be applied to other real-time sensing platforms,
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e.g.: cavity-based experiments with cold atoms incorporating feedback [75, 76], requiring similar
continuous-measurement theory [77]; or optomechanical devices [78–80] and levitated nanoparticles
[81, 82] that naturally evolve respecting Gaussian dynamics, and hence directly require Kalman-filtering
and alike techniques.
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Appendix A. Unconditional dynamics of 〈Ĵx(t)〉 with field fluctuations

The unconditional evolution of 〈̂Jx(t)〉 can be computed from the stochastic set of differential
equations (9)–(11), where Bt follows the OU process described in (3). Although the full system of
differential equations can in principle be solved numerically, we would like to find approximate analytical
solutions valid in particular parameter regimes.

In particular, we focus on timescales short enough, such that we can assure ωL(t)t � 1, where
ωL(t) = γBt is the instantaneous Larmor frequency following the fluctuations of Bt. In order to identify and
ensure such timescales, we enforce ωL(t) t � 1, where ωL(t) = γ Bt is now the time-average over the
duration t with

Bt =
1

t

∫ t

0
dτ Bτ . (A.1)

Replacing Bt by Bt within the system of differential equations (9)–(11) and treating it as a constant, we
solve them for 〈̂Jx(t)〉 to get

〈̂Jx(t)〉 = J

2Θ
e−(M+γx+2γy+γz+Θ) t/4

(
M − γx + γz +Θ− etΘ/2(M − γx + γz −Θ)

)
, (A.2)

where Θ =
√

(M − γx + γz)2 −
(
4γBt

)2
. Then, by expanding the above expression to leading order in Bt ,

we obtain

〈̂Jx(t)〉 ≈ Je−(M+γy+γz) t/2

(
1 + 2γ2B2

t

2 − 2e(M−γx+γz)t/2 + t(M − γx + γz)

(M − γx + γz)2

)
, (A.3)

≈ Je−(M+γy+γz) t/2

(
1 +

γ2 B2
t t2

2

)
, (A.4)

where in (A.4) we have further assumed t � (M − γx + γz)−1, so that
e(M−γx+γz)t/2 ≈ 1 + 1

2 (M − γx + γz)t + 1
8 (M − γx + γz)2t2 holds up to the second order in t.

Hence, it seems that we may approximate the dynamics of the mean value of the spin-component Ĵx as

〈̂Jx(t)〉 ≈ Je−(M+γy+γz) t/2, (A.5)

which constitutes the basis for the linear-Gaussian approximation introduced in equation (12), as long as:

(i) t � (M − γx + γz)−1 and (ii) t �
√

2
γ | Bt |

; of which the latter condition allows us to neglect the term in the

parenthesis in (A.4). Moreover, as the noise-parameter γx does not enter the dynamics any more, after
letting γx ≈ 0 and reparametrising the measurement strength as in section 2.4, M → M − γz, the condition
(i) simplifies to t � 1/M and is naturally satisfied by the more stringent requirement on the rescaled time
tS = (M + γy)t to always obey tS � 1, which we ensure throughout the main text.

However, we must be more careful when ensuring the validity of condition (ii). As Bt follows a
stochastic process, the time-average Bt defined in (A.1) is a random variable in itself. Therefore, we must
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further assure that the condition (ii) holds for almost all stochastic trajectories of Bt. We achieve this by
applying the 68–95–99.7 rule, which allows us to state that if

t �
√

2

γ

∣∣∣E[Bt

]
± 2

√
Var[ Bt]

∣∣∣ , (A.6)

then the approximation (A.5) of (A.4) is valid with 95% probability.
Evaluating the mean of Bt defined in (A.1), we obtain

E
[

Bt

]
=

1

t

∫ t

0
E[Bτ ] dτ =

1

t

∫ t

0
B0 e−χt dτ =

B0

χt

(
1 − e−χt

)
, (A.7)

where E[Bτ ] = B0e−χt for the OU process (3) [55]. Similarly, we calculate the variance of the time-averaged
value of the magnetic field, Bt , as

Var[ Bt] = E
[
( Bt)

2
]
− E

[
Bt

]2
(A.8)

=
qB

2χ3t2
(4e−χt + 2χt − e−2χt − 3) − B2

0

χ2t2

(
1 − e−χt

)2
, (A.9)

using the expression for the two-time correlation function of the OU process (3), i.e. [55]:

E[BsBt] =
qB

2χ

(
e−χ|t−s| − e−χ(t+s)

)
, (A.10)

and evaluating

E
[
( Bt)

2
]
=

1

t2

∫ t

0
dτ1

∫ t

0
dτ2 E

[
Bτ1 Bτ2

]
(A.11)

=
1

t2

∫ t

0
dτ1

∫ t

0
dτ2

qB

2χ

(
e−χ|τ1−τ2| − e−χτ1 e−χτ2

)
(A.12)

=
qB

2χt2

[∫ t

0
dτ1

(∫ τ1

0
dτ2 e−χ(τ1−τ2) +

∫ t

τ1

dτ2 eχ(τ1−τ2)

)
−
(

1 − e−χt

χ

)2
]

(A.13)

=
qB

2χt2

[
1

χ

∫ t

0
dτ1

(
1 − e−χτ1 − eχ(τ1−t) + 1

)
−
(

1 − e−χt

χ

)2
]

(A.14)

=
qB

2χ3t2
(4e−χt + 2χt − e−2χt − 3). (A.15)

Although when constructing the optimal estimator (KF) of Bt at finite time t > 0 we do not want to
assume any prior knowledge about the value of the initial field B0, for the purpose of this calculation we
take the magnetic field to always be initialised in B0 = 0, so that it is solely the presence of the OU process
(3) that invalidates the condition (A.6) over time. In such a case, we have

∣∣∣E[Bt

]
± 2

√
Var[ Bt]

∣∣∣ =
∣∣∣∣2
√
E
[
( Bt)2

]∣∣∣∣ =
√

2qB

χ

√
4e−χt + 2χt − e−2χt − 3

χ2t2
(A.16)

≈
√

2qB

χ

√
2χt

3
=

√
4qBt

3
, (A.17)

where the above approximation holds as long as t � 4
3χ . Hence, substituting (A.17) into (A.6), we obtain

the desired condition setting an upper limit on valid timescales as a function of the fluctuations strength qB,

i.e.: t � 1
2γ

√
3

qBt =⇒ t �
(

3
4γ2qB

)1/3
.

In summary, we conclude that the linear-Gaussian approximation (A.5) is valid at timescales short

enough such that all the three conditions t � (M + γy)−1, t � 4
3χ and t �

(
3

4γ2qB

)1/3
hold. Throughout

our work we assure these by focussing on the first one and considering the rescaled time tS = (M + γy)t to
always fulfil tS � 1 (as also done in figure A1). However, we must then also require the field fluctuations to
be small enough such that the other two conditions are satisfied for any tS � 1. In particular, this is
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Figure A1. The parameters used to generate the plots are γ = 1 kHz mG−1, M = 100 kHz, γy = 1 Hz, J = 107, η = 1, and
χ = 0, with tS = (M + γy)t being the rescaled time such that tS = 1 when t = tmax ≡ (M + γy)−1. Plots (a), (c), and (d) (left
column) have been generated with a field fluctuation strength of qB = 100 G2 s−1, and plots (b), (d), (f) (right column) with
qB = 104 G2 s−1. The first row (plots (a) and (b)) show the fluctuating field in solid blue, juxtaposed with the confidence interval
of Bt , ±2

√
Var[ Bt], as well as the upper bound on |Bt | �

√
2(M + γy)/γ for which equation (A.4) can be approximated by

(A.5). The plots in the second row (subfigures (c) and (d)), compare the exact solution of 〈̂Jx(t)〉 with its approximation (A.5),
Je−(M+γy )t/2 . Finally, in the bottom row, plots (e) and (f) show the error percentage for this approximation of 〈̂Jx(t)〉.

achieved by considering the decay parameter and the fluctuation strength of the OU process (3) to fulfil for
any t � (M + γy)−1:

χ � 4

3t
=⇒ χ � 4(M + γy)

3
(A.18)

qB � 3

4γ2t3
=⇒ qB � 3(M + γy)3

4γ2
, (A.19)

which we more generally state for r = M + γy + γz in equation (13) of the main text.
The importance of the upper constraint on the strength of field fluctuations qB we demonstrate in

figure A1, where we present two exemplary Wiener (χ = 0) trajectories of Bt with qB = 102 and qB = 104

for 3(M + γy)3/(4γ2) ≈ 103 (all in [G2 s−1]), such that in the latter case the condition (A.19) is clearly
invalidated. Correspondingly, as directly seen from figure A1(b), the range of valid timescales (A.6) is
surpassed around tS = 0.4, at which the linear-Gaussian approximation (A.5) also ceases to hold, as shown
in figure A1(d). In contrast, for qB = 102 the approximation (A.5) is consistently maintained with accuracy
within 0.25% for any tS � 1—see figure A1(e).

Appendix B. Conditional dynamics of the variance Δ2Ĵ z

The differential equation for the conditional variance of Ĵz introduced in (18) reads

d〈Δ2 Ĵz(t)〉(c) = −4Mη〈Δ2JZ(t)〉2
(c)dt + γyJ2e−(M+γy)t dt, (B.1)
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Table B1. Series expansions of the Bessel functions for 1/α and 1/β around
1/α0 = 0 and 1/β0 = 0, stated to leading order.

I1[2β] ≈ e2β

2
√
πβ

K0[2α] ≈ 1
2

√
π
α e−2α K1[2α] ≈ 1

2

√
π
α e−2α

K1[2β] ≈ 1
2

√
π
β

e−2β I1[2α] ≈ e2α

2
√
πα 0F1[1,α2] ≈ e2α

2
√
πα

0F1[1,β2] ≈ e2β

2
√
πβ

K0[2β] ≈ 1
2

√
π
β

e−2β
0F1[2,α2] ≈ e2α

2α
√
πα

whose solution can be expressed in terms of modified Bessel functions of first and second kind, Iβ[·] and
Kβ[·], and regularized confluent hypergeometric functions 0F1[·], i.e.:

〈Δ2Ĵz(t)〉(c) = Ve(t) = Je−(M+γy)t/2
(
I1 [2β]

(√
η γyMK0[2α] − γyK1[2α]

)
+K1 [2β]

(
γy I1[2α] +

√
η γyM 0F1[1,α2]

))
/(

20F1[1,β2]
(√

η γyMK1[2α] − MηK0[2α]
)

+
2ηM

M + γy
K0[2β]

(
(M + γy) 0F1[1,α2] + 2γyJ 0F1[2,α2]

))
, (B.2)

where α = 2J
√
η γyM/(M + γy) and β = αe−(M+γy)t/2. The behaviour of the solution (B.2) can be better

understood when broken down into different regimes.
In order to do so, the first step is to expand the modified Bessel functions and the regularized confluent

hypergeometric functions around infinity up to leading order—such an approximation is assured due to
α � 1 and β � 1. The relevant expansions are shown in table B1.

Substituting the leading-order expansions of table B1 into the solution (B.2) and approximating
e4β ≈ e−2α(−2+t(M+γy)), the variance of Ĵz(t) simplifies to

〈Δ2Ĵz(t)〉(c) ≈
1

2
Je−(M+γy)t/2

√
Mγyη cosh(2Jt

√
Mγyη) + γy sinh(2Jt

√
Mγyη)√

Mγyη cosh(2Jt
√

Mγyη) + Mη sinh(2Jt
√

Mγyη)
. (B.3)

Note that if 2Jt
√

Mγyη � 1 then cosh(2Jt
√

Mγyη) ≈ 1
2 e2Jt

√
Mγyη and sinh(2Jt

√
Mγyη) ≈ 1

2 e2Jt
√

Mγyη. As a
result, expression (B.3) simplifies further to the form stated in equation (19b), i.e.:

〈Δ2 Ĵz(t)〉(c) ≈ V>t∗(t) =
1

2
Je−(M+γy)t/2

√
γy

ηM
. (B.4)

Analogously, if 2Jt
√

Mγyη � 1, then cosh(2Jt
√

Mγyη) ≈ 1 and sinh(2Jt
√

Mγyη) ≈ 2Jt
√

Mγyη, and the
expression (B.3) simplifies to the form stated in equation (19a):

〈Δ2 Ĵz(t)〉(c) ≈ V<t∗(t) = Je−(M+γy)t/2 (1 + 2Jtγy)

2 + 4JtMη
. (B.5)

Moreover, since 2Jt
√

Mγyη � 1, we can then derive the condition

t � t∗ =
1

2J
√

Mγyη
=⇒ 2Jtγy �

√
γy

Mη
, (B.6)

for which approximation (B.5) holds.
From equation (B.5) it also follows that if γy < M, then (1 + 2Jtγy) ≈ 1 and, hence, for sufficiently

short times scales t � t∗ < (M + γy)−1 we can always write

〈Δ2 Ĵz(t)〉(c) ≈
J

2 + 4JtMη
e−(M+γy)t/2 ≈ J

2 + 4JtMη
, (B.7)

which is the noiseless solution derived originally in [44]. In the other direction, by showing that 〈Δ2Ĵz(t)〉(c)

is a non-decreasing function at t = 0+ if γy � ηM, we can prove that (B.7) holds only if γy < ηM for
J � 1. Namely, that we can consider the global decoherence γy to be insignificant at small times t � t∗ only
when γy < ηM. In order to do so, we differentiate the expression (B.5) w.r.t. t and then let t → 0, i.e.:

lim
t→0

d

dt
[V<t∗(t)] = −1

4
J [γy(1 − 4J) + M(1 + 4Jη)]. (B.8)
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Figure B1. In subfigure (a) with γy = 10 mHz < M, the exact variance solution 〈Δ2 Ĵ z(t)〉(c) is compared to the approximated
functions V<t∗ (t) and V>t∗ (t) (dashed green and yellow, respectively). The transition time t∗ between these two regimes is
marked with a dotted black vertical line. In subfigure (b) with γy = 100 MHz > M, the two different regimes V<t∗ (t) (dashed
green) and V>t∗ (t) (dashed yellow) are superimposed with the exact solution of 〈Δ2 Ĵ z(t)〉(c) (in solid blue). Notation tS refers to
a rescaled time, tS = t(M + γy). All plots have been generated with M = 100 kHz, γ = 1 kHz mG−1, η = 1, and J = 109.

Setting the above expression to zero, we find the value of γy for which the derivative changes signs at t = 0,
i.e.:

γy =
M + 4JMη

4J − 1
= Mη +

M(η + 1)

4J
+

M(η + 1)

16J2
+ O

(
1

J3

)
, (B.9)

which can be correctly approximated as γy = ηM when J � 1. Hence,

lim
t→0

d

dt
[V<t∗(t)] � 0 if γy � ηM, and lim

t→0

d

dt
[V<t∗(t)] < 0 if γy < ηM, (B.10)

what proves that 〈Δ2 Ĵz(t)〉(c) can be approximated as in (B.7) at short enough timescales only when
γy < ηM.

Finally, in figure B1 we compare the exact solution for the variance given in (B.2) with the
short/long-time approximations V<t∗(t) and V>t∗(t) shown in (B.5) and (B.4), respectively.

Appendix C. Construction of the Kalman filter for correlated dynamics

Consider the following system of stochastic differential equations within the Itô calculus:

dxt = A(xt , t)dt + B(xt , t)dwt , (C.1)

dyt = C(xt , t)dt + dvt , (C.2)

where dwt and dvt are process and measurement Wiener noise-terms, respectively, that exhibit zero mean
E[dwt] = E[dvt] = 0 and self-correlations:

E
[
dwt dwT

s

]
= Qtδ(t − s)dt, (C.3)

E
[
dvt dvT

s

]
= Rtδ(t − s)dt, (C.4)

defined with help of (positive semi-definite) covariances Qt, Rt � 0. Moreover, the cross-correlations
between dwt and dvt are specified by the matrix St:

E
[
dwt dvT

t

]
= Stδ(t − s)dt, (C.5)

which is not necessarily symmetric. Note that the matrices Qt, Rt and St are not fully independent: since the
covariance of the ‘overall’ noise dT = dwt ⊕ dvt, i.e.

(C.6)

must be positive semi-definite by definition (constituting an outer product of a vector), the form that
matrices Qt, Rt and St can take is then constrained.
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Next, it is convenient to rewrite the system of differential equations (C.1) and (C.2) as [70]:

dxt = A(xt , t)dt + B(xt , t)dwt + D(xt , t)
(
dyt − C(xt , t)dt − dvt

)
, (C.7)

where D(xt, t) can be set arbitrarily, since dyt − C(xt, t)dt − dvt = 0. By regrouping the terms in
equation (C.7) we obtain

dxt = (A(xt , t) − D(xt , t)C(xt , t)) dt + D(xt , t)dyt + dZt , (C.8)

with dZt = B(xt, t)dwt − D(xt, t)dvt being now the effective process noise. This allows us to ensure that the
correlations between the process and measurement noises, dZt and dvt, respectively, are vanishing—and
after setting D(xt , t) = B(xt , t)StR

−1
t without loss of generality we have

E
[
dZt dvT

t

]
= (B(xt , t)St − D(xt , t)Rt) dt = 0. (C.9)

As a result, we obtain a set of stochastic differential equations that are equivalent to (C.1) and (C.2):

dxt = A(xt , t)dt + B(xt , t)StR
−1
t

(
dyt − C(xt , t)dt

)
+ B(xt , t)dUt , (C.10)

dyt = C(xt , t)dt + dvt , (C.11)

where the process noise dUt = B(xt , t)−1 dZt = dwt − StR
−1
t dvt is now uncorrelated from the

measurement noise, E
[
dUt dvT

t

]
= 0, but the dynamics of the state xt explicitly depend on the observation

yt in (C.11). Moreover, in contrast to (C.3) and (C.4), the self-correlations of process and measurement
noises now read

E
[
dUt dUT

t

]
=
(

Qt − StR
−1
t ST

t

)
dt, (C.12)

E
[
dvt dvT

t

]
= Rt dt. (C.13)

Now, in case of a linear model, the dynamical matrices in (C.1) and (C.2) simplify to:

A(xt , t) = Ft xt , (C.14)

B(xt , t) = Bt , (C.15)

C(xt , t) = Ht xt , (C.16)

so that the system of equations (C.10) and (C.11) reads

dxt = Ftxtdt + BtSt R−1
t

(
dyt − Htxt dt

)
+ Bt dUt , (C.17)

dyt = Ht xtdt + dvt . (C.18)

In such a special case, the optimal estimator x̃t minimising the overall aMSE, which is defined as the trace of

the covariance matrix Σt = E
[
(xt − x̃t)(xt − x̃t)T

]
, i.e. Tr{Σt} = E

[
‖xt − x̃t‖2

]
, is referred to as the KF

and given by the solution of the so-called Kalman–Bucy equation [70]:

dx̃t = Ft x̃tdt + Γt

(
dyt − Ht x̃tdt

)
(C.19)

where Γt is the Kalman gain
Γt =

(
ΣtH

T
t + Bt St

)
R−1

t . (C.20)

Nonetheless, let us note that in order to evaluate the Kalman gain (C.20), one must determine
beforehand the (optimal) covariance matrix Σt, which evolves according to the non-linear differential
equation in the Riccati form [70]:

dΣt

dt
= FtΣt +ΣtF

T
t − ΓtRtΓ

T
t + BtQt BT

t (C.21)

=
(

Ft − BtSt R−1
t Ht

)
Σt +Σt

(
Ft − BtStR

−1
t Ht

)T −Σt HT
t R−1

t HtΣt + Bt

(
Qt − St R−1

t ST
t

)
BT

t .

(C.22)

From the practical perspective, however, the solution to equation (C.22) can be determined (often only
numerically) and stored in advance, so that in real-life applications the construction of the KF, x̃t , as the
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solution to equation (C.19) can still performed fast and ‘on the fly’, while the observations yt are constantly
gathered.

Appendix D. Steady-state solution of the Kalman filter for χ �= 0

Let us consider the Riccati differential equation (C.22) (equivalent to (33)), which specifies the evolution of
the covariance matrix Σt for the KF with the dynamical matrices Ft, Bt, and Ht, as well as the
noise-correlation matrices Qt, Rt, and St defined in equations (28) and (32) of the main text, respectively.

For simplicity, we rename the elements of the covariance matrix as

Σt =

(
x(t) y(t)
y(t) z(t)

)
� 0, (D.1)

so that by resorting to the evolution of Σt in (C.22) and setting dΣ
dt = 0—with (C.22) formally constituting

then a continuous-time algebraic Riccati equation [70]—we obtain a system of equations describing the SS
as

−8MηV>t∗(t) x(t) − 4Mη x2(t) − 2γJe−(M+γy)t/2 y(t) = 0,

−χ y(t) − 4MηV>t∗(t) y(t) − 4Mηx(t)y(t) − γJe−(M+γy)t/2z(t) = 0,

qB − 4Mηy2(t) − 2χz(t) = 0, (D.2)

where we have used the fact that the variance 〈Δ2 Ĵz(t)〉(c) for t � t∗ (and, hence, in the SS) equals V>t∗(t)
as defined in equation (19b).

Being interested only in the SS solution for the aMSE of the magnetic field, Δ2B̃SS
t ≡ z(t), one may

explicitly solve for z(t) in (D.2) to obtain

Δ2B̃SS
t = −γyχ

γ2
− χ3

4γ2J2Mη
e(M+γy)t − χ

γ2J
√

Mη

√
qBγ2 + γyχ2e(M+γy)t/2

+
1

2γ2JMη

√
qBγ2 + γyχ2

(√
Mη +

χ2e(M+γy)t/2

2J
√

qBγ2 + γyχ2

)

×
√
χ2e(M+γy)t + 4J

(
γyJMη + e(M+γy)t/2

√
Mη(qBγ2 + γyχ2)

)
, (D.3)

which for J � 1 can be approximated by performing the Taylor expansion in 1/J to first order, as follows:

Δ2B̃SS
t ≈

J�1
− γyχ

γ2
+

γy

γ2

√
qBγ2 + γyχ2

γy
. (D.4)

In contrast, by letting χ→ 0 in equation (D.3), we obtain the exact steady-state solution for the aMSE,
when the magnetic field follows a Wiener (rather than the OU (3)) process:

Δ2B̃SS
t |χ=0 =

⎛
⎝qB γy

γ2
+

1

γJ

√
q3

B

Mη
e(M+γy)t/2

⎞
⎠

1/2

, (D.5)

which is the expression stated in equation (65) of the main text.

Appendix E. Derivation of the CS limit for a fluctuating field

After discretising the dynamics of the magnetic field Bt and the measurement outcomes yt into k = t/δt
steps, their particular trajectories follow discrete-time stochastic processes being described by
(time-ordered) sets:

Bk = {B0, B1, . . . , Bk} and yk = {y0, y1, . . . , yk}, (E.1)

respectively, while the marginal conditional BCRB (40) after the kth step then reads

Δ2B̃k � J−1
B = (JP + JM)−1 =

1

F[p(Bk)] +
∫

dBk p(Bk)F[p(yk|Bk)]
. (E.2)
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In the first subsection of this appendix, we compute the prior contribution to the BI, i.e. JP above in
(E.2). In the second subsection, we show how the quantum channel describing the dynamics of the atomic
ensemble in the absence of continuous measurement can be decomposed into a probabilistic mixture of
unitary channels. Finally, in the last subsection, we calculate the FI of PBk

(ωk) defined in (55), which allows
us to upper-bound the contribution of the measurement records to the BI, i.e. JM above in (E.2).

E.1. Prior contribution to the Bayesian information
The marginal probability density function of the magnetic field at time t—or equivalently after the
time-step k = t/δt—can be written as:

p(Bk) =

∫
dBk−1 p(Bk) =

∫
dBk−1

k∏
j=1

p(Bj|Bj−1) p(B0), (E.3)

where the initial field B0 is drawn from a Gaussian distribution which effectively specifies our a priori
knowledge about the field at t = 0, i.e.:

B0 ∼ p(B0) =
1√

2πσ2
0

exp

(
− B2

0

2σ2
0

)
, (E.4)

while each transition probability p(Bj|Bj−1) for all j = 1, 2, . . . , k is given by the OU process (3) as a
Gaussian distribution [55]:

p(Bj|Bj−1) =

√
1

2πVP
exp

(
− (Bj − Bj−1e−χδt)2

2VP

)
(E.5)

with variance
VP =

qB

2χ
(1 − e−2χδt). (E.6)

Hence, after explicitly evaluating the multiple integrals in (E.3), we arrive at the marginal Gaussian
distribution for Bk:

p(Bk) =

√
1

2πV (k)
P

exp

(
− B2

k

2V (k)
P

)
, (E.7)

whose mean is zero and its variance

V (k)
P = σ2

0 e−2kχδt +
qB

2χ
(1 − e−2kχδt), (E.8)

which in the case of a magnetic field following a Wiener process—a special case of the OU process (3) with
χ = 0—simplifies to limχ→0 V (k)

P = kδtqB + σ2
0 .

In general, the FI evaluated with respect to a Gaussian distribution, e.g. the marginal distribution (E.7),
corresponds to the inverse of its variance. Hence, the prior contribution to the BI defined in equation (43)
of the main text simply reads

JP = F[p(Bk)] =
1

V (k)
P

=
1

σ2
0e−2kχδt + qB

2χ (1 − e−2kχδt)
, (E.9)

and in the continuous-time limit of δt → 0 with k = t/δt, it becomes

JP =
1

σ2
0e−2χt + qB

2χ (1 − e−2χt)
. (E.10)

In the special case of a Wiener process (χ→ 0), equation (E.10) reduces to limχ→0 JP = (qBt + σ2
0)−1. On

the other hand, for any χ, qB, t � 0, expression (E.10) vanishes if we do not possess any prior knowledge
about the initial field B0, i.e. when we consider σ0 →∞ in equation (E.4), for which limσ0→∞ JP = 0.

E.2. Noisy dynamics as a convex mixture of unitary channels
Consider a unitary evolution, which is generated by ξĤ with Ĥ being a time-independent Hamiltonian and
ξ ∈ R, being applied to a state ρ0 for a time interval τ , i.e.:

Uξ,δt[ρ0] = e−iξĤτ ρ0eiξĤτ (E.11)
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where the frequency-like parameter ξ is randomly distributed according to a Gaussian probability density:

ξ ∼ pμτ ,στ (ξ) =
1√

2πσ2
τ

e
− (ξ−μτ )2

2σ2
τ , (E.12)

whose mean μτ and standard deviation στ are some smooth time-dependent functions.

Theorem 1. The quantum map Λτ obtained by averaging over ξ after a time τ , i.e.:

ρτ = Λτ [ρ0] = Ep(ξ)

[
Uξτ [ρ0]

]
=

∫
dξ pμτ ,στ (ξ) e−iξĤτρ0eiξĤτ , (E.13)

corresponds to the solution of the master equation:

dρτ
dτ

= −iω(τ)[Ĥ, ρτ ] + Γ(τ)

(
Ĥρτ Ĥ − 1

2
{Ĥ2, ρτ}

)
(E.14)

= −iω(τ)[Ĥ, ρτ ] − 1

2
Γ(τ)

[
Ĥ, [Ĥ, ρτ ]

]
, (E.15)

where the effective time-dependent frequency and decay parameters read, respectively:

ω(τ) = μτ + τμ̇τ and Γ(τ) = 2σ2
τ τ

(
1 +

σ̇τ

στ
τ

)
. (E.16)

Proof. By explicitly differentiating ρτ defined in (E.13) with respect to τ , we obtain:

dρτ
dτ

=
d

dτ
Λτ [ρ0] =

d

dτ
Ep(ξ)

[
Uξτ [ρ0]

]
=

d

dτ

(∫
dξ pμτ ,στ (ξ) Uξτ [ρ0]

)

=

∫
dξ

(
d

dτ
pμτ ,στ (ξ)

)
Uξτ [ρ0] +

∫
dξ pμτ ,στ (ξ)

d

dτ
Uξτ [ρ0]

=
1

σ3
τ

Ep(ξ)

[(
(ξ − μτ )στ μ̇τ + ((ξ − μτ )2 − σ2

τ )σ̇τ

)
Uξτ [ρ0]

]
− i[Ĥ,Ep(ξ)

[
ξUξτ [ρ0]

]
]

=
μ̇τ

σ2
τ

Ep(ξ)

[
ξUξτ [ρ0]

]
+

σ̇τ

σ3
τ

Ep(ξ)

[
(ξ − μτ )2Uξτ [ρ0]

]
−
(
μτ μ̇τ

σ2
τ

+
σ̇τ

στ

)
ρτ

− i[Ĥ,Ep(ξ)

[
ξUξτ [ρ0]

]
], (E.17)

where by using relations for the moments of a Gaussian distribution we can further simplify the following
expressions:

Ep(ξ)

[
ξ Uξτ [ρ0]

]
= −iσ2

τ τ [Ĥ, ρτ ] + μτρτ , (E.18)

Ep(ξ)

[
(ξ − μτ )2Uξτ [ρ0]

]
= −σ4

τ τ
2
[
Ĥ, [Ĥ, ρτ ]

]
+ σ2

τ ρτ . (E.19)

As a result, we can write the dynamics (E.17) as

dρτ
dτ

= −i(μτ + μ̇τ τ) [Ĥ, ρτ ] − σ2
τ τ

(
1 +

σ̇τ

στ
τ

) [
Ĥ, [Ĥ, ρτ ]

]
, (E.20)

which is the desired form stated above in equation (E.15). �

Corollary. For the case of N spin-1/2 particles evolving for a time τ according to the dynamics (E.15) with
Ĥ = Ĵy, ω(τ ) = γB and Γ(τ) = γy, i.e.:

dρτ
dτ

= −iγB[̂Jy, ρτ ] − 1

2
γy [̂Jy, [̂Jy, ρτ ]] (E.21)

with B being constant over the time τ , the effective quantum map describing the evolution Λτ in (E.13) can be
interpreted as mixture of unitary channels with the Gaussian mixing probability (E.12) of mean μτ = γB and

standard deviation στ =
√

γy

τ
.
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The above statement can be straightforwardly verified by explicitly computing the effective time-dependent

frequency and decay parameters in (E.16) for the choice of μτ = γB and στ =
√

γy

τ
, which consistently

simplify to:

ω(τ) = γB + τ 0 = γB, (E.22)

Γ(τ) = 2
γy

τ
τ

(
1 +

1

2

(γy

τ

)−1/2 (
−γy

τ 2

)(γy

τ

)−1/2
τ

)
= 2γy

(
1 − 1

2

)
= γy. (E.23)

E.3. Fisher information of PBt (ω<t)
As discussed in the main text, upper-bounding the measurement-record contribution to the BI, i.e. JM

defined in equation (44), corresponds effectively—see inequality (59)—to computing the FI:

F
[
PBk

(ωk)
]
=

∫
dωk PBk

(ωk)
[
−∂2

Bk
log

(
PBk

(ωk)
)]

(E.24)

for the probability distribution defined in equation (55):

PBk
(ωk) =

1

p(Bk)

∫
dBk−1 p(Bk) q(ωk|Bk). (E.25)

Note that PBk
(ωk) contains a Gaussian marginal distribution p(Bk) specified in (E.7), as well as products of

Gaussian distributions:

p(Bk) =
k∏

j=1

p(Bj|Bj−1)p(B0) and q(ωk|Bk) =
k∏

j=0

q(ωj|Bj), (E.26)

where p(Bj|Bj−1) is the Gaussian transition probability of the OU process defined in (E.5) with variance VP

given by (E.6), p(B0) is the prior Gaussian distribution with zero mean and variance σ2
0 , while each q(ωj|Bj)

is the mixing probability introduced within the CS method in equation (50), which is also a Gaussian with
mean γBj and variance

VQ =
γy

δt
. (E.27)

It follows from the definitions in (E.26) that the integral in (E.25) can be rewritten as a set of nested
integrals, i.e.:

∫
dBk−1 p(Bk) q(ωk|Bk) =

∫
dBk−1

k∏
j=1

p(Bj|Bj−1)q(ωj|Bj)p(B0)q(ω0|B0)

= q(ωk|Bk)

∫
dBk−1 p(Bk|Bk−1)q(ωk−1|Bk−1) . . .

∫
dB1 p(B2|B1)q(ω1|B1)

×
∫

dB0 p(B1|B0)q(ω0|B0)p(B0), (E.28)

which we would like to simplify. To do so, we first need to prove the following lemma:

Lemma 2. Let us consider a recurrence relation between Pj(Bj) and Pj−1(Bj−1) for j = 0, 1, 2, . . . as a
generalised convolution of Gaussian distributions:

Pj(Bj) =

∫
dBj−1

1√
2πVP

e−
(Bj−Bj−1)2

2VP
1√

2πVQ
e
−

(ωj−1−γBj−1)2

2VQ Pj−1(Bj−1), (E.29)

where VP, VQ � 0 and P0(B0) = C0e−
(B0−μ0)2

2V0 with some fixed C0, V0 � 0 and μ0 ∈ R.
Then, for all j � 1:

Pj(Bj) = Cje
−

(Bj−μj)
2

2Vj (E.30)
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where the parameters Cj, μj and Vj are given as the solution to the following (coupled) recurrence relations:

Cj = Cj−1

(
2π

(
γ2VP + VQ +

VPVQ

Vj−1

))−1/2

e
−

(ωj−1−γμj−1)2

2(VQ+γ2Vj−1) (E.31)

μj =
VQμj−1 + Vj−1γωj−1

VQ + γ2Vj−1
(E.32)

Vj = VP +
VQVj−1

VQ + γ2Vj−1
. (E.33)

Proof. As for any recurrence problem, it is sufficient to prove that the solution (E.30) holds for j = 0, and
that the recurrence relation (E.29) is fulfilled for any j � 1. The first part is trivially satisfied by definition,
while to prove the latter we substitute Pj−1(Bj−1), defined according to (E.30), into (E.29) and explicitly
perform the integration, i.e.:

Pj(Bj) =

∫
dBj−1

1√
2πVP

e−
(Bj−Bj−1)2

2VP
1√

2πVQ
e
−

(ωj−1−γBj−1)2

2VQ Cj−1e
−

(Bj−1−μj−1)2

2Vj−1

=
Cj−1√

2π
(

VQ + γ2VP +
VPVQ
Vj−1

) exp

⎧⎨
⎩−

B2
j − 2αBj + β

2
(

VP +
VQVj−1

VQ+γ2Vj−1

)
⎫⎬
⎭ , (E.34)

where α and β are constants independent of Bj and Bj−1, and equal to

α =
VQμj−1 + Vj−1 γωj−1

VQ + γ2Vj−1
, (E.35)

β =
VQμ

2
j−1 + Vj−1ω

2
j−1 + VP(ωj−1 − γμj−1)2

VQ + γ2Vj−1
. (E.36)

Hence, by ‘completing the square’ we rewrite (E.34) as

Pj(Bj) =
Cj−1e

− −α2+β

2

(
VP+

VQVj−1
VQ+γ2Vj−1

)

√
2π
(

VQ + γ2VP +
VPVQ
Vj−1

) exp

⎧⎨
⎩− (Bj − α)2

2
(

VP +
VQVj−1

VQ+γ2Vj−1

)
⎫⎬
⎭ , (E.37)

and, after substituting for α and β from (E.35) and (E.36), we arrive at the expression (E.30) for Pj(Bj) with
Cj, μj and Vj specified by the recurrence relations (E.31)–(E.33). �

Now, using the above lemma we may rewrite equation (E.28) as∫
dBk−1 p(Bk) q(ωk|Bk) = q(ωk|Bk)Pk(Bk), (E.38)

with Pk(Bk) being now defined according to equation (E.30) with variances VP and VQ in (E.31)–(E.33)
specified in our case by equations (E.6) and (E.27), respectively. Consequently, the FI of PBk

(ωk) in
equation (E.24) reads

F
[
PBk

(ωk)
]
=

∫
dωk PBk

(ωk)

[
−∂2

Bk
log

(
1

p(Bk)

∫
dBk−1 p(Bk)q(ωk|Bk)

)]

=

∫
dωkPBk

(ωk)

[
−∂2

Bk
log

(
q(ωk|Bk)

p(Bk)
Pk(Bk)

)]
(E.39)

=
γ2

VQ
− 1

V (k)
P

+
1

Vk
, (E.40)

where the expression (E.40) follows from the fact that we are dealing with a product (and quotient) of
Gaussian distributions within log(. . .) in (E.39), so that the FI becomes just the sum (and difference) of the
inverses of their respective variances. In particular, VQ/γ

2 is the variance of q(ωk|Bk) when treating Bk as the
random variable, V (k)

P is the variance of p(Bk) specified in (E.8); while Vk is the variance of Pk(Bk) given by
the recurrence relation (E.33) that must still be solved.
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Although the recursive relation (E.33) (with V0 = σ2
0) admits a general solution, for simplicity we

present only its form for the relevant setting, in which we do not possess any prior knowledge about the
initial field B0, i.e. when σ0 →∞ in (E.4). Then,

Vk|σ0→∞ =
1

2VP
+

1

2γ

√
VP(4VQ + VPγ2)

⎛
⎜⎜⎜⎝1 +

2

−1 +

(
2VQ+γ

(
VPγ+

√
VP(4VQ+VPγ

2)
)

2VQ+γ
(

VPγ−
√

VP(4VQ+VPγ
2)

)
)k

⎞
⎟⎟⎟⎠ , (E.41)

which—after substituting for VP = qB
2χ (1 − e−2χδt) and VQ = γy/δt according to expressions (E.6) and

(E.27), respectively, and taking the continuous-time limit δt → 0 with k = t/δt—takes the form:

lim
δt→0

{
Vk=t/δt

∣∣
σ0→∞

}
=

√
γy qB

γ2
coth

(
t

√
qBγ2

γy

)
. (E.42)

Finally, by noting that the term γ2/VQ = γ2δt/γy in (E.40) vanishes when letting δt → 0, and so does

the term 1/V (k)
P when σ0 →∞ (see equation (E.8)), we arrive at the FI of PBt (ω<t) defined within the

continuous-time δt → 0 limit as

F
[
PBt (ω<t)

]
=

σ0→∞

1

limδt→0

{
Vk=t/δt

∣∣
σ0→∞

} =

√
γ2

γyqB
tanh

(
t

√
qBγ2

γy

)
, (E.43)

which is the expression stated in equation (57) of the main text.

Appendix F. Effective dynamics averaged over the field fluctuations

We use the results obtained above in appendix E.2, in order to answer the question of what would the
effective ensemble dynamics be, if one was not to use inference techniques such as the KF in order to track
the magnetic field in real time, but rather ignore and, hence, average over the field fluctuations.

For that purpose, let us ignore the impact of continuous measurement on the atomic ensemble, and
focus on the ensemble dynamics dictated only by the unitary evolution:

dρt

dt
= −iγBt [̂Jy, ρt], (F.1)

where Bt follows a Wiener process dBt =
√

qB dWt , such that E[dW2
t ] = dt. Given that the ensemble is

initially prepared in a pure state |ψ0〉, its state at time t then reads

|ψt〉 = e−iγĴy
∫ t

0 Bτ dτ |ψ0〉. (F.2)

The integral of a Wiener process,
∫ t

0 W(τ)dτ with W(t) :=
∫ t

0 dWt , constitutes a random variable
distributed normally with zero mean and variance t3/3 [55]. Hence, upon defining

Zt :=
γ

t

∫ t

0
Bτ dτ (F.3)

that satisfies then Zt ∼ N (0,γ2qBt/3), we may rewrite (F.2) as

|ψt〉 = e−iZt t̂Jy |ψ0〉, (F.4)

and the quantum state describing the atomic ensemble after averaging over the field fluctuations reads

ρt = EZt [|ψt〉〈ψt |] = EZt

[
e−iZt t̂Jy |ψ0〉〈ψ0|eiZt t̂Jy

]
, (F.5)

being averaged over all potential stochastic trajectories of the variable Zt.
Now, inspecting theorem 1 and noticing that equation (F.5) is just a special case of equation (E.13), we

may directly conclude from (E.15) that the average dynamics is described by the following master equation

dρt

dt
= −1

2
Γ(t)[̂Jy, [̂Jy, ρt]] = Γ(t)D[̂Jy]ρt , (F.6)
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with the resulting decoherence rate given by

Γ(t) = γ2qB t2, (F.7)

which is obtained by substituting into equation (E.16) σ2
t = γ2qBt/3, i.e. the variance of the random

variable Zt.
The above short derivation demonstrates that averaging over field fluctuations—instead of following a

single trajectory, as done by resorting to, e.g. the KF—effectively leads to a collective noise in the direction
of magnetic field (here, in the eigenbasis of Ĵy), whose decoherence rate (F.7), however, increases
quadratically with time, Γ(t) ∼ t2. This contrasts the collective noise model considered throughout the
manuscript, whose decoherence rate is constant, γy = 1/T∗

2 in equation (5), being determined by the
phenomenological (ensemble) spin-decoherence time T∗

2 .
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