

Shape evolution in nuclei with Z in $A \sim 180 - 190$ region

S. Nandi^{1,2,*} and G. Mukherjee^{1,2}

¹Variable Energy Cyclotron Center, 1/AF Bidhannagar, Kolkata 700064, INDIA

²HBNI, Training School Complex, Anushaktinagar, Mumbai-400094, India

* email: s.nandi@vecc.gov.in

Introduction

A systematic investigation of the shape evolution of nuclei in $A \sim 180 - 190$ region with proton number from $Z = 72 - 82$ has been performed in the frame work of cranking model. For the nuclei below $Z = 82$ and near $A \sim 180$, the active proton and neutron orbitals are $\pi g_{7/2}$, $\pi d_{5/2}$, $\pi h_{11/2}$, $\pi d_{3/2}$ and $\nu h_{9/2}$, $\nu i_{13/2}$ respectively that is both high- and low-j orbitals. The Hf ($Z = 72$) nuclei are known to possess axially prolate deformation up to neutron rich isotope ^{182}Hf ($N = 110$) with several known K-isomers [1]. On the other hand, the neutron deficient Hg and Pb nuclei in $A \sim 190$ region show shape co-existence and oblate shape. Therefore, it is interesting to study if the shape evolution of these nuclei from prolate to oblate is through intermediate non-axial shapes. Experimental indication of such non-axial shapes has been reported in the W and Os nuclei in relation to K-isomerism [2,3].

In the present work, the Total Routhian surfaces (TRS) have been calculated near the ground state for the $N = 110$ even-even isotones from Hf to Pb. The variation of the active single particle orbitals, near the proton Fermi levels in these nuclei, with the deformation parameter γ have also been studied for microscopic understanding of nuclear shape evolution.

Theoretical basis

In the calculations, performed in the present work, a Woods-Saxon potential was used with BCS pairing to calculate the single particle energies. The TRSs were calculated using the Strutinsky shell correction method for several values of the deformation parameters β_2 , γ and β_4 at different rotational frequencies (ω). The β_2 and γ values corresponding to the minimum of the TRS have been taken as the deformation parameters of a nucleus at a fixed rotational frequency. The TRS code of Nazarewicz et al., [4, 5] was used for this calculations and the

procedure has been given in Ref. [6]. In these calculations the Lund convention was followed, according to which, $\gamma = 0^\circ$ ($\gamma = \pm 60^\circ$) corresponds to prolate (oblate) shape and any intermediate γ values correspond to the triaxial shape.

Results and Discussions

The results of the TRS calculations are shown in Table 1 and Fig.1. The calculated β_2 and γ values corresponding to the minimum of the TRS at $\omega = 0.1$ MeV for ^{182}Hf , ^{184}W , ^{186}Os , and ^{188}Pt , ^{190}Hg and ^{192}Pb isotones ($N=110$) are shown in Table 1.

Table 1: Calculated β_2 and γ values from TRS.

Nucleus	β_2	γ
^{182}Hf	0.237	-1.2°
^{184}W	0.213	-5.1°
^{186}Os	0.196	-14.1°
^{188}Pt	0.165	-30.1°
^{190}Hg	0.151	-52.8°
^{192}Pb	0.04	13.4°

Fig. 1 shows the corresponding TRS plots in the β_2 - γ deformation mesh. It is evident from Table 1 that the deformation (β_2) decreases as the proton number approaches the $Z = 82$ shell closure with a drastic drop in β_2 for ^{192}Pb . Interestingly, the non-axiality (γ) in the nuclear shape increases with the increase in Z , attaining the maximum triaxiality ($\gamma \sim -30^\circ$) at $Z = 78$ for ^{188}Pt . The surfaces also become more and more γ -soft with increasing proton number, as can be seen from Fig.1. In case of ^{190}Hg , the minimum of the TRS shifts to near collective oblate deformation while for ^{192}Pb , the shape becomes near-spherical.

The TRS energies (E_{TRS}) for these nuclei (except ^{192}Pb , as it has near spherical shape as seen in Fig. 1) are plotted as a function of γ in Fig. 2. The β_2 values in these plots correspond to the TRS minima for each nucleus. The shape

evolution in γ degrees of freedom for these nuclei is clearly seen in this plot.

Fig. 1: TRS plot in the β_2 - γ plane for $Z = 72 - 82$ at $\hbar\omega = 0.1$ MeV. The contours are 250 keV apart.

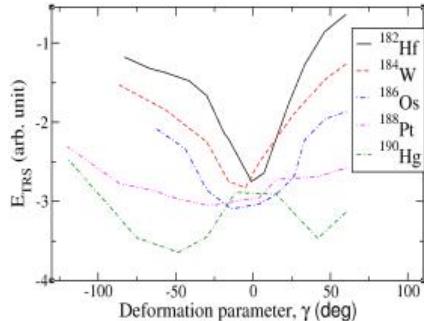


Fig. 2: TRS energy (E_{TRS}) as a function of γ

The variation of energy of the active proton single particle orbitals in this mass region have been plotted with γ in Fig. 3. These are plotted for $\beta_2 = 0.2$ and $\omega = 0.0$ MeV. It can be seen that the positive parity orbitals of $7/2^+[404]$ and $5/2^+[402]$, originated from $g_{7/2}$ and $d_{5/2}$ parentage, respectively, have maximum at prolate ($\gamma=0^\circ$) and minimum at oblate ($\gamma=\pm 60^\circ$) deformation, while $1/2^+[411]$ orbital, originated from $d_{3/2}$ parentage, has minimum at prolate deformation.

On the other hand, the negative parity orbitals of $7/2^-[523]$ and $9/2^-[514]$, originated from the $h_{11/2}$ parentage show nearly flat minima around $\gamma=0^\circ$ and $\gamma=\pm 40^\circ$ respectively. The flat

minima can give rise gamma softness in nuclear shape. The other high- Ω negative parity proton orbital shows minima near $\gamma=\pm 60^\circ$ (oblate).

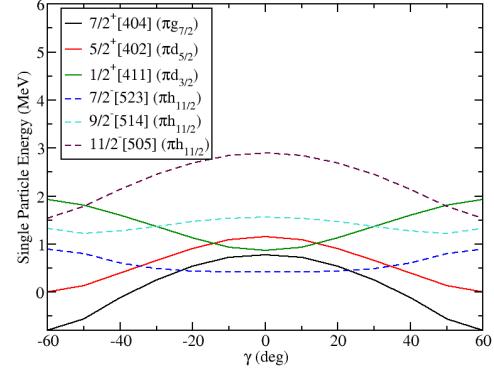


Fig. 3: Plot of proton single particle energies with γ

Summary

A systematic study of the evolution of the near-ground-state shape for the even-even, $N = 110$ isotones from $Z = 72$ to $Z = 82$ has been performed from TRS calculations. It clearly shows that the deformed prolate shape in Hf gradually transforms to a less deformed axially symmetric oblate shape in Hg, before the shape becomes near-spherical in Pb, through gamma-soft and triaxial shapes with maximum triaxiality in Pt. The calculated proton single particle energies of different active positive and negative parity orbitals have different γ dependence. The shape driving effect of these orbitals, particularly on the γ -soft even-even core, may be investigated in more detail in the odd-proton nuclei, both theoretically and experimentally.

References

- [1] E. Ngijoi-Yogo, Phys. Rev. **C75**, 034305 (2007); R. DøAlarcao et al., Phys. Rev. **C59**, R1227 (1999).
- [2] P. Chowdhury et al., Nucl. Phys. **A485**, 136 (1988).
- [3] C. Wheldon, et al., Phys. Rev. **C59**, R2334 (1999).
- [4] W. Nazarewicz et al., Nucl. Phys. **A435**, 397 (1985).
- [5] W. Nazarewicz et al., Nucl. Phys. **A512**, 61 (1990).
- [6] G. Mukherjee et al., Nucl. Phys. **A829**, 137 (2009).