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1. Introduction

Quantum electrodynamics (QED), the theory of electrons interacting with photons
(at least for small energies) is one of the great successes of physics. Among its
major achievements is the explanation of the Lamb shift and the anomal ous mag-
netic moment of the electron. Nevertheless, its computations, which are entirely
based on perturbation theory, created some uneasiness among the practitioners.
The occurrence of infinities was and is especially vexing. Moreover, a truly non-
trivial, 3+1-dimensional example of arelativistically invariant field theory has not
yet been achieved.

There are, however, unresolved issues at a much earlier stage of QED that hark
back to black-body radiation, the simplest and historicaly first problem involv-
ing the interaction of matter with radiation. The conceptua problems stemming
from black-body radiation were partly resolved by quantum mechanics, i.e., by
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the non-relativistic Schrodinger equation, which is, undoubtedly, one of the most
successful of theories, for it describes matter at low energies amost completely. It
ismathematically consistent and there are techniques available to compute relevant
guantities. Moreover, it allows us to explain certain facts about bulk matter such
asits stability, it extensivity, and the existence of thermodynamic functions. What
has not been as successful, so far, isthe incorporation of radiation phenomena, the
very problem quantum mechanics set out to explain.

It ought to be possible to find a mathematically consistent theory, free of in-
finities, that describes the interaction of non-relativistic matter with radiation at
moderate energies, such as atomic binding energies. It should not be necessary, as
some physicists believe, to embed QED as alow energy part of a consistent high
energy theory.

From such a theory one could learn a number of things that have not been
explained rigorously. i) The decay of excited states in atoms. This problem has
been investigated in some ultraviolet cutoff modelsin [2] and in a massive photon
model in [10]. See also the review of Hogreve [5]. ii) Non-relativistic QED could
be a playground for truly non-perturbative calculations and it could shed light
on renormalization procedures. In fact, this was the route historically taken by
Kramers that led to the renormalization program of Dyson, Feynman, Schwinger
and Tomonaga. iii) Last but not least, one could formulate and answer the problems
of stability of bulk matter interacting with the radiation field.

It has been proved in [3], [7] that stability of non-relativistic matter (with the
Pauli Hamiltonian) interacting with classical magnetic fields holds provided that
the fine-structure constant, o = ez/hc, is small enough. It is certain, that the in-
tricacies and difficulties of this classical field model will persist and presumably
magnify in QED.

The same may be expected from a relativistic QED since replacing the Pauli
Hamiltonian by a Dirac operator leads to a similar requirement on a [8]. Indeed,
stability of matter in this model (the Brown-Ravenhall model) requires that the
electron (positron) be defined in terms of the positive (negative) spectral subspace
of the Dirac operator with the magnetic vector potential A(x), instead of the free
Dirac operator without A(x). This observation, that perturbation theory, if thereis
one, must start from the dressed electrons rather than the electrons unclothed by
its magnetic field, might ultimately be important in a non-perturbative QED.

The first, humble step is to understand electrons that interact with the radia-
tion field but which are free otherwise. In order for this model to make sense an
ultraviolet cutoff has to be imposed that limits the energy of photon modes. The
simplest question, which is the one we address in this paper, is the behavior of
the self-energy of the electron as the cutoff tends to infinity (with the bare mass
of the electron fixed). The self-energy of the electron diverges as the cutoff tends
to infinity and it has to be subtracted for each electron in any interacting theory.
Thetotal energy will still depend strongly on the cutoff because of the interactions.
This dependence will, hopefully, enter through an effective mass which will be set
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equal to the physical mass (mass renormalization). The resulting theory should be
essentially Schrodinger’s mechanics, but slightly modified by so-called radiative
corrections.

Lest the reader think that the self-energy problem is just a mathematical ex-
ercise, consideration of the many-body problem will provide a counterexample.
Imagine N charged bosons interacting with the radiation field, but neglect any
interaction among them such as the Coulomb repulsion. We say that these particles
bind if the energy of the combined particles is less than the energy of infinitely
separated particles. As we shall show, charged bosons indeed bind and they do it
in such amassive way that it will be very likely that this cannot be overcome by the
Coulomb repulsion. In particular, the energy of a charged many-boson system is
not extensive, and from this perspective it is fortunate that stable, charged bosons
do not exist in nature.

The situation is very different for fermions. We are not able to show that they
do not bind but we can show — and this is one of the main results of our paper
— that the self-energy is extensive, i.e., bounded above and below by a constant
times N.

We thus have strong evidence that there is ho consistent description of asystem
of stable charged relativistic or non-relativistic bosons interacting with the radia-
tion field, while the Pauli exclusion principle, on the other hand, is able to prevent
the above mentioned pathol ogy.

In the remainder of the section we explain our notation and state the results.
In the subsequent sections we sketch the proof of some of them but for details we
refer the reader to [6].

We mesasure the energy in units of mc® where misthe bare mass of the electron,
the length in units of the Compton wave length /- = //mc of the bare electron. We
further choose /;1v/Ac as the unit for the vector potential A and /.2v/7ic as the
unit for the magnetic field B. The argument is the dimensionless quantity @1x. As
usual, o = € /hc ~ 1/137.04 is the fine structure constant.

In the expression below, A(x) denotes an ultraviolet cutoff radiation field local-
ized in abox L x L x L with volumeV = L3,

1 ig ixK | a¥ (1) aixk
A(x)_ngM:ELZ\/mA(k)[ak(k)e' +aj (k)em™¥] . (1.2)

The index k = 2zn/L where n € Z3, and the word cutoff refers to the restriction
to all values of k with |k| < A.

The vectors ¢, (k) are the polarization vectors and are normalized in such away
that

The operators a, (k) and a; (k) satisfy the commutation relation

[a, (K), a5, (K)] =8, ,,8(k.K) . (1.3)



330 E.H.LIEB AND M. LOSS

while all others commute with each other.
The energy of the radiation field can now be conveniently written as

H = ; Y Iklas (k)ay (k) - (14)
kl<AA=12

These operators act on the Hilbert space generated by the polynomialsin g (k)
acting on the vacuum |0).
The self energy of (one or more) particles is the ground state energy of the
Hamiltonian
H = kinetic energy + H; . (1.5

where, as usual, the ground state energy of H is defined to be

. (WHW

Typically, in the inquiry about the self-energy problem, i.e., the problem of
computing the self—energy for fixed, albeit small, o and for large A, one proceeds
viaperturbation theory. First order perturbation theory will predict an energy of the
order of aA2, and a higher order power counting argument confirms the asymptot-
ically large A dependence of that calculation. Our theorems below show that the
predictions of perturbation theory for the self—energy problem are wrong, if one
isinterested in the large A asymptotics of the energy. If perturbation theory works
at al, then it works only for arange of o that vanishes as A increases. In fact we
deduce from the upper bound in Theorem 1.1 that the size of this range shrinks at
least as A2/,

All the theorems below are asymptotic statements for large A and for fixed a.
For actual boundswerefer thereader to [6]. Thefirst result concernsthe self energy
of a nonrelativistic electron interacting with the radiation field. The Hamiltonian
is given by

1
H:i(p+\/aA(x))2+Hf, (1.7)
where p= —iV and acts on L?(R®) ® .%, where .# denotes the photon Fock space.

Theorem 1.1 The ground state energy, E,, of the operator (1.7) satisfies the
bounds

C,aY2A32 < E, < C,a? AT (18)

We do not know how to get upper and lower bounds that are of the same order
in A, but we suspect that A12/7 is the right exponent. This is supported by the
following theorem in which the p- A term is omitted.
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Theorem 1.2 The ground state energy E, of the operator

1
5 [P? + aA(X)?] + H; (1.9
satisfies the bounds

C,a? AT < E, < C,a?TAY/7 (1.10)

While these results are not of direct physical relevance (since E, is not ob-
servable), the many-body problem is of importance since it reveals a dramatic
difference between bosons and fermions.

Theorem 1.3 The ground state energy of N bosons, E8°S°”(N), with Hamiltonian

=2

=1

I\)II—‘

(P + VaA(x;))*+H; (1.12)

satisfies the bounds

C,VNVaA¥? <EFPN(N) < C,NY7a?/ A/ (112)

Thus, the energy ES°®(N) is not extensive, i.e., it costs a huge energy to sepa-
rate bosons. This has to be contrasted with the next theorem about fermions. The
Hamiltonian is the same as before but it acts on the Hilbert space

F @ NLILA (R C?) (1.13)
where the wedge product indicates that the antisymmetric tensor product is taken.

Theorem 1.4 The ground state energy, EfF™"(N), of N charged fermions inter-
acting with the radiation field satisfies

C1a1/2A3/2N < E(f)ermion(N) < C2a2/7A12/7N (114)

The“relativistic” kinetic energy for an electron is

¥ = |p+ VaAX)| = \/[p+ VaAX]? (1.15)

with p= —iV. (Really, we should take \/[p+ v/aA(X)]2 + 1, but sincex < v/x2 + 1
< X+ 1, the difference is bounded by N.)
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Consider, first, the N = 1 body problem with the Hamiltonian
H=T494H,. (1.16)

By simple length scaling (with a simultaneous scaling of the volume V) we
easily see that E; = infspec (H) = CA. Our goal hereisto show that the constant,
C, isstrictly positive and to give an effective lower bound for it. But wewould like
to do more, namely investigate the dependence of this constant on ;. We also want
to show, later on, that for N fermions the energy is bounded below by a positive
constant times NA. Our proof will contain some novel — even bizarre — features.

Theorem 1.5 For the Hamiltonian in 1.16 there are positive constants, C,C,C"
such that

CVaA
C'v/oA for smal a
C"A for large o .

ITI
o
AVARAVARVAN

The generalization of thisto N fermions is similar to the nonrelativistic gener-
alization, except that the power of A isthe same on both sides of the inequalities.

Theorem 1.6 For N fermions with Hamiltonian
A o
Hy = > T 04) + Hy

there are positive constants C,C,C", independent of o and N, such that

E, < CNyVaA
E, > C'NVaA forsmal a
E, > C'NA forlarge a (1.17)

We close this introduction by mentioning one last result about the Pauli opera-
tor. The kinetic energy expression is given by

TP — [ (p4 VGAR))2 = (p+VaAN)+va o-BKX) . (L18)

where o denotes the vector consisting of the Pauli matrices. Observe that thisterm
automatically accounts for the spin—field interaction. Our result for the self energy
of aPauli electron isthe following.
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Theorem 1.7 The ground state energy E, of the Hamiltonian with Pauli energy,

2o (p+ VaAX)P+Hy. (119)
satisfies the bounds

E, < Cav/an®/? (1.20)

Ey, > CiaA forsmal o

E, > C,a'/®A forlarge a

For N fermions, the bounds above are multiplied by N (and the constants are
changed).

For the details of the proof, we refer the reader to [6]. We believe that the upper
bound is closer to the truth since the main contributions to the self energy should
come from the fluctuations of the A? term.

Theorem 1.7 has the following consequence for stability of matter interacting
with quantized fields. It was shown in [7] that a system of electrons and nuclei
interacting with Coulomb forces, with the Pauli kinetic energy for the electrons
and with a classical magnetic field energy is stable (i.e., the ground state energy is
bounded below by N) if and only if a issmall enough. In [1], [4] this result was
extended to quantized, ultraviolet cutoff magnetic fields (as here). Among other
things, it was shown in [4] that the ground state energy, E,, of the electrons and
nuclei problem is bounded below by —a?AN for small o. Theorem 1.7 implies,
as a corollary, that for small « the total energy (including Coulomb energies) is
bounded below by +aAN. In other words, among the three components of energy
(kinetic, field and Coulomb), the first two overwhelm the third — for small o, at
least.

All of these statements are true without mass renormalization and the situation
could conceivably be more dramatic when the mass is renormalized. In any case,
the true physical questions concern energy differences, and this question remains
to be addressed.

2. Non-relativistic energy bounds

Theorem 1.1: We sketch a proof of Theorem 1.1. It is clear by taking the state
V~12/®|0) that the ground state energy is bounded above by (const) A2, which
is the same result one gets from perturbation theory. Since the field energy in this
state vanishes, such a computation ignores the tradeoff between the kinetic energy
of the electron and the field energy. Thus, it is important to quantify this tradeoff.
The mainideais to estimate the field energy in terms of selected modes.

Consider the operators (field modes), parametrized by y € [,

ky
L(y) = Fk;Mf a, (K)V, (K)e 2.1)
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with some arbitrary complex coefficients v, (k). The following lemmais elemen-
tary

LemmaZ2.1
H¢ > / w(y)L*(y)L(y)dy (2.2)
provided that the functions v, (k) and w are chosen such that, as matrices,
K19, 5,6 va kW(k—K)v, (K)V/IK], (2.3)
or equivalently, that
|f, (k)2 1 R
PeEZ Y o R (K)RK-K) (2.4)

KZAL v, (K2~ IK||K <A,
for all f, (k), where W(k) = [ €**w(x)dx.

For the proof, one simply notes that both sides of (2.2) are quadratic formsin
the creation and annihilation operators, and hence (2.3) and (2.4) are hecessary and

sufficient conditions for (2.2) to be true. |
Corollary 2.2
1 Jw(y) (L(y) +L*(y))*dy
He>—— K|[v,, (k)|? / w(y dy+
f 2Vk<2AA| 10O f ) — Jw(y)(L(y) — L*(y))*dy
(2.5)
To prove this, note that
x| * 1 2
L*L=LL ~ > E K] v, (K=, (2.6)
|kl <AA
and, quite generally for operators,
LL+L"L* <L*L+LL*. (2.7
|

Returning to the proof of Theorem 1.1 we start with the lower bound. Denote
by
I(x) =

k-x at ik-x
V_“(g“fgk ( K& — at (K)e ) 2.8)
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This operator is canonically conjugate to A(X) in the sense that we have the com-
mutation relations 1

[T (%), A ()] = & ; WAS : (2.9)

For our calculation, it isimportant to note that
divII(x) =0. (2.10)
Hence from (2.9) and (2.10) we get that

3 .
i
3Py +VeaA(x).10j(0)] = Va 3 SAS (2.11)
j:l ( .7'17)
Theinequality
1 3
5(p+ VaA(X)? +28°T1(x) 2 P+ VoA XK, (212)
valid for all positive numbers a, yields
%(p+\/5A( X))?+H;, >a\/_( 302 SA3+H — 2a°TI(x)? . (2.13)
Now, with ©
g, (K
v, (k) = (3m) 372 (2.19)
and
w(y) =8(x—y) , (2.15)
it is elementary to see that (2.4) is satisfied. Hence Corollary 2.2 yields
O? > 9
> — — .
Hi > 4A3H(X) 8A (2.16)
Choosing a = (37)/(v/2A%?) yields the lower bound
1 (04 3/2 9
> /= —— .
H> 3 2A 8A (2.17)

Theideaof using acommutator, asin (2.12), (2.13) to estimate the ground state
energy, goes back to the study of the polaron [9].
For the upper bound we take a simple trial function of the form

P(X) Q¥ (2.18)

where W € .% isnormalized and ¢ (x) isareal function normalized in L?(R3). An
upper bound to the energy is thus given by

2/|V¢ X)|%dx+ = /¢ (W, A(X)%W) dx+ (P, H, W) . (2.19)
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It is not very difficult to see that the last two terms can be concatenated into the
following expression.

5 / X)%+ aAX) (—A+ ¢ (X)D)AX)] W) dx — %Tr\/P—AP. (2.20)

Here, P is the projection onto the divergence free vector fields with ultraviolet
cutoff A. This can be deduced by writing the field energy in terms of T1(x) and
A(X). The first term in (2.20) is a sum of harmonic oscillators whose zero point
energy isgiven by

—Tr\/P (—A+ap(x)?)P (2.21)

and hence

_Tr\/P (—A+ ag(x ))P—%Tr P(—A)P, (2.22)

isan exact expression for the ground state energy. Using the operator monotonicity
of the square root we get as an upper bound on (2.20)

%/|V¢(x)|2dx+ %\/a Try/P¢(x)2P . (2.23)

Asatria function we use the positive function (note that this really is positive)

3
P(x) = const.K‘?’/Z/ <1— %) &Xdx . (2.24)
+

Optimizing the resulting expression over K yields the stated result. For details we
refer the reader to [6]. |
Itis natural to ask, how good this upper bound is. If we neglect the cross terms
n (p+ A)?, i.e, we replace the kinetic energy by p? + aA(x)?, then we have
Theorem 1.2, which we prove next.
Theorem 1.2: The upper bound was aready given in Theorem 1.1 because
< p-A>=0in the state (2.18). Loosely speaking equation (2.9) expresses the
Heisenberg uncertainty principle for the field operators. An uncertainty principle
that is quite a bit more useful isthe following.

Lemma 2.3 The following inequality holds in the sense of quadratic forms

(2.25)

For the proof note that [A, (x), A (y)] = 0 and compute

AKX, 1 1 A2
j 3 A(x)2_2<AJ(X)2> ] : (2.26)

095 2607~ (@
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and summing over j we obtain that

= i(X) 1 1
| gl[n(x)j’ AéX)Z] - (3n)2A3A(x)2 (2.27)

Our statement follows from the Schwarz inequality. |
To prove Theorem 1.2 we return to Lemma 2.1 and choose v, (K) = ¢, (k) and

w(x) any function < 1. Corollary 2.2 applied to each of the 3 components of T1(x)
then yields

Hy = 7 [woeym?ay— a2 [wiydy. 229

for every x € R®. By Lemma 2.1 the right side is bounded below by

N f ey

/ w(y)dy , (2.29)
and hence
(W HW) > % [ w0, V) ax- 5 [ (w00, A2 ()¢

+ A Wiy () g ) o

_ A / w(y)dy / (W), P(x)) X . (2.30)

By Schwarz's inequality the second and third term together are bounded below by

3 W(X—Y)
\f A / ()dzdxdy. (2.31)

If we restate our bound in terms of Fourier space variables we get
Wi ~ ~ N ~ ~
[0 % 3 PL G,y A60) [ (0. T
2 V2" Jwo

/
(2.32)

Choosing the function W(p) to be (2)°A~18/7 times the characteristic function of
the ball of radius AS/7, we have that w(x) < 1 and it remains to optimize (2.32)

over al normalized stateslfl(p). Thisiseasily achieved by noting that the function

0P 91\3\%% (2.33)

is everywhere larger than A'%/7. Strictly speaking, the function w(x) should be
positivein order for the argument that led to (2.31) to bevalid. This can be achieved
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with a different choice of w(x), like the onein (2.24), that is more complicated but
does not change the argument in an essential way.

3. Non-relativistic many-body energies

A problem that hasto be addressed isthe energy of N particles (bosons or fermions)
interacting with the radiation field. If E; = Ej(1) is the energy of one particle
(which we estimated in the preceding section) then, ideally the energy, E(N), of
N particles (which trivially satisfies B < NE, since the N particles can be placed
infinitely far apart) ought to be, exactly,

Eo(N) = NE, (3.1)

inacorrect QED. In other words, in the absence of nuclei and Coulomb potentials,
there should be no binding caused by the field energy H;. This is what we seem
to observe experimentally, but this important topic does not seem to have been
discussed in the QED literature.

Normally, one should expect binding, for the following mathematical reason:
The first particle generates a field, A(x), and energy E,. The second particle can
either try to generate a field A(x+Y), located very far away at y or the second
particle can try to take advantage of the field A(x), already generated by the first
particle, and achieve an insertion energy lower than .

Indeed, this second phenomenon happens for bosons, as expected. For fermions,
however, the Paul principle plays a crucia role (even in the absence of Coulomb
attractions). We show that E;(N) > CNE, for fermions, but we are unable to show
that the universal constant C = 1. Evenif C < 1, the situation could still be saved by
mass renormalization, which drives the bare mass to zero as A increases, thereby
pushing particles apart.

3.1. Bosons

Theorem 1.3: Thistheorem concerns the ground state energy of N charged bosons.
the Hamiltonian is given by 1.11 acting on the Hilbert space of symmetric func-
tions tensored with the photon Fock space .. It states, basically, that

C,VNVaA¥2 < EF(N) < C,N5/ 702/ TA2/7,

The proof follows essentially that of the one particle case. The interesting
fact is that it implies binding of charged bosons (in the absence of the Coulomb
repulsion). The binding energy is defined by

AE(N) = Ey(N) — NEy(1)
and sati sfies the bounds

AE(N)
AE(N)

CVNVa A¥2 —CNa?/ A7
CN?Ta?TATT —C N ya A%? (3.2)

IN IV
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which can be made negative for appropriately chosen N and A. There will be bind-
ing for al large enough N, irrespective of the cutoff A. It also has to be remarked
that the Coulomb repulsion will, in all likelihood, not ater this result since it has
an effect on energy scales of the order of A and not A'%/7 or A3/2.

3.2. Fermions

The real issue for physics is what happens with fermions. We cannot show that

there is no binding but we can show that the energy is extensive asin Theorem 1.4.

The Hamiltonian is the same as (1.11) but it acts on antisymmetric functions

tensored with .%. (Spin can be ignored for present purposes.)

Rough sketch of the proof of Theorem 1.11. The difficulty in proving this theorem

stems from the fact that the field energy is not extensive in any obvious way.
Define X = (x,,- -+ ,Xy) and define the function

(X, R) = #x £X; : [x—x| <R} .

This function counts the number of electrons that are within a distance R of the
j'" electron. Note that this function is not smooth, so that all the following com-
putations have to be modified. (See [6].) We save half of the kinetic energy and
write

N
H= % E(pj +VaA(x)*+H' .
=1

We apply the commutator estimate (2.11) to the pair

D, + VA, mmxj)}
j AN

and obtain the bound (with the caveat mentioned above), for al o > 0,

2
/7XRJr1 EN XR+1

The next two steps are somewhat nontrivial and we refer the reader to [6]. First
one notes that the modes F(x) and F(x;) are essentially orthogonal (i.e., they
commute) if |x —x;| > A1 . Ignoring the technical details of how thisisimple-
mented, the key observation is that the last two terms in (3.3) can be estimated
from below by —NA provided a = A—3%/2,

The next ingredient isanew Lieb-Thirring type estimate involving the function
N;(X,R). It is here and only here that the Pauli exclusion principle is invoked.

H' > ay/aAd E (x)>+H;  (33)

Theorem 3.1 On the space A L?R%; C%) of antisymmetric functions

C N

N
30y + VAR G 3 X R 34
: J_
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with C > 0.00127. An analogous inequality holds for the relativistic case as well:

N
E|pj+\FA 1—/§E N (X,R)Y3 (3.5)

By using the kinetic energy previously saved together with (3.3) and the previ-
ous discussion, we get

N
2 (X R2/3+\/_A3/2; —NA.
= N;(X,R)+1

By minimizing over N; the desired estimate is obtained. The upper bound is
fairly elementary and is omitted. |

4. Relativistic energy bounds

Theorem 1.5: Sketch of Proof.
An upper bound for E; is easy to obtain, but it isindirect. Note that

[P+ VaAX)| < elp+ VaAX)]? + (4e) (4.1)

forany ¢ > 0. Take W = f(x) ®|0) with |0) being the Fock space vacuum. Using
(4.1)

(W, HY) < ¢ /Rs{a<O|A(x)2|0>|f(x)|2+|Vf(x)|2}dx+s’1

eaA? 1
= ViZ+— 4.2
A +/| | +4£’ (4.2

since (O[A(X)2[0) = (21) 3 [, _, [K|~*dk = A?/4a2. We can now let f(x) — Vs
and take & = (7/a)Y?A~1, whence

E, < (a/4m)Y/2A . (4.3)

Now we turn to the lower bound for H.
Step 1: Since x — /X is operator monotone,

T>T =Ip+VaAX), (4.4)

where the subscript 1 denotes the 1 component (i.e., the x-component) of a vector.
By replacing T by T;, we are now in a position to remove A; by a gauge transfor-
mation - but it hasto be an operator-valued gauge transformation. The use of such
agauge transformation is a novelty, as far aswe are aware, in QED.
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To effect the gauge transformation, set

1 e’ (K) . gl —1
w(X)—\/W% (k)l (3, (k) + & (—K)] ik,

gk (4.5)

with X, = (%,,%). Then [A;(x),¢(x)] =0, j=1,2,3 and —i&ix1 exp [ip(X)] =
—A,(x). The unitary U = exp [i@(X)] is agauge transformation, but it is operator-
valued. We have

|
Ula, (U = a, (k) +f, (k,X)
U~ta; (kU = a; (k) + f, (k)
Hi = UM U = SIK(a (k) + f, (k)a, (K + T, (kX)) (4.6)
kA
with ®) o
a £, (K1 &7 —1 iy x
fokX) = /= 2 x| (4.7)
; Ng Kk
Since p, does not appear in our new Hamiltonian,
H =UHU = |p|+ H; (4.8)

the variable X, appears only as a parameter, and thus we can set x, = constant =
(0,0), by trandlation invariance, and replace F® by R! = R.
From now onx; =xand, p; = p=—i d/dx.

Step 2: The dependence on X how appears in ﬁf instead of in the kinetic energy,

|p|. For each x wecan try to putH ; into itsground state, which isthat of adisplaced
harmonic oscillator. But, since this state depends on X, to do so will require agreat
deal of kinetic energy, |p;|.

Let W be a normalized wave-function, i.e., afunction on L?(R) ® .%. We write
it as yx where Yy € .%. Thus, with (-, -) denoting the inner product on .%, we have
Jr (b pdx = 1.

Decompose R as the disjoint union of intervals of length //A, where 7 is a
parameter to be determined later. Denote these intervals by li, j=12,... . A

simple Poincaré type inequality gives, for g : L?(R) — C,
A 2 ~ 12
>C,— —0;
(©1Pi9) =Gy 3 | (100 - 7)o

where@j = Aflj g(x)dx isthe average of gin l;. Then

(wIp®) 2C5 S [ {lwwd — ,7) Jox. (49
] i
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Step 3: Next, we analyze H . Wethink of this as an operator on .%, parameterized
by x € R. Wewould like H ¢ to have agap so we define

He = 5 S [af (k) +f, (kx)] - [he] (4.10)
eA<|kI<A A

Clearly, H ;> Hy and
S A _
(.H W) =72 / YY) — (W), W) + (Y, Hxydx. (4.12)
J J'

For each interval |; we can minimize (4.11) subject to ﬁj(wx,wx>dx fixed. This
leads to
(hj ¥)x = eyx (4.12)
with A A
(hj Y)x= 7 ¥x— 7 wj+Hx yx (4.13)
Obvioudly, this eigenvalue problem (4.12, 4.13) is the same for al intervals |, so

we shall drop the subscript j and try to find the minimum e.
A lower bound to hj (and hence to €) can be found by replacing H, by

~ A
HX: E(l_nx) )

where I = |gx)(0x| is the projector onto the ground state, |gc), of Hx.
If we substitute Hy into (4.13) the corresponding eigenvalue equation (4.12)
becomes soluble. Multiply (4.12) on the left by (g(|, whence
A A
(F-¢) @ =7 @ (4.14)

Then, substitute (4.14) into (4.13) and integrate J; dx to find

et ([max) 5= (5 -e) (5-¢) 7. (4.15)

We know that e < A/2 because we could take yy = constant asatria function,

and then use Hy< A/2. Also, e < A/¢, because we could take W = & |0y, -
Step 4: Eq. (4.15) will give usalower bound to eif we can find an upper bound to
Y = (A/¢) [, IIxdx . To do this note that

2
Y2 < TraceY?= <§> / / | (0K, Gy) [Pdxdy

_ ( ) // p{_—SASkSA;HA(k,x)—fA(k,y)|2dxdy} (4.16)
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Noting that $2_, e, (k)2 = 1—kZ/k?, the quantity { } in (4.16) becomes (as
V — )

20 1 k
=—— ———(K?)[sin =2 (x— 4.17
(=G a9 (427
After some algebra we find that
1 e\/1 e 1 212 1
e g < = '
<€ A) <2 A> < %(TraceY )7e< >0 K,(a) (4.18)
where
1t 12 x=ylt/4 /sint 2
K,(a) = /O A exp [—a?|x—y|/o (T) dt] dxdy .
1/2
< / P2 8] dx. (4.19)
—-1/2
We find that
K/(a) ~ 1—af?/9%m, (o smal (4.20)

~ V2n(al?)Y?,  Palarge

If o issmall wetake £ ~ a=Y2. If « islarge we take ¢ = 2. This establishes our
theorem for N = 1. |

Theorem 1.6: Sketch of Proof.
For N > 1 we can decompose R® into cubic boxes Bj,j =1,23,... of size

(A and “borrow” 3|p+ A(x)|? kinetic energy from each particle. That is, Hy =
HY/2+ 3Ty with Ty = S, T(x;). The Pauli principle will then yield an energy for
_%Tg thaét is bounded below by (const.) (ny_;)*/3, where n; is the particle number
in box B;.

j
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