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1. Introduction

Quantum electrodynamics (QED), the theory of electrons interacting with photons
(at least for small energies) is one of the great successes of physics. Among its
major achievements is the explanation of the Lamb shift and the anomalous mag-
netic moment of the electron. Nevertheless, its computations, which are entirely
based on perturbation theory, created some uneasiness among the practitioners.
The occurrence of infinities was and is especially vexing. Moreover, a truly non-
trivial, 3+1-dimensional example of a relativistically invariant field theory has not
yet been achieved.

There are, however, unresolved issues at a much earlier stage of QED that hark
back to black-body radiation, the simplest and historically first problem involv-
ing the interaction of matter with radiation. The conceptual problems stemming
from black-body radiation were partly resolved by quantum mechanics, i.e., by
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the non-relativistic Schrödinger equation, which is, undoubtedly, one of the most
successful of theories, for it describes matter at low energies almost completely. It
is mathematically consistent and there are techniques available to compute relevant
quantities. Moreover, it allows us to explain certain facts about bulk matter such
as its stability, it extensivity, and the existence of thermodynamic functions. What
has not been as successful, so far, is the incorporation of radiation phenomena, the
very problem quantum mechanics set out to explain.

It ought to be possible to find a mathematically consistent theory, free of in-
finities, that describes the interaction of non-relativistic matter with radiation at
moderate energies, such as atomic binding energies. It should not be necessary, as
some physicists believe, to embed QED as a low energy part of a consistent high
energy theory.

From such a theory one could learn a number of things that have not been
explained rigorously. i) The decay of excited states in atoms. This problem has
been investigated in some ultraviolet cutoff models in [2] and in a massive photon
model in [10]. See also the review of Hogreve [5]. ii) Non-relativistic QED could
be a playground for truly non-perturbative calculations and it could shed light
on renormalization procedures. In fact, this was the route historically taken by
Kramers that led to the renormalization program of Dyson, Feynman, Schwinger
and Tomonaga. iii) Last but not least, one could formulate and answer the problems
of stability of bulk matter interacting with the radiation field.

It has been proved in [3], [7] that stability of non-relativistic matter (with the
Pauli Hamiltonian) interacting with classical magnetic fields holds provided that
the fine-structure constant, α � e2��c, is small enough. It is certain, that the in-
tricacies and difficulties of this classical field model will persist and presumably
magnify in QED.

The same may be expected from a relativistic QED since replacing the Pauli
Hamiltonian by a Dirac operator leads to a similar requirement on α [8]. Indeed,
stability of matter in this model (the Brown-Ravenhall model) requires that the
electron (positron) be defined in terms of the positive (negative) spectral subspace
of the Dirac operator with the magnetic vector potential A�x�, instead of the free
Dirac operator without A�x�. This observation, that perturbation theory, if there is
one, must start from the dressed electrons rather than the electrons unclothed by
its magnetic field, might ultimately be important in a non-perturbative QED.

The first, humble step is to understand electrons that interact with the radia-
tion field but which are free otherwise. In order for this model to make sense an
ultraviolet cutoff has to be imposed that limits the energy of photon modes. The
simplest question, which is the one we address in this paper, is the behavior of
the self-energy of the electron as the cutoff tends to infinity (with the bare mass
of the electron fixed). The self-energy of the electron diverges as the cutoff tends
to infinity and it has to be subtracted for each electron in any interacting theory.
The total energy will still depend strongly on the cutoff because of the interactions.
This dependence will, hopefully, enter through an effective mass which will be set
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equal to the physical mass (mass renormalization). The resulting theory should be
essentially Schrödinger’s mechanics, but slightly modified by so-called radiative
corrections.

Lest the reader think that the self-energy problem is just a mathematical ex-
ercise, consideration of the many-body problem will provide a counterexample.
Imagine N charged bosons interacting with the radiation field, but neglect any
interaction among them such as the Coulomb repulsion. We say that these particles
bind if the energy of the combined particles is less than the energy of infinitely
separated particles. As we shall show, charged bosons indeed bind and they do it
in such a massive way that it will be very likely that this cannot be overcome by the
Coulomb repulsion. In particular, the energy of a charged many-boson system is
not extensive, and from this perspective it is fortunate that stable, charged bosons
do not exist in nature.

The situation is very different for fermions. We are not able to show that they
do not bind but we can show — and this is one of the main results of our paper
— that the self-energy is extensive, i.e., bounded above and below by a constant
times N.

We thus have strong evidence that there is no consistent description of a system
of stable charged relativistic or non-relativistic bosons interacting with the radia-
tion field, while the Pauli exclusion principle, on the other hand, is able to prevent
the above mentioned pathology.

In the remainder of the section we explain our notation and state the results.
In the subsequent sections we sketch the proof of some of them but for details we
refer the reader to [6].

We measure the energy in units of mc2 where m is the bare mass of the electron,
the length in units of the Compton wave length �C � ��mc of the bare electron. We
further choose ��1

C

�
�c as the unit for the vector potential A and ��2

C

�
�c as the

unit for the magnetic field B. The argument is the dimensionless quantity ��1
C x. As

usual, α � e2��c � 1�137�04 is the fine structure constant.
In the expression below, A�x� denotes an ultraviolet cutoff radiation field local-

ized in a box L�L�L with volume V � L3,

A�x� �
1�
2V

∑
�k��Λ

∑
λ�1�2

1�
�k�ελ �k�

�
aλ �k�e

ix�k �a�λ �k�e
�ix�k� � (1.1)

The index k � 2πn�L where n � �3, and the word cutoff refers to the restriction
to all values of k with �k�� Λ.

The vectors ελ �k� are the polarization vectors and are normalized in such a way
that

εi�k� � ε j�k� � δi� j � εi�k� � k � 0 � (1.2)

The operators aλ �k� and a�λ �k� satisfy the commutation relation�
aλ �k��a

�
λ ��k��

�
� δλ �λ �δ �k�k�� � (1.3)
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while all others commute with each other.
The energy of the radiation field can now be conveniently written as

Hf � ∑
�k��Λ

∑
λ�1�2

�k�a�λ �k�aλ �k� � (1.4)

These operators act on the Hilbert space generated by the polynomials in a�λ �k�
acting on the vacuum �0�.

The self energy of (one or more) particles is the ground state energy of the
Hamiltonian

H � kinetic energy � Hf � (1.5)

where, as usual, the ground state energy of H is defined to be

E0 � inf
Ψ

�Ψ�H Ψ�
�Ψ�Ψ� � (1.6)

Typically, in the inquiry about the self–energy problem, i.e., the problem of
computing the self–energy for fixed, albeit small, α and for large Λ, one proceeds
via perturbation theory. First order perturbation theory will predict an energy of the
order of αΛ2, and a higher order power counting argument confirms the asymptot-
ically large Λ dependence of that calculation. Our theorems below show that the
predictions of perturbation theory for the self–energy problem are wrong, if one
is interested in the large Λ asymptotics of the energy. If perturbation theory works
at all, then it works only for a range of α that vanishes as Λ increases. In fact we
deduce from the upper bound in Theorem 1.1 that the size of this range shrinks at
least as Λ�2�5.

All the theorems below are asymptotic statements for large Λ and for fixed α .
For actual bounds we refer the reader to [6]. The first result concerns the self energy
of a nonrelativistic electron interacting with the radiation field. The Hamiltonian
is given by

H �
1
2
�p�

�
αA�x��2 �Hf � (1.7)

where p ��i∇ and acts on L2��3�	� , where� denotes the photon Fock space.

Theorem 1.1 The ground state energy, E0, of the operator (1.7) satisfies the
bounds

C1α
1�2Λ3�2 � E0 � C2α

2�7Λ12�7 (1.8)

We do not know how to get upper and lower bounds that are of the same order
in Λ, but we suspect that Λ12�7 is the right exponent. This is supported by the
following theorem in which the p �A term is omitted.
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Theorem 1.2 The ground state energy E0 of the operator

1
2

�
p2 �αA�x�2��Hf (1.9)

satisfies the bounds

C1α
2�7Λ12�7 
 E0 
C2α

2�7Λ12�7 (1.10)

While these results are not of direct physical relevance (since E0 is not ob-
servable), the many-body problem is of importance since it reveals a dramatic
difference between bosons and fermions.

Theorem 1.3 The ground state energy of N bosons, Eboson
0 �N�, with Hamiltonian

H�N� �
N

∑
j�1

1
2
�pj �

�
αA�x j��

2 �Hf (1.11)

satisfies the bounds

C1

�
N
�
αΛ3�2 
 Eboson

0 �N�
C2N5�7α2�7Λ12�7 (1.12)

Thus, the energy Eboson
0 �N� is not extensive, i.e., it costs a huge energy to sepa-

rate bosons. This has to be contrasted with the next theorem about fermions. The
Hamiltonian is the same as before but it acts on the Hilbert space

� 	�N
j�1L

2��3 ;� 2� � (1.13)

where the wedge product indicates that the antisymmetric tensor product is taken.

Theorem 1.4 The ground state energy, Efermion
0 �N�, of N charged fermions inter-

acting with the radiation field satisfies

C1α
1�2Λ3�2N 
 E fermion

0 �N� 
 C2α
2�7Λ12�7N (1.14)

The “relativistic” kinetic energy for an electron is

T rel � �p��αA�x���
�

�p�
�
αA�x��2 (1.15)

with p��i∇. (Really, we should take
�

�p�
�
αA�x��2 �1, but since x�

�
x2 �1

� x�1, the difference is bounded by N.)
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Consider, first, the N � 1 body problem with the Hamiltonian

H � T rel �Hf � (1.16)

By simple length scaling (with a simultaneous scaling of the volume V ) we
easily see that E0 � inf spec �H� �CΛ. Our goal here is to show that the constant,
C, is strictly positive and to give an effective lower bound for it. But we would like
to do more, namely investigate the dependence of this constant on α . We also want
to show, later on, that for N fermions the energy is bounded below by a positive
constant times NΛ. Our proof will contain some novel – even bizarre – features.

Theorem 1.5 For the Hamiltonian in 1.16 there are positive constants, C�C��C��

such that

E0 
 C
�
αΛ

E0 � C��αΛ for small α

E0 � C��Λ for large α �

The generalization of this to N fermions is similar to the nonrelativistic gener-
alization, except that the power of Λ is the same on both sides of the inequalities.

Theorem 1.6 For N fermions with Hamiltonian

HN �
N

∑
i�1

T rel�xi��Hf

there are positive constants C�C��C��� independent of α and N, such that

E0 
 CN
�
αΛ

E0 � C�N
�
αΛ for small α

E0 � C��NΛ for large α (1.17)

We close this introduction by mentioning one last result about the Pauli opera-
tor. The kinetic energy expression is given by

T Pauli � �σ � �p��αA�x���2 � �p�
�
αA�x��2 �

�
α σ �B�x� � (1.18)

where σ denotes the vector consisting of the Pauli matrices. Observe that this term
automatically accounts for the spin–field interaction. Our result for the self energy
of a Pauli electron is the following.
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Theorem 1.7 The ground state energy E0 of the Hamiltonian with Pauli energy,

1
2
�σ � �p��αA�x���2 �Hf � (1.19)

satisfies the bounds

E0 
 C3

�
αΛ3�2 (1.20)

E0 � C1αΛ for small α

E0 � C2α
1�3Λ for large α

For N fermions, the bounds above are multiplied by N (and the constants are
changed).

For the details of the proof, we refer the reader to [6]. We believe that the upper
bound is closer to the truth since the main contributions to the self energy should
come from the fluctuations of the A2 term.

Theorem 1.7 has the following consequence for stability of matter interacting
with quantized fields. It was shown in [7] that a system of electrons and nuclei
interacting with Coulomb forces, with the Pauli kinetic energy for the electrons
and with a classical magnetic field energy is stable (i.e., the ground state energy is
bounded below by N) if and only if α is small enough. In [1], [4] this result was
extended to quantized, ultraviolet cutoff magnetic fields (as here). Among other
things, it was shown in [4] that the ground state energy, E0, of the electrons and
nuclei problem is bounded below by �α2ΛN for small α . Theorem 1.7 implies,
as a corollary, that for small α the total energy (including Coulomb energies) is
bounded below by �αΛN. In other words, among the three components of energy
(kinetic, field and Coulomb), the first two overwhelm the third – for small α , at
least.

All of these statements are true without mass renormalization and the situation
could conceivably be more dramatic when the mass is renormalized. In any case,
the true physical questions concern energy differences, and this question remains
to be addressed.

2. Non-relativistic energy bounds

Theorem 1.1: We sketch a proof of Theorem 1.1. It is clear by taking the state
V�1�2�	�0� that the ground state energy is bounded above by �const�αΛ2, which
is the same result one gets from perturbation theory. Since the field energy in this
state vanishes, such a computation ignores the tradeoff between the kinetic energy
of the electron and the field energy. Thus, it is important to quantify this tradeoff.
The main idea is to estimate the field energy in terms of selected modes.

Consider the operators (field modes), parametrized by y � �3 ,

L�y� �
1�
2V

∑
�k��Λ�λ

�
�k�aλ �k�vλ �k�eik�y � (2.1)
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with some arbitrary complex coefficients vλ �k�. The following lemma is elemen-
tary

Lemma 2.1

Hf �
�

w�y�L��y�L�y�dy (2.2)

provided that the functions vλ �k� and w are chosen such that, as matrices,

�k�δλ ��λ δ �k
��k�� 1

2V

�
�k�vλ �k��w�k� k��v

λ � �k
�

�
�
�k� � � (2.3)

or equivalently, that

∑
�k��Λ�λ

� fλ �k��2
�vλ �k��2

� ∑
�k���k� ��Λ�λ �λ �

1
2V

fλ �k� fλ ��k
���w�k� k�� (2.4)

for all fλ �k�, where �w�k� � �
eik�xw�x�dx.

For the proof, one simply notes that both sides of (2.2) are quadratic forms in
the creation and annihilation operators, and hence (2.3) and (2.4) are necessary and
sufficient conditions for (2.2) to be true. �

Corollary 2.2

Hf �� 1
2V ∑

�k��Λ�λ

�k��vλ �k��2
�
�w�y��dy�

1
4

��
w�y��L�y��L��y��2dy

��
w�y��L�y��L��y��2dy

(2.5)

To prove this, note that

L�L � LL�� 1
2V ∑

�k��Λ�λ

�k��vλ �k��2 � (2.6)

and, quite generally for operators,

LL�L�L� 
 L�L�LL� � (2.7)

�

Returning to the proof of Theorem 1.1 we start with the lower bound. Denote
by

Π�x� �
�i�
2V

∑
�k��Λ�λ

�
�k�ελ �k�

�
aλ �k�e

ik�x�a�λ �k�e
�ik�x

�
� (2.8)
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This operator is canonically conjugate to A�x� in the sense that we have the com-
mutation relations

i�Πi�x��Aj�x�� � δi� j
1

�3π�2Λ
3 � (2.9)

For our calculation, it is important to note that

div Π�x� � 0 � (2.10)

Hence from (2.9) and (2.10) we get that

3

∑
j�1

�pj �
�
αAj�x��Π j�x�� �

�
α

i
�3π�2Λ

3 � (2.11)

The inequality

1
2
�p�

�
αA�x��2 �2a2Π�x�2 ��ai

3

∑
j�1

�pj �
�
αAj�x��Π j�x�� � (2.12)

valid for all positive numbers a, yields

1
2
�p�

�
αA�x��2 �Hf � a

�
α

1
�3π�2Λ

3 �Hf �2a2Π�x�2 � (2.13)

Now, with

vλ �k� � �3π�
ελ �k�

Λ3�2
(2.14)

and
w�y� � δ �x� y� � (2.15)

it is elementary to see that (2.4) is satisfied. Hence Corollary 2.2 yields

Hf �
9π2

4Λ3Π�x�2� 9
8
Λ (2.16)

Choosing a � �3π���
�

2Λ3�2� yields the lower bound

H � 1
3π

�
α
2
Λ3�2� 9

8
Λ (2.17)

The idea of using a commutator, as in (2.12), (2.13) to estimate the ground state
energy, goes back to the study of the polaron [9].

For the upper bound we take a simple trial function of the form

φ�x�	Ψ (2.18)

where Ψ �� is normalized and φ�x� is a real function normalized in L2��3�. An
upper bound to the energy is thus given by

1
2

�
�∇φ�x��2dx�

α
2

�
φ�x�2 	Ψ�A�x�2Ψ



dx��Ψ�HfΨ� � (2.19)
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It is not very difficult to see that the last two terms can be concatenated into the
following expression.

1
2

� 	
Ψ�
�
Π�x�2 �αA�x���∆�φ�x�2�A�x�

�
Ψ



dx � 1
2

Tr
�

P�∆P � (2.20)

Here, P is the projection onto the divergence free vector fields with ultraviolet
cutoff Λ. This can be deduced by writing the field energy in terms of Π�x� and
A�x�. The first term in (2.20) is a sum of harmonic oscillators whose zero point
energy is given by

1
2

Tr
�

P��∆�αφ�x�2�P (2.21)

and hence
1
2

Tr
�

P��∆�αφ�x�2�P� 1
2

Tr
�

P��∆�P � (2.22)

is an exact expression for the ground state energy. Using the operator monotonicity
of the square root we get as an upper bound on (2.20)

1
2

�
�∇φ�x��2dx�

1
2

�
α Tr

�
Pφ�x�2P � (2.23)

As a trial function we use the positive function (note that this really is positive)

φ�x� � const�K�3�2
� �

1� �k�
K

�3

�

eik�xdx � (2.24)

Optimizing the resulting expression over K yields the stated result. For details we
refer the reader to [6]. �

It is natural to ask, how good this upper bound is. If we neglect the cross terms
in �p � A�2, i.e., we replace the kinetic energy by p2 �αA�x�2, then we have
Theorem 1.2, which we prove next.

Theorem 1.2: The upper bound was already given in Theorem 1.1 because
� p � A �� 0 in the state (2.18). Loosely speaking equation (2.9) expresses the
Heisenberg uncertainty principle for the field operators. An uncertainty principle
that is quite a bit more useful is the following.

Lemma 2.3 The following inequality holds in the sense of quadratic forms

Π�x�2 � 1
4

1
�3π�4Λ

6 1
A�x�2 � (2.25)

For the proof note that �Aj�x��Ak�y�� � 0 and compute

i�Π�x� j�
Aj�x�

A�x�2 � �
1

�3π�2Λ
3



1

A�x�2 �2

�
Aj�x�

A�x�2

�2�
� (2.26)
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and summing over j we obtain that

i
3

∑
j�1

�Π�x� j�
Aj�x�

A�x�2 � �
1

�3π�2Λ
3 1
A�x�2 (2.27)

Our statement follows from the Schwarz inequality. �

To prove Theorem 1.2 we return to Lemma 2.1 and choose vλ �k� � ελ �k� and
w�x� any function 
 1. Corollary 2.2 applied to each of the 3 components of Π�x�
then yields

Hf �
1
4

�
w�x� y�Π�y�2dy�Λ4 3

8π2

�
w�y�dy � (2.28)

for every x � �3 . By Lemma 2.1 the right side is bounded below by

Λ6
�

w�x� y�
1

A�y�2 dy�Λ4
�

w�y�dy � (2.29)

and hence

�Ψ�HΨ� � 1
2

�
�∇Ψ�x��∇Ψ�x��dx�

α
2

�
�Ψ�x��A�x�2Ψ�x��dx

� Λ6
�

w�x� y��Ψ�y��
1

A�x�2Ψ�y��dydx

� Λ4
�

w�y�dy
�
�Ψ�x��Ψ�x��dx � (2.30)

By Schwarz’s inequality the second and third term together are bounded below by�
α
2
Λ3

�
�Ψ�x��Ψ�y�� w�x� y���

w�z�dz
dxdy � (2.31)

If we restate our bound in terms of Fourier space variables we get

� 
 �p�
2

2

�

�
α
2
Λ3 �w�p���w�0�

�
��Ψ�p�� �Ψ�p��dp�Λ4 �w�0�� ��Ψ�p�� �Ψ�p��dp �

(2.32)
Choosing the function �w�p� to be �2π�3Λ�18�7 times the characteristic function of
the ball of radius Λ6�7, we have that w�x� 
 1 and it remains to optimize (2.32)
over all normalized states �Ψ�p�. This is easily achieved by noting that the function

1
2
�p�2 �

�
α
2
Λ3 �w�p���w�0� (2.33)

is everywhere larger than Λ12�7. Strictly speaking, the function w�x� should be
positive in order for the argument that led to (2.31) to be valid. This can be achieved
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with a different choice of w�x�, like the one in (2.24), that is more complicated but
does not change the argument in an essential way.

3. Non-relativistic many-body energies

A problem that has to be addressed is the energy of N particles (bosons or fermions)
interacting with the radiation field. If E0 � E0�1� is the energy of one particle
(which we estimated in the preceding section) then, ideally the energy, E0�N�, of
N particles (which trivially satisfies EN 
 NE , since the N particles can be placed
infinitely far apart) ought to be, exactly,

E0�N� � NE0 (3.1)

in a correct QED. In other words, in the absence of nuclei and Coulomb potentials,
there should be no binding caused by the field energy Hf . This is what we seem
to observe experimentally, but this important topic does not seem to have been
discussed in the QED literature.

Normally, one should expect binding, for the following mathematical reason:
The first particle generates a field, A�x�, and energy E0. The second particle can
either try to generate a field A�x� y�, located very far away at y or the second
particle can try to take advantage of the field A�x�, already generated by the first
particle, and achieve an insertion energy lower than E0.

Indeed, this second phenomenon happens for bosons, as expected. For fermions,
however, the Paul principle plays a crucial role (even in the absence of Coulomb
attractions). We show that E0�N��CNE0 for fermions, but we are unable to show
that the universal constant C � 1. Even if C � 1, the situation could still be saved by
mass renormalization, which drives the bare mass to zero as Λ increases, thereby
pushing particles apart.

3.1. Bosons
Theorem 1.3: This theorem concerns the ground state energy of N charged bosons.
the Hamiltonian is given by 1.11 acting on the Hilbert space of symmetric func-
tions tensored with the photon Fock space� . It states, basically, that

C1

�
N
�
αΛ3�2 
 Eboson

0 �N�
C2N5�7α2�7Λ12�7�

The proof follows essentially that of the one particle case. The interesting
fact is that it implies binding of charged bosons (in the absence of the Coulomb
repulsion). The binding energy is defined by

∆E�N� � E0�N��NE0�1�

and satisfies the bounds

∆E�N� � C1

�
N
�
α Λ3�2�C2Nα2�7Λ12�7

∆E�N� 
 C2N2�7α2�7Λ12�7�C1N
�
α Λ3�2 (3.2)
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which can be made negative for appropriately chosen N and Λ. There will be bind-
ing for all large enough N, irrespective of the cutoff Λ. It also has to be remarked
that the Coulomb repulsion will, in all likelihood, not alter this result since it has
an effect on energy scales of the order of Λ and not Λ12�7 or Λ3�2.

3.2. Fermions
The real issue for physics is what happens with fermions. We cannot show that
there is no binding but we can show that the energy is extensive as in Theorem 1.4.
The Hamiltonian is the same as (1.11) but it acts on antisymmetric functions
tensored with� . (Spin can be ignored for present purposes.)

Rough sketch of the proof of Theorem 1.11. The difficulty in proving this theorem
stems from the fact that the field energy is not extensive in any obvious way.

Define X � �x1� � � � �xN� and define the function

nj�X�R� � #
xi �� x j : �xi� x j�� R� �
This function counts the number of electrons that are within a distance R of the
jth electron. Note that this function is not smooth, so that all the following com-
putations have to be modified. (See [6].) We save half of the kinetic energy and
write

H �
1
4

N

∑
j�1

�pj �
�
αA�x j��

2 �H � �

We apply the commutator estimate (2.11) to the pair

i�pj �
�
αA�x j��

1�
Nj�X�R��1

Π�x j��

and obtain the bound (with the caveat mentioned above), for all α � 0,

H � � a
�
αΛ3

N

∑
j�1

1�
Nj�X�R��1

�a2
N

∑
j�1

1
Nj�X�R��1

F�x j�
2 �Hf (3.3)

The next two steps are somewhat nontrivial and we refer the reader to [6]. First
one notes that the modes F�xi� and F�x j� are essentially orthogonal (i.e., they
commute) if �xi� x j� � Λ�1 � Ignoring the technical details of how this is imple-
mented, the key observation is that the last two terms in (3.3) can be estimated
from below by �NΛ provided a � Λ�3�2.

The next ingredient is a new Lieb-Thirring type estimate involving the function
Nj�X�R�. It is here and only here that the Pauli exclusion principle is invoked.

Theorem 3.1 On the space �N
j�1L2�3 ;� q� of antisymmetric functions

N

∑
j�1

�pj �
�
αA�x j��

2 � C

q2�3

1
R2

N

∑
j�1

Nj�X�R�
2�3 (3.4)



340 E. H. LIEB AND M. LOSS

with C � 0�00127. An analogous inequality holds for the relativistic case as well:

N

∑
j�1

�pj �
�
αA�x j�� �

C

q1�3

1
R

N

∑
j�1

Nj�X�R�
1�3 (3.5)

By using the kinetic energy previously saved together with (3.3) and the previ-
ous discussion, we get

H �
N

∑
j�1

���Nj�X�R�2�3 �
�
αΛ3�2 1�

Nj�X�R��1

����NΛ �

By minimizing over Nj the desired estimate is obtained. The upper bound is
fairly elementary and is omitted. �

4. Relativistic energy bounds

Theorem 1.5: Sketch of Proof.
An upper bound for E0 is easy to obtain, but it is indirect. Note that

�p��αA�x�� 
 ε �p�
�
αA�x��2 ��4ε��1 (4.1)

for any ε � 0. Take Ψ � f �x�	�0� with �0� being the Fock space vacuum. Using
(4.1)

�Ψ�HΨ� 
 ε
�
�3

α�0�A�x�2�0�� f �x��2 � �∇ f �x��2�dx� ε�1

�
εαΛ2

4π
�

�
�∇ f �2 � 1

4ε
� (4.2)

since �0�A�x�2�0�� �2π��3 �
�k��Λ �k��1dk � Λ2�4π2. We can now let f �x��V� 1

2

and take ε � �π�α�1�2Λ�1, whence

E0 
 �α�4π�1�2Λ � (4.3)

Now we turn to the lower bound for H .
Step 1: Since x ��

x is operator monotone,

T � T1 � �p1 �
�
αA1�x�� � (4.4)

where the subscript 1 denotes the 1 component (i.e., the x-component) of a vector.
By replacing T by T1, we are now in a position to remove A1 by a gauge transfor-
mation - but it has to be an operator-valued gauge transformation. The use of such
a gauge transformation is a novelty, as far as we are aware, in QED.
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To effect the gauge transformation, set

ϕ�x� �
1�
2V

∑
h�λ

ελ �k�1�
�k�

�
aλ �k��a�λ ��k�

� eik1x1 �1
ik1

eik
�

x
� (4.5)

with x� � �x2�x3). Then �Aj�x��ϕ�x�� � 0� j � 1�2�3 and �i ∂
∂x1

exp �iϕ�x�� �
�A1�x�. The unitary U � exp �iϕ�x�� is a gauge transformation, but it is operator-
valued. We have

U�1�p1 �A1�x��U � �p1�
U�1aλ �k�U � aλ �k�� fλ �k�x�

U�1a�λ �k�U � a�λ �k�� f̄λ �k�x�
�
H f � U�1HfU � ∑

k�λ

�k��a�λ �k�� f̄λ �k�x���aλ �k�� fλ �k�x�� (4.6)

with

fλ �k�x� �

�
α
2V ∑

k�λ

ελ �k�1

�k�
e�ik1x1 �1

k1
e�ik

�
x
� � (4.7)

Since p� does not appear in our new Hamiltonian,

�
H � U�1HU � �p1��

�
H f � (4.8)

the variable x� appears only as a parameter, and thus we can set x� = constant =
(0,0), by translation invariance, and replace �3 by �1 � �.

From now on x1 � x and, p1 � p ��i d�dx.

Step 2: The dependence on x now appears in
�
H f instead of in the kinetic energy,

�p�. For each x we can try to put
�
H f into its ground state, which is that of a displaced

harmonic oscillator. But, since this state depends on x, to do so will require a great
deal of kinetic energy, �p1�.

Let Ψ be a normalized wave-function, i.e., a function on L2���	� . We write
it as ψx where ψx �� . Thus, with ��� �� denoting the inner product on� , we have�
�
�ψx�ψx�dx � 1.
Decompose � as the disjoint union of intervals of length ��Λ, where � is a

parameter to be determined later. Denote these intervals by Ij� j � 1�2� � � � � A
simple Poincaré type inequality gives, for g : L2��� � � ,

�g� �p�g� �C1
Λ
� ∑j

�
Ij


�g�x��2��ḡ j�2�dx �

where ḡ j �
Λ
�

�
Ij

g�x�dx is the average of g in Ij. Then

�Ψ� �p�Ψ� �C1
Λ
� ∑j

�
Ij


�ψx�ψx� � �ψ̄ j� ψ̄ j� �dx � (4.9)
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Step 3: Next, we analyze
�
H f . We think of this as an operator on� , parameterized

by x � �. We would like
�
H f to have a gap so we define

Hx �
Λ
2 ∑

εΛ��k��Λ
∑
λ

�a�λ �k�� f̄λ �k�x�� � � h�c� � (4.10)

Clearly,
�
H f� Hx and

�Ψ�
�
H Ψ�� Λ

� ∑j

�
Ij

�ψx�ψx���ψ̄ j� ψ̄ j�� �ψx�Hxψx�dx � (4.11)

For each interval Ij we can minimize (4.11) subject to
�

Ij
�ψx�ψx�dx fixed. This

leads to
�hj ψ�x � e ψx (4.12)

with

�hj ψ�x �
Λ
�
ψx� Λ

�
ψ̄ j �Hx ψx (4.13)

Obviously, this eigenvalue problem (4.12, 4.13) is the same for all intervals Ij, so
we shall drop the subscript j and try to find the minimum e.

A lower bound to hj (and hence to e) can be found by replacing Hx by

�Hx �
Λ
2
�1�Πx� �

where Πx � �gx��gx� is the projector onto the ground state, �gx�� of Hx.
If we substitute �Hx into (4.13) the corresponding eigenvalue equation (4.12)

becomes soluble. Multiply (4.12) on the left by �gx�, whence�
Λ
�
� e

�
�gx�ψx�� Λ

�
�gx� ψ̄� (4.14)

Then, substitute (4.14) into (4.13) and integrate
�

I dx to find

1
2
Λ3��2

��
Πxdx

�
ψ̄ �

�
Λ
�
� e

��
Λ
2
� e

�
ψ̄ � (4.15)

We know that e � Λ�2 because we could take ψx = constant as a trial function,

and then use
�
Hx
 Λ�2. Also, e � Λ��, because we could take Ψ� δx0

�gx0
� �

Step 4: Eq. (4.15) will give us a lower bound to e if we can find an upper bound to
Y � �Λ���

�
I Πxdx � To do this note that

Y 2 
 Trace Y 2 �

�
Λ
�

�2 �
I

�
I
��gx�gy��2dxdy

�

�
Λ
�

�2 �
I

�
I
exp
� α

2V ∑
εΛ��k��Λ

∑
λ

� fλ �k�x�� fλ �k�y��2dxdy� (4.16)
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Noting that ∑2
λ�1 eλ �k�

2
1 � 1� k2

1�k2, the quantity 
 � in (4.16) becomes (as
V � ∞)


 ��� 2α
�2π�3

�
Λ�2��k��Λ

1
�k�3k2

1

�k2
���sin

k1

2
�x� y�� (4.17)

After some algebra we find that�
1
�
� e

Λ

��
1
2
� e

Λ

�

 1

2�
�Trace Y 2�1�2 
 1

2�

�
K��α� (4.18)

where

K��α� �

� 1

0

� 1

0
exp



�α �

π2 �x� y�
� �x�y���4

0

�
sin t

t

�2

dt

�
dxdy �



� 1�2

�1�2
exp��αx2�2�8π� dx � (4.19)

We find that

K��α� � 1�α�2�96π� �2α small (4.20)

�
�

2π�α�2�1�2� �2α large

If α is small we take � � α�1�2. If α is large we take � � 2. This establishes our
theorem for N � 1. �

Theorem 1.6: Sketch of Proof.
For N � 1 we can decompose �3 into cubic boxes Bj� j � 1�2�3� � � � of size

�Λ and “borrow” 1
2 �p�A�x��2 kinetic energy from each particle. That is, HN �

H1�2
N

� 1
2TN with TN �∑N

i�1 T �xi�. The Pauli principle will then yield an energy for
1
2TN that is bounded below by (const.) �nj�1�

4�3, where nj is the particle number
in box Bj.
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