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Abstract.
The Hamiltonian formulation of the effective bosonic action of the SDp-brane in Type

II superstring theory is given. This effective description involves the Tachyon driven matter
coupled to bosonic ten dimensional Type II supergravity. An exact solution to the corresponding
Wheeler-deWitt equation in the late-time limit of the rolling tachyon is found. Finally some
comments about the incorporation of electromagnetic fluxes are given.

1. Introduction
Recently an effective model of a coupled system of ten dimensional Type II supergravity and
tachyon driven matter have been proposed [1, 2, 3]. This model is a good candidate for the
effective action of a space-like Dp-brane, called SDp-brane, which describes (time dependent)
decaying processes in string theory. In this model our universe is contained in the bulk and
the brane is considered as a topological defect that is embedded also in the bulk. If all the
Dirichlet boundary conditions on the brane are spacelike, then usual Dp-branes arise. However
if one of these Dirichlet conditions is timelike, then the tachyon rolls down the potential and a
time-dependent process occurs [4]. The full picture of passing from one minimum to the other is
called SDp-brane solution. As soon as the tachyon field rolls down from the top of the tachyon
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potential V (T ) towards one of its minima, it starts to excite open and closed string modes in
such a way that the energy of the unstable Dp-brane is radiated away into the bulk. When the
tachyon arrives to its minimum, the radiation is in the form of only closed strings because open
strings cannot exist in the bulk.

On the other hand, Sen proposed a field theory describing the dynamics of the rolling tachyon
[5, 6, 7]. In this context, he found that the tachyon field can be interpreted as the time in
quantum cosmology [8]. This was done by coupling the “tachyon matter” to a gravitational
field and then performing its canonical quantization. From it, a Wheeler-deWitt equation turns
out, which can be regarded as a time-dependent Schrödinger equation for this gravity-tachyon
matter system. The coupling of the tachyon to gravity has been studied in connection with
classical cosmological evolution [9, 10, 11]. In particular its role related to inflation has been
discussed, see [12] and references therein.

In the present note we survey the minisuperspace approach [13] of the SDp-brane decay
corresponding to the model [1, 2, 3]. Although minisuperspace contains a further reduced sector
of the degrees of freedom of the full string theory, at the level of the effective theory it becomes a
suitable approach to have under control some features of the classical theory, as well as the lowest
excited states of the genuine quantum dynamics of the SDp-branes [11]. Thus, it is expected that
the canonical quantization description presented here corresponds to the s-wave approximation
of the low energy quantum theory of the effective action of Refs. [1, 2, 3]. Furthermore it
could give some insight into the solution of the Wheeler-deWitt equation for finite values of the
tachyon T . The quantum properties of the considered field theory seem to be an interesting
problem by itself, as already pointed out by Sen in Ref. [8], where he considers a quantum
cosmology model coupled to the tachyon matter. The effective model [1, 2, 3] we are going to
consider can be understood as a cosmological model with dilaton and RR fields, driven by the
tachyon matter. We show that the proposal by Sen, concerning the interpretation of the tachyon
as time, in the late ‘time’ decoupling limit, is valid for the model under consideration [13]. In
this case we find an exact wave function, finite and continuous everywhere for the corresponding
Schrödinger equation. It was shown also in Ref [13] that in the presence of a uniform electric
field, the interpretation of the tachyon as time seems to be spoiled. In the late-time limit, the
tachyon does not decouple from the electric field.

This paper is organized as follows: in section 2 we briefly discuss the model under
consideration. In section 3 we find the Hamiltonian constraint for the system. Section 4
is devoted to the study of quantum solutions with the rolling tachyon approximation in the
decoupling limit. Our final remarks are presented in section 5.

2. The Model
The action proposed in [1, 2] for this theory is given by:

S = Sbulk + Sbrane, (1)

where

Sbulk =
1

16πG10

∫
d10x

√
−g

(
R − 1

2
(∂φ)2 − eaφ

2(p + 2)!
F 2

p+2

)
, (2)

Sbrane =
Λ

16πG10

∫
dp+2x‖�̂⊥

(
−V (T )e−φ

√
−A

)
+

Λ
16πG10

∫
�̂⊥F(T )dT ∧ Cp+1, (3)

where G10 is the Newton’s constant in the ten-dimensional theory, Λ is the brane coupling,
a ≡ (3 − p)/2 is the dilaton coupling, A = detAαβ , Aαβ = gαβeφ/2 + ∂αT∂βT is the tachyon
metric, F(T ) is the factor of coupling between the tachyon and the RR fields Cp+1, and
V (T ) is the tachyon potential. �̂⊥ is the “density of branes”, which does not depend on the
parallel coordinates of the brane x‖. Greek indices α, β = 0, 1, . . . , p + 1, label the time and
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parallel coordinates (denoted by ‖) to the SDp-brane. Latin indices i, j = 1, .., 8 − p label the
perpendicular coordinates of the brane (denoted by ⊥), and capital letters A, B, . . . , etc. stand
for space-time coordinates of the bulk.

Following Refs. [1, 2], the simplest model that we can study is assuming the homogeneous
(but non-isotropic) FRW metric. Making the space decomposition into maximal symmetric
direct product ISO(p + 1) × SO(8 − p, 1) we have the metric

ds2 = −N2(t)dt2 + a2
‖(t)dx2

‖ + a2
⊥(t)dx2

⊥, (4)

where a‖(t) and a⊥(t) are the parallel and perpendicular scaling factors of the brane and N(t) is
the lapse function. In this homogeneous model the space parallel (perpendicular) to the brane
is characterized by the curvature constant k‖ (k⊥). For simplicity we will take k‖ and k⊥ to be
zero.

We introduce the following coordinates β1, β2 defined as,

β1 =
1
9

[
(p + 1)β‖ + (8 − p)β⊥

]
, β2 = β‖ − β⊥, (5)

where β‖ = ln a‖ and β⊥ = ln a⊥. Also the space volume is given by VS = 1
16πG10

∫
dp+1x‖d

8−px⊥,
so S =

∫
d10xL, with L =VS

∫
dt L.

In β1 and β2 coordinates and with the ansatz (4) we have the Lagrangian

L = −e9β1

N

[
72β̇2

1 − (p + 1)(8 − p)
9

β̇2
2 − 1

2
φ̇2 − eaφ

2(p + 2)!
Ċ2

]
− λe9β1−aφ/2V (T )

√
N2eφ/2 − Ṫ 2

+λe(8−p)[β1− 1
9
(p+1)β2]F(T )ṪC. (6)

We can formulate an equivalent theory if we introduce a Lagrange multiplier Ω [14] into the
Lagrangian (6) as follows,

L = −e9β1

N

[
72β̇2

1 − (p + 1)(8 − p)
9

β̇2
2 − 1

2
φ̇2 − eaφ

2(p + 2)!
Ċ2

]
− 1

2
Ω−1

(
N2eφ/2 − Ṫ 2

)

−1
2
λ2e18β1−aφV 2(T )Ω + λe(8−p)[β1− 1

9
(p+1)β2]F(T )ṪC, (7)

where λ = Λρ0. As usual, the variation of this action with respect to Ω, ∂L
∂Ω = 0, and substituting

Ω from it into Lagrangian (7) the Lagrangian (6) follows.

3. The Hamiltonian Analysis
As a consequence of reparametrization invariance of the theory we expect the associated
hamiltonian constraint, which will be used in the next section to give the corresponding Wheeler-
deWitt equation. The canonical momenta obtained from the Lagrangian (7) are given by,
P1 = ∂L

∂β̇1
= −144

N e9β1 β̇1, P2 = ∂L
∂β̇2

= 2
9

(p+1)(8−p)
N e9β1 β̇2, Pφ = ∂L

∂φ̇
= e9β1

N φ̇, PC = ∂L
∂Ċ

= e9β1+aφ

N(p+2)! Ċ,

and PT = ∂L
∂Ṫ

= Ω−1Ṫ + λe(8−p)[β1− 1
9
(p+1)β2]F(T )C.

The first class constraints are PΩ = PN = 0. When we implement these constraints, the
Hamiltonian, after eliminating Ω, is given by

H = β̇1P1 + β̇2P2 + φ̇Pφ + ĊPC + ṪPT − L

H0 = − 1
144

e−9β1P 2
1 +

9e−9β1

2(p + 1)(8 − p)
P 2

2 + e−9β1P 2
φ + (p + 2)!e−(9β1+aφ)P 2

C
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+2eφ/4
{
λ2V 2(T )e18β1−aφ + [PT − λe(8−p)[β1− 1

9
(p+1)β2]F(T )C]2

}1/2
= 0, (8)

is the first class Hamiltonian constraint associated with the invariance under time
reparametrizations.

It is worth to notice that when this constraint is applied at the quantum level, the resulting
Wheeler-deWitt equation does not provide a time evolution of the system, and the corresponding
wave function is not normalizable. The spectrum of the whole system (bulk-brane) has zero
energy. This is known as the “time problem” [15]. However, as we will see in the next section,
in the late-time limit when the tachyon potential and the RR fields are negligible, we can find
a “time” dependent Wheeler-deWitt equation.

4. Tachyon Driven Quantum Cosmology
In this section we will overview a way of finding an exact solution of the quantum cosmology of
the cosmological model reviewed in Sec. 2. These results were discussed in the Ref. [13].

Exact expressions for the potential V (T ) and the coupling factor F(T ) are not known.
However, their asymptotic universal form V (T ) = e−αT/2 and F(T ) =sign(T )e−αT/2 as T → ∞,
are known from string theory [5, 6, 7, 8]. Here α = 1 for bosonic string theory, and α =

√
2 for

superstring theory. We only assume that V (T ) has a maximum at T = 0 and a minimum at
T → ∞, where V (T ) = 0. Also, we see that in this limit the tachyon decouples also from the RR
fields as F(T ) → 0. Because we want to interpret tachyon as time, we restrict to the late-time
non-interacting sector where tachyon decouples from the other fields. The “strong” (near the
top of the potential) coupling sector, does not allow to interpret tachyon as time directly, and
therefore the Wheeler-deWitt equation does not lead in a simple way to a solvable wave function.

4.1. Late Time Limit
In the sector where V (T ) ≈ 0, the canonical Hamiltonian (8) takes the form

H0 = − 1
144

e−9β1P 2
1 +

9
2

e−9β1

(p + 1)(8 − p)
P 2

2 + e−9β1P 2
φ + (p + 2)!e−(9β1+aφ)P 2

C + 2eφ/4PT = 0. (9)

The resulting equation is the Wheeler-deWitt equation which in the minisuperspace approach
is given by

Ĥ0Ψ = 0, (10)

where Ĥ0 is given by (9), with P1 = −i ∂
∂β1

, P2 = −i ∂
∂β2

, PC = −i ∂
∂C and PT = −i ∂

∂T . As it
is known, the quantum analysis of the Wheeler-deWitt equation has the problem of the factor
ordering. In order to solve this problem there are some proposals in the literature [16], however
none of them seems to be satisfactory. This problem is beyond the scope of this paper and
here we only assume a particular factor ordering. Assuming that the dilaton field is given by
its vacuum expectation value in the late-time, i.e. gs = e〈φ〉, where gs is the string coupling
constant, then Pφ = 0, and we have

e−9β1

[
C1

∂2Ψ
∂β2

1

− C2
∂2Ψ
∂β2

2

− C3
∂2Ψ
∂C2

]
= i

∂Ψ
∂T

, (11)

where C1 = 1
288g

−1/4
s , C2 = 9

4(p+1)(8−p)g
−1/4
s , C3 = ((p + 2)!g−(a+1/4)

s )/2. Now, we see that the
Wheeler-deWitt equation (10) leads to a Schrödinger-like equation. Thus in this limit, the
tachyon is an usual scalar field which provides a useful parametrization of time, because the
tachyon momentum enters linearly in (9). This matter accompanies gravitation (Sbulk) in a
natural and consistent manner. So it seems that at least some of the criticisms and problems
related to a “matter clock” can be in this case avoided.
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The general solution of (11) is straightforward. Assuming separation of variables for Ψ is of
the form: Ψ = ψβ1(β1)ψβ2(β2)ψT (T )ψC(C) is given by

Ψ± = N eiµT e
±i

√
ξ

C3
C
e
±i

√
σ

C2
β2Kiν

(
8
3
√

µe
9
2
β1

)
, (12)

where µ, ν, ξ and σ are separation variables and N is a normalization constant. This is a
plane wave, that represents a free particle, with respect to the variables C and β2 and with T
playing the role of time. Also notice that the constant µ ≡ E enters as an energy when tachyon
is interpreted as time. This energy would correspond to the lowest level of the closed string
spectrum. In terms of the radii a‖ and a⊥ we have,

Ψ± = N eiµ T e±ig
a/2+1/8
s

√
2ξ/(p+2)!C

(
a‖
a⊥

)± 2i
3

g
1/8
s

√
(p+1)(8−p)σ

Kiν

(
8
3

√
µap+1

‖ a8−p
⊥

)
. (13)

This wave function represents the state of the system in the asymptotic limit T → ∞. In this
sector the brane has completely decayed, therefore, this wave function can be associated with
the stable final state of the system where only closed string spectrum exists.

We can compute the expectation value of a‖, for a certain constant value of a⊥

〈a‖〉 = N ′
∫ ∞

0
Ψ∗a‖Ψda‖ = N ′

∫ ∞

0

[
Kiν

(
8
3

√
µap+1

‖ a8−p
⊥

)]2

a‖da‖, (14)

where Ψ is a linear combination of Ψ± and N ′ is an overall normalization constant. Here Ψ∗

denotes complex conjugate of Ψ. From (14) we get

〈a‖〉 = N ′√π
Γ

(
2

p+1

)
Γ

(
2

p+1 + iν
)

Γ
(

2
p+1 − iν

)
(3 − p)Γ

(
3−p

2(p+1)

) (
9

64µ〈a⊥〉8−p

) 2
p+1

. (15)

This relation can also be written as a sort of uncertainty relation between the two radii
〈a‖〉 ∼ 〈a⊥〉−2 8−p

p+1 , where the proportionality factor is, for ν = 1, of the order of 10−2 N ′ and
decreases exponentially as ν increases. Note that the denominator in (15) does not diverge at
p = 3 due to the properties of the Gamma function, in fact (3−p)Γ

(
3−p

2(p+1)

)
= 2(p+1)Γ

(
5+p

2(p+1)

)
.

The wave function determines the probability density |Ψ|2 whose continuum of maxima give,
in the a⊥ − a‖ plane, a path in minisuperspace. This relation shows an inverse relation between
the two radii given by Eq. (15).

5. Final Remarks
In this work, we have provided an exact solution to the canonical quantization of the effective
tachyon model [1, 2, 3]. For this effective action, a Wheeler-deWitt equation (for a particular
factor ordering) in minisuperspace approach has been obtained from the Hamiltonian analysis.
Following Ref. [14], the square root in the tachyonic matter action (6) was eliminated by the
introduction of a Lagrange multiplier Ω. From the resulting action the Hamiltonian (8) has been
computed and the decoupling late-time limit (T → ∞) has been done. Even though we have
considered the canonical quantization of the effective action with a maximally symmetric metric
(4), the quantization of this field theory and in particular of the model under consideration is
interesting in its own right [8]. Although the minisuperspace approach reduces the number of
degrees of freedom of the full string theory, it still contains information of s-wave approximation
of the genuine tachyonic quantum dynamics [11]. Moreover it may give some insight to describe
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beyond the classical limit, by using the methods of quantum cosmology, the dynamical degrees
of freedom for the decay region where V (T ) and F(T ) are different from zero.

Further we show that the proposal by Sen, concerning the interpretation of the tachyon as
time, in the late-time decoupling limit, is still valid for this model. In this limit we find an exact
wave function for the corresponding Schrödinger equation. The decoupled limit certainly behaves
different than the quantum cosmology associated to the closed string sector without an initial
decaying non-BPS configuration. Thus, the quantum cosmological description with tachyons
and without them is different, even in this decoupling limit. The associated probability density
is a finite and continuous function of the radii a‖ and a⊥, it gives (a non-singular) continuum
of maxima along a definite trajectory, in such a way that if the mean value of one of the radii
increases, the mean value of the other one decreases.

Finally, if quantum corrections of the string theory have to be taken into account and if the
open-closed duality holds (see remarks of review, [11]), it would be very interesting to explore if
solutions of the Schrödinger equation for intermediate values of time (representing open-closed
states), correspond to a description (at higher level) of the physics of the quantum string theory
associated to SDp-branes.
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