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Abstract

In order to give further insights into the holographic Van der Waals phase transition, it would be of 
great interest to investigate the behavior of Wilson loop across the holographic phase transition for a higher 
dimensional hairy black hole. We offer a possibility to proceed with a numerical calculation in order to 
discussion on the hairy black hole’s phase transition, and show that Wilson loop can serve as a probe 
to detect a phase structure of the black hole. Furthermore, for a first order phase transition, we calculate 
numerically the Maxwell’s equal area construction; and for a second order phase transition, we also study 
the critical exponent in order to characterize the Wilson loop’s phase transition.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

According to AdS/CFT correspondence [1], an anti-de Sitter black hole in the bulk is dual to a 
strongly coupled large N gauge theory, and phase transitions in AdS backgrounds may provide an 
interpretation of holographic dual field theories. The best known Hawking–Page phase transition 
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in Schwarzchild AdS spacetime [2], which presented the existence of a thermal radiation/large 
AdS black hole phase transition, is explained as the confinement/deconfinement phase transition 
in the dual gauge thermal field theory [3]. In addition, it has been shown that the scalar field 
condensation in four dimensional charged AdS black holes may be taken as holographically 
dual models of superconductors [4]. Therefore, it is interesting to extend the discussion of phase 
transitions to higher dimensional AdS spacetime to explore holographic properties.

Since a black hole possesses thermodynamical properties, it is natural to ask whether it can 
undergo a Van der Waals phase transition in the same manner as an ordinary liquid–gas thermo-
dynamical system. In recent years, in the P –V plane, the Van der Waals phase transition has been 
explored in various of AdS backgrounds [5–16], and most results indicated that, isotherms in the 
P –V plane indeed present Van der Waals characterize: the system undergoes a second order 
phase transition at a second-order critical temperature, and undergoes a first order phase transi-
tion at sufficiently low temperature. In addition, in the T –S plane, in the canonical ensemble, the 
isocharges also reveal Van der Waals behavior [17–21]. In [21], Caceres et al. have pointed out 
the connection between in the P –V plane at constant T and in the T –S plane at constant P , and 
found out dimensionless parameter that determines the transition.

Very recently, entanglement entropy and two point correlation function have been used to 
investigate Van der Waals phase transition [21,32–40]. In our previous paper [40], we have indi-
cated the Van der Waals phase transition can be presented by employing black hole entropy, two 
point correction function and entanglement entropy. In this current paper, for a five-dimensional 
scalar hairy black hole, we will go on discussing whether Van der Waals phase transition can be 
presented by making use of Wilson loop.

Wilson loop is nonlocal probe, and it can also be used to investigate some properties of gauge 
field theories. In 1998, Maldacena proposed a method to calculate the expectation values of Wil-
son loop operators in the dual theory [22]. Following that, Wilson loop has attracted a lot of 
attentions for potential applications in AdS backgrounds. With Wilson loop/Wilson loop corre-
lators in AdS/CFT by constructing space-like minimal surfaces, phase transitions in Wilson loop 
correlator were discussed in detail [23]. Minahan and Nedelin have shown how the phase tran-
sition affected the Wilson loop at strong coupling [24]. Furthermore, circular Wilson loop was 
studied as a probe, and the thermalization process of the dual boundary field theory was studied 
in GB-Vaidya model [25]. In addition, in order to give further insights into the holographic insu-
lator/superconductor phase transition, Cai et al. presented the behavior of Wilson loop across the 
holographic phase transition [26], and showed that Wilson loop is a good probe to discuss the 
properties of the holographic superconductor phase transition.

Considering Wilson loop, in this paper, we will adapt the higher dimensional hairy black 
hole model to study Van der Waals-like phase transition. It is very interesting to investigate 
the conformal coupling of a scalar field in higher dimensional spacetime. Oliva and Ray first 
developed a novel construction of conformal couplings of a scalar field to arbitrary higher order 
Euler densities, which was done by constructing a four-rank tensor involving the curvature and 
derivatives of the field [27]. In higher dimensional AdS spacetime, Giribet et al. proved the 
analytic solutions to higher dimensional hairy black holes do exist and the scalar configuration 
is regular every where outside and on the horizon [28,29]. Further, Hennigar and Mann have 
first revealed a reentrant phase transition in a five dimensional gravitational system which does 
not include higher curvature corrections [15]. In addition, a tractable model to study the phase 
transition of hairy black holes in anti-de Sitter space was also discussed in detail [30]. Especially, 
in very recent years, Hennigar, Mann and Tjoa have found that, for a class of asymptotically 
AdS hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to 
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gravity, a novel form of phase transition akin to a superfluid phase transition can be observed [31]. 
Therefore, the phase transitions of higher dimensional hairy black holes have gained a lot of 
interest in AdS spacetime.

Motivated by the themes above, we attempt to discuss on the behavior of Wilson loop across 
the holographic Van der Waals-like phase transition in this work. The rest of this paper is or-
ganized as follows. In section 2, the Van der Waals phase transition of a five-dimensional hairy 
black hole in AdS background is investigated. The last section is devoted to the conclusions.

2. Van der Waals phase transition of Wilson loop

First, let us review a Van der Waals phase transition of the black hole entropy for a five-
dimensional hairy black hole in AdS background. The corresponding action reads [28,29]

I = 1

κ

∫
d5x

√−g (R − 2� + κLm (φ,∇φ)), (1)

where κ = 16πG, and the Lagrangian matter Lm (φ,∇φ) takes the form

Lm (φ,∇φ) = φ15
(
b0S

(0) + b1φ
−8S(1) + b2φ

−16S(2)
)

, (2)

with

S(0) = 1,

S(1) = S ≡ gμνSμν ≡ gμνδρ
σ Sσ

μρν,

S(2) = SμναβSμναβ − 4SμνS
μν + S2, (3)

here b0, b1 and b2 are the coupling constants of conformal field theory. The black hole’s metric 
reads [15,30]

ds2 = −F(r)dt2 + 1

F(r)
dr2 + r2

[
dϕ2 + sin2 ϕ(dθ2 + sin2 θdψ2)

]
(4)

with

F(r) = 1 − m

r2 − q

r3 + r2

l2 , (5)

where l ≡ (−�/6)−1/2, m is mass parameter, and q stands for the black hole’s charge under a 
scalar field. The scalar hair configuration of the theory is

φ(r) = n

r1/3 , (6)

where n in Eq. (6) and q in Eq. (5) are given by the following relationship,

q = 64πG

5
b1n

9, n = ε

(
−18

5

b1

b0

)1/6

, (7)

with ε = −1, 0, 1. The scalar coupling constants satisfy the following constraint

10b0b2 = 9b2
1. (8)
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The relationship between Hawking temperature Th and the entropy S becomes [40]

Th(S, q) = 1

22/3l2π5/3(5π2q + 4S)4/3

[
6l2π10/3q + 4l2π4/3S

+ 5 3
√

2π2q(5π2q + 4S)2/3 + 4 3
√

2S(5π2q + 4S)2/3
]
. (9)

From 
(

∂Th

∂S

)
q

=
(

∂2Th

∂2S

)
q

= 0, the critical temperature, critical scalar charge and critical entropy 

are given by

Tc = 5

√
3

10

1

2πl
, (10)

Sc = 9

40

√
3

10
π2l3, (11)

qc = − 3

50

√
3

10
l3. (12)

According to the temperature function Th(S, q) in Eq. (3), we can plot the isocharges in the 
Th–S plane [40]. Here, we set l = 1 throughout. Based on the relation between Th − Tc and 
S − Sc, and heat capacity Cq = Th

∂S
∂Th

|q , one has Cq ∼ (Th − Tc)
−2/3. That is to say, the second 

phase transition’s critical exponent is −2/3. Taking logarithm form, we have

log |Th − Tc| = 3 log |S − Sc| + constant. (13)

In the previous paper [40], the authors have concluded that the isocharges in the Th–S plane 
present the Van der Waals phase transition, and the critical exponent has been calculated, which 
coincides with the one from the mean field theory. Now, we focus on exploring the phase tran-
sition of the hairy black hole by using Wilson hoop. Wilson loop corresponds to the minimal 
area surface by holography. In the form of the AdS/CFT correspondence, the expectation value 
of Wilson loop operator is approximated geometrically given by [22]

〈W(c)〉 ≈ exp

(
− A

∑
2πα′

)
, (14)

in which α′ is a Regge slope parameter, 
∑

is the minimal bulk surface ending on C with its 
minimal area A, and C is the closed contour. Here, choosing the line with ϕ = π/2 and θ = θ0
as loop, we are able to utilizing (ϕ, θ) to parameterize the minimal area surface. Consequently, 
the minimal area surface is

A = 2π

θ0∫
0

r sin θ

√
r ′ (θ)2

F (r)
+ r (θ)2dθ, (15)

where r ′ ≡ dr/dA. Through resolving the Euler–Langrange equation

∂L

∂r
= d

dθ
(
∂L

∂r ′ ), (16)

one can obtain the motion equation of r(θ). Taking into account the boundary conditions

r ′(0) = 0, r(0) = r0, (17)
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Fig. 1. Scalar isocharges in the Th–S plane for different q with l = 1. The blue dashed line in panel (b) indicates the 
second phase transition’s temperature Tc = 0.4359, and the red dashed line in panel (c) corresponds to the temperature of 
the first order phase transition T ∗ = 0.4479. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)
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numerically, we obtain the result of r(θ). Notice that for a fixed θ0, due to the minimal area 
surface is divergent, it needs to be regularized. We are able to accomplish it through subtracting 
the minimal area surface in pure AdS with the same boundary (which is denoted by A′). Namely, 
we first numerically get A by integrating the minimal area surface function in Eq. (9) to cut off 
θc � θ0, then, repeating the same procedure in pure AdS, we can get A′. Thus, the regularized 
minimal area surface �A = A − A′ is obtained. Here, we take θ0 = 0.42 and θ0 = 0.50 as exam-
ple, and corresponding cutoffs are ordered to be θc = 0.419 and 0.499. The scalar isocharges are 
presented in the Th–�A plane in Fig. 2 and Fig. 3. Comparing with Fig. 1, we see that the Van 
der Waals phase transition can also be exhibited in the Th–�A plane, like black hole entropy.

Next, for the first order phase transition, we check the Maxwell’s equal area construction in 
the Th–�A plane. We construct the similar equal area law of Wilson loop as

A1 ≡
�Amax∫

�Amin

Th (�A,q)d�A = T ∗ (�Amax − �Amin) ≡ A2, (18)

where Th(�A, q) is an interpolating function, which can be got from the numeric result, and 
�Amin and �Amax are the smallest and largest toots of the equation Th(�A, q) = T ∗. Here, 
T ∗ is equal to the first order phase transition temperature of black hole entropy. For different θ0, 
the values of �Amin, �Amax , A1 and A2 are tabulated in Table 1. As can be seen from this table, 
in our numeric accuracy, A1 equals to A2.

It is noticed that recent work [41] has called into question to Maxwell’s equal area law in 
the holographic framework. Now, for the Wilson loop, we further check this problem with the 
different ratio q/qC = 0.9 and 0.3. According to Ref. [41], we use following equal area law

A(I) ≡
�Aint∫

�Amin

Th(�A,q)d�A − T ∗(�Aint − �Amin)

= T ∗(�Amax − �Aint ) −
�Amax∫

�Aint

Th(�A,q)d�A ≡ A(II) (19)

where �Amin, �Aint and �Amax are the smallest, intermediate and largest root of the equa-
tion T ∗ = Th(�A, q) with A(I) and A(II) the areas bounded above and below by Th(�A, q)

and T ∗. Here, we take θ0 = 0.42 as example and perform numerical computations. The results 
are presented in Table 2 with the relative error defined as A(I)−A(II)

A(I)
×100%. From Table 2, it can 

be seen that, the equal area law holds just near criticality in the Wilson loop picture. However, 
as q/qC decreases, the relative errors are significantly large and consequently Maxwell’s equal 
area law does not hold on T –�A plane in regimes away from the critical point, which further 
strengthens the proposal of McCarthy et al. [41] who point out the breakdown of the equal area 
law in the holographic framework. In addition, we also find that, the relative errors become larger 
if we use the more precise areas given by Eq. (19) instead of that given by Eq. (18). With A(I)

and A(II) used in Eq. (19), the relative errors observed are consistent with the result in Ref. [41].
For the second order phase transition, we go on verifying whether the minimal area surface 

has the same critical exponent with one obtained in the black hole entropy. In order to do so, 
firstly, we define a similar heat capacity of the Wilson loop.

Cq = Th

∂�L

∂T

∣∣∣∣ . (20)

h q
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Fig. 2. Scalar isocharges in the Th–�A plane for θ0 = 0.42. Panel (a): |q = −0.05| > |qc|. Panel (b): |q| = |qc|, the red 
isotherm Th = Tc corresponds the critical temperature for a second order phase transition. Panel (c): |q = −0.02| < |qc|. 
The red isotherm Th = T ∗ indicates the temperature of a first order phase transition. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Scalar isocharges in the Th–�A plane for θ0 = 0.05. Panel (a): |q = −0.05| > |qc|. Panel (b): |q| = |qc|, the red 
isotherm T = Tc corresponds the critical temperature for a second order phase transition. Panel (c): |q = −0.02| < |qc|, 
the red isotherm Th = T ∗ indicates the temperature of a first order phase transition. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)



66 H.-L. Li et al. / Nuclear Physics B 929 (2018) 58–68
Table 1
Check of the Maxwell’s equal area construction with T ∗ =
0.4479 in the Th–�S plane.

θ0 = 0.42 �Amin = 0.00305812 A1 = 0.0069516
�Amax = 0.01857888 A2 = 0.0069518

θ0 = 0.50 �Amin = 0.00615366 A1 = 0.015409
�Amax = 0.04052636 A2 = 0.015396

Table 2
Check of the equal area law in the T –�A plane for θ0 = 0.42.

T ∗ |q| q/qc A (I) A (II) Relative error

0.438406 0.03 0.9 1.54953 × 10−6 1.53041 × 10−6 0.0123
0.458343 0.01 0.3 1.57730 × 10−4 1.36519 × 10−4 0.1345

Fig. 4. log |Th − Tc| versus log |�A − �Ac| for θ0 = 0.42.

Then, with the equation Th(�A, q) = Tc, the numeric result �Ac can be obtained. For dif-
ferent θ0, we have plotted log(T − Tc) versus log |�A − �Ac| in Fig. 4 and Fig. 5, and the 
corresponding linear fit is

log |Th − Tc| =
{

10.9198 + 2.99941 log |�A − �Ac| for θ0 = 0.42

12.3146 + 2.94085 log |�A − �Ac| for θ0 = 0.50
(21)

Obviously, the slope of the each curve is around 3 for different θ0. Compared with Eq. (7), the 
critical exponent of Wilson loop is consistent with that of the black hole entropy.

3. Conclusion

In this paper, making use of Wilson loop, we discuss on the Van der Waals phase transition for 
the five-dimensional scalar hairy black hole. The result shows that, like the black hole entropy, 
the Van der Waals phase transition can also be presented in the T –�A plane. To further char-
acterize the phase transition, the equal area law is checked in the T –�A plane for a first order 
phase transition, and the critical exponent for the second order phase transition is also calculated 
numerically. Notice that recent work [41] has predicated that the breakdown of the equal area law 
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Fig. 5. log |Th − Tc| versus log |�A − �Ac| for θ0 = 0.50.

for holographic entanglement entropy and two point correlation function. In this paper, for the 
Wilson loop, with different ratios q/qC , we also perform numerically computation of the equal 
area law in the T –�A plane. As a result, we find out the equal area law is valid near criticality, 
however, it does not hold in regimes away from the critical point. To conclude, Wilson loop can 
serve as a probe to investigate the phase structure of a black hole, and a holographic equal area 
law of the Wilson loop is still an open question.

It is interesting to note that, for the charged hairy black hole, in [15], Hennigar and Mann 
have first revealed a reentrant phase transition, and have carefully studied the Van der Waals 
behavior in the P –V plane in both the charged/uncharged cases. Here, for uncharged case in 
the T –S plane and T –�A plane, by choosing some proper values of q , we also present the Van 
der Waals-like phase transition, thereby strengthening the conclusion of [15]. In fact, there is 
indeed a connection between (P,V,T ) description and (T ,S,Q) description [21]. Employing 
Wilson loop, we can explore reentrant phase transitions in the charged case. Wilson loop can 
serve as a probe of different phase transitions such as the Hawking–Page phase transition and 
the holographic superconductor phase transition. According to AdS/CFT correspondence, these 
phase transitions have been well understood in dual field theories. However, up to now the dual 
field theory interpretation of the Van der Waals-like phase transition is still, to a large extent, 
an open question, and it would be interesting to give a clear field theory interpretation in future 
works.
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