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Abstract

In order to give further insights into the holographic Van der Waals phase transition, it would be of
great interest to investigate the behavior of Wilson loop across the holographic phase transition for a higher
dimensional hairy black hole. We offer a possibility to proceed with a numerical calculation in order to
discussion on the hairy black hole’s phase transition, and show that Wilson loop can serve as a probe
to detect a phase structure of the black hole. Furthermore, for a first order phase transition, we calculate
numerically the Maxwell’s equal area construction; and for a second order phase transition, we also study
the critical exponent in order to characterize the Wilson loop’s phase transition.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

According to AdS/CFT correspondence [1], an anti-de Sitter black hole in the bulk is dual to a
strongly coupled large N gauge theory, and phase transitions in AdS backgrounds may provide an
interpretation of holographic dual field theories. The best known Hawking—Page phase transition
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in Schwarzchild AdS spacetime [2], which presented the existence of a thermal radiation/large
AdS black hole phase transition, is explained as the confinement/deconfinement phase transition
in the dual gauge thermal field theory [3]. In addition, it has been shown that the scalar field
condensation in four dimensional charged AdS black holes may be taken as holographically
dual models of superconductors [4]. Therefore, it is interesting to extend the discussion of phase
transitions to higher dimensional AdS spacetime to explore holographic properties.

Since a black hole possesses thermodynamical properties, it is natural to ask whether it can
undergo a Van der Waals phase transition in the same manner as an ordinary liquid—gas thermo-
dynamical system. In recent years, in the P—V plane, the Van der Waals phase transition has been
explored in various of AdS backgrounds [5—16], and most results indicated that, isotherms in the
P-V plane indeed present Van der Waals characterize: the system undergoes a second order
phase transition at a second-order critical temperature, and undergoes a first order phase transi-
tion at sufficiently low temperature. In addition, in the 7—S plane, in the canonical ensemble, the
isocharges also reveal Van der Waals behavior [17-21]. In [21], Caceres et al. have pointed out
the connection between in the P—V plane at constant 7 and in the 7—S plane at constant P, and
found out dimensionless parameter that determines the transition.

Very recently, entanglement entropy and two point correlation function have been used to
investigate Van der Waals phase transition [21,32-40]. In our previous paper [40], we have indi-
cated the Van der Waals phase transition can be presented by employing black hole entropy, two
point correction function and entanglement entropy. In this current paper, for a five-dimensional
scalar hairy black hole, we will go on discussing whether Van der Waals phase transition can be
presented by making use of Wilson loop.

Wilson loop is nonlocal probe, and it can also be used to investigate some properties of gauge
field theories. In 1998, Maldacena proposed a method to calculate the expectation values of Wil-
son loop operators in the dual theory [22]. Following that, Wilson loop has attracted a lot of
attentions for potential applications in AdS backgrounds. With Wilson loop/Wilson loop corre-
lators in AdS/CFT by constructing space-like minimal surfaces, phase transitions in Wilson loop
correlator were discussed in detail [23]. Minahan and Nedelin have shown how the phase tran-
sition affected the Wilson loop at strong coupling [24]. Furthermore, circular Wilson loop was
studied as a probe, and the thermalization process of the dual boundary field theory was studied
in GB-Vaidya model [25]. In addition, in order to give further insights into the holographic insu-
lator/superconductor phase transition, Cai et al. presented the behavior of Wilson loop across the
holographic phase transition [26], and showed that Wilson loop is a good probe to discuss the
properties of the holographic superconductor phase transition.

Considering Wilson loop, in this paper, we will adapt the higher dimensional hairy black
hole model to study Van der Waals-like phase transition. It is very interesting to investigate
the conformal coupling of a scalar field in higher dimensional spacetime. Oliva and Ray first
developed a novel construction of conformal couplings of a scalar field to arbitrary higher order
Euler densities, which was done by constructing a four-rank tensor involving the curvature and
derivatives of the field [27]. In higher dimensional AdS spacetime, Giribet et al. proved the
analytic solutions to higher dimensional hairy black holes do exist and the scalar configuration
is regular every where outside and on the horizon [28,29]. Further, Hennigar and Mann have
first revealed a reentrant phase transition in a five dimensional gravitational system which does
not include higher curvature corrections [15]. In addition, a tractable model to study the phase
transition of hairy black holes in anti-de Sitter space was also discussed in detail [30]. Especially,
in very recent years, Hennigar, Mann and Tjoa have found that, for a class of asymptotically
AdS hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to
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gravity, a novel form of phase transition akin to a superfluid phase transition can be observed [31].
Therefore, the phase transitions of higher dimensional hairy black holes have gained a lot of
interest in AdS spacetime.

Motivated by the themes above, we attempt to discuss on the behavior of Wilson loop across
the holographic Van der Waals-like phase transition in this work. The rest of this paper is or-
ganized as follows. In section 2, the Van der Waals phase transition of a five-dimensional hairy
black hole in AdS background is investigated. The last section is devoted to the conclusions.

2. Van der Waals phase transition of Wilson loop

First, let us review a Van der Waals phase transition of the black hole entropy for a five-
dimensional hairy black hole in AdS background. The corresponding action reads [28,29]

I=%/d5xJ—_g(R—2A+KLm (¢, Vo)), (1)
where k = 16t G, and the Lagrangian matter L,, (¢, V¢) takes the form

L (8, Y8) =" (boS® + b1955 ) + b 105, @
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here bg, b1 and b, are the coupling constants of conformal field theory. The black hole’s metric
reads [15,30]

1
ds? = —F(r)di® + mdr2 42 [d(p2 + sin® 0(d62 + sin® 9d¢2)] (4)
r
with
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where [ = (—A/6)~ /2, m is mass parameter, and ¢ stands for the black hole’s charge under a
scalar field. The scalar hair configuration of the theory is

n
=—, 6
o) =173 ©6)
where n in Eq. (6) and ¢ in Eq. (5) are given by the following relationship,
647G 18 by \ 1/
q= bin’, n=g(——-" , @)
5 5 by
with ¢ = —1, 0, 1. The scalar coupling constants satisfy the following constraint

10boby = 9b73. ®)
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The relationship between Hawking temperature 7j, and the entropy S becomes [40]

1
22/3]1275/3 (5n2q + 4S)4/3

459272 (572q +45)23 + 4325572 + 43)2/3]. )

Ty(S.q) =

[6127110/351 + 412743

2 .. .. . .
From <88TS" ) (%) = 0, the critical temperature, critical scalar charge and critical entropy
q

are given by

r=s/>1 (10)
TV 1027I°

Se = — | =72 1
T T (11)
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According to the temperature function 7, (S, ¢) in Eq. (3), we can plot the isocharges in the
T,—S plane [40]. Here, we set [ = 1 throughout. Based on the relation between 7, — T, and
S — 8¢, and heat capacity C,; = Th% l¢> one has C,; ~ (T, — Tc)_2/3. That is to say, the second
phase transition’s critical exponent is —2/3. Taking logarithm form, we have

log|Ty, — T;| = 3log|S — S¢| + constant. (13)

In the previous paper [40], the authors have concluded that the isocharges in the 7,—S plane
present the Van der Waals phase transition, and the critical exponent has been calculated, which
coincides with the one from the mean field theory. Now, we focus on exploring the phase tran-
sition of the hairy black hole by using Wilson hoop. Wilson loop corresponds to the minimal
area surface by holography. In the form of the AdS/CFT correspondence, the expectation value
of Wilson loop operator is approximated geometrically given by [22]

A
(W(c)) = exp (_271%’)’ (14)

in which o’ is a Regge slope parameter, Y _ is the minimal bulk surface ending on C with its
minimal area A, and C is the closed contour. Here, choosing the line with ¢ = /2 and 6 = 6y
as loop, we are able to utilizing (¢, 8) to parameterize the minimal area surface. Consequently,
the minimal area surface is

A=2r7 / rsin® + (0)%de, (15)
where r’ = dr/dA. Through resolving the Euler-Langrange equation

L d (BL )

ar do - ar'”
one can obtain the motion equation of r(6). Taking into account the boundary conditions

(16)

r'(0) =0, r(0) = ry, 17)



62 H.-L. Li et al. / Nuclear Physics B 929 (2018) 58-68

0.48 -

0.46 -

0.42 -

0.40 -

0.38
0

(a) lg = —0.05] > [qc|

0.48
0.46
0.44
0.42

0.40

0.38
0

(b) lg| = lgel

042 -

0.40 -

038l v v e e e e g

(c) lg = —0.02] < gcl

Fig. 1. Scalar isocharges in the 7;,—S plane for different ¢ with / = 1. The blue dashed line in panel (b) indicates the
second phase transition’s temperature 7, = 0.4359, and the red dashed line in panel (c) corresponds to the temperature of
the first order phase transition 7* = 0.4479. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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numerically, we obtain the result of r(6). Notice that for a fixed 6y, due to the minimal area
surface is divergent, it needs to be regularized. We are able to accomplish it through subtracting
the minimal area surface in pure AdS with the same boundary (which is denoted by A’). Namely,
we first numerically get A by integrating the minimal area surface function in Eq. (9) to cut off
0. < 6y, then, repeating the same procedure in pure AdS, we can get A’. Thus, the regularized
minimal area surface AA = A — A’ is obtained. Here, we take 6y = 0.42 and 6y = 0.50 as exam-
ple, and corresponding cutoffs are ordered to be 6, = 0.419 and 0.499. The scalar isocharges are
presented in the 7,—A A plane in Fig. 2 and Fig. 3. Comparing with Fig. 1, we see that the Van
der Waals phase transition can also be exhibited in the 7,—A A plane, like black hole entropy.

Next, for the first order phase transition, we check the Maxwell’s equal area construction in
the 7,—A A plane. We construct the similar equal area law of Wilson loop as

AA/TIaX
A= / Ty (AA"])dAA:T* (AAjay — AApin) = Ag, (18)
AAm[n

where T,(AA, g) is an interpolating function, which can be got from the numeric result, and
AApin and AA,,,, are the smallest and largest toots of the equation Tj(AA, g) = T*. Here,
T* is equal to the first order phase transition temperature of black hole entropy. For different 6,
the values of AA,;in, AA,ux, A1 and Ay are tabulated in Table 1. As can be seen from this table,
in our numeric accuracy, A| equals to Aj.

It is noticed that recent work [41] has called into question to Maxwell’s equal area law in
the holographic framework. Now, for the Wilson loop, we further check this problem with the
different ratio g /g¢c = 0.9 and 0.3. According to Ref. [41], we use following equal area law

AAim‘
Al = / Ty (DA, ) dAA — T*(DAjm — AApin)
AAmin
AAmaX
= T*(AAmax — AAjnt) — / Th(AA,g)dAA = A (19)
AAim‘

where AApin, AAjn and AA,,y are the smallest, intermediate and largest root of the equa-
tion T* = Tj,(AA, q) with A(I) and A(I]) the areas bounded above and below by T, (AA, q)
and T*. Here, we take 6y = 0.42 as example and perform numerical computations. The results
are presented in Table 2 with the relative error defined as W x 100%. From Table 2, it can
be seen that, the equal area law holds just near criticality in the Wilson loop picture. However,
as g /qc decreases, the relative errors are significantly large and consequently Maxwell’s equal
area law does not hold on T—-A A plane in regimes away from the critical point, which further
strengthens the proposal of McCarthy et al. [41] who point out the breakdown of the equal area
law in the holographic framework. In addition, we also find that, the relative errors become larger
if we use the more precise areas given by Eq. (19) instead of that given by Eq. (18). With A([/)
and A(IT) used in Eq. (19), the relative errors observed are consistent with the result in Ref. [41].

For the second order phase transition, we go on verifying whether the minimal area surface
has the same critical exponent with one obtained in the black hole entropy. In order to do so,
firstly, we define a similar heat capacity of the Wilson loop.

Co=Th —| . (20)
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Fig. 2. Scalar isocharges in the 7j,—A A plane for 6y = 0.42. Panel (a): |¢ = —0.05| > |g.|. Panel (b): |g| = |g¢|, the red
isotherm Ty, = T, corresponds the critical temperature for a second order phase transition. Panel (¢): |g = —0.02] < |gc|.
The red isotherm 7}, = T* indicates the temperature of a first order phase transition. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Scalar isocharges in the 7;,—A A plane for 8y = 0.05. Panel (a): | = —0.05] > |g¢|. Panel (b): |g| = |g¢|, the red
isotherm T = T¢ corresponds the critical temperature for a second order phase transition. Panel (c): |¢ = —0.02| < |gc|,
the red isotherm 7}, = T* indicates the temperature of a first order phase transition. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Check of the Maxwell’s equal area construction with T* =
0.4479 in the Ty —AS plane.

00 =0.42 Adpin = 0.00305812 Ay =0.0069516
AAmax =0.01857888 A =0.0069518

60 = 0.50 Adpin = 0.00615366 Aq =0.015409
AAmax = 0.04052636 A =0.015396

Table 2
Check of the equal area law in the T—A A plane for 6y = 0.42.
T* lq] q/9c A®D A (D) Relative error
0.438406 0.03 0.9 1.54953 x 1076 1.53041 x 1076 0.0123
0.458343 0.01 0.3 1.57730 x 1074 1.36519 x 1074 0.1345
Log|T),~T|
_1al ot

S NS MR 17Y:11.V-W.V- W
-10.0 -9.5 -9.0 -85 -8.0

Fig. 4. log [T}, — T,| versus log |AA — AA¢| for 6y = 0.42.

Then, with the equation 7;(AA, g) = T, the numeric result AA, can be obtained. For dif-
ferent 6y, we have plotted log(T — T.) versus log|AA — AA.| in Fig. 4 and Fig. 5, and the
corresponding linear fit is

10.9198 +2.999411og|AA — AA.| for 6y=0.42

21
12.3146 +2.94085log |AA — AA.| for 6y =0.50 @h

10g|Th - Tc| = {
Obviously, the slope of the each curve is around 3 for different 6y. Compared with Eq. (7), the
critical exponent of Wilson loop is consistent with that of the black hole entropy.

3. Conclusion

In this paper, making use of Wilson loop, we discuss on the Van der Waals phase transition for
the five-dimensional scalar hairy black hole. The result shows that, like the black hole entropy,
the Van der Waals phase transition can also be presented in the T—AA plane. To further char-
acterize the phase transition, the equal area law is checked in the T—A A plane for a first order
phase transition, and the critical exponent for the second order phase transition is also calculated
numerically. Notice that recent work [4 1] has predicated that the breakdown of the equal area law
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Fig. 5. log |Tj, — T,| versus log |AA — AA,| for 6y = 0.50.

for holographic entanglement entropy and two point correlation function. In this paper, for the
Wilson loop, with different ratios g /qc, we also perform numerically computation of the equal
area law in the T—A A plane. As a result, we find out the equal area law is valid near criticality,
however, it does not hold in regimes away from the critical point. To conclude, Wilson loop can
serve as a probe to investigate the phase structure of a black hole, and a holographic equal area
law of the Wilson loop is still an open question.

It is interesting to note that, for the charged hairy black hole, in [15], Hennigar and Mann
have first revealed a reentrant phase transition, and have carefully studied the Van der Waals
behavior in the P—V plane in both the charged/uncharged cases. Here, for uncharged case in
the T—S plane and T-A A plane, by choosing some proper values of g, we also present the Van
der Waals-like phase transition, thereby strengthening the conclusion of [15]. In fact, there is
indeed a connection between (P, V, T) description and (7, S, Q) description [21]. Employing
Wilson loop, we can explore reentrant phase transitions in the charged case. Wilson loop can
serve as a probe of different phase transitions such as the Hawking—Page phase transition and
the holographic superconductor phase transition. According to AdS/CFT correspondence, these
phase transitions have been well understood in dual field theories. However, up to now the dual
field theory interpretation of the Van der Waals-like phase transition is still, to a large extent,
an open question, and it would be interesting to give a clear field theory interpretation in future
works.

Acknowledgements

The authors thank the anonymous referees for helpful suggestions and enlightening com-
ments, which helped to improve the quality of this paper. This work is supported by the Natural
Science Foundation of China (Grant Nos. 11703018 and 11573022) and the Fundamental Re-
search Funds of China West Normal University (Grant No. 17YC518).

References

[1] J.M. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 231, https://doi.org/10.1023/A:1026654312961.
[2] S. Hawking, D. Page, Commun. Math. Phys. 87 (1983) 577, https://doi.org/10.1007/BF01208266.
[3] E. Witten, Adv. Theor. Math. Phys. 2 (1998) 253.


https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1007/BF01208266
http://refhub.elsevier.com/S0550-3213(18)30040-3/bib33s1

68 H.-L. Li et al. / Nuclear Physics B 929 (2018) 58-68

[4] S.A. Hartnoll, C.P. Herzog, G.T. Horowitz, Phys. Rev. Lett. 101 (2008) 031601, https://doi.org/10.1103/
PhysRevLett.101.031601.
[5] N. Altamirano, D. Kubiziidk, R.B. Mann, Phys. Rev. D 88 (2013) 101502, https://doi.org/10.1103/PhysRevD.88.
101502.
[6] R.G. Cai, LM. Cao, L. Li, R.Q. Yang, J. High Energy Phys. 1309 (2013) 005, https://doi.org/10.1007/
JHEP09(2013)005.
[7] S.H. Hendi, M.H. Vahidinia, Phys. Rev. D 88 (2013) 084045, https://doi.org/10.1103/PhysRevD.88.084045.
[8] R. Zhao, H.H. Zhao, M.S. Ma, L.C. Zhang, Eur. Phys. J. C 73 (2013) 2645, https://doi.org/10.1140/epjc/s10052-
013-2645-x.
[9] M.B.J. Poshteh, B. Mirza, Z. Sherkatghanad, Phys. Rev. D 88 (2013) 024005, https://doi.org/10.1103/PhysRevD.
88.024005.
[10] A. Rajagopal, D. Kubiziidk, R.B. Mann, Phys. Lett. B 737 (2014) 277, https://doi.org/10.1016/j.physletb.2014.
08.054.
[11] W. Xu, L. Zhao, Phys. Lett. B 736 (2014) 214, https://doi.org/10.1016/j.physletb.2014.07.019.
[12] A.M. Frassino, D. Kubiziidk, R.B. Mann, F. Simovic, J. High Energy Phys. 1409 (2014) 080, https://doi.org/10.1007/
JHEP09(2014)080.
[13] T. Delsate, R. Mann, J. High Energy Phys. 1502 (2014) 070, https://doi.org/10.1007/JHEP02(2015)070.
[14] J.L. Zhang, R.G. Cai, H. Yu, J. High Energy Phys. 1502 (2014) 143, https://doi.org/10.1007/JHEP02(2015)143.
[15] R.A. Hennigar, R.B. Mann, Entropy 17 (2015) 8056, https://doi.org/10.3390/e17127862.
[16] S.H. Hendi, R.B. Mann, S. Panahiyan, B.E. Panah, Phys. Rev. D 95 (2017) 021501, https://doi.org/10.1103/
PhysRevD.95.021501.
[17] A. Chamblin, R. Emparan, C.V. Johnson, R.C. Myers, Phys. Rev. D 60 (1999) 104026, https://doi.org/10.1103/
PhysRevD.60.104026.
[18] A. Chamblin, R. Emparan, C.V. Johnson, R.C. Myers, Phys. Rev. D 60 (1999) 064018, https://doi.org/10.1103/
PhysRevD.60.064018.
[19] E. Spallucci, A. Smailagic, Phys. Lett. B 723 (2013) 436, https://doi.org/10.1016/j.physletb.2013.05.038.
[20] C.O. Lee, Phys. Lett. B 738 (2014) 294, https://doi.org/10.1016/j.physletb.2014.09.046.
[21] E. Caceres, P.H. Nguyen, J.F. Pedraza, J. High Energy Phys. 1509 (2015) 184, https://doi.org/10.1016/j.physletb.
2014.09.046.
[22] J. Maldacena, Phys. Rev. Lett. 80 (1998) 4859, https://doi.org/10.1103/PhysRevLett.80.4859.
[23] B.A. Burrington, L.A. Pando Zayas, Int. J. Mod. Phys. A 27 (2012) 1250001, https://doi.org/10.1142/
S0217751X12500017.
[24] J.A. Minahan, A. Nedelin, J. High Energy Phys. 1412 (2014) 049, https://doi.org/10.1007/JHEP12(2014)049.
[25] Y.Z. Li, S.F. Wu, G.H. Yang, Phys. Rev. D 88 (2013) 086006, https://doi.org/10.1103/PhysRevD.88.086006.
[26] R.G. Cai, S. He, L. Li, L.F. Li, J. High Energy Phys. 1210 (2012) 107, https://doi.org/10.1007/JHEP10(2012)107.
[27] J. Oliva, S. Ray, Class. Quantum Gravity 29 (2012) 205008, https://doi.org/10.1088/0264-9381/29/20/205008.
[28] G. Giribet, M. Leoni, J. Oliva, S. Ray, Phys. Rev. D 89 (2014) 085040, https://doi.org/10.1103/PhysRevD.89.
085040.
[29] G. Giribet, A. Goya, J. Oliva, Phys. Rev. D 91 (2015) 045031, https://doi.org/10.1103/PhysRevD.91.045031.
[30] M. Galante, G. Giribet, A. Goya, J. Oliva, Phys. Rev. D 92 (2015) 104039, https://doi.org/10.1103/PhysRevD.
92.104039.
[31] R.A. Hennigar, R.B. Mann, E. Tjoa, Phys. Rev. Lett. 118 (2017) 021301, https://doi.org/10.1103/PhysRevLett.
118.021301.
[32] C.V. Johnson, J. High Energy Phys. 1403 (2014) 047, https://doi.org/10.1007/JHEP03(2014)047.
[33] A. Dey, S. Mahapatra, T. Sarkar, Phys. Rev. D 94 (2016) 026006, https://doi.org/10.1103/PhysRevD.94.026006.
[34] PH. Nguyen, J. High Energy Phys. 1512 (2015) 139, https://doi.org/10.1007/JHEP12(2015)139.
[35] X.X. Zeng, H. Zhang, L.F. Li, Phys. Lett. B 756 (2015) 170, https://doi.org/10.1016/j.physletb.2016.03.013.
[36] X.X. Zeng, X.M. Liu, L.F. Li, Eur. Phys. J. C 76 (2016) 616, https://doi.org/10.1140/epjc/s10052-016-4463-4.
[37] Y. Sun, H. Xu, L. Zhao, J. High Energy Phys. 1609 (2016) 060, https://doi.org/10.1007/JHEP09(2016)060.
[38] X.X. Zeng, L.F. Li, Phys. Lett. B 764 (2015) 100, https://doi.org/10.1007/JHEP09(2016)060.
[39] S. He, L.F. Li, X.X. Zeng, Nucl. Phys. B 915 (2016) 243, https://doi.org/10.1016/j.nuclphysb.2016.12.005.
[40] H.L. Li, S.Z. Yang, X.T. Zu, Phys. Lett. B 764 (2016) 310, https://doi.org/10.1016/j.physletb.2016.11.043.
[41] F. McCarthy, D. Kubiznak, R.B. Mann, arXiv:1708.07982.


https://doi.org/10.1103/PhysRevLett.101.031601
https://doi.org/10.1103/PhysRevD.88.101502
https://doi.org/10.1007/JHEP09(2013)005
https://doi.org/10.1103/PhysRevD.88.084045
https://doi.org/10.1140/epjc/s10052-013-2645-x
https://doi.org/10.1103/PhysRevD.88.024005
https://doi.org/10.1016/j.physletb.2014.08.054
https://doi.org/10.1016/j.physletb.2014.07.019
https://doi.org/10.1007/JHEP09(2014)080
https://doi.org/10.1007/JHEP02(2015)070
https://doi.org/10.1007/JHEP02(2015)143
https://doi.org/10.3390/e17127862
https://doi.org/10.1103/PhysRevD.95.021501
https://doi.org/10.1103/PhysRevD.60.104026
https://doi.org/10.1103/PhysRevD.60.064018
https://doi.org/10.1016/j.physletb.2013.05.038
https://doi.org/10.1016/j.physletb.2014.09.046
https://doi.org/10.1016/j.physletb.2014.09.046
https://doi.org/10.1103/PhysRevLett.80.4859
https://doi.org/10.1142/S0217751X12500017
https://doi.org/10.1007/JHEP12(2014)049
https://doi.org/10.1103/PhysRevD.88.086006
https://doi.org/10.1007/JHEP10(2012)107
https://doi.org/10.1088/0264-9381/29/20/205008
https://doi.org/10.1103/PhysRevD.89.085040
https://doi.org/10.1103/PhysRevD.91.045031
https://doi.org/10.1103/PhysRevD.92.104039
https://doi.org/10.1103/PhysRevLett.118.021301
https://doi.org/10.1007/JHEP03(2014)047
https://doi.org/10.1103/PhysRevD.94.026006
https://doi.org/10.1007/JHEP12(2015)139
https://doi.org/10.1016/j.physletb.2016.03.013
https://doi.org/10.1140/epjc/s10052-016-4463-4
https://doi.org/10.1007/JHEP09(2016)060
https://doi.org/10.1007/JHEP09(2016)060
https://doi.org/10.1016/j.nuclphysb.2016.12.005
https://doi.org/10.1016/j.physletb.2016.11.043
http://refhub.elsevier.com/S0550-3213(18)30040-3/bib3432s1
https://doi.org/10.1103/PhysRevLett.101.031601
https://doi.org/10.1103/PhysRevD.88.101502
https://doi.org/10.1007/JHEP09(2013)005
https://doi.org/10.1140/epjc/s10052-013-2645-x
https://doi.org/10.1103/PhysRevD.88.024005
https://doi.org/10.1016/j.physletb.2014.08.054
https://doi.org/10.1007/JHEP09(2014)080
https://doi.org/10.1103/PhysRevD.95.021501
https://doi.org/10.1103/PhysRevD.60.104026
https://doi.org/10.1103/PhysRevD.60.064018
https://doi.org/10.1016/j.physletb.2014.09.046
https://doi.org/10.1142/S0217751X12500017
https://doi.org/10.1103/PhysRevD.89.085040
https://doi.org/10.1103/PhysRevD.92.104039
https://doi.org/10.1103/PhysRevLett.118.021301

	Wilson loop's phase transition probed by non-local observable
	1 Introduction
	2 Van der Waals phase transition of Wilson loop
	3 Conclusion
	Acknowledgements
	References


