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We present an analytical method for non-paraxial, meridional ray tracing through a system of
basic geometric surfaces derivable from a generalized ellipse; i.e. the most general ray tracing method
for a 2-dimensional system comprised of elliptical, circular, and linear surfaces. This work is meant
as a non-small angle generalization of standard ray tracing for geometric optics.
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FIG. 1. Propagation of optical rays (color corresponds to initial position) from left to right through an arbitrary lens system
(black) using the methods introduced in this paper. The system’s medium has a refractive index of 1.0 with the refractive
indices for each lens shown on the bottom. Rays are not propagated past the last plane or a point of total internal reflection.
Lines connecting the left and right surfaces (e.g. top and bottom of the third, rectangular lens) are only visual.

INTRODUCTION

The study of light propagation in optical systems is
crucial for various scientific and technological applica-
tions. The paraxial approximation is widely used and is
easily accessible both online and through introductory
optics textbooks owing to it providing an elegant ray
propagation method in the form of matrices. However,
the paraxial approximation fails to accurately describe
light behavior at non-small angles (as shown in Figure 2)
or with surfaces (lenses or mirrors) which are not approx-
imately linear and perpendicular to the optical axis.

We acknowledge that previous work similar to ours
exists in this area [1, 2], although our search did not
yield any results which where directly and easily imple-
mentable to general optical systems. The intention of
this work is not to present a novel idea, but rather to
provide an accessible resource for generalized ray prop-
agation not limited by the paraxial approximation.

To this end, we provide a simulation framework writ-
ten in Python � that leverages the analytical methods
introduced in this paper for fast (O(N) where N is the
number of surfaces) ray propagation through an arbi-
trary optical system as seen in Figure 1. Examples of its
uses include analyzing sensitivity of the final-state ray
to deviations in the rays initial state, implementation
as the reward function for reinforcement learning-based
lens design, and labeled data generation for supervised
deep learning-based optical models.
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FIG. 2. Visualization of the small angle approximations
sinα ≈ α and tanα ≈ α (solid lines) and their percent errors
(dashed lines). π/12 (= 15◦) is commonly used as the maxi-
mum angle for which the small angle approximation holds.

LIMITATIONS OF MERIDIONAL RAY
TRACING

This work uses meridional rays, which are confined to
a plane coinciding with the optical axis. The utilization
of a 2-dimensional simplification within a 3-dimensional
system necessitates a careful examination of the optical
systems to which these methods can be applied. Within
the context of a 3-dimensional space (R3) where the op-
tical axis aligns with the x-axis, the ray must lie in the
meridional plane which we define as the xy-plane. Then,
to ensure the ray stays in the same meridional plane
throughout its propagation, we require dx/dz = 0 for all
points on every surface within the xy-plane.
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NOTATION

We define γ to be the ray state vector where
γ ≡ [x, y, θ, 1]T such that a ray γ is at position (x, y) and
directed at angle θ with respect to the positive x-axis.

Unlike the paraxial propagation matrices, non-
paraxial propagation matrices depend on x, y, θ ∈ γ such
that x, y, and/or θ are in a propagation matrix. This
mandates that γ is incrementally (in single steps) and
chronologically (from initial-state to final-state) propa-
gated through a system. This can be written as

γ′ = (Pn (Pn−1 (. . . (P2 (P1γ)) . . .)))

where P = {P1, . . . ,Pn} is a set of propagation matrices
and γ′ is the final transmitted ray. To more easily notate
this, we define a matrix propagation operator Ξ which is
used to create directed processes, such that

γ′ = Ξ P ⊙ γ ≡ (Pn (Pn−1 (. . . (P2 (P1γ)) . . .))) .

RAY PROPAGATION MATRICES

In this section, we present matrices for translation (T ),
refraction (R), and reflection (M) that enable the propa-
gation of a ray through an arbitrary optical system com-
posed of surfaces which pass the horizontal line test.

The most general form of a lens surface L in our optical
system is an ellipse

1 =

[
(x′ − xl) cosϕ+ (y′ − yl) sinϕ

rx

]2
+

[
(x′ − xl) sinϕ− (y′ − yl) cosϕ

ry

]2
(1)

such that (x′, y′) ∈ L where rx and ry are the x- and
y-radii of the ellipse respectively, (xl, yl) is the center
position of the ellipse, and ϕ is the angular rotation of
the ellipse about its center.
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FIG. 3. Visualization of ray propagation in a one-lens optical
system. We track the initial ray γi to two arbitrary final

states γf and γ′
f where γf =Ξ

{
Ti1,R1, T12,R2, T2f

}
⊙ γi

and γ′
f =Ξ

{
Ti1,R1, T12,M2, T21

}
⊙ γi.

To distinguish between the two sides of the ellipse, we
define rx < 0 to indicate that the surface is the left side
of the ellipse (x′ < xl), and rx > 0 denotes that the
surface is the right side of the ellipse (x′ > xl). Addi-
tionally, when rx ≈ 0, (1) becomes a linear surface such
that y′ − yl ≈ (x′ − xl) tan(ϕ+ π/2). Likewise, a circu-
lar surface can be found from (1) when rx = ry = r such
that r2 = (x′ − xl)

2 + (y′ − yl)
2.

Translation Matrix

The translation matrix T translates a ray γ =
[x, y, θ, 1]T to the point (x′, y′) ∈ L such that the final
state ray is γ′ = [x′, y′, θ, 1]T = T γ.

To find (x′, y′), we start by writing γ’s position as

y′ = m(x′ − x)− y, (2)

where m = tan θ and x, y, θ ∈ γ. Then, (2) intersects
the surface (1) at

x′ =
−c2 + (rx/|rx|)

√
c22 − 4c1c3

2c1

where

c1 =
(
m2r2y + r2x

)
sin2 ϕ+

(
m2r2x + r2y

)
cos2 ϕ+m(ry − rx)(rx + ry) sin 2ϕ,

c2 =(rx − ry)(rx + ry)((m(x+ xl)− y + yl) cos 2ϕ+ (xl −m(mx− y + yl)) sin 2ϕ)−
(
r2x + r2y

)
(m(mx− y + yl) + xl),

c3 =(r2y(mx− y + yl)
2 + r2xx

2
l ) sin

2 ϕ+ (r2x(mx− y + yl)
2 + r2yx

2
l ) cos

2 ϕ+ xl(ry − rx)(rx + ry)(mx− y + yl) sin 2ϕ− r2xr
2
y.

2
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Finally, we can simply write the translation matrix as

T =


0 0 0 x′

0 0 0 y′

0 0 1 0
0 0 0 1

 .

Refraction Matrix

The refraction matrix R refracts a ray γ′i =
[x′, y′, θ, 1]T through a surface L such that the final state
ray is γ′t = [x′, y′, θ′, 1]T = Rγ′i where γ′t is the transmit-
ted ray and (x′, y′) ∈ L as seen in Figure 4. Using the
law of refraction (Snell’s law), n1 sinψ = n2 sinψ

′, where
n1 and n2 are the refractive indices in the initial and fi-
nal mediums respectively, we find the refracted angle ψ′

with respect to the normal angle η where γ is incident
with the surface such that ψ = θ − η.

To find η, we simply use the orthogonal line to the
tangent of (1) such that

tan η = −dx
′

dy′
= r2xr

2
y

[
2(yl − y′)

(
r2x cos

2 ϕ+ r2y sin
2 ϕ

)
−(rx − ry)(rx + ry)(xl − x′) sin 2ϕ

]−1

.

Then, θ′ = η + ψ′, such that the refraction matrix can
be written as

R =


1 0 0 0
0 1 0 0
0 0 0 θ′

0 0 0 1

 .

Reflection Matrix

The reflection matrix M reflects a ray off a surface L
such that, for an incident ray γ′i = [x′, y′, θ, 1]T where
(x′, y′) ∈ L, γ′t = [x′, y′, θ′, 1] = Mγ′i where γ

′
t is the re-

flected ray. Using the law of reflection ψ = −ψ′, where
ψ = θ − η and ψ′ = θ′M − η, we can simply solve for
θ′ = 2η− θ. Then, we simply write the reflection matrix
as

x

y
L

γ′
t

ψ ψ′
η∗

γi

FIG. 4. Refraction diagram. The ray γi is propa-
gated from right to left. γi is incident with the surface L
at (x′, y′) ∈ γ′

i = T γi. Then, γ′
i is refracted becoming

[x′, y′, θ′, 1]T = γ′
t = Rγ′

i. Alternatively, this system can

be written as γ′
t =Ξ {T ,R} ⊙ γi. The angles ψ and ψ′ are

relative to the angle η or η∗ = π − η, which is normal to the
surface L at (x′, y′), and are used with the law of refraction
to calculate the angle of refraction.

M =


1 0 0 0
0 1 0 0
0 0 0 θ′

0 0 0 1

 .

CONCLUSION

In this work, we have presented a matrix-based ray
propagation method for transmission, refraction, and re-
flection of meridional, non-paraxial rays. While this is
not a novel concept, this work is mean to serve as a di-
rect and easily implementable 2-dimensional ray tracing
method for non-paraxial rays. This method can be used
for any ray which is confined to a 2-dimensional space
with surfaces derivable from a general ellipse, i.e. el-
liptical, circular, and linear surfaces. The propagation
matrices derived in this work and are also implemented
in a Python simulation framework �.
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