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We consider mixed three-point correlation functions of the supercurrent and flavor current in three-
dimensional 1 ≤ N ≤ 4 superconformal field theories. Our method is based on the decomposition of the
relevant tensors into irreducible components to guarantee that all possible tensor structures are
systematically taken into account. We show that only parity-even structures appear in the correlation
functions. In addition to the previous results obtained in [E. I. Buchbinder et al.J. High Energy Phys. 06
(2015) 138], it follows that supersymmetry forbids parity-odd structures in three-point functions involving
the supercurrent and flavor current multiplets.
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I. INTRODUCTION

It is a well-known property of conformal field theories
that the functional form of two- and three-point functions of
conserved currents such as the energy-momentum tensor
and vector current are fixed up to finitely many parameters.
In [1,2] a systematic formalism was developed to construct
two- and three-point functions of primary operators in
diverse dimensions. The method was based on properly
imposing the relevant symmetries arising from scale trans-
formations and permutations of points as well as the
conservation laws for the conserved currents (see also
Refs. [3–10] for earlier work). More recently it was shown
in [11] that a peculiar feature of three-dimensional (and
perhaps, in general, odd-dimensional) conformal field
theories is the appearance of parity-violating contributions
in three-point functions of conserved currents. These
structures were overlooked in the original study by
Osborn and Petkou [1] (also [2]) and have since been
shown to arise in Chern-Simons theories interacting with
parity-violating matter. Parity-violating (or parity-odd)
structures were studied in [12–20]. Recently they were
also studied in light-cone gauge [21] and in momentum
space [22].1

In contrast with the nonsupersymmetric case studied in
[1,2], supersymmetry imposes additional restrictions on the
structure of three-point functions of conserved currents. In
supersymmetric field theories the energy-momentum ten-
sor is replaced with the supercurrent multiplet [32], which
contains the energy-momentum tensor, the supersymmetry
current and additional components such as the R-symmetry
current. Similarly, a conserved vector current becomes a
component of the flavor current supermultiplet. The general
formalism to construct the two- and three-point functions of
primary operators in three-dimensional superconformal
field theories was developed in [33–36].2 Within this
formalism it was shown in [34] that the three-point function
of the supercurrent (and, hence, of the energy-momentum
tensor) in three-dimensionalN ¼ 1 superconformal theory
is comprised of only one tensor structure. It was also shown
that the three-point function of the non-Abelian flavor
current (and, hence, the three-point function of conserved
vector currents) also contains only one tensor structure. In
both cases the tensor structures are parity even.
The aim of this paper is to apply the approach of [34] to

the case of mixed correlators involving the supercurrent and
flavor current multiplets in theories with 1 ≤ N ≤ 4 super-
conformal symmetry. Our method is based on a systematic
decomposition of the relevant tensors into irreducible
components, which guarantees that all possible linearly
independent structures are consistently taken into account.
We demonstrate that these correlation functions contain
only parity-even structures; hence, in combination with the
results of [34] we conclude that supersymmetry forbids
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1Parity-even correlation functions in momentum space were
discussed in [23–31].

2A similar formalism in four dimensions was developed in
[37–39] and in six dimensions in [40].
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parity-odd structures in the three-point functions of con-
served low-spin currents such as the energy-momentum
tensor, supersymmetry current and conserved vector cur-
rent. In [41] Maldacena and Zhiboedov showed under quite
general assumptions that if a three-dimensional conformal
field theory possesses a conserved higher spin current, then
it is free. Since a free theory results in only parity-even
contributions to correlation functions, we arrive at the
conclusion that if the assumptions of [41] are fulfilled, one
cannot obtain parity-odd structures in three-point functions
of all conserved currents in supersymmetric conformal field
theories.
The paper is organized as follows. In Sec. II we review

the construction of the two-point and three-point building
blocks which appear in correlation functions of primary
superfields. We also review the general form of two- and
three-point correlation functions of primary operators. In
Sec. III we introduce a systematic approach to solve for
correlation functions of conserved currents. We illustrate
our method by reconsidering the flavor current three-point
function which was previously computed in [34]. In Sec. IV
we study three-point functions of mixed correlators involv-
ing both the supercurrent and the flavor current multiplet.
We show that the three-point function involving one
supercurrent and two flavor current multiplets is fixed
by the N ¼ 1 superconformal symmetry up to an overall
coefficient. We also show that the three-point function
involving two supercurrents and one flavor current van-
ishes. In Sec. V we present a systematic discussion
regarding the absence of parity-violating structures in
our results. In Sec. VI we generalize our method to
superconformal theories with N ¼ 2 supersymmetry. We
show that both mixed correlators are fixed up to an overall
coefficient. In Sec. VII we extend our analysis to the case of
N ¼ 3 and N ¼ 4 superconformal symmetry. In the
Appendix we summarize our three-dimensional notation
and conventions.
The nonvanishing of the three-point function of two

supercurrents and one flavor current in N ¼ 2 theories is
quite a surprise given that a similar three-point function
vanishes in the N ¼ 1 case. Naively it appears to be a
contradiction, as any theory with N ¼ 2 supersymmetry is
also a theory withN ¼ 1 supersymmetry. From an intuitive
standpoint, the number of independent tensor structures
cannot grow as one increases the number of supersymme-
tries. Nevertheless, we explain that our results in theN ¼ 1
and N ¼ 2 cases are fully consistent.

II. SUPERCONFORMAL BUILDING BLOCKS

The formalism to construct correlation functions of
primary operators for conformal field theories in general
dimensions was first elucidated in [1] using an efficient
group theoretic formalism. In four dimensions the method
was then extended to the case of N ¼ 1 supersymmetry in
[37,38,42] and was later generalized to higher N in [39].

Here we review the pertinent details of the three-dimen-
sional formalism [33,34] necessary to construct correlation
functions of the 3D supercurrent and flavor current
multiplets.

A. Superconformal transformations
and primary superfields

Let us begin by reviewing infinitesimal superconformal
transformations and the transformation laws of primary
superfields. This section closely follows the notation of
[43–45]. Consider 3D N -extended Minkowski superspace
M3j2N , parameterized by coordinates zA ¼ ðxa; θαI Þ, where
a ¼ 0, 1, 2, and α ¼ 1, 2 are Lorentz and spinor indices,
while I ¼ 1;…;N is the R-symmetry index. The 3D N -
extended superconformal group cannot act by smooth
transformations on M3j2N ; in general, only infinitesimal
superconformal transformations are well defined. Such a
transformation

δzA ¼ ξzA ⇔ δxa ¼ ξaðzÞ þ iðγaÞαβξαI ðzÞθβI ;
δθαI ¼ ξαI ðzÞ ð2:1Þ

is associated with the real first-order differential operator

ξ ¼ ξAðzÞ∂A ¼ ξaðzÞ∂a þ ξαI ðzÞDI
α; ð2:2Þ

which satisfies the master equation ½ξ; DI
α� ∝ DJ

β. From the
master equation we find

ξαI ¼
i
6
DβIξ

αβ; ð2:3Þ

which implies the conformal Killing equation

∂aξb þ ∂bξa ¼
2

3
ηab∂cξ

c: ð2:4Þ

The solutions to the master equation are called the
conformal Killing supervector fields of Minkowski super-
space [44,46]. They span a Lie algebra isomorphic to the
superconformal algebra ospðN j2;RÞ. The components of
the operator ξ were calculated explicitly in [33] and are
found to be

ξαβ ¼ aαβ − λαγxγβ − xαγλγβ þ σxαβ þ 4iϵðαI θ
βÞ
I þ 2iΛIJθ

α
Jθ

β
I

þ xαγxβδbγδ þ ibðαδ x
βÞδθ2 −

1

4
bαβθ2θ2

− 4iηγIxγðαθ
βÞ
I þ 2ηðαI θ

βÞ
I θ

2; ð2:5aÞ

ξαI ¼ ϵαI − λαβθ
β
I þ

1

2
σθαI þ ΛIJθ

α
J þ bβγxβαθ

γ
I

þ ηβJð2iθβI θαJ − δIJxβαÞ; ð2:5bÞ
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aαβ ¼ aβα; λαβ ¼ λβα; λαα ¼ 0;

bαβ ¼ bβα; ΛIJ ¼ −ΛJI: ð2:6Þ

The bosonic parameters aαβ, λαβ, σ, bαβ, andΛIJ correspond
to infinitesimal translations, Lorentz transformations,
scale transformations, special conformal transformations
and R-symmetry transformations, respectively, while
the fermionic parameters ϵαI and ηαI correspond to Q-
supersymmetry and S-supersymmetry transformations.
Furthermore, the identities

DI
½αξ

J
β� ∝ εαβ; DI

ðαξ
J
βÞ ∝ δIJ; DðI

½αξ
JÞ
β� ∝ δIJεαβ ð2:7Þ

imply that

½ξ;DI
α� ¼ −ðDI

αξ
β
JÞDJ

β ¼ λα
βðzÞDI

β þΛIJðzÞDJ
α −

1

2
σðzÞDI

α;

ð2:8Þ

λαβðzÞ ¼ −
1

N
DI

ðαξ
I
βÞ; ΛIJðzÞ ¼ −2D½I

α ξJ�α;

σðzÞ ¼ 1

N
DI

αξ
α
I : ð2:9Þ

The local parameters λαβðzÞ,ΛIJðzÞ, and σðzÞ are interpreted
as being associated with combined special-conformal or
Lorentz, R-symmetry and scale transformations, respec-
tively, and appear in the transformation laws for primary
tensor superfields. For later use let us also introduce the z-
dependent S-supersymmetry parameter

ηIαðzÞ ¼ −
i
2
DIασðzÞ: ð2:10Þ

Explicit calculations of the local parameters give [33]

λαβðzÞ ¼ λαβ − xγðαbβÞγ −
i
2
bαβθ2 þ 2iηðαI θ

βÞ
I ; ð2:11aÞ

ΛIJðzÞ ¼ ΛIJ þ 4iηα½IθJ�α þ 2ibαβθαI θ
β
J; ð2:11bÞ

σðzÞ ¼ σ þ bαβxαβ þ 2iθαI ηαI; ð2:11cÞ

ηαIðzÞ ¼ ηαI − bαβθ
β
I : ð2:11dÞ

Now consider a generic tensor superfield ΦI
AðzÞ transform-

ing in a representation T of the Lorentz group with respect to
the indexA, and in the representationD of the R-symmetry
groupOðN Þwith respect to the indexI .3 Such a superfield is
called primary with dimension q if its superconformal
transformation law is

δΦI
A ¼ −ξΦI

A − qσðzÞΦI
A þ λαβðzÞðMαβÞABΦI

B

þ ΛIJðzÞðRIJÞIJΦJ
A ; ð2:12Þ

where ξ is the superconformal Killing vector, σðzÞ, λαβðzÞ,
andΛIJðzÞ are the z-dependent parameters associated with ξ,
and the matrices Mαβ and RIJ are the Lorentz and OðN Þ
generators, respectively.

B. Two-point functions

Given two superspace points z1 and z2, we can define the
two-point functions

xαβ12 ¼ ðx1 − x2Þαβ þ 2iθðα1Iθ
βÞ
2I − iθα12Iθ

β
12I;

θαI12 ¼ θαI1 − θαI2 ; ð2:13Þ

which transform under the superconformal group as fol-
lows:

δ̃xαβ12 ¼
�
1

2
δαγσðz1Þ − λαγðz1Þ

�
xγβ12

þ xαγ12

�
1

2
δγ

βσðz2Þ − λγ
βðz2Þ

�
; ð2:14aÞ

δ̃θα12I ¼
�
1

2
δαβσðz1Þ − λαβðz1Þ

�
θβ12I

− xαβ12ηβIðz2Þ þ ΛIJðz2Þθα12J: ð2:14bÞ

Here the total variation δ̃ is defined by its action on an n-
point function Φðz1;…; znÞ as

δ̃Φðz1;…; znÞ ¼
Xn
i¼1

ξziΦðz1;…; znÞ: ð2:15Þ

It should be noted that (2.14b) contains an inhomogeneous
piece in its transformation law; hence, it will not appear as a
building block in two- or three-point functions. Due to the
useful property xαβ21 ¼ −xβα12, the two-point function (2.13)
can be split into symmetric and antisymmetric parts as
follows:

xαβ12 ¼ xαβ12 þ
i
2
εαβθ212; θ212 ¼ θα12Iθ12αI: ð2:16Þ

The symmetric component

xαβ12 ¼ ðx1 − x2Þαβ þ 2iθðα1Iθ
βÞ
2I ð2:17Þ

is recognized as the bosonic part of the standard two-point
superspace interval. Next let us introduce the two-point
objects3We assume the representations T and D are irreducible.
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x212 ¼ −
1

2
xαβ12x12αβ; ð2:18aÞ

x̂αβ12 ¼ xαβ12ffiffiffiffiffiffi
x212

p ; x̂12αγ x̂12γβ ¼ δα
β: ð2:18bÞ

Hence, we find

ðx−112 Þαβ ¼ −
xβα12
x212

: ð2:19Þ

Under superconformal transformations, (2.18a) transforms
with local scale parameters, while (2.18b) transforms with
local Lorentz parameters:

δ̃x212 ¼ ðσðz1Þ þ σðz2ÞÞx212; ð2:20aÞ

δ̃x̂αβ12 ¼ −λαγðz1Þx̂γβ12 − x̂αγ12λγ
βðz2Þ: ð2:20bÞ

Thus, both objects are essential in the construction of
correlation functions of primary superfields. We also have
the useful differential identities

DI
ð1Þγx

αβ
12 ¼ −2iθIβ12δαγ ; DI

ð1Þαx
αβ
12 ¼ −4iθIβ12; ð2:21Þ

where DI
ðiÞα is the standard covariant spinor derivative

(A16) acting on the superspace point zi. Finally, for
completeness, the SOðN Þ structure of primary superfields
in correlation functions is addressed by the N ×N matrix

uIJ12 ¼ δIJ þ 2iθIα12ðx−112 ÞαβθJβ12; ð2:22Þ

which is orthogonal and unimodular,

uIK12u
KJ
12 ¼ δIJ; det u12 ¼ 1: ð2:23Þ

The infinitesimal variation of this matrix is

δ̃uIJ12 ¼ ΛIKðz1ÞuKJ12 − uIK12ΛKJðz2Þ: ð2:24Þ

Hence, (2.22) is expected to appear in the construction of
correlation functions of primary superfields with SOðN Þ
indices.
The two-point correlation function of a primary super-

field ΦI
A and its conjugate Φ̄B

J is fixed by the super-
conformal symmetry as follows:

hΦI
Aðz1ÞΦ̄B

J ðz2Þi ¼ c
TA

Bðx̂12ÞDI
J ðu12Þ

ðx212Þq
; ð2:25Þ

where c is a constant coefficient. The denominator of the
two-point function is determined by the conformal dimen-
sion of ΦI

A, which guarantees that the correlation function
transforms with the appropriate weight under scale
transformations.

C. Three-point functions

Given three superspace points zi, i ¼ 1, 2, 3, one can
define the three-point building blocks Zi ¼ ðxi;ΘiÞ as
follows:

X1αβ ¼ −ðx−121 Þαγxγδ23ðx−113 Þδβ; ΘI
1α ¼ ðx−121 ÞαβθIβ12 − ðx−131 ÞαβθIβ13; ð2:26aÞ

X2αβ ¼ −ðx−132 Þαγxγδ31ðx−121 Þδβ; ΘI
2α ¼ ðx−132 ÞαβθIβ23 − ðx−112 ÞαβθIβ21; ð2:26bÞ

X3αβ ¼ −ðx−113 Þαγxγδ12ðx−132 Þδβ; ΘI
3α ¼ ðx−113 ÞαβθIβ31 − ðx−123 ÞαβθIβ32: ð2:26cÞ

These objects, along with their corresponding transformation laws, may be obtained from one another by cyclic
permutation of superspace points. The building blocks transform covariantly under the action of the superconformal group:

δ̃X1αβ ¼ λα
γðz1ÞX1γβ þ X1αγλ

γ
βðz1Þ − σðz1ÞX1αβ; ð2:27aÞ

δ̃ΘI
1α ¼

�
λα

βðz1Þ −
1

2
δα

βσðz1Þ
�
ΘI

1β þ ΛIJðz1ÞΘJ
1α: ð2:27bÞ

Therefore (2.26a), (2.26b) and (2.26c) will appear as building blocks in three-point correlation functions. It should be noted
that under scale transformations of superspace, zA ¼ ðxa; θαÞ ↦ z0A ¼ ðλ−2xa; λ−1θαÞ, the three-point building blocks
transform as Z ¼ ðX;ΘÞ ↦ Z0 ¼ ðλ2X; λΘÞ. Next we define

X2
1 ¼ −

1

2
Xαβ
1 X1αβ ¼

x223
x213x

2
12

; Θ2
1 ¼ ΘIα

1 ΘI
1α; ð2:28Þ
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which, due to (2.27a) and (2.27b), have the transformation
laws

δ̃X2
1 ¼ −2σðz1ÞX2

1; δ̃Θ2
1 ¼ −σðz1ÞΘ2

1: ð2:29Þ

We also define the inverse of X1,

ðX−1
1 Þαβ ¼ −

Xβα
1

X2
1

; ð2:30Þ

and introduce useful identities involving Xi and Θi at
different superspace points, e.g.,

xαα
0

13 X3α0β0x
β0β
31 ¼ −ðX−1

1 Þβα; ð2:31aÞ

ΘI
1γx

γδ
13X3δβ ¼ uIJ13ΘJ

3β: ð2:31bÞ

As a consequence of (2.29), we can identify the three-point
superconformal invariant

Θ2
1ffiffiffiffiffiffi
X2
1

p ⇒ δ̃

�
Θ2

1ffiffiffiffiffiffi
X2
1

p
�

¼ 0: ð2:32Þ

Hence, the superconformal symmetry fixes the functional
form of three-point correlation functions up to this combi-
nation. Indeed, using (2.31a) and (2.31b) one can show that
the superconformal invariant is also invariant under per-
mutation of superspace points, i.e.,

Θ2
1ffiffiffiffiffiffi
X2
1

p ¼ Θ2
2ffiffiffiffiffiffi
X2
2

p ¼ Θ2
3ffiffiffiffiffiffi
X2
3

p : ð2:33Þ

The three-point objects (2.26a), (2.26b) and (2.26c) have
many properties similar to those of the two-point building
blocks. After decomposing X1 into symmetric and anti-
symmetric parts similar to (2.16) we have

X1αβ ¼ X1αβ −
i
2
εαβΘ2

1; X1αβ ¼ X1βα; ð2:34Þ

where the symmetric spinor X1αβ can be equivalently
represented by the three-vector X1m ¼ − 1

2
ðγmÞαβX1αβ. It

is now convenient to introduce analogs of the covariant
spinor derivative and supercharge operators involving the
three-point objects,

DI
ð1Þα ¼

∂
∂Θα

1I
þ iðγmÞαβΘIβ

1

∂
∂Xm

1

;

QI
ð1Þα ¼ i

∂
∂Θα

1I
þ ðγmÞαβΘIβ

1

∂
∂Xm

1

; ð2:35Þ

which obey the standard commutation relations

fDI
ðiÞα;D

J
ðiÞβg ¼ fQI

ðiÞα;Q
J
ðiÞβg ¼ 2iδIJðγmÞαβ

∂
∂Xm

i
: ð2:36Þ

Some useful identities involving (2.35) are

DI
ð1ÞγX1αβ ¼ −2iεγβΘI

1α; QI
ð1ÞγX1αβ ¼ −2εγαΘI

1β:

ð2:37Þ

We must also account for the fact that various primary
superfields obey certain differential equations. Using (2.21)
we arrive at the following:

DI
ð1ÞγX3αβ ¼ 2iðx−113 ÞαγuIJ13ΘJ

3β; DI
ð1ÞαΘ

J
3β ¼ −ðx−113 ÞβαuIJ13;

ð2:38aÞ

DI
ð2ÞγX3αβ ¼ 2iðx−123 ÞβγuIJ23ΘJ

3β; DI
ð2ÞαΘ

J
3β ¼ ðx−123 ÞβαuIJ23:

ð2:38bÞ

Now given a function fðX3;Θ3Þ, there are the following
differential identities which arise as a consequence of
(2.37), (2.38a) and (2.38b):

DI
ð1ÞγfðX3;Θ3Þ ¼ ðx−113 ÞαγuIJ13DJα

ð3ÞfðX3;Θ3Þ; ð2:39aÞ

DI
ð2ÞγfðX3;Θ3Þ ¼ iðx−123 ÞαγuIJ23QJα

ð3ÞfðX3;Θ3Þ: ð2:39bÞ

These will prove to be essential for imposing differential
constraints on correlation functions, e.g., those arising from
conservation equations in the case of correlators involving
the supercurrent and flavor current multiplets.
Finally, for completeness, let us introduce the three-point

objects which take care of the R-symmetry structure of
correlation functions. We define

UIJ
1 ¼ uIK12 u

KL
23 u

LJ
31 ¼ δIJ þ 2iΘI

1αðX−1
1 ÞαβΘJ

1β; ð2:40Þ

which transforms as an OðN Þ tensor at z1,

δ̃UIJ
1 ¼ ΛIKðz1ÞUKJ

1 −UIK
1 ΛKJðz1Þ; ð2:41Þ

and is orthogonal and unimodular by construction. The
others are obtained by cyclic permutation of superspace
points and are related by the useful identities

UIJ
2 ¼ uIK21U

KL
1 uLJ12 ; UIJ

3 ¼ uIK31U
KL
1 uLJ13 : ð2:42Þ

As concerns three-point correlation functions, let Φ, Ψ,
and Π be primary superfields with conformal dimensions
q1, q2 and q3, respectively. The three-point function may be
constructed using the general expression
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hΦI1

A1
ðz1ÞΨI2

A2
ðz2ÞΠI3

A3
ðz3Þi

¼ Tð1Þ
A1

B1ðx̂13ÞTð2Þ
A2

B2ðx̂23ÞDð1ÞI1
J 1
ðu13ÞDð2ÞI2

J 2
ðu23Þ

ðx213Þq1ðx223Þq2
HJ 1J 2I3

B1B2A3
ðX3;Θ3; U3Þ; ð2:43Þ

where the tensor HI1I2I3

A1A2A3
is highly constrained by the superconformal symmetry as follows.

(i) Under scale transformations of superspace the correlation function transforms as

hΦI1

A1
ðz01ÞΨI2

A2
ðz02ÞΠI3

A3
ðz03Þi ¼ ðλ2Þq1þq2þq3hΦI1

A1
ðz1ÞΨI2

A2
ðz2ÞΠI3

A3
ðz3Þi; ð2:44Þ

which implies that H obeys the scaling property

HI1I2I3

A1A2A3
ðλ2X; λΘ; UÞ ¼ ðλ2Þq3−q2−q1HI1I2I3

A1A2A3
ðX;Θ; UÞ; ∀ λ ∈ Rnf0g: ð2:45Þ

This guarantees that the correlation function transforms correctly under conformal transformations.
(ii) If any of the fieldsΦ,Ψ, andΠ obey differential equations, such as conservation laws in the case of conserved current

multiplets, then the tensor H is also constrained by differential equations. Such constraints may be derived with the
aid of identities (2.39a) and (2.39b).

(iii) If any (or all) of the superfields Φ, Ψ, and Π coincide, the correlation function possesses symmetries under
permutations of superspace points, e.g.,

hΦI1

A1
ðz1ÞΦI2

A2
ðz2ÞΠI3

A3
ðz3Þi ¼ ð−1ÞϵðΦÞhΦI2

A2
ðz2ÞΦI1

A1
ðz1ÞΠI3

A3
ðz3Þi; ð2:46Þ

where ϵðΦÞ is the Grassmann parity of Φ. As a
consequence, the tensor H obeys constraints which
will be referred to as “point-switch identities.” To
analyze these constraints, we note that under per-
mutations of any two superspace points, the three-
point building blocks transform as

X3αβ !1↔2 − X3βα; ΘI
3α !

1↔2 − ΘI
3α; ð2:47aÞ

X3αβ !2↔3 − X2βα; ΘI
3α !

2↔3 − ΘI
2α; ð2:47bÞ

X3αβ !1↔3 − X1βα; ΘI
3α !

1↔3 − ΘI
1α: ð2:47cÞ

The constraints above fix the functional form of H (and
therefore the correlation function) up to finitely many
parameters. Hence the procedure described above reduces
the problem of computing three-point correlation functions
to deriving the tensorH subject to the above constraints. In
the next sections, we will apply this formalism to compute
three-point correlation functions involving the supercurrent
and flavor current multiplets.

III. CORRELATION FUNCTIONS OF
CONSERVED CURRENTS IN N = 1

SUPERCONFORMAL FIELD THEORY

A. Supercurrent and flavor current multiplets

The 3D, N ¼ 1 conformal supercurrent is a primary,
dimension 5=2 totally symmetric spin tensor Jαβγ, which

contains the three-dimensional energy-momentum tensor
along with the supersymmetry current [46–48]. It obeys the
conservation equation

DαJαβγ ¼ 0 ð3:1Þ

and has the following superconformal transformation law:

δJαβγ ¼ −ξJαβγ −
5

2
σðzÞJαβγ þ 3λðzÞδðαJβγÞδ: ð3:2Þ

TheN ¼ 1 supercurrent may be derived from, for example,
supergravity prepotential approaches [46] or the superfield
Noether procedure [49,50].
The general formalism in Sec. II allows the two-point

function to be determined up to a single real coefficient:

hJαβγðz1ÞJα0β0γ0 ðz2Þi ¼ ibN¼1

x12ðαα
0
x12ββ

0
x12γÞγ

0

ðx212Þ4
: ð3:3Þ

It is then a simple exercise to show that the two-point
function has the right symmetry properties under permu-
tation of superspace points

hJαβγðz1ÞJα0β0γ0 ðz2Þi ¼ −hJα0β0γ0 ðz2ÞJαβγðz1Þi ð3:4Þ

and also satisfies

Dα
ð1ÞhJαβγðz1ÞJα0β0γ0 ðz2Þi ¼ 0: ð3:5Þ
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Next let us consider the 3D N ¼ 1 flavor current, which is
represented by a primary, dimension 3=2 spinor superfield
Lα obeying the conservation equation4

DαLα ¼ 0: ð3:6Þ

It transforms covariantly under the superconformal group
as

δLα ¼ −ξLα −
3

2
σðzÞLα þ λðzÞαβLβ: ð3:7Þ

We can also consider the case when there are several flavor
current multiplets (represented by the flavor index ā)
corresponding to a simple flavor group. According to
general formalism in Sec. II, the two-point function for
N ¼ 1 flavor current multiplets is fixed up to a single real
coefficient aN¼1:

hLā
αðz1ÞLb̄

βðz2Þi ¼ iaN¼1

δā b̄x12αβ
ðx212Þ2

: ð3:8Þ

It is easy to see that the two-point function obeys the correct
symmetry properties under permutation of superspace
points, hLā

αðz1ÞLb̄
βðz2Þi ¼ −hLb̄

βðz2ÞLā
αðz1Þi. One can also

check that it satisfies the conservation equation (3.6):

Dα
ð1ÞhLā

αðz1ÞLb̄
βðz2Þi ¼ 0: ð3:9Þ

Three-point correlation functions of the flavor current and
particularly the supercurrent are considerably more com-
plicated and were derived in [34,35]. However, correlators
of combinations of these fields (mixed correlators) were not
studied previously and will be analysed in Sec. IV.

B. Correlation functions of conserved
current multiplets

The possible three-point correlation functions that may
be constructed from the conservedN ¼ 1 supercurrent and
flavor current multiplets are

hLā
αðz1ÞLb̄

βðz2ÞLc̄
γðz3Þi; hJAðz1ÞJBðz2ÞJCðz3Þi; ð3:10Þ

hLā
αðz1ÞJAðz2ÞLb̄

βðz3Þi; hJAðz1ÞJBðz2ÞLā
αðz3Þi; ð3:11Þ

where A, B, and C each denote a totally symmetric
combination of three spinor indices. The correlators
hLā

αðz1ÞLb̄
βðz2ÞLc̄

γðz3Þi and hJAðz1ÞJBðz2ÞJCðz3Þi were
studied in [34]. Before we compute the mixed corre-
lators, let us demonstrate our method on the three-point

function hLā
αðz1ÞLb̄

βðz2ÞLc̄
γðz3Þi, which is comparatively

straightforward.
The general form of the flavor current three-point

function is5

hLā
αðz1ÞLb̄

βðz2ÞLc̄
γðz3Þi ¼ fā b̄ c̄

x13αα
0
x23ββ

0

ðx213Þ2ðx223Þ2
Hα0β0γðX3;Θ3Þ:

ð3:12Þ

The correlation function is required to satisfy the following
properties.

(i) Scaling constraint.—Under scale transformations
the correlation function must transform as

hLā
αðz01ÞLb̄

βðz02ÞLc̄
γðz03Þi

¼ ðλ2Þ9=2hLā
αðz1ÞLb̄

βðz2ÞLc̄
γðz3Þi; ð3:13Þ

which gives rise to the homogeneity constraint onH:

Hαβγðλ2X; λΘÞ ¼ ðλ2Þ−3=2HαβγðX;ΘÞ: ð3:14Þ

(ii) Differential constraints.—The conservation equa-
tion for the flavor current results in

Dα
ð1ÞhLā

αðz1ÞLb̄
βðz2ÞLc̄

γðz3Þi ¼ 0: ð3:15Þ

Using identities (2.39a) and (2.39b), we obtain a
differential constraint on H:

DαHαβγðX;ΘÞ ¼ 0: ð3:16Þ

We need not consider the conservation law at z2 as
we can use an algebraic constraint instead.

(iii) Point permutation symmetry.—The symmetry under
permutation of points (z1 and z2) results in the
following constraint on the correlation function:

hLā
αðz1ÞLb̄

βðz2ÞLc̄
γðz3Þi ¼ −hLb̄

βðz2ÞLā
αðz1ÞLc̄

γðz3Þi;
ð3:17Þ

which constrains the tensor H so that

HαβγðX;ΘÞ ¼ Hβαγð−XT;−ΘÞ: ð3:18Þ

On the other hand, the symmetry under permutation
of points z1 and z3 results in

4The tensor structure and the conservation law of the 1 ≤ N ≤
4 flavor currents follow from the structure of unconstrained
prepotentials for 1 ≤ N ≤ 4 vector multiplets [51–57].

5Here we consider only the contribution proportional to the
totally antisymmetric structure constants fā b̄ c̄. Similarly, one can
consider the contribution totally symmetric in flavor indices.
However, this contribution vanishes [34] so it is omitted here.
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hLā
αðz1ÞLb̄

βðz2ÞLc̄
γðz3Þi ¼ −hLc̄

γðz3ÞLb̄
βðz2ÞLā

αðz1Þi;
ð3:19Þ

which gives rise to the point-switch identity

HαβγðX3;Θ3Þ ¼
xγ

0
13γðx−113 Þαα

0
xβ

0σ
13 X3σβ

X4
3x

4
13

×Hγ0β0α0 ð−XT
1 ;−Θ1Þ: ð3:20Þ

To solve this problem systematically let us decompose
the tensor H into irreducible components:

HαβγðX;ΘÞ ¼
X
i

ciHiαβγðX;ΘÞ: ð3:21Þ

It is also more convenient to work with Xm instead of Xαβ.
We have

H1αβγ ¼ εαβΘγAðXÞ; ð3:22aÞ

H2αβγ ¼ εαβðγaÞγδΘδBaðXÞ; ð3:22bÞ

H3αβγ ¼ ðγaÞαβΘγCaðXÞ; ð3:22cÞ

H4αβγ ¼ ðγaÞαβðγbÞγδΘδDabðXÞ: ð3:22dÞ

Here we have used the fact that every matrix antisymmetric
in α, β is proportional to εαβ, every matrix symmetric in α, β
is proportional to a gamma matrix, and that since H is
Grassmann odd it follows that H is linear in Θ due to
ΘαΘβΘγ ¼ 0. Due to the scaling property (3.14) it follows
that the functions A, B, C, andD have dimension −2. From
Eq. (3.18) it also follows that

AðXÞ ¼ Að−XÞ; BaðXÞ ¼ Bað−XÞ; ð3:23aÞ

CaðXÞ ¼ −Cað−XÞ; DabðXÞ ¼ −Dabð−XÞ: ð3:23bÞ

It is easy to see that the conservation equation (3.16) splits
into the two independent equations:

∂αHαβγ ¼ 0; ð3:24aÞ

ðγtÞατΘτ∂tHαβγ ¼ 0: ð3:24bÞ

Imposing (3.24a) results in the algebraic equations

AðXÞ ¼ −Da
aðXÞ; CaðXÞ ¼ BaðXÞ þ ϵa

mnDmnðXÞ;
ð3:25Þ

while, on the other hand, from (3.24b) we obtain

∂afBaðXÞ þ CaðXÞ − ϵa
mnDmnðXÞg ¼ 0; ð3:26aÞ

∂tAðXÞ þ ϵt
ma∂mBaðXÞ − ϵt

ma∂mCaðXÞ
− ∂mDmtðXÞ þ ∂tDa

aðXÞ − ∂mDtmðXÞ ¼ 0: ð3:26bÞ

Using Eqs. (3.25), (3.26a), and (3.26b) we obtain that Ba
and Dab satisfy

∂aBaðXÞ ¼ 0; ∂aDabðXÞ ¼ 0: ð3:27Þ

Thus, the problem is reduced to finding transverse tensors
Ba andDab of dimension−2 satisfying (3.23b). The tensors
A and C are then found using Eq. (3.25). It is not difficult to
show that the solution to this problem is given by

AðXÞ ¼ 0; BaðXÞ ¼ 0; ð3:28aÞ

CaðXÞ ¼
Xa

X3
; DabðXÞ ¼ ϵabc

Xc

X3
; ð3:28bÞ

with c3 ¼ −2c4. Hence this correlation function is fixed up
to a single real coefficient which we denote dN¼1.
Converting back to spinor notation we find6

HαβγðX;ΘÞ ¼
idN¼1

X3
fXαβΘγ − εαγXβ

δΘδ − εβγXα
δΘδg:
ð3:29Þ

One may also check that this solution satisfies the point-
switch identity (3.20). This agrees with the result in [34],
which was computed in a different way. Our method has the
advantage that it systematically takes care of all possible
irreducible components of H and, hence, is more useful
when H is a tensor of high rank.

IV. MIXED CORRELATORS IN N = 1
SUPERCONFORMAL FIELD THEORY

A. The correlation function hLJLi
Let us first consider the correlation function hLā

αðz1Þ×
Jγ1γ2γ3ðz2ÞLb̄

βðz3Þi. Using the general expression (2.43), it
has the form

hLā
αðz1ÞJγ1γ2γ3ðz2ÞLb̄

βðz3Þi ¼
δā b̄x̂13αα

0
x̂23ðγ1

γ0
1 x̂23γ2

γ0
2 x̂23γ3Þ

γ0
3

ðx213Þ3=2ðx223Þ5=2
×Hα0β;γ0

1
γ0
2
γ0
3
ðX3;Θ3Þ; ð4:1Þ

where H is totally symmetric in three of its indices,
Hαβ;γ1γ2γ3 ¼ Hαβ;ðγ1γ2γ3Þ. The correlation function is also
required to satisfy the following.

(i) Scaling constraint.—Under scale transformations
the correlation function transforms as

6Note that since ΘαΘβΘγ ¼ 0 we can replace X with X in
(3.29).
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hLā
αðz01ÞJγ1γ2γ3ðz02ÞLb̄

βðz03Þi
¼ ðλ2Þ11=2hLā

αðz1ÞJγ1γ2γ3ðz2ÞLb̄
βðz3Þi; ð4:2Þ

which implies that we have the following homo-
geneity constraint on H:

Hαβ;γ1γ2γ3ðλ2X; λΘÞ ¼ ðλ2Þ−5=2Hαβ;γ1γ2γ3ðX;ΘÞ:
ð4:3Þ

(ii) Differential constraints.—The differential con-
straints on the flavor current and supercurrent result
in the following constraints on the correlation
function:

Dα
ð1ÞhLā

αðz1ÞJγ1γ2γ3ðz2ÞLb̄
βðz3Þi ¼ 0; ð4:4aÞ

Dγ1
ð2ÞhLā

αðz1ÞJγ1γ2γ3ðz2ÞLb̄
βðz3Þi ¼ 0: ð4:4bÞ

Using identities (2.39a) and (2.39b), these result in
the following differential constraints on H:

DαHαβ;γ1γ2γ3ðX;ΘÞ ¼ 0; ð4:5aÞ

Qγ1Hαβ;γ1γ2γ3ðX;ΘÞ ¼ 0: ð4:5bÞ

(iii) Point permutation symmetry.—The symmetry under
permutation of points (z1 and z3) results in the
following constraint on the correlation function:

hLā
αðz1ÞJγ1γ2γ3ðz2ÞLb̄

βðz3Þi
¼ −hLb̄

βðz3ÞJγ1γ2γ3ðz2ÞLā
αðz1Þi; ð4:6Þ

which results in the point-switch identity

Hαβ;γ1γ2γ3ðX3;Θ3Þ

¼ −
x13β

0
βðx−113 Þαα

0
xγ1

0δ1
13 X3δ1γ1x

γ2
0δ2

13 X3δ2γ2x
γ3

0δ3
13 X3δ3γ3

X8
3x

8
13

×Hβ0α0;γ1 0γ2 0γ3 0 ð−XT
1 ;−Θ1Þ: ð4:7Þ

Thus we need to solve for the tensor H subject to the
constraints (4.3), (4.5a), (4.5b) and (4.7). To start with we
combine two of the three γ indices into a vector index and
impose a γ-trace constraint to remove the component
antisymmetric in γ1 and γ2:

Hαβ;γ1γ2γ3 ¼ ðγmÞγ2γ3Hαβ;γ1m; ðγmÞτγHαβ;γm ¼ 0: ð4:8Þ

Since our correlator is Grassmann odd the function Hαβ;γm

must be linear in Θ. Just like the flavor current three-point
function, linearity in Θ implies that the differential con-
straints (4.5a) and (4.5b) are, respectively, equivalent to

∂αHαβ;γm ¼ 0; ðγtÞατΘτ∂tHαβ;γm ¼ 0; ð4:9aÞ

∂γHαβ;γm ¼ 0; ðγtÞγτΘτ∂tHαβ;γm ¼ 0: ð4:9bÞ

Now let us decompose H into irreducible components:

Hαβ;γm ¼
X
i

ciHiαβ;γm; ð4:10Þ

where

H1αβ;γm ¼ εαβΘγAmðXÞ; ð4:11aÞ

H2αβ;γm ¼ εαβðγaÞγδΘδBmaðXÞ; ð4:11bÞ

H3αβ;γm ¼ ðγaÞαβΘγCmaðXÞ; ð4:11cÞ

H4αβ;γm ¼ ðγaÞαβðγbÞγδΘδDmabðXÞ: ð4:11dÞ

It follows from Eq. (4.3) that the dimension of A, B, C, and
D is −3. We now impose the differential constraints (4.9a)
and (4.9b), along with the gamma-trace constraint (4.8).
After imposing (4.9a) and (4.9b) the terms OðΘ0Þ imply

AmðXÞ ¼ 0; CmnðXÞ ¼ 0; ð4:12aÞ

BmaðXÞ ¼ −ϵnraDmnrðXÞ; ηnaDmnaðXÞ ¼ 0; ð4:12bÞ

while the terms OðΘ2Þ give the differential constraints

∂tBmtðXÞ ¼ 0; ð4:13aÞ

∂tDmntðXÞ ¼ 0; ð4:13bÞ

∂tfBmtðXÞ þ ϵt
anDmnaðXÞg ¼ 0; ð4:13cÞ

∂tfDmntðXÞþDmtnðXÞ− ηtnDm
a
aðXÞþ ϵnt

aBmaðXÞg ¼ 0:

ð4:13dÞ

Imposing the gamma-trace condition (4.8) results in

ηmaBmaðXÞ ¼ 0; ϵqmaBmaðXÞ ¼ 0; ð4:14aÞ

ηmaDmnaðXÞ ¼ 0; ϵqmaDmnaðXÞ ¼ 0: ð4:14bÞ

One may show that the differential and algebraic con-
straints above are mutually consistent and reduce to

∂tBmtðXÞ ¼ 0; ∂tDmntðXÞ ¼ 0; ð4:15aÞ

ηnaDmnaðXÞ ¼ 0; ηmaDmnaðXÞ ¼ 0; ð4:15bÞ

BmaðXÞ ¼ −ϵnraDmnrðXÞ; ð4:15cÞ
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where Bma is symmetric and traceless and Dmna is
symmetric in the first and last index. After some calculation
one can show that general solutions consistent with the
scaling property (4.3) and the above constraints are

BmaðXÞ ¼
ηma

X3
−
3XmXa

X5
; ð4:16Þ

DmnaðXÞ ¼ ϵndm
XdXa

X5
þ ϵnda

XdXm

X5
; ð4:17Þ

with c2 ¼ c4. Hence, the three-point correlation function is
determined up to a single free parameter which we denote
cN¼1. Our solution is then

hLā
αðz1ÞJγ1γ2γ3ðz2ÞLb̄

βðz3Þi ¼
δā b̄x13αα

0
x23ðγ1

γ0
1x23γ2

γ0
2x23γ3Þ

γ0
3

ðx213Þ2ðx223Þ4
Hα0β;γ0

1
γ0
2
γ0
3
ðX3;Θ3Þ; ð4:18Þ

where

Hαβ;γ1γ2γ3ðX;ΘÞ ¼ ðγmÞγ2γ3Hαβ;γ1mðX;ΘÞ; ð4:19Þ

Hαβ;γmðX;ΘÞ ¼ icN¼1ðγaÞγδΘδfεαβBmaðXÞ þ ðγnÞαβDmnaðXÞg; ð4:20Þ

with B and D given in Eqs. (4.16) and (4.17). In spinor notation, this is equivalent to

Hαβ;γ1γ2γ3ðX;ΘÞ ¼ icN¼1

�
εαβ
X3

ðεγ1γ2Θγ3 þ εγ1γ3Θγ2Þ þ
1

X5
ðεγ2αXβγ3Xγ1

δΘδ

þ εγ2βXαγ3Xγ1
δΘδ þ εγ1αXγ2γ3Xβ

δΘδ þ εγ1βXγ2γ3Xα
δΘδ

− εγ2γ3XαβXγ1
δΘδ − Xγ2γ3XαβΘγ1 − 3εαβXγ2γ3Xγ1

δΘδÞ
�
: ð4:21Þ

Finally, one must check that this solution also satisfies the
point-switch identity. With the aid of identities (2.31a) and
(2.31b), it is a relatively straightforward exercise to show
that the point-switch identity (4.7) is indeed satisfied.

B. The correlation function hJJLi
Let us now discuss the remaining mixed correlation

function

hJβ1β2β3ðz1ÞJγ1γ2γ3ðz2ÞLαðz3Þi: ð4:22Þ

Here the correlator can exist only if the flavor group
contains Uð1Þ factors, so we will assume that the flavor
group is just Uð1Þ. At the component level this correlation
function contains hTabðx1ÞTmnðx2ÞLcðx3Þi, which was
shown to vanish in any conformal field theory after
imposing all differential constraints and symmetries [11].
As we will show, the same occurs in the supersymmetric
theory. However, we will see that (4.22) vanishes without
needing to impose the conservation equation for Lαðz3Þ.
The general expression for this correlation function is

hJβ1β2β3ðz1ÞJγ1γ2γ3ðz2ÞLαðz3Þi ¼
x̂13ðβ1

β1
0
x̂13β2

β2
0
x̂13β3Þ

β3
0
x̂23ðγ1

γ1
0
x̂23γ2

γ2
0
x̂23γ3Þ

γ3
0

ðx213Þ5=2ðx223Þ5=2
×Hβ1

0β2 0β3 0γ1 0γ2 0γ3 0αðX3;Θ3Þ; ð4:23Þ

where H has the symmetry property Hβ1β2β3γ1γ2γ3α ¼
Hðβ1β2β3Þðγ1γ2γ3Þα. The correlation function is required to
satisfy the following.

(i) Scaling constraint.—Under scale transformations it
transforms as

hJβ1β2β3ðz01ÞJγ1γ2γ3ðz02ÞLαðz03Þi
¼ ðλ2Þ13=2hJβ1β2β3ðz1ÞJγ1γ2γ3ðz2ÞLαðz3Þi; ð4:24Þ

which results in the constraint

Hβ1β2β3γ1γ2γ3αðλ2X; λΘÞ
¼ ðλ2Þ−7=2Hβ1β2β3γ1γ2γ3αðX;ΘÞ: ð4:25Þ

(ii) Differential constraint.—The conservation law on
the supercurrent implies
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Dβ1
ð1ÞhJβ1β2β3ðz1ÞJγ1γ2γ3ðz2ÞLαðz3Þi ¼ 0; ð4:26Þ

which results in a differential constraint on H:

Dβ1Hβ1β2β3γ1γ2γ3αðX;ΘÞ ¼ 0: ð4:27Þ

(iii) Point permutation symmetry.—The symmetry under
permutation of points z1 and z2 implies the following
constraint on the correlation function:

hJβ1β2β3ðz1ÞJγ1γ2γ3ðz2ÞLαðz3Þi
¼ −hJγ1γ2γ3ðz2ÞJβ1β2β3ðz1ÞLαðz3Þi; ð4:28Þ

which results in the identity

Hβ1β2β3γ1γ2γ3αðX;ΘÞ ¼ −Hγ1γ2γ3β1β2β3αð−XT;−ΘÞ:
ð4:29Þ

Thus, we need to solve for the tensor H subject to the
constraints (4.25), (4.27) and (4.29). Note that we also must
impose one more differential constraint:

Dα
ð3ÞhJβ1β2β3ðz1ÞJγ1γ2γ3ðz2ÞLαðz3Þi ¼ 0; ð4:30Þ

which is quite nontrivial in this formalism. Fortunately,
constraints (4.25), (4.27) and (4.29) are sufficient to show
that correlator (4.22) vanishes; hence, we will not need to
consider (4.30).
To start, we combine two of the three β, γ indices into a

vector index and impose γ-trace constraints to remove
antisymmetric components:

Hβ1β2β3γ1γ2γ3αðX;ΘÞ ¼ ðγaÞβ2β3ðγbÞγ2γ3Hβ1a;γ1b;αðX;ΘÞ;
ð4:31Þ

ðγaÞτβHβa;γb;αðX;ΘÞ ¼ 0; ðγbÞτγHβa;γb;αðX;ΘÞ ¼ 0:

ð4:32Þ

Now let us split H into symmetric and antisymmetric parts
in the first and second pair of indices:

Hβa;γb;α ¼ Hðβa;γbÞ;α þH½βa;γb�;α: ð4:33Þ

Due to the symmetry properties, (4.29) implies that
Hðσa;γbÞ;α is an even function of X,7 while H½βa;γb�;α is
odd. Therefore they do not mix in the conservation law
(4.27) and may be considered independently. In irreducible
components, Hðβa;γbÞ;α has the decomposition

Hðβa;γbÞ;α ¼
X
i

Hiðβa;γbÞ;α; ð4:34Þ

where

H1ðβa;γbÞ;α ¼ εβγΘαA½ab�ðXÞ; ð4:35aÞ

H2ðβa;γbÞ;α ¼ εβγðγmÞαδΘδBm½ab�ðXÞ; ð4:35bÞ

H3ðβa;γbÞ;α ¼ ðγmÞβγΘαCmðabÞðXÞ; ð4:35cÞ

H4ðβa;γbÞ;α ¼ ðγmÞβγðγnÞαδΘδDmnðabÞðXÞ: ð4:35dÞ

Here we have made explicit the algebraic symmetry
properties of A, B, C, and D, which by virtue of (4.29)
are all even functions of X. Now due to linearity in Θ, the
differential constraint (4.27) is equivalent to the pair of
equations

∂βHβa;γb;α ¼ 0; ðγtÞβτΘτ∂tHβa;γb;α ¼ 0: ð4:36Þ

After imposing (4.36), the terms OðΘ0Þ imply

Am½ab�ðXÞ ¼ 0; Bm½ab�ðXÞ ¼ 0; ð4:37aÞ

CmðabÞðXÞ þ ϵm
rsDrsðabÞðXÞ ¼ 0; ð4:37bÞ

ηmnDmnðabÞðXÞ ¼ 0; ηmaDmnðabÞðXÞ ¼ 0; ð4:37cÞ

so H1ðβa;γbÞ;α ¼ H2ðβa;γbÞ;α ¼ 0. The terms OðΘ2Þ then
result in the differential constraints

∂mf−CmðabÞðXÞ þ ϵm
rsDrsðabÞðXÞg ¼ 0; ð4:38aÞ

ϵc
tm∂tCmðabÞðXÞ − ∂mDmcðabÞðXÞ − ∂mDcmðabÞðXÞ ¼ 0:

ð4:38bÞ

Imposing the gamma-trace condition (4.32) results in

ηmaCmðabÞðXÞ ¼ 0; ϵc
maCmðabÞðXÞ ¼ 0; ð4:39aÞ

ηmaDmnðabÞðXÞ ¼ 0; ϵc
maDmnðabÞðXÞ ¼ 0: ð4:39bÞ

Altogether (4.37b), (4.38a) and (4.39a) imply that C is a
totally symmetric, traceless, transverse and even function of
X. Let us try to construct such a tensor by analyzing its
irreducible components. To determine which irreducible
components are permitted, let us trade each vector index for
a pair of spinor indices. Since C is completely symmetric
and traceless, it is equivalent to Cðα1…α6Þ. In addition since
C is even in Xαβ only irreducible structures (that is, totally
symmetric tensors) of rank 4 and 0 in Xαβ can contribute to

7As in the previous case, our correlator is Grassmann odd
which means we can replace X with X.
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the solution. Going back to vector indices, let us denote
these components of C as C1ðmnÞðXÞ and C2ðXÞ.
Since it is not possible to construct a rank-three tensor

CðmnkÞ out of C1ðmnÞðXÞ and C2ðXÞ, the tensor Cmnk

vanishes. Hence, H3ðβa;γbÞ;α ¼ 0.
Given this information, the remaining set of equations

implies that D is now a totally symmetric, traceless and
transverse tensor that is even in X. Following a similar
argument, the symmetries imply that it has irreducible
components D1ðmnabÞðXÞ, D2ðmnÞðXÞ and D3ðXÞ. We are
now equipped with enough information to construct an
explicit solution for D. Using the symmetries and the
scaling property (4.25) we have the most general ansatz

DðmnabÞðXÞ ¼
d1
X4

½ηmaηnb þ ηmbηna þ ηmnηab�

þ d2
X6

½ηmnXaXb þ ηmaXnXb þ ηmbXaXn

þ ηnaXmXb þ ηnbXmXa þ ηabXmXn�

þ d3
X8

XmXnXaXb: ð4:40Þ

Requiring that D be traceless and transverse fixes all the di
to 0. Hence, D ¼ 0, and Hðβa;γbÞ;α vanishes.
In a similar way we considerH½βa;γb�;α for which we have

the following decomposition:

H½βa;γb�;α ¼
X
i

Hi½βa;γb�;α; ð4:41Þ

where

H1½βa;γb�;α ¼ εβγΘαAðabÞðXÞ; ð4:42aÞ

H2½βa;γb�;α ¼ εβγðγmÞαδΘδBmðabÞðXÞ; ð4:42bÞ

H3½βa;γb�;α ¼ ðγmÞβγΘαCm½ab�ðXÞ; ð4:42cÞ

H4½βa;γb�;α ¼ ðγmÞβγðγnÞαδΘδDmn½ab�ðXÞ: ð4:42dÞ

In this case, A, B, C, and D are now odd functions in X.
Imposing the conservation equations and vanishing of the γ
trace we obtain the following set of constraints:

AðabÞðXÞ ¼ 0; BmðabÞðXÞ ¼ 0; ð4:43aÞ

Dm
m½ab�ðXÞ¼0; Cm½ab�ðXÞþϵm

rsDrs½ab�ðXÞ¼0; ð4:43bÞ

Cm
½mb�ðXÞ ¼ 0; Dm

n½mb�ðXÞ ¼ 0; ð4:43cÞ

ϵcmaCm½ab�ðXÞ ¼ 0; ð4:43dÞ

ϵcmaDmn½ab�ðXÞ ¼ 0: ð4:43eÞ

We see that the functions A and B vanish. To show that
Cm½ab� vanishes we consider Eq. (4.43d) and use the fact
that in three dimensions an antisymmetric tensor is equiv-
alent to a vector:

Cm½ab�ðXÞ ¼ ϵab
qC̃mqðXÞ: ð4:44Þ

Hence from (4.43d) it follows that

C̃abðXÞ − ηabC̃
d
dðXÞ ¼ 0: ð4:45Þ

Contracting with ηab we find that C̃d
d ¼ 0, and hence

C̃ab ¼ 0. It also implies that Cm½ab� ¼ 0. In a similar way
using Eq. (4.43e) one can show thatDmn½ab� ¼ 0. Thismeans
that H½βa;γb�;α ¼ 0. Hence the three-point function of two
supercurrents and one flavor current (4.22) vanishes.

V. COMMENTS ON THE ABSENCE OF PARITY
VIOLATING STRUCTURES

In [11] it was shown that correlation functions of
conserved current in three-dimensional conformal field
theories can have parity-violating structures. Specifically,
it was defined as follows. Given a conserved current

Jα1α2…α2s−1α2sðxÞ ¼ ðγm1Þα1α2…ðγmsÞα2s−1α2sJm1…ms
ðxÞ;

ð5:1Þ

we can construct

Jsðx; λÞ ¼ Jα1α2…α2s−1α2sðxÞλα1…λα2s ; ð5:2Þ

where λα are auxiliary commuting spinors. The action of
parity is then x → −x, λ → iλ. In theories with a parity
symmetry, Jμ1…μsðxÞ acquires a sign ð−1Þs under parity and
Jsðx; λÞ is invariant. However, as was shown in [11]
correlation functions admit contributions which are odd
under parity. In particular, it was shown that a parity-odd
contribution to the mixed correlator of the energy-momen-
tum tensor Tmn and two flavor currents Lā

k can arise.
Translating their result into our notation it can be written as
follows:

hTmnðx1ÞLā
kðx2ÞLb̄

pðx3Þiodd

¼ δā b̄

x313x
3
12x23

Imn;m0n0 ðx13ÞIkk0 ðx23Þtm0n0k0pðX3Þ; ð5:3Þ

where

tmnkpðXÞ ¼ ϵnpq
XqXmXk

X3
þ ϵnkq

XqXmXp

X3
: ð5:4Þ
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Here Xi are three-point building blocks introduced by Osborn and Petkou in [1], while the object ImnðxÞ is the inversion
tensor, and Imn;m0n0 ðxÞ is an inversion tensor which extracts the symmetric traceless component. They are defined as
follows:

ImnðxÞ ¼ ηmn − 2
xmxn
x2

; ð5:5Þ

Imn;m0n0 ðxÞ ¼
1

2
fImm0 ðxÞInn0 ðxÞ þ Imn0 ðxÞInm0 ðxÞg − 1

3
ηmm0ηnn0 : ð5:6Þ

An important and specific feature of all parity-violating terms is appearance of the ϵ tensor.
In N ¼ 1 supersymmetric theories the supercurrent Jαβγ and the flavor current multiplet Lā

α contain the following
conserved currents:

Tαβγδ ¼ DðδJαβγÞj; Tαβγδ ¼ ðγmÞðαβðγnÞγδÞTmn; ∂mTmn ¼ 0; ηmnTmn ¼ 0; ð5:7aÞ

Qαβγ ¼ Jαβγj; Qαβγ ¼ ðγmÞαβQmγ; ∂mQmα ¼ 0; ðγmÞαβQmα ¼ 0; ð5:7bÞ

Vā
αβ ¼ DðαLā

βÞj; Vā
αβ ¼ ðγmÞαβVā

m; ∂mVā
m ¼ 0; ð5:7cÞ

where Tmn is the energy-momentum tensor,Qmγ is the supersymmetry current and Vā
m is a vector current. Hence, the mixed

correlators studied in the previous section give rise to the following correlators in terms of components:

hTmnðx1ÞTpqðx2ÞVkðx3Þi; hQmαðx1ÞQnβðx2ÞVkðx3Þi; hVā
kðx1ÞTmnðx2ÞVb̄

pðx3Þi: ð5:8Þ
The first two correlators vanish because the entire superspace correlator (4.22) vanishes. The last one is, in general, nonzero
and fixed up to one overall coefficient. It can be computed using Eqs. (4.18) and (4.21) using the superspace reduction
procedure

hVā
kðx1ÞTmnðx2ÞVb̄

pðx3Þi ¼
1

16
ðγkÞα1α2ðγmÞðβ1β2ðγnÞβ3β4ÞðγpÞγ1γ2Dð1Þα1Dð2Þβ1Dð3Þγ1hLā

α2ðz1ÞJβ2β3β4ðz2ÞLb̄
γ2ðz3Þij: ð5:9Þ

Here the bar projection denotes setting the fermionic coor-
dinates θα to zero. We will not perform the reduction
explicitly; instead, we will indirectly determine whether
(5.9) is even or odd under parity. For this it is sufficient to
study whether or not the ϵ tensor appears upon reduction.
Since

ϵmnp ¼ 1

2
trðγmγnγpÞ; ð5:10Þ

it is enough to count the number of gamma matrices: If the
number of γmatrices appearing in the superspace reduction is
even, the ϵ tensor cannot arise and the contribution is parity
even; if the number of γ matrices is odd, the contribution is
parity odd. Let us perform the counting. Since in (5.9) we act
with just three covariant derivatives before setting all θi ¼ 0
(where i ¼ 1, 2, 3 is the index labeling the three points) only
term linear and cubic in θi will contribute. Let us concentrate
on the terms linear on θi. Since the function H in (4.21) is
already linear in θi we can set θi ¼ 0 in xij andX. Thismakes
xij and X symmetric and proportional to a gamma matrix.
Now we have four gamma matrices in (5.9), four gamma
matrices coming from xij in Eq. (4.18), zero or two gamma
matrices coming fromH in (4.21) and also one more gamma

matrix contained inΘ3; see Eq. (2.26c). Overall we have odd
number of gammamatrices at this point.However, superspace
covariant derivatives also contain gamma matrices; see
Eq. (A16). Since we are considering terms linear in θi and
setting θi ¼ 0 upon differentiating it is easy to realize that in
the three derivatives Dð1Þα1Dð2Þβ1Dð3Þγ1 we must take one
derivative with respect to xi and two derivatives with respect
to θi. This gives one more gamma matrix, making the total
number even. Terms cubic in θ can be considered in a similar
way. They also yield an even number of gamma matrices.
Hence, the entire contribution (5.9) is parity even.
In a similar way we can count the number of gamma

matrices in the superspace reduction of (3.12) and (3.29):

hVā
mðx1ÞVb̄

nðx2ÞVc̄
kðx3Þi

¼ −
1

8
ðγmÞα1α2ðγnÞβ1β2ðγkÞγ1γ2Dð1Þα1Dð2Þβ1Dð3Þγ1

× hLā
α2ðz1ÞLā

β2
ðz2ÞLb̄

γ2ðz3Þij: ð5:11Þ

An analysis similar to the above shows that this contribu-
tion is also parity even. Finally, one can also consider the
superspace reduction of the three-point function of the
supercurrent
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hTmnðx1ÞTklðx2ÞTpqðx3Þi ¼
1

64
ðγmÞðα1α2ðγnÞα3α4ÞðγkÞðβ1β2ðγlÞβ3β4ÞðγpÞðγ1γ2ðγqÞγ3γ4Þ

×Dð1Þα1Dð2Þβ1Dð3Þγ1hJα2α3α4ðz1ÞJβ2β3β4ðz2ÞJγ2γ3γ4ðz3Þij ð5:12Þ
and

hTmnðx1ÞQkβðx2ÞQpγðx3Þi ¼
1

16
ðγmÞðα1α2ðγnÞα3α4ÞðγkÞβ1β2ðγpÞγ1γ2Dð1Þα1hJα2α3α4ðz1ÞJββ1β2ðz2ÞJγγ1γ2ðz3Þij: ð5:13Þ

The three-point function of the supercurrent was found in
[34]. We will not repeat it here since the expression for it is
quite long. However, a similar analysis shows that the
contributions (5.12) and (5.13) are parity even.8

This means that no parity-violating structures can arise in
three-point functions ofTmn,Qmα andVā

m in superconformal
field theories. Maldacena and Zhiboedov proved in [41] that
if a three-dimensional conformal field theory possesses a
higher spin conserved current, then it is essentially a free
theory. Since a free theory has only parity-even contributions
to the three-point functions of conserved currents, the
correlators involving one or more higher spin-conserved
currents admit only parity-even structures. This leads us to
conclude that N ¼ 1 supersymmetry forbids parity-violat-
ing structures in all three-point functions of conserved
currents unless the assumptions of the Maldacena-
Zhiboedov theorem are violated. The strongest assumption
of the theorem is that the theory under consideration contains
unique conserved current of spin two which is the energy-
momentum tensor. Some properties of theories possessing
more than one conserved current with spin two were
discussed in [41]. In supersymmetric theory the energy-
momentum tensor is a component of the supercurrent. One
can also consider a different supermultiplet containing a
conserved spin two current, namely

Jðα1α2α3α4Þ; Dα1Jðα1α2α3α4Þ ¼ 0: ð5:14Þ
The lowest component of Jðα1α2α3α4Þ is a conserved spin two
current which is not the energy-momentum tensor. Note that
Jðα1α2α3α4Þ also contains a conserved higher-spin current. It
will be interesting to perform a systematic study of three-
point functions of Jðα1α2α3α4Þ to see if they allow any parity-
violating structures.

VI. MIXED CORRELATORS IN N = 2
SUPERCONFORMAL FIELD THEORY

Now we will generalize our method to mixed three-point
functions in superconformal field theory with N ¼ 2
supersymmetry. A specific feature of three-dimensional

N ¼ 2 superconformal field theories is contact terms in
correlation functions of the conserved currents [58,59]. In
this paper, we study correlation functions at noncoincident
points where the contact terms do not contribute.

A. Supercurrent and flavor current multiplets

The 3D, N ¼ 2 supercurrent was studied in [54,60–62].
It is a primary, dimension 2 symmetric spin tensor Jαβ,
which obeys the conservation equation

DIαJαβ ¼ 0; ð6:1Þ

and has the following superconformal transformation law:

δJαβ ¼ −ξJαβ − 2σðzÞJαβ þ 2λðzÞγðαJβÞγ: ð6:2Þ

The general formalism in Sec. II allows the two-point
function to be determined up to a single real coefficient

hJαβðz1ÞJα0β0 ðz2Þi ¼ bN¼2

x12ðαα
0
x12βÞβ

0

ðx212Þ3
: ð6:3Þ

It is then a simple exercise to show that the two-point
function has the right symmetry properties under permu-
tation of superspace points:

hJαβðz1ÞJα0β0 ðz2Þi ¼ hJα0β0 ðz2ÞJαβðz1Þi ð6:4Þ

and also satisfies the conservation equation

DIα
ð1ÞhJαβðz1ÞJα0β0 ðz2Þi ¼ 0; z1 ≠ z2: ð6:5Þ

Similarly, the 3D N ¼ 2 flavor current is a primary,
dimension 1 scalar superfield L, which obeys the con-
servation equation

�
DαðIDJÞ

α −
1

2
δIJDαKDK

α

�
L ¼ 0; ð6:6Þ

and transforms under the superconformal group as

δL ¼ −ξL − σðzÞL: ð6:7Þ

As in the N ¼ 1 case, we assume the N ¼ 2 super-
conformal field theory in question has a set of flavor

8In general, if a superspace three-point function is fixed up to
an overall coefficient, it is expected to be parity even because this
contribution is expected to exist in a free theory of a real scalar
superfield.
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currents Lā associated with a simple flavor group. Due to
the absence of spinor or R-symmetry indices, the N ¼ 2
flavor current two-point function is fixed up to a single real
coefficient aN¼2 as follows:

hLāðz1ÞLb̄ðz2Þi ¼ aN¼2

δā b̄

x212
: ð6:8Þ

The two-point function obeys the correct symmetry
properties under permutation of superspace points,
hLāðz1ÞLb̄ðz2Þi ¼ hLb̄ðz2ÞLāðz1Þi, and also satisfies the
conservation equation

�
DαðI

ð1ÞD
JÞ
ð1Þα−

1

2
δIJDαK

ð1ÞD
K
ð1Þα

�
hLāðz1ÞLb̄ðz2Þi¼ 0; z1 ≠ z2:

ð6:9Þ

In the next section we will compute the mixed correlation
functions associated with the N ¼ 2 supercurrent and
flavor current multiplets. There are two possibilities to
consider; they are

hLāðz1ÞJαβðz2ÞLb̄ðz3Þi; hJαβðz1ÞJγδðz2ÞLðz3Þi: ð6:10Þ

Note that in second case we are considering a Uð1Þ flavor
current.

B. The correlation function hLJLi
First let us consider the hLJLi case first. Using the

general ansatz, we have

hLāðz1ÞJαβðz2ÞLb̄ðz3Þi ¼
δā b̄x23αα

0
x23ββ

0

x213ðx223Þ3
Hα0β0 ðX3;Θ3Þ;

ð6:11Þ

where Hαβ ¼ HðαβÞ. The correlation function is also
required to satisfy the following.

(i) Scaling constraint.—Under scale transformations
the correlation function transforms as

hLāðz01ÞJαβðz02ÞLb̄ðz03Þi
¼ ðλ2Þ4hLāðz1ÞJαβðz2ÞLb̄ðz3Þi; ð6:12Þ

from which we find the homogeneity constraint

Hαβðλ2X; λΘÞ ¼ ðλ2Þ−2HαβðX;ΘÞ: ð6:13Þ

(ii) Differential constraints.—The differential con-
straints on the flavor current and supercurrent result
in the following constraints on the correlation
function:

�
DσðI

ð1ÞD
JÞ
ð1Þσ −

1

2
δIJDσK

ð1ÞD
K
ð1Þσ

�

× hLāðz1ÞJαβðz2ÞLb̄ðz3Þi ¼ 0; ð6:14aÞ

DIα
ð2ÞhLāðz1ÞJαβðz2ÞLb̄ðz3Þi ¼ 0: ð6:14bÞ

These result in the following differential con-
straints on H:

�
DσðIDJÞ

σ −
1

2
δIJDσKDK

σ

�
HαβðX;ΘÞ ¼ 0; ð6:15aÞ

QIαHαβðX;ΘÞ ¼ 0: ð6:15bÞ

(iii) Point permutation symmetry.—The symmetry under
permutation of points (z1 and z3) results in the
following constraint on the correlation function:

hLāðz1ÞJαβðz2ÞLb̄ðz3Þi ¼ hLb̄ðz3ÞJαβðz2ÞLāðz1Þi;
ð6:16Þ

which results in the point-switch identity

HαβðX3;Θ3Þ ¼
xσσ

0
13 X3σ0αx

ρρ0
13 X3ρ0β

X6
3x

6
13

Hσρð−XT
1 ;−Θ1Þ:

ð6:17Þ

The symmetry properties of H allow us to trade the spinor
indices for a vector index

HαβðX;ΘÞ ¼ ðγmÞαβHmðX;ΘÞ: ð6:18Þ

The most general expansion for HmðX;ΘÞ is then

HmðX;ΘÞ ¼ AmðXÞ −
i
2
Θ2BmðXÞ þ ðΘΘÞnCmnðXÞ

þ 1

8
Θ4DmðXÞ; ð6:19Þ

where we have defined

ðΘΘÞm ¼ −
1

2
ðγmÞαβðΘΘÞαβ; ðΘΘÞαβ ¼ ΘI

αΘJ
βεIJ

ð6:20Þ

and accounted for the N ¼ 2 identity

Θ2ΘI
αΘJ

βεIJ ¼ 0: ð6:21Þ

The prefactors in front of B and D have been chosen for
convenience, and as in the N ¼ 1 case it is more conven-
ient to work with Xm instead of Xαβ. Imposing (6.15b)
results in the differential constraints
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∂mAmðXÞ ¼ 0; ð6:22aÞ

∂mBmðXÞ ¼ 0; ð6:22bÞ

ϵmnt∂nCmtðXÞ ¼ 0; ð6:22cÞ

BqðXÞ þ ϵqmn∂nAmðXÞ ¼ 0; ð6:22dÞ

DqðXÞ − ϵqmn∂nBmðXÞ ¼ 0; ð6:22eÞ

∂mfCmtðXÞ þ CtmðXÞ − ηmtCa
aðXÞg ¼ 0 ð6:22fÞ

and the algebraic constraints

Ca
aðXÞ ¼ 0; ð6:23aÞ

ϵqmtCmtðXÞ ¼ 0; ð6:23bÞ

which imply thatC is symmetric and traceless. Furthermore
the scaling condition (6.13) allows us to construct the
solutions

AmðXÞ ¼ a
Xm

X3
; ð6:24aÞ

BmðXÞ ¼ b
Xm

X4
; ð6:24bÞ

CmnðXÞ ¼ c

�
ηmn

X3
−
3XmXn

X5

�
; ð6:24cÞ

DmðXÞ ¼ d
Xm

X5
: ð6:24dÞ

Together (6.22) imply BmðXÞ ¼ DmðXÞ ¼ 0, while a and c
remain as two free parameters. Hence the solution for H
becomes

HαβðX;ΘÞ ¼ c̃N¼2

Xαβ

X3

þ icN¼2

�ΘI
αΘJ

βεIJ
X3

þ 3

2

XαβXγδΘI
γΘJ

δεIJ
X5

�
:

ð6:25Þ

After some lengthy calculation it turns out that only the
second structure satisfies the conservation equation (6.15a).
Hence there is only one linearly independent structure
in the correlation function that is compatible with the
differential constraints. Therefore we find that the final
solution is

hLāðz1ÞJαβðz2ÞLb̄ðz3Þi ¼
δā b̄x23αα

0
x23ββ

0

x213ðx223Þ3
Hα0β0 ðX3;Θ3Þ;

ð6:26Þ

with

HαβðX;ΘÞ ¼ icN¼2

�ΘI
αΘJ

βεIJ
X3

þ 3

2

XαβXγδΘI
γΘJ

δεIJ
X5

�
:

ð6:27Þ

In deriving this result, we Taylor expanded the denominator
in (6.25) using X2 ¼ X2 − 1

4
Θ4, which follows from (2.28)

and (2.34), and then used theN ¼ 2 identity (6.21). It may
also be shown that this structure satisfies the point-switch
identity (6.17).
The supercurrent Jαβ leads to the following N ¼ 1

supermultiplets (here the bar projection denotes setting
θI¼2 to zero and Dα ¼ Dα;I¼1)9:

Sαβ ¼ Jαβj; DαSαβ ¼ 0; ð6:28aÞ

Jαβγ ¼ iD2
ðαJβγÞ; DαJαβγ ¼ 0: ð6:28bÞ

In these equations Jαβγ is theN ¼ 1 supercurrent and Sαβ is
the additional N ¼ 1 supermultiplet containing the second
supersymmetry current and the R-symmetry current.
Similarly, the N ¼ 2 flavor current leads to

S ¼ Lāj; ð6:29aÞ

Lā
α ¼ iD2

αLā; DαLā
α ¼ 0; ð6:29bÞ

where Lā
α is the N ¼ 1 flavor current and S is uncon-

strained. Hence, the N ¼ 2 three-point function
hLāðz1ÞJαβðz2ÞLb̄ðz3Þi contains three-point functions of
the following conserved component currents: the energy-
momentum tensor, conserved vector currents, the super-
symmetry currents and the R-symmetry current. All these
three-point functions can be found by superspace reduction
and are fixed by the N ¼ 2 superconformal symmetry up
to one overall coefficient (or vanish). A simple gamma-
matrix-counting procedure similar to the one discussed in
the previous section shows that all these correlators are
parity even.

C. The correlation function hJJLi
For this example, the general ansatz gives

hJαβðz1ÞJγδðz2ÞLðz3Þi

¼ x13αα
0
x13ββ

0
x23γγ

0
x23δδ

0

ðx213Þ3ðx223Þ3
Hα0β0γ0δ0 ðX3;Θ3Þ; ð6:30Þ

9From here we will use bold R-symmetry indices to distinguish
them from other types of indices.
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where Hαβγδ ¼ HðαβÞðγδÞ. The correlation function is
required to satisfy the following.

(i) Scaling constraint.—Under scale transformations
the correlation function transforms as

hJαβðz01ÞJγδðz02ÞLðz03Þi¼ðλ2Þ5hJαβðz1ÞJγδðz2ÞLðz3Þi;
ð6:31Þ

from which we find the homogeneity constraint

Hαβγδðλ2X; λΘÞ ¼ ðλ2Þ−3HαβγδðX;ΘÞ: ð6:32Þ

(ii) Differential constraints.—The differential con-
straints on the flavor current and supercurrent result
in the following constraints on the correlation
function:

DIα
ð1ÞhJαβðz1ÞJγδðz2ÞLðz3Þi ¼ 0: ð6:33aÞ

�
DσðI

ð3ÞD
JÞ
ð3Þσ −

1

2
δIJDσK

ð3ÞD
K
ð3Þσ

�

× hJαβðz1ÞJγδðz2ÞLðz3Þi ¼ 0: ð6:33bÞ

The first equation results in the following differential
constraints on H:

DIαHαβγδðX;ΘÞ ¼ 0: ð6:34Þ

The second constraint (6.33b) is more difficult to
handle in this formalism; however, we will demon-
strate how to deal with it later.

(iii) Point permutation symmetry.—The symmetry under
permutation of points z1 and z2 results in the
following constraint on the correlation function:

hJαβðz1ÞJγδðz2ÞLðz3Þi ¼ hJγδðz2ÞJαβðz1ÞLðz3Þi;
ð6:35Þ

which results in the point-switch identity

HαβγδðX;ΘÞ ¼ Hγδαβð−XT;−ΘÞ: ð6:36Þ

Now due to the symmetry properties of H, we may trade
pairs of symmetric spinor indices for vector indices:

HðαβÞðγδÞðX;ΘÞ ¼ ðγmÞαβðγnÞγδHmnðX;ΘÞ: ð6:37Þ

Now if we split Hmn into symmetric and antisymmetric
parts

HmnðX;ΘÞ ¼ HðmnÞðX;ΘÞ þH½mn�ðX;ΘÞ
¼ HðmnÞðX;ΘÞ þ ϵmntHtðX;ΘÞ; ð6:38Þ

then the point-switch identity implies

HðmnÞðX;ΘÞ ¼ HðmnÞð−XT;−ΘÞ;
HtðX;ΘÞ ¼ −Htð−XT;−ΘÞ: ð6:39Þ

General expansions consistent with the index structure and
symmetries are

HðmnÞðX;ΘÞ ¼ AðmnÞðXÞþΘ2BðmnÞðXÞþ ðΘΘÞsCðmnÞsðXÞ
þΘ4DðmnÞðXÞ; ð6:40aÞ

HtðX;ΘÞ ¼ AtðXÞþΘ2BtðXÞþ ðΘΘÞsCtsðXÞþΘ4DtðXÞ:
ð6:40bÞ

All the tensors comprising HðmnÞ are even functions of X,
while those in the expansion forHt are odd functions of X.
Furthermore, due to symmetry arguments the tensorsHðmnÞ
and Ht do not mix in the conservation law (6.34); hence,
they may be considered independently. First let us analyze
HðmnÞ; imposing (6.15a) results in the differential con-
straints

∂mAðmnÞðXÞ ¼ 0; ð6:41aÞ

∂mBðmnÞðXÞ ¼ 0; ð6:41bÞ

ϵmrs∂rCðmnÞsðXÞ ¼ 0; ð6:41cÞ

2BðqnÞðXÞ þ iϵqmt∂tAðmnÞðXÞ ¼ 0; ð6:41dÞ

4DðqnÞðXÞ þ iϵqmt∂tBðmnÞðXÞ ¼ 0; ð6:41eÞ

∂mfCðmnÞsðXÞ þ CðsnÞmðXÞ − ηmsCa
naðXÞg ¼ 0 ð6:41fÞ

and the algebraic constraints N ¼ 2 JJL—algebraic con-
straints 1

Cm
nmðXÞ ¼ 0; ð6:42aÞ

ϵrmsCðmnÞsðXÞ ¼ 0: ð6:42bÞ

The scaling condition (6.32) along with (6.42) implies that
C is totally symmetric, traceless and even in X. Following
the argument presented in Sec. IV B we find that no such
tensor exists; hence, C ¼ 0. Furthermore, evenness in X
allows us to identify solutions for the remaining tensors:

AðmnÞðXÞ ¼ a1
ηmn

X3
þ a2

XmXn

X5
; ð6:43aÞ

BðmnÞðXÞ ¼ b1
ηmn

X4
þ b2

XmXn

X6
; ð6:43bÞ

DðmnÞðXÞ ¼ d1
ηmn

X5
þ d2

XmXn

X7
: ð6:43cÞ
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Imposing (6.41a) and (6.41b) results in a2 ¼ −3a1 and
b2 ¼ −2b1; however, for this choice of coefficients (6.41d)
implies B ¼ 0, while the tensor A survives. It is then easy
to see that (6.41e) implies D ¼ 0. Therefore the only
solution is

AðmnÞðXÞ ¼ a

�
ηmn

X3
−
3XmXn

X5

�
: ð6:44Þ

Now let us direct our attention to Ht; imposing (6.34)
results in the set of equations

ϵmnt∂mAtðXÞ ¼ 0; ð6:45aÞ

ϵmnt∂mBtðXÞ ¼ 0; ð6:45bÞ

∂mfCmnðXÞ − ηmnCs
sðXÞg ¼ 0; ð6:45cÞ

2ϵqt
sBsðXÞ − i∂tAqðXÞ þ iηqt∂sAsðXÞ ¼ 0; ð6:45dÞ

4ϵqt
sDsðXÞ − i∂tBqðXÞ þ iηqt∂sBsðXÞ ¼ 0 ð6:45eÞ

and the algebraic constraints

ϵn
maCmaðXÞ ¼ 0; ð6:46aÞ

CmnðXÞ − ηmnCs
sðXÞ ¼ 0: ð6:46bÞ

The algebraic constraints (6.46) imply that C ¼ 0. Now
since A, B and D are odd in X we can construct the
solutions

AtðXÞ ¼ a
Xt

X4
; ð6:47aÞ

BtðXÞ ¼ b
Xt

X5
; ð6:47bÞ

DtðXÞ ¼ d
Xt

X6
: ð6:47cÞ

However it is not too difficult to show that imposing
(6.45d) and (6.45e) requires that A, B and D must all
vanish. Hence HtðX;ΘÞ ¼ 0.
So far we have found a single solution consistent with

the supercurrent conservation equation and the point-
switch identity:

HmnðX;ΘÞ ¼ a

�
ηmn

X3
−
3XmXn

X5

�
; ð6:48Þ

HαβγδðX;ΘÞ ¼ ðγmÞαβðγnÞγδHmnðX;ΘÞ

¼ dN¼2

�
εαγεβδ þ εαδεβγ

X3
þ 3XαβXγδ

X5

�
:

ð6:49Þ
Therefore the correlation function is

hJαβðz1ÞJγδðz2ÞLðz3Þi ¼
x13αα

0
x13ββ

0
x23γγ

0
x23δδ

0

ðx213Þ3ðx223Þ3
Hα0β0γ0δ0 ðX3;Θ3Þ; ð6:50Þ

where, after writing our solution in terms of the variable X,

HαβγδðX;ΘÞ ¼ dN¼2

�
εαγεβδ
X3

þ εαδεβγ
X3

þ 3

8

εαγεβδΘ4

X5
þ 3

8

εαδεβγΘ4

X5

þ 3XαβXγδ

X5
þ 3i

2

εαβXγδΘ2

X5
þ 3i

2

εγδXαβΘ2

X5

−
3

4

εαβεγδΘ4

X5
þ 15

8

XαβXγδΘ4

X5

�
: ð6:51Þ

However it remains to check whether this solution satisfies the flavor current conservation equation. As mentioned earlier
it is difficult to check conservation laws on the third superspace point in this formalism as there are no identities
that allow differential operators acting on the z3 dependence to pass through the prefactor of (2.43). To deal with this
we will rewrite our solution in terms of the three-point building block X1 using identities (2.31a) and (2.33). This ultimately
has the effect

hJαβðz1ÞJγδðz2ÞLðz3Þi → hLðz3ÞJγδðz2ÞJαβðz1Þi: ð6:52Þ

Written in terms of the variable X1, the correlation function is found to be

hLðz3ÞJγδðz2ÞJαβðz1Þi ¼
x21γγ

0
x21δδ

0

x231ðx221Þ3
Hγ0δ0αβðX1;Θ1Þ; ð6:53Þ
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where

HγδαβðX;ΘÞ ¼ dN¼2

�
XγαXδβ

X3
þ XγβXδα

X3
þ 3

8

XγαXδβΘ4

X5
þ 3

8

XγβXδαΘ4

X5

−
3XαβXγδ

X3
−
3i
2

εαβXγδΘ2

X3
−
3i
2

εγδXαβΘ2

X3

þ 3

4

εαβεγδΘ4

X3
−
15

8

XαβXγδΘ4

X5

�
: ð6:54Þ

We are now able to check the conservation equation (6.33b),
which after using identities equivalent to (2.39a) becomes
the constraint

�
DσðIDJÞ

σ −
1

2
δIJDσKDK

σ

�
HγδαβðX;ΘÞ ¼ 0: ð6:55Þ

After a very lengthy calculation one can show that the
solution above satisfies this conservation equation; hence,
this correlation function is nontrivial and is determined up
to a single parameter.
This is a peculiar result, as it was shown in Sec. IV B that

the correlation function hJJLi vanishes for N ¼ 1. At first
glance this appears to be a contradiction since any theory
with N ¼ 2 supersymmetry is also N ¼ 1 supersymmet-
ric. However, as was discussed in the previous subsection,
the N ¼ 2 current supermultiplets Jαβ and L contain not
only the N ¼ 1 supercurrent and flavor currents, but also
the unconstrained scalar superfield S and the supermultiplet
of currents Sαβ. Hence, nonvanishing of the N ¼ 2 three-
point function (6.49) and (6.50) implies nonvanishing of
some of the three-point functions involving these additional
N ¼ 1 currents. For example, from Eqs. (6.49) and (6.50)
it follows that the followingN ¼ 1 correlator is, in general,
nonzero:

hSα1α2ðz1ÞJβ1β2β3ðz2ÞLγðz3Þi
¼ −D2

ð2Þðβ1D
2
ð3ÞγhJα1α2ðz1ÞJβ2β3Þðz2ÞLðz3Þij; ð6:56Þ

where the bar projection means setting θ2i to zero. In
components this correlator contains (among others)
hRmðx1ÞTpqðx2ÞVsðx3Þi, where Rm is the Uð1Þ R-sym-
metry current which exists in theories with N ¼ 2 super-
symmetry. In theories with N ¼ 1 supersymmetry such a
correlator does not exist because there is no R-symmetry
current.10 On the other hand, the N ¼ 2 → N ¼ 1 super-
space reduction

hJα1α2ðz1ÞJβ1β2ðz2ÞLðz3Þi → hJα1α2α3ðz1ÞJβ1β2β3ðz2ÞLγðz3Þi
ð6:57Þ

must give zero to be consistent with the result of the
previous subsection. Let us check that this is indeed the
case. To perform the reduction we compute

−iD2
ð1Þðα1D

2
ð2Þðβ1D

2
ð3ÞγhJα2α3Þðz1ÞJβ2β3Þðz2ÞLðz3Þij: ð6:58Þ

That is, we must act with three covariant derivatives with
respect to θ2i and then set all θ2i to zero. From the explicit
form of the correlator hJα1α2ðz1ÞJβ1β2ðz2ÞLðz3Þi in
Eqs. (6.49) and (6.50) it follows that it depends on θ2i θ

2
j .

Since it is Grassmann even it contains only even powers of
θ2i . Therefore, acting on hJα1α2ðz1ÞJβ1β2ðz2ÞLðz3Þi with
three derivatives as in (6.58) will give a result either linear
or higher order in θ2i , so it vanishes when we set θ2i ¼ 0.
This shows that despite being nonzero our result (6.49) and
(6.50) is consistent with vanishing of the similar correlator
in the N ¼ 1 case.

VII. MIXED CORRELATORS IN N = 3, 4
SUPERCONFORMAL FIELD THEORY

In this section we will generalize our method for N ¼ 3
and N ¼ 4 superconformal theories. An essential differ-
ence with the previous cases is that the flavor current now
carries R-symmetry indices which must be taken into
account in the irreducible decompositions. We will start
with reviewing the properties of the N ¼ 3 and N ¼ 4
supercurrent [63,64] and flavor current multiplets and then
apply our formalism to compute the mixed correlation
functions involving these multiplets.

A. Supercurrent and flavor current multiplets

1. N = 3 theories

The 3D, N ¼ 3 supercurrent is a primary, dimension
3=2 spinor superfield Jα, which satisfies the conservation
equation

DIαJα ¼ 0; ð7:1Þ

and has the following superconformal transformation law:

δJα ¼ −ξJα −
3

2
σðzÞJα þ λðzÞαβJβ: ð7:2Þ10Note that all component three-point functions contained in

(6.49) and (6.50) are parity even.
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The two-point function is again determined up to a single
real coefficient

hJαðz1ÞJβðz2Þi ¼ bN¼3

x12αβ
ðx212Þ2

: ð7:3Þ

It has the right symmetry properties under permutation of
superspace points

hJαðz1ÞJβðz2Þi ¼ −hJβðz2ÞJαðz1Þi ð7:4Þ

and also satisfies the conservation equation

DIα
ð1ÞhJαðz1ÞJβðz2Þi ¼ 0; z1 ≠ z2: ð7:5Þ

The N ¼ 3 flavor current is a primary, dimension 1
isovector LI, which obeys the conservation equation

DðI
α LJÞ −

1

3
δIJDK

α LK ¼ 0; ð7:6Þ

and transforms under the superconformal group as

δLI ¼ −ξLI − σðzÞLI þ ΛIJðzÞLJ: ð7:7Þ

The N ¼ 3 flavor current two-point function is fixed up to
a single real coefficient aN¼3:

hLIāðz1ÞLJb̄ðz2Þi ¼ aN¼3

δā b̄uIJ12
x212

; ð7:8Þ

where we have introduced the flavor group index ā.
The two-point function obeys the correct symmetry
properties under permutation of superspace points,
hLIāðz1ÞLJb̄ðz2Þi ¼ hLJb̄ðz2ÞLIā

α ðz1Þi, and also satisfies
the conservation equation

DðI
ð1ÞαhLJÞāðz1ÞLKb̄ðz2Þi−

1

3
δIJDL

ð1ÞαhLLāðz1ÞLKb̄ðz2Þi ¼ 0;

z1 ≠ z2: ð7:9Þ

2. N = 4 theories

TheN ¼ 4 supercurrent is a primary, dimension 1 scalar
superfield J, which satisfies the conservation equation

�
DIαDK

α −
1

4
δIKDLαDL

α

�
J ¼ 0; ð7:10Þ

and has the following superconformal transformation law:

δJα ¼ −ξJα − σðzÞJα: ð7:11Þ

The dimension of the supercurrent is fixed by the con-
servation equation (7.10). The two-point function is deter-
mined up to a single real coefficient

hJðz1ÞJðz2Þi ¼ bN¼4

1

x212
: ð7:12Þ

Under permutation of superspace points, we have

hJðz1ÞJðz2Þi ¼ hJðz2ÞJðz1Þi: ð7:13Þ

The two-point function also satisfies the conservation
equation

�
DIα

ð1ÞD
K
ð1Þα −

1

4
δIKDLα

ð1ÞD
L
ð1Þα

�
hJðz1ÞJðz2Þi ¼ 0; z1 ≠ z2:

ð7:14Þ

In the N ¼ 4 case there exists two inequivalent flavor
current multiplets, described by SOð4Þ bivectors LIJþ , LIJ

− ,
which are primary with dimension 1 and satisfy

LIJ
� ¼ −LJI

� ;
1

2
ϵIJKLLKL

� ¼ �LIJ
� : ð7:15Þ

where ā is the index for the flavor group. The flavor current
multiplets are subject to the conservation equation

DI
αLJK

� ¼ D½I
αL

JK�
� −

2

3
DL

αL
L½J
� δK�I ð7:16Þ

and transform under the superconformal group as

δLIJ
� ¼ −ξLIJ

� − σðzÞLIJ
� þ ΛK½IðzÞLJ�K

� : ð7:17Þ

Since the flavor current multiplets LIJ
� are inequivalent,

they may be studied independently when deriving corre-
lation functions.

B. Mixed correlation functions in N = 3 theories

There are two mixed correlation functions in N ¼ 3
theories; they are

hLIðz1ÞJαðz2ÞLJðz3Þi; hJαðz1ÞJβðz2ÞLIðz3Þi: ð7:18Þ

1. The correlation function hLJLi
Using the general ansatz, we have

hLIāðz1ÞJαðz2ÞLJb̄ðz3Þi ¼
δā b̄uII

0
13x23α

α0

x213ðx223Þ2
HI0J

α0 ðX3;Θ3Þ:

ð7:19Þ

The correlation function is required to satisfy the following.
(i) Scaling constraint.—Under scale transformations

the correlation function must transform as
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hLIāðz01ÞJαðz02ÞLJb̄ðz03Þi
¼ ðλ2Þ7=2hLIāðz1ÞJαðz2ÞLJb̄ðz3Þi; ð7:20Þ

which gives rise to the homogeneity constraint onH:

HIJ
α ðλ2X; λΘÞ ¼ ðλ2Þ−3=2HIJ

α ðX;ΘÞ: ð7:21Þ

(ii) Differential constraints.—The differential con-
straints on the flavor current and supercurrent result
in the following constraints on the correlation
function:

DðI
ð1ÞαhLJÞāðz1ÞJβðz2ÞLKb̄ðz3Þi

−
1

3
δIJDL

ð1ÞαhLLāðz1ÞJβðz2ÞLKb̄ðz3Þi ¼ 0;

ð7:22aÞ

DIα
ð2ÞhLJāðz1ÞJαðz2ÞLKb̄ðz3Þi ¼ 0: ð7:22bÞ

These equations result in the following differential
constraints on H:

DðI
α H

JÞK
β ðX;ΘÞ − 1

3
δIJDL

αHLK
β ðX;ΘÞ ¼ 0; ð7:23aÞ

QIαHJK
α ðX;ΘÞ ¼ 0: ð7:23bÞ

(iii) Point permutation symmetry.—The symmetry under
permutation of points (z1 and z3) imposes the
following constraint on the correlation function:

hLIāðz1ÞJαðz2ÞLJb̄ðz3Þi ¼ hLJb̄ðz3ÞJαðz2ÞLIāðz1Þi;
ð7:24Þ

which results in the point-switch identity

HIJ
α ðX3;Θ3Þ ¼ −

ðu−113 ÞII
0
uJJ

0
13 x

α0σ
13 X3σσ

X4
3x

4
13

×HJ0I0
α0 ð−XT

1 ;−Θ1Þ: ð7:25Þ

Now let us find the general solution forH consistent with
the above constraints. To do this systematically, we note
that sinceH is Grassmann odd we must find all the linearly
independent structures that are odd in Θ that can be
constructed out of the N ¼ 3 building blocks. A general
expansion for HIJ

α is

HIJ
α ðX;ΘÞ ¼ HIJ

ð1ÞαðX;ΘÞ þHIJ
ð3ÞαðX;ΘÞ þHIJ

ð5ÞαðX;ΘÞ
ð7:26Þ

¼ Hð1ÞαβðXÞAIJKΘKβ þHð3ÞαβγδðXÞBIJKLMΘKβΘLγΘMδ

þHð5ÞαβγδμνðXÞCIJKLMNPΘKβΘLγΘMδΘNμΘPν; ð7:27Þ

where A, B, and C are tensors formed out of the N ¼ 3

invariant tensors δIJ and ϵIJK . AtOðΘ1Þ the only choice we
can make for A is AIJK ¼ ϵIJK , from which we find the
linearly independent structures

HIJ
ð1ÞαðX;ΘÞ ¼ a1ϵIJK

ΘK
α

X2
þ a2ϵIJK

XαβΘKβ

X3
: ð7:28Þ

The conservation equation (7.23b) implies that the terms
OðΘ1Þ are odd in Xαβ, while the termsOðΘ3Þ must be even
in Xαβ. At OðΘ3Þ we have the following choices for B:

BIJKLM
1 ¼ δIJϵKLM; BIJKLM

2 ¼ ϵIJKδLM; ð7:29Þ

BIJKLM
3 ¼ δIKϵJLM þ δJKϵILM; ð7:30Þ

from which we find the linearly independent structures

HIJ
ð3ÞαðX;ΘÞ

¼ b1ϵIJK
ΘK

αΘ2

X3
þ b2δIJϵKPQΘKδΘPβΘKγ

XαðδXβγÞ
X5

þ b3ðϵIKPΘJδ þ ϵJKPΘIδÞΘKβΘPγ XαδXβγ

X5
: ð7:31Þ

If we follow the same procedure at OðΘ5Þ, we find the
structures

HIJ
ð5ÞαðX;ΘÞ ¼ c1ϵIJK

ΘK
αΘ4

X5

þ c2ðϵIKPΘJ
α þ ϵJKPΘI

αÞΘKβΘPγ XβγΘ2

X5
:

ð7:32Þ

In determining the linearly independent terms we make use
of the N ¼ 3 identity

ϵIJKΘIαΘJβΘKγΘ2 ¼ 0; ð7:33Þ

in addition to

ΘIαΘJ
αΘKβΘL

γ ϵ
JKL ¼ 2Θ2ΘJβΘK

γ ϵ
IJK; ð7:34aÞ

ΘIαΘJβΘKγΘLδϵJKL ¼ −
1

2
εαβΘ2ΘJγΘKδϵIJK

−
1

2
εαγΘ2ΘJβΘKδϵIJK ð7:34bÞ
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−
1

2
εαδΘ2ΘJβΘKγϵIJK;

ΘðPαϵIÞMNΘMμΘNν ¼ −
1

3
εαμΘðPβΘM

β ΘNνϵIÞMN

−
1

3
εανΘðPβΘM

β ΘNμϵIÞMN; ð7:34cÞ

which arise as differential consequences of (7.33).
Applying the conservation law (7.23b) results in

a1 ¼ b1 ¼ b3 ¼ c1 ¼ c2 ¼ 0; ð7:35Þ

which leaves us with only two structures. Next we must
impose the flavor current conservation equation (7.23a).
After a lengthy calculation we find b2 ¼ ia2. Hence the
solution is

HIJ
α ðX;ΘÞ

¼ cN¼3

�
ϵIJK

XαβΘKβ

X3
þ iδIJϵKPQΘKδΘPσΘKγ

XαðδXσγÞ
X5

�

ð7:36Þ

¼ cN¼3

�
ϵIJK

�
XαβΘKβ

X3
þ i
2

ΘK
αΘ2

X3
þ 3

8

XαβΘKβΘ4

X5

�

þ iδIJϵKPQΘKδΘPσΘKγ
XαðδXσγÞ

X5

�
: ð7:37Þ

After some additional calculation it can be shown that this
solution also satisfies the point-switch identity (7.25),
which completes our study of the N ¼ 3 correlation
function.

2. The correlation function hJJLi
Using the general ansatz, we have

hJαðz1ÞJβðz2ÞLIðz3Þi ¼
x23αα

0
x23ββ

0

ðx213Þ2ðx223Þ2
HI

α0β0 ðX3;Θ3Þ:

ð7:38Þ

Note that in this case the flavor current is Uð1Þ. The
correlation function is required to satisfy the following.

(i) Scaling constraint.—Under scale transformations
the correlation function must transform as

hJαðz01ÞJβðz02ÞLIðz03Þi ¼ ðλ2Þ4hJαðz1ÞJβðz2ÞLIðz3Þi;
ð7:39Þ

which gives rise to the homogeneity constraint onH:

HI
αβðλ2X; λΘÞ ¼ ðλ2Þ−2HI

αβðX;ΘÞ: ð7:40Þ

(ii) Differential constraints.—The differential constraints
on the flavor current and supercurrent result in the
following constraints on the correlation function:

DðI
ð3ÞγhJαðz1ÞJβðz2ÞLJÞðz3Þi

−
1

3
δIJDK

ð3ÞγhJαðz1ÞJβðz2ÞLKðz3Þi ¼ 0; ð7:41aÞ

DIα
ð1ÞhJαðz1ÞJβðz2ÞLJðz3Þi ¼ 0: ð7:41bÞ

Since (7.41a) involves a covariant derivative acting
on the third point, it is more difficult to impose.
However it turns out that the second equation is
sufficient to show that this correlation function
vanishes. From (7.41b) we obtain

DIαHJ
αβðX;ΘÞ ¼ 0: ð7:42Þ

(iii) Point permutation symmetry.—The symmetry under
permutation of points (z1 and z2) imposes the
following constraint on the correlation function:

hJαðz1ÞJβðz2ÞLIðz3Þi ¼ −hJβðz2ÞJαðz1ÞLIðz3Þi;
ð7:43Þ

which results in the point-switch identity

HI
αβðX;ΘÞ ¼ −HI

βαð−XT;−ΘÞ: ð7:44Þ

To proceed we start by decomposing H into symmetric
and antisymmetric parts as follows:

HI
αβðX;ΘÞ ¼ HI

ðαβÞðX;ΘÞ þHI
½αβ�ðX;ΘÞ

¼ HI
ðαβÞðX;ΘÞ þ εαβHIðX;ΘÞ: ð7:45Þ

The symmetry under permutation of points (7.44) implies

HI
ðαβÞðX;ΘÞ ¼ −HI

ðαβÞð−XT;−ΘÞ;
HIðX;ΘÞ ¼ HIð−XT;−ΘÞ; ð7:46Þ

therefore HI
ðαβÞ is an odd function, while HI is an even

function. They will not mix in the conservation law (7.42);
hence, we may consider each of them independently.
Starting withHI, we note that since it is Grassmann even

it must be an even function of Θ; hence, it admits the
expansion

HIðX;ΘÞ
¼ Hð2ÞαβðXÞAIJKΘJαΘKβ

þHð4ÞαβγδðXÞBIJKLMΘJαΘKβΘLγΘMδ

þHð6ÞαβγδσμðXÞCIJKLMNPΘJαΘKβΘLγΘMδΘNσΘPμ:

ð7:47Þ
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Here we have replaced the variable X with X and intro-
duced the arbitrary tensors A, B, and C, which are
constructed out of the invariant tensors for the N ¼ 3
R-symmetry group. TheHðiÞ are all even functions of X. At
OðΘ2Þ the only choice is AIJK ¼ ϵIJK , so we have the
contribution

Hð2ÞðαβÞðXÞϵIJKΘJαΘKβ: ð7:48Þ

However, it is not too hard to see that we cannot construct
an even, symmetric function of X with the required index
structure. Hence Hð2ÞðαβÞðXÞ ¼ 0. Now at OðΘ4Þ we have
the choices

BIJKLM
1 ¼ δIJϵKLM; BIJKLM

2 ¼ ϵIJKδLM: ð7:49Þ

The choice B1 results in the contribution

Hð4ÞαðβγδÞðXÞΘIαΘKβΘLγΘMδϵKLM: ð7:50Þ

After applying the N ¼ 3 identity (7.34a), this is equiv-
alent to the contribution

F ðγδÞðXÞϵIJKΘ2ΘJγΘKδ; ð7:51Þ

where F is a symmetric and even function of X. We cannot
construct such a function; hence, F ðγδÞðXÞ ¼ 0. Indeed if
we follow the same procedure for B2, we arrive at the same
conclusion. Concerning contributions OðΘ6Þ, no terms are
permitted due to theN ¼ 3 identity (7.34a). Hence we find
HIðX;ΘÞ ¼ 0 as there are no contributions that are con-
sistent with the algebraic symmetries.
Let us now follow the same procedure for the symmetric

contributionHI
ðαβÞ. Since it is Grassmann even it must be an

even function of Θ; hence, it must be odd in X. The general
expansion for this contribution reads

HI
ðαβÞðX;ΘÞ ¼ Hð2ÞðαβÞμνðXÞAIJKΘJμΘKν

þHð4ÞðαβÞμνγδðXÞBIJKLMΘJμΘKνΘLγΘMδ;

ð7:52Þ

where the HðiÞ are odd functions of X. Here we have
neglected the contribution OðΘ6Þ as it will vanish due to
N ¼ 3 identities. Following the same procedure outlined
above we find that to OðΘ2Þ we have the contribution

Hð2ÞðαβÞðμνÞðXÞϵIJKΘJμΘKν: ð7:53Þ

Since the tensor Hð2Þ is symmetric in each pair of spinor
indices, we may trade them for vector ones:

Hð2ÞðαβÞðμνÞðXÞ ¼ ðγaÞαβðγbÞμνHð2ÞabðXÞ: ð7:54Þ

The general expansion forHð2Þab with the scaling condition
(7.40) is

Hð2ÞabðXÞ ¼
h1
X3

ηab þ
h2
X4

ϵabcXc þ h3
X5

XaXb; ð7:55Þ

however, only the second term is odd in X, which results in
the contribution

HI
ðαβÞðX;ΘÞ ∝

1

X4
ϵIJKΘJγΘK

ðαXβÞγ: ð7:56Þ

Concerning the termsOðΘ4Þ we follow the same procedure
outlined above; for each choice of B in (7.49) we obtain the
contribution

HI
ðαβÞðX;ΘÞ ∝

1

X5
ϵIJKΘ2ΘJγΘK

ðαXβÞγ; ð7:57Þ

where we have made use of (7.34a). Hence our solution for
HI

ðαβÞ is of the form

HI
ðαβÞðX;ΘÞ ¼

a1
X4

ϵIJKΘJγΘK
ðαXβÞγ þ

a2
X5

ϵIJKΘ2ΘJγΘK
ðαXβÞγ:

ð7:58Þ

It remains to impose the conservation equation (7.42). After
a short calculation we find a1 ¼ a2 ¼ 0; hence, this
correlation function vanishes.

C. Mixed correlation functions in N = 4 theories

For N ¼ 4 superconformal symmetry there are two
possible mixed correlation functions (for concreteness
we will consider only LIJþ ); they are

hLIKþ ðz1ÞJðz2ÞLJLþ ðz3Þi; hJðz1ÞJðz2ÞLIJþ ðz3Þi; ð7:59Þ

where in the second case we require a Uð1Þ flavor group.
The first correlator hLJLi was previously studied in [35],
so we will not analyze it here.
The general ansatz for the correlation function hJJLi is

hJðz1ÞJðz2ÞLIJþ ðz3Þi ¼
1

x213x
2
23

HIJðX3;Θ3Þ: ð7:60Þ

As we will soon find out, the algebraic symmetries on the
tensorH are sufficient to show that this correlation function
vanishes. The relevant constraints are the following.

(i) Scaling constraint.—The correlation function must
transform as

hJðz01ÞJðz02ÞLIJþ ðz03Þi ¼ ðλ2Þ3hJðz1ÞJðz2ÞLIJþ ðz3Þi;
ð7:61Þ

from which we find the homogeneity constraint
on H:
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HIJðλ2X; λΘÞ ¼ ðλ2Þ−1HIJðX;ΘÞ: ð7:62Þ
(ii) Algebraic constraints.—The symmetry under per-

mutation of points (z1 and z2) constrains the corre-
lation function as follows:

hJðz1ÞJðz2ÞLIJþ ðz3Þi ¼ hJðz2ÞJðz1ÞLIJþ ðz3Þi;
ð7:63Þ

which is equivalent to

HIJðX;ΘÞ ¼ HIJð−XT;−ΘÞ: ð7:64Þ
In addition, we also have constraints arising from
antisymmetry and self-duality of the flavor current,
which give rise to

HIJðX;ΘÞ ¼ −HJIðX;ΘÞ;

HIJðX;ΘÞ ¼ 1

2
ϵIJKLHKLðX;ΘÞ: ð7:65Þ

The constraint (7.64) implies that HIJ is an even
function, while (7.65) implies that HIJ must be antisym-
metric in the R-symmetry indices. Furthermore since H is
Grassmann even it must be an even function of Θ, which
implies it must also be even in X. It is not too difficult to see
that it is impossible to construct any structures consistent
with these requirements out of the available building
blocks; hence, this correlation function must vanish.
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APPENDIX: 3D CONVENTIONS
AND NOTATION

For the Minkowski metric we use the “mostly plus”
convention: ηmn ¼ diagð−1; 1; 1Þ. Spinor indices are then
raised and lowered with the SLð2;RÞ invariant antisym-
metric ε tensor

εαβ ¼
�
0 −1
1 0

�
; εαβ ¼

�
0 1

−1 0

�
; εαγε

γβ ¼ δα
β;

ðA1Þ

ϕα ¼ εαβϕ
β; ϕα ¼ εαβϕβ: ðA2Þ

The γ matrices are chosen to be real and are expressed in
terms of the Pauli matrices σ as follows:

ðγ0Þαβ ¼ −iσ2 ¼
�
0 −1
1 0

�
; ðγ1Þαβ ¼ σ3 ¼

�
1 0

0 −1

�
;

ðA3aÞ

ðγ2Þαβ ¼ −σ3 ¼
�

0 −1
−1 0

�
; ðA3bÞ

ðγmÞαβ ¼ εβδðγmÞαδ; ðγmÞαβ ¼ εαδðγmÞδβ: ðA4Þ

The γ matrices are traceless and symmetric:

ðγmÞαα ¼ 0; ðγmÞαβ ¼ ðγmÞβα; ðA5Þ

and also satisfy the Clifford algebra

γmγn þ γnγm ¼ 2ηmn: ðA6Þ
Products of γ matrices are then

ðγmÞαρðγnÞρβ ¼ ηmnδα
β þ ϵmnpðγpÞαβ; ðA7aÞ

ðγmÞαρðγnÞρσðγpÞσβ ¼ ηmnðγpÞαβ − ηmpðγnÞαβ
þ ηnpðγmÞαβ þ ϵmnpδα

β; ðA7bÞ
where we have introduced the 3D Levi-Civita tensor ϵ, with
ϵ012 ¼ −ϵ012 ¼ 1. It satisfies the following identities:

ϵmnpϵm0n0p0 ¼ −ηmm0 ðηnn0ηpp0 − ηnp0ηpn0 Þ
− ðn0 ↔ m0Þ − ðm0 ↔ p0Þ; ðA8aÞ

ϵmnpϵ
m
n0p0 ¼ −ηnn0ηpp0 þ ηnp0ηpn0 ; ðA8bÞ

ϵmnpϵ
mn

p0 ¼ −2ηpp0 ; ðA8cÞ

ϵmnpϵ
mnp ¼ −6: ðA8dÞ

We also have the orthogonality and completeness relations
for the γ matrices:

ðγmÞαβðγmÞρσ ¼ −δαρδβσ − δα
σδβ

ρ;

ðγmÞαβðγnÞαβ ¼ −2ηmn: ðA9Þ
Finally, the γ matrices are used to swap from vector to
spinor indices. For example, given some three-vector xm, it
may equivalently be expressed in terms of a symmetric
second-rank spinor xαβ as follows:

xαβ ¼ ðγmÞαβxm; xm ¼ −
1

2
ðγmÞαβxαβ; ðA10Þ

detðxαβÞ ¼
1

2
xαβxαβ ¼ −xmxm ¼ −x2: ðA11Þ

The same conventions are also adopted for the spacetime
partial derivatives ∂m:
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∂αβ ¼ ∂mðγmÞαβ; ∂m ¼ −
1

2
ðγmÞαβ∂αβ; ðA12Þ

∂mxn ¼ δnm; ∂αβxρσ ¼ −δαρδβσ − δα
σδβ

ρ; ðA13Þ

ξm∂m ¼ −
1

2
ξαβ∂αβ: ðA14Þ

We also define the supersymmetry generators QI
α:

QI
α ¼ i

∂
∂θαI þ ðγmÞαβθIβ

∂
∂xm ðA15Þ

and the covariant spinor derivatives:

DI
α ¼

∂
∂θαI þ iðγmÞαβθIβ

∂
∂xm ; ðA16Þ

which anticommute with the supersymmetry generators,
fQI

α; DJ
βg ¼ 0, and obey the standard anticommutation

relations

fDI
α; DJ

βg ¼ 2iδIJðγmÞαβ∂m: ðA17Þ
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