PHYSICAL REVIEW D 103, 086023 (2021)
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We consider mixed three-point correlation functions of the supercurrent and flavor current in three-
dimensional 1 < A < 4 superconformal field theories. Our method is based on the decomposition of the
relevant tensors into irreducible components to guarantee that all possible tensor structures are
systematically taken into account. We show that only parity-even structures appear in the correlation
functions. In addition to the previous results obtained in [E. I. Buchbinder et al.J. High Energy Phys. 06
(2015) 138], it follows that supersymmetry forbids parity-odd structures in three-point functions involving

the supercurrent and flavor current multiplets.
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I. INTRODUCTION

It is a well-known property of conformal field theories
that the functional form of two- and three-point functions of
conserved currents such as the energy-momentum tensor
and vector current are fixed up to finitely many parameters.
In [1,2] a systematic formalism was developed to construct
two- and three-point functions of primary operators in
diverse dimensions. The method was based on properly
imposing the relevant symmetries arising from scale trans-
formations and permutations of points as well as the
conservation laws for the conserved currents (see also
Refs. [3-10] for earlier work). More recently it was shown
in [11] that a peculiar feature of three-dimensional (and
perhaps, in general, odd-dimensional) conformal field
theories is the appearance of parity-violating contributions
in three-point functions of conserved currents. These
structures were overlooked in the original study by
Osborn and Petkou [1] (also [2]) and have since been
shown to arise in Chern-Simons theories interacting with
parity-violating matter. Parity-violating (or parity-odd)
structures were studied in [12-20]. Recently they were
also studied in light-cone gauge [21] and in momentum
space [22].]
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lParity—even correlation functions in momentum space were
discussed in [23-31].
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In contrast with the nonsupersymmetric case studied in
[1,2], supersymmetry imposes additional restrictions on the
structure of three-point functions of conserved currents. In
supersymmetric field theories the energy-momentum ten-
sor is replaced with the supercurrent multiplet [32], which
contains the energy-momentum tensor, the supersymmetry
current and additional components such as the R-symmetry
current. Similarly, a conserved vector current becomes a
component of the flavor current supermultiplet. The general
formalism to construct the two- and three-point functions of
primary operators in three-dimensional superconformal
field theories was developed in [33—36].2 Within this
formalism it was shown in [34] that the three-point function
of the supercurrent (and, hence, of the energy-momentum
tensor) in three-dimensional AV = 1 superconformal theory
is comprised of only one tensor structure. It was also shown
that the three-point function of the non-Abelian flavor
current (and, hence, the three-point function of conserved
vector currents) also contains only one tensor structure. In
both cases the tensor structures are parity even.

The aim of this paper is to apply the approach of [34] to
the case of mixed correlators involving the supercurrent and
flavor current multiplets in theories with 1 < N < 4 super-
conformal symmetry. Our method is based on a systematic
decomposition of the relevant tensors into irreducible
components, which guarantees that all possible linearly
independent structures are consistently taken into account.
We demonstrate that these correlation functions contain
only parity-even structures; hence, in combination with the
results of [34] we conclude that supersymmetry forbids

’A similar formalism in four dimensions was developed in
[37-39] and in six dimensions in [40].
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parity-odd structures in the three-point functions of con-
served low-spin currents such as the energy-momentum
tensor, supersymmetry current and conserved vector cur-
rent. In [41] Maldacena and Zhiboedov showed under quite
general assumptions that if a three-dimensional conformal
field theory possesses a conserved higher spin current, then
it is free. Since a free theory results in only parity-even
contributions to correlation functions, we arrive at the
conclusion that if the assumptions of [41] are fulfilled, one
cannot obtain parity-odd structures in three-point functions
of all conserved currents in supersymmetric conformal field
theories.

The paper is organized as follows. In Sec. II we review
the construction of the two-point and three-point building
blocks which appear in correlation functions of primary
superfields. We also review the general form of two- and
three-point correlation functions of primary operators. In
Sec. IIT we introduce a systematic approach to solve for
correlation functions of conserved currents. We illustrate
our method by reconsidering the flavor current three-point
function which was previously computed in [34]. In Sec. [V
we study three-point functions of mixed correlators involv-
ing both the supercurrent and the flavor current multiplet.
We show that the three-point function involving one
supercurrent and two flavor current multiplets is fixed
by the N' = 1 superconformal symmetry up to an overall
coefficient. We also show that the three-point function
involving two supercurrents and one flavor current van-
ishes. In Sec. V we present a systematic discussion
regarding the absence of parity-violating structures in
our results. In Sec. VI we generalize our method to
superconformal theories with A = 2 supersymmetry. We
show that both mixed correlators are fixed up to an overall
coefficient. In Sec. VII we extend our analysis to the case of
N =3 and N =4 superconformal symmetry. In the
Appendix we summarize our three-dimensional notation
and conventions.

The nonvanishing of the three-point function of two
supercurrents and one flavor current in N = 2 theories is
quite a surprise given that a similar three-point function
vanishes in the N' =1 case. Naively it appears to be a
contradiction, as any theory with A/ = 2 supersymmetry is
also a theory with N = 1 supersymmetry. From an intuitive
standpoint, the number of independent tensor structures
cannot grow as one increases the number of supersymme-
tries. Nevertheless, we explain that our results in the NV = 1
and N = 2 cases are fully consistent.

II. SUPERCONFORMAL BUILDING BLOCKS

The formalism to construct correlation functions of
primary operators for conformal field theories in general
dimensions was first elucidated in [1] using an efficient
group theoretic formalism. In four dimensions the method
was then extended to the case of V' = 1 supersymmetry in
[37,38,42] and was later generalized to higher A/ in [39].

Here we review the pertinent details of the three-dimen-
sional formalism [33,34] necessary to construct correlation
functions of the 3D supercurrent and flavor current
multiplets.

A. Superconformal transformations
and primary superfields

Let us begin by reviewing infinitesimal superconformal
transformations and the transformation laws of primary
superfields. This section closely follows the notation of
[43-45]. Consider 3D N -extended Minkowski superspace
MPI%V, parameterized by coordinates z* = (x*, 6%), where
a=0,1,2,and a =1, 2 are Lorentz and spinor indices,
while I =1, ..., N is the R-symmetry index. The 3D N -
extended superconformal group cannot act by smooth
transformations on M*?V; in general, only infinitesimal
superconformal transformations are well defined. Such a
transformation

574 = & & 6x = E9(2) +i(r") 5 (2)8,

5605 = £9(z) (2.1)

is associated with the real first-order differential operator
£ =EM2)04 = £(2)04 + &(2) Da (2.2)

which satisfies the master equation [¢, D}] o D[Jf. From the
master equation we find

i

&= 6Dﬁ1§aﬂ7 (2.3)
which implies the conformal Killing equation
2 C
8agb + abga = gnabacg . (24)

The solutions to the master equation are called the
conformal Killing supervector fields of Minkowski super-
space [44,46]. They span a Lie algebra isomorphic to the
superconformal algebra 08p(A/|2; R). The components of
the operator £ were calculated explicitly in [33] and are
found to be

£P = a — 3% 31 — x4 ox P+ dield) + 2iA,,0%0)

a 1
x5 + by PG~ b6

— din, xr@)) 4 250062, (2.5a)
R L
§f=€f = p01 + 5000 + A0y + by X0,

+ ’7/51(2”/1}9? — 5yyxP), (2.5b)
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/Iaﬂ = lﬂa’ iaa = 0,

AIJ = _AJI-

aaﬂ = aﬁa,
b(z/} = b/}av (26)
The bosonic parameters g, Aqp, 6, byp, and Ay correspond
to infinitesimal translations, Lorentz transformations,
scale transformations, special conformal transformations
and R-symmetry transformations, respectively, while
the fermionic parameters € and #¢ correspond to Q-
supersymmetry and S-supersymmetry transformations.
Furthermore, the identities

D& ey DlE «o. D& «dey (27)

imply that
1
[6.D}] = —(DL&) D} = 4,/ (2) D} + AV (2)Dj - EG(Z)DL,
(2.8)
1
/la/}(Z) = —NDfa;é), AI‘](Z) = —ZDL{(‘:J](I’

1

o(z) = WD(’I 7 (2.9)

The local parameters A% (z), A;;(z), and 6(z) are interpreted
as being associated with combined special-conformal or
Lorentz, R-symmetry and scale transformations, respec-
tively, and appear in the transformation laws for primary
tensor superfields. For later use let us also introduce the z-
dependent S-supersymmetry parameter

mol2) = =5 Diuo2). (2.10)

Explicit calculations of the local parameters give [33]

2(2) = 29 — yrlapl) — % b2 +2in\ 0. (2.11a)
Ars(2) = Agg + 4y, + 2ibos056). (2.11b)

o(z) =0+ baﬂxaﬂ + 2107141, (2.11c¢)
nal(z) = Nar — ba,[}’&?- (211(1)

Now consider a generic tensor superfield @i(z) transform-
ing in a representation 7T of the Lorentz group with respect to
the index .4, and in the representation D of the R-symmetry
group O(N) with respect to the index Z.” Such a superfield is
called primary with dimension ¢ if its superconformal
transformation law is

*We assume the representations T and D are irreducible.

0L = —E®L — qo(2) @Y + 1% (2) (M) LPP%

+ A (2)(Ry))* @7, (2.12)

where ¢ is the superconformal Killing vector, 6(z), A%(z),
and Aj;(z) are the z-dependent parameters associated with &,
and the matrices M4 and R;; are the Lorentz and O(N)
generators, respectively.

B. Two-point functions

Given two superspace points z; and z,, we can define the
two-point functions

xlg = (x; - xz)aﬁ + 219179’2}1

al __ pal _ pal
912_81 02’

I 1219ﬂ21’
(2.13)

which transform under the superconformal group as fol-
lows:

~ 1
ap o a
5xl/2 = (55 70'(21) - y(zl)>x}llg

+x? <25y 5( ) A ﬁ(22)>, (2.1421)
%0 1 . " gﬁ
oty = 55 po(z1) = A%(21) |01y

—x(fg’lm(zz) + Ay (22)07,. (2.14b)

Here the total variation & is defined by its action on an n-
point function ®(zy, ...,z,) as

50(zy, ..., 2,) Zfz, (Z1eeonzy). (2.15)

It should be noted that (2.14b) contains an inhomogeneous
piece in its transformation law; hence, it will not appear as a
building block in two- or three-point functions. Due to the
useful property x% = —x%%, the two-point function (2.13)
can be split into symmetric and antisymmetric parts as
follows:

=, 0= Ol (216)
The symmetric component
X = (o - ) 2050y (217)

is recognized as the bosonic part of the standard two-point
superspace interval. Next let us introduce the two-point
objects
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1 which is orthogonal and unimodular,
xt, = _Engxlzaﬂ’ (2.182) :
o _ X1 R IR P =P (2.18b)
12 _x2 s 12a 412y a - .
12

The infinitesimal variation of this matrix is

o Bufy = N¥(@)ulf AN (@) (224
(xp)# = -=12. (2.19)
X172

Hence, (2.22) is expected to appear in the construction of

Under superconformal transformations, (2.18a) transforms correlation functions of primary superfields with SO(\)

with local scale parameters, while (2.18b) transforms with ~ indices. ) ) . )
local Lorentz parameters: The two-point correlation fgnctlon of a primary super-
field dDi and its conjugate <I>§ is fixed by the super-
oty = (0(z1) + 0(z2))x1,, (2.20a)  conformal symmetry as follows:
50 = —27 ()R — %2, (z,). 2.20b B(s \pT
12 J/( ) 12 127y ( ) ( ) <q)JI4(ZI)q_)§(Z2)> :CT'A (x12)2DqJ(M12)’ (225)
Thus, both objects are essential in the construction of (1)
correlation functions of primary superfields. We also have
the useful differential identities where c is a constant coefficient. The denominator of the
two-point function is determined by the conformal dimen-
Dy, X = 2i0' 52, D! x® — —4i¢'f,  (2.21)  sion of ®%, which guarantees that the correlation function
% v (a®12 12 A

transforms with the appropriate weight under scale
where Dgi)a is the standard covariant spinor derivative  transformations.

(A16) acting on the superspace point z;. Finally, for
completeness, the SO(N) structure of primary superfields C. Three-point functions

in correlation functions is addressed by the AV x A/ matrix Given three superspace points z;, i = 1, 2, 3, one can

define the three-point building blocks Z; = (x;,0;) as

ulh = 51+ 21015 (k7)) (015 (222)  follows:
|
Xiop = —(xil)ayxg(h}l)éﬂ’ 01, = (xEll)aﬁH{g - (x3_11)aﬁ9€/3}’ (2.262)
Xoop = —(szl)ayng (031 )sp- O = (x3_21)aﬂ9£/§ - (xl_zl)aﬂgéﬂl’ (2.26b)
Xoop = =)o 505 )ip O = (W) op) = (423) 021 (2.26¢)

These objects, along with their corresponding transformation laws, may be obtained from one another by cyclic
permutation of superspace points. The building blocks transform covariantly under the action of the superconformal group:

SXla/} = l(ly(zl )le[f + Xlay/v//}(zl) - G(Zl )Xlaﬁ’ (22721)
~ 1
d0l, = (4() = yoot) Ol + AV )01, 2.27)

Therefore (2.26a), (2.26b) and (2.26c) will appear as building blocks in three-point correlation functions. It should be noted
that under scale transformations of superspace, z* = (x%, %) > 74 = (172x“,1710%), the three-point building blocks
transform as Z = (X, ®) — Z’ = (12X, A0). Next we define

1 x3
X} = XVX =52
e T,

©? = ele! (2.28)

la’
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which, due to (2.27a) and (2.27b), have the transformation
laws

56X} = —20(z1)X3, 507 = —06(z,)03. (2.29)
We also define the inverse of X,
X/}a
X" = -—%, (2.30)
1 X%

and introduce useful identities involving X; and ©; at
different superspace points, e.g.,

X4 Xspxh! = — (X7, (2.31a)

5
As a consequence of (2.29), we can identify the three-point
superconformal invariant

0?2 ./ ®?2
12:>5< 12> =0.
VXI Xl

Hence, the superconformal symmetry fixes the functional
form of three-point correlation functions up to this combi-
nation. Indeed, using (2.31a) and (2.31b) one can show that
the superconformal invariant is also invariant under per-
mutation of superspace points, i.e.,

(2.32)

o _© _ &

NV

The three-point objects (2.26a), (2.26b) and (2.26¢c) have
many properties similar to those of the two-point building
blocks. After decomposing X; into symmetric and anti-
symmetric parts similar to (2.16) we have

(2.33)

i
Xiogp = Xiap — zsaﬂ®%7 Xiap = X1pas (2.34)

where the symmetric spinor X,z can be equivalently
represented by the three-vector X, = —1(7,,) %X 4p. It
is now convenient to introduce analogs of the covariant
spinor derivative and supercharge operators involving the
three-point objects,

0
DI s (a M 1p ,
e 90y, i) X!
0 0
1/ : m 1p
ol = + , 2.35
(D 1@@({[ (}/ )11[)’ 1 axrln ( )

which obey the standard commutation relations

(Dl Dl b = (e Q1) =20 (. (236

af oxm .
1
Some useful identities involving (2.35) are

DI

(1)}/X1aﬂ = _2i€}’ﬂ®{a’ Q{U},Xlaﬂ - _2£ya®{ﬁ‘

(2.37)

We must also account for the fact that various primary
superfields obey certain differential equations. Using (2.21)
we arrive at the following:

DI

(1) Xsap = 2i(x73)

17 @/ I ol _ -1 17
”1363/3’ D(l)a®3ﬁ = —(x73 )/m“n’

(2.38a)

ay

Dgz)yXMﬁ = 2i(x§31 )ﬂy”%®§/}’ sz>a@§/; = (xfsl )ﬁa”%'

(2.38b)
Now given a function f(X3,®;), there are the following

differential identities which arise as a consequence of
(2.37), (2.38a) and (2.38Db):

Dfl)yf(X3’ 0;) = (xf;)ay”{épg)f(xs, 0;), (2.39a)
Dy, f(X3,03) = i(x3}), uls Q5 £(X3,03).  (2.39b)

These will prove to be essential for imposing differential
constraints on correlation functions, e.g., those arising from
conservation equations in the case of correlators involving
the supercurrent and flavor current multiplets.

Finally, for completeness, let us introduce the three-point
objects which take care of the R-symmetry structure of
correlation functions. We define

U1 = ulSufad] = o + 2104, (X ") P0},, (240
which transforms as an O(N) tensor at z;,
SUY = N¥(2)UF - UIFAR (), (241)

and is orthogonal and unimodular by construction. The

others are obtained by cyclic permutation of superspace
points and are related by the useful identities

1J _ IKyJKL, L] 1J _ IK /KL, LJ

Uy = uy Urruyy, Uy =uf Uty (2.42)

As concerns three-point correlation functions, let ®, W,

and IT be primary superfields with conformal dimensions

q1, q> and g3, respectively. The three-point function may be

constructed using the general expression

086023-5
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<q),14]1 (21 )qﬂz (Zz)H,ILQ (z3))

T B (@13)T@ 4 B2 (Ro3) DN 7 (u13) D2 7 (ur5)

(x73)71 (x35) %

T,7T,T5

where the tensor H A Ao As is highly constrained by the superconformal symmetry as follows.

(1) Under scale transformations of superspace the correlation function transforms as

7 T I
(@4 ()Y () (23)) =
which implies that H obeys the scaling property

oG5 (PX.20,U) =

S HE (X5.05.U), (2.43)
(22) e as (@ (20)W7 (22T (23)), (2.44)
(e WD (X,0.U), Y 1€ R\{0}. (2.45)

This guarantees that the correlation function transforms correctly under conformal transformations.
(i1) If any of the fields @, ¥, and I1 obey differential equations, such as conservation laws in the case of conserved current
multiplets, then the tensor H is also constrained by differential equations. Such constraints may be derived with the

aid of identities (2.39a) and (2.39b).

(iii) If any (or all) of the superfields @, ¥, and II coincide, the correlation function possesses symmetries under

permutations of superspace points, e.g.,

(@) (2) @7 (22T (23))

where €(®) is the Grassmann parity of ®. As a
consequence, the tensor H obeys constraints which
will be referred to as “point-switch identities.” To
analyze these constraints, we note that under per-
mutations of any two superspace points, the three-
point building blocks transform as

12 Vi 12

X?aﬂ — X?ﬂa’ ®3a — G)éa’ (2473)

X3(l[)’2:3 XZ[)’(Z’ ®[ o - @éa, (247b)
13 ;] 13 I

X';a — _Xlﬂa’ 0;, — _®la' (247C)

The constraints above fix the functional form of H (and
therefore the correlation function) up to finitely many
parameters. Hence the procedure described above reduces
the problem of computing three-point correlation functions
to deriving the tensor H subject to the above constraints. In
the next sections, we will apply this formalism to compute
three-point correlation functions involving the supercurrent
and flavor current multiplets.

III. CORRELATION FUNCTIONS OF
CONSERVED CURRENTS IN A =1
SUPERCONFORMAL FIELD THEORY

A. Supercurrent and flavor current multiplets

The 3D, N =1 conformal supercurrent is a primary,
dimension 5/2 totally symmetric spin tensor J,,, which

= (1) @UD (22) @7 (21T (23)),

(2.46)

contains the three-dimensional energy-momentum tensor
along with the supersymmetry current [46—48]. It obeys the
conservation equation

Dy, =0 (3.1)

and has the following superconformal transformation law:

5
8Japy = =& apy =50 apy + 34D I pps (32)

The N = 1 supercurrent may be derived from, for example,
supergravity prepotential approaches [46] or the superfield
Noether procedure [49,50].

The general formalism in Sec. II allows the two-point
function to be determined up to a single real coefficient:

b x12(aax12ﬁﬁx12y)y
o (x%2>4

<J(1/)’y(zl)‘]ajﬂ/y/(22)> = (33)

It is then a simple exercise to show that the two-point
function has the right symmetry properties under permu-
tation of superspace points

Japy (@) apy (22)) = =apy (22)dapy (21)) (3.4)
and also satisfies
Dy {Japy(21)Jwpy (22)) = 0. (3.5)

086023-6
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Next let us consider the 3D N = 1 flavor current, which is
represented by a primary, dimension 3/2 spinor superfield
L, obeying the conservation equation

D“L, = 0. (3.6)

It transforms covariantly under the superconformal group
as

oLy =Ly~ 30(Ly + A2 Ly (37)
We can also consider the case when there are several flavor
current multiplets (represented by the flavor index a)
corresponding to a simple flavor group. According to
general formalism in Sec. II, the two-point function for
N =1 flavor current multiplets is fixed up to a single real
coefficient an_;:

(La(z1)Lh(z2)) = ian—1 ——5~5-

It is easy to see that the two-point function obeys the correct
symmetry properties under permutation of superspace
points, (Lg(z1)Lj(22)) = —(Lj(22)LE(z1)). One can also
check that it satisfies the conservation equation (3.6):

Df, (LG(z1)L5(22)) = 0. (3.9)
Three-point correlation functions of the flavor current and
particularly the supercurrent are considerably more com-
plicated and were derived in [34,35]. However, correlators

of combinations of these fields (mixed correlators) were not
studied previously and will be analysed in Sec. IV.

B. Correlation functions of conserved
current multiplets

The possible three-point correlation functions that may
be constructed from the conserved A/ = 1 supercurrent and
flavor current multiplets are

(La(z)Lh(22)LS(z3)),  (Ja(zi)Is(z2) c(z3)). (3.10)

(Li(z)a)Lj(z). (az)s(z2)Li(z), (3.11)
where A, B, and C each denote a totally symmetric
combination of three spinor indices. The correlators

(La(z)Lj(2)Li(z3)) and  (Ja(z1)d5(z2)dc(z3)) were
studied in [34]. Before we compute the mixed corre-
lators, let us demonstrate our method on the three-point

*The tensor structure and the conservation law of the 1 < N <
4 flavor currents follow from the structure of unconstrained
prepotentials for 1 < A < 4 vector multiplets [51-57].

function (L§(z1)Lj(z2)Lj(z3)), which is comparatively
straightforward.

The general form of the flavor current three-point
function is’

o B
a b ¢ bz X13a %23
<L“(Z1)L§(Z2)L7(Z3)> =1 (x? )Z(xZﬂ)ZHa’ﬂ’r(X&@,%)‘
13)" X33

(3.12)

The correlation function is required to satisfy the following
properties.
(1) Scaling constraint.—Under scale transformations
the correlation function must transform as

(LE()L(H)LE(25))

= (2P {Liz)Lj(22)Li(z0)),  (3.13)

which gives rise to the homogeneity constraint on H:

Hop, (12X, 20) = (%)™ H,5,(X,©).  (3.14)
(i1) Differential constraints.—The conservation equa-
tion for the flavor current results in

D (LA ) LE()L(z:)) = 0. (3.15)
Using identities (2.39a) and (2.39b), we obtain a
differential constraint on H:
D*H,5,(X,0) = 0. (3.16)
We need not consider the conservation law at z, as
we can use an algebraic constraint instead.
(iii) Point permutation symmetry.—The symmetry under

permutation of points (z; and z,) results in the
following constraint on the correlation function:

<LZ(21)L2(22)L5(Z3)> = —<L2(12)Lz(11)L5(Z3)>,
(3.17)

which constrains the tensor H so that

Hflﬂy(x’ ®) = H/J’ay(_XT, _®) (318)

On the other hand, the symmetry under permutation
of points z; and z3 results in

Here we consider only the contribution proportional to the
totally antisymmetric structure constants £%°¢. Similarly, one can
consider the contribution totally symmetric in flavor indices.
However, this contribution vanishes [34] so it is omitted here.
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<L§(21)L/§(12)Lf(23)> = —<L$(Z3)L/Z§(12)LZ(21)>,
(3.19)

which gives rise to the point-switch identity
7 (p=l) oy PO
x13y(x13 )a“x/f3 Xsop
4.4
X3x7;

X Hy’/)”a/ (—X;F, _®1)'

Ha/)’y (X3 ’ ®3) =
(3.20)

To solve this problem systematically let us decompose
the tensor H into irreducible components:

Hapy(X.0) = ¢;Hiup, (X, ©). (3.21)

It is also more convenient to work with X,, instead of X 4.
We have

Hiapy = €ap©,AX), (3.22a)
HZaﬂy = €(xﬁ(7a)y5@53a (X), (3'2213)
Hsap, = (7“)(lﬂ®yca (X), (3.22¢)
Haap, = (ya)aﬂ(yb)yﬁ(aéDab(X)' (3.22d)

Here we have used the fact that every matrix antisymmetric
in a, f# is proportional to 4, every matrix symmetric in @, /3
is proportional to a gamma matrix, and that since H is
Grassmann odd it follows that H is linear in ® due to
0,0;0, = 0. Due to the scaling property (3.14) it follows

that the functions A, B, C, and D have dimension —2. From
Eq. (3.18) it also follows that

(3.23a)
Dab(X) = _Dah(_X)' (323b)

It is easy to see that the conservation equation (3.16) splits
into the two independent equations:

M, = 0, (3.24a)

(7")*"®,0,H a5, = 0. (3.24b)
Imposing (3.24a) results in the algebraic equations

A(X) - _Daa(X)’ Ca(X) = Ba(X) + eamann<X)’

(3.25)
while, on the other hand, from (3.24b) we obtain

8a{Ba(X) + Ca(X) - €amann(X)} =0, (3263)

B,A(X) + €79, B,(X) — €,799,,Co(X)

- amDmt(}(> + atDaa()() - athm(}(> =0. (326b)
Using Eqgs. (3.25), (3.26a), and (3.26b) we obtain that B,,
and D, satisfy

PBJX) =0,  Dy(X)=0.  (3.27)
Thus, the problem is reduced to finding transverse tensors
B, and D, of dimension —2 satisfying (3.23b). The tensors
A and C are then found using Eq. (3.25). It is not difficult to
show that the solution to this problem is given by

A(X) =0, B,(X) =0, (3.28a)
X, X¢
Ca(X) :F’ Dab(X) :each’ (328b)
with ¢; = —2¢,4. Hence this correlation function is fixed up

to a single real coefficient which we denote dy_;.
Converting back to spinor notation we find®

idy—
Ha/iy (Xv ®) = % {X(I/)’®7 - g(lyX[)’5®5 - 8/3yXa§®5}'
(3.29)

One may also check that this solution satisfies the point-
switch identity (3.20). This agrees with the result in [34],
which was computed in a different way. Our method has the
advantage that it systematically takes care of all possible
irreducible components of H and, hence, is more useful
when H is a tensor of high rank.

IV. MIXED CORRELATORS IN N =1
SUPERCONFORMAL FIELD THEORY

A. The correlation function (LJL)

Let us first consider the correlation function (LZ(z;) x
Sy (22)L}(23)). Using the general expression (2.43), it
has the form

~ N ! A ! A !

0“"X 130" X3y, "1 %03y, 2 X033
2 \3/2(+2 \5/2

(x73) / (x33) /

X Heupy (X3, 03),

<LZ(Z1)JWZ}/3 (Z2)L§(Z3)> =
(4.1)

where H is totally symmetric in three of its indices,
Hapyirars = Hap.(r17ys)- The correlation function is also
required to satisfy the following.
(1) Scaling constraint.—Under scale transformations
the correlation function transforms as

®Note that since 0,0;0, =0 we can replace X with X in
(3.29).
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(L&), (5)LG(25)

= P)VAULY ) oy, (22) L (23)). (42)

which implies that we have the following homo-
geneity constraint on H:

H (12X, 10) = (A>)?H (X.0).

(4.3)

ap.yirars ap.yirars

(ii) Differential constraints.—The differential con-
straints on the flavor current and supercurrent result
in the following constraints on the correlation

function:
D?1)<LZ(Z1)J717273 (ZZ)L2(23)> =0, (4-42[)
DIy (La(z1) s (22) L) (23) = 0. (4.4b)

Using identities (2.39a) and (2.39b), these result in
the following differential constraints on H:

,DaHaﬂqu}’zh (X’ 8) = 0, (453)

Q}’lHtxﬂ.}/l}’z}’3 (X’ 8) =0. (4.5b)
(iii) Point permutation symmetry.—The symmetry under

permutation of points (z; and z3) results in the
following constraint on the correlation function:

<LZ(ZI )J7172]/3 (Z2)L§(Z3)>

= —<L§(Z3)Jmm (z2)L(z1)),  (4.6)
which results in the point-switch identity
Hap iy (X3, 03)
o ) H S K X K35, X3 K,
Xixis
X Ry iy (X1, -01). (4.7)

Thus we need to solve for the tensor H subject to the
constraints (4.3), (4.5a), (4.5b) and (4.7). To start with we
combine two of the three y indices into a vector index and
impose a y-trace constraint to remove the component
antisymmetric in y; and y,:

H

(Vm)n,Haﬁ.ym =0. (48)

— m
ap.yirars (7/ )rzrzHaﬁ,rlm’

Since our correlator is Grassmann odd the function Hz,,,
must be linear in ©. Just like the flavor current three-point
function, linearity in ® implies that the differential con-
straints (4.5a) and (4.5b) are, respectively, equivalent to

6aHaﬂ,ym =0, (yt)m'®ratHaﬁ,ym =0, (498')

O Hapym =0, (7")70.0,Hopym = 0. (4.9b)

Now let us decompose H into irreducible components:

Hepym = Zciﬂmﬁ,ym, (4.10)
where
Hiapym = €ap®yAn(X), (4.11a)
Hoapym = €a/3(}’a)76®53ma (X), (4.11b)
Hapym = (1) qp®y Cina(X), (4.11c¢)
H4aﬂ,ym = (7a)a/7’(7b)y5®6Dmab (X) (4-11d)

It follows from Eq. (4.3) that the dimension of A, B, C, and
D is —3. We now impose the differential constraints (4.9a)
and (4.9b), along with the gamma-trace constraint (4.8).
After imposing (4.9a) and (4.9b) the terms O(®°) imply
(4.12a)
Bma(X) = _enraDmnr(X)’

"D ,a(X) =0, (4.12b)

while the terms O(©?) give the differential constraints

9B,y (X) = 0, (4.13a)
8'Dypi(X) = 0, (4.13b)
at{Bmt(X) +€,""Dypa (X)} =0, (4130)

at{Dmnt<X> + Dmm (X) - anmaa<X) + €ntaBma (X)} - O
(4.13d)

Imposing the gamma-trace condition (4.8) results in

W“Ba(X) =0,  e™B, (X)=0,  (4.14a)

"D ,na(X) =0, e™p, . .(X)=0. (4.14b)
One may show that the differential and algebraic con-

straints above are mutually consistent and reduce to

IBy(X) =0,  I'Dyp(X) =0, (4.15a)
17D ,yna(X) = 0, 7" D, (X) =0, (4.15b)
Bma(X) = _enraDmnr<X)a (415C)
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where B,,, is symmetric and traceless and D,,,, is
symmetric in the first and last index. After some calculation
one can show that general solutions consistent with the
scaling property (4.3) and the above constraints are

XX, X4X,,

Dmna<X) = €ndm?+ €nda7v (417)

with ¢, = ¢4. Hence, the three-point correlation function is
determined up to a single free parameter which we denote
cp—1- Our solution is then

_ Mma 3XmXu

Bma (X) - X3 X5

, (4.16)

/

b o ! d
07X 134 x23(y1ylx23yzy2x23y3)y3

(L2 10, (Zz)L;_}(Zs» = VYR RY) Hapyry, (X3.03), (4.18)
(x13)°(x33) )
where
Hapyops (X 0) = (v, Hapym (X, ©), (4.19)
Heapm(X.0) = icx—1 (1), Os{eqsBrna(X) + (r")apDmna(X) }. (4.20)
with B and D given in Egs. (4.16) and (4.17). In spinor notation, this is equivalent to
: Eap ! 5
Hapyipars (X, ©) = ey {F (£,,0y, +€,1,9;,) + X5 (&,0X . X, 7O
+&,,5X0, X, 05 + £,,0X,,, X505 + 45X, X, 70,
- sm}XaﬁXyl‘sG)é -X,,, Xs0O,, — 3saﬁXm3Xyl‘5®5)}. (4.21)

Finally, one must check that this solution also satisfies the
point-switch identity. With the aid of identities (2.31a) and
(2.31b), it is a relatively straightforward exercise to show
that the point-switch identity (4.7) is indeed satisfied.

B. The correlation function (JJL)

Let us now discuss the remaining mixed correlation
function

(4.22)
|

<J/31/32,B3 (Zl)Jy1y2y3 (ZZ)L0<Z3)>'

|

Here the correlator can exist only if the flavor group
contains U(1) factors, so we will assume that the flavor
group is just U(1). At the component level this correlation
function contains (T, (x))7T,,,(x2)L.(x3)), which was
shown to vanish in any conformal field theory after
imposing all differential constraints and symmetries [11].
As we will show, the same occurs in the supersymmetric
theory. However, we will see that (4.22) vanishes without
needing to impose the conservation equation for L,(z3).
The general expression for this correlation function is

A N DN ! A ' A I A ’
X3, Riap,” R Xaag, " Xz, Rz )

<J/”1/32/33 (Zl )J}’IJ/273 (ZZ)LH(Z-”» =

where H has the symmetry property ﬂﬂl Pobinpana =
H(p,p253)(r17273)a- The correlation function is required to
satisfy the following.

(1) Scaling constraint.—Under scale transformations it

(x%3)5/2(x%3)5/2
X Mgy pi/noiryal X3, ©3), (4.23)
[
which results in the constraint
Hﬁ1ﬁ2ﬂ37172730’(/12X’ ’16)
= (lz)_7/2Hﬁ1ﬁ2ﬁ3717273“(x’ ®) (425)

transforms as

<Jﬂ1/32/33 (le )J}’172J’3 (ZIZ)LIZ(Zg»
= (}“2)13/2<J/31,62ﬂ3 (Zl)‘]}qyzy3 (Z2)La(z3)>’ (424)

(ii) Differential constraint.—The conservation law on
the supercurrent implies
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fo)<‘]ﬁ1ﬁ2ﬁ3 (21170, (22)La(z3)) = 0, (4.26)

which results in a differential constraint on H:

24 Hﬁlﬁzﬁz}’l}’z}’}a(X’ ®) =0. (427)

(iii) Point permutation symmetry.—The symmetry under
permutation of points z; and z, implies the following
constraint on the correlation function:

.2 (21112 (22) La(23))

- _<‘1717273 (ZZ)Jﬁ]ﬁ2ﬁ3 (ZI)LG(Z3)>’ (428)

which results in the identity

Hﬁ]ﬁzﬁayl}’z}’sa(x’ 9) = _H}’l}’zV}ﬁlﬁzﬂW(_XT’ _®)'
(4.29)

Thus, we need to solve for the tensor H subject to the
constraints (4.25), (4.27) and (4.29). Note that we also must
impose one more differential constraint:

D((x3) <J/11/izﬂ3 (Zl)17172y3 (ZZ)La(Z3)> =0, (430)
which is quite nontrivial in this formalism. Fortunately,
constraints (4.25), (4.27) and (4.29) are sufficient to show
that correlator (4.22) vanishes; hence, we will not need to
consider (4.30).

To start, we combine two of the three 3, y indices into a
vector index and impose y-trace constraints to remove
antisymmetric components:

Hﬂlﬂ2ﬂ37172V3a(X’ G)) = (ya)ﬂzﬂs (yb)}’zh Hﬂlas}’lb.a (X’ ®)’
(4.31)

(ya)TﬂHﬂa,yb.a(X’ 6) =0, (yb)ryHﬂa,yb,a(X7 6) =0.

(4.32)

Now let us split H into symmetric and antisymmetric parts
in the first and second pair of indices:

Hﬂa,yb.a = H(ﬁa.yb),a + H[ﬁa,yb],a' (433)
Due to the symmetry properties, (4.29) implies that
H(sayp).a 1s an even function of X,” while Hipayp.a 18
odd. Therefore they do not mix in the conservation law
(4.27) and may be considered independently. In irreducible

components, H g, ,5), has the decomposition

7 . . .
As in the previous case, our correlator is Grassmann odd
which means we can replace X with X.

H(pasb)a = ZHi(ﬂa.yb),aa (4.34)

where
Hi(payi)a = €pOaA1an) (X)), (4.35a)
Hopays).a = €5 (7™) o OsBmjan) (X). (4.35b)
Hspagpya = (r"™)pyOaConan) (X), (4.35¢)
H4(ﬂa,yb),a = (}’m)/sy(Vn)a&@éDmn(ab) (X). (4'35(1)

Here we have made explicit the algebraic symmetry
properties of A, B, C, and D, which by virtue of (4.29)
are all even functions of X. Now due to linearity in @, the
differential constraint (4.27) is equivalent to the pair of
equations

PHpapa =0.  (1)V"0.0MHpupa=0. (436)
After imposing (4.36), the terms O(®) imply

A (X) =0, B (X) =0, (4.37a)

Cin(ab) X) + € Dry(ab) (X)=0, (4.37b)

" Dynap)(X) =0, "D ypapy(X) =0, (4.37¢)

50 Hi(payn)a = Hapayp)a = 0. The terms O(®?) then
result in the differential constraints

am{_cm(ab) (X) + emrSDrs(ab) (X)} =0, (4383)

ectmafcm(ab) (X) - 8ml)mc(ab) (X) - 8chm(ab) (X) =0.
(4.38b)

Imposing the gamma-trace condition (4.32) results in

”macm(ab) (X) =0, €Cmacm(ab) (X> =0, (4398')

”mqun(ab) (X) =0, €cmaDmn(ub) (X) =0. (439b)
Altogether (4.37b), (4.38a) and (4.39a) imply that C is a
totally symmetric, traceless, transverse and even function of
X. Let us try to construct such a tensor by analyzing its
irreducible components. To determine which irreducible
components are permitted, let us trade each vector index for
a pair of spinor indices. Since C is completely symmetric
and traceless, it is equivalent to C(4, 4, In addition since
C is even in X,; only irreducible structures (that is, totally

symmetric tensors) of rank 4 and 0 in X4 can contribute to
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the solution. Going back to vector indices, let us denote
these components of C as Cj,,,)(X) and C(X).

Since it is not possible to construct a rank-three tensor
Cimniy out of Cy(,(X) and Cy(X), the tensor C,,
vanishes. Hence, H3(34,,5).« = 0.

Given this information, the remaining set of equations
implies that D is now a totally symmetric, traceless and
transverse tensor that is even in X. Following a similar
argument, the symmetries imply that it has irreducible
components D (unap)(X), Dauny(X) and D3(X). We are
now equipped with enough information to construct an
explicit solution for D. Using the symmetries and the
scaling property (4.25) we have the most general ansatz

d,

D(mnab) (X) = F [nmarlnb + NinpMna + nmn’/lab]

dy
Txe
=+ ”naXmXb + nanmXa + ﬂameXn]

[ﬂmnXaXb + r]maXnXb + r]mquXn

d
+ X—éX,nX,,XaX,,. (4.40)

Requiring that D be traceless and transverse fixes all the d;
to 0. Hence, D = 0, and H g, ), vanishes.

In a similar way we consider Hg,, 4 , for which we have
the following decomposition:

Hipaypl.a = ZHi[/iu.yb],()l’ (4.41)

where
Hijpaybla = €5 Oal (ab) (X), (4.42a)
Holpaybla = € (r™)a’ OsBman) (X)), (4.42b)
Hipagsla = (™) 3 OaCman) (X)), (4.42¢)
Hapagnla = ™), (1) > O5D panfan) (X).- (4.42d)

In this case, A, B, C, and D are now odd functions in X.
Imposing the conservation equations and vanishing of the y
trace we obtain the following set of constraints:

AayX) =0, By (X) =0, (4.43a)
D2y (X) =0, Copfa)(X) €, Do (X) =0, (4.43b)
Chy(X)=0. DI (X)=0, (4.43¢)
€MIC, i (X) = 0, (4.43d)
€D i) (X) = 0 (4.43¢)

We see that the functions A and B vanish. To show that
Conlap) vanishes we consider Eq. (4.43d) and use the fact
that in three dimensions an antisymmetric tensor is equiv-
alent to a vector:

Cm[ab] (X) = €abqemq (X> (444)
Hence from (4.43d) it follows that

Contracting with #” we find that C¢ =0, and hence
C,, = 0. It also implies that Cofap) = 0. In a similar way
using Eq. (4.43¢) one can show that D, ,(,5) = 0. This means
that H g, 5.« = 0. Hence the three-point function of two

supercurrents and one flavor current (4.22) vanishes.

V. COMMENTS ON THE ABSENCE OF PARITY
VIOLATING STRUCTURES

In [11] it was shown that correlation functions of
conserved current in three-dimensional conformal field
theories can have parity-violating structures. Specifically,
it was defined as follows. Given a conserved current

Jalaz...aZS_lazx ()C) = (7ml )alaz tee (7m3>a25,|a2x‘]m1 Ly (x)’

(5.1)
we can construct

(0, 2) = ...y, (X) AT A%, (5.2)
where A% are auxiliary commuting spinors. The action of
parity is then x - —x, A — id. In theories with a parity
symmetry, J, , (x) acquires a sign (—1)* under parity and
Jy(x,4) is invariant. However, as was shown in [11]
correlation functions admit contributions which are odd
under parity. In particular, it was shown that a parity-odd
contribution to the mixed correlator of the energy-momen-
tum tensor T, and two flavor currents L{ can arise.
Translating their result into our notation it can be written as
follows:

(T (21) LG (x2) LY (%3)) g

5[113
= ﬁz—mn,m’n’(xl_’))lkk’(x23)tm’n’k’p(X3)9 (53)
X13X12%23
where
XX, X, XX, X
tmnkp (X) = €npg Trgt €nkq % . (54)
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Here X; are three-point building blocks introduced by Osborn and Petkou in [1], while the object /,,,(x) is the inversion
tensor, and Z,,, s,y (x) is an inversion tensor which extracts the symmetric traceless component. They are defined as
follows:

XmXn

Imn(x) = Nmn — 2 2

(5.5)

1 1
Imn.m’n’ ()C) = E {Imm’ (x)lnn’ (X) + Ly (x)lnm’ ()C)} - grlmm'nnn" (56)
An important and specific feature of all parity-violating terms is appearance of the e tensor.
In N =1 supersymmetric theories the supercurrent J,4, and the flavor current multiplet L contain the following
conserved currents:

Taﬁy& = D(B‘Ia/fy)|7 Taﬁy(S = (ym)(aﬂ(yn)yé)Tmm amen =0, "7y = 0, (573)
Qaﬂ}’ = Jfl/37|’ Q(I/)’J/ = (ym)a/iQmJ/’ o Oma =0, (ym)aﬂQma =0, (5'7b)
Vap = Dialp)l. Vas = (r")asVims a"vi, =0, (5.7¢)

where T, is the energy-momentum tensor, Q,,,, is the supersymmetry current and V4, is a vector current. Hence, the mixed
correlators studied in the previous section give rise to the following correlators in terms of components:

(T (x0T g (x2) Vie(x3)) (Qma(x1) Qup(x2) Vie(x3)), (VE(x1) T (32) V5 (x3)).

The first two correlators vanish because the entire superspace correlator (4.22) vanishes. The last one is, in general, nonzero
and fixed up to one overall coefficient. It can be computed using Eqs. (4.18) and (4.21) using the superspace reduction

(5.8)

procedure

_ - 1 ~ _
(Ve T (x2) V4 (x3)) = — (1) ™% (7)) P2 (1, )PP (7, )72 D (10, D25, D3y, (L% (20) T gy, (22) LE, (23)))].

16

Here the bar projection denotes setting the fermionic coor-
dinates 6, to zero. We will not perform the reduction
explicitly; instead, we will indirectly determine whether
(5.9) is even or odd under parity. For this it is sufficient to
study whether or not the e tensor appears upon reduction.
Since

1
emnp = Etr(menyp)7

(5.10)
it is enough to count the number of gamma matrices: If the
number of y matrices appearing in the superspace reduction is
even, the e tensor cannot arise and the contribution is parity
even; if the number of y matrices is odd, the contribution is
parity odd. Let us perform the counting. Since in (5.9) we act
with just three covariant derivatives before setting all 6; = 0
(where i = 1, 2, 3 is the index labeling the three points) only
term linear and cubic in 8; will contribute. Let us concentrate
on the terms linear on #;. Since the function H in (4.21) is
already linear in 6; we can set §; = 0 inx;; and X. This makes
x;; and X symmetric and proportional to a gamma matrix.
Now we have four gamma matrices in (5.9), four gamma
matrices coming from x;; in Eq. (4.18), zero or two gamma
matrices coming from H in (4.21) and also one more gamma

(5.9)

|
matrix contained in ®5; see Eq. (2.26¢). Overall we have odd
number of gamma matrices at this point. However, superspace
covariant derivatives also contain gamma matrices; see
Eq. (A16). Since we are considering terms linear in 8; and
setting #; = O upon differentiating it is easy to realize that in
the three derivatives D)4, D(2)p,D(3),, We must take one
derivative with respect to x; and two derivatives with respect
to 6,. This gives one more gamma matrix, making the total
number even. Terms cubic in € can be considered in a similar
way. They also yield an even number of gamma matrices.
Hence, the entire contribution (5.9) is parity even.

In a similar way we can count the number of gamma
matrices in the superspace reduction of (3.12) and (3.29):

(Va,(x))VE(x2) VE(x3))

1
=73 (V) 2 (7)1 (11 )72 D (1), D (215, D3y,

x (Lg, (21)L, (22) Ly, (23))]- (5.11)
An analysis similar to the above shows that this contribu-
tion is also parity even. Finally, one can also consider the
superspace reduction of the three-point function of the
supercurrent
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<Tmn (xl ) ka (XZ) qu (X3 ) >

and

1
= a (}/m)(alaz <7n>a3a4) (7k>(ﬂ1ﬂ2 (7f)ﬂ3ﬂ4) (}/p)(}’l}’z (yq)rm)
x D(l)al D(z)ﬂl D(3)}’1 <J(120’3fl4 (Zl )‘]/32/33/54 <Z2)J7273}’4 (Z3)> | (5 12)
(7m)(a]a2 (y”)agw) (yk)ﬁlﬁz (YP)ylhD(l)al <Ja2a3a4 (Zl )]ﬁﬂlﬂz (ZZ)JW]JQ (23)> ‘ (5 13)

<Tmn(xl)Qkﬂ(x2)QP7(x3)> - %

The three-point function of the supercurrent was found in
[34]. We will not repeat it here since the expression for it is
quite long. However, a similar analysis shows that the
contributions (5.12) and (5.13) are parity even.®

This means that no parity-violating structures can arise in
three-point functions of T,,,,,, Q,,, and V¢, in superconformal
field theories. Maldacena and Zhiboedov proved in [41] that
if a three-dimensional conformal field theory possesses a
higher spin conserved current, then it is essentially a free
theory. Since a free theory has only parity-even contributions
to the three-point functions of conserved currents, the
correlators involving one or more higher spin-conserved
currents admit only parity-even structures. This leads us to
conclude that ' = 1 supersymmetry forbids parity-violat-
ing structures in all three-point functions of conserved
currents unless the assumptions of the Maldacena-
Zhiboedov theorem are violated. The strongest assumption
of the theorem is that the theory under consideration contains
unique conserved current of spin two which is the energy-
momentum tensor. Some properties of theories possessing
more than one conserved current with spin two were
discussed in [41]. In supersymmetric theory the energy-
momentum tensor is a component of the supercurrent. One
can also consider a different supermultiplet containing a
conserved spin two current, namely

D{ll‘l((llazrx3<x4) =0. (5.14)

J(a] 30y

The lowest component of J (4, 4,4,a,) 18 @ conserved spin two
current which is not the energy-momentum tensor. Note that
J(@yaraza,) AlSO contains a conserved higher-spin current. It
will be interesting to perform a systematic study of three-
point functions of J (4, 4,4,a,) t0 see if they allow any parity-
violating structures.

VI. MIXED CORRELATORS IN N =2
SUPERCONFORMAL FIELD THEORY

Now we will generalize our method to mixed three-point
functions in superconformal field theory with A =2
supersymmetry. A specific feature of three-dimensional

®In general, if a superspace three-point function is fixed up to
an overall coefficient, it is expected to be parity even because this
contribution is expected to exist in a free theory of a real scalar
superfield.

N =2 superconformal field theories is contact terms in
correlation functions of the conserved currents [58,59]. In
this paper, we study correlation functions at noncoincident
points where the contact terms do not contribute.

A. Supercurrent and flavor current multiplets
The 3D, N = 2 supercurrent was studied in [54,60-62].
It is a primary, dimension 2 symmetric spin tensor J
which obeys the conservation equation

D)y =0, (6.1)

and has the following superconformal transformation law:

0J oy = —EJup — 26(2)J o + 2/1(1)@#,,),,. (6.2)
The general formalism in Sec. II allows the two-point
function to be determined up to a single real coefficient

x12(aax12ﬂ)ﬂ

(x%2)3

It is then a simple exercise to show that the two-point
function has the right symmetry properties under permu-
tation of superspace points:

Jap(20)I (22)) = by (6.3)

Vap(z)wp(22)) = Uwp(22)ap(z1))  (6.4)
and also satisfies the conservation equation
Dfﬁ')Uaﬁ(Zl)Ja/ﬁ/(Zz)) =0, 71 #2. (6.5)

Similarly, the 3D AN =2 flavor current is a primary,
dimension 1 scalar superfield L, which obeys the con-
servation equation

1
<Da<IDQ - E5“DaKD{,<)L =0, (6.6)
and transforms under the superconformal group as
6L = —¢L —o(z)L. (6.7)

As in the NV =1 case, we assume the N =2 super-
conformal field theory in question has a set of flavor
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currents L% associated with a simple flavor group. Due to
the absence of spinor or R-symmetry indices, the N = 2
flavor current two-point function is fixed up to a single real
coefficient a,—, as follows:

. _ 5&5
(L)L) = aaa Ty
12

(6.8)

The two-point function obeys the correct symmetry
properties under permutation of superspace points,
(L%(z,)L*(z5)) = (L"(2,)L%(z,)), and also satisfies the
conservation equation

( i p?)

1 B _
() (1a ‘EéljD?ngﬁ)a) (L%(21)L"(22)) =0, z1# 2.

(6.9)

In the next section we will compute the mixed correlation
functions associated with the N =2 supercurrent and
flavor current multiplets. There are two possibilities to
consider; they are

(L9 (20)Jap(22)L(23)), (Tap(21)Ty6(22) L(23))- (6.10)
Note that in second case we are considering a U(1) flavor
current.

B. The correlation function (LJL)

First let us consider the (LJL) case first. Using the
general ansatz, we have

a A 5 Bx23adx23 /
(L% (21 qp(22) L (23)) = 27ﬁ

H(li’(X3’ 63)’
x13(x§3)3 /

(6.11)

where H,3 = H,p). The correlation function is also
required to satisfy the following.
(i) Scaling constraint.—Under scale transformations
the correlation function transforms as

(L%(24)ap (25) L2 (23)) _

= ()L (@) gp(22)L"(23)).  (6.12)

from which we find the homogeneity constraint

’Haﬂ(AzX, 0) = (lz)‘zHaﬂ(X, 0). (6.13)

(ii) Differential constraints.—The differential con-
straints on the flavor current and supercurrent result
in the following constraints on the correlation
function:

o(I ryJ) _1 1J oK NK
<D<1>D(1>a 50 D<1>D<1)n>

x (L%(z21)J gp(22)LP(z3)) = 0, (6.14a)

Dig (L*(21)Jap(22)L(23)) = 0. (6.14b)

These result in the following differential con-
straints on H:

1
(pfr(lpp — 58 DKDE ) Ho(X.0) =0, (6.15a)

Ql"H,5(X.0) = 0. (6.15b)

(iii) Point permutation symmetry.—The symmetry under
permutation of points (z; and z3) results in the
following constraint on the correlation function:

(L% (20 ap(22)LP(23)) = (LP(23)J p(22) L% (21)),
(6.16)

which results in the point-switch identity

/ o'
xcln37 X30’ax13 X3/J

Hop(X3,05) =
“ X543

L (X1, =0)).

(6.17)

The symmetry properties of H allow us to trade the spinor
indices for a vector index

Hap(X.0) = (r")gpHm(X. ©). (6.18)
The most general expansion for H,, (X, ®) is then
Ho(X.0) = A, (X) = 3©%B,,(X) + (00)'C,, (X)
1
+ 20D, (X). (6.19)

where we have defined

1
(86),, = ~5 (1) (00),5,  (00),,= .0},

(6.20)

and accounted for the N = 2 identity

(")2@2@/‘1581_/ =0. (621)
The prefactors in front of B and D have been chosen for
convenience, and as in the A/ = 1 case it is more conven-
ient to work with X" instead of X%. Imposing (6.15b)
results in the differential constraints
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0"A,,(X) =0, (6.22a)
9"B,,(X) =0, (6.22b)
"9, C,.(X) =0, (6.22¢)
B,(X) + €4, 0"A™(X) = 0, (6.22d)
D,(X) = €4un0"B™(X) = 0, (6.22¢)
O"{Cpi(X) + Ci(X) =1, C(X)} =0 (6.22f)
and the algebraic constraints
c*,(X) =0, (6.23a)
e™C,,(X) =0, (6.23b)

which imply that C is symmetric and traceless. Furthermore
the scaling condition (6.13) allows us to construct the
solutions

Xon

Am(X) = GF, (6243.)
X

B,(X) = b=2, (6.24b)
X

Mmn 3)(m)(n

Con(X) = C(X3 5 ) (6.24c¢)

Xm

Together (6.22) imply B,,(X) = D,,(X) = 0, while a and ¢
remain as two free parameters. Hence the solution for H
becomes

B X
Hap(X,0) = CN:zX;'f
" i @é@é&'[] éXaﬂXWs@]I,@gE[j
=T "2 X3 '

(6.25)

After some lengthy calculation it turns out that only the
second structure satisfies the conservation equation (6.15a).
Hence there is only one linearly independent structure
in the correlation function that is compatible with the
differential constraints. Therefore we find that the final
solution is

- ; 5% 030" X3y
(L) ap(22)LP (22)) = = (=3 M (X5, ©3),
x75(%33)

(6.26)

with

OlO®%e,;, 3X,,X°0l0
. aZpEL ap r O
Haﬂ(Xv @) —lCNz{ X3 +§ XS }

(6.27)

In deriving this result, we Taylor expanded the denominator
in (6.25) using X* = X? — 1©*, which follows from (2.28)
and (2.34), and then used the N/ = 2 identity (6.21). It may
also be shown that this structure satisfies the point-switch
identity (6.17).

The supercurrent J,; leads to the following N =1
supermultiplets (here the bar projection denotes setting
0'=2 to zero and D* = D*I=1)’.

DS, =0,

Sap = Japl (6.28a)

Jopy =iD{ gy, Dgp, =0.  (6.28b)
In these equations J 4, is the N = 1 supercurrent and Sop is
the additional N = 1 supermultiplet containing the second
supersymmetry current and the R-symmetry current.
Similarly, the A/ = 2 flavor current leads to

S =17, (6.29a)

L% =iD2L%, DLE =0, (6.29b)
where L2 is the N' =1 flavor current and S is uncon-
strained. Hence, the N =2 three-point function
(L%(z1)J 45(22)L?(23)) contains three-point functions of
the following conserved component currents: the energy-
momentum tensor, conserved vector currents, the super-
symmetry currents and the R-symmetry current. All these
three-point functions can be found by superspace reduction
and are fixed by the A/ = 2 superconformal symmetry up
to one overall coefficient (or vanish). A simple gamma-
matrix-counting procedure similar to the one discussed in
the previous section shows that all these correlators are
parity even.

C. The correlation function (JJL)

For this example, the general ansatz gives

(Jap(21)J5(22)L(23))
_ X 13aa/x 13/3ﬂ /x23/x2355'

(x73) (x33)°

Ha’ﬁ’y’ﬁ’(X3’®3)’ (630)

°From here we will use bold R-symmetry indices to distinguish
them from other types of indices.
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where  Hyp,5 = Hap)(s5)- The correlation function is

required to satisfy the following.
(1) Scaling constraint.—Under scale transformations
the correlation function transforms as

(Tap(2)V15(22)L(25)) = () (T (21)T5(22) L(23))
(6.31)

from which we find the homogeneity constraint
H,,ﬁy(;(/lzX, 10) = (/12)‘3H(1[,>y5(X, 0). (6.32)
(ii) Differential constraints.—The differential con-

straints on the flavor current and supercurrent result
in the following constraints on the correlation

function:
Dy (Jap(21)J,5(22)L(z3)) = 0. (6.33a)
ot ) _ sy por
<D<3)D 3o =20 D@)D(s)a)
X (Jap(21)Jys(22)L(z3)) = 0. (6.33b)

The first equation results in the following differential
constraints on H:

D'H ,5(X,0) = 0. (6.34)

The second constraint (6.33b) is more difficult to
handle in this formalism; however, we will demon-
strate how to deal with it later.

(iii) Point permutation symmetry.—The symmetry under
permutation of points z; and z, results in the
following constraint on the correlation function:

Jap(21)Ty5(22)L(23)) = (Jys(z2)ap(z1)L(23)),
(6.35)

which results in the point-switch identity

Ha/)’yé(X’ ®) = Hyﬁ(l/}(_XT7 _G)) (636)

Now due to the symmetry properties of H, we may trade
pairs of symmetric spinor indices for vector indices:

Hiap)(r6) (X, 0) = (Y™ )op(r") ysHmn (X, ©). (6.37)

Now if we split H,,, into symmetric and antisymmetric
parts
Honn (X’ ®) = H(mn)<X’ 6) + H[mn] (X’ G))

= H(’””)(X’ ®) + €mntH,(X, ®), (638)

then the point-switch identity implies

H(n) (X, ©) = Hy (X7, =0),

H,(X,0) = —H,(-XT,-0). (6.39)

General expansions consistent with the index structure and
symmetries are

7_((mn) (X’ 6) = A(mn) (X) + ®ZB(mn) (X) + (®®)sc(mn)s (X)
+ ®4D(mn) (X), (6408.)

H,(X.0) = A,(X) + ©2B,(X) + (00)°C,,(X) + ©*D,(X).
(6.40b)

All the tensors comprising H,,,) are even functions of X,
while those in the expansion for H, are odd functions of X.
Furthermore, due to symmetry arguments the tensors H,,,)

and H,; do not mix in the conservation law (6.34); hence,
they may be considered independently. First let us analyze
H(mun); imposing (6.15a) results in the differential con-

straints

0" Ay (X) = 0, (6.41a)
8" B ) (X) = 0, (6.41b)
€"30,C s (X) = 0, (6.41c)
2B gy (X) + i€, 0, Ay (X) = 0, (6.41d)
AD () (X) + i€, 0B ) (X) = 0, (6.41¢)
" {Clmys(X) + Clamym(X) = s Ca(X)} =0 (6.41f)

and the algebraic constraints N = 2 JJL—algebraic con-
straints 1

cm o (X) =0, (6.42a)

ermsc(m”)s(x) =0. (642b)
The scaling condition (6.32) along with (6.42) implies that
C is totally symmetric, traceless and even in X. Following
the argument presented in Sec. IV B we find that no such
tensor exists; hence, C = 0. Furthermore, evenness in X
allows us to identify solutions for the remaining tensors:

nmn Xan

Ay (X) = a, e +a X5 (6.43a)
”mn Xan

By (X) = b ra + by X6 (6.43Db)
Nimn Xan

D(mn)(X) = dl 3 + dQT (6.430)
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Imposing (6.41a) and (6.41b) results in a, = —3a; and  The algebraic constraints (6.46) imply that C = 0. Now
b, = —2b; however, for this choice of coefficients (6.41d) since A, B and D are odd in X we can construct the
implies B = 0, while the tensor A survives. It is then easy  solutions
to see that (6.41e) implies D = 0. Therefore the only

L. X
solution is AX) = aX—i, (6.47a)
n’nn 3Xan X
Ay (X) = a <F -5 ) (6.44) B,(X) = bX—;, (6.47b)
X
Now let us direct our attention to H,; imposing (6.34) D,(X)=d X_é (6.47c¢)

results in the set of equations
However it is not too difficult to show that imposing

em™,,A,(X) =0, (6.45a) (6.45d) and (6.45e) requires that A, B and D must all
vanish. Hence H,(X,®) = 0.

€™, B,(X) =0, (6.45b) So far we have found a single solution consistent with
the supercurrent conservation equation and the point-

M Con(X) = 1€ (X)} =0, (645c)  switch identity:

2e,,°B(X) —i0,A,(X) + in,0* A (X) =0,  (6.45d Hon _ 3X Xy

€4'By(X) —10,A,(X) + 19, 0°Ay(X) = 0, (6.45d) Hypn (X, 0) = a 22— (6.48)

mnA=" X3 XS ’

4ey'Ds(X) —10,B4(X) + 1, 0°B,(X) =0 (6.45¢) Haprs(X,0) = (1) s (r"),5Hmn (X, ©)
apy s a 78  tmn\ A

and the algebraic constraints Eay€ps T Eastpy | 3XapXys
=dy= X3 + X5 :
2C (X)) =0, 6.46
‘ (%) (6.46a) (6.49)
Coun(X) = 1 C*5(X) = 0. (6.46b) Therefore the correlation function is

o B Y &
X130 X135" X23," X235
<J(1/3(Zl)‘l}'5(Z2)L(Z3)> = - (x%3)3(x%:)3 H(l’/}’y’(?' (X3v 63)7 (650)

where, after writing our solution in terms of the variable X,

£, € £, 34,6550 3e,s564,0"
X.0) =d. ay€pé as<py | 2 Cay<ps 2 CasCpy
Haﬁy&( > ) N —2{ X3 X3 8 X° 8§ X

Jr‘%)(aﬂxﬂS 3iepX,607  3ie,X 507

X3 2 X 2 X
3 saﬂ€y5®4 15 XaﬁXy6®4
~ s g (6.51)

However it remains to check whether this solution satisfies the flavor current conservation equation. As mentioned earlier
it is difficult to check conservation laws on the third superspace point in this formalism as there are no identities
that allow differential operators acting on the z3 dependence to pass through the prefactor of (2.43). To deal with this
we will rewrite our solution in terms of the three-point building block X using identities (2.31a) and (2.33). This ultimately
has the effect

(Jap(21)Ty5(22)L(23)) = (L(23)Jy5(22) T ap(21))- (6.52)

Written in terms of the variable X, the correlation function is found to be

X217 %2157
(L(z3)Jy5(22)  ap(z1)) = x%:(WHy’ﬁ’aﬁ(Xl’ 0,), (6.53)

086023-18



MIXED THREE-POINT FUNCTIONS OF CONSERVED CURRENTS ...

PHYS. REV. D 103, 086023 (2021)

where

X, Xop | XypXso | 3%, X' | 3X,X;,0°

Hy&aﬁ’ (X7 G) = d./\/=2 { X3

X3 8 X° 8 X’

_ 3X(xﬂXy5 _ ﬁgaﬂths@z _ ﬁe},&XaﬁGZ

X3 2

2 X

§8aﬂ€y5®4 _ I_SXGﬁX},&G‘Y‘

4 X 8

We are now able to check the conservation equation (6.33b),
which after using identities equivalent to (2.39a) becomes
the constraint

1
(pa(lpp — 5 8D DE ) H,55(X,0) = 0. (6.55)

After a very lengthy calculation one can show that the
solution above satisfies this conservation equation; hence,
this correlation function is nontrivial and is determined up
to a single parameter.

This is a peculiar result, as it was shown in Sec. IV B that
the correlation function (JJL) vanishes for V' = 1. At first
glance this appears to be a contradiction since any theory
with N = 2 supersymmetry is also N' = 1 supersymmet-
ric. However, as was discussed in the previous subsection,
the N' = 2 current supermultiplets Jop and L contain not
only the N = 1 supercurrent and flavor currents, but also
the unconstrained scalar superfield S and the supermultiplet
of currents S,4. Hence, nonvanishing of the N =2 three-
point function (6.49) and (6.50) implies nonvanishing of
some of the three-point functions involving these additional
N =1 currents. For example, from Egs. (6.49) and (6.50)
it follows that the following A = 1 correlator is, in general,
NONZero:

<Sa1a2 (Zl)‘]ﬁlﬂzﬁ3 (ZZ)L}/(Z3)>

= =D%) 5 D), Va0, (21)7 ) (22) L (23))

. (6.56)

where the bar projection means setting 62 to zero. In
components this correlator contains (among others)
(R (x1)T yy(x2)V(x3)), where R,, is the U(1) R-sym-
metry current which exists in theories with N' = 2 super-
symmetry. In theories with N' = 1 supersymmetry such a
correlator does not exist because there is no R-symmetry
current.'’ On the other hand, the N’ =2 — A = 1 super-
space reduction

Jaray (20)05,5,(22)L(23)) = (o (20) .., (22) Ly (23))
(6.57)

""Note that all component three-point functions contained in
(6.49) and (6.50) are parity even.

= } (6.54)

|

must give zero to be consistent with the result of the
previous subsection. Let us check that this is indeed the
case. To perform the reduction we compute

D2 D2y D2 (e (20 ) (22)L(23)) -

(@ (6.58)

That is, we must act with three covariant derivatives with
respect to 6% and then set all % to zero. From the explicit
form of the correlator (J, 4, (21)J5,4,(22)L(z3)) in
Egs. (6.49) and (6.50) it follows that it depends on 6763.
Since it is Grassmann even it contains only even powers of
7. Therefore, acting on (J,,4,(21)J5,5,(22)L(z3)) with
three derivatives as in (6.58) will give a result either linear
or higher order in 2, so it vanishes when we set 6% = 0.
This shows that despite being nonzero our result (6.49) and
(6.50) is consistent with vanishing of the similar correlator
in the N' =1 case.

VIL. MIXED CORRELATORS IN N =3, 4
SUPERCONFORMAL FIELD THEORY

In this section we will generalize our method for NV = 3
and N = 4 superconformal theories. An essential differ-
ence with the previous cases is that the flavor current now
carries R-symmetry indices which must be taken into
account in the irreducible decompositions. We will start
with reviewing the properties of the N'=3 and N’ =4
supercurrent [63,64] and flavor current multiplets and then
apply our formalism to compute the mixed correlation
functions involving these multiplets.

A. Supercurrent and flavor current multiplets

1. N =3 theories

The 3D, N = 3 supercurrent is a primary, dimension
3/2 spinor superfield J,, which satisfies the conservation
equation

D*j, =0, (7.1)

and has the following superconformal transformation law:

3
5Ja = _5‘1(1 - EU(Z)J(I + A(Z)aﬁ‘,ﬂ' (72)
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The two-point function is again determined up to a single
real coefficient

X12a8
(x%z)z

It has the right symmetry properties under permutation of
superspace points

(Jalz1)I5(22)) = brr—3 (7.3)

Va(21)Ip(z2)) = =(p(22)a(21)) (7.4)
and also satisfies the conservation equation
Df(f) Jalz1)p(22)) = 0. 21 # 22. (7.5)

The N =3 flavor current is a primary, dimension 1
isovector L!, which obeys the conservation equation

1
piL) - 38/ DELK =0, (7.6)
and transforms under the superconformal group as
SL' = —¢L" —6(z)L! + AV (z)L’. (7.7)

The A/ = 3 flavor current two-point function is fixed up to
a single real coefficient ay_s:

"2 (7.8)

where we have introduced the flavor group index a.
The two-point function obeys the correct symmetry
properties under permutation of superspace points,
(L'(z))L"%(z5)) = (L?*(2,)L1%(z;)), and also satisfies
the conservation equation

_ - 1 _ -
1 a a —
D (L (2)L¥ (23)) = 38" Dy (L2 (21) LK (22)) =

21 #ZQ. (79)

2. N =4 theories

The N = 4 supercurrent is a primary, dimension 1 scalar
superfield J, which satisfies the conservation equation

1
(D’“D§ - Zé“D“’Dé)J =0, (7.10)

and has the following superconformal transformation law:

6Jy ==EJ,—0(2)J,. (7.11)
The dimension of the supercurrent is fixed by the con-
servation equation (7.10). The two-point function is deter-
mined up to a single real coefficient

1
(J(z1)J(22)) = by—s—~- (7.12)
X1
Under permutation of superspace points, we have
(@) (z2)) = (J(22)J (21))- (7.13)

The two-point function also satisfies the conservation
equation

1
(Df?)Dfl)a B Z(SIKD%D(LUJ (J(2)/(22)) =0. 2z # 2.

(7.14)

In the A/ = 4 case there exists two inequivalent flavor
current multiplets, described by SO(4) bivectors LY, L/,
which are primary with dimension 1 and satisfy

1
LY =) 5eukLLgL ==+LY.  (7.15)

where a is the index for the flavor group. The flavor current
multiplets are subject to the conservation equation

2
Dyt = ol =Sppls )
and transform under the superconformal group as
SLY = —¢Ll —o(2)LY + AR ()LL". (7.17)

Since the flavor current multiplets L’/ are inequivalent,
they may be studied independently when deriving corre-
lation functions.

B. Mixed correlation functions in A =3 theories

There are two mixed correlation functions in N =3
theories; they are

(L'(z2)a(22)L7(23)).  (Jalz)Ip(22) L (z3)).  (7.18)

1. The correlation function (LJL)
Using the general ansatz, we have

b, Il o
_ 6"7ui3%03,

L13(z)J,(z0) L% (z3)) = H (X5, 05).
< ( 1) ( 2) ( 3)> x%3(x%3)2 o ( 3 3)

(7.19)
The correlation function is required to satisfy the following.

(1) Scaling constraint.—Under scale transformations
the correlation function must transform as
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(L1(2))To(H) L7 (25))

= ()L (21 o(22) L (23)),  (7:20)

which gives rise to the homogeneity constraint on H:

HEY (22X,20) = (2)3PHY(X,0).  (7.21)
(ii) Differential constraints.—The differential con-
straints on the flavor current and supercurrent result
in the following constraints on the correlation

function:

D%a(L’)E‘(Zl)Jﬂ(Zz)LK‘_’ (z3))

L DE (L8 )y () L 20)) =0,
(7.22a)
D3 (L7 (2)o(22)L¥P(z3)) = 0. (7.22b)

These equations result in the following differential
constraints on H:

DM (X, 0) ——6”DLHLK(X ®) =0, (7.23a)

QlHIK(X,0) = 0. (7.23Db)

(iii) Point permutation symmetry.—The symmetry under
permutation of points (z; and z3) imposes the
following constraint on the correlation function:

(L18(20)Jo(22) L7 (23)) = (L7 (23) o(22) L1 (21)).

(7.24)
which results in the point-switch identity
u 1)11 uJJxanX
HIJ X ’® — ( 13 13 %13 “ 300
a( 3 3) X3x13
x HLI' (-XT,-0)). (7.25)

Now let us find the general solution for H consistent with
the above constraints. To do this systematically, we note
that since H is Grassmann odd we must find all the linearly
independent structures that are odd in ® that can be
constructed out of the A/ = 3 building blocks. A general
expansion for H% is

HY(X.0) = MY, (X.©) + Ml (X.0) + HIL (X.0)

(7.26)

= H1)ap(X)AVEOK + H 35,5 (X) B KLV @FP L @M
+ H (s apre (X) CELMNP @K @LI@MO@NOPY, (7.27)

where A, B, and C are tensors formed out of the N =3
invariant tensors 6/ and €//X. At O(®") the only choice we
can make for A is AVK = ¢!/K from which we find the
linearly independent structures

oK X(,/;GK/”

@) = Cll(:'IJK—; + a2€IjK T . (728)

Hé‘l])a(X’
The conservation equation (7.23b) implies that the terms
0(®") are odd in X 5, while the terms O(®?) must be even
in X,5. At O(®?) we have the following choices for B:

BUKLM — I KLM K SLM

BY/KLM — (7.29)

from which we find the linearly independent structures

H(3,(X. )

1K ®K®

= b1€

Z0 | pyol eKPO@KIQPAEKY ZXO Y XaoXpy)
X3

+ by (e'KP@Y 4 TKPQIO)QKIQPY XO;ZXW (7.31)

If we follow the same procedure at O(®°), we find the
structures

ket
Hg)a(x’ 6) = C1€1JK XS
2
+c ( IKP@J + €]KP®[)®K/3®P}/ @
(7.32)

In determining the linearly independent terms we make use
of the N' = 3 identity

kel e’ekre? = 0, (7.33)
in addition to
@’“@é@Kﬂ(Bfe”“ = 2®2®Jﬂ®}1,<61‘”(, (7.34a)
Ole@/PeKr@LéJKL — 1 PR @KIIIK
- %8“7(92@)”’@’(56”’( (7.34Db)
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_ %8116®2®J/J’®K7611K’

@(P(lel)MN@Mﬂ®NU — _%gm@(Pﬁ@}lj/l@Nuel)MN

1
-3 e @ FPI@VheNMN (7 .34c)

which arise as differential consequences of (7.33).
Applying the conservation law (7.23b) results in

01:b1:b3:C]:C2:0, (735)
which leaves us with only two structures. Next we must
impose the flavor current conservation equation (7.23a).

After a lengthy calculation we find b, = ia,. Hence the
solution is

Hi (X.0)

Kp
= Cns { elIK Xa;’(? + 15! KPO@KS@Po@KY

Xa(éxay) }
XS

(7.36)

. LK Xaﬂ(aKﬂJri efe’  3X,0%e
N=3 X "2x) '8 X

Xa(oXs
T igt ckro@KIEITeR ~ T ”}. (7.37)

After some additional calculation it can be shown that this
solution also satisfies the point-switch identity (7.25),
which completes our study of the A =3 correlation
function.

2. The correlation function (JJL)

Using the general ansatz, we have

X23a x23ﬂﬂ !

/al X ,@ .
(x%3)2(x23) aﬂ( »63)

(Ja(21)I5(22) L1 (23)) =

(7.38)

Note that in this case the flavor current is U(1). The
correlation function is required to satisfy the following.
(1) Scaling constraint.—Under scale transformations
the correlation function must transform as

(Ta(@)Tp(2p) L1 (25)) = () (Ja(21)Tp(22) L' (2

which gives rise to the homogeneity constraint on H:

ML (12X, 40) = (2)2HL, (X, ©).  (7.40)

(1) Differential constraints.—The differential constraints
on the flavor current and supercurrent result in the
following constraints on the correlation function:

D), (Ja(z)p(22)L7 (23))
26 DE ey ()L (@) = O

D{f (Ja(21)Jp(22)L7 (23)) = 0.

(7.41a)
(7.41b)

Since (7.41a) involves a covariant derivative acting
on the third point, it is more difficult to impose.
However it turns out that the second equation is
sufficient to show that this correlation function
vanishes. From (7.41b) we obtain

DI*H.,(X.0) = 0. (7.42)

(iii) Point permutation symmetry.—The symmetry under
permutation of points (z; and z,) imposes the
following constraint on the correlation function:

(Jo(z1)Jp(22) L1 (23)) = =(Jp(22)J u(21) L (23)),
(7.43)

which results in the point-switch identity

M.y (X.0) = —H},(-X",-0).  (7.44)

To proceed we start by decomposing H into symmetric
and antisymmetric parts as follows:

H.,(X.0) = M, (X.0) + H],, (X.0)

= M, (X.0) + 6,1 (X.0). (745

The symmetry under permutation of points (7.44) implies

Hiyp)(X.©) = =H[,, (-XT.-0),

HI(X,0) = H!(-XT,-0), (7.46)

therefore Hfaﬁ) is an odd function, while H’ is an even

function. They will not mix in the conservation law (7.42);
hence, we may consider each of them independently.

Starting with H!, we note that since it is Grassmann even
it must be an even function of ®; hence, it admits the
expansion

H!(X,0)
= Hap(X) AVK@Jla@kp
+ Hgyaprs(X) X)BVKLMgJlagKpgLr @Ms
+ H6)apyoon(X )CVKLMNPQla@Kp@LI @Ms@Ne@FH,
(7.47)
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Here we have replaced the variable X with X and intro-
duced the arbitrary tensors A, B, and C, which are
constructed out of the invariant tensors for the A =3
R-symmetry group. The H ;) are all even functions of X. At
0(®?) the only choice is AYK = ¢/K | so we have the
contribution

H(Z)(aﬂ) (X)€”K®Ja®Kﬁ. (748)
However, it is not too hard to see that we cannot construct
an even, symmetric function of X with the required index
structure. Hence H 3 (X) = 0. Now at O(©*) we have
the choices

BIKLM — §lJ KLM BUKLM — (lIKSLM (7 49)
The choice B; results in the contribution
H@)a(pys) (X)@l*@kPelr@MocKILM (7.50)

After applying the N' = 3 identity (7.34a), this is equiv-
alent to the contribution
Fys)(X)e"k 02077 0K°, (7.51)
where F is a symmetric and even function of X. We cannot
construct such a function; hence, F (v8) (X) = 0. Indeed if
we follow the same procedure for B,, we arrive at the same
conclusion. Concerning contributions O(®°), no terms are
permitted due to the N' = 3 identity (7.34a). Hence we find
H!(X,0) = 0 as there are no contributions that are con-
sistent with the algebraic symmetries.
Let us now follow the same procedure for the symmetric
contribution Hfaﬂ). Since it is Grassmann even it must be an

even function of ®; hence, it must be odd in X. The general
expansion for this contribution reads

Hiap) (X ©) = Hizapu (X)AVF OO

+ H(4)((l/3);w75 (X)BIJKLM@J”@KU@L}’@M(S,
(7.52)

where the H; are odd functions of X. Here we have
neglected the contribution O(®°) as it will vanish due to
N = 3 identities. Following the same procedure outlined
above we find that to O(®?) we have the contribution

H ) (ap) ) (X ) K OHOKY (7.53)

Since the tensor Hy) is symmetric in each pair of spinor
indices, we may trade them for vector ones:

Ho)ap) ) X) = s (7" H 2y (X). (7.54)

The general expansion for H;),, with the scaling condition
(7.40) is

h h h
H(Z)ab(x) = X_;rlab + X_ieabcxc + _35Xava

X (7.55)

however, only the second term is odd in X, which results in
the contribution

1
Hiop(X.©) o 7 KOO Xy,

L) (7.56)

Concerning the terms O(®*) we follow the same procedure
outlined above; for each choice of B in (7.49) we obtain the
contribution

1
Moy (X.0) & KOO Xy, (7.57)

(

where we have made use of (7.34a). Hence our solution for
Hfaﬁ) is of the form

Hi ) (X.0) = L1e /KOO X, + 2/ KOPOTOL X,
(7.58)

It remains to impose the conservation equation (7.42). After
a short calculation we find a; = a, = 0; hence, this
correlation function vanishes.

C. Mixed correlation functions in A =4 theories

For A =4 superconformal symmetry there are two
possible mixed correlation functions (for concreteness
we will consider only L%/); they are

(L' (21)J(z2) LY (z3)).  (J(z1)(z2) LY (23)).

where in the second case we require a U(1) flavor group.
The first correlator (LJL) was previously studied in [35],
so we will not analyze it here.

The general ansatz for the correlation function (JJL) is

(7.59)

) (@)L () = o HI (X5, 05).

13%23

(7.60)

As we will soon find out, the algebraic symmetries on the
tensor H are sufficient to show that this correlation function
vanishes. The relevant constraints are the following.
(i) Scaling constraint.—The correlation function must
transform as

(@) ()L (25)) = ()T (@) (z2)LY (z3)).
(7.61)

from which we find the homogeneity constraint
on H:
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HY(22X,10) = (2*)"'H (X, ©). (7.62)

(i1) Algebraic constraints.—The symmetry under per-
mutation of points (z; and z,) constrains the corre-
lation function as follows:

(J(@) ()L (23)) = (J(22)I (21)LY (23)),
(7.63)

which is equivalent to

HY(X,0) = HY(-XT,-0).  (7.64)
In addition, we also have constraints arising from
antisymmetry and self-duality of the flavor current,
which give rise to

HY(X,0) = -H'(X.0),

HY(X,0) = %e”KLHKL(X, 0). (7.65)
The constraint (7.64) implies that H' is an even
function, while (7.65) implies that !/ must be antisym-
metric in the R-symmetry indices. Furthermore since H is
Grassmann even it must be an even function of ®, which
implies it must also be even in X. It is not too difficult to see
that it is impossible to construct any structures consistent
with these requirements out of the available building
blocks; hence, this correlation function must vanish.
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APPENDIX: 3D CONVENTIONS
AND NOTATION

For the Minkowski metric we use the “mostly plus”
convention: 7,,, = diag(—1, 1, 1). Spinor indices are then
raised and lowered with the SL(2,R) invariant antisym-
metric € tensor

Eap = o ! ’ eV = 0! ) saeyﬁzéaﬂ9
1 0 -1 0 v

(A1)

by = €apd”. P* = el py. (A2)
The y matrices are chosen to be real and are expressed in
terms of the Pauli matrices ¢ as follows:

(ro)e = —ioy = (? _()]> (1) =03 = ((]) _01)

(A3a)
0 -1
b= _6, = , A3b
Ry G
(ym)aﬂ = gﬁé(ym)aé’ (ym)a/j - gaé(},m)(sﬁ_ (A4)
The y matrices are traceless and symmetric:
(ym)aa = 0’ (ym)aﬂ = (ym)ﬂa’ (AS)
and also satisfy the Clifford algebra
Ym¥n + Vn¥m = 2lpn. (A6)
Products of y matrices are then
e )P = MnBa + € (r?) o+ (A7a)
(Ym)ap (Yn)pa(yp)nﬂ = Nmn (}'17)0:/} ~ Nmp (yn)aﬁ

where we have introduced the 3D Levi-Civita tensor ¢, with

V1?2 = —¢;;, = 1. It satisfies the following identities:
EmnpEntn'p’ = Mt M Mpp = M Mpn')
—(n<em)-(m < p), (A8a)
Emnp€™wp! = —MunMpyf + MapMpn' (A8b)
Emnp€™ = =20y, (A8c)
Emnp€™"’ = —6. (A8d)

We also have the orthogonality and completeness relations
for the y matrices:

(") ap(rm)’” = —04"85" = 6,764

(ym>aﬂ(7n)aﬂ = _277;nn‘ (A9)

Finally, the y matrices are used to swap from vector to
spinor indices. For example, given some three-vector x,,,, it
may equivalently be expressed in terms of a symmetric
second-rank spinor x,; as follows:

xaﬁ = (7m)aﬂxln’

1
Xm = _E(ym)a/jxaﬁ’ (AIO)

1
det(x,5) = Ex"/’xaﬁ = —x"x, = —x>.  (All)

The same conventions are also adopted for the spacetime
partial derivatives 0,,:
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1
O =0 O = =3 ()P0 (A12)
OpX" = 87, OupX® = =06,L04" — 6,°84",  (A13)
1
é‘mam - —zfaﬂaaﬂ. (A14)
We also define the supersymmetry generators Q7:
0 0
I =i— m) 0P — AlS
Qa 189(; + (}/ )a[)’ axm ( )

and the covariant spinor derivatives:
(A16)

which anticommute with the supersymmetry generators,
{06, Dj} =0, and obey the standard anticommutation
relations

{Dg. Dy} = 2i6" (1) ypOrn- (A17)
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