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Introduction

Hydrodynamics is an effective macroscopic
theory describing long wavelength excitations
in a fluid, and is expected to break down in
systems with large spatial or temporal gradi-
ents. Recently, several studies comparing re-
sults of higher-order hydrodynamic theories to
conformal kinetic theories in boost-invariant
flow profiles have revealed a surprising success
of hydrodynamics in providing a near-accurate
description of the system’s macroscopic dy-
namics even when the medium is very far from
local equilibrium. A key feature that emerged
from these studies is that hydrodynamics is
governed by a far-from-equilibrium attractor
[1] to which different initializations of normal-
ized dissipative quantities decay via power law
at high Knudsen-numbers over a time-scale
controlled by the relaxation-time [2, 3].

However, almost all of these comparisons of
hydrodynamics with kinetic theory have fo-
cused on conformal systems. In the present
study, we investigate the domain of applica-
bility of second-order non-conformal hydrody-
namics by comparing it with kinetic theory for
systems of massive particles undergoing (0+1)
dimensional expansion with Bjorken symme-
try [4, 5].

Bjorken flow is conveniently described
in Milne coordinates, with proper time
T=+v1t2 — 22 (where t is time and z the lon-
gitudinal Cartesian coordinate), space-time
rapidity 7= tanh™'(z/t), and metric g,, =
diag(1, —1,—1,—72). In these coordinates the
flow appears static, u* = (1, 0), and all macro-
scopic quantities only depend on the proper

*Electronic address: sunil.jaiswal@tifr.res.in

time. Bjorken symmetry dictates the en-
ergy momentum tensor to be diagonal, TH¥ =
diag(e, Pr, Pr, Pr), where €, Pr and Py, are
the energy density, effective transverse and
longitudinal pressures respectively. The pres-
sures are expressed in terms of the equilibrium
pressure (P), bulk pressure (II), and the sin-
gle independent component of the shear stress
tensor m = —727" as Pr = P+ 11+ 7/2 and
PL =P + II — .

We shall consider the evolution of single
particle distribution function f(x,p) to be
governed by the Boltzmann equation with a
collision term in the relaxation time approxi-
mation (RTA): 0. f = —(f — feq)/Tr(7). Here
feq Tepresents the single particle equilibrium
distribution function with Boltzmann statis-
tics. The relaxation time 7x sets the timescale
for equilibration and is parametrized as T =
5C/T where T is the temperature and C' is a
unitless constant. The above equation can be
solved exactly [6], and appropriate moments of
the distribution function gives exact evolution
of hydrodynamic quantities. The initial distri-
bution function is considered to have a form
which allows for large bulk and shear stresses
at initial time 79 [4, 5].

Results

We impose initial conditions at 79 =
0.1fm/c with initial temperature T, =
500 MeV. We take m = 50 MeV for the parti-
cle mass such that m/T is initially small and
the fluid’s equation of state and transport co-
efficients are close to their conformal limits
at early times. In all figures, solid curves
are solutions of the RTA Boltzmann equa-
tion and dashed ones represents solutions of
second-order Chapman-Enskog hydrodynam-
ics [7]. Dotted curve is the first-order Navier-
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FIG. 1: Scaled time evolution of the (a) bulk and
(b) shear inverse Reynolds numbers.

Stokes (NS) solution with C' = 10/4x.

For small bulk viscous pressures one naively
expects to recover the known attractor struc-
ture of conformal systems. Figure 1 shows
the evolution of the bulk and shear inverse
Reynolds numbers for such initial conditions;
Reg' = II/(e+P) and Re;! = 7/(e+P), as
functions of the scaled time 7 = 7/7x (for
C =10/4m). However, the shear stress trajec-
tories shown in Fig. 1b are seen to converge
only at 7~2 (magnitudes of initial normal-
ized bulk viscous pressure are small as can
be seen in Fig. 1la). This strongly contrasts
with the pattern observed in conformal sys-
tems where trajectories with different initial-
izations of normalized shear stresses rapidly
approach an early-time attractor on a much
shorter time scale controlled by the initializa-
tion time 79 [2, 3]. Large initial bulk stress
further delays the convergence of trajectories
[4, 5]. Therefore, we conclude that there is no
evidence of an early-time attractor for non-
conformal fluid in shear or bulk stresses.

Figure 2 shows the evolution of the scaled
longitudinal pressure Pp/P as a function of
the scaled time 7. The initial conditions con-
sidered correspond to those used in Fig. 1.
In addition, we also initialize with vanishing
shear stress and large bulk stress, as well as
with different value of the parameter C =
3/4w. All kinetic theory solutions are seen
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FIG. 2: Evolution of the scaled longitudinal pres-
sure.

to join a universal attractor that starts from
Pr/P=0 at 7o — 0 at early times 7<0.5. As
the system begins to isotropize, this univer-
sal curve joins the first-order hydrodynamic
NS attractor at 724 and approaches unity.
Therefore, only Pp, = P+II—7 (a combination
of II and ) shows an early-time attractor
behavior, driven by the strong longitudinal
flow at early times. We do not expect simi-
lar early-time attractors in systems where the
early-time dynamics is not dominated by free-
streaming. The hydrodynamic trajectories in
Fig. 2 do not exhibit an early-time attractor;
universality is only seen at 7 2 4 after they join
the NS attractor. Clearly, second-order non-
conformal hydrodynamics does not provide a
very accurate approximation to the underly-
ing kinetic theory when 7 < 3.
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