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Introduction
Hydrodynamics is an effective macroscopic

theory describing long wavelength excitations
in a fluid, and is expected to break down in
systems with large spatial or temporal gradi-
ents. Recently, several studies comparing re-
sults of higher-order hydrodynamic theories to
conformal kinetic theories in boost-invariant
flow profiles have revealed a surprising success
of hydrodynamics in providing a near-accurate
description of the system’s macroscopic dy-
namics even when the medium is very far from
local equilibrium. A key feature that emerged
from these studies is that hydrodynamics is
governed by a far-from-equilibrium attractor
[1] to which different initializations of normal-
ized dissipative quantities decay via power law
at high Knudsen-numbers over a time-scale
controlled by the relaxation-time [2, 3].

However, almost all of these comparisons of
hydrodynamics with kinetic theory have fo-
cused on conformal systems. In the present
study, we investigate the domain of applica-
bility of second-order non-conformal hydrody-
namics by comparing it with kinetic theory for
systems of massive particles undergoing (0+1)
dimensional expansion with Bjorken symme-
try [4, 5].

Bjorken flow is conveniently described
in Milne coordinates, with proper time
τ ≡
√
t2 − z2 (where t is time and z the lon-

gitudinal Cartesian coordinate), space-time
rapidity η≡ tanh−1(z/t), and metric gµν =
diag(1,−1,−1,−τ2). In these coordinates the

flow appears static, uµ = (1,~0), and all macro-
scopic quantities only depend on the proper
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time. Bjorken symmetry dictates the en-
ergy momentum tensor to be diagonal, Tµν =
diag(ε, PT , PT , PL), where ε, PT and PL are
the energy density, effective transverse and
longitudinal pressures respectively. The pres-
sures are expressed in terms of the equilibrium
pressure (P ), bulk pressure (Π), and the sin-
gle independent component of the shear stress
tensor π ≡ −τ2πηη as PT = P + Π + π/2 and
PL = P + Π− π.

We shall consider the evolution of single
particle distribution function f(x, p) to be
governed by the Boltzmann equation with a
collision term in the relaxation time approxi-
mation (RTA): ∂τf = −(f −feq)/τR(τ). Here
feq represents the single particle equilibrium
distribution function with Boltzmann statis-
tics. The relaxation time τR sets the timescale
for equilibration and is parametrized as τR =
5C/T where T is the temperature and C is a
unitless constant. The above equation can be
solved exactly [6], and appropriate moments of
the distribution function gives exact evolution
of hydrodynamic quantities. The initial distri-
bution function is considered to have a form
which allows for large bulk and shear stresses
at initial time τ0 [4, 5].

Results
We impose initial conditions at τ0 =

0.1 fm/c with initial temperature T0 =
500 MeV. We take m = 50 MeV for the parti-
cle mass such that m/T is initially small and
the fluid’s equation of state and transport co-
efficients are close to their conformal limits
at early times. In all figures, solid curves
are solutions of the RTA Boltzmann equa-
tion and dashed ones represents solutions of
second-order Chapman-Enskog hydrodynam-
ics [7]. Dotted curve is the first-order Navier-
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FIG. 1: Scaled time evolution of the (a) bulk and
(b) shear inverse Reynolds numbers.

Stokes (NS) solution with C = 10/4π.
For small bulk viscous pressures one naively

expects to recover the known attractor struc-
ture of conformal systems. Figure 1 shows
the evolution of the bulk and shear inverse
Reynolds numbers for such initial conditions;
Re−1

Π ≡ Π/(ε+P ) and Re−1
π ≡ π/(ε+P ), as

functions of the scaled time τ̄ ≡ τ/τR (for
C = 10/4π). However, the shear stress trajec-
tories shown in Fig. 1b are seen to converge
only at τ̄ ≈ 2 (magnitudes of initial normal-
ized bulk viscous pressure are small as can
be seen in Fig. 1a). This strongly contrasts
with the pattern observed in conformal sys-
tems where trajectories with different initial-
izations of normalized shear stresses rapidly
approach an early-time attractor on a much
shorter time scale controlled by the initializa-
tion time τ0 [2, 3]. Large initial bulk stress
further delays the convergence of trajectories
[4, 5]. Therefore, we conclude that there is no
evidence of an early-time attractor for non-
conformal fluid in shear or bulk stresses.

Figure 2 shows the evolution of the scaled
longitudinal pressure PL/P as a function of
the scaled time τ̄ . The initial conditions con-
sidered correspond to those used in Fig. 1.
In addition, we also initialize with vanishing
shear stress and large bulk stress, as well as
with different value of the parameter C =
3/4π. All kinetic theory solutions are seen
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FIG. 2: Evolution of the scaled longitudinal pres-
sure.

to join a universal attractor that starts from
PL/P ≈ 0 at τ̄0→ 0 at early times τ̄ . 0.5. As
the system begins to isotropize, this univer-
sal curve joins the first-order hydrodynamic
NS attractor at τ̄ & 4 and approaches unity.
Therefore, only PL =P+Π−π (a combination
of Π and π) shows an early-time attractor
behavior, driven by the strong longitudinal
flow at early times. We do not expect simi-
lar early-time attractors in systems where the
early-time dynamics is not dominated by free-
streaming. The hydrodynamic trajectories in
Fig. 2 do not exhibit an early-time attractor;
universality is only seen at τ̄ & 4 after they join
the NS attractor. Clearly, second-order non-
conformal hydrodynamics does not provide a
very accurate approximation to the underly-
ing kinetic theory when τ̄ < 3.
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