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Abstract

Strong quantum correlations between many particles in low dimensions lead to emergence

of interesting phases of matter. These phases are often studied through the properties of the

many-body eigenstates of an interacting quantum many-body system.

The folklore example of topological order in the ground states is the fractional quantum

Hall (FQH) effect. With the current developments in the field of ultracold atoms in optical

lattices, realizing FQH physics on a lattice and being able to create and braid anyons is much

awaited from the view point of fault tolerant quantum computing. This thesis contributes to

the field of FQH effect and anyons in a lattice setting. Conformal field theory has been useful

to build interesting lattice FQH models which are few-body and non-local. We provide a

general scheme of truncation to arrive at tractable local models whose ground states have

the desired topological properties. FQH models are known to host anyons, but, it is a hard

task when it comes to braiding them on small sized lattices with edges. To get around this

problem, we demonstrate that one can squeeze the anyons and braid them successfully within

a smaller area by crawling them like snakes on modest sized open lattices. As a numerically

cheap approach to detect topological quantum phase transitions, we again resort to anyons

that are only well defined in a topological phase. We create defects and study a simple

quantity such as the charge of the defect to test whether the phase supports anyons or not.

On the other hand, with the advent of many-body localization (MBL) and quantum

many-body scars, interesting eigenstate phases which were otherwise only known to occur in

ground states have been identified even at finite energy densities in the many-body spectra

of generic systems. This thesis also contributes to the field of non-equilibrium physics by

portraying models that display interesting non-ergodic phases and also quantum many-body

scars. For instance, we show that an emergent symmetry in a disordered model can be used

as a tool to escape MBL in a single eigenstate while not preventing the rest of the states from

localizing. This can lead to an interesting situation of weakly broken MBL phase where a

non-MBL state lives in the spectrum of MBL like states. We also demonstrate the emergence

of a non-ergodic, but also a non-mbl phase in a non-local model with SU(2) symmetry. We

provide two constructions of rather different models with quantum many-body scars with

chiral and non-chiral topological order.





Acknowledgements

I would first of all like to express my heart felt gratitude to my Ph.D supervisor, Dr. Anne

E. B. Nielsen, for guiding me through a variety of interesting research problems during my

tenure at MPIPKS. I am also very grateful to Prof. Roderich Moessner for the support he has

lent and for also being part of a nice work. I thank very much my other collaborators, Dr.

Dillip K Nandy, Dr. Sourav Manna, Dr. Julia Wildeboer, Dr. Xikun Li and Prof. Alexander

Seidel for all the nice discussions we had. It was also pleasure discussing physics among

other things with my nice friends Daniele, Giuseppe, Aniket, Saswat, Mani, Biplab, Błażej
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Chapter 1

Introduction

Low dimensional, interacting quantum many-body systems host a wealth of interesting

phenomena ranging from quantum phase transitions at zero temperature to topological order.

The physics of such systems are often described by their ground states that are special and

occupy a rather tiny fraction of the Hilbert space. These small set of low energy states have

little entanglement compared to the states that live in the middle of the spectrum. In this

context, the most sought after are the topologically ordered systems which are characterized

by ground states with specific degeneracy on a manifold, long range entanglement and

excitations that obey fractional statistics known as anyons [1]. The classic example is the

fractional quantum Hall (FQH) effect, which is a phase induced when a 2D gas of interacting

electrons is subject to large magnetic fields [2, 3].

Interestingly, there have been multiple proposals to realize fractional quantum Hall

physics on lattices which have several advantages over conventional solid state systems. One

of the main goals of studying FQH on lattice is also to explore methods to realize anyons

and to successfully braid them. In this direction, conformal field theory (CFT) has been a

very useful tool to construct analytical states on lattice that describe FQH phases [4, 5] and

even anyons [6] on quite large systems. Parent Hamiltonians for these analytical states have

been constructed that are few body but non-local [5]. Although there have been proposals

to construct local versions of these Hamiltonians in some cases by relying on symmetries

and optimization [7], a general scheme to achieve local models is lacking. When it comes

to realizing anyons and braiding them in experimentally relevant lattice models, there are

potential challenges that arise due to the large size and shape of the anyons relative to the size

of the lattice, the finite size issues and effects due to the presence of edges. Hence, braiding

anyons efficiently on modest lattices with open boundaries is also lacking.

Partly, the purpose of this thesis is to address the above mentioned timely questions on

FQH and anyons in a lattice setting. We discuss this in the following chapters.



2 Introduction

In Chapter 2, we begin by introducing briefly to the fractional quantum Hall effect and

anyons from a lattice perspective and end by discussing the Haldane-Shastry model whose

ground state is a 1D discretization of the Laughlin state.

In Chapter 7, we propose a truncation scheme to tame the non-local FQH lattice Hamilto-

nians constructed from CFT. Specifically, we show that one can arrive at local Hamiltonians

more generally by neither resorting to any sort of optimization, nor relying on symmetries

in the models. The truncation method applies independently from the choice of lattice and

boundary conditions. In some cases, we demonstrate numerically through exact diagonal-

ization that, indeed, the ground states of these local Hamiltonians stabilize the desired FQH

physics. Specifically, we confirm this through excellent wavefunction overlaps with the

exact states, approximate but correct ground state degeneracies on the torus and topological

entanglement entropies close to the expected values. We also discuss the construction of local

Hamiltonians in 1D and demonstrate numerically that their ground states have the correct

universal critical properties as the exact models.

In Chapter 8, we discuss how we efficiently braid Abelian anyons on a modest sized

lattice with open boundaries. We demonstrate this in well studied FQH lattice models by

optimizing the potentials on different lattice sites to achieve squeezed Abelian anyons with

near zero overlap. Next, we discuss how we perform the braiding by crawling them like

snakes ensuring that they do not overlap throughout the process and achieve near correct

exchange statistics for the anyons. We show computations by assuming the strict adiabatic

limit and later relax this to get an estimate of the time needed to perform the braiding

operation.

Lack of local order parameters make it difficult to characterize a topologically ordered

phase and one must rely on different set of indicators. Athough a number of tools have been

developed to detect topological phase transitions, they apply under different conditions and

do not cover the full range of many-body models. In Chapter 9, we demonstrate how anyons

serve as a probe to capture topological quantum phase transition in quite different concrete

examples. We show that, by exploiting a simple property such as the charge of the anyon,

one can capture the topological phase. We show that one can modify the Hamiltonian locally

to trap the quasiparticles at well-defined positions in the ground state. The excess charge

around the defect is expected to be equal to the charge of the anyon in the topological phase.

When the two phases fail to support the similar sets of quasiparticles, a change is seen in the

charge at the phase transition point. We show that, in contrast to conventional probes such as

topological entanglement entropy, many-body Chern number, spectral flow and entanglement

spectrum, this approach is numerically cheap and does not require a particular choice of

boundary conditions.
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All of the above discussions seem to indicate that most of the interesting physics occurs

only near the ground state of a quantum many-body system. This is because, the states

high up in the spectrum of a generic system correspond to high temperatures and conform

to the eigenstate thermalization hypothesis (ETH) [8, 9]. However, an exceptional case of

strong violation of ETH in all the eigenstates became evident in many-body localization

(MBL) [10], which is a phase induced by strong disorder in interacting quantum many-body

systems in 1D. The excited states of a MBL system behave very much like gapped quantum

ground states opening interesting possibilities like spontaneous symmetry breaking and

topological ordering even in eigenstates at finite energy densities. Symmetries are also

known to influence the eigenstates of disordered systems [11]. While MBL is possible in

models that have discrete symmetries, systems with non-Abelian continuous symmetries fail

to many-body localize even with large disorder. In the context of disordered systems, there

are several questions that remain unanswered, like, the consequences of emergent symmetries

in a MBL system, existence of MBL in long ranged models, non-ergodic phases beyond

MBL, etc.

While MBL is an example of strong ergodicity breaking, there has been a sudden surge

of interest in constructing models that violate ergodicity weakly through the mechanism of

quantum many-body scars [12]. Scarring is basically due to a set of measure zero eigenstates

that violate ETH which live in the midst of ETH obeying eigenstates of a generic system.

There is now a growing list of scarred models with more than one mechanism responsible for

their existence. The scar states are essentially similar to quantum ground states and hence

also bear interesting features like quantum criticality and topological order. While there are,

but, few models that describe scars with non chiral topological order, scar models with chiral

topological order is lacking.

In part, this thesis also aims to discuss interesting non-ergodic phases that emerge in

disordered models with non-local interactions and in the presence of different sorts of

symmetries. Further, this thesis adds to the scarce list of scarred models with chiral and

non-chiral topological order. We discuss this in the following chapters.

In Chapter 3, we first discuss thermalization in isolated quantum-many-body systems and

mechanisms that violate thermalization like MBL and quantum many-body scars.

In Chapter 4, we demonstrate the emergence of a weakly broken MBL phase in a model

Hamiltonian with non-local interactions that possesses a quantum critical ground state with

an emergent SU(2) symmetry. We discuss how we introduce disorder in the model and show

that the highly excited states display a transition from a thermal to a glassy MBL phase.

However, interestingly, we show that the ground state is exceptional, which is not localized

or glassy. We argue that, this is due to the emergent SU(2) symmetry in the ground state.
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Further, we confirm through the analytical knowledge of the ground state, for large system

sizes, that, the ground state stabilizes the Luttinger liquid phase even at significant disorder

strengths. We also discuss a simple prescription to lift the special ground state to the middle

of the spectrum of glassy MBL states. We call this as weakly broken MBL phase due to

the presence of a non-MBL eigenstate midst the spectrum of MBL states. We address this

special state to be an “inverted quantum scar", which, in some sense is opposite of quantum

many-body scars that lead to the weak violation of ETH.

In Chapter 5, we study the effects of disorder in the well known Haldane-Shastry model

which is SU(2) invariant. We demonstrate that at maximum disorder, the model has long

ranged interactions that do not decay as a simple power law. Through computations of mid

spectrum entanglement entropy and level spacing statistics, we show that the model fails to

many-body localize even at large disorder due to the SU(2) symmetry. We also argue that

this phase is non thermal for the system sizes investigated.

In Chapter 6, we discuss the construction of models with topological quantum scars with

chiral and non chiral orders. As a first construction, we exploit the existence of more than

one operators built through methods from CFT that annihilate the scar states of interest. In

this case, the scar state is a lattice Laughlin state with chiral topological order in 2D and

a quantum critical state with Luttinger liquid properties in 1D. We also introduce a free

parameter in our models that pins the scar state at any desired position in the spectrum.

We introduce small disorder in our models that ensures that the spectrum is generic and

thermal. We confirm the chiral topological order in the scar state in 2D by demonstrating

that the state supports anyons with the right charge and statistics. As a second construction,

we demonstrate a general strategy to turn classes of frustration free lattice models into

similar classes containing quantum many-body scars within the bulk of their spectrum while

preserving much or all of the original symmetry. We apply this strategy to a well known class

of quantum dimer models on the kagome lattice with a large parameter space. We discuss

that the properties of the resulting scar states like the entanglement entropy are analytically

accessible. We also demonstrate that the non-scar states conform to ETH through numerical

exact diagonalization studies on lattices of up to 60 sites.



Chapter 2

Topological phases on lattice in lower
dimensions

Quantumness of a phase of matter is relevant at zero temperature and hence governed by

the ground states of the many-body Hamiltonian describing the system. It was believed

that the remarkable Landau’s principles of symmetry breaking could explain every possible

quantum phase transition at zero temperature. After the discovery of the quantum Hall effect,

it became increasingly clear that there exist phases of matter in 2D which simply do not fit

under the Landau paradigm. These are the topologically ordered phases [13] whose complete

classification has remained largely unsettled. Topological order can be classified broadly into

symmetry protected topological phases (SPT) and those with intrinsic topological order. SPT

phases are states of matter that have a finite energy gap and a particular symmetry protecting

the phase. These are trivial topological phases characterised by entanglement which is

short ranged. Examples include integer quantum Hall systems, topological insulators, etc.

Intrinsic topologically ordered phases are characterised by long range entanglement. The

most important features of intrinsic topological order are ground state degeneracy on a

specific manifold and fractionalized excitations which are both absent in SPT phases.

The paradigmatic example for intrinsic topological order is the Fractional Quantum Hall

Effect (FQHE) where electrons form an incompressible fluid in two dimensions when subject

to a large magnetic field. In 1982, it occurred as a great surprise when Tsui, Stormer and

Gossard found plateaux in the Hall resistivity at non-integer filling fractions [3]. Venturing

the problem theoretically is extremely hard since it is unclear how electron interactions

would lift the macroscopic degeneracy in a partially filled Landau level and invoking the

standard degenerate perturbation theory would be futile. Then came the incredible proposal

by Laughlin for the ground state wavefunction at filling fraction 1/m given by [2],
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Ψm(z) = ∏
i< j

(zi − z j)
me−∑N

i=1 |zi|2/4l2
B (2.1)

. In the above expression, zi are the positions of the electrons and lB is the magnetic length.

The wavefunction takes into account the antisymmetrization for electrons when m is odd and

vanishes with a mth order zero when electrons approach each other, while the exponential

factor decreases soon when the electrons move away from the center. This creates a perfect

balance which qualifies the state to describe an incompressible fluid. Several numerical

studies have indeed confirmed that Laughlin’s wavefunction has an excellent overlap (> 99%)

with the ground state of electrons interacting via realistic Coulomb interactions.

An exact parent Hamiltonian whose zero energy ground state is the Laughlin state

described in Eq. 2.1, can be written in terms of the Haldane pseudopotentials as below [14],

H =
∞

∑
m′=0

∑
i< j

vm′Pm′(i j), (2.2)

where, Pm(i j) is the projection operator which chooses out states where particles i and j have

a relative angular momentum m. If one considers a hardcore potential such as v′m = 0 for

m′ ≥ m, then we have Pm′(i j)ψm(z) = 0 for any m′ < m. Then it immediately follows that,

Hψm(z) = 0.

Laughlin’s phenomenological guess works well only for filling fractions ν = 1/m where

m is odd and there are now mechanisms proposed to capture other filling fractions in a single

frame work [15].

The prime purpose of this chapter is to discuss the aspects of fractional quantum Hall

physics on a lattice to set the stage for rest of the discussions in this thesis. In the following

sections, we mainly discuss different routes to engineer FQH physics on a lattice, introduce

briefly to anyons and end with a discussion on the famous Haldane-Shastry model that we

repeatedly encounter in this thesis.

2.1 Lattice fractional quantum Hall effect

Realizing fractional quantum Hall (FQH) physics on lattice could be interesting in its own

right due to the following reasons. Firstly, a natural question arises if the physics of FQH

that may arise say through an interacting Bosonic system on a lattice is different than the

continuum due to an underlying lattice. It has been shown that one can ignore lattice effects

in the limit of small number of flux quanta per lattice plaquette [16, 17] and when this is

not true, the presence of lattice can lead to new correlated states of matter that are absent
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in the continuum [18–20]. Secondly, lattice has several advantages experimentally and a

number of proposals suggest that the FQH regime can be realized using optical lattices

[21, 22, 17, 23, 24]. The prime advantage in a lattice is the possibility of achieving a stable

and robust ground state separated by a larger gap to the excitations. Also, the need for large

magnetic fields is not necessary on a lattice as compared to the continuum. Thirdly, there

is much interest in creating and manipulating anyons from the view point of topological

quantum computation [25] and lattice FQH systems show a wide range of possibilities in this

direction as we will discuss further in this thesis.

We will discuss below the different routes through which a FQH phase on a lattice can be

engineered.

2.1.1 Fractional Chern insulators

In continuum FQH, all Landau levels have the same Chern number and are dispersionless

(flat) in the absence of disorder. Since the Landau levels are essentially flat, they can

accommodate an exponentially large number of Fermion slater determinants when they are

partially filled. It is from these macroscopically degenerate states, incompressible liquids

are selected by interactions at special values of the filling fractions. Hence, to realize FQH

physics in lattice, one must engineer flat Chern bands to mimic Landau levels and then add

interactions [26–29]. These are dubbed as “fractional Chern insulators". It was demonstrated

for instance in Ref. [29], where they start out with a local Bloch Hamiltonian Hk that has

dispersing Chern bands and then flatten the bands by tuning the hopping parameters and

thereby adding interactions. They demonstrate numerically through exact diagonalization

studies that the ground state is gapped and stabilizes FQH order.

2.1.2 FQH on lattice through magnetic fields

Optical lattice setups are promising where one can engineer artificial guage fields to induce

FQH physics and also allowing for detailed investigations of the effect, even at the level of

single particles. The simplest such model is the Bose-Hubbard model in a magnetic field on

a square lattice, where a bosonic ν = 1/2 FQH phase was theoretically studied [16, 17]. The

Hamiltonian of this model reads as,

HBH =−t ∑
xy
(ĉ†

x+1,yĉx,ye−iπαy + ĉ†
x,y+1ĉx,yeiπαx +h.c)+U ∑

x
n̂x,y(n̂x,y −1), (2.3)
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where ĉ†
x,y(ĉx,y) is the bosonic creation (annihilation) operator at position (x,y), t is the

hopping amplitude, U > 0 is the interaction strength and 2πα is the flux through the plaquette.

When α is small and the number of particles per lattice site is small, this is essentially the

continuum limit and the ground state of the model is the Laughlin’s wavefunction described

in Eq.(2.1). Numerical computations of the overlap between the Laughlin states on the torus

and the lattice many-body ground states were close to unity when α was much smaller

than the flux quantum. This overlap however decreased when α becomes of the order of

one quarter of the flux quantum [17]. Further, it was shown through the computations of

many-body Chern number that indeed there is a phase transition from a topological phase to

a trivial phase in the above model when one changes the parameter α [16].

In Chapter 9, we study this phase transition through the insertion of defects that turn out

to be anyons of the correct charge only in the topological phase. We also show to what extent

the model supports topological order with disorder through the eye of anyons.

2.1.3 Conformal field theory construction

The idea of Moore and Read [30] that the FQH states can be expressed as conformal field

theory (CFT) correlators can also be applied to construct lattice versions of fractional quantum

Hall states. In general, the wavefunction on a lattice of N sites with a fixed particle number

∑i ni = M, where n j ∈ {0,1} is the number of particles on the jth site, has the form,

|Ψ〉= 1

C ∑
n1,...,nN

ψ(n1, ...,nN)|n1, ...,nN〉 with C2 = ∑
n1,...,nN

|ψ(n1, ...,nN)|2. (2.4)

The Laughlin wavefunction at the Landau level filling fraction νLL = 1/q on the lattice can

be obtained through the correlator of operators from CFT as [5],

ψ(n1, ...,nN) = 〈Vn1
(z1)...VnN (zN)〉. (2.5)

In the above expression, Vni(zi) is the vertex operator defined at position zi given by,

Vni(zi) =: ei(qni−η)φ(zi)/
√

q : (2.6)

where, φ(z) is a chiral bosonic field of the c = 1 free bosonic CFT and : · · · : denotes normal

ordering. By the suitable choice of the vertex operators, the charge neutrality condition is

addressed. The correlator in (2.5) leads to the following wavefunction,
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ψη
q (n1, ...,nN) = δn ∏

i<k
(zi − zk)

qnink ∏
j 	=l

(zl − z j)
−ηnl , (2.7)

where δn = 1 if the number of particles is M = ηN
q and δn = 0 otherwise. Hence now, one

can also define a lattice filling fraction νLA = M
N = η

q . When η = 1, we are in the strict

lattice limit and we reach the continuum limit through η → 0+, N → ∞ and by fixing ηN.

The wavefunction in Eq. (2.7) describes fermions and bosons for q being odd and even

respectively with the first product term interpreted as the attachment of q fluxes to each

particle and the second product term corresponds to the background charge in the lattice.

One can also construct parent Hamiltonians for these states by exploiting the existence of

null fields in CFT [5]. The approach to derive exact lattice Hamiltonians begins by finding a

set of operators Λi which annihilate the lattice FQH state |ΨFQH〉, i.e.,

Λi|ΨFQH〉= 0 (2.8)

The Hamiltonian, whose ground state is |ΨFQH〉, is given by the following semidefinite

operator,

H = ∑
i

Λ†
i Λi (2.9)

These parent Hamiltonians are few-body with nonlocal terms and in some cases, truncation

and optimizing the coefficients have lead to local Hamiltonians with similar topological

properties [31, 32]. In Chapter 7, we discuss a general truncation scheme to arrive at local

FQH Hamiltonians without resorting to any sort of fine tuning. We show that the local

Hamiltonians indeed stabilize the fractional quantum Hall order in their ground states. We

also discuss how we obtain local Hamiltonians in 1D whose ground states retain the correct

universal critical properties.

2.2 Anyons

Quantum statistics is a crucial ingredient for quantum mechanical structure of the microscopic

world. It is the defining property which states that the wavefunction describing a system

of identical particles should satisfy the proper symmetry under the exchange of any two

particles. For instance, fermions and bosons are distinguished from the requirement that under

exchange, the wavefunction of bosons is symmetric while that of fermions is antisymmetric.

Furthermore, in three spatial dimensions, moving one particle all the way around an other is

topologically equivalent to a state where the particles have not moved at all. Hence the only
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two possibilities are the wavefunctions that can utmost change by a ± sign under exchange

leading to the possibility of existence of just bosons and fermions in three dimensions.

However, this is not the case in two spatial dimensions where the particle loop that encircles

the other particle cannot be deformed to a point continuously. Hence exchanging a particle

with the other in two spatial dimensions may lead to an arbitrary phase,

ψ(r1,r2)→ eiθ ψ(r1,r2) (2.10)

Here the phase need not just be a ± sign and can be arbitrary since exchanging the particle

again in the same direction can lead to a non trivial phase :

ψ(r1,r2)→ e2iθ ψ(r1,r2) (2.11)

Hence bosons and fermions are just special cases when θ = 0,π . Anyons are particles with

any statistical phase θ [33]. Anyons described above are of the Abelian kind where different

exchanges lead to phases that commute. However, there can be an exotic possibility when

the anyons are non Abelian, where degenerate ground states mix among themselves under an

exchange operation. Realizing non-Abelian anyons experimentally and braiding them could

be a crucial first step towards constructing a fault tolerant topological quantum computer

[25].

The best example where anyons show up is again the fractional quantum Hall effect

where excitations are quasi-holes and quasi-electrons. It is well-known how one can modify

the Laughlin state [2] with quasiholes defined on a disk-shaped region in the two-dimensional

plane into a Laughlin state with quasiholes defined on a square lattice with open boundary

conditions [6]. This is done by restricting the allowed particle positions to the lattice sites and

by also restricting the magnetic field to only go through the lattice sites. Here, we consider

a system with one magnetic flux unit through each lattice site, and take the charge of a

particle to be −1. The resulting wavefunction with S quasiholes at the positions wi, with

i = 1,2, . . . ,S, can again be constructed through a CFT correlator [6]. It is given by,

|ψq,S〉= ∑
n1,n2,...,nN

ψq,S(n1,n2, . . . ,nN)|n1,n2, . . . ,nN〉, (2.12)

where

ψq,S(n1,n2, . . . ,nN) = C−1 δn ∏
j,k
(w j − zk)

p jnk × ∏
i< j

(zi − z j)
qnin j ∏

i	= j
(zi − z j)

−ni . (2.13)
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In this expression, the zi, with i = 1,2, . . . ,N, are the coordinates of the N lattice sites written

as complex numbers, n j ∈ {0,1} is the number of particles on the jth site, q and p j are not

too large integers, and q must be at least 2. C is a real normalization constant that depends

on all the wi, and

δn =

⎧⎨
⎩1 for ∑N

j=1 n j =
(

N −∑S
j=1 p j

)
/q

0 otherwise
(2.14)

fixes the number of particles ∑ j n j � 1 in the system in such a way that there are q flux

units per particle and pk flux units per quasihole. The particles are fermions for q odd and

hardcore bosons for q even. We restrict q and p j to small integers and require the number

of particles to be large compared to one, since this is the regime for which it has already

been confirmed numerically [6, 34] that the lattice Laughlin state has the desired topological

properties. When the state is topological, one observes the following results numerically

[6, 34]. The state without anyons has a uniform density of 1/q particles per site in the bulk

of the system, which means that 〈ψq,0|n j|ψq,0〉 is constant and equal to 1/q in the bulk. The

kth quasihole creates a local region around wk with a lower particle density. This can be

quantified by considering the density difference

ρ(z j) = 〈ψq,S|n j|ψq,S〉−〈ψq,0|n j|ψq,0〉, (2.15)

which is defined as the expectation value of n j in the state with anyons minus the expectation

value of n j in the state without anyons. When all other anyons are far away, the total number

of particles missing in the local region is pk/q. This must be so when the quasihole is entirely

inside the local region, since it follows from Eq. (2.14) that the presence of the kth quasihole

reduces the number of particles in the system by pk/q. Since the particles have charge −1,

the quantity −ρ(z j) is the charge distribution of the anyons, and summing −ρ(z j) over the

local region at wk gives the charge pk/q of the kth anyon.

Creation of localized anyons through pinning potentials added to the FQH Hamiltonians

have also been studied [35, 36]. Although there is yet no direct observation of fractional

statistics, some signatures have been observed in electron interferometer experiments [37, 38].

As discussed earlier, in a lattice, there is now much interest to engineer FQH physics

and hence naturally also to realize anyons. Experimentally, optical and atomic systems

have an advantage over conventional solid-state systems since there is a possibility to

create and control quasi particles more naturally and with precision [39]. Similar to the

continuum, fractional excitations can be invoked through trapping potentials added to the

lattice FQH Hamiltonians [40–44]. Braiding experiments have been performed numerically

by adiabatically moving the trapping potentials to move the anyons [40]. However, on a
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finite sized system with open boundaries and with few lattice sites, the anyons typically have

a spread that lead to a significant overlap and hence braiding results are not very satisfactory.

In Chapter 8, we address this issue by optimizing the trapping potentials so as to squeeze the

anyons on few sites on a modest lattice with open boundaries. Interestingly, we show that, in

this way, anyons can be crawled like a snake with minimum overlap and numerically achieve

far better braiding results.

2.3 The Haldane-Shastry model

Interestingly, if one restricts attention to one dimension there exists a model spin Hamiltonian

whose ground state resembles a 1D discretization of the Laughlin state. This is the famous “

Haldane-Shastry model (HS model)" [45, 46]. The model is a Heisenberg antiferromagnetic

spin chain with couplings that decay as the square of the inverse distance between the spins

located on the unit circle (at positions z j = exp(i2π j
N )) given by,

HHS =
(2π

N

)2

∑
i< j

Si .Sj

|zi − z j|2 (2.16)

where |zi − z j| is the chord distance between the sites i and j, as depicted in the Fig. 2.1. The

Hamiltonian is SU(2) invariant ([HHS,Stot] = 0) and has an additional symmetry generated

by the rapidity operator given by,

Λ =
i
2

N

∑
i, j=1i	= j

zi + z j

zi − z j
Si ×Sj, [HHS,Λ] = 0. (2.17)

Although both Stot and Λ commute with the Hamiltonian, they do not commute with each

other and this generates an infinite dimensional Yangian algebra making the model completely

solvable [47–50]. The ground state of this model is known exactly and given by,

|ψHS〉= ∑
z1,...,zM

ψHS(z1, ...,zM) S+z1
...S+zM

| ↓↓ ..... ↓〉. (2.18)

In the above expression, the sum runs over all possible ways to distribute the coordinates zi

of M = N
2 ↑ spin on the unit circle. The amplitude is given by,

ψHS(z1, ...,zM) =
M

∏
i< j

(zi − z j)
2

M

∏
i=1

zi. (2.19)

As emphasized in the beginning, the above wavefunction is remarkably similar to the Bosonic

Laughlin’s wavefunction at filling fraction 1/2 on a ring when one transforms the spin
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zi

zj

Fig. 2.1 System of N spin 1/2 particles on the unit circle at positions z j = exp(i2π j
N ). The

chord distance |zi − z j| is shown with the straight line connecting the spins at positions i and

j.

variables to hardcore bosons. In fact, the wavefunction expressed in Eq. (2.7) corresponds

to the lattice HS wavefunction for q = 2 and η = 1 in the language of hardcore bosons.

The excitations of the model are spinons and can be constructed in a way similar to the

construction of quasiholes starting from the Laughlin’s wavefunction [51–53]. In addition,

this model is known to be the conformal gapless fixed point of the spin models within the

SU(2)1 WZW class, a Luttinger liquid [45, 54, 55].

The HS model requires the constraint that the spins be positioned uniformly on the unit

circle. It would be interesting to ask how the physics of the model and its ground state get

affected by relaxing such a constraint. In Chapter 4 we will address this by studying the

effects of disorder in a non SU(2) invariant parent Hamiltonian for an inhomogeneous version

of the HS wavefunction. Interestingly, we find that the state stabilizes Luttinger liquid phase

even with a fair amount of disorder. In Chapter 5, we will discuss the effects of disorder in

an inhomogeneous SU(2) version of the HS model and show numerically an emergence of a

non-ergodic but also a non-MBL phase at maximum disorder.



Chapter 3

Thermalization and its violation in
quantum many-body systems

The concept of thermalization has successfully captured the emergent macroscopic behaviour

of physical systems. However, a description at the microscopic level has remained elusive

and still being debated. In classical mechanics, non-linear equations governing the particle

trajectories drive them to explore the constant-energy space uniformly according to the

microcanonical measure. However, for an isolated quantum many-body system, dynamics

is inherently unitary and hence needs a different treatment to understand the process of

thermalization. On the other hand, a natural question arises if every generic quantum many-

body system void of special conservation laws always thermalizes or do routes exist to escape

thermalization.

In this chapter, we will introduce briefly to the concept of thermalization in isolated

quantum systems. Next, we describe how an interplay between disorder and interactions can

lead to a strong violation of thermalization in the many-body localized systems. We will

also briefly discuss the consequence of long ranged terms and symmetries on the physics of

many-body localization. We will end by discussing the phenomenon of quantum many-body

scars which is yet an other mechanism through which thermalization is avoided in the weaker

sense.

3.1 Thermalization in isolated quantum many-body sys-
tems

The breakthrough in understanding thermalization in quantum systems came with the for-

mulation of "eigenstate thermalization", where a single eigenstate can be thought of being
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in thermal equilibrium. An ansatz was put forth through the name of "Eigenstate Thermal-

ization Hypothesis (ETH)" which gave a solid foundation to the mechanism of eigenstate

thermalization [8, 9]. The hypothesis comes with the description for matrix elements of

a local observable Ô computed within the eigenstates |α〉 and |β 〉 with the corresponding

energies Eα and Eβ of a generic, non-integrable quantum many-body system given by,

〈α|Ô|β 〉= Omc(E)δαβ + exp(−SE/2)Rαβ f (ω,E) (3.1)

where, E = (Eα +Eβ )/2, ω = Eα −Eβ , SE is the thermodynamic entropy which scales as the

volume of the system (S ∝ V ), Omc is the microcanonical average and Rαβ are independent

normally distributed random variables. In addition, Omc(E) and f (ω,E) are required to be

smooth functions of their arguments.

Now, if one considers a non-equilibrium initial state |ψ(0)〉 and computes the average of

any local observable Ô in the time evolved state after sufficiently long time, one would get

an equilibrium expectation value as shown below.

|ψ(t)〉= ∑
n

Cne−iEnt |En〉 (3.2)

where, |En〉 are eigenstates of a generic quantum many-body Hamiltonian H and Cn =

〈En|ψ(0)〉. The expectation value of the local operator Ô in the time evolved state |ψ(t)〉 is

given by,

〈Ô(t)〉= 〈ψ(t)|Ô|ψ(t)〉= ∑
n
|Cn|2 + ∑

n 	=m
C∗

mCne−i(En−Em)tOmn (3.3)

where, Omn = 〈Em|Ô|En〉. Long time average of the observable in the absence of symmetries

and degeneracies is given by,

lim
T ′→∞

1

T ′

∫ T ′

0
〈Ô(t)〉= ∑

n
|Cn|2Onn (3.4)

Now, if the system thermalizes, one can invoke ETH to get,

∑
n
|Cn|2Onn ≈ Omc. (3.5)
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3.1.1 Numerical evidences for thermalization

There have been several numerical checks for eigenstate thermalization hypothesis. As an

example, we report the studies in the well known interacting model of hardcore bosons from

the Ref [56] given by

H =
N

∑
i=1

[−J(c†
i ci+1+H.C)+V (n̂i− 1

2
)(n̂i+1− 1

2
)−J′(c†

i ci+2+H.C)+V ′(n̂i− 1

2
)(n̂i+2− 1

2
)]

(3.6)

In the above Hamiltonian, c†
i (ci) is the creation (annihilation) operator for the hardcore boson

at the lattice site i and n̂i = c†
i ci is the number operator at the lattice site i. When J′ =V ′ = 0,

the model maps on to the well known spin-1/2 XXZ spin chain which is integrable. The

model becomes generic and quantum chaotic when it is tuned away from integrability and

the numerical evidence is discussed below.

3.1.1.1 Level spacing statistics

Indications of thermalization can be inferred by studying the statistics of the energy level

spacing of a many-body system. The essential idea is that the Hamiltonian of a generic

system is in fact a random matrix and hence there is a tendency for energy level repulsion.

Therefore, the distribution of spacing s between consecutive energy levels would be that of

Wigner-Dyson. In particular, if one considers real symmetric Hamiltonians, one would get a

distribution that belongs to the Gaussian Orthogonal Ensemble (GOE) given by PGOE(s) =
π
2 se−

π
4 s2

and for complex hermitian Hamiltonians, one would get Gaussian Unitary Ensemble

(GUE) distribution given by PGUE(s) = 32
π2 s2e−

4
π s2

. On the other hand, for systems that are

integrable, there is an absence of level repulsion and one would get Poissonian distribution

for the level spacing given by P(s) = e−s.

It is important to carry out the analysis of level spacing distribution in the sectors of

Hamiltonians free from any symmetries and failing to do so can cause the quantum chaotic

system to appear integrable. This is because of the absence of level repulsion between levels

in different symmetry sectors. The model described in Eq. 3.1.1 is translationally invariant

and different quasi-momentum sectors labelled by k are decoupled. The distribution of the

level spacing ω , P(ω), was numerically computed by averaging over all the k-sectors after

fixing the number of particles. At the integrable point (J′ =V ′ = 0), P(ω) was shown to be

close to the Poisson distribution and for greater values of the integrability breaking strengths,

P(ω) became close to GOE distribution [56].
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3.1.1.2 Entanglement entropy

The entanglement structure of the eigenstates have direct implications for an ergodic system.

For an eigenstate |r〉 of an ergodic Hamiltonian that obeys ETH, we saw that all local

observables in a subsystem will have thermal expectation values. This means that the

reduced density matrix of a subsystem A after tracing the rest of the system B, ρA = TrB|r〉〈r|
is thermal. Therefore, the von Neumann entropy of ρA which measures the amount of

entanglement in the state |r〉 should be equal to the thermodynamic entropy. That is,

Sent(A) =−Tr ρA ln(ρA) = Sth(A). (3.7)

The thermodynamic entropy is an extensive quantity and hence one would expect that

entanglement entropy of the states in the middle of the spectrum obeys “volume-law" scaling

proportional to the volume of the subsystem, Sent(A) ∝ vol(A). Random matrix theory

predicts that the entropy of a high energy eigenstate of an ergodic system should be equal

to the “Page value" given by, SPage = ln(0.48D)+O(1/D), where D is the dimension of

the many-body Hilbert space [57]. Numerical findings indicated that the entropy Sm for

eigenstates of the Hamiltonian in Eq. 3.1.1 are only bounded by the Page value [56].

3.2 Routes to break ergodicity in quantum many-body sys-
tems

As we saw, a generic system which does not have special conservation laws thermalizes.

The question naturally arises if there are mechanisms through which a system avoids to

reach thermal equilibrium even after long enough times. Integrable systems are known to

possess an extensive number of integrals of motion and hence do not thermalize in the usual

sense. However, integrability is a fine tuned phase and any perturbation will usually make

the system generic. Two well known examples of ergodicity breaking in generic systems are

many-body localization and quantum many-body scars as we discuss them below.

3.2.1 Many-body localization

The physics of a single particle on a lattice is described by a propagating Bloch state

similar to plane waves. Naively one would think that in the presence of some disorder,

quantum mechanical tunnelling process would still permit for the diffusion process to occur.

However, Anderson in his seminal paper showed that the wavefunction of the single particle

in a disordered environment becomes localized in a certain region of space and decays
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exponentially away from that region [58]. The seed of localization lies in the fact that

at extreme disorder, the variance of the disorder is much large compared to the tunnelling

amplitude between neighbouring lattice sites which makes the resonant transitions impossible.

In dimensions three or greater, for weak disorder, the eigenstates of the Hamiltonian are

extended and the dynamics of the particle is diffusive. However, in dimensions one and two,

even for arbitrarily weak disorder, each eigenstate labelled by α is exponentially localized

near position Rα with wavefunctions that have the long distance asymptotic form given by

ψα(�r)∼ exp(−|�r−�Rα |
ξ ). The localization length ξ typically depends on the disorder strength

and the energy density. Thus the eigenstates clearly do not obey ETH and if one were to

intialize the system with a non-uniform density pattern which corresponds to high energy,

the system would retain the memory of the pattern even after long times.

The question thus arises if localization persists when interaction between particles is

included. In a significant work by Basko, Aleiner and Altshuler (BAA) [59], it was shown

that indeed Anderson localization is perturbatively stable to interactions. This phase was

dubbed the many-body localized phase (MBL). The standard model that exhibits an MBL

phase is the Heisenberg spin chain in the presence of random onsite magnetic field (hi) [60]

whose Hamiltonian reads as,

H = J ∑
<i, j>

�σi.�σ j +∑
i

hiσ z
i . (3.8)

In the above expression, hi is drawn from a uniform distribution of width W > 0. When

J = 0, the system is trivially localized where all the eigenstates are product states which is of

the form |σ z
1〉⊗ |σ z

2〉..⊗|σ z
N〉. For J �W , the many-body eigenstates can be perturbatively

constructed starting from the product state. In this limit, the energy level difference between

different sites is larger than the interaction strength J and thus the states on different lattice

sites weakly hybridize. Thus, thermalization does not occur and there is absence of transport.

There is a phenomenological treatment to MBL which is described as follows [61].

For simplicity, if we consider a system of N spin 1/2 degrees of freedom governed by a

Hamiltonian such as the one described in (3.8), at large disorder, all of the eigenstates can

be localized. In this limit, one can construct new localized two level degrees of freedom

called the ‘l-bits’ denoted by �τi. These l-bits are constructed through quasi-local unitary

transformations (�τ =U†�σU) and hence the l-bits are close to the original spin operators at

least at very large disorder. At large disorder, the Hamiltonian can now be rewritten in terms

of the�τ operators as,

H = ∑
i

τz
i +∑

i> j
Ji jτz

i τz
j + ∑

i> j>k
Ji jkτz

i τz
jτ

z
k + ... (3.9)
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Since the above Hamiltonian was derived through quasi-local unitary transformations, the

couplings decay exponentially with separation between the τz operators. Also since [H,τz
i ] =

0, the eigenstates of H can be fully specified by labelling them with the eigenvalues of all

τz
i . Hence, one can view each τz

i operator as an emergent conserved quantity which cannot

decay during the quantum time evolution. Thus there is a sense of emergent integrability in

MBL systems due to the existence of the complete set of local conserved quantities. This is

the reason why the energy level spacings obey the Poissonian statistics in a MBL system.

However, in contrast to the fine tuned integrable systems, integrability in MBL systems is

robust to perturbations which qualifies it as a generic example of ETH violation.

An other important feature of MBL systems is the low entanglement in the eigenstates,

typically area law entanglement [10]. The entanglement entropy of a subsystem A computed

for an MBL eigenstate scales as the volume of the boundary ∂A of A given by S ∝ vol(∂A),
when both the size of the system and subsystem are taken to infinity. For a one dimensional

system, ∂A is just two end points of the subsystem and hence area law implies that entangle-

ment entropy does not scale with the size of subsystem, S = constant. An intuitive way to

understand this is, suppose we consider two disconnected pieces A and B of a system with

corresponding Hamiltonians HA and HB, then the eigenstates of the net system (HA +HB)

is a simple tensor product |AB〉 = |A〉⊗ |B〉 where |A〉 and |B〉 are eigenstates of HA and

HB respectively. Now, if we turn on a local coupling near the boundary, in a MBL system,

introducing a local perturbation will only affect degrees of freedom situated within the

localization length ξ from the boundary. Thus the new eigenstates can be obtained from |AB〉
by entangling degrees of freedom in A and B within the distance ξ away from the boundary

leading to an area law scaling of entanglement.

3.2.1.1 MBL in the presence of long ranged interactions and hopping

Intuitively, long ranged interactions and hopping processes in even largely disordered systems

support the formation of an effective bath that can lead to thermalization and hence not favour

MBL. Perturbative arguments suggest that, with the presence of power-law interactions and

hopping terms v, t ∼ 1/rα , MBL cannot survive when α < 2d where d is the dimensionality

of the space [62–64]. The potential cause for a possible breakdown of MBL phase are

resonance processes that lead to an eventual delocalization. In fact, numerical studies have

shown that long ranged hopping can be more harmful for an MBL phase compared to long

ranged interactions due to the divergence in the number of resonances in the case of long

ranged hopping. Also, an intriguing possibility of MBL with long ranged interactions has

been proposed in one dimensional systems where charge confinement is favoured due to

interactions [65].
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In Chapter 4, we show the existence of MBL phase in a model with non-local interactions

and hopping terms. Although the hopping terms decay quickly with distance, the interaction

terms do not have a simple power law decay. In fact, the particles that are farther apart can

interact more strongly than the ones that are close by. This hence serves as a counter intuitive

situation where MBL phase is stable although the model is sufficiently non-local.

3.2.1.2 Role of symmetries in MBL physics

The eigenstates of a many-body localized system have very low entanglement similar to the

ground states of gapped system. It is well known that spontaneous symmetry breaking at

finite temperature in one-dimensional systems with short range interactions is absent [66].

However, in an MBL system, the eigenstates violate ETH and hence can exhibit ordered

phases in contrast to thermal ensembles. The excitations that would destroy any ordered

phase in a thermal state are in fact localized in an MBL state and hence protecting order.

This is famously now known as “localization protected quantum order" [67].

Discrete symmetries :

If the system has discrete symmetries, then the eigenstates can choose to break them spon-

taneously and become glassy at large disorder strengths [67–69]. For instance, in Ref [68],

this was demonstrated in the disordered Ising spin chain whose Hamiltonian is given by,

H =−
L−1

∑
i=1

Jiσ̂ z
i σ̂ z

i+1 +h
L

∑
i=1

σ̂ x
i + J2

L−2

∑
i=1

σ̂ z
i σ̂ z

i+2, (3.10)

where Ji = J+δJi are independent positive random numbers with δJi drawn from uniform

distribution [−δJ,δJ]. The model has a global Z2 symmetry implemented by the spin-flip

operator P̂ = ∏i σ̂i
x. Two distinct MBL phases can arise in this model. At weaker disorder,

the model exhibits a trivial paramagnetic MBL phase. At large disorder, a spin glass phase

can occur with long range order in an eigenstate |α〉 with 〈σ̂ z
i σ̂ z

j 〉α 	= 0 for |i− j| → ∞.

The phase diagram of this particular model has been numerically studied and a transition

from thermal to MBL paramagnetic phase followed by a transition to an MBL spin-glass

phase was seen on increasing the disorder strength. In the spin glass phase, the eigenstates

spontaneously break the discrete symmetry and this manifests through the pairing of energy

levels in the many-body spectrum of a finite sized system.

Interestingly, in Chapter 4, we numerically show in a model Hamiltonian with non-local

interactions that the excited states display a transition into the spin glass phase while the

ground state remains exceptional with no phase transition. We will argue that this is due to
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an emergent symmetry in the state. Likewise, new phases have also been studied in models

with other discrete Abelian symmetries and also in higher dimensions.

Non-Abelian continuous symmetries:

It has been shown that the MBL phase is inconsistent with non-Abelian continuous symme-

tries [70, 11, 71, 72]. This is because of the multiplet structure demanded by the symmetry

which causes degeneracies that ultimately lead to thermalization even at large disorder. A

classic example where MBL breaks down is when the system has SU(2) symmetry. To un-

derstand this easily [71], consider two disconnected systems L and R. The SU(2) symmetry

demands that each eigenstate |α〉L of the system L has its own multiplet mL with a total

spin SL with a degeneracy of 2SL +1 and likewise for the other disconnected piece R. No

matter how weakly one couples them together, the eigenstates of the full system (L+R) would

transform as an irreducible representation of the SU(2) symmetry which acts on the combined

system. Hence the eigenstates of the full system (L+R) would form larger multiplets with

spins that can take values |SL − SR|, |SL − SR|+ 1, ...,SL + SR and utmost they can have an

entanglement entropy S ≈ ln(min(SR,SL)) and not an area law scaling [71].

In Chapter 5, we show the absence of MBL in a long ranged SU(2) invariant model even

at large disorder which is in line with the above argument.

Emergent symmetries :

There can be an interesting scenario when certain eigenstates of a Hamiltonian have a

particular symmetry, where as, the Hamiltonian does not enjoy that symmetry. These are

called “emergent symmetries". The role of emergent non-Abelian continuous symmetries

could be interesting in MBL systems that forbid MBL only in the eigenstates with symmetry

and not preventing other eigenstates. We show in Chapter 4 where MBL is avoided in a

single eigenstate of a disordered spin-1/2 chain that has an emergent SU(2) symmetry while

not preventing the rest of the states from localizing.

3.2.2 Quantum many-body scars

In MBL, at strong disorder, all of the eigenstates in the many-body spectrum violate ETH

and hence qualifies as an example of strong ergodicity breaking. However, recently, systems

that violate ETH weakly, dubbed as “ quantum many-body scars " have been much of interest

with a plethora of different examples.

In a recent experiment in 2018, a family of Rydberg atom simulators revealed an un-

expected dynamical phenomenon [73]. The experiment was essentially a set of two-level
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systems where an atom can be in either the ground state |G〉 or in the excited state |E〉. The

system had a kinetic constraint that induced strong Van der Waals repulsion between atoms

in the excited states leading to Rydberg blockade (excitations of neighbouring atoms in

prohibited, eg., |..EE...〉) that was achievable by tuning the inter atomic distance. When

specific initial states (such as density wave state, |Z2〉 ≡ |EGEG...〉) were chosen, surprising

revivals were observed while the system showed quick relaxation otherwise. This strong

dependence on the initial conditions was unexpected for the system which did not have any

conserved quantities other than the total energy. Also, the model had no disorder and thus

ruling out the possibility of integrability or localization. An effective Hamiltonian capturing

the physics was constructed as below [74],

H = ∑
i

P̂i−1σ x
i P̂i+1 (3.11)

where σ x
i = |G〉i〈E|i + |E〉i〈G|i and P̂i = |G〉i〈G|i is the projector onto the ground state that

enforces the Rydberg blockade and hence makes the model interacting. Numerical studies

have observed energy level repulsion for the Hamiltonian indicating absence of integrability.

Surprisingly, the spectrum of the Hamiltonian contained a measure zero set of eigenstates

that had a significant overlap with the |Z2〉 state. Furthermore, the entanglement entropy for

these exact set of states were low despite living midst a sea of high energy states which had

entropy close to the thermal value. It was these small number of ETH violating states that

were responsible for the many-body revivals witnessed in the experiment. The special states

were called “quantum many-body scars" and the phenomenon is analogous to the physics

of single particle quantum scarring where the quantum wavefunction is enhanced along the

unstable periodic trajectories for instance in the billiard stadium set up.

There are now several mechanisms responsible for quantum scarring in many-body

systems and can be broadly categorized into three types [12]. Firstly, projector embedding

method due to Shiraishi and Mori [75], allows target eigenstates |ψi〉 to be embedded at

arbitrarily high energies. This method uses local projectors Pi that annihilate the target states

Pi|ψ j〉 = 0 for any i ranging over lattice sites 1,2, · · ·L. Then one defines a Hamiltonian

of the form H = ∑L
i PihiPi +H ′, where hi acts near site i and [H ′,Pi] = 0 for all i. This

Hamiltonian then has the target states at high energy density as the quantum scars and the

other states in the spectrum obey ETH with a suitable choice of H ′. Secondly, there is the

method of spectrum generating algebra defined by a local operator Q̂† obeying the relation

([H, Q̂†]−ωQ̂†)W = 0, where ω is some energy scale and W is a linear subspace of the full

Hilbert space which is invariant under the action of Q̂†. Then, starting from an eigenstate |ψ0〉
of H, the tower of scar eigenstates (Q̂†)n|ψ0〉 with energy E0 +nω are built. As examples,
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quantum scars in the AKLT model [76] and other spin chains [77–80] were constructed

using this method. Thirdly, there can be a situation when repeated action of the Hamiltonian

H on some arbitrary vector in the Hilbert space which generates the sequence of Krylov

vectors terminate after n+1 steps. Hence, now if one looks at the dynamics initialized from

any state within the Krylov subspace, at any later time, remains within the same subspace.

This is known as “Krylov restricted thermalization" which leads to a dynamical fracture of

the Hilbert space. Examples of this mechanism include fractional quantum Hall effect in a

quasi one-dimensional limit [81] and in constrained hopping models of bosons in optical

lattices [82, 83]. All these mechanisms bear a similarity in the emergence of a decoupled

subspace within the many-body Hilbert space not related to any global symmetry of the full

Hamiltonian.

The highly athermal nature of the scar states allow them to exhibit interesting properties

such as long range order [77] and even topological order [84]. There has been a proposal to

deform exactly solvable models such as the toric code so as to make the model non-integrable

and with a topologically ordered scar state placed in the middle of the spectrum of ETH

states [84]. In Chapter 6, we provide two other constructions of topologically ordered scarred

models. In one case, we build Hamiltonians that realize scar states with chiral topological

order by exploiting the existence of multiple operators derived from CFT that annihilate the

scar state. In addition, we show that the scar states survive with small disorder and remain

topologically ordered by showing the existence of anyons with well defined charges. In an

other example, we describe a general strategy to turn classes of frustration free lattice models

into similar classes containing topological quantum many-body scars within the bulk of their

spectrum while preserving much or all of the original symmetry.



Chapter 4

Escaping many-body localization in a
single eigenstate via an emergent
symmetry

In Chapter 3, we saw that the interplay of disorder and interactions in many-body systems

induces a localized phase where eigenstates violate ETH. At strong disorder, in 1D, all the

eigenstates are localized. This is hence an example of strong violation of ETH or a fully

many-body localized situation. One can ask if this is always the case or can one construct a

model which exhibits a weak violation of MBL even with extreme disorder ? It turns out

that this requires two ingredients, MBL and an emergent symmetry. Previously, we saw that

a MBL phase is impossible with non-Abelian continuous symmetry groups. The essential

idea would be to construct MBL Hamiltonians with emergent non-Abelian symmetries in

eigenstates even in the presence of disorder. Upon adding large disorder, all but states with

emergent non-Abelian symmetries localize.

In this chapter, we demonstrate this situation in a Z2 symmetric non-local model with

an analytically known critical ground state with an emergent SU(2) symmetry. We show

numerically that the states in the middle of the spectrum are glassy and many-body localized.

We confirm this through computations of entanglement entropy and spin glass order parameter

for states in the middle of the spectrum and the level spacing statistics. For the ground state

alone, we show computations of Renyi entropy and full counting statistics for large system

sizes, indicating that the state retains its Luttinger liquid behavior and remains non glassy

even with significant disorder. By destroying the emergent symmetry, we show that the

ground state becomes glassy and is no longer special. Finally, we also discuss how the

ground state can be moved up in the spectrum portraying an instance of weak MBL violation
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Fig. 4.1 Left: Uniform lattice on a circle with N=6 spins. Right: Disordered lattice with N=6

spins. When we divide the system into two parts to compute the entanglement entropy, we

choose part A of the system to be the N/2 spins with the smallest angles φ j and part B to be

the remaining spins.

where a single non-MBL state is embedded in a spectrum of MBL states. This chapter is

based on the following reference [85].

• “ Many-body delocalization via emergent symmetry ”, N. S. Srivatsa, R. Moessner &

A. E. B. Nielsen, Phys. Rev. Lett. 125, 240401 (2020)

4.1 Model Hamiltonian

We study a system of interacting N spin-1/2 particles whose Hamiltonian is given by,

H = ∑
i	= j

FA
i j (S

x
i Sx

j +Sy
i Sy

j)+∑
i	= j

FB
i j Sz

i S
z
j +FC (4.1)

In the above expression, Sa
i = σa

i /2, a ∈ {x,y,z}, where σa
i are the Pauli matrices acting on

the ith spin. The coupling strengths are given by,

FA
i j =−2w2

i j,

FB
i j =−2w2

i j +2wi j( ∑
k(	=i)

wik − ∑
k(	= j)

w jk),

FC =
N(N −2)

2
− 1

2
∑
i	= j

w2
i j,

(4.2)

where, w jk =−i/ tan[(φ j −φk)/2] and the positions of the spins are constrained to live on

the unit circle given by eiφ j . We introduce disorder in the model by randomly positioning the

spins on the unit circle by choosing,

φ f ( j) = 2π( j+α j)/N, j = 1,2, ...,N, (4.3)
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Fig. 4.2 Probability that the spin i interacts most strongly with one of the spins i±m modulus

N for different disorder strengths. This is computed for N = 16 spins.

where α j is a random number chosen with constant probability density in the interval [−δ
2 ,

δ
2 ]

and δ ∈ [0,N] is the disorder strength. We choose the indices f ( j) ∈ 1,2, ...,N such that the

spins are always numbered in ascending order when going around the circle. For the clean

case, δ = 0, the spins are uniformly distributed on the circle, and for maximal disorder, δ =N,

all the spins may be anywhere on the circle as depicted in Fig. 4.1. For δ ≥ 1, neighboring

spins can be arbitrarily close. The Hamiltonian (7.10) is fully connected, meaning that every

spin interacts with every other spin. If we interpret a spin up as a particle and a spin down as

an empty site, the first term in the Hamiltonian is a hopping term while the second term is the

interaction between spins. For short distances (when |φi −φ j| is small), the coefficient FA

decays quickly with increasing |φi −φ j| as FA
i j ∝ 1

|φi−φ j|2 . The behavior of the coefficient FB
i j

of the two body interaction is complicated. The maximum interaction strength for spin i does

not need to be with one of the spins i±1 modulus N. Hence, we compute the probability

that the spin i interacts most strongly with one of the spins i±m modulus N which is shown

in Fig. 4.2. For the case with disorder (δ 	= 0), the Hamiltonian has no SU(2) symmetry and

has only a global discrete Z2 splin flip symmetry generated by the operator ∏N
i=1 σ x

i .

4.2 Physics of the ground state with disorder

In the zero magnetization sector (∑i Sz
i = 0), the Hamiltonian in Eq. (7.10) can be written as,

H =−2∑
k

Λ†
kSz

kΛk (4.4)

where, Λk = ∑ j(	=k)wk j[Sx
j − iSy

j −2(Sx
k − iSy

k)S
z
j] is an operator that annihilates the state,
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Fig. 4.3 The ground state of a random Heisenberg model which consists of singlets connecting

spins over arbitrarily long length scales.

|ψ0〉 ∝ ∑
s1,...,sN

δs ∏
i< j

sin[(φi −φ j)/2](sis j−1)/2 ∏
k

eiπ(k−1)(sk+1)/2|s1, ...,sN〉, (4.5)

where, |s1, ...,sN〉 is a many-body state of spins with si ∈ {−1,1} and δs = 1 only if ∑i si = 0

and δs = 0 otherwise. Hence, |ψ0〉 is the exact zero energy state of the above Hamiltonian.

Furthermore, we numerically find that the state in Eq. (4.5) is the non-degenerate ground

state in the zero magnetization sector and at zero disorder (δ = 0), this corresponds to the

ground state of the famous Haldane-Shastry (HS) model defined in Eq. (2.16). We will refer

to the state with δ 	= 0 as the disordered Haldane-Shastry (HS) state which is a singlet of the

total spin and hence SU(2) invariant while the Hamiltonian is not, i.e,

Stot|ψ0〉= 0

[H,Stot] 	= 0.
(4.6)

Hence, the SU(2) symmetry in the ground state is emergent which will lead to a special

behavior only for the ground state in the model with disorder.

As we saw in the previous chapter, the low energy physics of the Haldane-Shastry model

is described by the Luttinger liquid theory. In 1D, random spin chains with short range

interactions such as the random spin-1/2 Heisenberg chain, are known to flow to a random

singlet phase (RSP) with quantum critical properties. In this phase, the ground state is

best described by a configuration where pairs of strongly interacting spins form singlets,

which can span arbitrarily large distances as depicted in Fig. 4.3. This is a localized phase

with typical spin-spin correlations decaying as Ctyp(r)∼ e−c
√

r. The RSP is essentially an

infinite randomness fixed point which is a random version of pure CFT which show universal

behavior in entanglement entropy.

The question we want to address is the fate of the disordered HS state. The possibilities

are, either the state can loose its quantum critical properties and become many-body localized
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Fig. 4.4 (a) The main plot shows the disorder averaged coefficient 〈C〉 as a function of the

system size N for δ = 0.75. The result might suggest that the state may be a Luttinger

liquid, but the method is not accurate enough to make clear conclusions. We use 103 disorder

realizations, and the error from the Monte Carlo simulations and disorder averaging is of

the order 10−4. Inset shows the plot of the Renyi entropy S(2)L for N = 600 and δ = 0.75

computed for different subsystem sizes L which follows the logarithmic relation given in Eq.

(4.9). (b) The coefficient ξ in the second cumulant C2 computed for different systems divided

into two halves is close to the value for the Luttinger liquid both for the clean (δ = 0) and

the disordered (δ = 4) Haldane-Shastry state. Each data point is averaged over 105 disorder

realizations. The inset shows the logarithmic scaling of the averaged Renyi entropy for δ = 4

and N = 50.

or retain its quantum critical behavior by either stablilizing the Luttinger liquid behavior or

flow to a RSP.

4.2.1 Renyi entropy

We first discuss the computations for Renyi entropy performed on the HS state with disorder.

The Renyi entropy of order 2 is defined as,

S(2)L =− lnTr ρ2
L, (4.7)

where, ρL is the reduced density matrix of subsystem of size L. Since we know the analytical

form of the ground state, we can perform Renyi entropy computations for considerably large

system sizes invoking the replica trick by rewriting,
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e−S(2)L = ∑
n,n′,m,m′

|〈n,m|ψ0〉|2|〈n′,m′|ψ0〉|2 〈ψ|n′,m〉〈ψ|n,m′〉
〈ψ|n,m〉〈ψ|n′,m′〉 (4.8)

were |n〉 is an orthonormal basis for the L spins while |m〉 is an orthonormal basis for the rest

N −L spins. Now, this expression can be computed numerically for two independent spin

chains and thereby carrying out the sum using the Monte Carlo techniques. For a quantum

critical system, it is known that the Renyi entropy shows a universal behavior given by,

S2
L =C ln[sin(

πL
N

)]+α. (4.9)

In the above expression, C is a universal constant that takes the value 1/4 for the Luttinger

liquid and ln(2)/3 for the random singlet phase respectively and α is a non-universal constant.

Monte Carlo simulations for δ = 0.1, δ = 0.5, and δ = 0.75 in Ref. [86] showed that C
might be closer to ln(2)/3 than 1/4 for δ = 0.5 and δ = 0.75 indicating that the state might

flow towards the RSP. However, in their computations, only L values close to N/2 were used

for the fitting to extract the value C. We redo the computations for δ = 0.75 and extract the

disorder averaged value of the coefficient C by performing a fit by choosing L values in the

entire range (1 to L/2) for different system sizes N. Our results suggest that C might go to

1/4 for large system sizes as shown in Fig. 4.4 (a). However, the main conclusion from

the computations is that the uncertainty in determining C due to, e.g., finite size effects and

ambiguity in the fitting procedure is not small compared to the difference between 1/4 and

ln(2)/3. Hence we need to further check this with other probes.

4.2.2 Full counting statistics

Another useful probe to understand the quantum critical properties of a quantum many-body

system is to study the fluctuations of macroscopic observables through the full distribution

of charges known as the full counting statistics (FCS). For a charge operator O, the FCS is

defined as,

χ(λ ) = 〈eiλO〉=
∞

∑
t=0

(iλ )t

t!
〈Ot〉. (4.10)

However, the physically relevant quantity is the second cumulant of the charge operator given

by, C2(N/2) = 〈O2〉−〈O〉2. FCS can also be used as a probe to determine the universality

class of the ground states of spin chains by studying the fluctuations of the total magnetization

of half of the subsystem, M = ∑N/2
i=1 Sz

i . In particular, for a quantum critical system, the second
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Fig. 4.5 Top: The transition to the MBL phase is seen in the entanglement entropy S of half

of the chain for the state closest to the middle of the spectrum averaged over 105 disorder

realizations as a function of the disorder strength δ for different system sizes N. The blue

dashed lines indicate the thermal value [N ln(2)−1]/2 of the entropy. The inset shows that

the mean entropy follows a volume law for weak disorder and an area law for strong disorder.

Bottom: The variance σ2 of the entanglement entropy computed from the same set of data

shows a peak at the transition point.
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cumulant of M is known to diverge logarithmically with system size given by,

C2(N/2)∼ ξ ln(N/2)+β (4.11)

where, ξ is a universal quantity that takes a value 1/(2π2) for a Luttinger liquid and 1/12 for

a RSP and β is a non universal constant. To compute C2(N/2), we make use of the following

set of linear equations derived in Ref. [87] to compute the two point correlations.

wi j〈Sz
i S

z
j〉+ ∑

k( 	=i, j)
wik〈Sz

jS
z
k〉+

3

4
wi j = 0 i 	= j (4.12)

We are thus able to numerically extract the coefficient ξ for quite large system sizes and we

find that even for a large disorder strength δ = 4, the coefficient ξ converges to 1/2π2 for

large system size as shown in Fig. 4.4 (b). This confirms that the disordered HS state indeed

stabilizes the Luttinger liquid phase even for large disorder strengths.

We are now hence sure that the ground state is quantum critical and does not many-body

localize even for large disorder strengths. This is in agreement with the violation of area law

scaling of entanglement entropy in a single eigenstate due to SU(2) symmetry.

4.3 Physics of the excited states

Next, we probe whether the excited states become many-body localized or not. We recall

that the Hamiltonian we have is non-local with hopping terms that decay quickly but the

interactions do not. The existence of MBL in systems with long ranged terms is still an

interesting open question. Perturbative arguments suggest that the MBL phase is destroyed

with the presence of hopping terms that do not decay faster that

4.3.1 Entanglement entropy

A standard probe to check for MBL is entanglement. As discussed in previous chapters,

MBL eigenstates have very low entanglement, typically area-law entanglement. We compute

the standard Von Neumann entropy defined as,

S =−Tr[ρ ln(ρ)], (4.13)

for an eigenstate |ψ〉. In the above expression, ρ = TrB(|ψ〉〈ψ|) is the reduced density

operator after tracing out part B of the chain as shown in Fig.4.1. For each disorder realization,

we pick the eigenstate whose energy is closest to the middle of the spectrum, i.e., closest to
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Fig. 4.6 The adjacent gap ratio r shown for different disorder strengths and system sizes

N. The r-value is close to the GOE for weak disorder and close to Poisson distribution

for large disorder indicating MBL. The disorder averaging is performed over 103 samples

for N = 16 and 104 samples for other system sizes. The inset shows the disorder averaged

r-value computed for large and small disorder strengths for different system sizes. For small

disorder (δ = 0.3), a convergence to 0.53 is seen indicating an ergodic phase and at maximum

disorder (δ = N), convergence to 0.39 is seen indicating an MBL phase.

the energy (Emax +Emin)/2, where Emin is the ground-state energy and Emax is the highest

energy in the spectrum. In Fig. 4.5, we plot the mean entanglement entropy and the variance

of the distribution as a function of the disorder strength δ for different system sizes. The

plots show a phase transition form an ergodic phase to a non-ergodic MBL phase at δ ≈ 1.

The reason why the phase transition happens around that point could be due to the fact that

for δ ≥ 1, neighboring spins can be arbitrarily close, while this is not the case for δ < 1. The

inset in the Fig. 4.5 shows how the disorder averaged entropy 〈S〉 scales with the system

size N on the weak and strong disorder side of the transition. At small disorder, the entropy

grows with the system size, and the slope is comparable to the slope for the entropy of an

ergodic system. At large disorder, the entropy remains roughly a constant with system size

indicating area-law scaling of entanglement. This indicates a non-ergodic MBL phase at

large disorder strengths.

4.3.2 Level-spacing statistics

The level spacing statistics is another helpful tool to identify whether a system is in an ergodic

phase, a many-body localized phase, or in some other phase. Hamiltonians with or without

time reversal symmetry in the ergodic phase are known to exhibit Gaussian orthogonal

ensemble (GOE) or Gaussian unitary ensemble (GUE) level spacing statistics, respectively,
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indicating the presence of energy level repulsion [88]. While in the localised phase, the

level spacing statistics obey the Poisson distribution indicating the absence of level repulsion.

One can compute a dimensionless quantity, which is the ratio of consecutive gaps of distinct

energy levels [89]. The quantity of interest is called the adjacent gap ratio and is defined as

follows

r =
1

Ns
∑
n

min(δn,δn−1)

max(δn,δn−1)
, (4.14)

where δn = En+1 −En and Ns is the total number of states in the spectrum. The value of

r averaged over several disorder realizations is around 0.529 for the Gaussian orthogonal

ensemble (GOE) and around 0.386 for the Poisson distribution. We recall that we are

considering the sector of the Hilbert space with zero net magnetization. Also, since the

Hamiltonian commutes with the parity operator ∏i σ i
x , we consider the energies in one of

the parity sectors for computing the level spacing statistics. The Fig. 4.6 shows the disorder

averaged value of the adjacent gap ratio r for various disorder strengths and system sizes.

The inset in the Fig. 4.6 shows that the r value is close to 0.53 for small disorder and close to

0.39 for large disorder and for the biggest system size studied. This indicates that the system

is indeed in an MBL phase at large disorder strengths.

4.3.3 Glassiness

The fact that pairs of almost degenerate states with opposite parity appear in the spectrum

suggests that there is spin glass order in the excited states. In an eigenstate |ψn〉 this can be

identified by the divergence of an Edwards-Anderson order parameter given by,

χSG =
1

N

N

∑
i	= j

〈ψn|σ z
i σ z

j |ψn〉2. (4.15)

For eigenstates in the middle of the spectrum, we find (see Fig. 4.7(a)) that there is glassiness

for strong disorder (〈χSG〉 increases with system size), but not for weak disorder (〈χSG〉
approaches zero with increasing system size). We perform a finite size scaling analysis to get

an estimate of the critical disorder strength. The scaling parameters are given in Fig. 4.7(b),

where we define the scaling function as xL = (δ −δc)N
1
ν and yL = 〈χSG〉/Na. Glassiness

sets in at around the same disorder strength (δc ≈ 1) as MBL. Remarkably, the ground state

stands out special and the spin glass order parameter takes the value χSG = 1 for all disorder

strengths δ and system sizes N. We show this analytically for N = 2,4,6 and numerically

for higher N in the Appendix B.
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Fig. 4.7 (a) Disorder averaged spin glass order parameter 〈χSG〉 for a state in the middle of

the spectrum (E/Emax = 0.5, circles), a low energy state (E/Emax = 0.01, triangles), and the

ground state (E = 0, dashed line) as a function of the disorder strength δ . The excited states

show glassiness for strong disorder, and the ground state is not glassy. (b) A finite size scaling

collapse for the state in the middle of the spectrum. The inset shows the scaling collapse for

the low energy state. For both cases, the predicted phase transition point is δc ≈ 1.05

4.4 Emergent symmetry and weak violation of MBL

The ground state of the model is clearly special because of the emergent SU(2) symmetry

that prohibits MBL and glassiness. The question thus arises if it is only the ground state that

is special or to some extent states close to the ground state also inherit similar behavior. We

computed the disorder averaged spin glass order parameter for all the states in the spectrum

at large and small disorder as shown in Fig. 4.8. For small disorder all states show low values

for the spin glass order parameter. For large disorder, states in the middle of the spectrum

appear glassy but few low lying states seem to have a different behavior. For the system

size studied, it looks likely that there are few states that behave similar to the ground state

but this warrants further studying large systems. We also show that the special behavior

of the ground state disappears together with the emergent SU(2) symmetry. To do so, we

slightly modify the hopping strengths FA
i j to −1.9w2

i j. This preserves the Z2 symmetry of the

Hamiltonian, but not the emergent SU(2) symmetry of the ground state. Fig. 4.8(b) shows

that the ground state is now glassy for strong disorder. If instead we add a small amount of

the Haldane-Shastry Hamiltonian, the ground state is unaltered, and the Z2 symmetry of the

Hamiltonian is preserved. In this case, the spin glass order parameter behaves similarly to

the results in Fig. 4.7 (a). One can actually engineer a situation where the ground state of
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Fig. 4.8 a) 〈χSG〉 for all eigenstates for a system with 12 spins and weak (δ = 0.1) or

strong (δ = 12) disorder. The states close to the ground state have different values of 〈χSG〉
compared to the states in the middle of the spectrum. The inset shows that the disorder

averaged energy spectrum (normalised) at δ = 12 has gaps, and these coincide with the jumps

in 〈χSG〉. b) When we destroy the emergent SU(2) symmetry by perturbing the Hamiltonian

(we modify FA
i j to −1.9w2

i j), the ground state becomes glassy for δ ≥ 1. In all cases, the

number of disorder realizations is 104.

H lies somewhere in the middle of the spectrum of MBL states by studying the following

Hamiltonian,

H̃ = (H −β )2, (4.16)

where β ∈]0,Emax/2[ can be chosen to place the state anywhere in the spectrum as shown

in Fig. 4.9. This is now a situation where a non glassy, quantum critical state lives in the

middle of the spectrum of localized glassy states and is a weak violation of MBL. If the

delocalized state should turn out to be genuinely isolated in a sea of localized ones, one could

compare this behavior to the celebrated many-body scars. In the former case, a state with

above-area-law entanglement is embedded in a sea of area law entangled states, while in the

latter, one or several nonergodic states are embedded in a sea of ergodic states.

4.5 Conclusion

In this chapter, we have constructed a rather different kind of MBL model where the ground

state, due to an emergent symmetry, is protected from MBL. We showed that the states at

a finite energy density display a transition from an ergodic to a MBL glass phase while
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Fig. 4.9 The normalized energy spectrum of the Hamiltonian H̃ with N = 6, δ = 2, β = 0.4.

The non-glassy quantum critical state is shown red in color while MBL glassy states are

shown blue in color. This is hence a scenario of weak MBL violation.

the ground state remains quantum critical with Luttinger liquid properties. We tested the

role of emergent symmetry by demonstrating the ground state becoming glassy when the

emergent symmetry is destroyed by a small perturbation. We also saw that the model has the

unexpected property that the disorder averaged energy spectrum has gaps. The background

for this is not understood and would be interesting to investigate further. Finally, we discussed

how the ground state may be moved up to the middle of the spectrum which would now give

a flavour of an inverted quantum scar and hence a weakly broken MBL phase.



Chapter 5

The inhomogeneous Haldane-Shastry
model

In the previous chapter, we investigated an interesting scenario where MBL was avoided in

a single eigenstate due to an emergent SU(2) symmetry. As already discussed in Chapter

3, SU(2) symmetry in a model forbids many-body localization even in the presence of

large disorder [11]. An investigation of the antiferromagnetic Heisenberg chain with SU(2)

symmetry and nearest neighbor exchange interactions of random strengths showed that a

different type of non-ergodic phase appears in a broad regime at strong disorder [71, 72].

In this chapter, we are interested in the question, whether a non-ergodic, low entanglement

entropic phase can also appear in models with non-local terms.

In this chapter, we study a generalization of the Haldane-Shastry model that was proposed

in Refs. [86, 87]. In the generalized version, the spins can be anywhere on the unit circle

and the ground state is the disordered Haldane-Shastry (HS) state described in Eq. 4.5. We

investigate the effects of disorder in this model by randomizing the position of the spins on

the unit circle. At large disorder, we see that the interactions do not have a simple power

law decay. This is an interesting situation with an interplay of SU(2) symmetry, long ranged

interactions and disorder. We show that the model avoids being MBL even at large disorder

due to the SU(2) symmetry, but displays an emergent non-ergodic phase despite having

non-local interactions between the spins. We confirm this non-ergodic phase through the

computations of level spacing statistics and mid spectrum entanglement entropy. This chapter

is based on the following reference [90].

• “ Disordered Haldane-Shastry model ”, S. Pai*, N. S. Srivatsa*† & A. E. B. Nielsen,

Phys. Rev. B 102, 035117 (2020) [* authors contributed equally to this work]
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5.1 Model and disorder

We first recall the generalized Haldane-Shastry model from [87, 86] given by,

H =−2 ∑
i	= j

[
ziz j

(zi − z j)2
+

(zi + z j)(ci − c j)

12(zi − z j)

]
�Si ·�S j, (5.1)

The above Hamiltonian describes a system of N spin-1/2 particles sitting on the unit circle

as illustrated in Fig. 2.1. In the original HS model, z j = ei2π j/N , which means that the spins

are uniformly spaced. We shall here consider the more general case, where z j = eiφ j with

φ j ∈ [0,2π[. In this expression,

c j = ∑
k∈{1,2,...,N}\{ j}

zk + z j

zk − z j
(5.2)

and �Si is the spin 1/2 operator (Sx
i ,S

y
i ,S

z
i ) defined at the ith site. We write the Hamiltonian in

(5.1) as

H = ∑
i	= j

hi j�Si ·�S j. (5.3)

The Hamiltonian is SU(2) invariant and conserves the net magnetization. We shall assume

throughout that the net magnetization is fixed to zero. We add disorder to this Hamiltonian

by defining the lattice positions z j as,

z j = e2πi( j+α j)/N , j ∈ {1,2, . . . ,N}. (5.4)

Here, α j is a random number chosen with constant probability density in the interval

[−δ
2 ,

δ
2 ], and δ ∈ [0,N] is the disorder strength. An example for N = 6 spins is shown in the

right panel of Fig. 2.1. For disorder strength δ = 0, the uniform model is recovered. When

0 < δ < 1, there is some disorder, but the spins are still ordered from 1 to N on the circle,

and there is still one spin per 2π/N length of the circle. If we increase the disorder strength

even further to δ > 1, the order of the spins can change. For the maximal disorder strength

δ = N, all of the spins can be anywhere on the circle. It is seen that disordering the positions

of the spins leads to a disordering of the coupling strengths. The coupling strengths can be

arbitrarily large when the spins come close to each other. Fig. 5.1 shows the behavior of

the coupling coefficients with distance for cases with and without disorder. Although the

coupling coefficients quickly decay to zero for the clean case, this is no longer true at strong

disorder as seen in the figure.

The ground state of this Hamiltonian in the zero magnetization sector coincides with

the ground state of the famous HS model when the spins are positioned evenly on the unit
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Fig. 5.1 Top left: Uniform lattice with N = 20 spins. Top right: Behavior of the coupling

strengths |hi j| in the Hamiltonian on the clean lattice. Bottom left: One realization of the

disordered lattice with N = 20 spins for maximum disorder strength δ = N. Bottom right:

Behavior of the coupling strengths for the disordered lattice shown on the left. In both the

clean and disordered cases, we fix the ith spin to be the one with the smallest angle φi and

plot |hi j| as a function of φ j −φi. Note that for the disordered case, the coupling strength can

be quite large between the spins that are far from each other.
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Fig. 5.2 Top: Entanglement entropy S of half of the chain for the state closest to the middle of

the spectrum of the Hamiltonian (5.1) averaged over 104 disorder realizations as a function

of the disorder strength δ . The different curves are for different system sizes N as indicated.

The entropy [N ln(2)− 1]/2 for an ergodic system is shown with horizontal dashed lines.

Bottom: Variance σ2 of the entanglement entropy computed from the same set of data. It is

seen that the transition happens around δ = 1.

circle and for the general case, matches the ground state of the non-SU(2) invariant model

discussed in the previous chapter given by Eq. 4.5.

5.2 Properties of the disordered model

In the following, we study the properties of the highly excited states. The Hamiltonian can

be truly long-ranged at strong disorder, and we find that the system is non-ergodic, but not

many-body localized. This is similar to the findings in short-ranged SU(2) invariant models

discussed in [71, 72]. In particular, we investigate numerically the entanglement entropy and

the level spacing statistics.

5.2.1 Entanglement entropy

We compute the standard Von Neumann entropy defined in Eq. (4.13) for states in the middle

of the spectrum. The way we partition the spin chain to compute the reduced density matrix

of a subsystem is discussed in Chapter 4. In Fig. 5.2, we plot the mean entanglement entropy
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Fig. 5.3 Scaling of the disorder averaged half chain entanglement entropy 〈S〉 with the system

size N for weak and strong disorder. The slope of a linear fit for the points computed at weak

disorder is around 0.3, while for those computed at maximum disorder it is around 0.06. The

dashed blue line shows the entropy [N ln(2)−1]/2 of an ergodic system for comparison. The

results shown are averaged over 104 disorder realizations.

and the variance of the distribution as a function of the disorder strength δ for different

system sizes. The plots show a phase transition at δ ≈ 1. The reason why the phase transition

happens around that point could be due to the fact that for δ ≥ 1, neighboring spins can be

arbitrarily close, while this is not the case for δ < 1.

The Figure 5.3 shows how 〈S〉 scales with the system size N on the weak and strong

disorder side of the transition and compares these results to the entropy of an ergodic system

of N spin-1/2, which was conjectured to be [N ln(2)−1]/2 for 2N/2 � 1 in [57]. At small

disorder, the entropy grows with the system size, and the slope is comparable to the slope

for the entropy of an ergodic system. At large disorder, the entropy again increases linearly

with the system size, which shows that the system is not many-body localized. The slope is,

however, much less than it is for weak disorder, and the system is therefore also not ergodic.

5.2.2 Level spacing statistics

The energy level spacing distribution of the clean Haldane-Shastry model has been studied in

the past and is found not to obey the Poissonian distribution although the model is completely

integrable [91, 92]. We compute the distribution P(En+1 −En) of the energy level spacings

En+1 −En of the disordered Haldane-Shastry model for the maximally disordered case and

find that, interestingly, it is neither of the Wigner-Dyson, nor of the Poisson kind, which is

seen in Fig. 5.4.



42 The inhomogeneous Haldane-Shastry model

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GOE
Poisson
=16

Fig. 5.4 The energy level spacing distribution of the disordered Haldane-Shastry model

computed for 16 spins for one disorder realization at maximal disorder strength. It follows

neither the Poisson distribution, nor the Gaussian orthogonal ensemble.

We also compute the adjacent gap ratio defined in Eq. (4.14). We recall that we are

considering the sector of the Hilbert space with zero net magnetization. Also, since the

Hamiltonian commutes with the parity operator ∏i σ i
x , we consider the energies in one of

the parity sectors for computing the level spacing statistics. The plot in Fig. 5.5 shows the

gap ratio computed for several system sizes at maximum disorder strength. The gap ratio is

not close to either 0.529 or 0.386. This indicates that the system is in a non-ergodic phase

that does not exhibit many-body localization. This is consistent with the sub-thermal value

of the half-chain entanglement entropy at strong disorder observed above.

We avoid showing the level spacing statistics for weak disorder for the following reason.

The clean Haldane-Shastry model has an enhanced Yangian symmetry generated by the total

spin operator and the rapidity operator that both commute with the Hamiltonian [49], and this

leads to degeneracies in the spectrum. For weak disorder, the model has no exact Yangian

symmetry, but there are still approximate degeneracies visible in the energy spectrum. This is

seen in Fig. 5.6, where we compare the energy spectra of the clean model and the disordered

model at weak disorder. The energy spectrum with little disorder closely resembles the

spectrum of the clean Haldane-Shastry model. The degeneracies, although not exact, have an

impact on the level spacing statistics and make this measure more difficult to interpret.
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Fig. 5.5 The adjacent gap ratio r for the spectrum of the Hamiltonian (5.1) as a function of

the system size N at maximal disorder strength. The results shown are averaged over 104

disorder realizations. The curve neither approaches the Poisson value, nor the value for the

Gaussian orthogonal ensemble.

5.3 Adding disorder to the excited states of the Haldane-
Shastry model

All the excited states of the clean model can be analytically expressed in terms of the

positions z j [93]. This opens up the possibility to add disorder into the excited states by

modifying z j. It turns out, however, that the resulting states |ψ ′
n〉 are not eigenstates of the

Hamiltonian (5.1) as soon as δ > 0. If the states had been orthonormal, one could construct

an alternative Hamiltonian as H = ∑n En|ψ ′
n〉〈ψ ′

n|, where En is the energy of the state |ψ ′
n〉.

We find numerically, however, that most of the states are not orthogonal for δ > 0. The most

appropriate way to add disorder into the model is hence to introduce it in the Hamiltonian

(5.1) and study the properties of the eigenstates numerically as discussed in the previous

sections.

5.4 Conclusion

In this chapter, we investigated the role of disorder on the Haldane-Shastry model, which has

long-range interactions and SU(2) symmetry. The disorder averaged entanglement entropy

for a state close to the middle of the energy spectrum showed a transition into a non-ergodic

phase at strong disorder. The non-ergodic phase is not a many-body localized phase, since it
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Fig. 5.6 Energy spectrum of the Haldane-Shastry model at no and weak disorder computed for

12 spins. The spectrum at weak disorder closely resembles that of the clean Haldane-Shastry

model.

has volume law entanglement. The coefficient of the volume law is, however, much less than

for an ergodic system. We further confirmed this non-ergodic behavior from the level spacing

statistics that did not match the random matrix predictions for a thermal or a many-body

localized phase.

The behavior of strongly-correlated quantum many-body systems are affected by several

factors, including symmetries and the range of the terms in the Hamiltonian. It has been

argued that SU(2) symmetry is not compatible with many-body localization [11, 70], and it is

hence expected that the disordered Haldane-Shastry model does not many-body localize. On

the other hand, low entanglement and non-ergodic behaviors, which are different from many-

body localization, have been found in a nearest neighbor model with SU(2) symmetry [71, 72].

There have been several studies investigating whether many-body localization can survive in

the presence of different types of long-range terms in the Hamiltonian [64, 94, 95, 65], since

one might expect that long-range terms will increase the amount of entanglement. Similarly,

it is unclear, whether nonlocal terms will destroy the non-ergodic, low entanglement behavior

seen in local models with SU(2) symmetry. The results presented in this chapter provide an

example, which shows that the non-ergodic, low entanglement behavior can also occur in

nonlocal models. The obtained results motivate the search for further, interesting, non-ergodic

phases in models with SU(2) symmetry and long-range interactions, as well as systematic
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studies to clarify under which types of conditions, models with non-ergodic behavior may

appear.



Chapter 6

Topologically ordered quantum
many-body scars

In Chapter 3, we saw that the weak ergodicity breaking through the mechanism of quantum

many-body scars occurs due to the existence of one or more athermal eigenstates that have

low entanglement embedded in a sea of ergodic states. Systematic constructions have been

proposed to allow for a scar state to have nonchiral topological order [84] and survive in

a disordered setting [80]. In this chapter, we provide two constructions of topologically

ordered quantum scars in two parts.

In the first part, we construct a few-body Hamiltonian on 2D lattices, which has a scar

state with chiral topological order in the middle of the spectrum. We also construct a few-

body Hamiltonian on 1D lattices where the scar state has quantum critical properties. For

both models, a parameter allows us to place the scar state at any desired position in the

spectrum. The models are defined on slightly disordered lattices in 1D and 2D, and the scar

state in 2D is a lattice Laughlin state. We provide evidence that the spectra are thermal by

showing that the level spacing distributions are Wigner-Dyson and that the entanglement

entropies of the excited states are close to the Page value. The scar state, on the contrary, is

non-ergodic and has a much lower entanglement entropy. We demonstrate the topological

properties of the scar state in 2D by introducing anyons into the state.

In the second part, following a general strategy, we construct a class of quantum dimer

models on the kagome lattice containing quantum many-body scar states with non-chiral

topological order and sub-volume entanglement. We numerically demonstrate that the

remaining eigenstates in the spectrum thermalize by analyzing their level spacing statistics

and entanglement entropy.

This chapter is based on the following references [96, 97].
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• “ Quantum many-body scars with chiral topological order in 2D and critical properties
in 1D ”, N. S. Srivatsa, J. Wildeboer, A. Seidel & A. E. B. Nielsen, Phys. Rev. B 102,
235106 (2020)

• “ Topological Quantum Many-Body Scars in Quantum Dimer Models on the kagome
Lattice ”, J. Wildeboer, A. Seidel, N. S. Srivatsa, A. E. B. Nielsen & O. Erten,

arXiv:2009.00022

6.1 Quantum scars with chiral topological order in 2D and
critical properties in 1D

Our construction starts from sets of operators Ai and Bi that annihilate the scar state |Ψscar〉
of interest, i.e.

Ai|Ψscar〉= Bi|Ψscar〉= 0. (6.1)

We use these to construct the Hamiltonian

H = ∑
i

A†
i Ai − γ ∑

i
B†

i Bi, (6.2)

which has |Ψscar〉 as an exact zero energy eigenstate. The Hamiltonian H can have both

positive and negative eigenvalues, and the real parameter γ can be used to adjust the position

of the scar state relative to the range of the many-body spectrum. For the special case γ = 0,

we observe that |Ψscar〉 is the ground state. We expect this approach to work quite generally

to construct scar models, although the thermal properties of the spectrum need to be checked

in each case.

6.1.1 Hamiltonians for the scar states

The quantum many-body scar state |Ψscar〉, that we wish to embed in the many-body spectrum

is given by the analytical state derived from CFT described in Eq (2.4) in the Chapter 2.

Specifically, we fix the number of particles in the state to be M = N/2 and consider the strict

lattice limit with η = 1. In 1D, when the lattice sites sit evenly on a circle (z j = ei2π j/N), the

state coincides with the ground state of the Haldane-Shastry model described in Eq. (2.18)

after a transformation to the spin basis [45, 46]. In 2D, on a square lattice, the state is the

half filled bosonic lattice Laughlin state, which has chiral topological order [4].
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We now construct few-body Hamiltonians for which |Ψscar〉 is an exact eigenstate. The

construction relies on the observation that the state (2.7) can be written as a correlation

function in conformal field theory, and that one can use this property to derive families of

operators that annihilate the state. The operators that we use below were derived in [5].

6.1.1.1 Hamiltonian in 1D

We first consider a 1D system, which is obtained by restricting all the positions z j to be on

the unit circle, i.e. z j = eiφ j for all j, where the φ j are real numbers. We also require that all

the z j are different from one another. It was shown in [5] that the operators

Λ1D
i = ∑

j(	=i)
wi j[d j −di(2n j −1)],

Γ1D
i = ∑

j( 	=i)
wi jdid j, wi j =

zi + z j

zi − z j
,

(6.3)

annihilate |Ψscar〉. The operators d j, d†
j , and n j = d†

j d j, acting on site j, are the annihilation,

creation, and number operators for hardcore bosons, respectively.

We build the Hamiltonian for the scar model in 1D by constructing the Hermitian operator

H1D = ∑
i
(Λ1D

i )
†
(Λ1D

i )+(α −2)∑
i
(Γ1D

i )
†
(Γ1D

i ), (6.4)

which has |Ψscar〉 as an exact energy eigenstate with energy zero. The real parameter α is

chosen to position the scar state at the desired position in the spectrum of H1D as we shall

see below. Expanding this expression, we get

H1D = ∑
i	= j

GA
i j d†

i d j +∑
i	= j

GB
i j nin j + ∑

i	= j 	=l
GC

i jl d†
i dln j +∑

i
GD

i ni +GE , (6.5)

where the coefficients are given by

GA
i j =−2w2

i j,

GB
i j = (2−α)w2

i j +4 ∑
l(	= j 	=i)

wi jwil,

GC
i jl =−αw jiw jl,

GD
i =−2 ∑

j(	=i)
w2

i j − ∑
j 	=l( 	=i)

wi jwil,

GE =
−N(N −2)(N −4)

6
.

(6.6)
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Fig. 6.1 (a) Normalized position (6.11) and normalized energy (6.12) of the scar state in

the many-body spectrum of the 1D Hamiltonian (6.5) plotted as a function of the tuning

parameter α for a slightly disordered lattice on a unit circle with N = 16 sites. (b) Same as

(a), but computed for the 2D Hamiltonian (6.16) for a slightly disordered square lattice of

size 4×4. It is seen that, both in 1D and 2D, the scar state can be positioned at any desired

place in the many-body spectrum by a suitable choice of α and β , respectively.

Eq. (6.5) is thus a real, particle-number conserving 2-body Hamiltonian with some non-local

terms. As we aim at constructing a model with a thermal spectrum, we add a small amount of

random disorder to the lattice site positions to avoid any additional symmetries. Specifically,

we choose

z j = e2πi( j+γ j)/N , j ∈ {1,2, . . . ,N}, (6.7)

where γ j is a random number chosen with constant probability density in the interval [−δ
2 ,

δ
2 ]

and δ is the disorder strength. In all the numerical computations below, we choose δ = 0.5

and consider one particular disorder realization.

6.1.1.2 Hamiltonian in 2D

We next allow the z j to be in the complex plane, and we assume that all the z j are different

from one another. In this case, the operators

Λ2D
i = ∑

j(	=i)
ci j[d j −di(2n j −1)],

Γ2D
i = ∑

j( 	=i)
ci jdid j, ci j =

1

zi − z j
,

(6.8)
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annihilate |Ψscar〉 as shown in [5], and we use these to construct the Hamiltonian

H2D = ∑
i
(Λ2D

i )
†
(Λ2D

i )+β ∑
i
(Γ2D

i )
†
(Γ2D

i ) (6.9)

for the scar model in 2D. In this expression, β is a real parameter, which we can adjust to

position the scar state anywhere in the spectrum as we shall see below. After expanding out

the terms, we get

H2D = ∑
i	= j

FA
i j d†

i d j +∑
i	= j

FB
i j nin j + ∑

i	= j 	=k
FC

i jk d†
i d jnk + ∑

i	= j 	=k
FD

i jk nin jnk +∑
i

FE
i ni, (6.10)

where

FA
i j = 2c∗i jci j + ∑

k(	=i,	= j)
(c∗kick j + c∗jic jk + c∗ikci j),

FB
i j = βc∗i jci j −2 ∑

k(	=i,	= j)
(c∗i jcik + c∗ikci j),

FC
i jk =−2(c∗jic jk + c∗ikci j)+βc∗kick j,

FD
i jk = 4c∗ikci j,

FE
i = ∑

j( 	=i)
(c∗jic ji + c∗i jci j)+ ∑

j,k(	=i)
c∗i jcik.

The Hamiltonian conserves the number of particles, it is nonlocal, and it consists of terms

involving up to three particles.

We disorder the positions of the lattice sites slightly to avoid additional symmetries in the

model. Specifically, if zc
i is the position of the ith site in the perfect square lattice, we choose

zi = zc
i +δ (εa + iεb) where εa and εb are independent random numbers chosen with constant

probability density in the interval [0,1] and δ is the disorder strength. In all the numerical

computations below, we choose δ = 0.1 and consider one particular disorder realization.

6.1.2 Properties of the Hamiltonians

Since the Hamiltonians conserve the number of particles, and the scar state has N/2 particles,

where N is the number of lattice sites, we restrict our focus to the sector with lattice filling

one half in the rest of the article.
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Fig. 6.2 (a) The level spacing distribution for the Hamiltonian in 1D for N = 16, with

α = −4.5 matches the GOE statistics for a system that is time-reversal invariant. (b) The

level spacing distribution for the Hamiltonian in 2D for N = 16, with β =−4 matches the

GUE statistics for a system that is not time-reversal invariant. This suggests that most of the

states in the spectrum are ergodic.

6.1.2.1 Positioning the scar state

We first show that the parameters α and β serve as tuning parameters to place the scar state at

the desired position of the many-body spectrum. If the scar state is the nth eigenstate, when

ordering the eigenstates in ascending order according to energy, we define the normalized

position of the scar state as

Normalized position =
n
D
, (6.11)

where D =
( N

N/2

)
is the dimension of the Hilbert space in the half filled sector. The energy of

the scar state is zero by construction, and the normalized energy of the scar state is hence

Normalized energy =
−Emin

Emax −Emin
, (6.12)

where Emin (Emax) is the lowest (highest) energy in the spectrum of the Hamiltonian. In Fig.

6.1, we show these two quantities for the 1D and 2D Hamiltonians in Eqs. (6.5) and (6.16),

respectively. From the plots it is seen that the scar state can be placed at any desired position

in the many-body spectrum by choosing α and β appropriately. The scar state is the ground

state for α = 0 and β = 0, respectively.

6.1.2.2 Level spacing distribution

We next show numerically that the level spacing distributions follow the Wigner surmise

for ergodic Hamiltonians [98]. In particular, time reversal invariant Hamiltonians with real
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Fig. 6.3 (a,c) The slightly disordered lattices in 1D and 2D with N = 16 spins. The red dashed

lines show the partitioning into subsystems A and B used for computing the entanglement

entropies. (b,d) Entanglement entropy for all the eigenstates of the Hamiltonian in 1D [Eq.

(6.5)] with α = −4.5 and in 2D [Eq. (6.16)] with β = −4, respectively. The states in the

middle of the spectrum have entropies close to the Page value [N ln(2)−1]/2 = 5.05 (dashed

lines), except the scar state (marked with a red star), which has a much lower entropy.
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Fig. 6.4 (a) Entanglement entropy for all the eigenstates of the Hamiltonian in 1D [Eq.

(6.5)] with α = −4.5 and δ = 0. (b) Entanglement entropy for all the eigenstates of the

Hamiltonian in 2D [Eq. (6.16)] with β =−4 and δ = 0. Dashed lines indicate the Page value

[N ln(2)−1]/2 = 5.05 and the scar state is marked with a red star.

matrix entries are known to follow Gaussian orthogonal ensemble (GOE) statistics while

those with complex entries breaking time reversal symmetry are known to follow Gaussian

unitary ensemble (GUE) statistics [99]. In Fig. 6.2, we show the level spacing distributions

for the Hamiltonians in 1D and 2D using the standard technique of unfolding the energy

spectrum [100]. The energy level spacing distribution follows GOE statistics for the 1D case

while it follows GUE statistics for the 2D case. This suggests that most of the states in the

many-body spectrum of the Hamiltonians are ergodic.

6.1.2.3 Entanglement entropy

Scar states are non-ergodic states that reside in the bulk of the spectrum where the density of

states is high. The entanglement entropy of scar states is low compared to the entanglement

entropy of the states in the middle of the spectrum that obey the eigenstate thermalization

hypothesis. When the subsystem is half of the system, the entanglement entropy of the latter

states is close to the Page value [N ln(2)−1]/2 [57].

We now show that the models considered here display such a behavior. Specifically,

we consider the von Neumann entropy S = −Tr[ρA ln(ρA)] of a subsystem A, where ρA =

TrB(|ψ〉〈ψ|) is the reduced density matrix after tracing out part B of the system and |ψ〉
is the energy eigenstate of interest. For the 1D case, we choose region A to be half of the

chain, and for the 2D case, we choose region A to be the left half of the lattice. The choice of

subsystems and the entanglement entropy for all the states for a disordered case are shown

in Fig. 6.3. It is seen that the states in the middle of the spectrum have large entanglement
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Fig. 6.5 (a) Density difference profile ρ(zi) [see (??)] on a slightly disordered square lat-

tice with the two quasihole coordinates, w1 and w2, marked by the blue and the red star,

respectively. The observation that ρ(zi) is only nonzero in a finite region around each of the

quasihole coordinates shows that the anyons are well screened. (b) The excess densities, Q1

and Q2 [see (6.13)], as a function of the radius R converge to the correct value −0.5 for a

quasihole, which shows that the state is topological (see text). The number of lattice sites is

N = 316 and the edge of the lattice is chosen to be roughly circular in order to resemble a

quantum Hall droplet. The error bars due to Metropolis sampling are of order 10−4.

entropy close to the Page value while the scar state has low entanglement entropy in both 1D

and 2D.

We also compute entropies for models without disorder as shown in Fig. 6.4. For the 1D

case, the entropies in the middle of the spectrum are no longer distributed around the Page

value. However, for the 2D clean model, the entropies close to the middle of the spectrum

are close to the Page value while the scar state has low entanglement.

6.1.3 Properties of the scar states

As mentioned above, the scar state coincides with the ground state of the HS model, when

defined on a uniform 1D lattice, and on a 2D square lattice, the scar state is a lattice Laughlin

state. In Chapter 4, we showed numerically that the HS state stabilizes Luttinger liquid

behavior even after introducing disorder. Hence, for the 1D case, and on a slightly disordered

lattice, the scar state is quantum critical which shows logarithmic divergence of entanglement

entropy with subsystem size as described in Eq. (4.9).

The lattice Laughlin state (2.4) is known to have chiral topological order and to support

anyonic excitations when defined on different regular lattices [4, 5, 101, 34]. Here, we confirm

the topological properties of the scar state on a slightly disordered lattice by introducing

anyons. The anyons are introduced by modifying the state through Eq. (2.13) as discussed in

Chapter 2. For a topological liquid, one expects a constant density of particles in the bulk. In



6.2 Scars with non-chiral topological order in quantum dimer models 55

the presence of quasiholes, however, the density is reduced in a local region around each of

the quasihole coordinates wk. We define the excess density of the kth quasihole as

Qk =
N

∑
i=1

ρ(zi)Θ(R−|zi −wk|), k ∈ {1,2}, (6.13)

where ρ(zi) is given by Eq. (2.15). For the case considered here, we specifically have q = 2,

S = 2 and p j = 1 ∀ j. The Heaviside step function Θ(. . .) restricts the sum to a circular region

of radius R and center wk. When R is large enough to enclose the quasihole and small enough

to not enclose other quasiholes or part of the edge of the lattice, the excess density is equal

to minus the charge of the quasihole. The charge of the quasihole is 1/2 for the considered

Laughlin state. We use Metropolis-Hastings algorithm to compute ρ(zi) and Qk in Fig. 6.5.

The density difference profile shows that the quasiholes are well screened, and we find that

the excess densities Q1 and Q2 converge to −0.5 as we increase the radius R. For the lattice

Laughlin state, it can be shown analytically that the quasiholes have the correct braiding

properties, if it can be assumed that the anyons are screened and have the correct charge

[102]. Since the scar state hence admits the insertion of local defects with anyonic properties,

it follows that it is a topologically ordered state even in the presence of the amount of disorder

considered here.

6.2 Scars with non-chiral topological order in quantum
dimer models

In this section, we will discuss yet an other construction of a model with quantum many-body

scars with non-chiral topological order. We will begin with the description of the quantum

dimer model on a kagome lattice and then show how we turn them into models containing

scars. Finally, we will discuss the computations of level spacing statistics and entanglement

entropies and argue that the model is generic and the non-scar states are thermal.

6.2.1 Quantum dimer model on a kagome lattice

Quantum dimer models were originally modelled to study the physics of high-temperature

superconductors through Anderson’s resonating valence bond physics [103]. The quantum

dimer model is defined on a Hilbert space of distinct orthonormal states representing the

allowed hard-core dimer coverings on the lattice. In this formulation, a dimer represents a

bond which is an SU(2) singlet between spins at its endpoints.
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In this section, we will consider the dimer model on the kagome lattice [104] which can

be graphically represented by the following Hamiltonian.
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The above Hamiltonian consists of “kinetic" terms, t that allow for a local rearrangement

of a small number of dimers and “potential" terms, V , that are diagonal in the dimer basis

which correspond to local arrangements of dimers. The dimers are represented by the

Magenta bonds and sum is over all 12-site star plaquettes of the lattice. All the kinetic terms

execute resonance moves along one of 32 different loops contained within the star. The

occupied links alternate along the loop and each move changes the occupancy along the loop.

The list of different possible loops is described in the Table 6.1.

The model is completely integrable at the special Rokhsar-Kivelson (RK) point when

t1 = · · ·= t8 =V1 = · · ·=V8 > 0 and the ground state is the equal amplitude superposition

of all the permissible dimer coverings given by,

|Ψ〉= ∑
D
|D〉 . (6.15)

For the case of periodic boundary conditions, on a torus, the sum needs to be restricted to

one topological sector which leads to a 4-fold degenerate state. Topological sectors may be

classified through the winding numbers Wx and Wy. To determine Wx(Wy), one considers a

horizontal (vertical) line around the torus which intersects the links and Wx(Wy) is the parity

of the number of dimers intersected. On the Kagome lattice, this model is fully integrable

at the RK-point with the sums of operators in Eq (6.14) for any given star commutes for

different stars [104]. Further, this RK-point lies in the interior of Z2 topological phase

[104–106] and the topological order has been tested numerically through the topological

entanglement entropy computed for the state in Eq. (6.15) [107].
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.
nloop type Ain A1 A2 A3 A4 A5 A6 A7 A8

# of links 6 8 8 10 8 10 10 12

rrot 1 3 6 3 6 6 6 1

Table 6.1 A list of all eight possible loops surrounding the central hexagon within a star-

shaped cell, up to rotational symmetry. The total number of rotationally related loops rrot is

shown for completeness (e.g., rrot = 1 for the hexagon and the star and rrot > 1 for the other

shapes). Each dimerization realizes exactly one of the resulting 32 loops, where the links of

the loop alternate between occupied and unoccupied, yielding two possible realizations via

dimers for each loop.

6.2.2 Kagome dimer model with scars

We now construct yet an other quantum dimer model on the kagome lattice which admits

quantum scar states in the spectrum. The construction begins with the fact that the state

in Eq .(6.15) are also annihilated by the Hamiltonian in Eq .(6.14) whenever ti = Vi. This

is because each local term of the Hamiltonian associated with ti = Vi annihilates the state

described in Eq .(6.15). Importantly, with this new choice, the frustration free Hamiltonian

is no longer integrable but the state described in Eq .(6.15) is still its exact zero energy

eigenstate. With this, we introduce ti =Vi = αi and choose the αi different and not all of the

same sign. Crucially, now the state described in Eq .(6.15) is still a zero energy eigenstate

of the Hamiltonian, but not its ground state anymore. Rather, it is an eigenstate that lives

somewhere in the middle of the spectrum and hence a quantum many-body scar.

The Hamiltonian for the dimer model containing the scar can be expressed as follows

H scar = ∑
�

32

∑
l=1

αl
(|Dl〉−

∣∣Dl
〉)(〈Dl|−

〈
Dl
∣∣) . (6.16)

The sums in (6.16) run over all 12-site kagome stars and over all 32 loop coverings. Dl and

Dl represent the dimerizations associated with loop l. This strategy could be followed easily

while preserving all lattice symmetries. It is also important to restrict oneself within the

symmetry sectors to compute level spacing statistics as there is no level repulsion between

different sectors. Thus, to avoid an over-abundance of symmetry sectors, we preserve only
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Fig. 6.6 Labelling convention for the links of the 12-site star-shaped cells of the kagome

lattice. The 12-site kagome star consists of a total of 18 links. Internal links that make

up the central hexagon are labeled by link indices from 1 to 6, while links 7, . . . ,18 refer

to external links. Internal (external) links are associated with internal (external) angles.

We show the internal angles φ1 = π/6 and φ2 = π/2 associated with the links 1 and 2,

respectively. External angles are also illustrated and differ from adjacent internal ones by

± π
12 , e.g. φ7 = φ1 − π

12 and φ8 = φ1 +
π
12 .

translational symmetry by choosing

αl =C+ ∑
l′∈loop

sin(5 ·φl′ +δ ) . (6.17)

which simulates the influence of a substrate with 5-fold rotational symmetry. The φ ′
i s are

angles associated with each link that the respective loop covers. They are defined to be

φ j =

⎧⎪⎪⎨
⎪⎪⎩

(2 j−1)π
6 for j = 1, . . . ,6

φ j−5
2
− π

12 for j = 7,9 . . . ,17

φ j−6
2
+ π

12 for j = 8,10 . . . ,18 ,

(6.18)

as shown in Figure 6.6. We choose C =−0.05 to make dimer-loops with inversion symmetry

contribute, and δ = 0.1 to render the mirror axes of the “substrate” different from those of

the lattice.

While the scar state of the model and its properties are analytically under control, we

proceed by numerically investigating the genericity of its other levels in the following

sections.
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Fig. 6.7 Distribution of energy levels for time reversal invariant zero-momentum, (Wx,Wy) =
(0,0) topological sector, which contains a scar state (6.15). The inset shows the 60-site

kagome lattice used in the calculation. An unfolding technique using 4378 groups containing

12 energies each has been used for binning the data (cf., e.g., Ref. [? ]). The resulting data

closely resemble a GOE distribution (solid curve), indicating that almost all states thermalize.

6.2.2.1 Level spacing statistics

To test whether the non-scar states conform to the ETH, we compute the level spacing

statistics discussed in Chapter. 4. We focus on (translational) symmetry sectors with time

reversal symmetry, which contain the scar state. Fig 6.7 shows the distribution of energy

eigenvalues for a 60 site kagome lattice with PBCs, within the zero-momentum sector that

has the scar state located roughly in the middle of the spectrum (see Fig 6.8). Here, we work

within the (Wx,Wy) = (0,0) topological sector and use an unfolding technique to bin the data

[100]. The distribution is well described by the Gaussian orthogonal ensemble (GOE), as

expected for generic real matrices. Further, we compute the adjacent gap ratios, rn = sn/sn−1

and r̃n = min(rn,1/rn), where sn = En −En−1. We find the average of the quantities r̃n

over the energy slice described, and over all symmetry-inequivalent time-reversal invariant

momentum sectors within the (Wx,Wy) = (0,0) topological sector to be 〈r̃〉= 0.5333. This

is quite close to the exact value of r̃GOE = 0.5359 [56], and markedly different from the

corresponding value r̃Poisson = 0.3863 for the Poisson distribution [89]. This lends strong

support to the ETH that the majority of the high energy states in the spectrum of Hamiltonian

(6.16) thermalize.
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Fig. 6.8 The von Neumann entanglement entropy for all states within the zero momentum

sector of topological winding numbers (0,0) for a 48 site kagome lattice, bi-partitioned

into two 24-site “ribbons” (inset). The scar state has SvN = 7 and is marked by a blue star.

Thermalizing eigenstates of similar energy are well separated and have SvN ≈ 10.

6.2.2.2 Entanglement entropy

To complement the above findings, we calculate bipartite entanglement entropy for all states

of the scar-containing symmetry sector (fixing also the topological sector) for a 48 site

kagome lattice with PBCs. By their definition, quantum many-body scar states belong to the

bulk of the spectrum while simultaneously violating the ETH, i.e., they fail to thermalize and

display low (sub-volume) entanglement behavior. In contrast, generic high-energy states do

thermalize and exhibit a volume-dependent entanglement behavior. For the ribbon described,

whose boundary passes eight unit cells on each side, and in the presence of the topological

sector constraint, one may show that the (base 2) von Neumann entanglement entropy,

SvN =−∑w w log2 w, equals 7. Here, the sum goes over the eigenvalues of the local density

matrix of the ribbon. Fig. 6.8 clearly shows that the scar state (blue star) is isolated from the

rest of the spectrum (purple dots) in terms of its much lower entanglement as compared to

surrounding bulk energy eigenstates. This confirms the state (6.15) as a legitimate quantum

many-body scar.

6.3 Conclusion

In this chapter, we provided constructions of two rather different models for quantum many-

body scars with topological order.
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In the first section, we built 2D models featuring quantum many-body scar states that

have chiral topological order. Specifically, we have used sets of operators that annihilate the

scar state of interest to construct nonlocal, few-body Hamiltonians, which have the scar state

as an exact eigenstate. Using a similar construction for a 1D system, we have also obtained

a scar model in which the scar state is critical. For both models, a parameter allows us to

place the scar state at any desired position in the spectrum. We have found that the level

spacing distributions of the spectra are Gaussian and that the excited states in the middle of

the spectra have entanglement entropies close to the Page value, which is what is expected

for thermal spectra. The scar state, however, is special and has a much lower entanglement

entropy. Finally, we have confirmed the topological nature of the scar state in 2D by showing

that one can insert anyons with the correct charge and braiding properties into the state.

In the second section, we demonstrated a general approach to turn classes of frustration

free lattice Hamiltonians into ones containing isolated quantum many-body scars in their spec-

trum while retaining most or all symmetries. We applied this strategy to a two-dimensional

quantum dimer model on the kagome lattice, retaining full translational symmetry. We

demonstrated that this model contains an exactly known quantum many-body scar with

analytically accessible entanglement properties. We established that the remainder of the

eigenstates and energy spectrum exhibit no “fine-tuned” behavior. Specifically, for a 60-site

kagome lattice, we showed that bulk energies conform to the Gaussian ensembles expected

for their respective symmetry sectors, and we calculated von Neumann entanglement en-

tropies for all states within the scar-sector of a 48 site kagome lattice, exposing the scar’s

isolated character.



Chapter 7

Taming the non-local lattice
Hamiltonians constructed from CFT

As we briefly discussed in Chapter 2, CFT has turned out to be a useful tool to construct lattice

versions of fractional quantum Hall physics in 2D and critical properties in 1D. Hence, it

provides an alternative route to obtain FQH physics in lattice systems, compared to fractional

Chern insulators. One advantage is that the Hamiltonians by construction have states with a

particular topology as ground states. Interestingly, in the previous chapter, we saw that the

CFT construction also allows for realizing models with scars that are lattice FQH states.

We recall that the parent Hamiltonians are given by the expressions of the form

HExact = ∑
i

Λ†
i Λi, (7.1)

where Λi|Ψ〉 = 0 and |Ψ〉 is the lattice version of either the fractional quantum Hall state

in 2D or the many-body state with critical properties. The parent Hamiltonians HExact,

although few body, are non-local and for the following reasons, calls for methods to make

them tractable. Firstly, the long ranged interactions are difficult to engineer in experiments.

Secondly, it would be natural for the terms of a local Hamiltonian to depend only on the

local lattice structure which leads to a well defined thermodynamic limit. Thirdly, the local

Hamiltonians are easier to work with numerically, e.g. when studying the systems with exact

diagonalization or tensor networks [108].

In the first part of this chapter, we discuss a general way to arrive at local FQH lattice

Hamiltonians constructed from CFT. This method as we will emphasise, does not rely on

optimization, choice of lattice or symmetries in the model. We discuss how we test this

approach on two models with bosonic Laughlin-like ground states with filling factor 1/2 and

1/4, respectively. For the half filled model on the torus, we show that there is a near twofold
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Fig. 7.1 Illustration of the truncation procedure of the Λi operator for a square lattice (top

panel) and a triangular lattice (bottom panel). The left part of the diagram shows the exact Λi
operator, which contains terms involving the ith lattice site (shown in green) and any of the

other lattice sites (shown in red). The right part of the diagram displays the truncated form of

the Λi operator, which only contains terms involving the ith lattice site (shown in green) and

any of the sites within a local region (shown in red with a blue background).

degeneracy with a gap to the first excited state as one would expect as a consequence of the

topological order. We demonstrate that the overlap per site is higher than 0.99 for the two

lowest energy states for all cases considered. For the quarter filled model, we show that a

larger truncation radius is needed to get high overlaps for low energy states on small lattices.

In the second part, we discuss how we arrive at local models in 1D whose ground states

have similar critical properties as the exact versions. Based on computations of wavefunction

overlaps, entanglement entropies, and two-site correlation functions for systems of upto

32 sites, we show that the ground states of local models are close to the ground states of

the exact models. There is also a high overlap per site between the lowest excited states

for the local and the exact models, although the energies of the low-lying excited states are

modified to some extent for the system sizes considered. We also briefly discuss possibilities

for realizing the local models in ultracold atoms in optical lattices.

This chapter is based on the following references [109, 110].

• “ Truncation of lattice fractional quantum Hall Hamiltonians derived from conformal
field theory ”, D. K. Nandy*, N. S. Srivatsa* & A. E. B. Nielsen, Phys. Rev. B 100,
035123 (2019) [* authors contributed equally to this work]
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Fig. 7.2 (a) To investigate the behavior of the two-body terms in the Hamiltonian, we

consider the coupling strengths between the marked sites. The term ‘edge’ refers to that

the coupling strength is computed between the red site (site i) and each of the green sites

(site j), and the term ‘bulk’ refers to that the coupling strength is computed between the

black site (site i) and each of the blue sites (site j). (b) Log-log plot showing the behavior

of C′
1 = ∑k(	=i,	= j)(w∗

kiwk j +w∗
jiw jk +w∗

ikwi j) related to the coefficient of the d†
i d j term with

respect to distance |zi − z j|. The straight line (shown in red) has slope −1. (c) Log-log plot

showing the behavior of C′
2 = 2∑k(	=i,	= j)(w∗

i jwik +w∗
ikwi j +w∗

jiw jk +w∗
jkw ji) related to the

coefficient of the nin j term with respect to distance |zi − z j|.

• “ Local Hamiltonians for one-dimensional critical models ”, D. K. Nandy, N. S.
Srivatsa & A. E. B. Nielsen, J. Stat. Mech. 2018, 063107 (2018)

7.1 Truncation of lattice FQH Hamiltonians

The FQH states have correlations that decay exponentially with distance in the bulk. This

suggests that it should, in fact, not be necessary to have long-range interactions in the

Hamiltonians. In previous work [7, 111] local Hamiltonians for a bosonic Laughlin state

and a bosonic Moore-Read state with SU(2) symmetry were achieved using the following

procedure. First, all terms except a selection of local terms are removed from the Hamiltonian.

The coefficients of the remaining terms are then adjusted so that all terms that only differ

by a lattice translation have the same strengths. Finally, the relative strengths of terms that

do not only differ by a lattice translation are determined by a numerical optimization of the

overlap between the CFT states and the ground states of the truncated models. The latter step

involves exact diagonalization and is done for small system sizes. This way of truncating the

Hamiltonian is easier for models that have SU(2) symmetry, since the symmetry reduces the

number of possible terms in the Hamiltonian and hence also the number of coefficients that
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Fig. 7.3 Overlap δ versus truncation radius r computed for the case of a 4×4 square (left) or

triangular (right) lattice with an open boundary.

need to be optimized. In models that do not possess such symmetries, however, many more

terms in the Hamiltonian are possible, and this makes it difficult to find a suitable choice of

parameters, which gives a high overlap per site independent of the system size [111].

In this section, we will discuss a different procedure to truncate Hamiltonians derived

from CFT. The procedure is more general and can be applied to Hamiltonians with or without

symmetries on all lattice geometries. The idea is to truncate the operator Λi in the first place

and then proceed to construct the Hamiltonian as in Eq. (7.1). There are more advantages of

this approach. The Λi operator is simpler to truncate than the Hamiltonian, since it contains

fewer terms, and since the coefficients of the terms depend only on the relative positions

of the involved sites and not on the rest of the lattice. This means that the local terms of

the resulting Hamiltonians are independent of the size of the lattice used to compute them.

Another advantage is that it is clear how to obtain Hamiltonians with either periodic or open

boundary conditions as desired. Finally, there is no optimization involved, and once the

lattice has been chosen, the only input to the procedure is the truncation radius for the Λi

operator.

7.1.1 Exact model and wavefunctions

In the CFT construction of the Hamiltonian, null fields are used to derive a family of operators

that annihilate the considered state. These operators are of increasing complexity, and for the
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lattice Laughlin states the three simplest are [5]

ϒ =
N

∑
j=1

d j, (7.2)

Ω =
N

∑
j=1

(qn j −1), (7.3)

Λi = ∑
j 	=i

wi j[d j −di(qn j −1)]. (7.4)

Here, d j is the hardcore bosonic (fermionic) particle annihilation operator at site j for q even

(odd), and wi j =
1

zi−z j
. If we construct the Hamiltonian from ϒ or Ω, we do not obtain a

unique ground state. We therefore construct the Hamiltonian from Λi using Eq. (??). After

multiplying out all the factors, we have

HExact = ∑
i	= j

C1(i, j)d†
i d j +∑

i	= j
C2(i, j)nin j + ∑

i	= j 	=k
C3(i, j,k)d†

i d jnk + ∑
i	= j 	=k

C4(i, j,k)nin jnk

+∑
i

C5(i)ni,

(7.5)

where the coefficients are given by

C1(i, j) = 2w∗
i jwi j + ∑

k(	=i,	= j)
(w∗

kiwk j +w∗
jiw jk +w∗

ikwi j),

C2(i, j) = (q2 −2q)w∗
i jwi j −q ∑

k( 	=i,	= j)
(w∗

i jwik +w∗
ikwi j),

C3(i, j,k) =−q(w∗
jiw jk +w∗

ikwi j),

C4(i, j,k) = q2w∗
ikwi j,

C5(i) = ∑
j(	=i)

(w∗
jiw ji +w∗

i jwi j)+ ∑
j,k( 	=i)

w∗
i jwik.

This Hamiltonian is not SU(2) invariant. It conserves the number of particles, and we shall

assume throughout that the number of particles is fixed to N/q.

We denote the unique ground state of this Hamiltonian by |ΨP
Exact〉, which is given by

Eq. (2.4) with η = 1 (since we are in the strict lattice limit) and for any choice of lattice in

the plane (i.e. for any choice of z j). The superscript P in the wavefunction denotes that the

wavefunction is defined on a plane. We will be focussing our attention to half filled (q = 2)

and quarter filled (q = 4) cases.
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Fig. 7.4 Energy spectrum for different lattice sizes (N = Lx ×Ly) on the torus for q = 2 on a

square lattice with r =
√

2. The energy values painted black have a high overlap per site with

the exact analytical states (the overlap per site is written in purple close to the eigenstate).

The black integers give the degeneracies when different from 1.
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Fig. 7.5 Energy spectrum for different lattice sizes (N = Lx ×Ly) on the torus for q = 2 on a

triangular lattice with r = 1. The energy values painted black have a high overlap per site

with the exact analytical states (the overlap per site is written in purple close to the eigenstate).

The black integers give the degeneracies when different from 1.

7.1.2 Behavior of the coefficients of the Hamiltonian

There are five different types of operators in the Hamiltonian: a one-body term, two two-body

terms, and two three-body terms with different coupling coefficients. The one-body term is

local, since each term acts only on a single site. The coefficients C3 and C4 of the three-body

terms do not involve any summation over indices. They hence depend only on the relative

positions of the involved lattice sites, and their behavior is the same everywhere on the

lattice. The C3 coefficient has two terms both of which have power law decay, while the C4

coefficient has one term which has a power law decay with distance. It is also seen that the

decaying behavior of the three-body coefficients is independent of the system size.

The coefficients of the two-body terms do, however, have a more complicated behavior.

C1 and C2 both contain two terms. The first decays as the square of the distance between the

sites, and the second is a sum. Due to these sums, the coefficients depend on the positions of

all the lattice sites. We demonstrate the behavior explicitly for the case of a square lattice in

Fig. 7.2. In this figure, we plot only the term containing the sum, and for C2 we plot the sum

of the contributions from nin j and n jni, since these two operators are the same. We consider

two cases. In the first case, we fix i to be an edge lattice point and then let j run along the
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edge. In the second, we fix i to be a lattice point in the middle of the lattice and then let j run

towards the edge. The two cases are illustrated in Fig. 7.2(a).

From the results in Fig. 7.2(b) and 7.2(c), we make the following observations. First, the

coefficients can be large even at distances comparable to the size of the lattice. Second, the

behavior of the coefficients with distance depends on where the sites are on the lattice. Third,

there is, in general, not a well-defined thermodynamic limit. In particular, this means that

if we truncate the Hamiltonian directly, the strengths of the local terms in the bulk will not

only depend on the local lattice geometry, but on the size and shape of the whole lattice. This

problem does not arise when truncating the Λi operators instead.

7.1.3 Local model

The main purpose here is to discuss a general way to obtain a local Hamiltonian starting from

the exact model. As discussed earlier, we start by truncating the operator Λi to obtain the

local operator

Λ(L)
i = ∑

j∈Ri

wi j
[
d j −di(qn j −1)

]
. (7.6)

Here, the sum is taken over the sites within some local region around the ith site as illustrated

in Fig. 7.1. A natural choice is to let the local region contain all sites that are at most a

distance r away from the ith site. In that case, Ri = { j|0 < |zi − z j| ≤ r}. The truncated

Hamiltonian is then constructed as

HLocal =
N

∑
i=1

Λ(L)†
i Λ(L)

i . (7.7)

The exact model is defined for open boundary conditions. This means that all the Λ(L)
i

operators in the bulk have the same form, but the Λ(L)
i operators on the edge are different,

because there are fewer neighbors. It is, however, straightforward to modify the truncated

model to have periodic boundary conditions. We just need to use the bulk form of Λ(L)
i for all

lattice sites and let the lattice wrap around the torus. Periodic boundary conditions reduce the

finite size effects on the relatively small lattices we can investigate with exact diagonalization.

In the following, we consider the truncated model for both open and periodic boundary

conditions on square and triangular lattices.
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Fig. 7.6 The first 40 energy eigenvalues computed for q = 2 on a 4×4 square lattice with

r =
√

2 (left) and a 4×4 triangular lattice with r = 1 (right). Only the states that have the

same momentum quantum numbers as the analytical states can have a nonzero overlap, and

the red points mark the q lowest of these states.

7.1.4 Overlap of the eigenstates

In order to quantify how well the constructed local models reproduce the exact states, we

compare the eigenstates of HLocal computed from exact diagonalization to the exact states.

On the plane, we define the overlap between the ground state |ΨLocal〉 and the exact state

(2.4) to be

δ = |〈ΨLocal|ΨP
Exact〉|2. (7.8)

In Fig. 7.3, we plot the overlap δ as a function of truncation radius r for the half (q = 2) and

quarter (q = 4) filled cases on a 4×4 square and triangular lattice. For the half filled case, a

truncation radius of
√

2 on the square lattice and
√

3 on the triangular lattice is enough to get

an overlap higher than 0.9. For the quarter filled case, a truncation radius of
√

5 on the square

lattice and
√

7 on the triangular lattice is needed to get an overlap higher than 0.9. Note that

the number of particles per site is a factor of two smaller for q = 4 than for q = 2, so the

same number of particles will take part in the local interactions if the truncation radius is

about a factor of
√

2 larger for q = 4. The behavior of the curves in Fig. 7.3 further suggests

that the needed truncation radius to some extent depends on the shape of the local region.

We now consider the case of periodic boundary conditions. Because of the topological

order, there are q states in total on the torus, which are given in the Appendix C. We therefore

define the overlap between the jth eigenstate |E j〉 of HLocal and the exact state to be

Δ =
q−1

∑
l=0

|〈E j|Ψ̃T,l
Exact〉|2, (7.9)

where |Ψ̃T,l
Exact〉 are the states in (C.1) after Gram-Schmidt orthonormalization. Due to the

exponential growth of the Hilbert space dimension with system size, we expect the overlap to

show an exponential decay with system size. This motivates us to also consider the overlap
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Fig. 7.7 The division of the lattices used for computing the topological entanglement entropy.

The different regions are marked with colors. The two upper plots are the 5× 6 lattices

considered for q = 2 and the lower plot is the 6×6 lattice considered for q = 4.

per site Δ1/N , which is expected to be roughly independent of system size for large enough

systems.

Let us first investigate the model with q = 2. The low energy part of the spectrum of the

truncated Hamiltonian for different lattice sizes for square lattice, is shown in Fig. 7.4 and for

a triangular lattice, is shown in Fig. 7.5, where we also provide the overlaps per site for the

two lowest energy eigenstates. The truncation radius is r =
√

2 for the square lattice and r = 1

for the triangular lattice. Figure 7.6 gives a more detailed view with more eigenstates for the

4×4 lattices. The overlaps per site for the two lowest energy states are higher than 0.99 for

all the cases, which shows that the wavefunctions are close to the analytical states derived

from CFT. Already for the 4×4 lattice, the two lowest energy states are separated by a gap

from the rest of the spectrum, which shows the twofold degeneracy on the torus, although

not perfectly for this very small lattice size. The ratio (E2 −E1)/(E3 −E1) is smaller for

the 5×6 lattice than for the 4×4 lattice, and this suggests that a gap will be present in the

thermodynamic limit.

As a further test of the topological nature of the ground states of the local models, we

compute [112] the topological entanglement entropy γ for the states on the 5×6 lattice. The

division of the lattice used for the computation is shown in Fig. 7.7. We do not expect to get

very accurate results for this lattice size, since the condition that all regions should be much

larger than the correlation length is not entirely fulfilled. The exact lattice Laughlin state

at filling fraction 1/q has γ = ln(q)/2, which is γ ≈ 0.347 for q = 2. For the square lattice,

we obtain γ = 0.3216 for the lowest energy eigenstate and γ = 0.3839 for the second lowest

energy eigenstate, and for the triangular lattice, we obtain γ = 0.3278 for the lowest energy
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Fig. 7.8 Energy spectrum in the relevant momentum sectors pi = (px, py) for different

truncation radii computed on a 6×6 square lattice on a torus. Here, px and py correspond to

the momentum quantum numbers in the two periodic directions, respectively. The energy

values painted black correspond to the eigenstates that have high overlap per site (Δ
1
N > 0.98)

with the exact analytical states. The green dashed line indicates the lowest energy present in

the momentum sectors not shown.

eigenstate and γ = 0.3412 for the second lowest energy eigenstate. These values are close to

the exact values and support the statement that the ground states are in the same topological

phase as the half filled Laughlin states.

We next investigate the model with q = 4. We saw above that this case requires a larger

radius of truncation. Testing the local models on small lattices with open boundaries for

different truncation radii is possible, but on the torus the local regions will wrap around the

torus and overlap with themselves if they are chosen too large. For a given lattice size, this

puts a restriction on the largest truncation radius that can be studied numerically. We hence

show the spectra for 6×6 square lattice in Fig. 7.8 and for a triangular lattice in Fig. 7.9. The

plots show the energy spectrum in the momentum sectors where the analytic states of interest

lie. We observe that the overlaps for the ground states are small for small truncation radii as

expected. The trend in the plots, however, indicates that the states with significant overlap

with the exact analytic states climb down the energy spectrum as the truncation radius is

increased. For the square lattice and r =
√

5, there are four states with high overlap among

the low energy states, but there is not a clear gap. We are not able numerically to study

large enough systems to judge whether a gap will be present in the thermodynamic limit or

the system will be in a different phase. It is interesting to note, however, that both for the
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Fig. 7.9 Energy spectrum in the relevant momentum sectors pi = (px, py) for different

truncation radii computed on a 6×6 triangular lattice on a torus. Here, px and py correspond

to the momentum quantum numbers in the two periodic directions, respectively. The energy

values painted black correspond to the eigenstates that have high overlap per site (Δ
1
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with the exact analytical states. The green dashed line indicates the lowest energy present in

the momentum sectors not shown.
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4×4 lattice with open boundary conditions studied in Fig. 7.3 and for the 6×6 lattice with

periodic boundary conditions, high overlap of the ground state is first observed for r =
√

5.

This may suggest that r =
√

5 is also sufficient in the thermodynamic limits, but it would be

necessary to investigate larger lattices to draw conclusions. For the local model at r =
√

5 on

a 6×6 square lattice, we find γ = 0.7088,0.6231,0.6894,0.6724 for the four lowest states

that have significant overlap with the exact analytic states (the division used is shown in Fig.

7.7). This is close to the expected value γ = ln(4)/2 ≈ 0.693 and shows that the states with

highest overlap with the exact analytic states are in the right topological phase.

For the triangular lattice, we also observe the trend that states with significant overlap

are climbing down the spectrum as the truncation radius is increased. The results in Fig. 7.3

suggest that a truncation radius of at least r =
√

7 is needed to get high overlaps, which is

consistent with the results in Fig. 7.9. For the 6×6 triangular lattice on the torus, we can,

however, not study the case r =
√

7, since the largest allowed truncation radius is r = 2.

7.2 Local Hamiltonians for 1D critical models

Similar to 2D, one can also obtain 1D versions of the lattice Laughlin models using CFT

methods [5]. The resulting models are critical and have interactions that decay as the inverse

of the square of the distance (1/r2). One-dimensional quantum many-body models with

nonlocal interactions of the kind 1/r2, as well as truncated versions of them, have gained

considerable interest over the years [113, 114, 45, 46, 49, 55, 115, 86, 87, 5, 116, 117],

exploring interesting aspects of integrable systems. A common feature of quantum 1/r2

systems is that the ground state can be exactly represented by a Jastrow-type wavefunction

[113, 114, 45, 46, 49, 55, 115, 86, 87, 5, 116, 117], namely a product of two-body functions.

One purpose of constructing analytical models of quantum many-body systems with

interesting properties is to use them as a guide to find ways to implement the physics

experimentally. In many cases, it may not be possible to directly implement the analytical

model itself, but with some suitable modifications one may be able to simulate a model

displaying the same physics. Ultracold atoms in optical lattices provide an interesting and

flexible setup for simulating quantum models, and there is a rapid development in the field

[118]. As far as the models derived from conformal field theory are concerned, a challenging

aspect for experimental implementation is that the models involve nonlocal interactions. This

poses the question, whether the same physics can be realized in a model with only local

interactions, and whether one can use the form of the exact model to predict a suitable choice

of local interactions.
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In this section, we investigate this question for the family of 1D models related to the

Laughlin states. We do the investigation with exact diagonalization, and we find that it is

possible to obtain local Hamiltonians, whose low-energy eigenstates have similar critical

properties as the eigenstates of the exact Hamiltonians. Finally, we briefly discuss possibilities

for implementing the local models in ultracold atoms in optical lattices.

7.2.1 Exact Models

Our starting point is a family of exact 1D models with non-local interactions that have been

constructed using tools from a CFT in [5]. The models are defined on a 1D lattice with

periodic boundary conditions, and it is convenient to think of the N lattice sites as sitting on

a unit circle in the complex plane with the jth site at z j = ei2π j/N . Each site can be either

empty or occupied by one particle, and n j denotes the number of particles on site j. The

members of the family are labeled by a positive integer q, and for q odd (even), the particles

are fermions (hardcore bosons). The Hamiltonian takes the form

H1D = ∑
i	= j

[
(q−2)wi j −w2

i j
]

d†
i d j − 1

2
(q2 −q)∑

i	= j
w2

i jnin j. (7.10)

is an eigenstate of the Hamiltonian (7.10) with energy

E0 =−(q−1)

6q
N[3N +(q−8)], (7.11)

The unique ground state |ΨExact〉 in the subspace with N/q particles is given by Eq. (2.4)

with η = 1 since we are in the strict lattice limit.

We comment that the Hamiltonian for q = 2 is closely related to the Haldane-Shastry

spin Hamiltonian [45, 46]. This can be seen by introducing the transformation

S+i = d†
i S−i = diSz

i = d†
i di −1/2, (7.12)

where S±i = Sx
i ± iSy

i , and �Si = (Sx
i ,S

y
i ,S

z
i ) is the spin operator acting on a two-level system.

Inserting this into (7.10) and utilizing that the number of particles is fixed to N/2, we arrive

at the Hamiltonian

H = ∑
i	= j

�Si · �S j

tan2(π(i− j)
N )

+ constant. (7.13)

This is the Haldane-Shastry Hamiltonian except for an additive and a multiplicative constant.

Monte Carlo simulations for systems with a few hundred sites have already shown that the

exact model is critical with a ground state entanglement entropy that grows logarithmically
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with the size of the subsystem and ground state two-site correlation functions that decay as

a power law [5]. In the following, we concentrate on the cases q = 3, 2, and 4. We do so,

because we want to study both the fermionic and the hardcore bosonic case, and because the

q = 2 model has an SU(2) invariant ground state, while the q = 4 and q = 3 models do not.

Let us investigate the behavior of the coefficients C1 = (q− 2)wi j −w2
i j of the hop-

ping terms and C2 = −1
2(q

2 − q)w2
i j of the density-density interaction terms of the exact

Hamiltonian (7.10) with respect to distance. First we note that

w jk =
z j + zk

z j − zk
=

−i
tan[ π

N ( j− k)]
. (7.14)

We have

w jk ≈ −iN
π( j− k)

for π| j− k|/N � 1. (7.15)

In this limit, the terms proportional to w2
i j are hence much larger than the term proportional

to wi j. It follows that C1 and C2 are of the same order, and they both decay as |i− j|−2 for

π|i− j|/N � 1. For long distances, where |i− j| ≈ N/2, both C1 and C2 approach zero. The

fact that the interaction strengths decay fast with distance suggest that it may be possible to

truncate the nonlocal Hamiltonian to a local Hamiltonian without significantly altering the

low-energy physics of the model.

7.2.2 Local models

Replacing the exact Hamiltonian with a local one is an advantage experimentally, both

because it removes the need to engineer couplings between distant sites and because it

reduces the number of terms in the Hamiltonian. Ultracold atoms in optical lattices provide

an interesting framework for simulating quantum physics. By trapping ultracold atoms in

a 1D optical lattice, one naturally gets a model with hopping between NN sites and on-site

interactions [21]. The hardcore constraint can be implemented by ensuring that the on-site

interaction is large enough. Density-density interactions between neighboring sites can be

achieved through dipole-dipole interactions, see e.g. [119–121].

If one changes the geometry of the 1D lattice into a zigzag lattice, one can have cou-

plings between both NN and NNN sites, as schematically depicted in Fig. 7.10. There are

already more methods available to realize zigzag lattices with cold atoms, see e.g. [122–125].

Anisimovas et. al. have proposed a scheme for realizing a zigzag lattice [125] using ultra-

cold bosons. In their study, the two legs of the ladder correspond to a synthetic dimension

given by two spin states of the atoms, and the tunneling between them can be realized by

a laser-assisted process. Subsequently, by employing a spin-dependent optical lattice with
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Fig. 7.10 Schematic diagram showing a zigzag lattice. The geometry allows for adjusting the

strengths of the NNN terms relative to the strengths of the NN terms.

the site position depending on the internal atomic state, a zigzag ladder can be achieved. In

another experimental proposal, Zhang et. al. have described a feasible method to achieve the

zigzag lattice in one dimension [124]. They use a superlattice generated by commensurate

wavelengths of light beams to realize tunable geometries including zigzag and sawtooth

configurations. Also, in a theoretical study, Greschner et. al. have suggested that the zigzag

chain may be formed by an incoherent superposition between a triangular lattice and a 1D

superlattice [122].

In the following, we will therefore restrict ourselves to models with at most NNN

couplings in the Hamiltonian. Specifically, we study four different models. The first one is

the NN model defined by the Hamiltonian

HNN = ∑
<i, j>

[
(q−2)wi j −w2

i j
]

d†
i d j − 1

2
(q2 −q) ∑

<i, j>
w2

i jnin j. (7.16)

Here, the sum over i and j is restricted to NN terms as denoted by the symbol < .. . >.

(We include both, e.g., (i, j) = (1,2) and (i, j) = (2,1) in the sum, which ensures that the

Hamiltonian is Hermitian.) For q = 2, HNN reduces to the antiferromagnetic spin-1/2 XXX
Heisenberg Hamiltonian except for an additive constant (this can be seen by applying the

transformation in (7.12)).

The second model is the model obtained by truncating the full Hamiltonian to only

include terms up to NNN distance, i.e.,

HNNN = ∑
<<i, j>>

[
(q−2)wi j −w2

i j
]

d†
i d j − 1

2
(q2 −q) ∑

<<i, j>>

w2
i jnin j, (7.17)

where << .. . >> is the sum over NN and NNN terms.

Instead of simply cutting the Hamiltonian as done above, one could try to partially

compensate for the removed terms by adjusting the relative strengths of the couplings. We
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Table 7.1 Optimal values of U1 and U2.

q U1 U2

2 1.00 1.00

3 1.86 0.68

4 5.36 0.60

therefore also consider the optimized NN model

Hopt
NN = ∑

<i, j>

[
(q−2)wi j −w2

i j
]

d†
i d j − U1

2
(q2 −q) ∑

<i, j>
w2

i jnin j, (7.18)

and the optimized NNN model

Hopt
NNN = ∑

<<i, j>>

[
(q−2)wi j −w2

i j
]

d†
i d j − U2

2
(q2 −q) ∑

<<i, j>>

w2
i jnin j. (7.19)

In these models, U1 and U2 are parameters that are chosen to maximize the overlap between

the ground state of Hopt
NN or Hopt

NNN with the analytical state |ψExact〉 in Eq. (2.7).

We investigate how the overlap varies with U1 and U2 in figure 7.11. For a given q, the

overlap value is seen to be maximized at a unique value of U1 and U2, independent of the

system size N. The optimal values are given in table 7.1. We do not know why this is the

case. For q = 2, the optimal value is unity, and the optimized models hence coincide with

the models that are not optimized. It is interesting to note that the Hamiltonians for q = 2

and U1 = U2 = 1 are SU(2) invariant, as all terms can be written in terms of �S j ·�Sk (see

(7.12)). For q = 2, the wavefunction Eq. (2.7) is also SU(2) invariant. It is hence natural that

U1 =U2 = 1 is the optimal choice.

7.2.3 Properties of ground states of the local models

We now compute properties of the ground states of the local models to quantify how well

the local models reproduce the physics of the exact models. The results are obtained using

exact diagonalization, and we hence consider systems with q = 2, 3, and 4 with at most 32

lattice sites and N/q particles. We first show that overlaps per site higher than 0.999 can be

obtained for all these cases with at most optimized NNN interactions. We then show that the

behavior of important properties like entanglement entropy and two-site correlation functions

is also reproduced well (possibly except for a bit of discrepancy for q = 3 and N even).



7.2 Local Hamiltonians for 1D critical models 79

0 1 2 3 4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4
0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4
0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6
0.4

0.5

0.6

0.7

0.8

0.9

Fig. 7.11 Overlap value as a function of optimizing parameters U1 and U2 for q = 3, q = 2,

and q = 4.

7.2.3.1 Overlap between ground state wave functions

We have calculated the overlap Δ between the ground state |ΨLocal〉 of the local Hamiltonian

(7.16), (7.17), (7.18) or (7.19) and the analytical wavefunction |ΨExact〉 in Eq. (2.7). For a

non-degenerate ground state, we define the overlap as

Δ = |〈ΨLocal|ΨExact〉|2. (7.20)

For large enough systems, the overlap is expected to decay exponentially with system size,

even if the states deviate only a bit from each other, since the dimension of the Hilbert space

increases exponentially in N. We therefore also consider the overlap per site Δ1/N , which is

expected to remain roughly constant with system size for large enough N. We find that the

ground state is non-degenerate for all the system sizes we consider.

The overlap for the fermionic case (q = 3) is given in table D.1 in the appendix. For a

complete analysis, these Δ values are explicitly calculated with and without optimization

for different system sizes. The overlaps are higher for the NNN Hamiltonian than for the

NN Hamiltonian, and optimization also improves the overlaps. The overlap decreases with

system size, but the overlap per site is almost constant. The overlap per site is already around

0.996 for only NN interactions without optimization, and for the NNN Hamiltonian with

optimzation it is around 0.9997.

Next, we report the overlap values for half-filling (q = 2) and quarter-filling (q = 4) of the

lattice with hardcore bosons. These results are shown in tables D.2 and D.3 in the appendix,
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Fig. 7.12 Entanglement entropy S as a function of subsystem size L for q = 2, q = 4 and

q = 3. The numerical results for S are computed using the ground states of HNN for q = 2

and Hopt
NNN for q = 3 and q = 4. The different plots are for different q values as specified in

the legends. The equations for the straight lines with slope 1 are also shown in the legends.
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respectively. For q = 2, the NN model is enough to obtain overlaps per site around 0.9995,

and these overlaps are slightly improved by considering the NNN model.

The scenario is different for q = 4. In this case, the overlap per site is around 0.987 for

the NN model. Adding NNN interactions increases the overlap per site to around 0.999. The

optimized NN model produces lower overlaps than the NNN model. Optimizing the NNN

model gives overlaps slightly better than for the NNN model. For q = 4, the average distance

between particles is four sites, which could be part of the explanation why NNN interactions

are more important in this case than for q = 2.

From the above analysis of the overlap, we conclude that for the q = 2 case, it is sufficient

to consider the local Hamiltonian with only NN interactions to study the ground state

properties, whereas for the q = 3 and q = 4, the local NNN Hamiltonian with optimization is

an appropriate choice.

7.2.3.2 Entanglement Entropy

We calculate the von Neumann entanglement entropy defined in Eq. (4.13) for our 1D system.

We consider subsystems that consist of L consecutive sites. Due to the translational invariance

of the models we are considering, all such entanglement entropies can be expressed in terms

of the entanglement entropies obtained when region A is site number 1 to site number L with

L ∈ {1,2, . . . ,N/2} for N even and L ∈ {1,2, . . . ,(N +1)/2} for N odd.

The von Neumann entanglement entropy of a critical system in 1D is given by [126]

S =
c
3

log

[
N
π

sin

(
πL
N

)]
+ constant, (7.21)

when L is large compared to 1. The central charge c was found to be c = 1 for the exact model

in [5]. Plotting S as a function of (1/3) log[(N/π)sin(πL/N)], we should hence compare to

a line of slope 1.

Plots of the entanglement entropy for q = 3, 2, and 4 and different system sizes are shown

in Fig. 7.12. For q = 2, the data for the NN model and the exact model are seen to fit very

well and also fit well with a line of slope 1. For q = 3, there is a good match for N odd, while

there is a bit of deviation for N even. For q = 4, the data for the local model are displaced by

a constant, but the slope for L not too small fits well with 1. The central charge is hence the

same as in the exact model.
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Fig. 7.13 Correlation function G2 for q = 3 (left), q = 2 (middle), and q = 4 (right). Results

are shown both for the wavefunction |ΨExact〉 and for the ground state of the local Hamiltonian

(Hopt
NNN for q = 3 and q = 4 and HNN for q = 2).

7.2.3.3 Correlation function

Correlation functions are also an important characteristic property for determining the physics

of a system. Here, we compute the two-site correlation function defined as

G2 = 〈Ψ|nin j|Ψ〉−〈Ψ|ni|Ψ〉〈Ψ|n j|Ψ〉, (7.22)

where |Ψ〉 is the state of the system. In our case, 〈Ψ|n j|Ψ〉= 1/q for all j. In the exact model,

G2 decays with the distance between the points to the power −2/q and also shows oscillations

with period q. For the local models, it is difficult to determine the precise behavior of the

decay, since we cannot go to sufficiently large system sizes. Instead we simply compare the

values of G2 for the local and the exact models. Plots of G2 are shown for q = 3, 2, and 4

and different system sizes in Fig. 7.13. In all cases, there is a good agreement between the

local and the exact models.

7.2.4 Low-lying excited states

Achieving a good overlap for the ground state wave functions is a good starting point, but if

the system is at nonzero temperature or we are interested in dynamics, it is also important

that the low-lying excited states are not affected significantly in going from the exact to the

local Hamiltonian, and we now investigate this question.

The energies of the seven lowest states are plotted in Figs. 7.14, 7.15, and 7.16 for q = 3,

2, and 4, respectively, for both a local model and the exact model. We have added a constant

to the energies and divided by a constant factor to fix the ground state energy to zero and the

energy of the first excited state to one. For q = 3, it is seen that the energies of the lowest

excited states of the local model fit accurately with the energies of the corresponding states

for the exact model, in particular for the first four excited states. For q = 2, the energies of
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Fig. 7.14 Energies of the 7 lowest states of the NNNopt model (7.19) (shown as solid lines)

and of the exact model (7.10) (shown as dashed lines) for q = 3 (the ground state energy has

been set to zero, and the energies have been scaled by a constant factor such that the first

excited state is at energy 1). The different plots are for 21, 24, and 27 sites, respectively, as

indicated.
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Fig. 7.15 Energies of the 7 lowest states of the NN model (7.16) (shown as solid lines) and of

the exact model (7.10) (shown as dashed lines) for q = 2 (the ground state energy has been

set to zero, and the energies have been scaled by a constant factor such that the first excited

state is at energy 1). The different plots are for 20, 24, and 28 sites, respectively, as indicated.
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Fig. 7.16 Energies of the 7 lowest states of the NNNopt model (7.19) (shown as solid lines)

and of the exact model (7.10) (shown as dashed lines) for q = 4 (the ground state energy has

been set to zero, and the energies have been scaled by a constant factor such that the first

excited state is at energy 1). The different plots are for 20, 24, and 28 sites, respectively, as

indicated.

the lowest excited states in the local model are generally shifted compared to the exact model,

but the degeneracies remain the same. In particular, it is seen that the energy difference

between the first and the second excited state is much larger for the local model than for the

exact model. For q = 4, it is again the case that the energies of the lowest excited states in the

local model are shifted compared to the exact model, but the degeneracies remain the same.

It is interesting to note that the plots for a given value of q are almost independent of N for

q = 2 and q = 3, but not for q = 4. This shows that finite size effects play a role for q = 4.

Our exact diagonalization codes do, however, not allow us to go to large enough systems to

eliminate these effects.

We next compute overlaps to investigate how well the wavefunctions of the low-energy

excited states of the local models match with the corresponding eigenstates of the exact

models. We find that the overlap per site is higher than 0.998 in all the considered cases,

which shows that there is an excellent agreement. Details of the results can be found in tables

D.4, D.5, and D.6 in the appendix. The fact that the overlaps are nonzero also shows that

there is agreement between all quantum numbers of the states of the local Hamiltonian and

the states of the exact Hamiltonian.

The conclusion of this subsection is that the low-energy excited state wavefunctions of

the local models are close to the corresponding wavefunctions of the exact models, but the
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energies may be shifted. If we prepare the system in a given low-energy excited state, we

hence expect the physics to be practically the same for the local and the exact model. If we

instead consider a superposition of different excited states, the relative phases between the

terms in the superposition may have different time variation.

7.3 Conclusion

In the first part of this chapter, we discussed a general procedure to truncate lattice FQH

Hamiltonians derived from CFT null fields. Each of the null fields leads to an operator Λi

that annihilates the state, and the approach is to truncate this operator to a local form instead

of truncating the Hamiltonian itself. Truncating the Λi operator has a number of advantages

compared to truncating the Hamiltonian directly. First, the terms in the operator depend

only on the relative coordinates of the involved sites, and not on the rest of the lattice. The

local terms are hence unaltered, when we approach the thermodynamic limit or in other

ways modify the rest of the lattice. On the contrary, some of the terms in the Hamiltonian

depend on the whole lattice, and the local terms resulting from truncating the Hamiltonian

directly will depend on the choice and size of the whole lattice. Second, it is clear how to

construct models with open or periodic boundary conditions as desired, while truncating the

Hamiltonian directly only gives models with open boundary conditions, unless one manually

changes the local terms and optimizes the coupling strengths numerically. The fact that

numerical optimization is not needed means that we can construct the local Hamiltonian even

if the local regions are not small compared to the lattice sizes that can be investigated with

exact diagonalization.

We have applied the truncation procedure to Hamiltonians with half and quarter filled

Laughlin type ground states on square and triangular lattices on the plane and on the torus.

For the q = 2 local model, we find that a truncation radius of r =
√

2 on the square lattice

and r = 1 on the triangular lattice is enough to obtain overlaps per site with the exact states

that are larger than 0.99 for all the investigated cases, and to obtain an approximate twofold

degeneracy on the torus. This suggests that the truncated model is in the same topological

phase as the exact model. We also find that the topological entanglement entropy is close to

the expected value. For the q = 4 local model, we infer first from computations assuming

open boundary conditions that a larger truncation radius is needed for the ground state of

the local model to be close to the exact analytical state. We see a similar trend on the torus.

Computations for the square lattice for open boundaries and on the torus seem to suggest

that a truncation radius r =
√

5 is needed to stabilize the corresponding q = 4 Laughlin state.

The systems we can investigate with exact diagonalization are, however, too small to judge if
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the system is, indeed, topological in the thermodynamic limit. We have also checked that the

states have the right topological entanglement entropy. For the case of the triangular lattice,

the computations for open boundary conditions indicate that at least a truncation radius of

r =
√

7 is needed for the ground state of the local model to be sufficiently close to the exact

analytical state. However, numerical restrictions do not allow us to test this on larger lattice

sizes on the torus.

It is worth mentioning that an SU(2) invariant local Hamiltonian was constructed for

the q = 2 state on the square lattice and the kagome lattice in Ref. [7] by truncating the

Hamiltonian directly and numerically optimizing the coefficients. The same procedure does,

however, fail to produce a simple Hamiltonian on the triangular lattice. In contrast, the

approach of truncating the Λi operator gives good overlap values on both the square and the

triangular lattice without optimization. Also, for the FQH Hamiltonians considered in this

chapter, there is no SU(2) symmetry to simplify the problem. Hence, this way of truncating

the Hamiltonian should work generally for a larger class of model Hamiltonians derived from

CFT.

In the second part of the chapter, we started from a class of one-dimensional models

derived from conformal field theory and used exact diagonalization to investigate to what

extent the same physics is realized by different models containing only NN and possibly NNN

couplings. For the q = 2 model we found that already the NN model, which is equivalent to

the antiferromagnetic XXX Heisenberg model, gives a good description. For q = 3 and q = 4,

an optimized model with both NN and NNN couplings is preferred. With these models we

find that the overlap per site between the ground states of the local models and the ground

states of the exact models is larger than 0.999 for the considered system sizes. The overlaps

per site for the low-lying excited state are larger than 0.998. We also find that the ground

state entanglement entropy and the correlation functions are reproduced well by the local

models, except that there is a bit of discrepancy for q = 3 for N even for the entanglement

entropy. The low-energy spectra are modified to some extent in the local models compared

to the exact models. For q = 4, the modification varies with system size, so finite size effects

play a role for the considered system sizes. The high agreement between the ground state

properties and the excited states suggest that most of the physics will remain the same in the

local models. This paves the way to experimentally realize the physics in optical lattices

using ultracold atoms, since the local models are simpler to realize experimentally than the

corresponding exact models derived from conformal field theory. The ingredients needed to

realize the different terms in the Hamiltonian are already available experimentally.
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Hence, the main observation from this chapter is that, conformal field theory can not just

be used to obtain exact, nonlocal models, but is also a powerful tool to obtain interesting,

local models.



Chapter 8

Braiding anyons effectively on a small
lattice

As we discussed in Chapter 2, lattice has several advantages over the continuum in realizing

FQH physics. One of the important reasons to study lattice FQH models is to create anyons

and perform braiding in a controlled fashion. We remarked that potential traps can be

included at specific lattice positions to pin the fractional defects which turn out be anyons in

the topological phase. Then, the properties of the anyons may be investigated by studying

the ground state of the many-body Hamiltonian. Braiding of anyons on lattice systems have

been numerically studied on torus geometries where a relatively larger braiding path can be

chosen compared to open boundaries. [40, 42, 44].

Although the above description allows for the existence of anyons, the charge of these

defects are typically spread out over few lattice spacings. However, to get the topological

braiding properties, the anyons need to be well separated and hence the lattice system needs

to have a certain size. The computational resources needed to study a many-body quantum

system exponentially grows with system size and hence there is an obvious limitation for

studying braiding statistics for the anyons. Further, experimentally, it is generally challenging

to keep quantum coherences in large systems and hence dealing with small system sizes

is an advantage for ultracold atoms in optical lattices [41]. While numerically it may be

advantageous to braid anyons on a torus geometry, care must be taken such that the anyons

are sufficiently in the bulk and not overlap with each other while they are braided on a lattice

with open boundaries. The challenge is hence to localize the anyons sufficiently while we

braid them on a lattice with a smaller area.

In this chapter, we discuss how we address the above challenge by showing that the

lattice anyons may be squeezed so that they are localised on fewer sites which facilitate the

braiding even on small sized lattices. We demonstrate this first in a toy model by constructing
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lattice wavefunctions for squeezed anyons and derive the braiding statistics under some

assumptions. We then consider the Kapit-Mueller model and an interacting Hofstadter model

as examples of lattice fractional quantum Hall models. We choose open boundary conditions,

since this is the most relevant case for experiments. The squeezing of the anyons is done

with a position dependent potential. For the system size considered, the anyons overlap

significantly when they are created from a local potential, and the phase acquired when two

anyons are exchanged differs from the ideal value predicted for well separated anyons. Using

the optimized potential removes the overlap of the charge distributions of the anyons thar

now squeezed. Next, we braid these squeezed anyons first in the adiabatic limit by moving

them like snakes and the braiding phase we get is significantly closer to the ideal value. The

modifications done to shape the anyons could affect the size of the gap and the ability to

couple to the excited states, and we therefore also compute the time needed for doing the

exchange process in order to be close to the adiabatic limit. We also show numerically that if

the potential is modified slightly away from the optimal choice, the phase acquired when

exchanging two anyons in the considered finite size system remains practically the same and

hence robust to small perturbations.

This chapter is based on the following reference [127].

• “ Squeezing anyons for braiding on small lattices ”, N. S. Srivatsa∗†, Xikun Li∗ & A.

E. B. Nielsen, Phys. Rev. Research 3, 033044 (2021) [* authors contributed equally

to this work].

8.1 Shaping anyons in a toy model

Topological properties are robust against local deformations, as long as the deformations are

not so large that they bring the system out of the topological phase or allow the topological

quantity in question to switch to one of the other allowed values. We therefore expect

that it should be possible to shape the anyons to some extent, while keeping the braiding

properties unaltered. We start out by showing this explicitly for a simple model, namely a

modified Laughlin trial state on a lattice. This system can be analyzed using a combination

of analytical observations and Monte Carlo simulations, and this allows us to study large

systems with well-separated anyons.

We first consider the case of creation of anyons without shaping discussed in Chapter 2.

As an example, we plot ρ(z j) defined in Eq. (2.15), for the state |ψ2,2〉 given by Eq. (2.13),

with two quasiholes of charge 1/2 in Fig. 8.1(a). Each of the quasiholes occupies a roughly

circular region and spreads over about 16 lattice sites. We obtain −∑ j∈B ρ(z j) ≈ 0.5 as

expected, where B is the set of the labels of the 16 sites inside one of the dashed circles.
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Figure 8.1(b) shows ρ(z j) along a line parallel to the real axis that goes through one of the

quasiholes.

The idea is to shape the quasiholes by splitting the factors (w j − zk) appearing in the

wavefunction into several pieces. The splitting gives us additional parameters that we can

tune to obtain the desired shape. We first study how the splitting affects the density difference,

and in the next section we will show under which conditions the shaped objects have the

same braiding statistics as the original anyons. Specifically, we define the L weights gh
j that

are real numbers and the L coordinates wh
j that are complex numbers. The weights fulfil the

constraint ∑L
h=1 gh

k = pk. The resulting state takes the form

ψq,S(n1,n2, . . . ,nN) = C−1 δn ∏
h, j,k

(wh
j − zk)

gh
j nk × ∏

i< j
(zi − z j)

qnin j ∏
i	= j

(zi − z j)
−ni . (8.1)

The state (2.13) is the special case with L = 1.

We show one example in Fig. 8.1(c), where we plot the density profile for the state (8.1)

with q = 2, S = 2, L = 3, and gh
j = 1/3 for all h and j. The coordinates wh

j are chosen as

illustrated with the pluses in the figure. In this case, we find that ρ(z j) is nonzero in two

regions that are narrower in one direction and about the same size in the other direction

compared to the quasihole shapes in Fig. 8.1(a). The result is hence squeezing. We find

that −∑ j∈B ρ(z j)≈ 0.5, where the set B consists of the labels of all the lattice sites inside

one of the dashed ellipses. The squeezing is also seen in Fig. 8.1(d), where we show ρ(z j)

along a line parallel to the real axis. By making different choices of gh
j and wh

j , we can obtain

different shapes.

8.1.1 Braiding statistics

We now investigate the braiding properties of the shaped objects. The computations done

here generalize the computations for L = 1 in [6, 128]. When we take the rth shaped

object around a closed path, the wavefunction transforms as |ψq,S〉 → Meiθr |ψq,S〉, where

M is the monodromy, which is determined by the analytical continuation properties of the

wavefunction, and

θr = i
L

∑
h=1

∮
ch

〈ψ| ∂ψ
∂wh

r
〉dwh

r + c.c. (8.2)

=
i
2

L

∑
h=1

N

∑
k=1

gh
r

∮
ch

〈nk〉
wh

r − zk
dwh

r + c.c.

is the Berry phase. Here, we denote the path that wh
r follows by ch.
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Fig. 8.1 (a) Density difference ρ(z j) [see Eq. (2.15)] of two quasiholes with charge 1/2 in

the state (2.13). The quasihole positions wk are depicted by red plus symbols. The charge

has a spread of roughly 16 lattice sites (the sites that fall within the dashed circles). (b)

Density difference along the row marked by the purple line in (a). (c) Density difference of

squeezed quasiholes of charge 1/2 constructed by using three weights with gh
1 = gh

2 = 1/3 (at

the positions indicated by the green and yellow plus symbols) using Eq. (8.1). The charge

has a spread of roughly 8 lattice sites (the sites that fall within the dashed ellipses). (d) The

density difference on the lattice sites along the row marked by a purple line in (c) also shows

the squeezing. In both cases, q = 2, the number of lattice sites is N = 316, and we choose a

square lattice with a roughly circular edge to mimic a quantum Hall droplet.
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The phase θr contains contributions both from statistical phases due to braiding and from

the Aharonov-Bohm phase acquired from the background magnetic flux encircled by the

quasihole. Here, we want to isolate the statistical phase when the rth anyon encircles the vth

anyon. The quantity of interest is hence

θin −θout =
i
2

L

∑
h=1

N

∑
k=1

gh
r

∮
ch

〈nk〉in −〈nk〉out

wh
r − zk

dwh
r + c.c., (8.3)

where θin (〈nk〉in) is the Berry phase (particle density) when the vth anyon is well inside all

the ch, and θout (〈nk〉out) is the Berry phase (particle density) when the vth anyon is well

outside all the ch. All other anyons in the system stay at fixed positions to avoid additional

contributions to the Berry phase.

The density difference 〈nk〉in−〈nk〉out is nonzero only in the proximity of the two possible

positions of the vth anyon and is hence independent of wh
r . This facilitates to move the density

difference outside the integral. The remaining integral
∮

ch
1

wh
r−zk

dwh
r is 2πi whenever zk is

inside ch. Due to the assumption that the vth anyon is well inside or well outside ch, it follows

that −∑k inside ch
(〈nk〉in −〈nk〉out) = pv/q is the charge of the vth anyon. Utilizing further

that ∑h gh
r = pr, we conclude

θin −θout = 2π pr pv/q. (8.4)

The result is hence independent of the number of weights L as long as the anyons are well

separated and all the weights belonging to one anyon are moved around all the weights of the

other anyon.

Looking at the monodromy, a difficulty immediately arises. In the normal Laughlin state,

there is a trivial contribution to the monodromy, when an anyon encircles a particle, but

this is not necessarily the case here. If the weight at wh
r encircles the lattice site at z j, the

contribution to the monodromy is e2πigh
r n j , and this is nontrivial when gh

r is not an integer. In

order to get Laughlin type physics, we hence need that all such factors combine to a trivial

phase factor. This can be achieved by putting a restriction on how the anyons are moved.

Specifically, if we require that all ch encircle the same set of lattice sites, then we get the

contribution e2πi∑h gh
r n j = 1 for each lattice site inside the paths.

The conclusion is hence that we obtain the same braiding properties as for the normal

Laughlin state as long as all the weights of an anyon encircle all the weights of another anyon

and the closed paths followed by the weights belonging to an anyon all encircle the same

lattice sites. This still leaves a considerable amount of freedom to shape the anyons.
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8.2 Squeezing and braiding anyons in the Kapit-Mueller
model and in an interacting Hofstadter model

We next investigate anyons in the Kapit-Mueller model [129] and in an interacting Hofstadter

model [17, 16]. We choose open boundary conditions, since this is the most relevant case

for experiments. We first show that one can squeeze the anyons by adding an optimized

potential, and in this way it is possible to avoid significant overlap between the charge

distributions of the anyons even for the small system sizes considered. We then braid the

squeezed anyons and find that the Berry phase is closer to the ideal value than it is for the

case without squeezing. We also demonstrate robustness with respect to small errors in the

optimized potentials and estimate the time needed to reach the adiabatic limit.

8.2.1 Model

We consider hardcore bosons on a two-dimensional square lattice with N sites and open

boundary conditions. The hardcore bosons are allowed to hop between lattice sites, and the

phases of the hopping terms correspond to a uniform magnetic field perpendicular to the

plane. We study two models. The first one is the Kapit-Mueller model at half filling [129]

with Hamiltonian

H0 = ∑
j 	=k

t(z j,zk)a
†
jak +H.c., (8.5)

where a j is the operator that annihilates a hardcore boson on the lattice site at the position

z j. Note that H0 conserves the number of particles ∑i ni, where ni = a†
i ai is the number

operator acting on site i. We choose the lattice spacing to be unity, and take the origin of the

coordinate system to be the center of the lattice. The coefficient for the hopping from the site

at zk to the site at z j is then

t(z j,zk) = (−1)Re(z j−zk)+Im(z j−zk)+Re(z j−zk) Im(z j−zk)

× t0e−(π/2)(1−φ)|z j−zk|2e−iπφ [Re(z j)+Re(zk)] Im(z j−zk), (8.6)

where φ is the number of magnetic flux units per site. We choose t0 = 1 as the energy unit.

When there are no anyons in the system, half filling means that the number of particles ∑i ni

is half the number of flux units Nφ . When pinning potentials are inserted to trap S anyons,

we should instead choose the number of particles such that ∑i ni +S/2 = Nφ/2. Note that

t(z j,zk) decays as a Gaussian with distance between the two sites. If we only allow hopping



94 Braiding anyons effectively on a small lattice

between nearest neighbor sites, i.e. ∑ j 	=k �→ ∑〈 j,k〉, then the resulting Hamiltonian is the

interacting Hofstadter model [17, 16]. This is the second model we study.

Both models are in the same topological phase as the bosonic lattice Laughlin state with

q = 2 for appropriate choices of the parameters. For the numerical computations below,

we take an N = 6×6 lattice with magnetic flux density φ = 1/6, and we have either three

particles and no quasiholes or two particles and two quasiholes in the system. Below, we

describe how we create quasiholes and braid them.

8.2.2 Anyon squeezing and optimization

In Ref. [40], Kapit et al. considered a scenario in which quasiholes are trapped by local

potentials. One can pin quasiholes at the sites a and b by adding the term Hp =V na +V nb to

the Hamiltonian described in Eq. (8.5), where V is a positive potential strong enough to trap

quasiholes. Let 〈ni〉H0+Hp be the expectation value of ni in the ground state of the Hamiltonian

with trapping potentials H0 +Hp when there are two particles and two quasiholes in the

system, and let 〈ni〉H0
be the expectation value of ni in the ground state of H0 when there are

three particles and no quasiholes in the system. The density difference

ρ(zi) = 〈ni〉H0+Hp −〈ni〉H0
(8.7)

quantifies how much the presence of the anyons alter the density, and −ρ(zi) is the charge

distribution of the anyons. In the ideal case of well separated anyons, the density difference

is zero everywhere, except in the vicinity of the anyons, and each anyon appears as one half

particle missing on average in a local region. In Fig. 8.2(b), we show the density difference

when the trapping potentials are located at the sites (2,2) and (5,5). Notice that the overlap

between the two anyons is large compared to the absolute value of the charge at the location

of the trapping potentials. One could alternatively think of having several potentials in a row

as in Fig. 8.2(c), but also in this case there is a large overlap between the anyons.

Here, we show that one can avoid the overlap between the charge distributions of the

two anyons by choosing the potentials appropriately, and we use optimal control to find the

appropriate potentials. We apply the method to both the Kapit-Mueller and the interacting

Hofstadter models. For each of the anyons we choose four consecutive sites on which we

want to localize the anyon. We choose the potentials on these sites to be (1−λ )V0, V0, V0,

and λV0, respectively, where λ ∈ [0,1]. Later, we shall use the parameter λ to move the

anyons during the braiding operation. In addition, we introduce auxiliary potentials V aux
i

on all the other sites iaux to achieve screening. By tuning the values of V aux
i , using optimal

control theory, we are able to localize each of the anyons to very high precision on the chosen
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Fig. 8.2 (a) The path we choose to exchange the two quasiholes in the clockwise direction.

(b) The density difference for the case of two trapping potentials at the sites (2,2) and (5,5).
[We here label the lattice sites by (xi,yi), where zi = xi − 3.5− i(yi − 3.5).] It is seen that

the two quasiholes trapped by the potentials overlap. (c) The density difference for the case

of trapping potentials on all the sites with xi = 2,3,4,5 and yi = 2,5. In this case, there is

again a significant overlap between the two anyons trapped by the potentials. (d) The density

difference for the case, where we optimize the potential to localize the quasiholes on the

eight sites. The sum of the absolute values of the charge on all the other sites is negligible

with F ∼ O(10−15).

sites. We study the ground state of the Hamiltonian H = H0 +Hp, where H0 is given by Eq.

(8.5) and the term Hp = ∑ j Vja
†
ja j includes the potential on all the sites.

We choose the fitness function

F(V0,V aux
i ) = ∑

i∈iaux

|ρ(zi)| (8.8)

for the optimization to be the sum of the absolute value of the density difference over all the

auxiliary sites. Note that F is zero, when the anyons are perfectly localized on the chosen

sites. We adopt the covariance matrix adaptation evolution strategy (CMA-ES) algorithm to

minimize F . The CMA-ES belongs to the class of evolutionary algorithms and is a stochastic,

derivative-free algorithm for global optimization. It is fast, robust and one of the most popular

global optimization algorithms. See Ref. [130] for further details. We restrict the values

of the auxiliary potentials to be within the interval V aux
i ∈ [−ε,ε], and their values within

this window are determined by the optimization algorithm. The hyper parameters (V0,ε) are

chosen empirically, but we observe that the optimization is not sensitive to the values of V0

and ε , as long as V0 and ε are larger than certain threshold values. After the optimization

the fitness function is very small with F ∼ O(10−15), and each anyon is very well localized
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Fig. 8.3 (a) The Berry phase in units of π versus the strength of the trapping potentials V0.

The blue stars are for the squeezed anyons in the Kapit-Mueller model. The red dash-dotted

line denotes the expected value of the Berry phase for well separated anyons. The black

dashed line marks the best value obtained in Table 8.1 for the Kapit-Mueller model without

optimization. (b) The robustness for the case with optimization against the strength of an

error introduced in the potentials (see text for details). We display the values of the fitness

function F (blue stars) in the left axis, as well as the relative error Δ (red dots, displayed as

percentages) in the right axis, once the error δ is introduced.

within the desired four sites. See Fig. 8.2(d) for an illustration. In general, the optimized

values of V aux
i are smaller than V0.

8.2.3 Adiabatic exchange

To exchange the anyons, we need the potentials to vary in time. For the case without

optimization considered in [40], the potentials were moved between two sites by linearly

increasing the strength at one site and linearly decreasing the strength at the other site. In

our case, we move the chain of trapping potentials forward by one site by linearly increasing

λ from 0 to 1. We move both the anyons simultaneously in the clockwise direction. We
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Without optimization (KM/IH)

Nsteps V0 = 1 V0 = 10 V0 = 102 V0 = 103

5 0.2805/0.3173 0.4088/0.4476 0.4307/0.4685 0.4329/0.4706
10 0.2815/0.3186 0.4098/0.4478 0.4308/0.4684 0.4329/0.4706
102 0.2819/0.3190 0.4096/0.4459 0.4304/0.4661 0.4329/0.4703

103 0.2819/0.3191 0.4095/0.4458 0.4296/0.4636 0.4324/0.4678

With optimization

Nsteps V0 = 5 V0 = 7

4 0.4873 (KM) 0.5062 (IH)

Table 8.1 Berry phases α in units of π obtained without (top panel) and with (bottom panel)

optimization for the exchange of two quasiholes in the Kapit-Mueller (KM) model and in the

interacting Hofstadter (IH) model with open boundary conditions. The values of α obtained

from the two methods that are closest to the ideal value 1/2 are indicated with bold text.

discretize this process into Nsteps steps. As described before, we also include auxiliary

potentials on all the other sites, and we optimize these for each value of λ . By repeating this

procedure, we make a complete exchange of the two anyons.

We compute the Berry phase factor eiπα for the exchange both with and without opti-

mization. For the case without optimization, we start out with the trapping potentials at

the lattice sites (2,2) and (5,5). For the case with optimization, we start from the situation

depicted in Fig. 8.2(d). Here, we assume the adiabatic limit and follow the method in Ref.

[40] to compute the Berry phase factor. Specifically, we compute the ground state at each

step by exact diagonalization, and we fix the phase of the ground state by requiring that the

overlap between the wavefunction at the current step and the wavefunction at the previous

step is real. The Berry phase can then be read off by comparing the phase of the final state

to the phase of the initial state. The expected value for the case of well separated anyons is

α = 1/2 and hence eiπα = i.
In Table 8.1, we compare the cases with and without optimization for both the Kapit-

Mueller model and the interacting Hofstadter model. We find that a small value of Nsteps is

enough to reach the regime, in which the Berry phase α is not sensitive to the precise choice

of Nsteps. For the case without optimization, we find that a high strength of the potential

is required (V0 ≥ 100) to obtain reasonably good results. For the case with optimization,

however, a quite weak potential V0 < 10 is sufficient. In addition, the Berry phases obtained

with optimization are much closer to the ideal value than the ones obtained without optimiza-

tion. This can also be seen in Fig. 8.3(a), which shows the effect of the strength V0 on the

numerical value of eiπα for the case with optimization. In general, the larger V0 is, the better
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the eiπα is. However, the numerical result saturates when V0 exceeds a threshold value and

thus strong V0 is not necessary.

8.2.4 Robustness

In an experiment, the desired potentials on different lattice sites may not be exactly achieved,

and we therefore test how robust the scheme is against possible errors in the auxiliary po-

tentials as shown in Fig. 8.3(b). We consider potentials V
′
i = V opt

i (1+ δ ) that are slightly

perturbed away from the optimized potentials V opt
i due to an error δ coming from uncer-

tainties in the operations in the experiment. First, we show the robustness of our method

with respect to screening of the anyons by plotting the fitness F as a function of the size of

the error δ introduced. We observe that when the error is reasonably small, say δ < 10−2,

the fitness function is quite small F < 10−4, thus the anyons are still very well screened.

Secondly, we demonstrate the robustness with respect to the relative error of the Berry phase

once δ is introduced. The relative error of the Berry phase is defined as

Δ =

∣∣Im(eiπαδ )− Im(eiπα)
∣∣

Im(eiπα)
, (8.9)

where αδ is the Berry phase obtained with the error. Notice that the relative error is small

Δ ∼ O(10−2) when the error is reasonably small δ ≤ 10−2.

8.2.5 Braiding within a finite time

The computation above to determine the Berry phase assumes that the anyons are exchanged

infinitely slowly to ensure that the ground state returns to itself with no mixing with the

excited states. It is, however, also relevant to know how slowly the anyons should be moved

to be close to adiabaticity, and we therefore now consider the outcome when the braiding is

completed within a fixed time T .

Ideally one would start with an initial wavefunction |ψ(0)〉 and achieve the wavefunction

at time t through the expression

|ψ(t)〉=U(t)|ψ(0)〉, (8.10)

where U(t) = T exp[−i
∫ t

0 H(t ′)dt ′] is the time evolution operator, T stands for time order-

ing, and H(t) = H0 +Hp(t) is the time-dependent Hamiltonian. Numerically, however, one
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Fig. 8.4 Braiding results for the exchange of two anyons in the Kapit-Mueller model. The

left (right) hand side of the figure is without (with) optimization. (a,d) The overlap ovc =
|〈ψ(0)|ψ(T )〉clockwise| between the initial and final states when the anyons are exchanged

in the clockwise direction as a function of the duration T of the exchange. (b,e) The same

quantity, but for a counterclockwise exchange. (c,f) Amplitude A and phase θ of the ratio R
of the overall phases computed for the clockwise and counterclockwise cases. The dashed

lines show the ideal values A = 1 and θ = π .
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must split the unitary operator into a finite number of steps N , and hence we use the relation

U(t) = lim
N →∞

N −1

∏
j=0

e−iH( jΔt)Δt . (8.11)

In the above expression, Δt = t/N and we consider large N to ensure convergence.

For the case without optimization, we move the potential of strength V from say site a to

site b in N steps using

Hp( jΔt) =
[

cos2

(
jπ

2N

)
na + sin2

(
jπ

2N

)
nb

]
V (8.12)

where j ∈ {0,1, . . . ,N −1}. We compute this for the Kapit-Mueller model and use the same

braiding path as shown in Fig. 8.2(a).

For the case with optimization, we reuse the optimized potentials computed for the

Kapit-Mueller model with Nsteps = 4. Here, we need additional steps to ensure convergence,

and we hence use N Nsteps steps to move the anyons one lattice spacing. Instead of doing an

optimization for each of these smaller steps, we smoothly interpolate between the potentials

already computed for two successive steps i and i+1 through

Hp(iN Δt + jΔt) = cos2

(
jπ

2N

)
Hi

p + sin2

(
jπ

2N

)
Hi+1

p , (8.13)

where i ∈ {0,1, . . . ,Nsteps − 1}, j ∈ {0,1, . . . ,N − 1} and Hi
p are the optimized potentials

computed for the ith step. By this procedure, we achieve a total of 4N steps quite easily

which would otherwise require a huge numerical effort if we had to run the optimization

algorithm for each of the 4N steps.

We repeat this procedure until the anyons have been exchanged, and we let T denote

the total time used for the exchange. When T is sufficiently large, the process is adiabatic,

and the phase acquired during the exchange is 〈ψ(0)|ψ(T )〉. This phase, however, has

contributions from both the dynamical phase and the statistical phase due to the exchange of

the anyons. The dynamical phase is prone to numerical error accumulated due to variations in

the instantaneous energies at each point along the braiding path. We also note that exchanging

the two anyons clockwise and counterclockwise results in the same dynamical phase and

hence also the same numerical error. We can hence get rid of the dynamical phase by

computing the ratio

R =
〈ψ(0)|ψ(T )〉clockwise

〈ψ(0)|ψ(T )〉counterclockwise
. (8.14)



8.3 Conclusion 101

In general, R = Aexp(iθ) and for the ideal case with well-separated anyons, A = 1 and

θ = π .

We compute θ , A, and the overlap between the initial and final wavefunctions for the

cases with and without optimization for different total times T for the Kapit-Mueller model

as shown in Fig. 8.4. The time required to achieve adiabaticity for the case with optimization

(Topt) is slightly larger compared to the case without optimization (Tnormal), and roughly

Topt ≈ 5Tnormal. This is possibly due to the smaller energy gap to the first excited state for the

case with optimization compared to the case without optimization. We see that the braiding

phase is better for the case with optimization due to the better screening of the anyons and

we believe a strict optimization at each step will result in a more accurate braiding phase.

8.3 Conclusion

In this chapter, we first demonstrated in a toy model that squeezing anyons and braiding them

is possible under some assumptions. We then considered realistic FQH lattice Hamiltonians

and incorporated global optimization scheme to trap and squeeze Abelian anyons on a square

lattice with open boundary conditions. Specifically, we tuned the auxiliary potentials on

different lattice sites through the algorithm to ensure strict localization of anyons. Next,

we braided these squeezed anyons by crawling them like snakes with minimal overlap

between them. The braiding statistics computed numerically for the adiabatic case through

optimization was much better than the case without any optimization. We find that the

squeezed anyons need to move at a slower speed to be close to the adiabatic limit (by a

factor of about five for the considered example). We note, however, that to get better results

for the Berry phase for the normal anyons, one would need to separate the anyons further,

which would also increase the time needed for the braiding. An important property of anyon

braiding is the topological robustness against small, local disturbances. In the scheme used

here, we only optimize the shape of the anyons and not the Berry phase itself, and we rely on

adiabatic time evolution to obtain the Berry phase. In this way the topological robustness

is maintained. Using a relatively simple physical quantity for the optimization can also be

an advantage for experiments. For instance, by measuring just the density, one can find

the optimal potentials to squeeze the anyons even if one does not know the model for the

considered system exactly.



Chapter 9

Detection of topological quantum phase
transitions through quasiparticles

In conventional quantum phase transitions, a local order parameter distinguishes between

different phases leading to the success of Landau’s theory. However, as discussed in Chapter

2, there exist topologically ordered phases that do not fit under the Landau paradigm and

are usually characterized by the presence of long range entanglement. This implies that the

quantum state cannot be deformed into a product state through any local unitary evolution

[131]. This long-range entanglement can lead to unique properties such as the ground state

degeneracy on a particular manifold and fractionalized excitations referred to as anyons.

Due to the lack of local order parameters it is usually a hard task to uniquely identify a

topologically ordered phase.

However, different probes are available to detect topological phase transitions, such as

ground state degeneracy [132], many-body Chern number [133–135], spectral flow [136–

138], entanglement spectrum [138–141], topological entanglement entropy [142–144], and

fidelity [145]. The first three assume particular boundary conditions. The entanglement

based probes have been tested for regular structures in two dimensions, but it is not clear

how and whether they can be applied in highly irregular systems. Fidelity cannot be used

if the Hilbert space itself changes as a function of the parameter. There are hence systems

that cannot be handled currently. In addition, it is desirable to find probes that are less costly

numerically. There is hence a strong demand for identifying further probes.

In this Chapter, we exploit the fact that anyons are the correct quasiparticles only in

the topologically ordered phase, and hence use them as detectors of topological quantum

phase transitions (TQPT). Our starting point is to modify the Hamiltonian locally to generate

quasiparticles at well-defined positions in the ground state. In the simplest case, this can

be done by adding a potential, while in more complicated systems, it may require some
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ingenuity [35]. We then study the properties of the quasiparticles as a function of the

parameter. When the two phases do not support the same set of quasiparticles, a change is

seen at the phase transition. The method can be applied for all types of anyons, as long as

there is an appropriate way to create the anyons, and it does not require a particular choice of

boundary conditions or a particular lattice structure. The method therefore also applies to,

e.g., disordered systems, fractals, and quasicrystals.

We test the method on concrete examples, namely phase transitions occurring in a lattice

Moore-Read model on a square lattice and on a fractal lattice, in an interacting Hofstadter

model in the presence and in the absence of disorder, and in Kitaev’s toric code in a magnetic

field. Among these models, we include cases, for which the phase transition point is already

known, since this allows us to compare with other methods and check the reliability of the

anyon approach. For all these examples, we find that it is sufficient to compute a relatively

simple property, such as the charge of the anyons, to determine the phase transition point.

The computations can therefore be done at low numerical costs. For the Moore-Read model

on a square lattice, e.g., a large speed up is found compared to previous computations

of the topological entanglement entropy, and this enables us to determine the transition

point much more accurately. For the interacting Hofstadter model, we only need two exact

diagonalizations for each data point, which is much less than what is needed to compute the

many-body Chern number. Finally, for the model on the fractal, we do not know of other

methods that could be used for detecting the phase transition.

This chapter is based on the following reference [146].

• “ Quasiparticles as Detector of Topological Quantum Phase Transitions ”, S. Manna,

N. S. Srivatsa, J. Wildeboer & A. E. B. Nielsen, Phys. Rev. Research 2, 043443
(2020)

9.1 Lattice Moore-Read model

The Moore-Read state is a trial wavefunction to describe the plateau at filling factor 5/2 in the

fractional quantum Hall effect [147], and it supports non-Abelian Ising anyons [148]. In this

section, we investigate phase transitions that happen in lattice versions of the Moore-Read

state on two different lattices as a function of the lattice filling.

9.1.1 Moore-Read model on a square lattice

We investigate a model with a particular type of lattice Moore-Read ground state, which

was shown in [149], based on computations of the topological entanglement entropy γ , to
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Fig. 9.1 (a) Excess charges Q1 and Q2 for the Moore-Read state |Ψa〉 on a square lattice as a

function of the flux per site η . In the topological phase, Q1 and −Q2 are close to the charge

of the positive anyon (horizontal line at 1/4). In the nontopological phase, Q1 and Q2 may

take any value. The jump away from 1/4 predicts the transition point ηc ∈ [0.44,0.46]. (b)

To test the robustness of the method, we observe that |Ψb〉 gives the same transition point.

The Monte Carlo errors are of order 10−4.

exhibit a phase transition as a function of the lattice filling with the transition point in the

interval [1/8,1/2]. A more precise value was not determined because γ is expensive to

compute numerically, since it involves computing several entanglement entropies, and these

are obtained using the replica trick, which means that one works with a system size that

is twice as big as the physical system. In fact, for many systems, it is only possible to

compute γ for a range of system sizes that are too small to allow for an extrapolation to the

thermodynamic limit. Here, we show that the transition point can be found by computing

the charge of the anyons. This quantity can be expressed as a classical mean value and is

much less expensive to compute. As a result, we can determine the transition point more

accurately.

We consider a square lattice with a roughly circular boundary to mimic a quantum Hall

droplet. The N lattice sites are at the positions z1, . . . ,zN , and the local basis on site j is |n j〉,
where n j ∈ {0,1,2} is the number of bosons on the site. The lattice Moore-Read state |Ψ0〉
is defined as [149]

|Ψx〉 ∝ ∑
n1,....,nN

Ψx(n1, . . . ,nN) |n1, ...,nN〉, (9.1)

Ψx(n1, . . . ,nN) = G x
n δn ∏

i< j
(zi − z j)

2nin j ∏
i	= j

(zi − z j)
−ηni ,
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Fig. 9.2 Excess charges Q1 and Q2 for the Moore-Read state |Ψa〉 on a fractal lattice (inset)

as a function of the flux per site η . In the topological phase, Q1 and −Q2 are close to the

charge of the positive anyon (horizontal line at 1/4). In the nontopological phase, Q1 and Q2

may take any value. The jump away from 1/4 predicts the transition point ηc ∈ [0.43,0.46].
The Monte Carlo errors are of order 10−4.

where G 0
n = Pf[1/(z′i − z′j)], Pf(. . .) is the Pfaffian, z′i are the positions of the M singly

occupied lattice sites, δn is a delta function that enforces the number of particles to be

M ≡ ∑i ni = ηN/2, and η is the magnetic flux per site. Note that we can vary the lattice

filling factor M/N = η/2 by changing η .

We also introduce the states |Ψa〉 and |Ψb〉 with

G a
n = 2−

M
2 ∏

j
(w2 − z j)

−n j

×Pf

[
(z′i −w1)(z′j −w2)+(z′j −w1)(z′i −w2)

(z′i − z′j)

]
, (9.2)

G b
n = Pf

(
1

z′i − z′j

)
∏

j
(w1 − z j)

n j ∏
j
(w2 − z j)

−n j . (9.3)

When the system is in the topological phase, the state |Ψa〉 (|Ψb〉) has an anyon of charge

+1/4 (+1/2) at w1 and an anyon of charge −1/4 (−1/2) at w2 [150]. Few-body parent

Hamiltonians for the states can be derived for a range of η values and arbitrary choices of

the lattice site positions zi [150, 149].

When anyons are present in the system, they modify the particle density in local regions

around each wk. Let us consider a circular region with radius R. If R is large enough to

enclose the anyon, but small enough to not enclose other anyons, the number of particles

missing within the region, which is given by the excess charge

Qk =−
N

∑
i=1

ρ(zi)θ(R−|zi −wk|), (9.4)
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equals the charge of the anyon at wk. Here, θ(. . .) is the Heaviside step function and

ρ(zi) = 〈Ψx|ni|Ψx〉−〈Ψ0|ni|Ψ0〉, x ∈ {a,b} (9.5)

is the density profile of the anyons. In the nontopological phase, a more complicated density

pattern can arise. The expectation is hence that Qk is close to the anyon charge in the

topological phase and varies with η in the nontopological phase, and we use this to detect

the transition.

In Fig. 9.1, we choose R = |w1 −w2|/2 and M = 40, and we vary the number of lattice

sites from N = 316 to N = 80 to achieve different η values in the range [1/4,1]. We observe

that the excess charges for |Ψa〉 are Q1 ≈−Q2 ≈ 1/4 for η < ηc and fluctuate for η > ηc,

where ηc ∈ [0.44,0.46]. As a test of the robustness of the approach, we observe that the same

transition point is predicted using |Ψb〉. We have also checked that the fact that there is a

jump in the excess charges from η � 0.44 to η � 0.46 is insensitive to the precise choice of

the distance |w1 −w2|.

9.1.2 Moore-Read model on a fractal lattice

We next consider the Moore-Read model on a fractal lattice. The fractal lattice is not periodic,

and we can therefore not apply methods, such as ground state degeneracy, spectral flow,

or many-body Chern number computations to detect a possible phase transition. Methods

based on entanglement computations do also not apply, since we do not have a thorough

understanding of entanglement properties of topological many-body states on fractal lattices.

Fidelity cannot be used either, since the Hilbert space changes when the considered parameter

changes. Quasiparticle properties, on the contrary, can detect a transition, as we will now

show.

Lattice Laughlin fractional quantum Hall models were recently constructed on fractals

[151], and we here consider a similar construction for the Moore-Read state. Specifically,

we define the state |Ψa〉 on a lattice constructed from the Sierpiński gasket with N = 243

triangles by placing one lattice site on the center of each triangle. In Fig. 9.2, we vary the

particle number M ∈ [24,96] to have different η ∈ [0.19,0.79] values and plot the excess

charges as a function of η . The excess charges are Q1 ≈−Q2 ≈ 1/4 for η < ηc and fluctuate

for η > ηc, which reveals a phase transition at the transition point ηc ∈ [0.43,0.46].
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Fig. 9.3 Excess charges Q1 and Q2 as a function of the disorder strength h for the interacting

Hofstadter model with M = 3, N = 24, and α = 0.25. In the topological phase, Q1 ≈−Q2 ≈
1/2 (horizontal line), and the observed change away from this value predicts the transition

point hc � 1.5. We average over 2000 statistically independent disorder realizations for each

h to ensure convergence of the data.

9.2 Disordered interacting Hofstadter model

As another example, we study a Hofstadter model for hardcore bosons on a square lattice.

The clean model is known to host a topological phase for low enough lattice filling factor

[152, 153], and here we investigate the effect of adding a disordered potential. The system

sizes that can be reached with exact diagonalization are too small to allow for a computation

of the topological entanglement entropy. Instead, we use the anyon charges to show that

the system undergoes a phase transition as a function of the disorder strength. This gives a

large speed up in computation time compared to the many-body Chern number computations

that were done in [152]. This is so, because it only takes two exact diagonalizations per

date point to get the anyon charges, while the Chern number computation involves a large

number of exact diagonalizations per data point, corresponding to a grid of twist angles in

two dimensions.

The Hofstadter model describes particles hopping on a two-dimensional square lattice

in the presence of a magnetic field perpendicular to the plane. Hopping is allowed between

nearest neighbor sites, and the magnetic field is taken into account by making the hopping

amplitudes complex. Whenever a particle hops around a closed loop, the wavefunction

acquires a phase, which is equal to the Aharonov-Bohm phase for a charged particle encircling

the same amount of magnetic flux.
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We take open boundary conditions and add interactions by considering hardcore bosons.

For a lattice with N = Lx ×Ly sites, the Hamiltonian takes the form

H0 =−
Lx−1

∑
x=1

Ly

∑
y=1

(
c†

x+1,ycx,ye−iπαy +H.c.
)

(9.6)

−
Lx

∑
x=1

Ly−1

∑
y=1

(
c†

x,y+1cx,yeiπαx +H.c.
)
+

Lx

∑
x=1

Ly

∑
y=1

hx,ynx,y,

where cx,y is the hardcore boson annihilation operator and nx,y = c†
x,ycx,y is the number

operator acting on the lattice site at the position (x,y) with x ∈ {1, . . . ,Lx} and y ∈ {1, . . . ,Ly}.

If a particle hops around a plaquette, the phase acquired is 2πα , so α is the flux through

the plaquette. We here consider the case, where the number of flux units per particle is two,

i.e. Nα/M = 2. The last term in (9.6) is the disordered potential, and hx,y ∈ [−h,h] is drawn

from a uniform distribution of width 2h, where h is the disorder strength.

In the clean model, it is well-known that one can trap anyons in the ground state by

adding a local potential with a strength that is sufficiently large compared to the hopping

amplitude [154? , 155]. We here choose

HV =V nx1,y1
−V nx2,y2

, (x1,y1) 	= (x2,y2), (9.7)

where V � 1. This potential traps one positively (negatively) charged anyon at the site

(x1,y1) ((x2,y2)).

We use the excess charge in a region around the sites (x1,y1) and (x2,y2) to detect the

phase transition. We define the density profile as

ρ(x+ iy) = 〈nx,y〉H0+HV −〈nx,y〉H0
, (9.8)

where 〈nx,y〉H0+HV is the particle density, when the trapping potential is present, and 〈nx,y〉H0

is the particle density, when the trapping potential is absent. The excess charge is then defined

as in (9.4) with w1 = x1 + iy1 and w2 = x2 + iy2. Here, we choose R such that the circular

region includes all sites up to the second nearest neighbor sites. The absolute value of the

excess charge should be close to 1/2 in the topological region, while it can take any value

and may vary with h in the nontopological region.

We choose a point, which is deep in the topological phase for h = 0, namely M = 3,

N = 24, and α = 0.25, and plot the excess charges as a function of the disorder strength h
in Fig. 9.3. We observe that Q1 and −Q2 are close to 1/2 up to h � 1.5, while the excess
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M N Lx ×Ly α dim(H ) Q+ Q−
2 24 6 × 4 0.167 276 0.491 0.507

3 28 7 × 4 0.214 3276 0.476 0.522

3 24 6 × 4 0.250 2024 0.519 0.478

4 28 7 × 4 0.286 20475 0.521 0.475

4 24 6 × 4 0.333 10626 0.475 0.520

5 28 7 × 4 0.357 98280 0.465 0.532

6 32 8 × 4 0.375 906192 0.466 0.533

7 36 6 × 6 0.389 8347680 0.380 0.610

5 25 5 × 5 0.400 53130 0.332 0.666

5 24 6 × 4 0.417 42504 0.348 0.650

6 28 7 × 4 0.429 376740 0.250 0.747

6 25 5 × 5 0.480 177100 0.278 0.719

7 28 7 × 4 0.500 1184040 0.284 0.714

7 25 5 × 5 0.560 480700 0.402 0.595

7 24 6 × 4 0.583 346104 0.440 0.557

Table 9.1 We show here the different choices we make for the number of particles M, the

shapes and sizes N = Lx ×Ly of the lattices, and the fluxes per plaquette α = 2M/N. The

quantity dim(H ) is the dimension of the corresponding Hilbert spaces. We display the data

for the absolute values of the excess charges Q+ and Q−. There is a significant change in Q+

and Q−, when going from α = 0.375 to α � 0.389.

charges deviate more from 1/2 for h > 1.5. The data hence predict the phase transition to

happen at hc � 1.5.

We can also put the disorder strength to h = 0 and study the clean model as a function

of the magnetic flux α . Specifically, we vary α and the lattice filling M/N, while keeping

the flux per particle Nα/M fixed. For this case, it was found in [152] that there is a phase

transition at αc ∈ [0.375,0.400]. We take values of M and N (see Tab. 9.1), which are

numerically accessible for exact diagonalization, and for each choice α = 2M/N. Figure 9.4

shows that Q1 and −Q2 are quite close to 1/2 for α values up to 0.375, but for higher α they

deviate much more from 1/2. The data hence predict the transition point αc ∈ [0.375,0.389],

which is consistent with the result in [152].

9.3 Toric code in a magnetic field

To test the applicability of the method outside the family of chiral fractional quantum Hall

models, we next study Kitaev’s toric code [156, 157] on a square lattice with periodic

boundary conditions. This system exhibits a Z2 topologically ordered phase, and it is



110 Detection of topological quantum phase transitions through quasiparticles

Fig. 9.4 Excess charges Q1 and Q2 as a function of the magnetic flux per plaquette α for the

interacting Hofstadter model without disorder. In the topological phase, Q1 ≈−Q2 ≈ 1/2,

and the observed change away from this value predicts the transition point αc ∈ [0.375,0.389].

known that a sufficiently strong, uniform magnetic field drives the system into a polarized

phase [158–162]. Here we show that anyons inserted into the system are able to detect

this phase transition, and the obtained transition points agree with earlier results based on

perturbative, analytical calculations and tensor network studies. Our computations rely on

exact diagonalization for a system with 18 spins and are hence quite fast to do numerically.

We find that the anyons are significantly better at predicting the phase transition point than

the energy gap closing for the same system size.

The toric code has a spin-1/2 on each of the edges of the Nx ×Ny square lattice. The

Hamiltonian

HTC =−∑
p

Bp −∑
v

Av, Bp = ∏
i∈p

σ z
i , Av = ∏

i∈v
σ x

i , (9.9)

is expressed in terms of the Pauli operators σ x
i and σ z

i , which act on the N = 2NxNy spins.

The sums are over all plaquettes p and vertices v of the lattice. Bp acts on the spins on the

four edges surrounding the plaquette p, and Av acts on the spins on the four edges connecting

to the vertex v.

HTC is exactly solvable, and the four degenerate ground states are eigenstates of Bp

and Av with eigenvalue 1. States containing anyons are obtained by applying certain string

operators to the ground states. The string operator either changes the eigenvalue of two Av

operators to −1 or the eigenvalue of two Bp operators to −1. In the former case, two electric

excitations ev are created, and in the latter case two magnetic excitations mp are created. The

wavefunction acquires a minus sign if one mp is moved around one ev, and the excitations

are hence Abelian anyons.

Here, we instead modify the Hamiltonian, such that anyons are present in the ground states.

The ground states of the Hamiltonian Hm ≡ HTC +2Bp1
+2Bp2

have one mp on each of the

plaquettes p1 and p2. Similarly, the ground states of the Hamiltonian He ≡HTC+2Av1
+2Av2

have one ev on each of the vertices v1 and v2. We drive the system through a phase transition
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Fig. 9.5 (a) The toric code with a magnetic field of strength λ in the z direction undergoes a

phase transition at λc � 0.33. The transition is seen in 〈Av1
〉, which detects the anyons in the

ground states of He +Hz
λ , and in Mz

s =
1
N 〈∑i σ k

i 〉, which is the magnetization per spin for the

ground states of HTC +Hz
λ . We also show χe = ∂ 〈Av1

〉/∂λ and χz
s =−∂Mz

s/∂λ . (b) When

the magnetic field is in the y direction, the phase transition happens at λc = 1. We plot 〈Av1
〉

for He +Hy
λ and 〈Bp1

〉 for Hm +Hy
λ as well as the magnetization per spin My

s =
1
N 〈∑i σ y

i 〉 for

HTC +Hy
λ . The closing of the energy gap ΔE between the ground state (fourfold degenerate)

and the first excited state of HTC +Hk
λ shown in the insets does not accurately predict the

transition points. We use a 3×3 lattice with 18 spins in all cases, and the color gradient from

yellow (topological phase) to green (nontopological phase) is plotted according to the value

of 〈Av1
〉.

by adding a magnetic field Hk
λ = λ ∑i σ k

i in the k-direction with strength λ . When λ is large

enough, it is energetically favorable to polarize all the spins, and the system is no longer

topological.

Previous investigations, based on perturbative, analytical calculations and tensor network

studies [158–160], have shown that HTC+Hz
λ has a second order phase transition at λc � 0.33,

while HTC +Hy
λ has a first order phase transition at λc = 1. The magnetization per spin

computed using exact diagonalization (Fig. 9.5) gives similar values for the transition points.

We now use anyons to detect the transition. We study 〈Av1
〉= 〈Av2

〉 for the Hamiltonian

He +Hk
λ and 〈Bp1

〉 = 〈Bp2
〉 for the Hamiltonian Hm +Hk

λ . 〈Av1
〉 = −1 and 〈Bp1

〉 = −1

signify the presence of the anyons. In the fully polarized phase, both 〈Av1
〉 and 〈Bp1

〉 vanish

when k = y and 〈Av1
〉 vanishes and 〈Bp1

〉 →+1 when k = z.

The transition seen in 〈Av1
〉 for the ground states of He +Hz

λ in Fig. 9.5(a) is consistent

with λc � 0.33. Both the transition point and the width of the transition region, which is

due to finite size effects, are comparable to the same quantities obtained from the magnetic



112 Detection of topological quantum phase transitions through quasiparticles

order parameter. The anyons predict the transition point more accurately than the energy gap

closing, which, for the same system size, happens only at λ � 0.7.

〈Bp1
〉 is not suitable for detecting the transition because Bp1

commutes with all terms in

Hm +Hz
λ . All energy eigenstates are therefore also eigenstates of Bp1

with eigenvalue ±1.

As a result, 〈Bp1
〉 only measures whether the ground states have Bp1

eigenvalue +1 or −1.

The first transition to a ground state with Bp1
eigenvalue +1 happens around λ � 2.08, but

this does not exclude gap closings at smaller λ values. These problems do not occur for

〈Av1
〉, since Av1

does not commute with He +Hz
λ .

The transition seen in 〈Av1
〉 (〈Bp1

〉) in Fig. 9.5(b) for the ground states of He +Hy
λ

(Hm +Hy
λ ) is consistent with λc = 1, and the transition is sharper than for the magnetic order

parameter. The anyons also better predict the transition point than the energy gap closing,

which happens around λ � 1.2 for the same system size.

9.4 Conclusion

In this chapter, we have shown that properties of quasiparticles are an interesting tool to

detect topological quantum phase transitions. The approach is to trap anyons in the ground

state and study how their properties change, when the system crosses a phase transition. For

several quite different examples, we have demonstrated, however, that the phase transitions

can be detected by observing a simple property, such as the charge of the anyons. This means

that the phase transition points can be computed at low numerical costs.

The approach suggested here to detect topological quantum phase transitions is particu-

larly direct, since, to fully exploit the interesting properties of topologically ordered systems,

one needs to be able to create anyons in the systems and detect their properties. In the

interacting Hofstadter model, the anyons can be created by adding a local potential, and

the charge of the anyons used to detect the phase transition can be measured by measuring

the expectation value of the number of particles on each site. Both of these can be done in

experiments with ultracold atoms in optical lattices [163? ]. For the toric code model, the

complexity of generating the Hamiltonians including the terms creating the anyons is about

the same as generating the Hamiltonian without these terms, and first steps towards realizing

the Hamiltonian in experiments have been taken [164–166].

The ideas presented in this chapter can be applied as long as the two phases support quasi-

particles with different properties and one can find suitable ways to create the quasiparticles.



Chapter 10

Conclusions and outlooks

Interacting quantum many-particle systems in lower dimensions, display interesting emergent

phases as a result of strong quantum correlations. These phases are tied to the many-body

eigenstates of the model under investigation. For example, topological phases, which are

characterized by long range entanglement and anyonic excitations, are traditionally known

to occur in gapped quantum ground states which have a particular degeneracy on a given

manifold [1].

The study of many-body quantum systems has hence largely focussed on the ground-state

properties and low-energy excitations, with an implicit assumption that highly excited states

of generic non-integrable models are void of interesting features. This is because, highly

excited states of such systems were known to be thermal and conform to the eigenstate

thermalization hypothesis (ETH) [8, 9]. Another reason that people have not payed that

much attention to excited states is that they are often difficult to prepare. However, through

two mechanisms, many-body localization (MBL) [10] and quantum many-body scars [12], it

has become clear that eigenstates even at high energy densities may violate ETH and host

interesting phases which can also be topological.

This thesis focusses on aspects of topological phases that occur in the quantum many-

body ground states and also explore interesting non-ergodic phases in high energy eigenstates

through disorder and quantum scarring. Below, we will briefly motivate and outline the

conclusion from various chapters.

Fractional quantum Hall (FQH) effect is a prime example of topological order that

showed the limits of Landau’s theory [2]. A remarkable feature of FQH is the possibility of

fractionalized excitations called anyons with exotic exchange statistics interpolating between

fermions and bosons. Lattice is a promising platform for realizing FQH phases and also to

create and manipulate anyons in a controlled fashion. One of the intentions of this thesis is to
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contribute to the ongoing research in the area of lattice FQH and anyons, which, also opens

up interesting research directions as discussed below.

Conformal field theory (CFT) has been a useful tool to construct analytical states with chi-

ral topological order which is expected for FQH states [5]. Also, few-body, non-local parent

Hamiltonians have been constructed for these analytical states and these are different from

the fractional Chern insulator models. In some cases, with much symmetry, deformations of

these models with fine tuned coefficients, leading to local Hamiltonians with ground states

bearing expected topological properties have been shown. However, a general procedure to

arrive at more tractable local Hamiltonians constructed from CFT is missing. In Chapter

7, we showed a general way of constructing local versions of lattice FQH Hamiltonians

constructed from CFT that does not rely on optimization, symmetries, or choice of lattice

geometry. In contrast to the earlier methods, we do not truncate the Hamiltonian directly,

which does not give an unequivocal result. We rather truncate the operator that annihilates the

analytical state of interest and then build the Hamiltonian. Hence, this procedure also applies

naturally to periodic boundary conditions. We numerically estimated the radius upto which

the operator that annihilates the state needs to be truncated to achieve a local Hamiltonian

with similar topological properties. With the aid of exact diagonalization, we tested the

success of this approach on lattice bosonic Laughlin models. As a promising future direction,

it would be worth to also apply this truncation scheme to lattice FQH models at other filling

fractions (such as the Moore Read model) and also to model Hamiltonians with anyons. It

would be interesting to test how large the local regions need to be to stabilize the correct

topological order in the ground states for these other models derived from CFT. In the latter

part of this chapter, we also showed that CFT can be used to obtain local models in 1D with

universal quantum critical properties.

Excitations in fractional quantum Hall systems are anyons [33] with fractional statistics

that interpolate between fermions and bosons. Anyons may be created in lattice FQH models

through trapping potentials. Their presence is evident from the modified particle density in

the ground state in local regions around the trapping potential. In lattice models, it has been

numerically observed that the anyons are typically spread over a few lattice sites around the

position of trapping potentials. Given the small lattice sizes that can be handled through

exact diagonalization, a larger braiding path may not be chosen to avoid overlap between the

anyons. It becomes an even harder task to braid the anyons on a lattice with open boundaries

which is crucial also from an experimental view point. In Chapter 8, we provided a way

around the issues mentioned above by instead squeezing the Abelian anyons and braid them

by crawling them like snakes. We chose simple lattice FQH models and used an optimization

protocol to tune potentials on lattice sites to squeeze Abelian anyons with near zero overlap.
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We also showed numerically that the braiding phase achieved by squeezing anyons through

optimized potentials is better in comparison to the case where a single trapping potential

is used to trap the anyons. Complementarily, we also showed that squeezing anyons and

braiding is possible through analytical states derived from CFT under certain assumptions.

Applying the similar protocol to trap and squeeze non-Abelian anyons on lattice and braid

them is certainly a possible future direction of study.

Since topological order cannot be characterized by local order parameters, a different set

of indicators need to be invoked to detect topological quantum phase transitions (TQPT). Al-

though there are quite a few probes to detect a topological phase, there are places where some

of these probes fail to apply, become numerically expensive or require special conditions. For

instance, it is not clear how the entanglement-based probes may be applied in highly irregular

systems, fidelity cannot be used if the Hilbert space itself changes as a function of parameter

and, probes such as ground state degeneracy, many-body Chern number and entanglement

spectrum require particular boundary conditions. In Chapter 9, we showed that quasiparticles

may be used to detect TQPTs quite efficiently in five rather different examples. Since a topo-

logically ordered phase is known to support anyons, in some of the examples we considered,

the approach was to trap anyons in the ground state and study how their properties change

when the system crosses a phase transition. Specifically, we used the charge of the anyon to

detect the transition from a topological to a trivial phase. The advantages of this method are,

it applies independent of boundary conditions or a particular lattice choice, is a numerically

cheap probe (for example, it typically requires much fewer exact diagonalizations compared

to computing the Chern number) and applies well to disordered and irregular systems. As a

prospective future research, it would be interesting to explore methods to trap quasi particles

in frustrated magnetic models and explore parameter regimes where quantum spin liquid

phases have been speculated.

One of the yet other main contributions of this thesis is in the area of non-equilibrium

physics. We showed that, by exploiting symmetry and disorder, one can construct models

with novel sorts of non-thermal phases in its eigenstates. We also provided with constructions

of two different quantum scarred models with chiral and non-chiral topological order. We

briefly describe below the conclusions and possible future directions from rest of the chapters

in this thesis.

Symmetries are known to constrain the physics of MBL [11]. For example, it is known

that SU(2) symmetry in a model does not allow the eigenstates to be area law entangled and

thus prohibiting a conventional MBL phase [71]. In Chapter 4, we showed that an emergent

SU(2) symmetry in the ground state of a disordered model protects it from MBL while not

restricting the other states from localizing. Specifically, we showed that the ground state
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remains quantum critical with Luttinger liquid properties, while the excited states display

a transition from an ergodic to a glassy MBL phase with disorder. We also demonstrated

how the quantum critical ground state may be lifted to the middle of the spectrum of glassy

MBL states, which then would correspond to a situation of weak violation of MBL. One

possible interesting direction would be to construct disordered models with multiple states

with emergent symmetry being protected from MBL. This would then have the flavour of an

inverse situation of the celebrated quantum many-body scars. In Chapter 5, we demonstrated

numerically the emergence of a non-ergodic but also non-mbl phase in a disordered SU(2)

invariant model with non-local interactions. Exploring non-ergodic phases beyond MBL and

studying transport properties in such models is also an interesting research direction that one

might pursue.

In Chapter 6, we showed two constructions of scarred models with topological order. In

the first case, we exploited the existence of multiple operators constructed from CFT that

annihilate the scar states to build Hamiltonians with a free parameter to pin the scar state at

any desired position in the many-body spectrum. The scar state was the discretized version

of the bosonic Laughlin state with quantum critical properties in 1D and chiral topological

order in 2D. These models were defined on slightly disordered lattices to ensure that the

spectrum is generic. We showed that in the presence of disorder, the scar state in 2D is

topologically ordered by being able to create anyons with the correct charge. Since these

models are non-local, it would be useful to invoke the truncation procedure discussed in

Chapter 7 to build local versions of the scarred models. Further, it would be interesting to

build models with scar states corresponding to anyons and perform braiding even at finite

energy densities. As a second construction, we showed a general strategy to construct classes

of frustration free models with quantum scars. Specifically we applied this to quantum dimer

models on a kagome lattice and showed the existence of an analytically known scar state

with non-chiral topological order. It would be worth to study the fate of scarred eigenstates

in these models under generic perturbations.
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ergodicity breaking from quantum many-body scars,” Nature Physics, vol. 14, pp. 745–
749, Jul 2018.



122 References

[75] N. Shiraishi and T. Mori, “Systematic construction of counterexamples to the eigen-
state thermalization hypothesis,” Phys. Rev. Lett., vol. 119, p. 030601, Jul 2017.

[76] S. Moudgalya, N. Regnault, and B. A. Bernevig, “Entanglement of exact excited states
of affleck-kennedy-lieb-tasaki models: Exact results, many-body scars, and violation
of the strong eigenstate thermalization hypothesis,” Phys. Rev. B, vol. 98, p. 235156,
Dec 2018.

[77] M. Schecter and T. Iadecola, “Weak ergodicity breaking and quantum many-body
scars in spin-1 xy magnets,” Phys. Rev. Lett., vol. 123, p. 147201, Oct 2019.

[78] T. Iadecola and M. Schecter, “Quantum many-body scar states with emergent kinetic
constraints and finite-entanglement revivals,” Phys. Rev. B, vol. 101, p. 024306, Jan
2020.

[79] S. Chattopadhyay, H. Pichler, M. D. Lukin, and W. W. Ho, “Quantum many-body
scars from virtual entangled pairs,” Phys. Rev. B, vol. 101, p. 174308, May 2020.

[80] N. Shibata, N. Yoshioka, and H. Katsura, “Onsager’s scars in disordered spin chains,”
Phys. Rev. Lett., vol. 124, p. 180604, May 2020.

[81] S. Moudgalya, B. A. Bernevig, and N. Regnault, “Quantum many-body scars in a
landau level on a thin torus,” Phys. Rev. B, vol. 102, p. 195150, Nov 2020.
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Appendix A

Relation between H and |ψ0〉

In this appendix, we briefly explain why the Hamiltonian given in Eq. (4.4) annihilates the

state |ψ0〉 defined in Eq. (4.5) in Chapter 4. The full derivation can be found in [5]. The

only difference is that we here express the operators in terms of spins rather than in terms of

creation and annihilation operators.

Our starting point is the observation [30, 5] that the state |ψ0〉 can be expressed as an

N-point correlation function

|ψ0〉 ∝ ∑
s1,...,sN

〈Vs1
(z1)Vs2

(z2) · · ·VsN (zN)〉|s1, . . . ,sN〉, (A.1)

where the vertex operators

Vs j(z j) = eiπ( j−1)(s j+1)/2 : eis jΦ(z j)/
√

2 : (A.2)

are defined in terms of a free, massless boson field Φ(z j), z j = eiφ j , and : . . . : denotes normal

ordering.

We next exploit the existence of null fields χt(zi). Null fields have the property that they

make the correlation function vanish when inserted as follows

〈Vs1
(z1) · · ·Vsi−1

(zi−1)χt(zi)Vsi+1
(zi+1) · · ·VsN (zN)〉= 0. (A.3)
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One can show [5] that

χ1(zi) =
∮

zi

dz
2πi

1

z− zi
[G+(z)V−(zi)−2J(z)V+(zi)],

χ2(zi) =
∮

zi

dz
2πi

1

z− zi
G+(z)V+(zi),

χ3(zi) =
∮

zi

dz
2πi

G+(z)V+(zi), (A.4)

are all null fields. In these expressions, the integral path is a small circle centered at zi,

and we have defined V+(z) = : eiΦ(z)/
√

2 :, V−(z) = : e−iΦ(z)/
√

2 :, G+(z) = : ei
√

2Φ(z) :, and

J(z) = i√
2
∂Φ(z). We shall also need the relation Vs j(z j)G+(z) = −G+(z)Vs j(z j) and the

operator product expansions [167]

G+(z)Vs j(z j)∼
δs j,−1

z− z j
eiπ( j−1)V1(z j), (A.5)

J(z)V±(w)∼± 1

2(z−w)
V±(w), (A.6)

where δs,s′ is the Kronecker delta function.

We now show, using χ3(zi) as an example, how one can rewrite (A.3) to obtain an operator

that annihilates |ψ0〉. We start from

0 = 〈Vs1
(z1) · · ·χ3(zi) · · ·VsN (zN)〉=

∮
zi

dz
2πi

〈Vs1
(z1) · · ·G+(z)V+(zi) · · ·VsN (zN)〉

=− ∑
j(	=i)

∮
z j

dz
2πi

〈Vs1
(z1) · · ·G+(z)V+(zi) · · ·VsN (zN)〉

=−(−1)i−1
i−1

∑
j=1

∮
z j

dz
2πi

δs j,−1

z− z j
〈Vs1

(z1) · · ·V1(z j) · · ·V+(zi) · · ·VsN (zN)〉

− (−1)i−1
N

∑
j=i+1

∮
z j

dz
2πi

δs j,−1

z− z j
〈Vs1

(z1) · · ·V+(zi) · · ·V1(z j) · · ·VsN (zN)〉

=−
i−1

∑
j=1

δs j,−1〈Vs1
(z1) · · ·V1(z j) · · ·V1(zi) · · ·VsN (zN)〉

−
N

∑
j=i+1

δs j,−1〈Vs1
(z1) · · ·V1(zi) · · ·V1(z j) · · ·VsN (zN)〉,

(A.7)

where we have deformed the integration contour to obtain the second line. Multiplying this

expression by

|s1, . . . ,si−1,1,si+1, . . . ,sN〉 (A.8)
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and summing over all sk, k 	= i, we obtain

−
(

Sz
i +

1

2

)
∑

j( 	=i)
S−j |ψ0〉= 0, (A.9)

where S−j = Sx
j− iSy

j is the spin lowering operator. Since |ψ0〉 is within the zero magnetization

sector, we know that ∑i Sz
i |ψ0〉= 0. Thus

0 = ∑
i

(
Sz

i +
1

2

)
∑

j( 	=i)
S−j |ψ0〉

= ∑
j

S−j ∑
i( 	= j)

(
Sz

i +
1

2

)
|ψ0〉

= ∑
j

S−j

(
−Sz

j +
N −1

2

)
|ψ0〉

=
N −2

2
∑

j
S−j |ψ0〉. (A.10)

We hence conclude that ∑ j S−j |ψ0〉 = 0 (for N = 2 this can be shown directly from the

expression for |ψ0〉).
Performing similar derivations for χ1(zi) and χ2(zi), we find that Oa

i |ψ0〉= Ob
i |ψ0〉= 0,

where

Oa
i = ∑

j(	=i)

1

zi − z j

[
S+i S−j −Sz

j (2Sz
i +1)

]
,

Ob
i = ∑

j(	=i)

1

zi − z j

(
Sz

i +
1

2

)
S−j .

(A.11)

It follows that |ψ0〉 is also annihilated by the operator

Λi = 2zi

(
S−i Oa

i +Ob
i

)
−

N

∑
j=1

S−j +2S−i
N

∑
j=1

Sz
j

= ∑
j(	=i)

wi j

(
S−j −2S−i Sz

j

)
, (A.12)

where we have used that wi j = (zi + z j)/(zi − z j).

The final step is to construct the Hermitian operator

H =−2∑
i

Λ†
i Sz

i Λi, (A.13)



132 Relation between H and |ψ0〉

which has the property H|ψ0〉 = 0. Rewriting the right hand side of (A.13), utilizing the

cyclic identity wi jwik +w jiw jk +wkiwk j = 1 and the properties of the spin operators, we

obtain

H =−2 ∑
i	= j

[
w2

i j −wi j

(
∑

k( 	=i)
wik − ∑

k( 	= j)
w jk

)]
Sz

i S
z
j

−2 ∑
i	= j

w2
i j(S

x
i Sx

j +Sy
i Sy

j)+
N(N −2)

2
− 1

2
∑
i	= j

w2
i j

+2 ∑
i	= j

(Sx
i Sx

j +Sy
i Sy

j)M− 4

3
M3 +

(
N − 2

3

)
M−2(N −2)M2,

(A.14)

where M = ∑i Sz
i . In the zero magnetization sector, M = 0, this coincides with Eq.(4.1) in

the main text.
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Spin glass order parameter for |ψ0〉

In this appendix, we discuss the spin glass order parameter for the state |ψ0〉 expressed in Eq.

(4.5) in Chapter 4. To derive an expression for the spin glass order parameter for the state

|ψ0〉, we start from the result

wi j〈ψ0|σ z
i σ z

j |ψ0〉+ ∑
k(	=i, j)

wik〈ψ0|σ z
kσ z

j |ψ0〉=−wi j, (B.1)

which was derived in [87]. We will here write wi j = (zi + z j)/(zi − z j), where z j = eiφ j . This

definition coincides with the expression in Eq. (2) in the main text. It is assumed that i 	= j,
that the number of spins N is even, and that none of the z j take the same value.

To express the solution of (B.1) in matrix form, we define the vector

v j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1, j

w2, j
...

w j−1, j

w j+1, j
...

wN, j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.2)

and the matrix Mj
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1, j w1,2 w1,3 · · · w1, j−2 w1, j−1 w1, j+1 w1, j+2 · · · w1,N−1 w1,N

w2,1 w2, j w2,3 · · · w2, j−2 w2, j−1 w2, j+1 w2, j+2 · · · w2,N−1 w2,N
...

...
...

...
...

...
...

...
...

...
...

w j−1,1 w j−1,2 w j−1,3 · · · w j−1, j−2 w j−1, j w j−1, j+1 w j−1, j+2 · · · w j−1,N−1 w j−1,N

w j+1,1 w j+1,2 w j+1,3 · · · w j+1, j−2 w j+1, j−1 w j+1, j w j+1, j+2 · · · w j+1,N−1 w j+1,N
...

...
...

...
...

...
...

...
...

...
...

wN,1 wN,2 wN,3 · · · wN, j−2 wN, j−1 wN, j+1 wN, j+2 · · · wN,N−1 wN, j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(B.3)

The matrix Mj is obtained by starting from a matrix with elements wab, removing the

jth row and column, and replacing the diagonal by v j. It then follows from (B.1) that the

correlation function 〈ψ0|σ z
kσ z

j |ψ0〉 is the kth element of the vector −M−1
j v j if k < j and the

(k−1)th element of the same vector if k > j.
Inserting this result into the definition of the spin glass order parameter (see Eq. (5) in

the main text), we find

χSG =
1

N

N

∑
j=1

vT
j (M

−1
j )T M−1

j v j, (B.4)

where T denotes the transpose. Writing the inverse of Mj in terms of matrix minors, this

expression can be reformulated into

χSG =
1

N

N

∑
j=1

∑k( 	= j)(det(M(k)
j ))2

(det(Mj))2
, (B.5)

where M(k)
j is the same matrix as Mj, except that one column has been replaced by v j. If

k < j, it is the kth column that has been replaced, and if k > j, it is the (k−1)th column that

has been replaced.

For N = 2, we have M(2)
1 = M1 = w21 and M(1)

2 = M2 = w12, and it follows that χSG = 1.

For N = 4 and N = 6, we have found using the symbol manipulation tools in Mathematica

that

∑
k(	= j)

(det(M(k)
j ))2 = (det(Mj))

2, (B.6)

and from this it follows that χSG = 1. To obtain (B.6), it is necessary to insert wi j =

(zi + z j)/(zi − z j), and we assume that all zi are different from each other, but it is not

required that the zi are phase factors. Note that both the left and the right hand side of Eq.

(B.6) are sums of ratios of polynomials in zi, and proving (B.6) can hence be reformulated
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into showing that a particular polynomial is equal to zero. For larger values of N, we have

verified (B.6) numerically using many different choices of N and zi, where N is even, and

again we conclude that χSG = 1.



Appendix C

Lattice Laughlin state on the torus

On a torus, the lattice Laughlin wavefunction with a filling factor 1
q has the following form

[168]

|ΨT,l
Exact〉= ∑

n1,n2,...,nN

ΨT,l
Exact(n1,n2, . . . ,nN)|n1,n2, . . . ,nN〉 (C.1)

with

ΨT,l
Exact(n1,n2, . . . ,nN) ∝ δnχn Θ

[
l/q+aAbA

]( N

∑
i

ξi(qni −1),qτ

)

×∏
i< j

(
Θ
[
1/21/2

]
(ξi −ξ j,τ)

)qnin j−ni−n j
.

(C.2)

Here, δn fixes the number of particles in the state to N/q, and χn is the same phase factor as

for the states in the plane. There are q states labeled by l, where l ∈ {0,1, . . . ,q−1}. The

parameters aA and bA in general depend on the number of lattice sites and the value of q, but

when N and q are both even, as for all the cases studied here, aA = bA = 0. For the square

lattice τ = iLy/Lx, and for the triangular lattice τ = e
iπ
3 Ly/Lx. Here, Lx is the number of

unit cells along the real axis, and Ly is the number of unit cells in the eiπ/2 direction (eiπ/3

direction) for the square (triangular) lattice. The rescaled coordinates are given by ξi = zi/Lx,

where we assume that the lattice constant is set to unity. The Riemann theta function is

defined as

Θ

[
a
b

]
(ξ ,τ) = ∑

n∈Z
eiπτ(n+a)2+2πi(n+a)(ξ+b). (C.3)

The states in (C.1) are not necessarily orthogonal, and we use Gram-Schmidt orthonormal-

ization to numerically obtain an orthonormal set of states spanning the same space.



Appendix D

Wavefunction overlaps

In this appendix, we give the overlaps of the ground states and low-lying excited states of the

local Hamiltonians with the exact analytical states of the non-local parent Hamiltonians in

1D described in Chapter 7.

D.1 Ground state overlap

In tables D.1, D.2, and D.3, we present the complete data for the ground state overlap for

different q and N values.

D.2 Excited state overlap

In tables D.4, D.5, and D.6, we present complete data for the overlap of the low-lying excited

states considered in our calculation.
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Table D.1 Overlap Δ and overlap per site Δ1/N between the state |ψExact〉 in (Eq. (2.7)) and

the ground state of HNN, HNNN, Hopt
NN, or Hopt

NNN for q = 3. The different rows are for different

numbers of lattice sites N.

N Δ Δ1/N

NN NNN NNopt NNNopt NN NNN NNopt NNNopt

15 0.953 0.981 0.965 0.996 0.9968 0.9987 0.9976 0.9998

18 0.939 0.973 0.954 0.995 0.9965 0.9985 0.9974 0.9997

21 0.926 0.966 0.944 0.994 0.9963 0.9984 0.9973 0.9997

24 0.913 0.959 0.934 0.992 0.9962 0.9983 0.9971 0.9997

27 0.899 0.953 0.923 0.991 0.9961 0.9982 0.9971 0.9997

30 0.880 0.944 0.912 0.987 0.9957 0.9981 0.9970 0.9996

Table D.2 Overlap Δ and overlap per site Δ1/N between the state |ψExact〉 in (Eq. (2.7)) and

the ground state of HNN or HNNN for q = 2. The different rows are for different numbers of

lattice sites N.

N Δ Δ1/N

NN NNN NN NNN

16 0.9930 0.9960 0.9996 0.9997

18 0.9917 0.9950 0.9995 0.9997

20 0.9904 0.9940 0.9995 0.9997

22 0.9891 0.9931 0.9995 0.9997

24 0.9878 0.9922 0.9995 0.9997

26 0.9864 0.9912 0.9995 0.9997

28 0.9852 0.9903 0.9995 0.9997

30 0.9839 0.9894 0.9995 0.9996
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Table D.3 Overlap Δ and overlap per site Δ1/N between the state |ψExact〉 in (Eq. (2.7)) and

the ground state of HNN, HNNN, Hopt
NN, or Hopt

NNN for q = 4. The different rows are for different

numbers of lattice sites N.

N Δ Δ1/N

NN NNN NNopt NNNopt NN NNN NNopt NNNopt

16 0.837 0.988 0.865 0.997 0.9881 0.9993 0.9910 0.9998

20 0.785 0.984 0.820 0.996 0.9880 0.9992 0.9901 0.9998

24 0.736 0.980 0.777 0.994 0.9873 0.9992 0.9895 0.9998

28 0.690 0.976 0.736 0.992 0.9868 0.9992 0.9891 0.9997

32 0.672 0.968 0.702 0.973 0.9877 0.9990 0.9890 0.9991

Table D.4 Overlap Δ and overlap per site Δ1/N between the first six excited states of the

NNNopt Hamiltonian and the first six excited states of the nonlocal Hamiltonian (7.10) for

q = 3. The number of sites is N = 21, 24, and 27, respectively.

State Δ Δ1/N

N = 21 N = 24 N = 27 N = 21 N = 24 N = 27

2 0.9933 0.9921 0.9908 0.9997 0.9997 0.9997

3 0.9933 0.9921 0.9908 0.9997 0.9997 0.9997

4 0.9894 0.9887 0.9878 0.9995 0.9995 0.9995

5 0.9894 0.9887 0.9878 0.9995 0.9995 0.9995

6 0.9893 0.9887 0.9795 0.9995 0.9995 0.9992

7 0.9893 0.9887 0.9795 0.9995 0.9995 0.9992
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Table D.5 Overlap Δ and overlap per site Δ1/N between the first six excited states of the NN

Hamiltonian and the first six excited states of the nonlocal Hamiltonian (7.10) for q = 2. The

number of sites is N = 20, 24, and 28, respectively.

Δ Δ1/N

State N = 20 N = 24 N = 28 N = 20 N = 24 N = 28

2 0.9900 0.9879 0.9856 0.9995 0.9995 0.9995

3 0.9707 0.9668 0.9634 0.9985 0.9986 0.9987

4 0.9914 0.9800 0.9772 0.9996 0.9992 0.9992

5 0.9914 0.9800 0.9772 0.9996 0.9992 0.9992

6 0.9894 0.9763 0.9739 0.9995 0.9990 0.9991

7 0.9894 0.9763 0.9739 0.9995 0.9990 0.9991

Table D.6 Overlap Δ and overlap per site Δ1/N between the first six excited states of the

NNNopt Hamiltonian and the first six excited states of the nonlocal Hamiltonian (7.10) for

q = 4. The number of sites is N = 20, 24, and 28, respectively.

State Δ Δ1/N

N = 20 N = 24 N = 28 N = 20 N = 24 N = 28

2 0.9915 0.9906 0.9893 0.9996 0.9996 0.9996

3 0.9933 0.9917 0.9900 0.9997 0.9997 0.9996

4 0.9860 0.9845 0.9828 0.9993 0.9993 0.9994

5 0.9883 0.9858 0.9835 0.9994 0.9994 0.9994

6 0.9632 0.9678 0.9743 0.9981 0.9986 0.9991

7 0.9697 0.9715 0.9624 0.9985 0.9988 0.9986
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