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Abstract A new derivation is given of the known general-
ized position—-momentum uncertainty relation, which takes
into account gravity. The problem of two massive particles,
the relative motion of which is described by the Schrodinger
equation, is considered. The potential energy is defined as
a sum of ‘standard’ non-gravitational term and the second
one, which corresponds to gravitational attraction of parti-
cles as in Newton’s theory of gravity. The Green’s function
method is applied to solve the Schrddinger equation. It is
assumed that the solution of the problem in the case, when
the gravitational interaction is turned off, is known. Gravity is
taken into account in linear approximation with respect to the
gravitational coupling constant made dimensionless. Dimen-
sional coefficients at additional squares of mean-square devi-
ations of position and momentum are written explicitly. The
minimum length, determined as minimal admissible distance
between two quantum particles, and the minimum momen-
tum appear to be depending on the energy of particles’ rela-
tive motion. The theory allows one to present the generalized
position—-momentum uncertainty relation in a new compact
form.

1 Introduction

The Heisenberg uncertainty relation is a fundamental princi-
ple of quantum theory. It imposes restriction on accuracy of
simultaneous measurement of two observables which do not
commute [1,2]. At first, gravity was not taken into account.
The studies conducted by a number of researchers that used
different approaches and methods have shown that account
of gravity leads to nontrivial results, which are consistent
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between themselves (see the reviews of the articles published
prior to 1995 in Ref. [3] and of the articles published later
in Refs. [4,5]). It was demonstrated, in the context of string
theories, that there must exist so-called minimum physical
length, which is of order of Planck’s length [6-8] (see also
Refs. [9,10]). This result was confirmed by other authors. In
Ref. [11], the limit to the measurement of the black-hole-
horizon area was discussed, bringing one to the conclusion
that a minimum observable length emerges naturally from a
quantum theory of gravity. The effect of gravity was investi-
gated by studying the interaction of the electron with the pho-
ton using Newtonian gravity and general relativity, and one
arrives at the generalized uncertainty principle in the form
known from string theories [12]. The discussion of conse-
quences of the generalized uncertainty relation is also con-
tained in Refs. [13—18]. The question of the existence of the
so-called maximum length was raised in connection with the
cosmological particle horizon as the maximum measurable
length in the Universe [5].

In the present paper, the effects of gravity are studied on
the example of the quantum problem on relative motion of
two massive particles feeling no external forces. It is sup-
posed that the two-particle quantum system is described by
the stationary Schrodinger equation with the potential energy,
which in addition to ‘standard’ non-gravitational interaction
also takes into account gravitational attraction of particles as
in Newtonian theory. It is assumed that the solution of the
problem in the case, when gravity is neglected, is known and
hence the standard Heisenberg position—-momentum uncer-
tainty relation can be written. The problem is to determine
the influence of gravity on the mean-square deviations of
position and momentum and thus to obtain the generalized
position—momentum uncertainty relation. The Green’s func-
tion method is applied to solving the Schrodinger equation.

The setting of a problem and the basic equations are
given in Sect. 2. The particles interaction potential is cho-
sen in the form of two summands: one is responsible for the
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non-gravitational part, while the another is described by the
Newtonian gravitational potential of the mutual attraction of
two particles. The method of taking gravity into account is
described in Sect. 3. Here, the gravitational coupling con-
stant made dimensionless is introduced and the normaliza-
tion condition of the wave function of the system, which
takes into consideration Newtonian gravity, is written in a
linear approximation with respect to this coupling constant.
In Sect. 4, the generalized position—-momentum uncertainty
relation is obtained and presented in the form allowing its
direct comparison with the known relation. The restrictions
imposed by the minimum length and the minimum momen-
tum on the dimensional coefficients at additional squares of
mean-square deviations of position and momentum are dis-
cussed in Sects. 5 and 6. In Sect. 7, the generalized uncer-
tainty relation is given in a new compact form in which the
gravitational effects are combined into a single summand
having a clear physical meaning. A comment on the Coulomb
problem is given here.

2 Basic concepts and equations

We consider the quantum system of two non-relativistic par-
ticles with the masses m; and my and the respective posi-
tions ry and rp, which interact between themselves. We also
assume that the system feels no external forces. As is well-
known [2], the transition to the center-of-mass system allows
one to split up the problem into two: that of a free particle
with the mass M = m| + my, and that of a particle with
the reduced mass m = mm>/M in some static potential.
We take the interaction potential energy in the form of a sum
V(r) + U(r), where V(r) is the non-gravitational poten-
tial energy, which depends only upon the relative position
r = r| —rp, and U (r) is the potential energy of gravitational
attraction of particles,

U(r) = —Gg "2

mM
= —GT =md(r), (D

where r = |r|, @(r) = —G M //r is the gravitational poten-
tial created by the mass M acting on the particle of mass
m at a distance r from the force-center, and G is Newton’s
gravitational constant.

The Schrodinger equation for relative motion of the par-
ticles has the form

(Ho = E) |y) = =Uly), @

where (r|y) = ¥ (r) is the wave function (in the coordinate
representation), E is the energy of relative motion, and

p2
Ho= >~ + V) 3
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is the Hamiltonian of a particle of mass m and momentum
P = (px, Py, Pz), which is canonically conjugate to position
r = (x, Yy, z). This Hamiltonian does not take into account
the gravitational impact of the force-center on this particle.
As it follows from Eq. (1) to (3), in quantum mechanics
the mass m no longer cancels, in contrast to classical theory
of gravity, where the mass of a body does not appear in the
equation describing its motion in external gravitational field.!
In quantum theory, this fact can be used for transition from
the dimensional constant of gravitational interaction G to the
dimensionless coupling constant

mimy mM
= G = G—, 4
§ hic hic @
so that Eq. (1) takes the form
hc
Ur)= —8 Q)

The condition of “smallness” of the constant G reduces to a
mathematically correct condition: g < 1, which is equiva-
lent to inequalities,

m M
— 1, (6)
mpp mp|

——— K1, or

where [, =,/ (3—3"1 is Planck’s length, m ,; = IL is Planck’s

pl¢
mass, 4, = % is Compton’s wavelength of a particle with
the mass m (the same is for M). This restriction means that
the masses m and/or M (and correspondingly m; and m>)
must be smaller than Planck’s mass.

3 Account of gravity

We suppose that the solution of Eq. (2) without right-hand
side

(Ho—E)|g) =0 @)

is known, as well as the Heisenberg uncertainty relation, for
example, for a particle that moves along the x-direction,

h

where 8x = Vx2 — X2 and 8py =/ p2 — p2 are the root-

mean-square deviations of position and momentum respec-
tively, and the over-bar denotes averaging over the state |@).
This relation does not account for the gravitation attraction
of particles.

Let us calculate the gravitational correction to the relation
(8), using the solution of Eq. (2) for this purpose. The general

! This difference between classical and quantum theories of gravity is
well-known (see, e.g., Ref. [19]).
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solution of Eq. (2) can be written as

V) =lo) + 1, ©)

where |¢) is the general solution of Eq. (7), and the function
|x) has a form

Ix) = GgU|Y) and (x| = (|UG, (10)
where

_ |©n) (¢nl
GE_ZE—HS—E,,’ (b

n

is the Green’s function for outgoing waves, § is a small
positive addition, and the Hermitian-conjugate function GTE
describes incoming waves. Here, the wave function |¢,) and
the corresponding energy E,, are the solutions of the equation

(Ho — En) lgn) =0 12)

for eigenvalues and eigenvectors. In Eq. (11), the summation
over discrete states and integration over continuum states of
the two-particle system in which gravity is not taken into
account is implied.

We assume that the wave functions |¢;) form a complete
orthonormalized set: Y, (@) {@ul = 1, (@nlen) = Sun.
Using these conditions, one can calculate the norm of the
state |@). From the obvious expansion

) = lon)(@nle). (13)

it follows that

(plo) =D lpalp)* =1, (14)
n
since | (g, |@)|? is the probability to find the system with the
Hamiltonian (3) in the state described by the wave function
[@n).
Using Egs. (9), (10), and (14), we obtain an exact expres-
sion for the norm (Y |v),

(Wly) =1+ (@|GEUIY) + (¥ |UGlp)
+ (WI(GEU) GrUIY).

By substituting the wave function (9) into Eq. (15), we obtain

the series in the form of expansion in powers of a coupling

constant g. Keeping only the linear term in this expansion,
with an accuracy up to ~ O (g?) we find

(15)

(W) =1+ GgU + UG, (16)

where the over-bar denotes averaging over the state |¢) as
above. We rewrite the nontrivial part of Eq. (16) in an explicit
form,

GrU + UG

1
= Z’E g L@len)(@nlUle) + (@lUlen) (@nl0)]

—im Y 8(E — En) [(¢lgn) (enUlg)

n

— {(@lUlgn){enle)], a7

where a dash denotes that the term with E = E, is absent in
the summation. Since the left-hand side of Eq. (17) is a real
number, then in the right-hand side the contributions from
incoming and outgoing waves should cancel mutually. As a
result, we obtain the expression

(@lgn) (@nlUlp)

GeU+UGL=2)"
n
= QGZ-U,

which does not contain a singularity at the point £ = E,,.
As U < O for all r, the norm (16) is less than unity:

(Uly) < L.

4 Generalized uncertainty relation

Let us calculate the root-mean-square deviations of posi-
tion x, Ax = +/(x2) — (x)2, and momentum p,, Ap, =

(p2) — (px)?, where the brackets denote averaging over
the state |¢) (9). For the mean value of some Hermitian
operator A, with an accuracy up to terms ~ O(g?), we have

A) = (VIAlY)

—A+ACrU+UG.A —Z(GEU +UGH).
(Wly) E £

(19)
By setting A equal to x, x2, p,, and p)zc sequentially, we get
(Ax)* = (6x)* + B, (Apx)” = (Bpa)’ + ., (20)

where we denote

B = —(5x)> (GEU n UG}) R,

21
« = —(6py)? (GEU n UG}) +R,,.
and
Re =% (GeU +UG)) = 2% (xG£U + UG x)

(22)

+x2GEU + UG a2
(the same expression is for R, ).
Neglecting the term a8 ~ O(g?), one can write

(Ax)*(Apx)? = (62)*(Bpx)* + a(dx)> + B(Bpy)*.  (23)

Bearing in mind the equations (20) and the uncertainty rela-
tion (8), we obtain the following inequality, with the accuracy
mentioned above,

2
(A)*(Ape)? 2 % +a(Ax)? + B(Apx)*. (24)

@ Springer
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After taking the root, we arrive at the required position—
momentum uncertainty relation, which takes into account the
gravitational corrections in linear approximation with respect
to the coupling constant g,

Ape 1 Ap,
2yt )2+/3< p) . (25)

Ax—— 2 =
h 2
The constant ;‘—2 has dimension of inverse length squared, and
B is measured in units of length squared. The inequality (25)
has the same form as the generalized uncertainty relation
proposed previously by many authors (see introduction to
this paper). In our approach, the coefficients « and § can be
calculated by the formulas (21) and (22). We shall consider
these coefficients in detail.
Keeping in mind the mean value theorem, let us suppose
that there exist x. and (x2), such that an exact expression for
the integrals in Eq. (22) can be written as

xGgU = x.GgU, x2GpU = (x*).GgU. (26)

The same is for the Hermitian conjugates. Then

Ry =2G,U [ = 25w + (D) @7

where denotations are as in Eq. (18). Assuming that (x2). ~
(xc)2, we have

R, ~ 2GU(6x)2, (28)

where ((SX)% = (x. — X)%. The same expressions can be writ-
ten for R, as well,

Ry, ~2G U py)?, (29)

where (SpX)f = (pc — ﬁ)z. Since the deviations (6x). and
(8px)c are not directly related to each other through the
Heisenberg uncertainty principle, they can become arbitrar-
ily small simultaneously. Then, in a good approximation, we
get

hic hc
B=2806x)’Gp—, o =2g(px)’Cl—. (30)

5 Minimum length

Let us consider the case, when the summand containing « is
much smaller than the one containing §. From the uncertainty
condition (8) and an obvious condition

h
5szpx=z—, (31)
m
it follows that
h h A
Sx > > = (32)

~ 28px 7 2px 2

@ Springer

Using an explicit form of the coupling constant g (4), we
obtain

BRIy i (33)
where
An . hic
e it 34
B = T CE T (34)

is a dimensionless coefficient which depends on the free
parameters of the two-particle system under consideration.
Then, using the Eq. (33), the uncertainty relation (25) can be
reduced to the form

Zﬂ_/ApX

h
A2 2ape T

~2A

(35)

From this inequality, it follows that for the system of two
massive particle under consideration, there exists the minimal
value of deviation Ax, which is determined by the coefficient

ﬂ/7
(A min = Lpiv/B' = Lnin, (36)

at the momentum deviation Ap, =

5, . The quantity
12 /S’ has the dimension of energy d1v1ded by length and it
1s associated with the string tension in string theory. The
distances smaller than the minimum length /,,;,, cannot be
resolved. According to Eq. (34), the quantity 8’ depends on
the energy E of relative motion of the particles with masses
m and M. If there exist the values E ~ Ey at which 8/ ~ 1,
then the minimum length /,,;, ~ [p;. In the general case,

VB = l’l"—"l", where /,,;, depends on energy as
p

_A1/2
hcM 1
lmin’\'lpl E;; s

in a rough approximation.
The relation (35) has two limits (cf. Ref. [15]). The
quantum-mechanical limit is achieved when

A A 1
1ﬁ< px) <1, or e — (37)
h lmin

The standard Heisenberg relation is recovered in the case
Ax > [y
The quantum-gravity limit is reached when

Ap 2 Ap 1
2 p/ X X
~1 ~ .
LB < s ) , or 5 o (38)

This limit means that, according to Eq. (35),
Apy Ax

~

heo DB

which transforms into the relation (38) for Ax ~ ).

(39)
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6 Minimum momentum

When the summand containing 8 is much smaller than the
one with o, the uncertainty relation (25) takes the form

A 1 '
Px > 2 [1 4 ;[T(Ax)z] , (40)
pl

Ax Pe
h 2

. 2al? .
where it is denoted ' = —5Z. One obtains the quantum-
mechanical limit of this relation in the case

o l
o (A7 <1, o Ax < % @1
pl o

One gets the quantum-gravity limit when

o l
(A2~ 1, or Ax~ L

2 Vo

For ép, ~ p, = %, it follows that

2 2
o) ()

m mpl

(42)

For masses m < m; and a finite value of /', one finds
that v/ < 1. The equation (42) can be rewritten as

2

Ax ~ L (@)2 o (44)
2 m lmin

The quantum gravitational effects will manifest themselves

at very large distances [20] (cf. Ref. [15]) for particles with

masses m < Mmpj.

Let us make a few estimates. Taking /[;,;, ~ [, one finds
that Ax ~ 10° cm for mc? ~ 1 GeV. On the other hand,
under the assumption that the size of fluctuations are of order
the observable part of the Universe (the maximum measur-
able length in the Universe) Ax ~ 10%8 ¢m, one obtains that
masses of particles mc? ~ 1073 eV. Current upper limits on
neutrino mass [21] agrees with this estimate.

From the uncertainty relation (40) in a lower limit, it fol-
lows that

o'h?
— 5 1’
17,(Apy)?

Thus, there exists a minimum momentum (Apy)min =

m e,

ApX>«/J
/A

(45)

7 Discussion

In this paper, it is shown how, using the Schrodinger equa-
tion for two massive particles with Newton’s gravity, one
can obtain the generalized uncertainty relation in the form
which became known since the second half of 1980s [see
Egs. (25) and (35)]. In linear approximation with respect to

the dimensionless coupling constant g (4) of gravitational
interaction, according to Egs. (33) and (34), the coefficients
o and B are expressed in the form of quadratures contain-
ing the Green’s function and the gravitational potential, and
they depend on the energy of relative motion of the particles.
The minimum length of the order of the Planck length can
be achieved for some values of the energy E, which is a free
parameter of the theory. In the framework under consider-
ation, the uncertainty relation can be cast into a new form.
Starting from Eq. (23), using the coefficient definitions (21)
and the Heisenberg uncertainty relation (8), we arrive at the
inequality

Apy 1 1/ 2 1 hc
>_ - (GgU + UG ):— G-, (46
b 237 (CRU+UGE) =3 +¢Gp T (40
This relation, in turn, can be reduced to a compact form by
taking into account the normalization condition (16) in linear
approximation with respect to the coupling constant g,
Ax A ho 1 (47)
XApy 2 ——.
Y2yl

The potential energy of gravitational attraction of two
massive particles (1) is similar to the potential energy of two
oppositely charged point particles interacting according to
the Coulomb law.

Applying the method given above to the Coulomb prob-
lem in non-relativistic approximation, we demonstrate that
an addition to % in Eq. (46) is negligibly small and does not
affect the Heisenberg uncertainty relation. Bearing in mind
Eq. (18), we denote this addition as

Ax

y=-G,U. (48)

Then the coefficient 8 (33) takes the form

A
Bz Ty. (49)

Therefore, in order to analyze the contribution from the long-
range part of interaction between particles, it is sufficient to
estimate the contribution from a dimensionless coefficient y .

As a specific example, we consider the finite motion of an
electron with the charge —e in the field of an atomic nucleus
with the charge Ze (a hydrogen-like atom). For the light
nuclei with Z < 10, the dimensionless coupling constant of
the Coulomb interaction is small: g = Zh—eCZ = é—7 < 1.

As is well-known (see, e.g. Ref. [22]) the energy of
electron-nucleus interaction can be written as

Ze? Ze?
R—i<r2—3R2>(—9(R—r)— ¢

O — R), (50)
-

where ®(x) = latx > 0,and ®(x) = 0 at x < 0. The
first term describes the potential energy inside the nucleus
with the radius R, in which an electric charge is distributed
homogeneously over its volume. We identify this term with

@ Springer
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V(r) in Eq. (3). The second term corresponds to an addi-
tional Coulomb attraction at distances exceeding the size of
a nucleus. We set it equal to U (r).

For the specific problem under consideration, using
Egs. (18), (48), and (50), one can write

n O — R
Z (¢1@n) < y (rr )|¢>. 51)

The wave functions ¢(r) and ¢, (r) are defined over all space
of r = (x,y,z). Since the radius of a nucleus R =~ 2
fm is much smaller than the Bohr radius of an electron
a = fr’l—ze = 5.3 x 10* fm, the electron remains mostly out-
side the nucleus. In the region r > R, the function ¢ has
the Coulomb asymptotics, while the function ¢, decreases
outside the nucleus in a standard way. We restrict ourselves

to consideration of the 1s states. Then,

2, e "

en(0) = /5 ——— (52)

23
) =,/ —e™",
T

where » = %«/W and »x, = %m

For the Coulomb problem, according to Eq. (9), the wave
function i describes exactly, while the wave function ¢
describes approximately the bound states of an electron and
a nucleus.

The spectrum of the states of E is close to the spectrum
of the states of a hydrogen-like atom. Then, the following
estimation is valid: % ~ 1.9Z2 x 1075 fm~!, where v =
1,2,3...1s the number of a state. The nuclear potential in
Eq. (50) is cutoff at r = R < +/3R. Therefore, the spectrum
of the states of E, can be approximated by the spectrum of
the states of a particle in a square well with a radius R. In
this case, for the values of n not large enough, we have the
estimation: x, ~ 7 %.

Substituting the wave functions (52) into Eq. (51), we
obtain

)\' e_()ln‘i‘)t)
~16Z— R, Z ,
a (A2 = A2 (A +1)3

(53)

where we introduce the dimensionless parameters A = xR =
3.8£x107%, 4, = %, R ~ Zn.For Z < 10, wehave A < A,
and the following formula for y can be written,

~In

16ZRA3<2>426 (54)
y ~ - - 4
a T " n

The summand with n = 1 gives the main contribution to
the sum in Eq. (54), while the summands with n > 1 are
exponentially small. After substituting the numerical values
for the parameters, we get the following expression for the
lowest state with v = 1 which gives the main contribution to

)/’
y ~1.1z* x 10718, (55)

@ Springer

For Z < 10, it follows an upper bound
y < 10714, (56)

Such an addition may be neglected in comparison with % in
Eq. (46). As a consequence, the standard Heisenberg uncer-
tainty relation remains valid. It is not violated by the long-
range action of the Coulomb attraction between an electron
and a nucleus.

Let us note that Eq. (2) with the Hamiltonian (3), where
V(r) = 0, has an exact solution (a hydrogen-like atom or
electron—atomic nucleus scattering). The wave function
can be normalized to unity (for scattering problem, v is
represented by the wave packet formed by superposition of
unbound states [2]). Then, from Eq. (47), it follows imme-
diately the Heisenberg uncertainty relation in its standard
form.

In conclusion, we mention that the main difference
between the gravitational problem and the Coulomb prob-
lem is that in the first case the expected new quantum effects
are to be observed, first of all, at Planck scale, whereas in the
second case the relevant scales are atomic or nuclear scales,
where such effects do not manifest themselves on the fluctu-
ations of observed quantities.

Data Availability Statement This manuscript has no associated data or
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paper. There are no datasets associated with this article.]
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