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Abstract

The strange quark contributions to the electromagnetic form factors of the pro-
ton are ideal quantities to study the role of hidden flavour in the properties of the
proton. This has motivated intense experimental measurements of these form fac-
tors. A major remaining source of systematic uncertainty in these determinations is
the assumption that charge symmetry violation (CSV) is negligible. In this analysis,

recent theoretical determinations of the CSV form factors are used and the available

[parity-violating electron scattering] (PVES) data, up to Q? ~ 1GeV?, are reanal-

ysed. This analysis considers systematic expansions of the strangeness electric and
magnetic form factors of the proton. The results provide an update to the deter-
mination of strangeness over a range of Q% where, under certain assumptions about
the effective axial form factor, an emergence of non-zero strangeness is revealed in
the vicinity of Q? ~ 0.6 GeVZ2. Given the recent theoretical calculations, it is ap-
parent that the current limits on the CSV do not have a significant impact on the
interpretation of the measurements and hence suggests an opportunity for a next
generation of parity-violating measurements to more precisely map the distribution

of strange quarks.

The size of the vZ box correction is particularly significant to the[Standard Model|
(SM)) test by the Qyeax Experiment. The uncertainties that arise from the underlying
~Z interference structure functions can be constrained by phenomenological models

such as the [Adelaide-Jefferson Lab-Manitobal (AJM]|) model. Recently, a new lattice

method was proposed to compute the structure functions directly from a lattice

calculation of the electromagnetic Compton amplitude 77". This method paves the
way for a possible extension that involves studying the 7Z interference Compton
amplitude 77 7 at low Q?. The question about the required accuracy of T} Z on the

lattice to improve the phenomenological models was studied.
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Chapter 1
Introduction

In 1911, Ernest Rutherford introduced his atomic theory that describes the
atomic structure as possessing a central charge (later known as a positive nucleus)
surrounded by a cloudy negative distribution of orbiting electrons. He developed
his theory based on the results of an experiment of shooting a beam of alpha par-
ticles through a thin foil of gold. That results proved the existence of the atomic
nucleus where a small portion of alpha particles was scattered back from the gold
sheet, while a large percentage of these particles passed through the sheet with no
deflection.

In 1919, Rutherford proved the existence of the hydrogen nucleus in other nu-
clei based on results from an experiment in which alpha particles were fired into
the nitrogen gas, and the produced hydrogen nuclei were detected by scintillation
detectors. This result described as the discovery of the proton.

In 1964, the quark model was individually developed by Murray Gell-Mann and
George Zweig. In 1968, [deep inelastic scattering] (DIS]) experiments at the
ILinear Accelerator Center| (SLAC]) verified that the proton consists of point-like

particles. These particles were later known as up (u) and down (d) quarks. The
experiments indirectly confirmed the existence of strange (s) quark that plays
a fundamental role in describing the kaons that have been discovered in cosmic rays
in 1947.

The [Standard Model| (SM]) of particle physics is a theoretical framework which

presently renders the best explanation of the interactions and properties of the

elementary particles. These elementary particles are divided into leptons, quarks
and gauge bosons. Leptons and quarks form the fundamental constituents of matter,
while bosons are the force carriers of different interactions between leptons and
quarks. The is a combination of the |quantum chromodynamics| (QCDJ), which

describes the strong interaction between gluons and quarks in the nucleon, and the
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electroweak theory. The electroweak theory is a unified theory of two fundamental
interactions, the electromagnetic and the weak interactions.

In the [SM], nucleons are formed of their valence quarks, i.e., proton and neutron
with valence quark content (uud) and (udd), respectively, in addition to virtual
vacuum-generated quark-antiquark pairs that emerge and annihilate in the
quark-gluon sea inside the nucleon. At high-energy regions where the physics is
perturbative, can describe strong interaction and hadronic phenomena, for
example, ‘colour confinement’. However, at low-energy regions where the theory is
nonperturbative, the situation is more complicated.

Theoretically, the sea quarks can consist of any of the six different flavours of
quarks, i.e., up (u), down (d), strange (s), charm (c), beauty (b) and top (¢), however,
the most possible quark-antiquark pairs comprise u, d and s quarks. Generally, it is
challenging to separate the sea u and d quark contributions from their corresponding
valence quarks. However, the s quark contributions are totally from the sea. Despite
the strangeness, which is a quantum number that was introduced in the 1950s by
Gell-Mann and Nishijima, of nucleons being zero, the s quarks could have a space-
time distribution inside the nucleons. Therefore, questions can be raised about the
strange quark’s contribution to the static properties of the nucleon.

The investigation of the strange quark contributions, that would necessarily be
related to the ‘sea’, to the nucleon static properties such as mass (scalar matrix
elements), the electromagnetic properties (vector matrix elements) and the spin
(axial vector matrix elements), is particularly interesting. The two quantities usually
considered in the context of the strange quark contributions at low momentum
transfers are the strange charge radius and the strange magnetic moment.

The [SM] electroweak theory, which has been developed in the last half-century,

introduced successful tools to study the structure of the nucleon using the weak

interaction. The |parity-violating] (PV]) interaction of electron with nucleon renders

information on the weak neutral current of nucleon and its related quark structure,
including sensitivity to strange quark-antiquark effects.

In Chapter 2] a brief overview of the [SM]is presented as it is the main framework
of this study. Since the interference of the weak and electromagnetic interactions has
a particular focus, a short introduction to the electroweak theory is also included.
Although the [SM] has demonstrated its successes in predicting many experimental
results, it is seen as incomplete. Performing precision measurements can be utilised
as a [SM] test. In Section [2.3] as an example, the Queax experiment, which placed
new constraints on search for new physics, is briefly highlighted.

It is instructive to highlight, in general, the role of the strange quark within
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nucleon structure. Chapter 3| describes the physics of strange quark-antiquark pairs
$s in the nucleon and provides motivation for the [PV]electron scattering method to
study the strange quark content of the nucleon.

A survey of different theoretical approaches to studying the strangeness contribu-

tion to the electromagnetic| (EM)) vector form factors of the nucleon will be presented

in Chapter {4} concentrating on their predictions of the strange magnetic form factor
s; and strange electric form factor G4, at zero momentum transfer Q? = 0, i.e.,
focusing on the strange magnetic moment us = G35,(Q* = 0) and the strangeness
mean-square radius (r?)p = —6 dG%(Q?)/dQ*(Q?* = 0). Other definitions of charge
radius are certainly possible, but this is the most common one in the literature.

In addition to the purely electromagnetic interaction, which dominates electron
scattering, the electron also interacts via the weak interaction. Although the weak
interaction, which violates parity, is several orders of magnitude smaller than the
electromagnetic interaction, which conserves parity, the weak interaction can play
an important role in studying a part of nucleon structure that cannot be investigated
through studies that only consider the electromagnetic interaction.

In 1988, Kaplan and Manohar [I] suggested that the strange electric and mag-
netic form factor contributions can be estimated through measurements of the weak
neutral current matrix elements. In the following year, McKeown [2] and Beck [3]
suggested an experimental program to measure the weak neutral current of the pro-
ton using [PV]electron scattering in order to estimate the strange quark contribution
to the vector matrix elements.

Chapter [f] considers the formalism involved in the description of [PV] asymme-
try for elastic electron-proton scattering, elastic electron-helium-4 scattering and
quasielastic electron-deuteron scattering. Higher-order electroweak corrections will
also be highlighted and included in the analysis of this work. In the present work,
the axial-vector form factors encode higher-order radiative corrections and hadronic
anapole contributions, and the dominant contribution is determined by the consid-
ered data set. In Section [5.4] the main experimental programs that discuss
electron scattering from the proton, helium-4 or deuteron with varying kinematic
conditions and measured Apy will be summarised. The set of all available [PV] elec-
tron scattering data, up to the currently available limit of Q? ~ 1GeV?, is presented
at the end of this chapter.

Chapter [0 will serve to illustrate the analysis of the considered dataset to deter-
mine the form factors of the strange quark content. A major remaining source of
systematic uncertainty in these determinations is the assumption that
fmetry violation| (CSV) is negligible. In Section effects will be investigated
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using theoretical [CSV] calculations.

The strangeness content of the proton acts as a background role in precisely
interpreting, for example, the Qyeax [4] or P2 [5] collaborations measurements of the
proton’s weak charge QY. In contrast to the formalism relevant to atomic parity
violation experiments, an energy-dependent correction arising from the vZ box cor-
rection was highlighted by Gorchtein and Horowitz [6]. The size of this correction is
particularly significant to the standard model test by the Qyeax Experiment [4]. The
most recent calculation of the vZ box correction will be used in the global analysis
introduced in Chapter [6] with utilising the updated relevant inputs presented in 2016
PDG.

The vZ box correction, so far, is understood within phenomenological models
such as [Adelaide-Jefferson Lab-Manitobal (AJM]) model [7]. A recent new lattice

method has been proposed to compute the structure functions directly from a lattice

calculation of the electromagnetic Compton amplitude 777 [8]. This method opens
the door for a possible extension involving the vZ interference Compton amplitude
T7? at low Q2. In Chapter , the question of what accuracy of 77 on the lattice is
necessary to improve the phenomenological models will be studied.

Finally, in Chapter [§] the results of this work will be summarised to draw a com-
plete picture about [CSV] effects and the strange quark electromagnetic form factors
in the nucleon properties. Some main conclusions about the phenomenological mod-

els of the 7Z box correction also will be revisited.






Chapter 2

The Standard Model and Beyond

The|Standard Model| (SM)) of particle physics describes the present understanding

of the fundamental particles and their interactions. It is commonly believed that
the atoms have a central nucleus surrounded by a cloud of electrons, and that the
nucleus is composed of smaller particles, i.e., protons and neutrons. Protons and
neutrons, collectively known as nucleons, are made of quarks, which are currently
understood to be fundamental particles.

In this chapter, a brief overview of the [SM]| will be introduced. Since this work is
essentially done in the context of the interference of the weak and electromagnetic
interactions, a short introduction to the electroweak theory will be presented.

In spite of the tremendous achievements of the SM, it does not adequately explain
some phenomena. Performing precision measurements can therefore provide a test
of the In Section , as an example, the Queax experiment [4], which places
new constraints on search for new physics, will be briefly highlighted. Further useful

discussion on electroweak tests can be found in [9-11].

2.1 The Standard Model

The of particle physics successfully describes three fundamental forces, elec-
tromagnetic, weak and strong interactions.

The classifies all known elementary particles into fermions (half-integer spin)
and bosons (integer spin). Fermions are divided into three generations of leptons
and quarks according to their characteristics, such as, mass and electric charge,
while bosons are divided into gauge bosons (force carries, spin#£0) and scalar bosons
(spin=0), see Fig. The Higgs boson, a massive scalar boson which was recently
discovered [12], [13], associated with the Higgs field is responsible for generating mass

for fundamental particles in the [SM]|
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mass - =2.3 MeV/c? =1.275 GeV/c? =173.07 GeV/c? 0 =126 GeV/c?
charge - 2/3 u 2/3 C 2/3 t 0 0 H
spin > 1/2 1/2 1/2 1 g 0
Higgs
up charm top gluon boson
~4.8 MeV/c? ~95 MeV/c? =418 GeV/c* 0
173 d 173 S 173 b 0
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down strange bottom photon
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electron muon tau
W neutrino neutrino neutrino W boson

Figure 2.1: The [Standard Model| (SM)) of particle physics. Figure taken from [14].

Based on the SU(3). x SU(2), x U(1)y gauge group, the strong interactions
are related to the quarks’ colour symmetry group SU(3)., and the electroweak in-
teractions are a result of the SU(2), x U(1)y. The subscripts ¢ refers to colour,
L means that the SU(2) acts only on left-handed fermions and the Y refers to the
weak hypercharge.

The interaction between the quarks and leptons that make up matter occurs
via the exchange of vector bosons (gauge bosons). The photon carries the electro-
magnetic force. In the case of [QCD]| gluons are responsible for the strong force—
they combine the quarks to make up mesons (quark-antiquark) and baryons (three
bound quarks). Mesons and baryons are collectively called hadrons. The W#* and
Z° bosons carry the weak force. Leptons experience only the electromagnetic and
weak interactions. Table presents the [SM] forces and their mediating particles
(gravitational force is not included).

Each of the [SM] forces have a ‘charge’ that can be occupied by the different
particles. The ‘charge’ for the electromagnetic interaction is what is usually thought
of as a charge. The weak charges are expressed in terms of the weak mixing angle.

The strong colour charge is red, green or blue—composite particles can only exist in
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Table 2.1: The forces and their carrier particle (gravitational force is not in-
cluded). The data is taken from [Particle Data Group| (PDG)) [15].

Particle | Mediates Interaction Mass[GeV] Qg

vy Eelectromagnetic 0 0
w#, Z° Weak 80.4,91.2 =+1,0
gluons Strong 0 0

combinations. Table shows some of the particles (fermions) properties such
as the electric charge (@) and the weak current couplings (gv and ga).
The present work utilises the interference of the weak and electromagnetic forces,

so the next section will introduce a brief overview of the electroweak theory.

2.2 Electroweak Theory

It has been observed that neutral weak current couple to the particles with
different strength. From Table [2.2] the vector coupling gy is related to the weak
isospin and to the electric charge, while the axial-vector coupling g4 is related to
the weak isospin. The theoretical basis for the unification of the [SM] electroweak
theory was first introduced by Glashow [16]. Glashow included the Z° boson as
an extension of electroweak unification models. Under the resulting SU(2) x U(1)
gauge group, the electroweak unification is achieved.

The electroweak Lagrangian that describes the interaction and kinetic terms for
the Standard Model fermions and gauge bosons can be given by

— , = o Y — . Y
»CEW :XL’7u (Zau - gT ' Wu - QIEBM)XL + ¢R7M (Zau - g/EBu>¢R

]_ - - v ]_ v
— ZW‘W - WH — ZB“”B“
— M i ) /1~Yu A /1‘Yu
=X,7""10,x, —9J -Wu—g§j B, +v.v Zau¢R_g§] By
1 - - 1
= W = BB, 1)

where x, refers to the left-handed fermion doublet and v, refers to the right-handed
fermion singlet. 7T are the generators of SU (2), and are related to the Pauli matrices
7, ie, T; = Z where i = 1,2,3 (see Appendix [A). The hypercharge Y is the
generator of U(1)y. Wu and B,, are the gauge fields associated with SU(2); and
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Table 2.2: Selected properties of the three generations of particles. @ is the
electromagnetic charge in units of e. gy and g4 are the vector and axial-vector weak
current couplings, respectively.

Generation
Fermions | 1 2 3 Q gv ga
Lepton |v. v, v, 0 1 -1
e u T -1 —1 4+ 4sin? Oy 1
Quark | u ¢ t | 2/3 | 1-8/3sin’fy —1
d b | —1/3 | —=1+4/3sin*0y 1

U(1)y, respectively. g and ¢ are the coupling constants. J* is the weak current

J" =X "T;x,

Ti
—Xy (2.2)

:=XL7“2

where the third current (i = 3) describes the weak neutral current (it does not change
the charge of the particle involved in the interaction). j¥# is the weak hypercharge

current
=X, MY X+ U Y Y, (2.3)

The electromagnetic current can be defined in terms of the weak neutral current J3*

and weak hypercharge current j¥* as

-em 1 ;
]u:ﬁ+yﬁ (2.4)

or in terms of the generators (Gell-Mann—Nishijima formula) as

Q:W+§ (2.5)

The field strength Wuu and B, are given by

W = 8,W, — 8,W, — gW, x W,,
By, = 8,B, — 8,B,. (2.6)

The Lagrangian Eq. (2.1]) is gauge invariant under the SU(2);, and U(1)y trans-

formations. However, in describing the real physics, the Vf/,J and B, need to be
replaced by the gauge fields W*, Z, and A,. W and Z, mediate the weak interac-

tion, and A, is the photon field that carries the electromagnetic force. W* bosons
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couple only to the left-handed doublet fermions, and W¥ fields can be written as

1

V2

Z boson and photon couple to right- and left-handed fermions. Therefore, from

wE = —(whFiw?). (2.7)

mixing of the two vector fields Wg’ and B,, Z, and A, fields can be defined in terms
of Wj’ and B, as

_ 1 3 /
= P2+ <9WM _gB“>’
1
Ay = e <g’W3 + gBM>. (2.8)

Defining the weak mixing angle (Weinberg angle) in terms of the coupling constants

g and ¢ as
g g
sin Oy =———, cos by = ———, (2.9)
/92 + 912 /92 + 9/2
leads to redefining Z,, and A, fields as
Z,, = cos HWWj’ — sin 0w B,,,
A, = cos by B, + sin HWWS. (2.10)
Using these expressions allows one to write
—gpwn Vg (g sin Oy J3 + g’ cos ew‘ﬁ)A#
p 9/ p 9
jY
— (gcosHWJi’ —g'sin9W7“>Z“. (2.11)

In order to obtain the electromagnetic part from A,,, one needs to apply the condition

gsinfy = g’ cos Oy = e. (2.12)

10
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Hence, Eq. (2.11)) becomes

/

q . em g .
—gJ W = TG B = — e Al = . (J3 —sin®Oy) Z#
= —e Y Qe upAr
f
__9 o [ L1 AT8  gin? "
cos Oy zf:@/)f%[Q(l Y )Tf sin QWQf]¢fZ
=—e> QA
f
_ 9 "y [ f f 5} AL 21
Lcos Oy Zf:%w gy + 947" |0 2", (2.13)

where g{; = 2TJ}°’ — 4Q sin? Oy and 9,{1 = —2Tf. Note that for the fermions, the
above equation should be applied to their chiral components separately.

The Electroweak Lagrangian can be rewritten as

»CEW :YL/YMiauXL + @L'Yuia,u’@DL

- % (ﬁﬂwj + J’“W;)

-em g NC
_ejemeA, — — 9 NCuy
K B dcosby .
1 - - 1
— W W = 2B, B, (2.14)

where j" is the usual electromagnetic current,

jEm = Z Qf@f”Y“wf, (2.15)
f

and JNO! is the weak neutral current,
TN =N ")y [g{/ + gf;%} urs (2.16)
f

The gauge symmetry prevents the gauge bosons from acquiring masses, i.e., mass
terms for any gauge bosons are prohibited since they are not invariant under gauge
transformations. Fermion masses are also prohibited because they mix left- right-
handed fields and therefore violate gauge invariance. Thus, the above Lagrangian

contains massless fields. In order to generate the masses of the physical particles, the

!The convention used in [I0] has been followed in this work. In the literature, the charged and
neutral currents are affected by a factor of % To overcome this difference, one simply needs to
redefine the coupling constants in the scattering amplitude.

11
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symmetry gauge theory of electroweak interactions is spontaneously broken [17, 18]

¢+

when adding a complex scalar Higgs doublet ¢ = <¢0> to the model with potential

given by
A
V(9) = 1616+ 5 (60 (217)

This is called the Higgs mechanism [19-22], Fig. [2.2

For negative p? and positive ), the ground state of the potential V' (¢) does not
appear at ¢ = 0. Since there is a circle of minima (an infinite number of minima)
centered around ¢ = 0, the choice of the minimum is arbitrary, see Fig. 2.2 By

convention, the minimum of the form

1 (0
bo = 7 (U> (2.18)

has been chosen, where v is the vacuum expectation value. This approach of obtain-
ing an asymmetric ground state is called spontaneous symmetry breaking. Breaking
the gauge symmetry (albeit in a way that leaves the Lagrangian invariant) allows
us to have mass terms. After spontaneous symmetry breaking, the photon remains
massless since the electromagnetic gauge symmetry has not been spontaneously bro-

ken, and the weak gauge bosons are found to acquire mass.

2.3 Beyond the SM

The weak coupling constant g in the vertex factors for neutral and charged weak

current interactions can be defined in terms of the masses of the weak exchange
bosons Z and W+ as

7= 8G M, _ 8G M3 cos? Oy
V2 V2 ’

where G is the Fermi constant. The relevant [SM] parameter, here, is the weak

(2.19)

mixing angle sin?fy,. In the electroweak theory, g is linked to the electromagnetic
charge by e = gsin 0y, Eq. .

In regards to the experimentally precision extraction, a renormalised definition
of the sin? fy is required. The on-shell scheme [23H26] renormalised definition of

sin? @y, at tree level is given by

My,

- 2.20
M%? ( )

sin2fy =1 —

12
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False vacuum
e

Re ¢

——— True vacuum

Circle of minima

Im ¢

Figure 2.2: Higgs mechanism and the potential V' (¢), Eq. (2.17)), for negative value
of 1.

and this definition was used broadly at an early stage. Due to finding that the
top quark mass my is large, the above renormalised expression became largely un-
favoured because its use induced misleading radiative corrections, which means that

an alternative expression is required [9]. Currently, the most popularly used ex-

pression of the weak mixing angle is derived from the modified minimal subtraction|

(MS) renormalisation scheme [27] and is given by

sin® Ow (s = €*(1Wars/ 9 (Wit (2.21)

where p is an arbitrary energy scale and given by u = \/m = (Q, where ¢? is the
four-momentum transfer squared. As strong coupling a(Q) exhibits a running with
respect to the energy, so does sin? fy as shown in Fig. m

Precision measurements can be used as Standard Model tests, where a detected
disagreement with the [SM] prediction will signify the signs of physics beyond the
The Qweax experiment [4], which did determine the proton’s weak charge, Q%,,
to a precision of 6%, is suitable for probing mass scales of new physics in the TeV

range.

In addition to the Qyear €xperiment, previous [parity-violating electron scattering]

13
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Figure 2.3: The running of sin”#y with respect to the energy scale @ in the
renormalisation scheme [28]. This plot is adapted from [4].

experiments, which are defined formally in Chapter [5, may be used to place
constraints on new physics beyond the Standard Model [29] and to reduce hadronic
structure uncertainties that are related to the knowledge of the strange quark and
the axial form factors contributions.

The Qyeax €xperiment involves the interaction of electrons and the valence quarks
in the proton. The effective low-energy Lagrangian that characterises the virtual-
exchange of a Z%boson can be expressed as [30]

e Gp_ _
Lo = ——\/gew%e > " Cig0"a, (2.22)
q

where (', are the weak vector coupling constants. The parity-violating part of the
Lagrangian can be defined as a combination of the Standard Model Lagrangian and

a Lagrangian for new physics [30]:

e GF_ — 92 — _
[’]\?C = _Eemf)%e Z C1qu“q + m@’hﬁ%e Z h%qy”q, (2‘23)
q q

where A, g and h{, are the mass scale, the coupling constant and effective coefficients

related to the new physics, respectively. The precise measurements obtained by

14
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Qweax collaboration put considerable constraints on many new physics scenarios, i.e.,
more precise the measurement of the proton’s weak charge means more significant
constraints on new physics.

Assuming the 95%-confidence-level, the sensitivity to the mass scale of new

physics in terms of @}, and its uncertainty +AQ7,, can be expressed as [4]

Ay 4v/5
i ”\/|Q’;V T 196AQ, — Qi (SM)] (2.24)

where 12 = v/2/(2GF), A is the mass reach for new physics and 1.96 indicates that a
95%-confidence-level was chosen. The sensitivity to the mass scale can be expressed
as a function of the possible range of the flavour mixing angle, 6}, of the new physics
with setting the isospin dependence by h% = cos ), and h¢, = sin 0},.

The Qyeax result, where the most precise and smallest asymmetry measurement
was obtained, put considerable constraints on wide range of search of new physics
beyond the [SM] For example, the Qyeak’s measurements put considerable limits on
the studies of leptoquarks (hypothetical particles that can change quarks into leptons
and vice-versa). Furthermore, this result is sensitive to searches for an additional
neutral gauge bosons (Z’') and different supersymmetric models. Moreover, the
information extracted from this experiment may serve as a test to identify new
physics that could be found in the future at the [Large Hadron Collider] (LHC]).

In addition to the usefulness of [PVES| as a tool to probe new physics beyond

the [SM] this technique can be used to provide precise information about nucleon
structure. Particularly, it places tight constraints on the size of the strange quark
contribution which is difficult to predict theoretically. Theoretical estimations for

the strangeness contribution to the nucleon electromagnetic form factors can be done

using some approaches, for example, [chiral perturbation theory| (ChPT)), dispersion

relations, [vector meson dominancel (VMDJ|) and lattice quantum chromodynamics

(LQCD). However, these estimations, as reviewed briefly in Chapter {4} widely vary.

In this work, a complete global analysis of all PVES asymmetry data, up to
the currently available limit of Q% ~ 1GeV?, for the proton, *He and deuteron is
presented. A considerable remaining source of systematic uncertainty in the experi-
mental measurements of the strangeness form factors of the proton is the assumption
that [charge symmetry violation| (CSV)) is negligible. As the effects have not
been throughly quantified, several theoretical predictions of [31H35] in the pro-

ton’s jelectromagnetic| (EM]) form factors are taken into account in the current work.

It is appropriate that the next chapter be dedicated to highlighting the role of

strangeness in nucleon structure. In particular, it will present a relevant perspective

15
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for studying the content of the strange quark-antiquark pairs of the neutral weak

form factors.

16






Chapter 3
The Strangeness in the Nucleon

The first hint that the proton has a nontrivial structure occurred when Frisch

and Sternﬂ conducted a measurement of the proton’s magnetic moment p, [36, 37].

Their results showed the 1, to be more than one nuclear magneton| (n|), ~ 2.51n.

Then, in 1940, Alvarez and Bloch made a first direct measurement of the neutron’s
magnetic moment and was found to be ~ —1.93(2)uy [38]. These findings violated
the assumption at the time that the proton and neutron are elementary particles.
In the late 1960s, [deep inelastic scattering] (DIS]) experiments conducted at
fford Linear Accelerator Center| (SLAC) confirmed that the nucleon is composed of
point-like Dirac particles (quarks). Soon after, [quantum chromodynamics (QCD))

was developed to describe the interaction between these quarks by introducing a
gauge colour force between quarks.

The modern description of the proton is that it is composed of three valence
quarks, i.e., two up quarks and a down quark, that are held together by the strong
force. The valence quarks are surrounded by virtual vacuum-generated quark-
antiquark pairs that emerge and annihilate in the quark-gluon sea inside the proton.
There is no constraint on the quark flavours of the sea quarks, however, the lightest
quark pairs (u@, dd and s3) are most likely to exist within the sea quarks. Hence,
the strange quark contribution to the proton properties derives from the sea quarks.
Fig. 3.1] illustrates this description for proton structure.

Although the net strangeness, which is a quantum number that was indepen-
dently proposed in the 1950’s by Gell—Mannﬂ and Nishijima [39-41], of the nucleon
is zero, the s quarks could still have a space-time distribution inside the nucleon.

At high momentum transfers, where the theory is perturbative, can de-

!Stern was awarded the 1943 Nobel prize for the first measurement for the proton’s magnetic
moment, fi,.

2Gell-Mann received the 1969 Nobel Prize in physics for his work on the classification of ele-
mentary particles and their associated interactions.

18
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Figure 3.1: The proton’s internal structure.

scribe the strong interaction and hadronic phenomena. However, at low momentum
transfers, where the theory is nonperturbative, the situation is more complicated
due to the large coupling constant a; in this momentum region (it is of the order of
unity at low energy).

Most of the observations that have been made are restricted to the proton because
the free neutron does not exist in nature. On account of this fact, the strangeness
in the proton will be briefly highlighted in the next sections in order to present

the appropriate viewpoint for discussion of the strange quark-antiquark pairs Ss

content in the nucleon through the [parity-violating| (PV]) electron scattering method
described in Chapter

3.1 Strangeness in the Nucleon Mass

The contribution of the strange quark to the nucleon mass is characterised by
the strange quark sigma term, o;.

Sigma terms are, in general, given by the matrix elements of the scalar quark

19
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currents gq between nucleon states. Therefore, the o, and o; terms can be defined
as [42]

o, = my(N|ss|N),
oy = my(N[au+ dd|N), (3.1)

where oy is the light quark sigma term, m; = (m, + mg)/2 is the average up and
down quark mass and my is the strange quark mass.

The strange nucleon sigma term o, has traditionally been poorly determined.
Phenomenologically, the determination of o, reveals a wide range of values, which
indicates that the strange quark contribution is between 0 and more than 30% of
the nucleon mass [43]. It is generally calculated from the small difference between

0; and the non-singlet combination oy. The oy can be written as
oo = my(N[uu + dd — 25s|N). (3.2)

The o, can be derived from 7-N scattering using dispersion calculation [44] [45] and
the o, can be determined from the physically observed baryon mass spectrum. The

preceding sigma terms are connected with each other by the relation

M

(o1 — 00). (3.3)

Os =
2ml

Most commonly, one can define the y-parameter to represent the strangeness

content of the nucleon as

_ 2(N|ss|N) _ 2myoy
- (N[au+ddN) — mso;

y (3.4)
In addition to characterising the purely sea quark content of the nucleon, this param-
eter plays an important role in dark matter detection rates, which depend sensitively
on the nucleon scalar matrix elements.

The determination of o, is remarkably sensitive to the difference between o; and
0o, Eq. . A recent and comprehensive analysis that is based on the Roy-Steiner
equations for 7V scattering obtained a value of o; = 59.1 £3.5 MeV [46]. Given the
considerable uncertainty of the value of o4 extracted from o; due to the experimental
uncertainties and variance of the m/N scattering data, the limited precision of higher-
order chiral corrections to the hyperon mass and the uncertainty associated with the
quark mass ratio, the extrapolation of the data to the unphysical region (Cheng-

Dashen points), there is a notable scope for lattice QCD to present a significant
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constraint on sigma terms. In recent years, several lattice QCD studies, e.g., [47H53],
have been conducted to determine the sigma terms. Within the framework of lattice
QCD, two methods are employed to determine these sigma terms. The first is a direct
measurement of the scalar matrix elements by 3-point function methods (direct
method). The second extracts the sigma terms through the use of the Feynman-
Hellmann theorem (spectrum method).

In the first method, relevant ratios of 3-point and 2-point correlation functions
are constructed to extract the required matrix elements. The construction of the
correlation functions requires two different forms of Wick contraction. In partic-
ular, as shown in Fig. [3.2] there are contributions from quark-line connected and
disconnected operator insertions for up and down quarks and only disconnected in-
sertion for strange quarks. The disconnected contributions, which require ‘all-to-all’
quark propagators to be calculated, are extremely challenging and this is especially
important for the strange quark contributions in the nucleon [54H56].

Instead of the direct 3-point method, one can consider the Feynman-Hellman
theorem [57], 58] which relates the nucleon scalar matrix elements to the dependence

of the nucleon mass on the quark masses via the equations

— M
o] = ml<N\ﬂu -+ dd‘N> = mlaamN, (35)
l
OMy
s = ms(N|3s|N) = mg—r. 3.6
o m<|ss]> m@ms (3.6)

The Gell-Mann-Oakes-Renner (GOR) relation [59] is usually invoked such that My
is defined as a function of the squares of meson masses. Therefore, the derivatives are
expected to be evaluated at the quark mass values that correspond to the physical

pion and kaon masses:

oM

2 N

o =mg om2” (3.7)
_, OMy

Os = m%(ﬂ, (38)

where m% = m3 — m?2/2. The difficulty associated with this approach is that a
number of simulations at different values of the light and strange quark masses are

required in order to evaluate the derivative.
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O
<Toe e

Figure 3.2: Feynman diagrams of connected (left) and disconnected (right) operator
insertions that contribute to the nucleon 3-point function.

3.2 Axial Matrix Element and Strangeness in the

Nucleon Spin

In thelquark-parton model| (QPM)), the spin-dependent structure function g; (z, Q%)

in terms of the spin-dependent quark distributions Ag(z, @?) is defined as
1
gl(xaQQ) - §Z€2AQ(5L’,Q2), (39)
q
where e, are the electric charges of the quarks introduced in Table and

AQ(w7 QQ) = q+(IL‘, QQ) —q ((L’, Q2) + q+($, QQ) -q (‘Tv Q2) (310)

The squared four-momentum transfer Q* can be suppressed since g; exhibits an
approximate independence of Q? and depends only on the Bjorken variable z in
high-Q? [DIS|

For a polarised nucleon, ¢*(7)(z) reflects the number density of the quark of
flavour ¢ with the superscript + (—) reflecting that the quark’s polarisation is parallel
(anti-parallel) to that of the nucleon, and z is the fraction of the momentum of the
proton carried by the quark in the infinite momentum frame. The total contribution

of the quark and anti-quark of flavour ¢ to the spin of the nucleon is

Aq:/o Agq(x)dz. (3.11)

Agq is related to the matrix element of the axial current of the nucleon.

Within the framework of the non-relativistic quark model, which was indepen-
dently pioneered by Zweig [60] and Gell-Mann [61], the spin of the nucleon is entirely
attributed to the quarks.

An experimental constraint can be implemented on Au, Ad and As. There are
several measurements of spin asymmetry in of longitudinally polarised muons

by longitudinally polarised nucleons, in which the cross section is described by the
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structure function go(z) in addition to g;(x). In this regard, there are a number of
experiments that have been conducted at, for example, [62, [63], in which a
primary concern in measuring g;(x) was to study the Ellis-Jaffe [64] and Bjorken
sum rules [65, [66].

To the first moment, working with the three lightest quark flavours, the Ellis-

Jaffe sum rule can be defined as [67]

F—/l ()d—1[4A +ina+ia (3.12)
1—09133 :13—29 u 9 9 S|. .

Rewriting Eq. (3.11)) in terms the SU(3) nucleon axial charges, i.e.,

az = Au — Ad,
as = Au+ Ad — 2As, (3.13)
ag = Au+ Ad + As,

leads to

I = %ag -+ %as - %ao, (3.14)
where a3, ag and aq are isovector, octet and singlet combinations, respectively. To
evaluate I'; for the proton (I'}), the value of a3 = —ga/gy = 1.2723 £ 0.0023, which
describes the ratio of axial-vector g4 to vector gy couplings in neutron $-decay, is
used [15]. In addition, the assumption that the strange quark contribution is zero
(As = 0) resolves the difficulties associated with ag, which has not been determined
experimentally. In this case, one has ag = ag. The value of ag = 0.58 + 0.03
is determined from the best fit to Ap, ZA and Xn hyperon [-decays [15], with
an assumption of SU(3) flavour symmetry, i.e., assuming only three lightest quark

flavours, u, d and s. Therefore, for the Ellis-Jaffe sum rule for the proton one obtains
1
v — / o (z)dz = 0.187 % 0.003. (3.15)
0

The Ellis-Jaffe sum for the neutron (I'}) can be evaluated by changing the sign of

the isovector term as:
1
I't = / g1 (xz)dz = —0.025 + 0.003. (3.16)
0

Assuming SU (3) flavour symmetry, the isovector and octet combinations, as and ag,

respectively, can be used to describe the octet baryon f-decay parameters F' and D
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as

as=F + D, (3.17)
ag = 3F —D.

The Bjorken sum rule implies an additional constraint on Au and Ad as [66]

/01 [glf(x) - 9?@)] dx = é(Au — Ad) = éag. (3.18)

The Ellis-Jaffe and Bjorken sum rules need to be modified in order to account
for QCD radiative corrections that have been estimated up to order o?(Q?), e.g.,
see [68, 69]. The next-to-leading order| (NLOJ) QCD approximation to the Ellis-Jaffe

sum rule for the proton, I'}, can be written as [67]

p_ 3 as(@)] , 5 7 a,(Q?)
Fl = %ag |:1 - T:| + %ag |:1 — ET:| . (319)

Physicists have been puzzled since the discovery by [Furopean Muon Collabora-|
(EMC)) [70], in which the spin-dependent structure function g; () for the proton

was determined and found to be in disagreement with the Ellis-Jaffe sum rule. This

determination showed that the quarks are responsible for a relatively small fraction
of the spin of the proton and also that As is small and negative. This discovery
conflicts with the quark model and this issue is known as the ‘proton spin crisis’.

In practice, comparisons of these predictions of I'y with experiments are model-
dependent for many reasons. To calculate the integrals of g;(z) over the full z
ranges, the data need to be extrapolated to x = 1 and = = 0. For large z, the g;(z)
structure function approaches zero as x tends to 1. However, there are difficulties
at low x related to model dependence [71]. Furthermore, including the QCD
corrections to I'y leads to propagating uncertainties in the evaluation of g; with the
four-momentum transfer Q*, where g;(z) has a significant Q*-dependence because
of QCD corrections. The QCD evolution of the gluon contribution to the Ellis-Jaffe
sum rule also cannot be estimated unambiguously [67]. Moreover, regarding ag, the
assumption of SU(3) flavour symmetry is violated in the nature. In spite of these
difficulties, majority of the [NLO| calculations conclude with a negative and small
value for As, e.g., see [72], [73].

The contribution of As to [PVES|is suppressed by the weak charge of the elec-
tron. However, As is not suppressed in elastic neutrino-nucleon scattering. Fits

to neutrino-proton scattering cross section data found that As is compatible with
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the result from [74], [75]. Global fits of parity-violating elastic electron-proton
scattering data combined with v—p and 7—p scattering data suggest that As is neg-
ative [76, [T7] in agreement with [DIS|

The proton spin puzzle still exists today, and recent quantitative estimations of
the quarks’ contribution to the proton’s spin are about 30% [78-80]. The orbital
angular momentum of the quarks inside the proton is anticipated to play an impor-
tant role in solving this puzzle as discussed in [81I]. The authors of [82] reported
the first lattice calculation of the gluon spin in the nucleon. Their estimations

indicate that the gluon significantly contributes to the proton’s spin.

3.3 Strangeness in the Nucleon’s Momentum

The |[Neutrinos at the Tevatron| (NuTeV|) collaboration measured the fraction of

the nucleon momentum carried by the strange sea to the fraction of the momen-

tum carried by the non-strange sea using data from experiments conducted at the
Fermi National Accelerator Laboratory. The data were obtained via deep inelastic

neutrino-nucleon scattering, which is depicted in Fig. |3.3| [83, 84]. Based on these

data, the collaboration measured the ratio kg,

o Jowls(e. @) +5(x, Q)]da
Ty alar, @) + d(x, Q2))da”

(3.20)

and found k, = 0.42 + 0.07(stat) + 0.06(sys) at Q?*=16 GeV? [86]. This result
reflects the existence of the strange quark in the nucleon’s sea. However, it is
difficult to relate this result to the static properties of the nucleon [85].

Similar several experiments have been conducted, e.g., (CDHS| [87],
[Chicago-Fermilab-Rochester] (CCFR]) [88, 89], CHARMII [90], NOMAD [91], [92]
[93-96] and CHORUS [97,, O8] collaborations, and reported relatively small
values of k, compared with a recent measured value of k, = 1.1373% at = 0.023
and Q* = 1.9 GeV? [99)].

Beside the previous ratio kg, there is another relevant quantity,

_y wls(@, Q) +5(@, Q%)da
Jo alu(@, Q2) + d(z, Q2)]dz’

s (3.21)

which describes the momentum fraction ratio of the strange quark to the total non-

strange quark content, and its values range from 5% to 10%.
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Vi

N

Figure 3.3: Neutrino-nucleon charged current deep inelastic scattering. The neutri-
nos v, interact with strange quark s to produce a negative muon p~ and a charm
quark ¢, and the ¢ quark subsequently decay to produce a positive muon p*, yielding
dimuon pairs (utp~) [85).

3.4 Strange Vector Matrix Elements

The strange quark contribution to the nucleon [EM] form factors is encoded in
the strange vector matrix element (N[57*s|N).

In 1988, Kaplan and Manohar [I] proposed that the strange electric and magnetic
form factors contributions, G, and G, respectively, can be accessed by measure-
ments of the neutral weak current matrix elements in neutrino-nucleon scattering.
Shortly after, in 1989, McKeown [2] and Beck [3] suggested an experimental study
to measure the weak neutral current of the proton using parity-violating electron
scattering in order to determine the strange quark contribution to the vector matrix
elements. This method generated significant interest within the community and
was followed by more than two decades of experimental investigations. This thesis
is devoted to such a method to study the strange quark contribution to the proton’s
form factors.

The theoretical predictions of the strangeness form factors will be reviewed in
Chapter The parity-violating electron scattering method and the main experi-
mental programs that consider this method will be presented in Chapter
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Chapter 4

Theoretical Prediction of GSE and
GS
M

As discussed in the previous chapter, the calculation of the static properties
of the nucleon in is a challenging task. This can be attributed to the fact
that the strong coupling constant, ay, is large at low energies. This means that
using a perturbative expansion is not possible to to characterise the interaction in
power series of ;. Because of the difficulty of directly calculating the strange quark
contribution to the properties of the nucleon, one needs to consider other approaches
in which controlled rough estimations can be achieved.

There are two quantities that are frequently considered to describe the behaviour
of electric and magnetic strange quark form factors, G%(Q?) and G%,(Q?), respec-
tively, at zero momentum transfer (Q* = 0); the strange charge mean square radius
<T§> » and the strange magnetic moment 5 = G5;(Q? = 0). The electromagnetic
form factor provides information about the spatial distribution of the charge and
magnetisation within the nucleon, and this distribution helps us to learn the spatial
dimension of the hadrons.

The strange quark contribution to the electric form factor at zero Q? is con-
strained to be zero as there is no net strangeness in the nucleon. Most models
are devoted to investigate the contribution to the strange magnetic moment and the
strangeness radius. Furthermore, the Q*-dependence of the strange form factors
has been examined by several theoretical methods.

A survey of the most popular theoretical studies is presented below. For easy
comparison, different theoretical predictions of us and <r§> p are summarised in
Table at the end of this chapter.
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4.1 Theoretical Prediction of G, and Gj;

According to Steven Weinberg [100], the Goldstone bosondl] are weakly interact-
ing fields, and the loop effects are suppressed by inverse powers of the chiral symme-
try breaking scale A, ~ 1 GeV associated with the power series in momentum p that
fulfils p < A,. A, = 47 f:, where f. is the pion decay constant. Consequently, at
low energy, the effective interaction between the Goldstone bosons can be described
perturbatively. This technique was developed by Gasser and Leutwyler [42] [10T]
leading to [ChPT]

Extension of the meson sector effective calculation to include the nucleon is
associated with a difficulty. The nucleon mass My does not vanish in the chiral limit
and its value is very similar to the chiral symmetry breaking scale A,. This means
that the nucleon mass destroys the idea of a perturbative scheme because higher-
derivative terms which involve the nucleon field are not suppressed, i.e, My /A, ~ 1.
To deal with this difficulty, Jenkins and Manohar introduced a formalism in which
the nucleon is treated as a heavy static fermion so that the My dependence can
be absorbed into a series of interaction vertices (moving the My dependence from

the propagator to the vertices) with increasing power of the inverse nucleon mass

[T02]. This formalism provided the so-called heavy baryon chiral perturbation theory|

(BCLPT).

In this section, various theoretical approaches to describe the strangeness of the

nucleon are highlighted. The survey below is by no means complete, but it provides
the most critical and widespread of several physical pictures and their results. The
reader can refer to [85] [103], [[04] for general reviews on the theoretical predictions

for the nucleon’s strange vector form factors.

4.1.1 Heavy Baryon Chiral Perturbation Theory (BChPT)

Extension of the from SU(2) to SU(3) needs to be considered to cal-
culate the strange quark contributions. Introducing K loops leads to additional
phenomenological counterterms.

A number of these counterterms are fit to the experimentally measured baryon
octet magnetic moments. However, two flavour-singlet channel counterterms are still

unknown. These two counterterms are related to the strangeness magnetic moment
and radius. Therefore, the is not able to determine the strangeness content

!Goldstone bosons are massless and spinless particles associated with the models that exhibit
spontaneous symmetry breaking of global symmetries in quantum field theory. They are occasion-
ally called Nambu-Goldstone bosons.
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of the nucleon [103].

Hammer et al. analysed the Q?-dependence of G%, up to fourth order in the
chiral expansion O(p*) and argued that there is a significant cancellation between
loop contributions from O(p?) and O(p*), which means that the Q? slope of the G,
displays an enhanced sensitivity to an unknown O(p*) counterterm [105]. Therefore,
with this issue, one needs to request additional model-dependent assumptions to
estimate the size of the chiral counterterms in order to present predictions for the

strange vector form factors of the nucleon.

4.1.2 Vector Meson Dominance (VMD))

The|vector meson dominance| ((VMD]) model was proposed before the introduction
of to describe photon-hadron interactions [106-108]. In the model, the

photon can fluctuate into an intermediate vector meson, which finally interacts with

the hadron. This interaction is schematically illustrated by the Feynman diagram
in Fig. 4.1 Explicitly, the matrix element of the electromagnetic current between
any hadronic states |A) and |B) at a squared four-momentum transfer, ¢, in the
vector meson resonances region can be written as a summation over intermediate
vector states V' as [67]

(BUIENA) = 3 g s (BIV,A), (4.)

where my and I'y are the mass and the decay width of the vector meson V. fi, =
m?, /gy is the vector-meson-photon coupling constant, where gy is a constant related
to the physical vector meson mass. (B|V,|A) reflects the strength for the coupling
of the meson V' to the state |A) as it experiences a transition to the state |B).

The electromagnetic current defined in Eq. , for the three lightest quarks
(u, d and s), can be written as a sum of the electromagnetic current of the three

lightest vector mesons (p, w and ¢) as

JEM _ LJ(P) + LJ(W) —

1
= —J@ 4.2
u NG 3,2 " 378 (42)
where JF(LVZP “9) are the vector meson V electromagnetic currents.

fv in Eq. (4.1) describes how much the physical state of the vector meson overlaps

with the quark-antiquark pairs created by the electromagnetic current operator when
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B

A

Figure 4.1: The illustrative Feynman diagram of the vector meson dominance model.
v* is a space-like photon (¢? < 0) fluctuating into an intermediate vector meson V.
A and B are the initial and final states of the hadron, respectively.

applied to the vacuum state |0) [67]:

1
(el 1710) = =5 (el Ji10) = focin

1
(w]J,7M0) = ﬁw,s@\m — fulnr (4.3)
(G1TE10) = —5 (61210) = ~focs

where €, are polarisation vectors of the vector meson .

From the quark composition of the vector mesons, one notes that p is an isovector
meson, whereas w and ¢ are isoscalars. The isoscalar (I = 0) and isovector (I = 1)
nucleon form factors written in terms of the combinations of the Dirac F!"" and

Pauli FY" form factors of the proton and neutron are consideredﬂ

_ F&(qz) + Fﬁz((ﬁ)
2 )
_ F£2(q2) - FﬁQ(QQ)
5 .

ay
F(e) = (45)

27
1% v—4a

Instead of considering the protons and neutrons, it is common to use their isospin symmetry
properties (see Appendix |Al).
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where a) = fy g/ "V

; is the pole residual. ¢"""V denotes the coupling of the meson

V to the nucleon. Fj(¢?) is the approximated form of the dispersion relation:ﬂ

R = RO+ L [ 2 (16)

™

with the spectral functions Sm F;(t) written as

Sm F(t) =7 _ald(t—m}). (4.7)

The lower limit of integration, ¢y, is provided by the threshold of the lightest pos-
sible intermediate state that contributes to the form factors. The lightest possible
hadronic intermediate state in the case of the isoscalar form factor is a system of
three pions (rather than two in the case of the isovector form factor ) as long as
the small isospin breaking effect is neglected [67]. Hence, tq is 9m?2 and 4m? for the
isoscalar and isovector form factors, respectively.

Within the framework of the vector meson dominance model, Hohler et al. [109]
have done a global fit of the electron-nucleon elastic cross section. They performed
a three-pole fit to both the isovector and isoscalar form factors. They fixed the
second isoscalar pole at ¢ mass and used the third pole to reflect the contributions
from higher resonances. In that analysis, Hohler et al. obtained a large value for
¢N N coupling, and this value suggests a large strangeness content of the nucleon.
This result violates the OZI rule of the disconnected quark lines [110]E|. Hohler et
al. result was supported by Jaffe who concluded that pus = —0.31 & 0.09 py and
(r®Yp ~ 0.14 4 0.09 fm? [I11]. Jaffe indicated that these results are sensitive to the
value of the small mixing angle, €, between w and ¢.

Forkel [112] updated Jaffe’s minimal 3-pole ansatz and then extended the pole
approximation to implement the asymptotic QCD momentum dependence and found
that the size of the 3-pole results reduced by about a factor of 2.5.

Although the results from different studies are consistent with each other,

the model-dependence in such studies should be taken into account.

3The subtracted form is used here instead of the unsubtracted one (see Appendix . The
dispersion relations approach will be revisited in Section

4The OZI rule states that the contribution of the disconnected quark lines is suppressed. The
large value of /N N indicates that the OZI rule is violated where the ¢ meson is made of ss, which
is disconnected from the v and d quarks in the nucleon.
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4.1.3 Kaon Loop

A different model to predict the nucleon’s strangeness form factors will be briefly
highlighted in this subsection. This model does not require consistency of chiral
expansion and includes a kaon loop contribution [104], T13-116]. Such an approach
is called kaon loop model in which the proton can fluctuate into a K (the lightest
strange meson) and a hyperon A, then the s5 quarks annihilate leaving the original
proton. The strangeness of the proton is characterised by the KTA? intermediate
state, which interact with either photon or Z bosons. This process is depicted in
Fig. [4.2]

The authors of [T13] and [TI17] performed a one-loop calculation using a monopole
form for the meson-nucleon form factor and a dipole form, respectively. Indeed, such
calculations are sensitive to the form factor and the value of the cutoff parameter A.
Furthermore, introducing such form factors leads to the inclusion of seagull diagrams
(contact terms at the hadronic vertices, lower two diagrams in Fig. in order to
satisfy the Ward-Takahashi identity as required by gauge invariance. The choice of
these contact terms is not unique and, as noted in [113] results in a ~ 30% difference
in 1, and (r?)p in two different procedures of deducing these seagull contact terms.

The strange magnetic moment and radius obtained from the one-loop calculation
performed in [I13] are p, = —0.31 + 0.05 uy and (r?)p = —0.03 + 0.003 fm?
where the uncertainties represent the variation of the cutoff parameter A within the
range estimated from fits to baryon-baryon scattering, 1.2 < Ao, < 1.4 GeV. The
authors of [I13] argued that one-loop calculations that consider only the lightest
pseudoscalar mesons are not able to characterise the nucleon form factors at low-
energy regions.

In [I18], Malheiro and Melnitchouk mentioned that the impulse approximation,
in which the hadronic Fock space is truncated at the one-meson level and contribu-
tions arising from many-body currents are neglected, used in the kaon loop calcu-
lation leads to a violation of Lorentz covariance. They evaluated the contribution
stemming from this concerning violation. Once this contribution was subtracted,
they obtained a small and positive value of the strange magnetic moment, ps = 0.01
HMN -

Geiger and Isgur performed a non-relativistic quark model calculation to consider
the contribution arising from a complete set of OZI-allowed strong Y*K™* hadronic
loops [115], where Y*(K*) is the excited intermediate baryon (meson). They accom-
plished the calculation within an unquenched quark model and obtained a small and
positive value of the strange magnetic moment with ps = 0.035 pux, and a negative

value of (r?)p with ~ —0.04 fm?. MeiBner et al. performed calculations in which
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----------

Figure 4.2: Feynman diagrams for kaon loop contribution with + coupling to either
the kaon K or the hyperon A. The lower two diagrams (seagull diagrams) are
included to fulfil the Ward-Takahashi identity as required by gauge invariance.

the OZI-allowed ¢ meson coupling to the nucleon with inclusion of K* loops and hy-
peron excitations has been investigated within a meson-exchange model [I19]. They
found positive values for both (r?)p and p,.

Forkel et al. [120] analysed the dependence of the strange-quark content on the
NY K* form factors in the loop model calculations. They stated that the contri-
butions from the lightest K'Y intermediate states were adequate for approximate
estimates of the nucleon’s vector strangeness content in one-loop models. However,
they also pointed out that the contributions from K* remain non-negligible in the
large momentum transfer regions.

As a result of these difficulties, one can say that kaon loop calculations are not

able to make a conclusive statement about the sign of the (r?)g and pu.

4.1.4 Constituent Quark Model

In [1], Kaplan and Manohar proposed that a constituent quark is comprised of a
current (QCD)| quark that is surrounded by a complicated cloud of virtual gluons and
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qq pairs. Accordingly, it is possible that the constituent U and D quarks inside the
nucleon have a strangeness contribution. Kaplan and Manohar stressed that this
picture of constituent quarks does not contradict the quark model. In particular,
this proposed model does not destroy some of the successful predictions of the quark
model, such as the value for the baryon magnetic moments.

In this model, constituent quarks’ nontrivial structure is governed by sponta-
neously broken chiral symmetry induced by the flavour-mixing ’t Hooft interaction.
This is the so-called chiral quark model.

There are several different methods that one can use to study the strange quark
effects within the framework of the constituent quarks model. One of these method
utilises the so-called [Nambu and Jona-Lasinio model| (NJL)) [121, 122]]

The generalisation of the model to Ny > 3 including U(1)4 symmetry
breaking by a 2Nj-quark interaction has been introduced in [I123]. Within the

Hartree-Fock approximation, this term entirely generates flavour mixing which is
responsible for the strange quark effects in the constituent U and D quarks [123].

Forkel et al. performed an estimation of the strangeness radius of the nucleon
within the framework of the constituent quark model and obtained a positive and
small value of (r?)g = 0.0169 fm? [124].

Within the model, the authors of [125] used Yabu-Ando approach [120] to
incorporating strange degrees of freedom into the soliton picture. They provided
limits for the strange magnetic moment with —0.05 pny < pus < 0.25 pn and for the
strange electric radius with —0.25 fm* < (r2)p < —0.15 fm* [125].

In [127], the magnitude of the u, and G4,(Q?) for @* < 1.0 GeV? have been
estimated using an extended chiral constituent quark model that studies the contri-
butions stemming from all possible five-quark Fock components to ;. The authors’
method was inspired by an idea that was proposed by Zou and Riska [128], in which
the strangeness magnetic moment of the proton can be described by including five-
quark Fock states in the proton. The authors of [127] included the contribution from
the nondiagonal matrix elements of the transition between the strangeness and the
three-quark components of the proton (uud|us|uudss) and found that the value of
(s is small and negative.

One should concern about the associated shortcomings with the chiral quark
model, in particular, the problem of double counting. This means that there is an
ambiguity since the pseudoscalar QQ bound state and the octet of light pseudoscalar
Goldstone are introduced in the chiral quark effective theory [103].

5Yoichiro Nambu was granted one half of the Nobel Prize in Physics in 2008 for his discovery of
the mechanism of spontaneous broken symmetry in subatomic physics. The other half awarded to
Makoto Kobayashi and Toshihide Maskawa for their discovery of the origin of the broken symmetry.

35



Chapter 4. Theoretical Prediction of G, and G5,

4.1.5 Skyrme and Soliton Models

Well before the advent of and chiral symmetry, Skyrme assumed that the
baryons are solitons in a mesonic field theory. The Skyrme soliton is a topological
soliton constructed based on the effective Lagrangian of the chiral non-linear sigma
modell| [129, [130].

The Skyrme model considers a 2x 2 unitary field. When considering the strangeness
content in the nucleon, one needs to extend the Skyrme model to SU(3).

According to [131], several calculations based on the SU(3) Skyrme model con-
tain ambiguities. SU(3) flavour symmetry breaking needs to be carefully taken into
the account. For flavour symmetry breaking, the authors of [I31] introduced non-
minimal derivative terms in the Lagrangian. From that calculation, the strange mag-
netic moment and strange charge radius are shown to be negative with us = —0.13
pn and (r?)p = —0.11 fm?, respectively. A calculation within the chiral soliton-
quark model was done in [I32] [133] and the results were a positive strange magnetic
moment and a negative strangeness radius. These studies supported a previous
analysis [I34], which reported a positive strange magnetic moment of s = 0.37 uy
based on SU(3) group structure of the chiral models’ calculations.

In the Skyrme model, the strangeness current is obtained from the difference
between the baryon number and hypercharge currents, and any calculation of strange
matrix elements depends on the small difference between two large but uncertain

quantities is therefore unreliable [124].

4.1.6 Dispersion Relations

Dispersion relations are a nonperturbative method to study the strangeness of
nucleon based on general grounds. The dispersion theory, in general, relies on some
basic principles of physics: relativistic covariance, causality and unitarity [I35] (see
Appendix .

The Dirac and Pauli form factors, F}2(¢?) (see Eq. , measured in electron
scattering, are considered as functions of the variable z = ¢2, and are linked to the
region of spacelike momentum transfer, Q> = —¢*> > 0. From causality, the complex
functions F} »(z) maintain specific analytic properties that allow for a continuation
into the complex z = ¢? plane, as depicted in Fig. and lead to the dispersion

relations linking the imaginary and real parts of these form factors, i.e., Cauchy’s

SCurrently, in fact, the Skyrme model can be considered as a low-energy effective theory for
QCD in the large number of the colours, N, limit.
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theorem. Using Cauchy’s integral formula allows one to explicitly write

2 [ Sm Fla(t
Fi2(q*) = F12(0) + %/ dtt#()

) T—g—ic) (4.8)

where t is given by the lightest hadronic intermediate state contributing to the form
factors. The physical bound of Fj»(0) can be employed. The imaginary parts are
treated as spectral functions, i.e., Eq. .

The general dispersion relation is related to all possible on-shell intermediate
states. For the strangeness form factors, some of the allowed intermediate states
(continuum) contributions are purely mesonic 3, 5, 77, KK, ...and purely bary-
onic NN, AA. ... One can also take into account the states that contain both mesons
and baryons, such as NN77.

The on-shell continuation from K K is the most relevant to the dispersion relation
in a study of nucleon strangeness, since it forms the lightest intermediate state
comprising valence s and s quarks. In this regard, the authors of [136] performed the
first calculations. The spectral functions were related to the partial waves and the
kaon strangeness form factor [136]. Musolf et al. [I36] showed that, when considering

the kaon’s strange form factor to be point-like, F' ()

= —1, the Born approximation of
KK — NN amplitude is similar to those resulting from one-loop kaon calculations
with a significant violation of unitarity in the physical region. Therefore, they
suggested that rescattering corrections are required by unitarity.

In [137HI39], the authors improved this analysis. They fixed the J = 1 partial
wave amplitudes in the physical region at their unitarity bounds. They observed that
the time-like F7}- is dominated by the ¢ resonance. In their analysis, the strangeness
magnetic moment and strangeness radius were found to be py; = —0.42 puy and
(r?)p = —0.07 fm?, respectively.

The work presented in [I40] discussed the importance of the contribution arising
from multi-meson intermediate states that do not contain valence s or S-quarks.
Although the contribution from these states violates the naive interpretation of the
OZI-rule, the authors found the that magnitude of this contribution was similar to

that of the lightest OZI-allowed intermediate state, the KK continuum.

4.1.7 Lattice Quantum Chromodynamics (LQCD)

The theoretical approaches discussed in the previous sections are not able to
render a complete physical understanding of the nucleon’s strangeness content.
[Lattice quantum chromodynamics| (LQCD)), first proposed by Wilsor{'|in 1974 [141],

"Wilson was awarded the 1982 Nobel Prize in Physics for his work on phase transitions.
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Figure 4.3: Analytic structure for the form factors of the nucleon in the complex
z = ¢* plane.

is a nonperturbative approach to solving numerically the [QCD] is a gauge

theory formulated on a discrete Euclidean space-time grid (or lattice), and it has suc-
cessfully described many properties of hadrons. In this section, a general overview
of the approach will be provided.

LQCD is a nonperturbative implementation of field theory based on the Feynman
path integral formalism.

Within the framework of lattice [QCD], the chiral extrapolation plays a significant
role. Lattice calculations are often performed at larger-than-physical quark masses.
For a quenched lattice theory, where vacuum polarisation loops are neglected, the
relevant theory requires to be modified to the quenched chiral perturbation the-
ory [142].

The contributions of the strange quark to the electromagnetic form factors of the
nucleon in lattice can be derived from a three-point Green’s function. Both
Feynman diagrams of connected and disconnected operator insertions, illustrated in
Fig. [3.2] contribute to the nucleon three-point function. The disconnected operator
insertions are very computationally expensive compared to the connected insertions.

The first quenched lattice calculation of the strangeness magnetic moment of the
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nucleon and strangeness Sachs electric mean-square radiuﬁ was performed in [143],
and the results of that work are g, = —0.36 +0.20 uy, (r?)g = —0.061 £ 0.003 fm?
and (rf)p = —0.16 & 0.06 fm? with a monopole mass from G35;(¢*). An updated
calculation [I44] shifted the value of the strange magnetic moment to be us =
—0.28 £0.10 py.

Within the study of the disconnected sea-quark contribution to nucleon magnetic
moments, Leinweber derived a set of equalities for octet baryons under the
assumption of charge symmetry [145].

A calculation within this framework was performed in [I46] and the value of
s = —0.16 + 0.18 uxn was obtained with the ratio of s and d disconnected quark
loops 'R% = 0.55. A similar procedure was completed in [I47] and the value of
s = —0.046 + 0.019 puy was obtained with the ratio ‘RS = 0.139 & 0.042, where a
correction from the quenched to full was considered.

A recent evaluation, where the full was employed (vacuum polarisation
loops were taken into account, but the disconnected current was not computed
directly), has described the Q2-dependence of 'R, where an estimation of RS from
effective field theory with finite-range regularisation was accomplished [148]. In
that work, experimental numbers for the electromagnetic factors were combined
with lattice results for the connected light quark contributions, leading to an
estimate of the s quark contribution. In [I4§], Shanahan et al. concluded that the
strange magnetic moment is small and negative, u;, = —0.07 £ 0.03 py, whereas
they were not able to make a conclusive statement about the sign of (r?)g.

In [I49], Green et al. argued the procedure that was followed in [I48] depended
on a sensitive cancellation between large quantities, and consequently is limited in
its statistical precision and somewhat responsive to systematic errors in the lat-
tice calculations. They made a direct lattice QCD calculation of the strange nu-
cleon electromagnetic form factors in a specific range of Q? and performed model-
independent fits of the form factors using a z-expansion. The authors found that
s = —0.02240.0044-0.0044-0.006 1y and (r?) g = —0.006740.00104-0.0017+0.0015
fm? (non zero signal for the first time), where the first two uncertainties are statisti-
cal and systematic and the third uncertainty is due to extrapolation to the physical
point. A previous direct calculation found that the strange magnetic moment is
consistent with zero, p, = —0.017 4+ 0.025 + 0.007 py (the first error is statistical
and the second error indicates the uncertainties in Q% and chiral extrapolations),
where Ny = 2 4 1 clover fermion lattice QCD calculations have been presented

with heavier pion masses [I50]. Recently, a direct estimation of the strange elec-

8Sachs and Dirac charge radii will be revisited in more detail in the next chapter.
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tromagnetic form factors including, for the first time, the physical pion mass was
presented in [I51], where a model-independent z-expansion to extract the strange
magnetic moment and strange charge radius from the electromagnetic form factors
in a specific kinematic range of momentum transfer Q% was performed. From that
calculation, the strange magnetic moment and strange charge radius are shown to
be nonzero with p, = —0.064 £ 0.017 pux and (r?)g = —0.0043 + 0.0021 fm?, where
the uncertainties show the combined statistical and systematic uncertainties added

in quadrature [I51].

4.2 Summary and Discussion

The above theoretical review emphasises that predictions of the strange mag-
netic moment u, widely vary. Most of the theoretical frameworks lead to negative
values, while a few give positive values. A similar situation has been encountered
for the strangeness electric mean-square radius (r?) . Various models conclude with
positive outcomes, while the others end with negative predictions. Moreover, this
survey shows that significant theoretical uncertainties are associated with the theo-
retical approaches. For reader convenience, Table presents a summary of various
theoretical predictions of p, and (r?)g.

Thus far, it is possible to state that the theoretical approaches render ambiguous
estimations. Treatments within the effective theory framework such as [BChPT] to
predict the strangeness of the nucleon are associated with difficulties related to the
unknown low-energy constant (counterterms). Phenomenological models that use
dispersion relation involving [VMD] utilising pole approaches in the unphysical region
suffer from the insufficiency of the high precision data for the time-like electromag-
netic form factors. Lattice is a first-principles approach to[QCD] and therefore
it can provide model-independent predictions. However, most of the early lattice
studies are based on the quenched approximation and they only considered the
calculation of the connected diagram contribution. Very recently, there have been
several extensive direct calculations of nucleon strangeness that involve calculations

of the disconnected diagram, which is extremely expensive to be computed.
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Section 4.2. Summary and Discussion

Table 4.1: Theoretical predictions of strangeness magnetic moment p, in units of
the nuclear magneton py and the strangeness electric mean-square radius <r§> g in

fm2.

Theoretical Model fs| ] (r?) [fm?] Ref.

Vector Meson Dominance (VMD) -0.314+0.09 0.14+0.09 [111]
Simple Kaon Loop -0.31£0.05 -0.03+0.003  [113]

Kaon Loop including excited hadronic states 0.035 -0.04 [115]
NJL soliton 0.05-40.25  -0.25—-0.15  [125]

Extended Chiral Constituent Quark Model | -0.067+0.004 - [127]
SU(3) Skyrme (broken symmetry) -0.13 -0.11 [131]
SU(3) Skyrme (broken symmetry) 0.37 - [134]
Dispersion -0.42 -0.07 [139]

Lattice (first quenched calculation) -0.36+0.20  -0.061—-0.16  [143]
Lattice -0.064+0.017 -0.00434+0.0021  [I51]
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Chapter 5

Parity-Violating (PV) Elastic

Electron—Nucleon Scattering

It is known that, in addition to the purely [electromagnetic| (EM]) interaction that

conserves parity, the electron also interacts via the weak interaction that violates
parity. Despite the fact that the weak interaction is several orders of magnitude
smaller than the electromagnetic interaction, the weak interaction can play a critical
role when analysing a part of nucleon structure that cannot be investigated through
studies that only consider the interaction.

Nucleon structure can be described in terms of the valence quarks and the sea
quarks that are held together by the strong force carried by gluons. The strange
quark contribution to the nucleon [EM] form factor is then a pure sea quark effect.

In 1988, Kaplan and Manohar [I] proposed that the strange electric and mag-
netic form factors contributions, GG, and G, respectively, can be estimated through
the measurements of the weak neutral current matrix elements in neutrino-nucleon
scattering. Shortly after, in 1989, McKeown [2] and Beck [3] suggested an exper-
imental probe that used parity-violating electron scattering to measure the weak
neutral current of the proton in order to acquire information relevant to the strange
quark vector matrix elements. This method for the study of these matrix elements
generated significant interest among the community and was followed by more than
two decades of experimental investigations.

The asymmetry Apy is defined as the difference divided by the sum of the
cross sections for the scattering of circularly polarised positive and negative helicity

electrons on an unpolarised target:

0y —O0_

_— 5.1
e T o (5.1)

Apy =
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Chapter 5. Parity-Violating (PV) Elastic Electron—Nucleon Scattering

The processes of lowest order contributions to electron-nucleon scattering, plane-
wave Born approximation (tree level) with a single-boson (v or ZY) exchange,
are depicted in Fig. |5.1] The electromagnetic interaction (vy-exchanged) is parity-
conserving, while the weak interaction (Z%exchanged) contains vector and axial-
vector components having opposite behaviour under a parity transformation and is
the origin of the parity-violating, non-zero value of the Apy. In this scattering, the
incident electron with four-momentum k = (E, E) is scattered from a target nucleon
at rest in the lab frame with four-momentum p = (My,0) through scattering an-
gle 6 to an outgoing electron with four-momentum &' = (E, K ) exchanging Z° or
photon. After the scattering process, the nucleon is described with four-momentum
P = (En,p). The momentum transfer in the scattering process, the energy and
momentum lost by the electron, is given by @) = (w,q), where w = E — E’ and
q = k — K. In this scattering event, the electron is treated in the extreme rela-
tivistic limit, m, = 0. The invariant squared four-momentum transfer Q? of the

scattering is defined as Q? = w? — @ = —¢* > 0. For elastic electron scattering,

Q* = 4EFE'sin*(0/2).
The total invariant amplitude of elastic electron-nucleon scattering is the sum
of the electromagnetic M” and neutral weak current M? amplitudes. The cross

section ¢ is proportional to M? and M?%:
oa M+ M2 (5.2)

This relation will be revisited in a subsequent section and discussed in more detail.

For two decades, great efforts have been dedicated to the measurement of the
parity-violating asymmetry to study the strangeness content contributions to the
nucleon [EM] form factors.

This chapter will discuss the relevant formalism to the description of [PV] asym-
metry for elastic electron-proton scattering, elastic electron-helium-4 scattering and
quasielastic electron-deuteron scattering. Higher-order electroweak corrections will
be highlighted and considered in the analysis of this work. In the present work, the
axial-vector form factors are managed as implicitly containing higher-order radiative
corrections and hadronic anapole contributions, and the total of these contributions
will be evaluated from the analysis of the considered data set. The last section of this
chapter will briefly highlights the experimental programs that discuss [PV] electron
scattering from the proton, helium-4 or deuteron with varying kinematic conditions
and measured Apy. The set of all available [PV] electron scattering data from the
proton, helium-4 or deuteron, up to the currently available limit of Q* ~ 1GeV?,

that are considered in this work will be presented at the end of this chapter.
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¢ N € N

Figure 5.1: Lowest order amplitudes contributing to electron-nucleon scattering.
Leading order electromagnetic (y-exchanged) and neutral (Z°%-exchanged) current
amplitudes.

5.1 Nucleon Form Factors

From the fundamental coupling of an elementary fermion to the photon or to the
7Y, one can write the general form of electromagnetic and weak invariant amplitudes
as [10]

Ao
MY = _qTQfl#JZ’
AT 1

zZ _ _ flu flu5 Z Z .
M M% . q2 (4S1H¢9W COoS HW)Q (gV + ga )(Jy + J,u5)7 (5 3)

where @ = €2 /(4r) is the fine structure constant, and [* and [#5 are leptonic vector
and axial vector currents, respectively. In the case of electron scattering, these

currents are Dirac currents and they can be defined as

"= @ﬂuwm
" =P A"y Y. (5.4)

J# and J*5 are hadronic vector and axial vector currents, respectively, and they are

related to the hadronic matrix elements of the electromagnetic, vector and axial-
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vector quark current operators as
J) = (N|JJ|N); with J) = Z Qe 1" q,
q
J7 = (N|JZIN); with J7 =" glv,7" v,
q

Jfs = (N|JZIN); with J7% =~ g%¢, 7" . (5.5)
q

Q) is the electromagnetic charge of the fermion, f, and g{; and gfl are the vector and
axial-vector weak couplings defined in Chapter [2] and given explicitly in Table

The ¢?-dependence in M?, which stems from the Z° boson propagator, can
be safely neglected since |¢?| < M3 for the kinematics considered in this work.
Therefore, the weak interaction is commonly considered as a contact interaction
that has a strength characterised by the Fermi constant measured in muon decay

Gr [10]. This constant can be expressed as

- (Yo’
\/§MI%V sin2 QW ’

Gr (5.6)

where 6y, is the weak mixing angle and My, is the mass of the W boson. This
definition, along with the weak mixing angle defined in Eq. (2.20]), which implies
that cos® Oy = M3, /M2, yields

G
MZ = —2—\%(;;51” + ghl)(J7 + TE). (5.7)

The [PVl term of M?Z is

Gr
MGy, = —Q—ﬂ(g{;l“a]é + 9£lu5jf)- (5.8)
Back to the hadronic matrix elements in Eq. (5.5)), from Lorentz invariance, the
matrix element for the electromagnetic interaction can be written as [67]
/ ¥ T LY (N2 iUMVQV Y ()2
(NETLIN () = UW) |7 Q) + —7 7~ 12(Q7) | Up), (5.9)
where U(p') and U(p) are the nucleon spinors for the final and initial momenta p’
and p respectively, and o# = %['y“, 7"]. The form factors F} and F; are the Dirac

and Pauli form factors, respectively. These form factors are normalised at limit
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Q% =0 as

15 (0) =k, (5.10)

where @)y is the electric charge of the nucleon and &y is the anomalous magnetic mo-

ment of the nucleon in units of the [nuclear magneton| (x]). Similarly, the hadronic

matrix element for the neutral weak vector current can be expressed as

ot q,
2M

(NWOITLIN(p)) = U [V FE(Q%) + F5(Q%)|U(p). (5.11)

5.1.1 Sachs Form Factors

Linear combinations of Dirac and Pauli form factors, F} and F,, are commonly
used. These combinations are known as Sachs form factors and may be defined
as [152]

Q° 2
F.
4M12\7 2(Q )7

G = FI(QY) + F(QY), (5.12)

Gy = Fi(Q*) —

where GY and GY; are the electric and magnetic form factors of the nucleon, respec-
tively.

A characteristic of the Sachs form factors is that, in the center of mass frame
(Breit frame), they are the Fourier transforms of the nucleon magnetic moment and

charge distributions [I52]. As an illustration, expanding G& (Q?) at small Q%

\)

/ei‘ﬁp(r) d3r:/(1—icj’-F—l(cj’-f)2+...)p(r) d*r
:QN—lqz/ r? p(r) dr +...

6
=Qn — %(f(r?) +.o (5.13)
Then,
GE(Q*) =Qn — %Q%?) +... (5.14)

In general, therefore, the Sachs charge radius can be defined as

dG(Q?)

0 (5.15)

%) = =6

Q?=0
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In the Breit frame, for elastic electron scattering, the incoming electron has momen-
tum k = +4/2 and scatters from a nucleon which has momentum equal in magnitude
but opposite in sign, p = —¢/2. The recoiled electron has momentum K= —q/2
and the nucleon scatters with momentum p' = +¢7/2 [67]. The dependence of the
Sachs form factors on (Q? leads to a variation of the Breit frame with Q2.

The physical interpretation of the Sachs form factors of the nucleon is that
the Fourier transforms of these form factors give the static charge and magnetisation
densities for the nucleon in the Breit frame. However, the momenta of the initial
and final nucleons are differ, i.e., the final wave function is boosted from the initial

state nucleon wave function. This means that a relativistic treatment is required.

5.1.2 Flavour Decomposition

The quark current operators defined in Eq. (5.5]) allow one to express the hadronic

matrix elements in terms of the quark flavour decomposition as

V@ING) Z@q[ @)+ G FQ) U,
(V@I ) = ng[“ﬂq )+ PR @Ue), )

where F} and Fj are the Dirac and Pauli, respectively, for the quark flavour ¢. It
is worth mentioning that Fy and F are identical for the electromagnetic and weak

interactions since the charges have been factored out.

From Egs. (5.5), (5.9), (5.11) and ([5.16)), the Dirac, Pauli and axial form factors

of the nucleon can be written in terms of the quark flavour form factors as
N
Ff:Q = Z Qqqu,%
q
ZN
Fiy' = ZQ%qu,Q?

Gy = ZgAG“f (5.17)

Analogously, the electromagnetic and neutral weak Sachs form factors can be written
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Section 5.1. Nucleon Form Factors

as
EM = ZQqGEMa

EM = ZQ%G(IEM (5.18)

5.1.2.1 Flavour Decomposition of the Vector Form Factors

The contributions of the heavy quarks (¢, b and t) to the nucleon properties are
strongly suppressed. Therefore, from Eq. ([5.18]), the proton and neutron Sachs form

factors are reduced to

GYEI?M QuG% Mt Qdem + QsGx s
GYE?M = QuGzJ,T]L\/[ + QdeE,nM + Qs %,M? (5'19)

where (Q,.q4s are the electric charges of the respective quarks. Here, the strange
quark contribution to the proton and neutron electromagnetic form factors have

been treated on an equal footing. Likewise, the neutral weak Sachs form factors can
be defined as

u, d ~d, s /18
GE v =9wGEn + WwGEN + 9vGE M,

Goy = gv Gl + 90 GEhr + v G, (5.20)

where gﬁ’d’s are the vector charges of the considered quarks.
Under the assumption of charge symmetry, the individual quark contributions

to the proton and neutron form factors can be related to each other, i.e.,
b =Gyl =Gy and GY = G3hy = Gy (5.21)

This assumption allows for a further reduction of the number of the parameters
existing in the system of the four preceding equations. Therefore, one can simply

define the electromagnetic and neutral weak Sachs form factors for both nucleons as

Gpn = QuGa + QdeE,M + QsGE s
Gpv = QuGC]E,M + QaGp oy + QG s
GE v =9vGpn T+ Q{J/GC}E,M + v G s
GE,M = gl\deE,M + Q{J/G?j,M + v Grar- (5.22)
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This highlights the importance of the interference of electromagnetic and weak
interactions. Purely electromagnetic electron scattering deals with solely two linear
combinations of the form factors mentioned above, i.e., G3; and G3",. It is clear
that additional information is required in order to determine the strangeness form
factors G, 5, contribution. This information is given by parity violation in electron-
nucleon scattering which measures G?f M-

Rearranging G, G’y and G?f s in Eq. using the electric charges of
the quarks @, = 2/3, @y = —1/3 and Qs = —1/3 leads to an expression for the
proton’s neutral weak form factor in terms of the well-known electromagnetic form

factors of the proton and neutron [10]:

Gehy = (200 + g0 GE o + (gt + 200)GHy + (g8 + g% + 90) G
n n 0) ~vs
= g’éGE’fM + gVG’]ZE,M + 91(/) E.M: (5.23)

This equation contains only one significant unknown quantity, the strangeness form
factors G -

At tree level, the [SM] values of vector charges are
¢ =1—4sin?fy, gt = —1 and g\”) = —1. (5.24)
Thus, at tree level, the proton’s neutral weak form factor becomes
Gl = (1 —4sin 0w)GPy — Gy — G (5.25)

A similar procedure can be followed to express the neutron’s neutral weak form

factor as

Gihy = (1 —4sin®Ow)GLy — GF oy — G (5.26)

5.1.2.2 Flavour Decomposition of the Axial Form Factors

From Eq. (5.17)), one can define the neutral weak axial form factors of the proton

and neutron, with assuming charge symmetry, as

G7T = g4GY + 4G + ¢3,G5,
T = guGY + g4 GY + g5 G (5.27)

Usually, with using SU(3) symmetry, the quark axial-vector form factors are

written in terms of the isovector GS’), isoscalar Gf) and strange axial-vector G
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form factors as

Gy =ay - aa,
E I (e TReT B Te) 5.28
A (G4 + G4 - (5.28)

2v/3

Consequently, G5 becomes [10]

e 1 u 3 U 8 u S S
G = §(QA - gi)TSGix) +V3(g4% + gfx)Gix) + (94 + 94 + g0 G,

— 3 — 8 0 s
= 47 nGY + 106 4 Ve, (5.29)

where the Q?-dependence has been dropped for clarity, and 73 = +1(—1) for the
proton(neutron).

At tree level, the [SM] values of the axial-vector charges are
ght=-1, gi" =0and g{ =1, (5.30)

where, from the middle equality, the SU(3) octet form factor Gf) is absent at tree
level, but will emerge when radiative corrections are taken into account as will be
discussed later.

The Q*-dependence of GS) is parameterised with a dipole form G5 (Q?) [153), [154]

GV (@Q* =GP (0)GR(@?). (5.31)

The Q?-dependence of Gf) and G% are unknown. However, it is assumed to have

the same dipole form description. The dipole form GE(Q?) is defined as
1

—
Q2

(1+:)

The axial-vector dipole mass M 4 is usually extracted from charged-current quasielas-

GR(Q%) = (5.32)

tic neutrino-nucleus scattering.
At Q? = 0, the axial-vector form factors are normalised as the spin contributions

of the net nucleon spin, and they can be defined as

G'9(0) = Au— Ad,

1
GP(0) = ——(Au+ Ad — 2As),

a (0) 2\/3( u s)

5(0) = As, (5.33)
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where Agq is the net contribution of quark ¢ to the nucleon spin. GS’)(O) is well
known from f-decay. The SU(3) octet form factor Gf) (0) is estimated by combining
nucleon and hyperon [-decay assuming SU(3) flavour symmetry. As has been
indirectly determined from [deep inelastic scattering] (DIS)[154]. Other estimations of

this quantity have been undertaken through the quasielastic neutrino scattering [74],

lattice QCD [I55] and global fits of parity-violating elastic electron-proton scattering
data combined with v—p and T7—p scattering data [76), [77].

5.2 Parity Violation in Electron Scattering

As mentioned at the beginning of this chapter, the total invariant amplitude for

e—p elastic or quasielastic scattering is simply a sum of the scattering amplitudes

M7 and M?, as shown in Eq.
o= M+ MZ* = |IM7]> 4 2Re(MY MZ) + | M7 |2 (5.34)

The electromagnetic scattering amplitude M” is the dominant part of the total
amplitude. The weak neutral scattering amplitude M? interference with M7,
Re(M7" M?), is suppressed at low Q? by the Fermi constant Gr. Within the range
of low Q?, the pure weak neutral scattering amplitude can be safely neglected since
it is suppressed by G%. The interference term is most relevant for this study because
it causes parity violation, where the term is encoded in M?%, Eq. , i.e., the
sign of the axial-vector parts of the M? changes with the electron’s helicity.

Excluding the parity-conserving terms from M? leads to

A Q%Q(M’Y*Mgv)

(5.35)

where |M7]? is cancelled in the numerator and dominates in the denominator of

Eq. . Utilising Eqgs. , , and , one finds that the asym-

metry in polarised e-N scattering at tree level is given by [10]

—GpQ?
427

Agv = .(AE—l-AM—l-AA), (536)

with the electric Ag, magnetic Ay, and axial A4 components of the asymmetry

defined as
eGENGEN

(GE)? +7(GY)?

(5.37)

E =
€
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~ N ~Z,N
TG Gy

(GE™)? +7(GY)?

(5.38)

M=
€

and ) NaeN
4, - =0 = 4sin’ )G GY (5.39)
(G (@) |

where the Q2-dependence of the nucleon form factors has been omitted for clarity.

The kinematic variables, which depend on the four-momentum transfer Q> = —¢?

and the electron lab scattering angle 6, can be expressed as

Q2

F=—_ (5.40)
4M%

1
= 5.41
‘ 1+2(1+7)tan?¢ (5.41)

and

€ =T(1+7)(1—e), (5.42)

where My, € and € are the nucleon mass, the longitudinal polarisation of the virtual
photon and the scattered energy, respectively.

The values of the Standard Model parameters for the Fermi coupling Gp =
1.16638 x 1075 GeV 2, the fine structure constant o = 1/137.036 and the weak
mixing angle in the MS renormalisation scheme at Z boson’s mass sin” O = 0.23129
are taken from the PDG [15] and will be used in the present work.

The Apy defined in Eq. has been written as a function of the squared
momentum transfer and scattering angle, Apy(Q?, 6). The multiplicative factor,
—~GrQ?/(4v/2ra), which stems from the electromagnetic and neutral weak couplings

and propagators, gives an order of magnitude of 1075 — 10~%. This means that the

asymmetries are usually measured in [parts per million| (ppm)).
Since Apy depends on the kinematic conditions, Q? and 6, the measurements

are sensitive to the Ap and Aj; components at forward scattering angles (0 —

0; € — 1), while these measurements are sensitive to the Ay and A4 components at

backward scattering angles (0 — m;¢ — 0).

5.2.1 Strangeness Vector from Apy

Using Eq. (5.25) allows one to isolate the strangeness vector, A?, and the

asymmetry can be rewritten as

- 2
AP —[%Q(%+£+ﬁ% (5.43)

PV 42
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where A}, contains the proton’s vector form factor excluding strangeness, A? contains
the proton’s strangeness vector form factor and A’ contains the interference of
the proton’s magnetic vector and the axial-vector form factors. Explicitly, these

components are written as

D Yash e
GLPGY" + TGIPGY

Ay = (= dsin®0w) = = ey .
GGy + TG G
TGP (G o
and 29
= —€L = dsin® ) GRY G (5.46)

e(GE")? +7(Gi)?
Analogously, A%, can be obtained through the replacement of GJ¥,, and G by
Gy and GG, respectively. |

As mentioned previously, A%, depends on both Q? and 6. For fixed Q?, at a very
forward scattering angles limit (§ — 0;e¢ — 1) the axial A4 component disappears

(¢ — 0) and A%, can be reduced to

—GrQ?
O

GRGY" + TGIFGY
(GE")? +7(Gif)?
R TG}L’}’G%)
(GE"? + (G

AL, = (5.47)

<(1 — 4sin’Oy) —

At very backward scattering angles limit (§ — m;¢ — 0 and € — /7(1 + 7)) A%y,

becomes

—GrQ? .94 Gy G
by = ((1—4sin®Oy) — 2L — =M 4
i [4\/57@] (1= sin ) e (5.48)
VT F 7)(1 — 4sin? Oy ) G5
B TGF )

In a case where the squared momentum transfer Q? is small, nucleon structure
is suppressed and the parity-violating asymmetry is sensitive to the proton’s weak

charge. Therefore, A%, is significantly simplified as

—GpQ?
421 x

AD = (1 —4sin®0y). (5.49)
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The Qweax experiment has been conducted at the value of Q% = 0.025 GeV? to deter-
mine the weak charge of the proton, the world’s first determination of the proton’s
weak charge [4]. The level of precision required by this experiment necessitates the
inclusion of the electroweak radiative corrections.

These corrections, which generate from higher-order electroweak interactions,

are also required for precision strangeness determinations.

5.2.2 Electroweak Radiative Corrections to the Neutral Cur-

rent

Thus far, the tree-level contributions (one boson exchange, v or Z°) in e-N
scattering have been considered. However, the neutral weak vector and axial vector
form factors derived at this level require corrections due to higher order electroweak
processes to precisely extract contributions from G§ ), to Apy. These higher-order
corrections (radiative corrections) alter the weak vector and axial charges, gy and
ga, that appear, for example, in Eqgs. and and, consequently, in the
expression of Apy.

In the e-NN scattering event, the radiative corrections arise because of the ex-
change of two vector bosons (v, Z° and W) in the same scattering channel, for
example, 7Z box (O,z) diagram shown in Fig. u These corrections can be cat-
egorised into one-quark processes, which reflect scattering involving only a single
quark at a time, and many-quark processes, which involve electroweak interactions
between target quarks (anapole correction). The radiative corrections also stem
from ignoring the heavy quark (¢, b and t) contributions to the decomposition of
neutral weak form factors into quark form factors, where the three lightest quark
flavours were considered.

Following the [SM] notation, these corrections are usually encoded in the R-
factor [10]

R = Rone-quark + Ranapole T Rheavy quarks- (5.50)

The heavy quark corrections have been calculated and were found to be ~ 10~* for
the vector term and ~ 1072 for the axial term, and are therefore neglected in the
radiative corrections [I].

The most widely used definition of the weak mixing angle sin? 0y () is derived
from the renormalisation scheme [27]. In this scheme, the weak mixing angle
has a dependence on a renormalisation mass or energy p. The weak mixing angle
in the MS renormalisation scheme at Z boson’s mass, sin? éw, which appears in the

expression of Apy, is used in this work and its value is taken from [I5]. Electroweak
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calculations within different renormalisation schemes will differ slightly since these
calculations are only accomplished up to finite order of perturbation theory.

The vector and axial-vector charges at tree level and with radiative correction R-
factors in the are provided explicitly in Table [10]. After including the radia-
tive corrections, the proton’s neutral weak and axial-vector form factors, Eq.

and ([5.29)), become

G2y = (1= 4sin® ) (1 + RY)GH, — (L+ Rp)GEy — L+ RY)GE .
P _ [_ 1+ R5HGEY + V3RLGY + (1+ RD)G5 | GR(Q%),  (5.51)

where the factors R}, R}, and RE?) reflect the electroweak radiative corrections for
vector proton, neutron and SU(3)-singlet amplitudes, respectively. RE=1 RL=0 and
R(j) describe the axial-vector electroweak radiative corrections for the isovector,
isoscalar, and SU(3)-singlet amplitudes. Note that the ratio RE=" vanishes at tree

level as was discussed above.

5.2.2.1 Omne-Quark Corrections

As indicated previously, the one-quark corrections to the leading order e—N
scattering arise from the scattering that proceeds via the exchange of two vector
bosons and only a single quark is involved in the process.

The box radiative corrections involving only weak bosons, i.e., [zz and Uy
diagrams, can be perturbatively calculated. For low-energy regions, where the theory
is nonperturbative, these two corrections are suppressed [30]. These two diagrams
render corrections to the weak charge of the proton (Eq. ) and are encoded in
RY, as will be discussed latter.

Recently, [, corrections have been considered and has been shown that these
corrections have a significant energy dependence [0 [7, T56H159]. Focusing on the
vector component of vZ box corrections, %eDXZ, the most accurate method to calcu-
late these corrections is a dispersion relation [6]. The dispersion relation calculations
of these corrections have been improved at forward scattering angles, whereas these
corrections are unknown at backward scattering angles where the dispersion relation
is not valid. Estimates for the @?-dependence of the [, 7 correction will be discussed
in Section 6.1}

Two Feynman diagrams of one-quark processes that cause corrections to the
tree-level weak couplings are depicted in Fig. 5.2l Here, the process on the left 72
mixing diagram represents corrections to the propagators, and the process on the

right vZ box diagram indicates the exchange of the two bosons v and Z° with an
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Section 5.2. Parity Violation in Electron Scattering

Table 5.1: The vector (upper half) and axial-vector (lower half) charges at tree level
and with the radiative correction R-factors in the Standard Model.

Tree Level  Radiative Corrections Included
gb | 1—4sin®Oy (1 —4sin® Oy )(1 + RY)
9y —1 —(1+ Ry)
9 -1 ~(1+RyY)
S SR
g5 0 V3R
gy 1 1+ RY

excitation of intermediate hadronic states. The effective coupling constants C', and

Cy, that describe the weak interaction are given at tree level as

Oy = W94, a9V (5.52)
-2 -2
where the expressions of ¢{* and ¢%° have been provided in Table 2.2]
The predictions for these effective coupling constants [15] are presented in
Table |5.2l These predictions consider several vertex and box corrections.
To obtain the estimated values of Ry and Ry4, as shown in Table [5.3] one can

write explicitly

gh = —2(2Cy, + Ciq) = (1 — 4sin® Oy ) (1 + RY),
g = —2(Cyy +2C1) = —(1 4+ Ry,
gV = —2(Cyy +2C19) = —(1+ RY),

gt Cu=Coa g ey

1 — 4sin® Oy,
_ 2\/§(02u + OQd) _
T=0 — — 3RT—O
1 — 4sin? Oy, V3R,
(0) 2(Cgu + 202d)

_ Ab2u T Abad) o pl0) 5.53
gA 1 . 4sin2 9W + A ( )

and make use of the [SM] predictions presented in Table [5.2]
At low momentum transfers, the one-quark corrections for the vector weak form

factors have a weak Q*-dependence and are considered to be constant [10].

57



Chapter 5. Parity-Violating (PV) Elastic Electron—Nucleon Scattering

Figure 5.2: Two Feynman diagrams of one-quark processes that cause corrections
to the tree-level weak couplings. The process on the left vZ° mixing diagram with
qq loop represents corrections to the propagators. The process on the right vZ° box
diagram indicates the exchange of the two bosons v and Z°.

Table 5.2: The predictions for the effective couplings Cy, and Cy, and their

values at tree level [15].

Tree Level SM Predictions
Cie | —0.1916 —0.1887
Chy 0.3458 0.3419
Cy, | —0.0374 —0.0351
Coq 0.0374 0.0247

5.2.2.2 Axial Form Factor and the Anapole Moment

Electroweak radiative corrections associated with the anapole moment are re-
ferred to as many-quark corrections. The anapole corrections occur because of the
axial-vector coupling of the photon to the nucleon [I60]. Here, the photon couples
to currents of two or more quarks inside the nucleon via weak bosons exchange. A

representative Feynman diagram for many-quark corrections is presented in Fig. [5.3]

The renowned calculations of the anapole corrections achieved by Zhu et al.

in [160] have been performed in the fon-shell renormalisation| (OSR]) scheme using

[BCLPT] Since the radiative corrections in the previous section are estimated in the
scheme, these anapole radiative corrections must be transformed to via

s 1 — 4sin?
Rys sin GW_1‘44

Rosr 1 —4sin2fy

: (5.54)
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Section 5.2. Parity Violation in Electron Scattering

Table 5.3: The values of the ratios Ry and R4 (one-quark corrections).

Value

RY, [ —0.0513(40)
no | —0.0098(3)

RY | —0.0098(3)

RI=! —0.201
RY=0 | —0.278
RY ~0.618

€ p

Figure 5.3: A Feynman diagram for many-quark electroweak radiative corrections
(anapole corrections) to e—p scattering. The filled and opened circles indicate the
parity-violating and parity-conserving pion-nucleon vertex, respectively.

where sin? 6y, = 0.2230 in [OSR] [160] and sin?fy = 0.23129 in MS] [15]. There-
fore, the transformation of the anapole correction between the two renormalisation

schemes reads as

T=10  _ T=1,0
RA(ana),WS - 1'44RA(ana),OSR' (555)

The anapole corrections in the [160] and schemes using Eq. are
given explicitly in Table 5.4 In regards to the large uncertainties in Table [5.4] the
authors of [I60] considered only the dominant virtual hadronic states that cause
anapole corrections, and hence they assigned significant theoretical uncertainties to
reflect the contributions from a large number of virtual hadronic states that can also
give rise to the anapole effects.

The anapole corrections of Rf) have not been calculated. As treated in the
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Chapter 5. Parity-Violating (PV) Elastic Electron—Nucleon Scattering

Table 5.4: The anapole corrections in the m [160] and schemes using

Eq. .

OSR| scheme m scheme
—0.06 £20.24 —0.0865 £ 0.3463
0.01+0.14 0.0144 & 0.2020

T=1
RA

(ana)

Rza?la)

literature, the anapole corrections for Rff) have been set to zero and the value of
the one-quark correction for Rg)) has been assigned as its uncertainty.
The axial form factor, including anapole corrections, can be given by [161]

65" = [ = 1+ RGP 7 + VBREGY + (14 RY)G + A%, | GR(@Y), (5.56)

ana

N

ina Can be written as

where the anapole contribution term A
Al = (RiGha s + Ri)GY. (5.57)

The axial term A% (defined in Eq. (5.46))) is suppressed by (1 — 4 sin® éw) and it
is further suppressed by € at forward angles.

The present work considers that the axial-vector form factor implicitly incorpo-
rates the axial radiative and hadronic anapole corrections, where this entire con-
tribution is to be fit to data. Therefore, this analysis uses the effective axial form

factor G and the axial-vector component A% becomes

—¢'(1 — 4sin® 0y ) GIPGY,

S R o)
where G%" is defined as
~ gt
€ w— (5.59)

ok
(1+3%)
The normalisation g%" represent the entire axial radiative and anapole corrections
that will be fit to the data, however since the isoscalar combination is poorly de-
termined, the theoretical estimate based on an effective field theory with [VMD]
models [160] is employed in the present work to constrain this combination as will
be discussed in Chapter @ The momentum dependence of the isoscalar R4~ and
isovector R=! one-quark and anapole radiative corrections is assumed to be de-
scribed by Eq. where the axial dipole mass is selected to be that estimated
from neutrino scattering, M, = 1.026 GeV [162].
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Section 5.3. Helium-4 and Deuteron IW' Asymmetries

5.2.3 A‘?DV and A%, with Electroweak Radiative Corrections

At this point of the discussion, it is appropriate to explicitly write the [PV] asym-

metry for both the proton and neutron including the electroweak radiative correc-

tions:
%

AL, = | ———— | .(AY, + AP + AD), 5.60
PV N (AY s ) ( )

where

B .9 A N EGEPGT" + TGP GL
Ay = (1—4sin"bw)(1+ Ry) — (1+ Ry) (G2 +7(GLP)? (5.61)
G’Y:st +7.G’YJ’G5
AP — (1 4+ RONZE & M M 5.62
(e (efiae 62
and

—€(1 — 4sin? 0y ) GIPGY,
M= e e o0

%, can be obtained by using G3"), and G7 instead of G}, and G%, respectively.

5.3 Helium-4 and Deuteron [PV| Asymmetries

This work aims to perform a global analysis of the full set of [PV] asymmetries
from elastic e-helium-4 scattering and quasielastic e-deuteron scattering at low Q2
in addition to elastic e-p scattering,. In this section, the [PV] asymmetry structure
for helium-4 (*He) and deuteron (d) will be briefly highlighted.

The *He nucleus is spin-0, parity even and isoscalar. Elastic electron scattering
from *He is a pure isoscalar, 07 — 0%, transition and therefore allows no contribu-
tions from magnetic or axial-vector currents. Thus, the elastic e-*He scattering has
been utilised to directly extract the strange electric form factor.

For “He, the asymmetry based on the assumption that isospin mixing can

be neglected is written as [10]

GrQ?
421
—(1+ RY)G%

G+ GgE"

He

Ale = (1 —4sin®0,)(1+ RY) — (1+ Ry) (5.64)

The isospin correction will be taken into account in Chapter [6]

The quasielastic interaction with the constituents of nucleon dominates the scat-
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Chapter 5. Parity-Violating (PV) Elastic Electron—Nucleon Scattering

tering from the deuteron. The situation for quasielastic scattering from a nuclear
target is intricate because of the nuclear structure, final state interactions, off-shell
effects, etc. [I0]. These impacts are considered in the analysis presented in Chap-
ter 6

The [PV] asymmetry in electron-deuteron quasielastic scattering in the static
approximation, where the proton and neutron in the deuteron are assumed to be

noninteracting particles, is given by [10]

o (G 7@ Ay + (G +7(GR)?) Ay
(@2 + (G5"2) +r (@2 + (@)

Note that, in this approximation, the quasielastic cross section is presented as a
non-coherent sum over the nucleons. It is instructive to write A%, explicitly using

the A%, and A%, expressions:

—GpQ?
42

d
PV

(AL 4+ A%+ A%, (5.66)

where

21 + Rp)(eGLPGE" + 7GIPGTN)

AL = (1—4sin® 0y )(1+RY) — . (5.67)
(@7 + (@32) +r((@ipr + (@)
Al = (1 + BY) G+ GE )G T(GH + Gy )G, (5.68)
s \4 :

(@32 + (GE"2) +r (@32 + (@)
and

i == dsin? Ow) (G Gh + G'GY) (5.69)

(@pr+ @) + (@7 + (G3)

As can be noted, combining proton and deuteron data renders two independent

anapole form factors. The present analysis aims to extract all four form factors,
i.e., two strange form factors and two anapole form factors, by performing a global
analysis of all experimental data from elastic electron scattering up to Q% ~ 1
GeV?2.

5.4 Experimental Measurements of G5, and G7

The first measurement of Apy from scattering polarised electrons from deuterium
and hydrogen was conducted in 1978 at [SLAC| [163]. This measurement played an
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Section 5.4. Experimental Measurements of G}, and G%

important role in establishing and understanding the nature of electroweak unifi-
cation. Although the authors of [163] measured Apy in deep inelastic scattering,
this experimental study established experimental techniques that allowed for many
asymmetry measurements involving scattered polarised electrons from various po-
larised and unpolarised targets at different kinematic conditions.

Table |5.5 summarises the world data of elastic electron scattering within the
range of Q% considered in the present work, including the targets, kinematics and
measured asymmetry. The targets p, “He and d indicate electron scattering from
the proton, helium-4 and deuteron, respectively. The measured asymmetry is rep-
resented by AP"* and its associated uncertainty is shown by 6 A, where the statistic
and systematic errors have been added in quadrature. The correlated systematic
error in the GO experiment is shown by 6 A,,. The measured asymmetry AP"* and
the corresponding uncertainty are in units of [ppm]

Based on the kinematic conditions, the experiments are sensitive to G%,, G%

and GZ(T:U. The [Singlet Anomalous Moment of the Proton using Longitudinally|

|Polarized Electrons| (SAMPLE)) measurements are sensitive to G}, and GZ(TZI) since

they were conducted at large scattering angles. For forward-angle scattering from the
proton, the[Hall A proton parity experiment| (HAPPEx]), PVA4, G0 and Qweak mea-
surements are sensitive to linear combinations of the electric and magnetic strange

form factors. The [HAPPEx| measurements from elastic scattering from *He are

sensitive to G';.
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Table 5.5: A summary of the measured asymmetries data considered in this work
from different experiments with varying kinematics, where Q% 6 and E are the
squared four-momentum transfer, scattering angle and beam energy, respectively.
AP and A are the measured asymmetry and the corresponding uncertainty, re-
spectively, where the statistic and systematic errors have been added in quadrature.
0 Ao 18 the correlated error in the GO experiment [164] [165].

Experiment Target Q2 0 E Aphys JA A, Ref.
Qweak p 0.025 7.90 1.16 | -0.2265 0.0093 0 [4]
SAMPLE d 0.038 144 0.11 -3.51 0.81 0 [166]
HAPPEx ‘He 0.077 6.0 2.67 6.40 0.26 0 [167]
SAMPLE d 0.091 144 0.18 -7.07 1.03 0 [166]
HAPPEx ‘He 0.091 6.0 2091 6.72 0.87 0 [168]
HAPPEx  p 0099 60 303| -1.14 025 0  [I69)
SAMPLE P 0.1 144 0.2 -5.61 1.11 0 [T70]

PVA4 p 0.108 35.4 0.57 -1.36 0.32 0 [T71]
HAPPEx p 0.109 6.0 3.18 -1.58 0.13 0 [167]
Qo p 0122 668 3.03| -151 049 0.8 [164]
GO P 0.128 6.84 3.03 -0.97 0.46 0.17  [164]
GO P 0.136 7.06 3.03 -1.30 0.45 0.17  [164]
GO p 0.144 7.27 3.03 -2.71 0.47 0.18  [164]
Go p 0153 7.5 3.03| -222 051 021 [16]
GO p 0.164 7.77 3.03 -2.88 0.54 0.23  [164]
Go p 0177 809 3.03| -395 050 020 [164]
GO p 0.192 8&8.43 3.03 -3.85 0.53 0.19 [164]
Go p 0210 884 3.03| -468 054 021 [164]
PVA4 p 0.22 1445 031 | -17.23 1.21 0 [172]
GO ) 0.221 110 0.35 | -11.25 0.9 0.43  [165]
GO d 0.221 110 0.35 | -16.93 0.91 0.21  [165]
PVA4 d 0.224 145.0 0.31 | -20.11 1.35 0 [T73]
PVA4 P 0.230 35.3 0.85 -5.44 0.60 0 [T74]
GO p 0.232 9.31 3.03 -5.27 0.59 0.23  [164]
GO p 0.262 9.92 3.03 -5.26 0.53 0.17  [164]
GO p 0.299 10.63 3.03 -7.72 0.80 0.35  [164]
o p 0344 1145 3.03| -840 1.09 052 [164]
GO P 0.410 12.59 3.03 | -10.25 1.11 0.55  [164]
HAPPEx p 0477 123 3.35 | -15.05 1.13 0 [T75]
GO P 0.511 14.2 3.03 || -16.81 1.73 1.50 [164]
HAPPEx P 0.624 13.7 3.48 -23.8 0.86 0 [1776]
o p 0628 110 068 | 459 253 1.0 [65]
GO d 0.628 110 0.68 -55.5 3.86 0.7 [165]
GO P 0.631 15.98 3.03 || -19.96 1.69 1.31  [164]
GO p 0.788 18.16 3.03 || -30.80 3.22 2.59  [164]
GO p 0.997 209 3.03 | -37.90 11.53 0.52 [164]
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Chapter 6

Determination of Strangeness

Form Factor

The strangeness content of the proton acts as a background role in the interpre-
tation of the precision of the QQyear collaboration measurement. The Qyear collabo-
ration favoured the determination of Q¥ from a fit over using the theoretical
strangeness determination from lattice or using the Qyearx datum by itself [4].

Having highlighted the formalism of the [PV]asymmetries of the nucleon, helium-
4 and deuteron in Chapter [5 this chapter serves to illustrate the process of the
analysis of the set of all available PVES| data, up to the currently available limit of
Q? ~ 1GeV? to determine the form factor strange quark content.

In general, the strangeness contributions to the[EM|form factors of the proton are
ideal quantities to study the role of hidden flavour in the properties of the proton.
This has motivated intense experimental measurements of these form factors. A

major remaining source of systematic uncertainty in these determinations is the

assumption that [charge symmetry violation| (CSV)) is negligible. In the present work,
a recent determination of the [CSV] form factors from [LQCD] as well as estimates
provided by chiral perturbation theory with resonance saturation, are used and the

set of data considered here are reanalysed.

Leading electroweak corrections play a significant role in precision measurements

of the strangeness contribution to the nucleon form factors. An energy-dependent
correction arising from the vZ box diagram was highlighted by Gorchtein and
Horowitz [6]. The size of this correction is particularly significant to the Standard
Model test by the Qyearx Experiment. Fortunately, the uncertainties arising from the
underlying vZ interference structure functions can be reliably constrained [7]. The
corrections reported by the constrained [Adelaide-Jefferson Lab-Manitobal (AJM)]) [7],
which will be closely revisited in Chapter [7] updated with the improved constraints
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of quark-hadron duality [177] and a momentum dependence as proposed in [I5§]
have been incorporated.

This chapter begins with [, (E) corrections with the aim of correcting the
measured proton asymmetry AP"* at forward angles. The remainder of this
chapter is devoted to the extraction of strangeness form factors from a global analysis
of the asymmetry data with and without the constraint of CSV form factors.

6.1 The [J,; Correction

As indicated above, the corrections due to higher-order electroweak processes are
necessary for a precise interpretation of the measured [PV]asymmetry. The measured
asymmetry AP for the proton at forward angles shown in Table needs to
be corrected for the energy-dependent part of the [, and its uncertainty.

The U,z corrections arise from the interference vZ box diagram. Incorporating
these corrections leads to a modification of the first term in Eq. as

(1 4sin O ) (1+ R) = (1= 4sin® ) (1+ RY) +0,(E). (6.1)

The last term of Eq. (6.1]) will be defined formally in Chapter .
The correction [,z is decomposed into an axial-vector electron, vector hadron

component DXZ and a vector electron, axial-vector hadron component D:;‘Z:
0,2(E) = O (E) + Ol (E). (6.2)

As the electron energy E goes to 0, the hadronic vector correction DXZ(E =0)
vanishes, and the hadronic axial-vector correction 2},(E = 0) dominates. The
latter correction is encoded in RY..

Blunden et al. [159] presented a formulation based on dispersion relations to cal-
culate 07, (E) and they found, by considering all intermediate states, that Re[15, (E =
0) = 0.0044(4) and Rel17,(E = 1.165) = 0.0037(4), where E = 1.165 GeV is the
Qweax beam energy. The former value is connected to the pioneering work of Mar-
ciano and Sirlin who obtained Re[1Z,(E = 0) = 0.0052(5) [178, 179], where the
low-energy part of loop is approximated by the elastic proton contribution, and the
dominant high-energy part by the interaction with free quarks.

The calculations of Blunden et al. show that D:?Z(E ) has a weak E-dependence.
Therefore, the value of DfZ = 0.0037(4) is adopted for the F range that is considered
in the present work.

The dominant E-dependent radiative correction to AP is due to DXZ(E). This
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correction has received considerable attention among the theory community. Re-
cently Hall et al. [7] utilised the parton distribution functions to constrain the
model-dependence of the interference structure functions and they obtained the
most precise calculation of DXZ(E). The update of that calculation with the im-
proved constraints of quark-hadron duality [I77] has been adopted here with the
most recent input values.

In order to apply the vZ box corrections, the d[1,; correction is defined as

5D7Z :DWZ(E) - D7Z<O)
~0(E) + OY,(E) - 0,£(0) (6.3)

where, as stated previously, 02, (E) = 0.0037(4) and 0,z(0) = 0.0044(4). Thus,
Eq. (6.1) becomes

(1 asin?du ) (1+ BY) = (1— 45?0 ) (1+ BY) +00,5. (6.4)

With the updated Y, (E), the results of 60, are presented in Table . The 600, 4
includes an additional correction for the Q*-dependence, where the parameterisa-
tion of this dependence described in [I58] has been used with the form factor
parameterisations from [I80]. Highlighting these form factor parameterisations will
be presented in the next section.

With this modification, and from Egs. (5.60) and (5.61]), the measured [PV]asym-

metries are corrected as

—GpQ?
421

ALy = A

50,.. (6.5)

The significance of the vZ box is somewhat less pronounced in the determination
of strangeness. Nevertheless, for example, from Eq. 6.5 the correction makes about
N%—sigma shift to the central value of the precise HAPPEX proton point at Q% ~ 0.1
GeV?2.

6.2 Parameterisation

A combined analysis of the world [PV] data from the proton, helium-4 and the
deuteron requires a consistent treatment of the vector and axial form factors and

radiative corrections. The theoretical asymmetry used in this analysis is written as

ATheory = To + ngéi + 77;11@2 + T]EGSE + nMG?M: (66)

68



Section 6.2. Parameterisation

Table 6.1: The Re[1Y,(E) and 4, corrections evaluated for the measured proton
asymmetry AP at forward angles.

Experiment  Q* (GeV?) FE (GeV) || ReY,(E) (x107%) 00,7 (x107?)
Qweak 0.025 1.165 5.934 £ 0.382 5.120 £ 0.671
HAPPEx 0.099 3.030 8.780 £ 0.372 7.205 £ 0.701
PVA4 0.108 0.570 3.929 + 0.289 2.843 £ 0.580
HAPPEx 0.109 3.180 8.947 + 0.368 7.250 £ 0.713
GO 0.122 3.030 8.780 £ 0.372 6.969 £ 0.722
GO 0.128 3.030 8.780 £ 0.372 6.907 + 0.728
GO 0.136 3.030 8.780 £ 0.372 6.825 £ 0.737
GO 0.144 3.030 8.780 £ 0.372 6.742 £ 0.745
GO 0.153 3.030 8.780 £ 0.372 6.648 + 0.754
GO 0.164 3.030 8.780 £ 0.372 6.534 + 0.766
GO 0.177 3.030 8.780 £ 0.372 6.398 £ 0.780
GO 0.192 3.030 8.780 £ 0.372 6.243 £ 0.795
GO 0.210 3.030 8.780 £ 0.372 6.056 + 0.814
PVA4 0.230 0.850 5.198 £ 0.350 3.257 £ 0.610
GO 0.232 3.030 8.780 £ 0.372 5.831 + 0.834
GO 0.262 3.030 8.780 £ 0.372 5.527 + 0.859
GO 0.299 3.030 8.780 £ 0.372 5.161 £ 0.885
GO 0.344 3.030 8.780 £ 0.372 4.733 £ 0.905
GO 0.410 3.030 8.780 £ 0.372 4.143 £ 0.917
HAPPEx 0.477 3.350 9.123 £ 0.365 3.749 + 0.943
GO 0.511 3.030 8.780 £ 0.372 3.340 + 0.898
HAPPEx 0.624 3.480 9.251 £ 0.362 2.740 £ 0.881
GO 0.631 3.030 8.780 £ 0.372 2.547 £ 0.831
GO 0.788 3.030 8.780 £ 0.372 1.753 £ 0.706
GO 0.997 3.030 8.780 £ 0.372 1.038 £ 0.525

where for the proton

_GFQ2 A eGIPGLN + TGIPGYT
Do . 2 Dy _ n E VE MYUM
Mo = [4\/§7ra}[(1 4sin” 0w )(1+ R},) — (1 + RY) (GG ) (6.7)
- [GFQQ} [ (1+ R)eGyr } 68
e = | ara) LGP+ (Gi7)2) -
M lavaral Le( G2 + (G312 ~
—GrQ?7 [(=1+4sin®0y eGP
D __
b e el (6.10)
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while for “He

e [0 s
He F 2 4 n
. (1= 4sin ) (1 + RY) - (14 RY)|, 6.11
A ol w1+ BY) — (14 By (6.11)
0
e — _[ Gre” H2_(1 a R(V))] (6.12)
g 42 GEr+Gp" 1
and nil¢ and nfl¢ are zero. In the case of the deuteron target, these coefficients

(assuming static approximation) can be written as

i = (o2 [ - asiu )1+ 1) (6.13)
T

iy = [ﬁéﬁl | (cwr+ (1;1;;(02))6(::7225:") (G}fﬁ)}’ o1

e [ [ D

=[] L((Gw +<(Gl>+§+ EEVG)?; +G?) b

= (el L((GW +<(G1?§+ f@i? +G?) b

where 7, € and €’ have been defined in Egs. ((5.40)), (5.41]) and (5.42)).

It has been noted that the strange form factors show a weak sensitivity to the

selection of nucleon electromagnetic form factor parameterisations. Within the ?
range considered in this work, the central values of the nucleon [EM] form factor
parameterisations presented by Ye et al. in [I80] are used. In their analysis, the
two-photon exchange has been incorporated. They performed a global fit within the
z-expansion framework and the nucleon form factors’ central values are presented
as coefficients in the systematic z-expansion]'}

Table represents the calculated coefficients 7, presented in Eq. , which
characterise the theoretical asymmetry for the experiments (in [ppm|). The nucleon
form factor parameterisations provided in [I80] and the values for the Standard

Model radiative corrections in Table [5.3] have been used.

IThe fit parameters of the nucleon form factors are provided in Appendix
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In the case of the deuteron, it is essential that the nuclear effects on the parity-
violating asymmetry and their impact on the accuracy of the extraction of the single
nucleon form factors are quantified. The SAMPLE analysis of the deuteron mea-
surements [I54] has considered nuclear effects. Therefore, for these measurements,
the 1o, s and ng are taken from [154, 162 [166]. However, no such response func-
tions are considered in the deuterium quasi-elastic results obtained from GO [165]
and PVA4 [I173] measurements. Therefore, their coefficients n are calculated in the
static approximation, i.e., Eqs. —.

The uncertainties associated with the kinematical factors 7 are no more than
2% and hence have negligible effects on the current analysis and thus have been
disregarded.

In order to extract the four form factors (GZ, 7, G5, and G%,) that appear in
Eq. using the data set considered here, the Q*-dependence of the strangeness
form factors is parameterised by a Taylor expansion as will be highlighted in the
next section. In this analysis, since the entire contribution is to be fit to data, the
effective axial form factors G]X , which implicitly include both the axial radiative and
anapole corrections, have been employed. For these form factors, the dipole form

G = g4 (1 + E—Z) - (6.18)

A

has been used with the axial dipole mass M4 = 1.026 GeV determined from neutrino
scattering [I81], common to both proton and neutron form factors. The normalisa-
tions gy are fit to the data, however since the isoscalar combination is very poorly
determined, theoretical esimates based on an effective field theory with vector-
meson dominance models have been imposed to constrain this combination, (g%
+ g%)/2= —0.08 £ 0.26 [160].

Sections |6.2.1 and [6.2.2| will describe the analysis under the assumption of exact

charge symmetry. This provides a baseline with which one can explore the implica-

tions of charge symmetry violation in Section [6.3]

6.2.1 Taylor Expansion

At low momentum transfers, a Taylor series expansion in squared momentum
transfer Q% is sufficient and minimises the model-dependence of the determined
form factors [162]. The model-dependence of this expansion will be examined when
z-expansion fit is considered in Section In this analysis, the strange electric
and magnetic form factors Q2-dependence can be parameterised by a Taylor series

expansion in Q? as
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Table 6.2: The calculated coefficients 7, presented in Eq. , which charac-
terise the theoretical asymmetry for the experiments (in [ppm|). The squared four-

momentum transfers Q are in GeV?, and the scattering angles are in degree.

Experiment Target Q2 0 Mo NE e i '
Qweak p 0.025 790 -0.216  2.279 0.046  0.006  0.000
SAMPLE d 0.038 144.00 -2.130  1.160 0.280  0.460 -0.300
HAPPEx ‘He 0.077  6.00 6.366  16.582  0.000  0.000 0.000
SAMPLE d 0.091 144.00 -7.020  1.630 0.770  1.040 -0.650
HAPPEx ‘He 0.091  6.00 7.523  20.223  0.000  0.000 0.000
HAPPEx p 0.099 6.00 -1.412  9.539 0.758  0.037  0.000
SAMPLE p 0.100 144.00 -5.495  2.113 3.453  1.569  0.000
PVA4 p 0.108 3540 -1.820 10.070  1.050  0.259  0.000
HAPPEx p 0.109 6.00 -1.629 10.575  0.925  0.043 0.000
GO p 0.122  6.68 -1.931 11.939 1.172  0.057 0.000
GO p 0.128 6.84  -2.076 12,575  1.296  0.063 0.000
GO p 0.136 7.06  -2.276  13.431 1.473  0.072  0.000
GO p 0.144  7.27  -2484 14294  1.662  0.082 0.000
GO p 0.153  7.50  -2.725 15275  1.889  0.093  0.000
GO p 0.164 7.77  -3.033 16.485  2.190  0.108 0.000
GO p 0.177 8.09  -3.412 17933  2.577  0.128 0.000
GO p 0.192 843 -3.871 19.626  3.068  0.153  0.000
GO p 0.210 884  -4450 21.688  3.722  0.187  0.000
PVA4 p 0.220 14450 -13.315 2.880  11.133  3.466  0.000
GO p 0.221 110.00 -10.615  9.372 8.933  2.729  0.000
GO d 0.221 110.00 -15.246  7.630 2211 2.051 -1.376
PVA4 d 0.224 145.00 -18.651  2.168 2,672 2505 -1.680
PVA4 p 0.230 35.30 -5.785 22455  5.082  0.882  0.000
GO p 0.232  9.31  -5.199 24.252  4.620 0.234  0.000
GO p 0.262 9.92 -6.288 27.822  6.026  0.308 0.000
GO p 0.299 10.63 -7.729 32.333  8.062  0.416 0.000
GO p 0.344 1145 -9.614 37967 11.012 0.577 0.000
GO p 0.410 12,59 -12.605 46.499 16.342 0.874  0.000
HAPPEx p 0477 12.30 -15.820 55.646  23.000 1.133  0.000
GO p 0.511 14.20 -17.606 60.111  27.011  1.489  0.000
HAPPEx p 0.624 13.70 -23.540 76.587  42.758  2.118  0.000
GO p 0.628 110.00 -36.914 19.714  62.247 11.913 0.000
GO d 0.628 110.00 -50.722 16.632  14.624  8.456 -5.657
GO p 0.631 15.98 -24.054 77.049 44.074 2.518 0.000
GO p 0.788 18.16 -33.078 100.263 74.553  4.453  0.000
GO p 0.997 20.90 -45.776 132.553 131.722 8321 0.000
GH(Q%) = psQ* + p,Q", (6.19)
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G3,(Q?) = iy + 1,Q2. (6.20)

In the language of chiral perturbation theory, the strange magnetic moment s =
G5,(Q? = 0) appears at chiral order p?. The first Q*-dependence in G4,(Q?), strange
magnetic radius (O(p?)), can be evaluated by chiral loop contributions associated
with the corresponding low-energy constant. However, the first Q>-dependence in
G%(Q?), the electric strange radius, appears at order O(p?®), and the second @Q*-
dependence arises at chiral order p°.

Based on these considerations, this work performs a global fit at

(LOJ) terms of the strangeness form factor (Eqgs. and [6.20]) with four parameters,
" 9%, s and ps, and at next-to-leading order| (NLO)) terms of the strangeness form

factor with six parameters, i.e., p, and p’, in addition to the previous four parameters.

The x? is calculated as

X2 _ Z Z(Afhys . AiTheoryxv)i—jl(A?hys . A?heary), (6.21)
i

where AP represents the measured asymmetries in Table . Recall that the
corrected measured [PV|asymmetries AP"* for O, z, Eq. (6.5)), replace the measured

corr
asymmetries AP"* for proton at forward angles. AT"¢™Y refers to the theoretical
predictions obtained from the fit parameters. The indicies ¢ and j run over the data
ensemble. The matrix V represents the covariance error matrix defined as

(V)i = (017) 26,5 + 00", (6.22)

7 7

;" and 079" are uncorrelated and correlated uncertainties of the 4, g

measurement respectively (Table. |5.5). Note that the correlated uncertainties are

where o

only relevant for the GO experiment, where the forward and backward data are
treated as mutually independent.

The goodness of the fit is estimated from the reduced x? as

Xrea = X*/do f, (6.23)

with 33 and 31 degrees of freedom (d.o.f) for the [LO| and [NLO)| fits, respectively.
Note that with the isoscalar axial charge constrained, as described above, there are
effectively 3 (5) fit parameters in the LO (NLO) fits.

In Fig. the behaviour of evolution of ugs and p, with increasing the upper
limit of @Q? (increasing the number of data) for the and fits is displayed. As
can been seen, including the HAPPEX data point at Q* = 0.624 GeV? [176] has a
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significant effect. In particular, we note that the [LO|fit strangeness parameters’ un-
certainties have reduced significantly and the signs of the central values for the NLO|
fit have changed. Additionally, including the GO data point at Q* ~ 1 GeV? [164]
leads to a notable reduction in the uncertainties of the strangeness parameters from
the fit.

The leading order fit results for the Taylor expansion form factor fit without
constraints from CSV are presented in Table 6.3, with comparisons against previous
PVES global fits [29] 162} [182] [183]. The results are compatible with earlier work,
though with significantly reduced uncertainty.

While the fit quality is reasonable, these simple leading order fits are certainly an-
ticipated to be too simple to describe these form factors over the full range 0 < Q% <
1.0 GeV2. As a result, the statistical uncertainties displayed are not representative
of the current knowledge of the strange form factors. Hence, more variation in
the Q?-dependence by extending the fits to next-leading order is considered, i.e.,
Egs. and . Results are shown in Table . Curiously, the additional fit
parameters are unable to make significant improvement to the y? and the reduced
x? very marginally increases for the NLO fit.

Although the data do not support any structure offered by the NLO fits, the
results at this order are treated as being better representative of the uncertainties
of the strangeness form factors, while offering some degree of smoothing of the
underlying data. With noting that given the clustering of the underlying data set,
the separation of the electric and magnetic strange form factors are most reliable
only at the discrete momentum transfers near Q% ~ 0.1, 0.2 and 0.6 GeV2. As such,
the NLO fits are roughly fitting 3 data points with 2 parameters for each form factor.
Attempting fits at even higher order will just amount to over-fitting the statistical
fluctuations of the data set.

The extraction of the strange form factors over the current Q? domain is shown
in Fig. m which displays a notable constraint on G3; around Q* ~ 0.65 GeVZ.
Furthermore, a comparison with recent theoretical lattice QCD results is shown in
Fig. 6.2, where the green square corresponds to the result of G5,;(Q? = 0.1 GeV?)
from [I5I] and the magenta squares represent the G, and G% at different values
of @* = 0.17, 0.62 and 0.88 GeV? from [148]. The authors of [I51] report a direct
determination of the strange electromagnetic form factors including at the physical
pion mass. In addition, they performed a model-independent extraction of the
strange magnetic moment and strange electric radius. Here, an excellent agreement
between strangeness determinations based on PVES data and lattice QCD results

over the full Q2 range is observed. These determinations are also compatible with

74



Section 6.2. Parameterisation

08l T ¥ LOFit
T ® NLOFit
0.6 F |
0.4 ! R
02} L] ]
jm;
0.0 F T
g ! |
—0.4F 1 " .
,06 - .
0.4 0.5 0.6 0.7 0.8 0.9 1.0
2 2
max [Gev ]
0.6 |- i
04} ]
[ |
02 - F * ]
& - :
N 1
L 0.0
S |
<
[ |
—0.2} I .
—04F ]
1 ¥ LOFit
—0.6 |- § NLOFit|]
0.4 0.5 0.6 0.7 0.8 0.9 1.0

2 |GeV?

maxr

Figure 6.1: Shown are us and ps parameters values obtained from the (red

square) and (black square) fits at different maximum values of Q2. The error
bars are only statistical. The points have been slightly offset for clarity.
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Table 6.3: The parameter values and x?%, obtained from previous PVES global
fits [29, [162] 182, 183] and the current global analysis at LO for the Taylor expansion
form factor fit without constraints from CSV.

ps[GeV 2] i Xoed
YRCT(2006) [162] | -0.06£0.41 0.12£0.55 1.3
YRCT(2007) [29] | 0.02£0.18 -0.01£0.25 -
LMR(2007) [I82] | -0.08£0.16 0.20+£0.21 1.3
GCD(2014) [183] | 0.26£0.16 -0.26+0.26 1.3
Taylor 0.1520.04 -0.12+0.04 1.1

Table 6.4: The [NLO| strangeness parameters values obtained from the previous
global fit [162], where Q* < 0.3 GeV?, and from the current global analysis for the
Taylor expansion form factor fit. The errors are statistical only. The x? for each fit
is displayed.

Parameter | YRCT(2006) [162] Taylor
ps [GoV 7] 20.03+0.63 0.07+0.14
oL [GevY 1.545.8 0.1440.22
s 0.37+0.79 -0.05£0.15
i, [GeV~Y] 0.7£6.8 20.1140.23
. 1.4 1.23

earlier lattice [I49] and lattice-constrained [147], [184) [I85] results.

Fig. displays the 95% and 68% confidence level ellipses in the (G%,, G%;) plane
at Q* = 0.1 GeV? for the[LO]and[NLOJfits. This work seems to favour positive values
for the strange electric form factor and negative values for the strange magnetic
form factor. The strangeness form factors are compatible with zero at 95% and 68%
confidence level ellipses using the NLO Taylor expansion.

The linear combination of strange electromagnetic form factors, G and G3,,

can be written as

Apps — A
G, + G, = s NVS (6.24)
NE
where
n=" (6.25)
NE

and Anyg is the theoretical asymmetry assuming no vector strange quark contri-
bution, i.e., G = 0 = G4,;. The n’s have been defined for each target at the
beginning of Section [6.2 Table [6.5] presents the constraints on the net strange
quark electromagnetic form factor contribution from each measurement as a linear

combination. The calculated net strangeness signal G'; + G, is shown in Fig.
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Figure 6.2: The extracted strange electric and magnetic form factors from a global
fit up to Q* ~ 1 GeV? using the Taylor expansion. The red (black) solid curve shows
the fit fit), and the bounds are shown by the dotted curves. A comparison
with recent lattice QCD results is shown where the green square (errors bars are
smaller than the symbol) corresponds to the result of G4,(Q* = 0.1 GeV?) [151]
and the magenta squares represent the G5, and G% at Q* = 0.17, 0.62 and 0.88
GeV? [149)].

for the forward-angle e—p scattering measurements. In contrast to the large angle
scattering data, these measurements exhibit insensitivity to the axial component,
Ay, of the asymmetry, as discussed in Chapter [5 Thus, in Fig. [6.4] using the
value of g% obtained from the global analysis instead of that extracted from the
[LQ| global analysis does not lead to a significant difference. Note that the precise
HAPPEx data point appears to disagree with the forward-angle GO data around
Q? = 0.6 GeV?, even though these two measurements have been performed under
similar kinematic conditions.

To test the model-dependence of the Taylor expansion, the present work considers
performing a global analysis using the so called z-expansion [186, [187] as well. This

is the topic of the next section.
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Figure 6.3: The 95% and 68% confidence level ellipses in the (G, G%) plane at
Q? = 0.1 GeV? for and fit.

6.2.2 z-expansion

One might not expect a Taylor expansion up to ~ 1 GeV? to be satisfactory.
To provide an alternative functional form to the Taylor expansion, the z-expansion,
which offers improved convergence based on the analytic properties of the form
factors [I86HI8S], will be considered.

The z-expansion is a method of extraction that provides a model independent

description of the shape of the form factors given by

GQ) = a2t (6.26)

The Q?-dependence of the strange form factors using the z-expansion can be de-

scribed, also to second (nontrivial) order, as

Gp = psz2 + p;,zzz (6.27)
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Table 6.5: The linear combination G% +nGj, for the measurements. G +nG3,
(NLO) indicates that the Axys has been calculated using the g7 extracted from

the (NLOJ) global fit.

Experiment Target Q2 0 Gy +nGy (LO) Gy +nG3, (NLO)
Qweak b 0025 79 0002+0004 0002+ 0.004
SAMPLE d 0.038 144.0 -0.818 £ 0.716 -0.802 £ 0.718
HAPPEx “He 0.077 6.0 0.002 £ 0.016 0.002 £ 0.016
SAMPLE d 0.091 144.0  0.077 £ 0.670 0.100 £ 0.675
HAPPEx ‘He 0.091 6.0 -0.040 £ 0.043 -0.040 £ 0.043
HAPPEx p 0.099 6.0 0.037 £ 0.026 0.037 £ 0.026
SAMPLE p 0.100 144.0  0.362 £ 0.542 0.378 £ 0.547
PVA4 p 0.108 354 0.063 £ 0.032 0.063 £ 0.032
HAPPEx p 0.109 6.0 0.014 £+ 0.012 0.014 £+ 0.012
GO p 0.122 6.7 0.044 £ 0.044 0.044 + 0.044
GO p 0.128 6.8 0.097 £ 0.039 0.097 £ 0.039
GO p 0.136 7.1 0.082 £+ 0.036 0.082 £ 0.036
GO p 0.144 7.3 -0.007 £ 0.035 -0.007 £ 0.035
GO p 0.153 7.5 0.042 £+ 0.036 0.042 £+ 0.036
GO p 0.164 7.8 0.018 £ 0.036 0.019 £ 0.036
GO p 0.177 8.1 -0.021 £ 0.030 -0.021 £ 0.030
GO p 0.192 84 0.010 £ 0.029 0.010 £ 0.029
GO p 0.210 8.8 -0.001 £ 0.027 -0.001 £ 0.027
PVA4 p 0.220 144.5 -0.805 £ 0.455 -0.784 £+ 0.467
GO p 0.221 110.0  0.066 £ 0.115 0.071 £ 0.117
GO d 0.221 110.0 -0.034 £ 0.146 -0.026 £ 0.149
PVA4 d 0.224 145.0  0.126 £ 0.710 0.160 £+ 0.720
PVA4 p 0.230  35.3 0.036 £ 0.027 0.037 £ 0.028
GO p 0.232 9.3 0.006 £ 0.026 0.007 £ 0.026
GO p 0.262 9.9 0.046 £ 0.020 0.047 £ 0.020
GO p 0.299 10.6 0.010 £ 0.027 0.010 £ 0.027
GO P 0.344 114 0.042 £ 0.032 0.042 £ 0.032
GO p 0.410 12.6 0.060 £ 0.027 0.061 £ 0.027
HAPPEx p 0.477 12.3 0.023 £ 0.020 0.023 £ 0.020
GO p 0.511 14.2 0.023 £ 0.038 0.024 £ 0.038
HAPPEx p 0.624 13.7 0.006 £ 0.011 0.006 £ 0.012
GO p 0.628 110.0 -0.296 £ 0.147 -0.290 £ 0.150
GO d 0.628 110.0 -0.085 £ 0.251 -0.076 £ 0.253
GO p 0.631 16.0 0.064 £+ 0.028 0.064 £+ 0.028
GO p 0.788 18.2 0.034 £ 0.041 0.034 £ 0.041
GO p 0.997 209 0.071 £ 0.087 0.072 £ 0.087
and
Gy = o+ 4 (6.28)

79



Chapter 6. Determination of Strangeness Form Factor

0-20 T T T T T
0.15} 1
0.10 | l
-~
] .
U | |
= 005
T oo l
S ]
- :
0.00 l T T T T
. B GO
—0.05F % HAPPEx ||
¥ Qweak
§ PVA4
_0.10 L L L I
0.0 0.2 0.4 0.6 0.8 1.0

Q* [GeV?]
Figure 6.4: The net strangeness G% + nG3, contribution to the form factors con-

strained by the forward elastic asymmetry from different e-p scattering measure-
ments.

where

y o View t @ = Vian (6.29)
Viteut + Q2 + VEcur

and t.; = (2mg)? with the kaon mass mx = 0.494 GeV. In the absence of
isospin violation, the cut formally starts at 9m2. However, the assumption that
the strangeness contribution to the 3-pion state can be neglected has been employed
in this analysis. Furthermore, with the current experimental precision, there is not
any significant sensitivity to the value of ¢.,;. To more easily facilitate the com-
parison with the two expansion forms, for the z-expansion fits, the expansions have
been translated back in the leading Taylor form, e.g., the strange charge radius is
calculated from the fitted slope p; , using p, = dG%,/dQ?|g2=o.

Table represents the parameter values and x? obtained from previous PVES
global fits [29, 162, 182, 183] and from the current global analysis at for both
Taylor and z-expansion form factor fits. These results are consistent with each
other, with significantly reduced uncertainty. In Table the parameter values and
x? obtained from the global analysis at NLO for both Taylor and z-expansion form
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factor fits are reported with a comparison with the previous work [162]. It is clear
that the strangeness parameters obtained from the global analysis with either Taylor
and z-expansion show remarkable agreement with each other.

The extraction of the strange form factors over the current ()? domain is shown
in Fig. 6.5 Based on Figs. and it is clear that the strange electric and
magnetic form factors have identical behaviours in both the Taylor expansion and
z-expansion fit.

Fig. displays the 95% confidence level ellipses in the (G4, G%) plane at Q* =
0.1 GeV? for the fit for both Taylor and z-expansion strangeness parameter-
isations. As can be seen, the prediction for the z-expansion global fit agrees very
well with the Taylor expansion global fit.

Given the high degree of correlation in the measurements, it is instructive to
display the joint confidence intervals. Fig. displays the 95% confidence level
ellipses for the different values of @Q? = 0.1, 0.23 and 0.63 GeV? for the NLO z-
expansion fit. At the low-Q? values, the strangeness form factors are compatible with
zero at the 95% CL, with a marginal preference for positive values of the strange
electric form factor and negative values of the magnetisation, as seen previously
in [29,189]. At Q* = 0.63 GeV?, there appears a clear signal for non-zero strangeness,
with a negative GG}, and positive G%,. In contrast to earlier work that has suggested
vanishing strangeness at this Q? [165, [176], the dominant difference in the present
work is the treatment of the axial/anapole form factor. As described, the isoscalar
combination is constrained by the effective field theory with vector-meson dominance
models estimate of Zhu et al. [I60], while the isovector combination is determined by
the data. The best fit—for the z-expansion at NLO—results in ¢ = —0.67 £ 0.25,
which is less negative than the zero-anapole approximation. As a consequence, the
data-driven fit drives the back-angle GO results to be more consistent with a negative

%7- Under these assumptions for the effective axial form factor, one can see G
~ 0.1, which—with the strange charge factor included—is in the order of 10% of
the proton electric form factor at this momentum transfer. To investigate the effect
of the uncertainty related to the axial form factor, a conservative variation of the
axial mass M4 has been considered to be M4 = 1.026 & 0.500 GeV. It is found that
some of the strangeness form factor results have differed as shown in Table[6.8] The
most significant shift is seen for G35, at the larger Q* point, yet still within 1-sigma
uncertainty and the conclusion derived from Fig. [6.7] still holds.

Fig. compares the extracted pus = G4,(Q* = 0) from this work with some
previous PVES global analyses, in addition to some theoretical lattice results. As

can be seen, there is a good agreement among the [PVES| global analysis results
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Table 6.6: The parameter values and x?%, obtained from previous PVES global
fits [29, 162, 182, 183] and the current global analysis at LO for both Taylor and
z-expansion form factor fits without constraints from CSV.

ps[GeV‘2] Hs X%ed

YRCT(2006) [162] | -0.06+£0.41 0.12+0.55 1.3
YRCT(2007) [29] | 0.0240.18 -0.0140.25 -
LMR(2007) [182] | -0.0840.16 0.29+£0.21 1.3
GCD(2014) [183] | 0.26+0.16 -0.26+£0.26 1.3
Taylor 0.15+0.04 -0.12+0.04 1.1
z-exp. 0.18+0.05 -0.10£0.04 1.1

Table 6.7: The strangeness parameters values obtained from the previous
global fit [162], where Q* < 0.3 GeV?, and from the current global analysis for both
Taylor and z-expansion form factor fits. The errors are statistical only. The 2 for
each fit is displayed.

Parameter

YRCT(2006) [162] Taylor Z-exp.
ps [GeV~2] -0.03+0.63 0.07£0.14  0.08+0.17
ol [Gev] 15458 0.144£0.22  0.19+0.37

fbs 0.37+0.79 -0.05+0.15 -0.0940.14
i, [GeV2] 0.746.8 L0.112£0.23  -0.0620.29
% 14 1.23 1.26

Table 6.8: Strangeness form factor results at different values of Q% ~ 0.1, 0.23 and
0.63 GeV? against the variation of the axial dipole mass M4 = 1.026 £ 0.500 GeV.
Correlation coefficients between the G}, and G% are represented by p.

Q> ~ 0.1 GeVZ Q2 ~0.23 GeV2 Q% ~ 0.63 GeV?
Gi, | —0.09(12) ~0.10(8) —0.12(4)
My =1.026 | G5, 0.01(1) 0.03(2) 0.10(2)
p —0.90 —0.90 —0.93
S —0.10(11) —0.10(9) ~0.10(4)
My =152 | G5 0.01(1) 0.03(2) 0.09(2)
p —0.90 —0.90 —0.93
Gi, | —0.13(12) —0.14(9) —0.16(4)
My =0.526 | G5, 0.01(1) 0.03(2) 0.11(2)
p —0.91 —0.90 —0.93

within the error bars. However, the current extracted results from fits show
smaller uncertainties. Furthermore, us from [LO)| fits are compatible with a recent
lattice result obtained by Shanahan et al. [148], Sufian et al. [I51] and Leinweber
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Figure 6.5: The extracted strange electric and magnetic form factors from a global
fit up to Q? ~ 1 GeV? using the z-expansion. The red (black) solid curve shows the
fit fit) and bound shown by the dotted curves. A comparison with recent
lattice QCD results is shown where the green square (error bars are smaller than
the symbol) corresponds to the result of G5,(Q* = 0.1 GeV?) [151] and the magenta
squares represent the G35, and G4 at a different value of Q* = 0.17, 0.62 and 0.88
GeV? [148)].

et al. [I47] within uncertainties. Note that, as discussed previously, the statistical
uncertainties displayed by LO fits are not representative of the current knowledge
of the strange form factors over the full range 0 < Q% < 1.0 GeV?.

It would be interesting to compare the behaviour of the evolution of ys and p, in
the Taylor and z-expansion fits with increasing Q? (increasing the number of data)
at [LOJ and [NLO] and this has been done in Fig. [6.9] As can be noted, to the level
of truncation of the data set at a maximum Q?, the results of u, and p, obtained
from the LO fit for the Taylor expansion are similar to the corresponding results
obtained from the LO fit for the z-expansion. A similar conclusion applies to the

NLO for both Taylor and z-expansion form factor fits.
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Figure 6.6: The 95% confidence level ellipses in the (G4, G%) plane at Q% = 0.1 GeV?
for the @ fit for both Taylor and z-expansions strangeness parameterisations.

6.3 Sensitivity to the Charge Symmetry Viola-
tion (CSV)

As mentioned previously, a limiting factor in the precision of experimental mea-

surements of the strangeness form factors of the proton has been the uncertainty

surrounding the degree to which [charge symmetry violation| (CSV]) affects their de-
termination from [PVES| experiments. In this section, the impact of [CSV] on the
extracted strangeness from the [PVES| global analysis is investigated.

While earlier theoretical predictions of in the proton’s form factors
varied through several orders of magnitude [31H34], a recent lattice QCD calcula-
tion [35] has determined that in the proton’s form factors is significantly

smaller than earlier expectations. Despite its importance for future measurements

of parity-violating electron-proton scattering and their subsequent interpretation
of proton strangeness, the precise influence of this recent [CSV] constraint has not
been thoroughly quantified. Hence, in this section, a global analysis of the full set of

parity-violating asymmetry data with non-vanishing [CSV]form factors is performed.
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Figure 6.7: 95% confidence level ellipses for the electric and magnetic strangeness
form factors using the NLO z-expansion in Egs. (6.27)) and (6.28)) for three Q? values
0.1, 0.23 and 0.63 GeV?2,

6.3.1 Neutral Weak Form Factor and |[CSV]

The effects characterise the breaking of the approximate SU(2)-flavour
symmetry of the u and d quarks.

Charge symmetry, physically, refers to the invariance of the strong interaction
under a rotation by 180° about the 2-axis in isospace. Under this rotation u-quarks
turn into d-quarks and vice-versa, i.e., exchanging the proton and neutron. If the
charge symmetry is violated, the u quark in the proton is no longer the same as the
d quark in the neutron and the d quark in the proton is not the same as the u quark

in the neutron:

DsU n,d
GE,M # GE,Ma

Ghe # Gy (6.30)

The ICSV] form factor relevant to [IPVES| can be defined as a combination of those
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Figure 6.8: Comparison of the extracted pus = G5;(Q* = 0) from this work with
some previous PVES global analyses, as well as some theoretical lattice results.

terms:

2 n,U 1 u n,
g = 3G — Gh) — 5(Gily — GEl). (6.31)

In order to explore the [CSV]s effect, one needs to modify the neutral form factor in
Eq. to explicitly include a CSV term:

Gg”jw =(1-— 4 sin® QW)(l + RP )G%pM(Q )
— (1+ Rp)GE(QY) — (1 + RY)G 1, (Q%) (6.32)
— (14 R)GES (@M.

The leading moments of the GCSV form factors can be expressed as |31, 32]
GEw (@) = GEAr (0) — pgr @ + O(Q"), (6.33)

with GE5V(0) set to zero due to charge conservation.
Based on the discussion presented above, the term 7, in the theoretical asym-

metry, i.e., Eq.[6.6] receives a correction from the [CSV] form factors and therefore
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Figure 6.9: Shown are ug and p, parameters values obtained from the and
for both Taylor and z-expansion fits at different maximum values of Q2. The error
bars are only statistical. The data points have been offset for clarity.
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AtTheory 1s Tewritten as
ATheory - n(?sv + Uiéi + Uﬁéz + UEGSE + UMwaa (634)

where 7S = o+ GV G 4 GV GGV with

N [GFQT | (1+ Ry)eGE™ ] (6.35)
CSV.E 42l e(G%’N)Q—l—T(G;QN)Q 7 '
N [GFQQ H (+ Ry)rCiy ] (6.36)
csvM 421 e(GWE’N)Q—I—T(GX&N)?

In the case of the asymmetry of *He, in addition to the at nucleon level
GGV the at nuclear level F¢5V should be considered. Thus, in this case n§*"

can be written as

(1+ R@)Ggsv]

CSV _ pHe | [ GrQ* ][_QFCSV_4 e (6.37)
T GE

Mo =T 4 \/§7T0z

where 1/’ has been defined in Eq. and F©5V corresponds the ratio F(q)/F© (q)
in [T90]. The value of that ratio, FM(q)/F®(q) = FY = —0.00157 given in [T90]

is adopted to calculate n" for the theoretical PV asymmetry of *He at Q? = 0.077
and 0.091 GeV2.

6.3.2 CSV Theoretical Effects

In order to investigate the effect of [CSV] on the strangeness parameter values
obtained from the analysis above, three different calculations of the CSV form factors
will be considered.

The first work considered here was completed by Kubis and Lewis [31], denoted
by ‘K&L [CSV]. They used an effective field theory, supplemented with resonance
saturation to estimate the relevant contact term—where the CSV is largely driven by
p—w mixing. To accomplish this, they employed a large w-nucleon coupling constant
Jw ~ 42 taken from dispersion analysis. Combining this estimate with calculations in
BChPT]and infrared regularised baryon chiral perturbation theory, Kubis and Lewis
predicted a CSV magnetic moment contribution G{7V(0) = k% = 0.025 +0.020,
which includes an uncertainty arising from the resonance parameter. For the CSV
slope parameters, they found p{7V = —0.08+0.06 GeV~2 and p%°" = —0.0554:0.015
GeV~—2,

The second theoretical calculation of CSV considered is from Wagman and

Miller [32], and denoted by ‘“W&M [CSV]. In their work, they used relativistic chiral
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perturbation theory with a more realistic w-nucleon coupling, i.e., g, ~ 10. That
study reported values of G§V(0) = 0.0124£0.003, p{7" = 0.01540.010 GeV~2 and
PG5V = —0.018 £ 0.003 GeV~2.

The third determination of the CSV form factor that is employed here is based on
an analysis of lattice QCD results [35], denoted by ‘Lattice . The lattice study
found significantly smaller values of the magnetic and electric CSV form factors
compared to the previous two estimates. To study the effect of the CSV form
factors obtained from lattice QCD, with a simple interpolation, the value of G{7Y =
0.0 £0.001 and p%°Y = 0.0 £ 0.001 GeV~2 have been employed.

The first two calculations were accomplished for Q? < 0.3 GeV2. For the
considered Q2 range, these calculations need to be extended. To do so, the following

expression is used:

—2
2_0.209\2
ISV = GOSV(Q* = 0.299) (1 T (W} ) , (6.39)

where A2 = 1 GeV? was chosen to be the order of ¢ meson mass. The value Q? =
0.299 GeV? is the maximum Q? in the data set where the original K&L and W&M
calculations of G¢*V can be applied, and Q? runs over the 0.299 GeV?< Q? < 1
GeV2

The uncertainties of the [CSV] form factors are the source of the uncertainty
that propagates into the theoretical asymmetry as systematic errors. In order to
propagate the uncertainties, the covariance matrix above, Eq. , is extended to
include a correlated uncertainty associated with the theoretical estimates of CSV.
For each theoretical description, the entire data set has been reanalysed, and the
determination of the strange magnetic moment ps (top panel) and strange electric
radius p, (bottom panel) are presented in Fig. [6.10} Since the lattice CSV form
factors are zero with a negligible uncertainty, they are consistent with the ‘No CSV’
results. No visible impact on us; and ps from the inclusion of the ‘W&M CSV’
form factors was found, except small shifts in the central values of us obtained
from the NLO fits. Finally, when estimating the CSV form factors by the K&L
parameters, shifts in the central value of the strangeness magnetic moment were
observed. Nevertheless, even the ‘worst case’ scenario of K&L does not appreciably
affect the NLO fits.

For completeness, in Fig. [6.11] the 95% confidence level ellipses at @ = 0.1 GeV?
in (G5%;, G%) plane for the z-expansion fit with and without including K&L
calculations are presented. As can be noted, the zero strangeness is inside the

ellipses, and the differences between the two ellipses are not significant.
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Figure 6.10: Comparison of determinations obtained from the present work with and
without CSV for the strange magnetic moment p4 (top panel) and strange electric
radius ps (bottom panel).
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Figure 6.11: The 95% confidence level ellipses in the (G%;, G%) plane at Q% = 0.1
GeV? for the z-expansion fit with and without including K&L calcula-

tions.

91



Chapter 6. Determination of Strangeness Form Factor

This analysis reveals that the [CSV[s effects are negligible and paves the way
for future measurements of parity-violating electron-proton scattering to extract

strangeness in the nucleon.

6.3.3 Summary and Discussion

In this chapter, a complete global analysis of all [PVES| asymmetry data, up to
the currently available limit of Q? ~ 1GeV?, for the proton, *He and deuteron, has
been presented.

In order to extract information on the strange quark form factor using this data
set, their Q?-dependence has been parameterised by a Taylor expansion in Q2. In
regard to the axial form factors, the dipole form factor was employed to describe
the axial form factor’s Q?-dependence.

In the current study, the isovector contribution from the axial radiative and
anapole corrections were fit to data, whereas model estimates were used for the
isoscalar.

This work took into account performing the model-independent z-expansion fit
to assess the model-dependence of the Taylor expansion fit and found that both fits
produced consistent values.

The vZ exchange correction and the effect that CSV form factors have on the
extraction of strange quark contribution have been investigated. Including vZ box
contribution in the analysis led to small increases in the magnitude of the central
values of i and ps when compared to results obtained without constraints from the
~vZ-exchange. CSV results considered in this work have small effects on the central
values of the strangeness parameters, with the largest effect, while still small, coming
from the inclusion of the CSV form factors as provided by Kubis and Lewis [31].

The latest theory estimates on CSV are small — indeed small enough that they
would not cloud the interpretation of future precision strangeness measurements.
However, one can note that the back-angle measurements do exhibit sensitivity to the
effective axial form factor, presenting an opportunity for future investigation. The
combined efforts to improve the resolution of strangeness, and reveal the structure
of the anapole form factor offer the potential to establish a precision era of QCD
and the nucleon. While further advancing the understanding of the mechanisms
underlying nonperturbative QCD, such work will serve to gain further confidence in

the use of lattice QCD for precision constraints in tests of the Standard Model.
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Chapter 7

Interference Electroweak

Structure Functions

The interpretation of experimental results from low-energy tests of the SM high-
lights the importance of the precision of theoretical predictions. For example, the
interpretation of the QQyear result is sensitive to radiative corrections. Since most of
the radiative corrections have been calculated to the level of the precision necessary
for the Qyeax experiment, the vZ box correction is usually subject to considerable
debate.

Thus far, the vZ box correction is understood within phenomenological models
such as the Adelaide-Jefferson Lab-Manitoba (AJM) [7], Gorchtein et al. (GHRM) [158)]
and, Carlson and Rislow models [157].

At large Q%, the parton model provides the link between the deep-inelastic struc-
ture functions and the quark structure of the nucleon. At low %, the parton model
is incomplete and cannot describe the rich structure of the inelastic scattering data.

A recent new method has been developed to compute the electromagnetic Comp-
ton amplitude 777 directly from a lattice calculation [§]. A possible extension to
this method involves studying the vZ interference Compton amplitude T} Z at low
Q?. There is a question of what accuracy for T} 7 is required from the lattice to
improve the AJM or GHRM models.

In the next section, the vZ box correction to the proton’s weak charge QY is
discussed. In Section [7.2] for a physical interpretation of the structure functions
at low @Q%, AJM and GHRM phenomenological models and their construction of
interference structure functions F: 17 QZ from the corresponding electromagnetic struc-
ture functions Fy'y will be highlighted. In Section , a brief discussion on the
recently proposed method to calculate the structure functions directly from a lattice

calculation of the Compton amplitude utilising the operator product expansion is
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Section 7.1. The vZ Box Correction to Q4

presented [§]. As this method can be extended to consider T} 7 Section deals
with the question about the necessary accuracy of T7 Z on the lattice to constrain

the phenomenological models.

7.1 The vZ Box Correction to Q%

In the Qyeax experiment, a beam of longitudinally polarised electrons accelerated
to energy E = 1.165 GeV are elastically scattered from a stationary proton target.
The resulting average Q2 of this experiment is Q2 = 0.025 GeV2.

As indicated in Eq. , at this small Q?, the proton’s structure is suppressed

and the parity-violating asymmetry is dominated by the proton’s weak charge:

~GrQ?

4/ 2m

P _
Apy =

Q- (7.1)

At tree level, the proton’s weak charge is given by
b, =1—4sin® Oy (7.2)

However, at the Qyear €xperiment precision level, radiative corrections must be taken

into account [30]:
Py = (1+ Ap+ A (1 —4sin® Oy (0) + AL) + Oww + Ozz + 0,2(0),  (7.3)

where [J,7(0) is the vZ box diagram calculated at E = 0.
The O,z corrections arise from the interference 2 diagrams illustrated in Fig. ,
where the 0J,; can be defined as [191]

Re (M;ME;V))

Re (M;M(va))

0,7 = (1 — 4sin?Gy) (7.4)

where M(ZPV) and Mgpzv) are the vector-axial vector (parity-violating) parts of the
Z and vZ interference amplitudes. The correction [, has an axial-vector electron,
vector hadron component D,‘Y/Z and a vector electron, axial-vector hadron component
07, ie., Eq. (6.2).

The most accurate method to calculate the D‘W/Z contributions is the dispersion

relation [6]. The dispersion relation calculations of these contributions have been

95



Chapter 7. Interference electroweak Structure Functions
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Figure 7.1: vZ box (left) and crossed box (right) diagrams. The wavy and dashed
lines indicate the exchanged v and Z bosons. p, k, ¢ and k' are the hadron, electron,
virtual photon and outgoing electron momenta, respectively.

improved at forward scattering angles, whereas these contributions are unknown at
large scattering angles where the dispersion relation is not valid.
At forward angles, DXZ can be computed from its imaginary part using the

dispersion relations:

2E

™

1
where v, = (W2 — M?)/2M. The invariant mass at the pion-production threshold
is W2 = (M + m,)?, where m, is the pion mass. From the optical theorem, the
imaginary part of the PV interference amplitude can be written in terms of the

product of leptonic L,, and hadronic W, tensors as [156]

K 4ra\ [ —2Gp 1
2 ImMY) = dx [ ———
\Sm./\/l’yZ / 271' 32Ek/ ( ) ( \/§ > 1 + Qz/Mz v W’YZ’ (7 6)

where ¢ = k — Kk’ is the virtual photon momentum transfer with Q? = —¢?. Using
Ly7 and W7, as defined in [156, 191], and changing variable using

a3k’ . 1
(2m)32Ey  32m2k.p

dW2dQ?, (7.7)

SmOY, becomes

Tmaz dQ?
SmY,(E) aw? /
Smbz(E) s—M2 /W 1+Q2/M2
( max_Q2)

Z Z
F“ + F) GV - A+ Q)

(7.8)

where k- p = MFE has been evaluated in the rest frame of the proton. The total
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cam. energy squared is s = M(M + 2E) and Q?,, = (s — M?)(s — W?)/s =
2M E(1—W?/s). The structure functions Fy Z are analogues of the electromagnetic
structure functions Fy5. FY 7 are functions of Q2 and of the invariant mass W (or
of the Bjorken variable x = Q*/(W? — M? + Q?) [156]).

The structure functions can be written in terms of the transverse cross section or
(the cross section for the proton to absorb a transversely polarised photon) and lon-
gitudinal cross section o, (the cross section for the proton to absorb a longitudinally

polarised photon) [67]:

BV, Q%) = <%>mw2,@2>, (7.9)
FQ(W27 QQ) = <W87T_20]é\/[ > M(l +Vy2/Q2) [UT<W27 Q2) + UL(W27 QQ)]7 (710)

where v = F — E’ is the energy transfer of the electron to the target, where F
and E’ are the energy of the incoming and outgoing electron, respectively. These

: z
expressions are used for both F|'J and F}'5.

7.2 Phenomenological Models

The physical interpretation of the structure functions takes on different charac-
ter dependent upon the kinematic region of the scattering event. At low Q?, where
the strong coupling constant «y is large, perturbation theory becomes an invalid
technique for describing the structure functions. Therefore, phenomenological mod-
els are employed instead. The low-Q? region, itself, can be divided into two parts,
namely resonance and Regge parts.

To construct the interference structure functions, one should consider the models
that describe the electromagnetic structure functions. Below is a list of the most

commonly used models:
e Christy-Bosted parameterisation (CB) [192]
e Colour dipole model (CDP) [193]
e Regge models [194]
e Vector meson dominance model (VMD) [195]

For the cross section ¢ in Egs. (7.9) and (7.10) , it is common to be divided into
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a resonance part and a non-resonant background:

orL = O(TTES) + O'g‘%d). (7.11)

As discussed in the literature, the models for the description of the interference
~vZ structure functions are distinguished by how the background contributions are
incorporated. However, for the resonance contributions, all of the models, except
Sibirtsev et al. (SBMT) [I56], utilise the Christy-Bosted parameterisation [192] in
describing the electromagnetic structure functions at low W?; however, these models
vary in transforming these structure functions into their counterpart vZ structure
functions.

The discussions presented in the following sections will focus on the
lJefferson Lab-Manitobal (AJM]) model, as it obtained the most precise calculation
of Y, (E), and the model II of Gorchtein et al. (GHRM) [I58], henceforth referred
to as the GHRM model, as it provided the largest uncertainty on the estimation of
DXZ. The AJM and GHRM models agree well on their predicted central values for
the 00V, (E) contribution. Both models employ VMD to account for the background

contributions to the structure functions.

7.2.1 AJM Model

Precise knowledge of the vZ structure functions, F’ 17 ZZ, play an important role in a
precise evaluation of %eDXZ. However, the difficulty of accomplishing this task stems
from the lack of experimental data for these structure functions. Their counterpart
electromagnetic structure functions, Ff 5, have been estimated accurately in low-Q?
and low-W? regions by many experiments, and Ffzz that have been extracted at
high-Q* and high-1¥? provide a small contribution to the Re[dY, correction. Thus,
one needs to consider modelling these structure functions.

In constructing the AJM model, the excellent understanding of PDF's has been
utilised as additional constraints on vZ structure functions [7]. In fact, this is
an important feature of this model. The AJM model, with an extension to also
incorporate duality constraints [I77], is considered in the following discussion.

In the AJM model, the integrals over W? and Q% in Eq. are divided into
three different kinematic areas [I77], as illustrated in Fig. . Region I (low-Q? and
low-W?) itself is divided into two regions: 0 < Q% < 10 GeV? with W2 < W? < 4
GeV? and 0 < Q? < 1 GeV? with 4 < W? < 9 GeV2. In this region, the struc-
ture functions are characterised by Christy and Bosted’s (CB) parameterisation,

including resonance and background components [I92]. For Region IT (low-Q? and
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Figure 7.2: Divisions of kinematic regions in the AJM model. Region I (blue) at low
W2 and low ? is described by the Christy and Bosted’s (CB) parameterisation [192];
Region IT (red) at low Q% and high W? is described by Regge theory and vector meson
dominance (VMD) model [196]; and Region III (green) at high W? and high Q? is
the deep-inelastic region characterised by global PDF fits to high-energy scattering

data [197].

high-W?), the Regge model combined with the vector meson dominance (VMD)
model [196] is used over the range 0 < Q? < 1 GeV? with W2 > 9 GeV2. In this
region, the modified CB resonance contribution [I58] has been taken into account.
Here, VMD accounts for the background contribution to the structure functions
in this region. Region IIT (high-Q? and high-1W? deep-inelastic scattering region)
Q? > 1 GeV? and W2 > 4 GeV? is characterised by global PDF fits to high-energy
scattering data [I97]. These global fits are performed up to next-to-next-to-leading
order in the fixed-flavour number scheme, and they include leading-twist (twist-
2) and twist-4 contributions. Furthermore, the hadron mass effects (target mass

corrections) are taken into account in these analyses.
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7.2.2 AJM ~Z Interference Structure Functions

At this stage, it is appropriate to discuss the construction of the interference
structure functions from their corresponding electromagnetic structure functions in
the [AJM| model.

For the resonance part, the vZ structure functions construction needs to modify
the contribution from each resonance by the ratio £z that considers the difference
between the weak neutral and electromagnetic transition amplitudes. In the case of

the transverse cross section, the ratio £g, for the proton, has been defined as [15§]

vZ

g
Er= 2 = (1 — 4sin? 9W(0)> . (7.12)
T,R

where » »
1 1 3 3
R1"R1 R3R}2

2 (7.13)
ARV UE

Yr =

This ratio has also been used for the longitudinal cross section.

AR, is the transition amplitude from nucleon N to resonance R with helicity
A= %, %, and it is assumed to be Q? independent [I58]. A%/\ values are estimated
from electromagnetic decays at Q* = 0 [15].

In order to estimate the uncertainties to &g for each resonance, the [AJM] model
followed the standard Gaussian (normal) distribution approach [7]. For Ps3(1232)
and F37(1950), according to the 2016 [15], the uncertainties on their isospin
structure should be zero. However, the [AJM]analysis adopted the conservative error
assignment introduced in [I58], where 10% and 100% errors have been assigned to
yr for the P33(1232) and F37(1950), respectively.

For the background part, the transverse and longitudinal electromagnetic cross
sections can be transformed to their vZ counterparts by the ratio |7, 158]

ot _ kot ko BIHQ) + kg REMQ?) + ko™ Bo™(QP)

— 7.14
orL 1+ REM(@Q?) + R)M(Q?) + REM(Q?) ’ (714)

. T,L ) )
where the ratios R/~ are defined as the vector meson V' cross sections normalised
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by the p meson cross section:

Y'p—Vp

RIL — Opp,
Vv g PP D
T,L

A(rgmy -

SR\ T+ QY mE

with V' = w, ¢. The vector meson V leptonic decay constant fy, f& ~ 1/ry, can
be experimentally measured and hence ry = {0.67,0.062,0.059} for V = p, w and
¢ [198]. The continuum part is represented by the ratios

T rc 1+Q2/m2 ’
_ =T P
o) "
and
_re | md 1 Q*/m?
Re = T, Q_g In(1+Q*/mo) - 1+ Q2/m3]/ (1+ Q2/m§)2] ’ (717)

where mg = 1.5 GeV and ¢ = 321 [I58]. r¢ is the fraction from the continuous
) :

mass hadronic spectrum and is defined explicitly as
Tczl—zrv. (718)
%

As can be seen, each term in the numerator of Eq. ([7.14)) is scaled by the ratio
kv. Here, a generalisation of the [VMD| model is adopted, assuming that the vZ
cross section for vector meson V' can be obtained from the purely electromagnetic

cross section multiplied with the scaling ratio ky:
o1\ = ky oV, (7.19)
where

k,=2— 4 sin? Oy,
k, = — 4sin? Ow,

ky = 3 — 4sin® Oy . (7.20)

The parameters k'g’L represent the ratio of the vZ and ~v continuum contribu-

tions to the cross section. These parameters received considerable discussions in the
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literature as there is no simple approach to estimate their values. In the[AJM]model,
the values of k:g’L have been estimated by applying constraints from global QCD fits
of PDFsl The [AJM| model introduced a significant reduction in the k% uncertainty
compared with that obtained in the GHRM model, which will be discussed in the
next section. Conversely, the model, obtained a large error on k%. That error,

however, has an insignificant impact on the estimation of D‘W/Z.

An additional source for uncertainty on the background part stems from the
ratios RL:E and RZ;’L in Eq. (7.14). The |AJM| model estimated this uncertainty by
taking the discrepancy between these ratios determined in the VMD+Regge model

at Q?> = 7 GeV? and the measured vector meson production cross sections from
HERA [199].

In the region (Region III), the m model computed the vZ structure
function from the ABM11 PDF parameterisation [I97]. Due to the absence of inter-
ference structure functions at low Q?, the authors of [197] have taken the values for
the higher-twist contributions to FI'” to be the same as for F)'?. Therefore, in the
model, a conservative 5% uncertainty on both F7'¥ and Fj” in the region

has been assigned.

7.2.3 GHRM Model

In the GHRM model, the VMD+Regge parameterisation has been extended to
include the entire kinematic region of the dispersion integral.

In transforming the resonant part of the electromagnetic structure functions
into their corresponding vZ structure functions, Gorchtein et al. [I58] calculated
the errors on the yr, Eq. , parameters by taking into account the extreme
values of the helicity amplitudes AJ}{,\, where they assumed that the distribution
is uniform. By adding the uncertainties linearly, the GHRM model produced very
conservative errors on &g.

In the GHRM model, the nonresonant background has been transformed by
multiplying the VMD+Regge background with the ratio defined in Eq. . The
main difference between the and GHRM models is in the continuum term that
contributes to the background error. Gorchtein et al. equated the purely electro-
magnetic and vZ interference continuum term and assigned a 100% uncertainty to

this contribution.
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7.3 Structure Functions from Lattice QCD

Beside the phenomenological models, the direct computation of structure func-
tions via the hadronic tensor or Compton amplitude provide complementary meth-
ods. Therefore, in this section the structure functions within the lattice QCD frame-
work will be highlighted.

The differential cross section for deep-inelastic scattering can be divided into
leptonic and hadronic components. The hadronic tensor may be written in terms of

the form factors Fi(z,¢*) and Fy(z,q?) as

4y 1 p-q p-q
W,uu(pa Q) = (5;u/ - ”—2>F1(,T, q2) +— <pu - _2qM> (pu - _2ql/> F2<:U> q2)- (7'21)
q pq q q
For unpolarised structure functions, the optical theorem relates the hadronic tensor

to the forward Compton amplitude

Tty ) = (3= 25) Bl ) + = (= a) (= Bl ) Falons®), (722
where w = 2p - ¢/¢*. By crossing symmetry, 7},,(p,q) = T, (p, —q), hence F; is
an even function of w and F, an odd function, i.e., Fi(w,¢?) = Fi(—w,q¢*) and
—Fo(w,q*) = Fa(—w,q*). The discontinuity of the forward Compton amplitude
through the cut starting at w = 1 in the complex w plane gives the hadronic tensor

for nucleon targets. In the physical range 1 < |w| < o0,
SmFr2(w, ¢*) = 21 F1o(w, ¢%). (7.23)

At large Q?, the deep-inelastic structure functions can be described by the parton
model. At low Q?, however, the parton model cannot provide accurate descriptions
of the rich structure of the inelastic scattering data.

A recent new lattice method to compute the structure functions directly from
the product of electromagnetic currents was proposed in [§]. In that method, the

direct calculation of the forward Compton amplitude via the Feynman-Hellmann

technique has been performed. Applying the |operator product expansion| (OPE|) to

the forward Compton amplitude allows one to relate the structure functions Fi 2(w)
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to the Mellin moments of Fj»(w) as

o0 1
Twpg)= Y {(%—%)M" / dzz" "' Fi(z, ¢%) (7.24)

n=24,... 0

P-q P-q 8 L1
+ (pp, - ?%L) (pl/ - ?qu> —Ww
1
X / dra" *Fy(x, qz)}.
0

Summing the geometric series in Eq. (7.24]) enables the identification of specific
components of the forward Compton amplitude. For example, choosing = v = 3

and P3 = g3 = q, = 0 yields

1
2 X 2

Fig. represents lattice results for the proton Compton amplitude T33(p, q) for
different momenta obtained in [g].

A possible extension to this method involves studying the 77 interference Comp-
ton amplitude 777, This leads to the question of what accuracy of ;% on lattice is
necessary to improve the AJM or GHRM models. In the next section, Eq. will

be used to calculate T7?, which in turn requires a brief discussion on F{'?(z, Q?).

7.4 Compton Amplitude 7} “ and Structure Func-
tion F)”

The integral over z in Eq. ((7.25)) is divided into the pieces described in the [AJM
model. As the elastic piece is included, the elastic structure functions must also be
considered. In elastic scattering, the response functions can be expressed in terms

of combinations of squared electromagnetic form factors as [67]

2 2 Yp 2\\2 Q2
Wi, Q%) = T (GR@QY (v - 337 )
(GRL(QY))? + L5 (GP(Q?))? Q?
W2(V7 Qz) = . 1 —0—4—}/2[]\;2 B 5<V - m), (7.26)

where M is the nucleon mass, and G (Q?) and G}7(Q?) are the electric and magnetic
form factors of the nucleon. The parameterisation of the nucleon [EM] form factors
presented by Ye et al. in [I80] is used in the current calculations. Similarly, in the

case of the interference structure functions, these response functions can be defined
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Figure 7.3: Lattice results for the proton Compton amplitude T33(p, q) [§].

as
Wi(n. Q%) = o (GR@IEE Q)3 (v — 522,
(GR(Q)GZ(Q%) + L (GIQMGT (@) Q’
Wa(v, Q%) = —£ £ 1 +4}§% M M 5(1/— W> (7.27)

where Gf;f’ ' (@Q?) has been defined in Eq. 7 and the strangeness contribution is
neglected and the assumption of charge symmetry is employed. From Eq. or
(Eq. for vZ interference structure functions), Fi(x, Q?), which is relevant to
the present study, can be defined as [67]

Fi(z, Q%) = MW, (v, Q?). (7.28)

Following the AJM model, 5% uncertainty has been assigned to these elastic struc-
ture functions. From Eq. (7.25), TfZ can be defined as

1
Xz

Before proceeding to the calculations of the proton TfZ at low 2, it is impor-
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tant to check the compatibility of the structure functions at the shared boundaries
between the regions described in the AJM model. In Fig.[7.4] the structure function
F7% (W2, Q?) has been plotted as a function of W?2 for various values of Q? running
from Q?= 0.05 to 10 GeV?2. It is obvious that the F{YZ shows good agreement at
the common boundaries W? = 4, between the CB parameterisation (Region I, blue)
and structure function (Region III, green), and W? = 9 GeV? between the
CB and VMD+Regge (Region 11, red) parameterisations. The uncertainties on this
structure function were included as described in the previous sections.

It is also instructive to show the behaviour of these regions as a function of Q? at
fixed W2. In Fig. , the F7'7 (W2, Q?) structure function has been plotted against
Q? for multiple values of W2 running from W2= 4 to 12 GeV2. F7Z shows excellent
matching at the boundaries between the regions. Furthermore, the DIS structure
functions and the CB parameterisation are well-matched in the overlapping Q-2
plane.

In order to highlight the feature of the AJM model, where constraints from
PDFs [197] were employed, a comparison with the proton F} Z structure function
in the GHRM model [I58] is presented in Fig. for fixed Q? (top panels) and
fixed W2 (bottom panels). As can be seen, the uncertainty on the resulting FJ”
structure function in the GHRM model is significantly overestimated compared to
those obtained from the ABM11 parton distribution functions [197].

The structure functions presented in ABM11 [197] are given at kinematics that
correspond to the squared momentum transferred greater than 0.6 GeV?, i.e., overlap
with the CB region. Using the fact that useful comparisons between several valid
models in the same region are possible enables us to study the proton T} Z for two
different combinations of F}’ Z for a common Q2. As shown in Fig. , this common
Q? can be chosen to be Q? = 1 GeV2. Hence, in the current determination of 777,

the two considered combinations are:

e combination I (comb. I): CB (blue, W2 < W?2 < 9 GeV?)+VMD+Regge (red,
W2 >9 GeV?)

e combination IT (comb. II): CB (blue, W? < W? < 4 GeV?)+PDF (green,
W2 > 4 GeV?)

In Fig. [7.7, the determined 777 at Q? = 1 GeV? with comb. I (top panel) and
comb. II (bottom panel) are depicted as a function of w, which appears in Eq. ,
with their breakdowns into the contributions from the different regions. The total
uncertainty is obtained by adding in quadrature the uncertainties from the relevant

regions.
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Figure 7.4: Proton FfZ(WZ,Q2) structure function against W? at fixed Q?
0.05, 0.5, 1, 1.5, 8 and 10 GeV? for the CB parameterisation [192] (blue dashed),
the VMD+Regge model [196] (red dashed) and the ABM11 PDF parameterisa-
tion [197](green dashed). The common borders between these regions are indicated
by the vertical dashed lines at W2 = 4 and 9 GeV2.
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Figure 7.5: Proton Ff’Z(W2, Q?) structure function against Q2 at fixed W? =4, 6,9
and 12 GeV? for the CB parameterisation [192] (blue dashed), the VMD+Regge
model [196] (red dashed) and the ABM11 PDF parameterisation [197](green
dashed). The common borders between these regions are indicated by the verti-
cal dashed lines at Q2 = 1 and 10 GeV?.

In Fig. a comparison of TFZ from both combinations is presented, and re-
markable agreement is noted in both central curve and uncertainty. Consequently,
this discussion will continue with one of these combinations.

In Fig. , a comparison of the estimated 777 from F” in the AJM model with
those obtained from F7'? in the GHRM model at Q> =1 GeV? reveals that the 777
obtained from the GHRM model shows a larger uncertainty, and this is attributed
to the continuum part treatment followed by Gorchtein et al. [I58]. The central
curves of T} Z from the AJM model and its associated uncertainty are completely
contained within the GHRM T} %'s uncertainty. Looking more closely at Fig. [7.9]
one can see that the difference between the uncertainties of the two models is more
pronounced in the region between w ~ 0.5 and w ~ 0.85. Between these w values,
the GHRM model shows approximately a 20% relative error on T77.

In order to constrain the phenomenological models, the necessary accuracy of
Ty Z on lattice QCD can be found by studying the difference between the calculated
Ty Z from the GHRM and AJM models for low-Q? values. In Fig. for fixed
Q? =1 GeV? (top panel) and Q% = 0.5 GeV? (bottom panel), the magnitude of the
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Figure 7.6: Comparison of the proton F}’ Z(VV27 Q?) structure function in the GHRM
model [158] (red dashed) with the ABM11 parton distribution functions [197] (green
dashed) for fixed @Q? (top panels) and fixed W? (bottom panels).

difference has been plotted (dashed blue line) against w, and the blue shaded area
indicates the uncertainty of T} Z from the GHRM model, while the dashed magenta
line is the uncertainty of those from the AJM model around zero. The former line
provides a baseline that can be used to estimate the required reduction on the un-
certainty of T} 7 from the GHRM model. From Fig. and the uncertainty of T} Z
from the AJM model, taking the percent error suggests a reduction of approximately
70% on T7”’s uncertainty from the GHRM model at Q? = 1.0 and 0.5 GeV2. This
corresponds to a necessary reduction of the relative errors of lattice results for the
proton Compton amplitude T33(p, ¢) presented in Fig , in particular the results
obtained at w between w ~ 0.6 and w ~ 0.85, roughly, to be between ~ 20% and ~
8%.

7.5 Summary and Discussion

Recently, a new lattice method was proposed [8] to calculate the structure func-
tions directly from the product of electromagnetic currents. There is a possibility
that this method can be extended to study the vZ interference Compton amplitude

vZ
Tl .
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Figure 7.7: The determined proton 777 with comb. I (top panel) and with comb. II
(bottom panel). The breakdown into the contributions from the different regions is
shown. The total uncertainty is obtained by adding in quadrature the uncertainties
from the relevant regions.
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Figure 7.8: A comparison between the calculated proton T} Z using comb. I and
comb. II.

This chapter addressed the question regarding the necessary accuracy of sz
from the lattice at low (Q? to constrain phenomenological models that have been
used thus far to calculate the vZ box correction.

In order to accomplish the objectives of this study, two phenomenological models
have been considered, the |[Adelaide-Jefferson Lab-Manitoba| (AJM]) model, as it ob-
tained the most precise calculation of DXZ(E ), and the GHRM model, as it provided

the largest uncertainty on the estimation of DXZ(E).

Since the structure function F7'? is relevant to the calculation of T7%, the con-
sistency of this structure function at the common boundaries between the regions
described in the AJM model was investigated and it was found that F}'? shows excel-
lent matching at the boundaries between the regions. Furthermore, using Eq. ,
T7” has been calculated for two different combinations of F7” that can be obtained
from the AJM model Q%-W? plane for a common Q? value, i.e., Q*> = 1 GeV?, and
a remarkable agreement has been found.

In order to improve the phenomenological models, the required accuracy of T} Z
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Figure 7.9: A comparison between the calculated proton T7” from the AJM and

GHRM models at Q? = 1 GeV?2.
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from lattice QCD can be estimated by studying the difference between the calculated
Ty Z from the GHRM and AJM models for low-Q? values. This study revealed that
a large reduction on Tf’Z’s uncertainty from the GHRM model is needed. This
necessitates a reduction of the relative errors of the lattice results of the Compton
amplitude to be between ~ 20% and few percent.

In order to achieve this improvement, the lattice calculations are likely to require

a two order magnitude increase in statistics.
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Chapter 8
Summary and Conclusion

The investigation of the strange quark contributions, that would necessarily be

related to the ‘sea’; is particularly interesting. The vector matrix elements of the

strange quark, which contribute to the |electromagnetic| (EM]) form factors of the

nucleon, were the primary focus of this work. Within the context of studying the
strange quark form factors contribution, the two quantities usually considered
at low momentum transfers are the strange charge radius and strange magnetic
moment. These quantities play a complementary role in low-energy precision mea-
surements such as Qyweax and P2 experiments.

The [parity-violating electron scattering] (PVES) formalism, which connects the

experimentally measured asymmetry to proton structure, was used in this work to

perform a global analysis of all available world data up to @? ~ 1 GeV? to determine
the strange quark contribution. Under charge symmetry assumption, separation of
the strange quark contributions to nucleon electromagnetic currents requires a third
combination. This combination can be obtained using parity violating electron scat-
tering from the proton, which determines the proton’s weak form factors. To build
a coherent picture of this work, the importance of the PVES| technique—which is a
useful method in, for example, QQwear pPrecision measurements—was motivated as a
starting point. In Chapter [3] the role of strangeness in nucleon structure has been
highlighted to present a relevant perspective for studying the content of the strange
quark of the neutral weak form factors. In Chapter[d], a review of the theoretical pre-
dictions of G, and G, was presented and it was emphasised that none of the theo-
retical approaches renders unambiguous estimates. Lattice[QCD] as a first-principles
approach to [QCD] can give model-independent estimations. However, the majority
of previous lattice studies have been accomplished in the quenched approxi-
mation and only considered the calculation of the connected diagram contribution.

Very recently, several extensive direct calculations of the nucleon’s strangeness form
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factors that involve calculations of the disconnected diagram contribution, which is
considerably more computationally expensive, have been made. Therefore, in Chap-
ter o], the formalism, as a tool to access information about the strange quark
contributions, is introduced in detail along with a brief discussion on the radiative
corrections.

In Chapter [6] a complete global analysis of all asymmetry data, up to the
currently available limit of Q% ~ 1GeV?, for the proton, ‘He and deuteron has been
performed. The Q?-dependence of the strange quark electromagnetic form factors
has been parameterised by a Taylor expansion in (), and the nucleon effective axial
form factor has been described by the dipole form factor with the aim to fit the entire

contributions from the axial radiative and anapole corrections to the data. From
the description of the Q*-dependence, the global analysis was divided into a

(LO) global fit with four parameters g%, ¢, us and ps, and next-to-leading]
(NLOJ fit of six parameters, namely, p. and p, in addition to the previous

four parameters.

To examine the model-dependence of employing a Taylor expansion in the anal-
ysis, a z-expansion fit was performed and was found that the determinations of the
strangeness from factors from both expansions fits were in agreement.

The vZ exchange correction and the effect that the CSV form factors have on the
extraction of the strange quark contribution have been studied. Including the vZ
box contribution in the analysis resulted in small increases in the magnitude of the
central values of s and p; when compared to results obtained without constraints
from the yZ-exchange. The CSV results considered in this work have negligible
effects on the central values of the strangeness parameters.

From the clustering of the considered data set, the separation of the electric and
magnetic strange form factors is most reliable at the discrete momentum transfers
near Q? ~ 0.1, 0.2 and 0.6 GeV?2. At Q? = 0.63 GeV?, this work suggested non-
zero strangeness, with a negative G, and positive G,. In contrast to earlier work
that has suggested vanishing strangeness at this 2, the dominant difference in
the present study is the treatment of the axial/anapole form factor. It was noted
that the back-angle measurements show sensitivity to the effective axial form factor,
presenting an opportunity for future investigation.

In addition, this study revealed an excellent agreement between the extracted
strangeness based on the PVES data and lattice QCD results over the full Q? range.

The interpretation of the QQyweax collaboration results is subject to calculating the
radiative corrections to the level of the required precision. The vZ box corrections

have received special attention from the physics community since the other radiative
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corrections have been calculated to the level of Qyeax e€xperiment precision. The
~vZ box correction, so far, is understood within phenomenological models such as

IAdelaide-Jefferson Lab-Manitobal (AJM)]).

Recently, a new lattice method was developed to calculate the structure functions

directly from a lattice calculation of the electromagnetic Compton amplitude 777.
This method opens the door for a possible extension which involves studying the vZ
interference Compton amplitude 77 Z at low Q2. In Chapter , the question of what
accuracy of T7 Z on the lattice is necessary to improve the phenomenological models
was studied, and was found that there is a possibility that structure functions can be
computed from a lattice calculation of the Compton amplitude with the necessary
accuracy to constrain the phenomenological models.

In summary, a complete global analysis of all PVES asymmetry data for the pro-
ton, *He and deuteron was presented to determine the strange quark contributions
to the electromagnetic form factors of the proton. The vZ exchange correction and
the effect that the CSV form factors have on the extraction of strangeness were in-
vestigated. The CSV form factors taken into account in this work have tiny impacts
on the central values of the strangeness parameters. The results of this study provide
an update to the determination of strangeness over a range of Q? where, under spe-
cific assumptions regarding the effective axial form factor, an non-zero strangeness
is obtained in the vicinity of Q? ~ 0.6 GeV2. The back-angle measurements have
sensitivity to the effective axial form factor. This presents an opportunity for future
investigation. The size of [,z correction is particularly significant to the Standard
Model test by the Quearx €xperiment. This correction can be constrained by phe-
nomenological models. The significance of the [J,; is somewhat less obvious in the
determination of strangeness. Nevertheless, for example, the correction makes ap-
proximately ~ %—Sigma shift to the central value of the precise HAPPEX proton
point at Q? ~ 0.1 GeV?2. This study found that there is a possibility that structure
functions can be calculated from a lattice calculation of the Compton amplitude

with the necessary accuracy to improve these phenomenological models.
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Appendix A

Notations and Conventions

A.1 Pauli Matrices

01 0 —i 10
Tl:<1 0)’ TQ:(@ 0>’ Tg:(o —1)’ (A1)

7_": (’7'1,7'2,7'3)7 (AQ)

Ty = %(71 + i), (A.3)

where 71 are isospin raising and lowering matrices. These matrices satisfy the fol-

lowing properties:

det(r;)=—-1; i=1,2,3.

Tr[1,m] = 204p-

o Tr(r;]=0; i=1,2,3.

[Tas To) = 20€qpeTe-

{Tas o} = 20ap-1.

TaTh — 5ab~] + igabcTc‘
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The proton and neutron form an isospin SU(2) doublet

|proton) = |p) = ((1]) , [neutron) = |n) = (2) : (A.4)

Applying 73, isospin raising and lowering matrices to the nucleon states yields
Tlp) =p), TIn) =—In), 7-|p) =In), Tin)=I|p). (A.5)
The electric charge of the nucleon can be written as
1
Q=5(B+m), (A.6)

where baryon number B = 1. Analogous relations hold for the isospin doublet of u
and d quarks, with the proton replaced by the u quark, the neutron by the d quark
and baryon number B = 1/3 [67].
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Appendix B

The Dispersion Relation

Because of the research of Kronig and Kramers in optics, the dispersion relations
have been considered as a powerful tool to study many physics observables. The
name dispersion is related to the optical dispersion. In general, dispersion theory
relies on a few basic principles of physics: relativistic covariance, causality and
unitarity [I35]. A complete set of scattering amplitudes has to be created within
the framework of the relativity and without kinematical singularities. The scattering
amplitudes and vertex functions will, in general, contain both real and imaginary
parts. The causality implies certain analytic properties of the analytic structure
amplitudes, which enable for a continuation of the scattering amplitudes into the
complex plane and lead to dispersion relations connecting the real and imaginary
parts of these scattering amplitudes. Such dispersion relations have the following

general form:

s—s

Ref(s) = %P/OO ds’w (B.1)

where P is the Cauchy principle value. The above relation is a consequence of using

Cauchy’s integral formula. Using the identity

1 1
— =P +imd(x — x0) (B.2)
r — T — 1€ r — T

allows one to write the full scattering amplitude f(s) as an integral over its imaginary

part: /
£(s) = l/ ds/M (B.3)

T s —s—ie
The above dispersive integral involves all s’. Knowing f(s) at small s requires

an understanding of Imf(s) at large s’. Therefore, the subtraction technique must

be utilised to reduce the dependence on large s’. However, note that the integral
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still run over all s. The subtracted dispersion relation can be written as

f(s) = f(0) _ 1 /“ s’ gm{f<8’>—f<0>} (B.4)

S ™

s — s —1€ s’

since Imf(0) = 0, the above dispersion relation can be reduced further to

s [, Smf(s
f(s)=f(0)+ _/50 ds WS(—)ZE) (B.5)
The subtracted form of the dispersion relation may be required if f(z) # 0 as |z| —
00, as a good behaviour at infinity is required for the derivation of the dispersion
relation. However, even if subtracted dispersion relations are not required, it may
still be useful to perform dispersion relations, particularly in the context of effective
field theories. The subtracted dispersion relation integral weights lower energies

more heavily and reduces the influence of the high-energy region to the subtraction
constant f(0).
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Appendix C

The Parameterisation of the

Nucleon Form Factors

Ye et al. determined the proton and neutron form factors and the associated
uncertainties using world electron scattering data [I80]. In their analysis, the effects
of two-photon exchange were incorporated.

This appendix presents the fit parameters of the electromagnetic nucleon form
factors obtained by Ye et al. [I80]. They performed a global fit procedure using the

parameterisation of the systematic z-expansion:

kmax Y]
G@Q) =) wz*, 2= fow £ O — leu — o (C.1)

apz”, z

k=0 B V tcut + Q2 + V tcut - t[),
where G refers to the G, G4, /u,, G and G/, With kyax = 12 for the proton
and kpax = 10 for the neutron. Here, t; = —0.7 GeV? and t.,; = 4m?2 with the

charged pion mass m, = 0.13957 GeV. The proton and neutron magnetic moments
are given by pu, = 2.79284356 and p, = —1.91304272, respectively.

C.1 Fitting Results

The fit parameters provided in Table are obtained from fits using radius
constraints that are presented in Table[C.2} For G%, the 2016 PDG value ((r3)?) =
—0.1161(22) fm? was used.

Figs. and show the results of the fit for G%, and G%,; normalised to the

dipole form factor.
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C. The Parameterisation of the Nucleon Form Factors

Table C.1: Fit parameters for the electromagnetic nucleon form factors obtained by
Ye et al. [I80] using the z-expansion parameterisation.

Parameter G, G%, /iy G% G/ b
ap 0.23916 0.26414 0.04892 0.25776
a; —1.10986 —1.09531 —0.06453 —1.07954
as 1.44438 1.21855  —0.24083  1.18218
as 0.47957 0.66114 0.39211 0.71102
ay —2.28689 —1.40568 0.30045  —1.34808
as 1.12663 —1.35642 —0.66189 —1.66244
ag 1.25062 1.44703  —0.17564  2.62435
ay —3.63102  4.23567  0.62469 1.75123
as 4.08222  —5.33405 —0.07768 —4.92230
ag 0.50410 —2.91630 —0.23600 3.19789
a1 —5.08512  8.70740 0.09040 —0.71207
ain 3.96774  —5.70700 0 0
a2 —0.98153  1.28081 0 0

Table C.2: Constrained values of form factor radii for G%,, G%, and G%,.

radius output value (fm) error (fm)

7 0.879 0.012
rt 0.851 0.028
rn, 0.864 0.079
1
Gp = 5 (C.2)
(1 + f{—i)

where A? = 0.71 GeV?Z.
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G%/Gp
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Figure C.1: Parameterisation of the G%,/Gp (upper) and G%,/u,Gp (lower), where

the shaded areas reflect the total uncertainties as described in the global lift pre-
sented in [I80].
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Figure C.2: Parameterisation of the G',/Gp (upper) and G%,/u,Gp (lower), where

the shaded areas reflect the total uncertainties as described in the global lift pre-
sented in [I80].
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Appendix D

List of Conferences, Workshop
Proceedings, Submitted and
Future Publications

e Ali Alkathiri, Ross D. Young and James M. Zanotti, Interference electroweak

structure functions, in preparation.

e Ali Alkathiri, Ross D. Young and James M. Zanotti, Charge symmetry vio-
lation in the determination of strangeness form factor, submitted to Physical
Review C, arXiv:1902.01590v1.

e Ali Alkathiri, Ross D. Young and James M. Zanotti, Charge symmetry viola-
tion in the determination of strangeness form factor, Oral presentation, ‘QCD
Downunder 2017 Workshop’, Cairns, Australia, July 10-14, 2017.

e Ali Alkathiri, Ross D. Young and James M. Zanotti, Charge symmetry viola-
tion in the determination of strangeness form factor, poster presented at ‘The
International Nuclear Physics Conference 2016, Adelaide, Australia, Septem-
ber 11-16, 2016.
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