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Abstract

The strange quark contributions to the electromagnetic form factors of the pro-

ton are ideal quantities to study the role of hidden flavour in the properties of the

proton. This has motivated intense experimental measurements of these form fac-

tors. A major remaining source of systematic uncertainty in these determinations is

the assumption that charge symmetry violation (CSV) is negligible. In this analysis,

recent theoretical determinations of the CSV form factors are used and the available

parity-violating electron scattering (PVES) data, up to Q2 ∼ 1GeV2, are reanal-

ysed. This analysis considers systematic expansions of the strangeness electric and

magnetic form factors of the proton. The results provide an update to the deter-

mination of strangeness over a range of Q2 where, under certain assumptions about

the effective axial form factor, an emergence of non-zero strangeness is revealed in

the vicinity of Q2 ∼ 0.6 GeV2. Given the recent theoretical calculations, it is ap-

parent that the current limits on the CSV do not have a significant impact on the

interpretation of the measurements and hence suggests an opportunity for a next

generation of parity-violating measurements to more precisely map the distribution

of strange quarks.

The size of the γZ box correction is particularly significant to the Standard Model

(SM) test by the Qweak Experiment. The uncertainties that arise from the underlying

γZ interference structure functions can be constrained by phenomenological models

such as the Adelaide-Jefferson Lab-Manitoba (AJM) model. Recently, a new lattice

method was proposed to compute the structure functions directly from a lattice

calculation of the electromagnetic Compton amplitude T γγ1 . This method paves the

way for a possible extension that involves studying the γZ interference Compton

amplitude T γZ1 at low Q2. The question about the required accuracy of T γZ1 on the

lattice to improve the phenomenological models was studied.
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Chapter 1

Introduction

In 1911, Ernest Rutherford introduced his atomic theory that describes the

atomic structure as possessing a central charge (later known as a positive nucleus)

surrounded by a cloudy negative distribution of orbiting electrons. He developed

his theory based on the results of an experiment of shooting a beam of alpha par-

ticles through a thin foil of gold. That results proved the existence of the atomic

nucleus where a small portion of alpha particles was scattered back from the gold

sheet, while a large percentage of these particles passed through the sheet with no

deflection.

In 1919, Rutherford proved the existence of the hydrogen nucleus in other nu-

clei based on results from an experiment in which alpha particles were fired into

the nitrogen gas, and the produced hydrogen nuclei were detected by scintillation

detectors. This result described as the discovery of the proton.

In 1964, the quark model was individually developed by Murray Gell-Mann and

George Zweig. In 1968, deep inelastic scattering (DIS) experiments at the Stanford

Linear Accelerator Center (SLAC) verified that the proton consists of point-like

particles. These particles were later known as up (u) and down (d) quarks. The

DIS experiments indirectly confirmed the existence of strange (s) quark that plays

a fundamental role in describing the kaons that have been discovered in cosmic rays

in 1947.

The Standard Model (SM) of particle physics is a theoretical framework which

presently renders the best explanation of the interactions and properties of the

elementary particles. These elementary particles are divided into leptons, quarks

and gauge bosons. Leptons and quarks form the fundamental constituents of matter,

while bosons are the force carriers of different interactions between leptons and

quarks. The SM is a combination of the quantum chromodynamics (QCD), which

describes the strong interaction between gluons and quarks in the nucleon, and the

1



Chapter 1. Introduction

electroweak theory. The electroweak theory is a unified theory of two fundamental

interactions, the electromagnetic and the weak interactions.

In the SM, nucleons are formed of their valence quarks, i.e., proton and neutron

with valence quark content (uud) and (udd), respectively, in addition to virtual

QCD vacuum-generated quark-antiquark pairs that emerge and annihilate in the

quark-gluon sea inside the nucleon. At high-energy regions where the physics is

perturbative, QCD can describe strong interaction and hadronic phenomena, for

example, ‘colour confinement’. However, at low-energy regions where the theory is

nonperturbative, the situation is more complicated.

Theoretically, the sea quarks can consist of any of the six different flavours of

quarks, i.e., up (u), down (d), strange (s), charm (c), beauty (b) and top (t), however,

the most possible quark-antiquark pairs comprise u, d and s quarks. Generally, it is

challenging to separate the sea u and d quark contributions from their corresponding

valence quarks. However, the s quark contributions are totally from the sea. Despite

the strangeness, which is a quantum number that was introduced in the 1950s by

Gell-Mann and Nishijima, of nucleons being zero, the s quarks could have a space-

time distribution inside the nucleons. Therefore, questions can be raised about the

strange quark’s contribution to the static properties of the nucleon.

The investigation of the strange quark contributions, that would necessarily be

related to the ‘sea’, to the nucleon static properties such as mass (scalar matrix

elements), the electromagnetic properties (vector matrix elements) and the spin

(axial vector matrix elements), is particularly interesting. The two quantities usually

considered in the context of the strange quark contributions at low momentum

transfers are the strange charge radius and the strange magnetic moment.

The SM electroweak theory, which has been developed in the last half-century,

introduced successful tools to study the structure of the nucleon using the weak

interaction. The parity-violating (PV) interaction of electron with nucleon renders

information on the weak neutral current of nucleon and its related quark structure,

including sensitivity to strange quark-antiquark effects.

In Chapter 2, a brief overview of the SM is presented as it is the main framework

of this study. Since the interference of the weak and electromagnetic interactions has

a particular focus, a short introduction to the electroweak theory is also included.

Although the SM has demonstrated its successes in predicting many experimental

results, it is seen as incomplete. Performing precision measurements can be utilised

as a SM test. In Section 2.3, as an example, the Qweak experiment, which placed

new constraints on search for new physics, is briefly highlighted.

It is instructive to highlight, in general, the role of the strange quark within

2



Chapter 1. Introduction

nucleon structure. Chapter 3 describes the physics of strange quark-antiquark pairs

ss in the nucleon and provides motivation for the PV electron scattering method to

study the strange quark content of the nucleon.

A survey of different theoretical approaches to studying the strangeness contribu-

tion to the electromagnetic (EM) vector form factors of the nucleon will be presented

in Chapter 4, concentrating on their predictions of the strange magnetic form factor

Gs
M and strange electric form factor Gs

E at zero momentum transfer Q2 = 0, i.e.,

focusing on the strange magnetic moment µs ≡ Gs
M(Q2 = 0) and the strangeness

mean-square radius 〈r2
s〉E = −6 dGs

E(Q2)/dQ2(Q2 = 0). Other definitions of charge

radius are certainly possible, but this is the most common one in the literature.

In addition to the purely electromagnetic interaction, which dominates electron

scattering, the electron also interacts via the weak interaction. Although the weak

interaction, which violates parity, is several orders of magnitude smaller than the

electromagnetic interaction, which conserves parity, the weak interaction can play

an important role in studying a part of nucleon structure that cannot be investigated

through studies that only consider the electromagnetic interaction.

In 1988, Kaplan and Manohar [1] suggested that the strange electric and mag-

netic form factor contributions can be estimated through measurements of the weak

neutral current matrix elements. In the following year, McKeown [2] and Beck [3]

suggested an experimental program to measure the weak neutral current of the pro-

ton using PV electron scattering in order to estimate the strange quark contribution

to the vector matrix elements.

Chapter 5 considers the formalism involved in the description of PV asymme-

try for elastic electron-proton scattering, elastic electron-helium-4 scattering and

quasielastic electron-deuteron scattering. Higher-order electroweak corrections will

also be highlighted and included in the analysis of this work. In the present work,

the axial-vector form factors encode higher-order radiative corrections and hadronic

anapole contributions, and the dominant contribution is determined by the consid-

ered data set. In Section 5.4, the main experimental programs that discuss PV

electron scattering from the proton, helium-4 or deuteron with varying kinematic

conditions and measured APV will be summarised. The set of all available PV elec-

tron scattering data, up to the currently available limit of Q2 ∼ 1GeV2, is presented

at the end of this chapter.

Chapter 6 will serve to illustrate the analysis of the considered dataset to deter-

mine the form factors of the strange quark content. A major remaining source of

systematic uncertainty in these determinations is the assumption that charge sym-

metry violation (CSV) is negligible. In Section 6.3, CSV effects will be investigated
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Chapter 1. Introduction

using theoretical CSV calculations.

The strangeness content of the proton acts as a background role in precisely

interpreting, for example, the Qweak [4] or P2 [5] collaborations measurements of the

proton’s weak charge Qp
W . In contrast to the formalism relevant to atomic parity

violation experiments, an energy-dependent correction arising from the γZ box cor-

rection was highlighted by Gorchtein and Horowitz [6]. The size of this correction is

particularly significant to the standard model test by the Qweak Experiment [4]. The

most recent calculation of the γZ box correction will be used in the global analysis

introduced in Chapter 6 with utilising the updated relevant inputs presented in 2016

PDG.

The γZ box correction, so far, is understood within phenomenological models

such as Adelaide-Jefferson Lab-Manitoba (AJM) model [7]. A recent new lattice

method has been proposed to compute the structure functions directly from a lattice

calculation of the electromagnetic Compton amplitude T γγ1 [8]. This method opens

the door for a possible extension involving the γZ interference Compton amplitude

T γZ1 at low Q2. In Chapter 7, the question of what accuracy of T γZ1 on the lattice is

necessary to improve the phenomenological models will be studied.

Finally, in Chapter 8, the results of this work will be summarised to draw a com-

plete picture about CSV effects and the strange quark electromagnetic form factors

in the nucleon properties. Some main conclusions about the phenomenological mod-

els of the γZ box correction also will be revisited.
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Chapter 2

The Standard Model and Beyond

The Standard Model (SM) of particle physics describes the present understanding

of the fundamental particles and their interactions. It is commonly believed that

the atoms have a central nucleus surrounded by a cloud of electrons, and that the

nucleus is composed of smaller particles, i.e., protons and neutrons. Protons and

neutrons, collectively known as nucleons, are made of quarks, which are currently

understood to be fundamental particles.

In this chapter, a brief overview of the SM will be introduced. Since this work is

essentially done in the context of the interference of the weak and electromagnetic

interactions, a short introduction to the electroweak theory will be presented.

In spite of the tremendous achievements of the SM, it does not adequately explain

some phenomena. Performing precision measurements can therefore provide a test

of the SM. In Section 2.3, as an example, the Qweak experiment [4], which places

new constraints on search for new physics, will be briefly highlighted. Further useful

discussion on electroweak tests can be found in [9–11].

2.1 The Standard Model

The SM of particle physics successfully describes three fundamental forces, elec-

tromagnetic, weak and strong interactions.

The SM classifies all known elementary particles into fermions (half-integer spin)

and bosons (integer spin). Fermions are divided into three generations of leptons

and quarks according to their characteristics, such as, mass and electric charge,

while bosons are divided into gauge bosons (force carries, spin 6=0) and scalar bosons

(spin=0), see Fig. 2.1. The Higgs boson, a massive scalar boson which was recently

discovered [12, 13], associated with the Higgs field is responsible for generating mass

for fundamental particles in the SM.

6



Section 2.1. The Standard Model

Figure 2.1: The Standard Model (SM) of particle physics. Figure taken from [14].

Based on the SU(3)c × SU(2)L × U(1)Y gauge group, the strong interactions

are related to the quarks’ colour symmetry group SU(3)c, and the electroweak in-

teractions are a result of the SU(2)L × U(1)Y . The subscripts c refers to colour,

L means that the SU(2) acts only on left-handed fermions and the Y refers to the

weak hypercharge.

The interaction between the quarks and leptons that make up matter occurs

via the exchange of vector bosons (gauge bosons). The photon carries the electro-

magnetic force. In the case of QCD, gluons are responsible for the strong force−
they combine the quarks to make up mesons (quark-antiquark) and baryons (three

bound quarks). Mesons and baryons are collectively called hadrons. The W± and

Z0 bosons carry the weak force. Leptons experience only the electromagnetic and

weak interactions. Table 2.1 presents the SM forces and their mediating particles

(gravitational force is not included).

Each of the SM forces have a ‘charge’ that can be occupied by the different

particles. The ‘charge’ for the electromagnetic interaction is what is usually thought

of as a charge. The weak charges are expressed in terms of the weak mixing angle.

The strong colour charge is red, green or blue—composite particles can only exist in

7



Chapter 2. The Standard Model and Beyond

Table 2.1: The SM forces and their carrier particle (gravitational force is not in-
cluded). The data is taken from Particle Data Group (PDG) [15].

Particle Mediates Interaction Mass[GeV] QEM

γ Eelectromagnetic 0 0
W±, Z0 Weak 80.4, 91.2 ±1, 0
gluons Strong 0 0

combinations. Table 2.2 shows some of the SM particles (fermions) properties such

as the electric charge (Q) and the weak current couplings (gV and gA).

The present work utilises the interference of the weak and electromagnetic forces,

so the next section will introduce a brief overview of the electroweak theory.

2.2 Electroweak Theory

It has been observed that neutral weak current couple to the particles with

different strength. From Table 2.2, the vector coupling gV is related to the weak

isospin and to the electric charge, while the axial-vector coupling gA is related to

the weak isospin. The theoretical basis for the unification of the SM electroweak

theory was first introduced by Glashow [16]. Glashow included the Z0 boson as

an extension of electroweak unification models. Under the resulting SU(2) × U(1)

gauge group, the electroweak unification is achieved.

The electroweak Lagrangian that describes the interaction and kinetic terms for

the Standard Model fermions and gauge bosons can be given by

LEW =χ
L
γµ
(
i∂µ − g ~T · ~Wµ − g′

Y

2
Bµ

)
χ
L

+ ψ
R
γµ
(
i∂µ − g′

Y

2
Bµ

)
ψ
R

− 1

4
~Wµν · ~W µν − 1

4
BµνB

µν

=χ
L
γµi∂µχL − gJ iµ ·W i

µ − g′
1

2
jY µBµ + ψ

R
γµi∂µψR − g′

1

2
jY µBµ

− 1

4
~Wµν · ~W µν − 1

4
BµνB

µν , (2.1)

where χ
L

refers to the left-handed fermion doublet and ψ
R

refers to the right-handed

fermion singlet. ~T are the generators of SU(2)L and are related to the Pauli matrices

τ , i.e., Ti = τi
2

where i = 1, 2, 3 (see Appendix A). The hypercharge Y is the

generator of U(1)Y . ~Wµ and Bµ are the gauge fields associated with SU(2)L and

8



Section 2.2. Electroweak Theory

Table 2.2: Selected properties of the three generations of SM particles. Q is the
electromagnetic charge in units of e. gV and gA are the vector and axial-vector weak
current couplings, respectively.

Generation
Fermions 1 2 3 Q gV gA
Lepton νe νµ ντ 0 1 −1

e µ τ -1 −1 + 4 sin2 θW 1
Quark u c t 2/3 1− 8/3 sin2 θW −1

d s b −1/3 −1 + 4/3 sin2 θW 1

U(1)Y , respectively. g and g′ are the coupling constants. J iµ is the weak current

J iµ =χ
L
γµTiχL

=χ
L
γµ
τi
2
χ
L
, (2.2)

where the third current (i = 3) describes the weak neutral current (it does not change

the charge of the particle involved in the interaction). jY µ is the weak hypercharge

current

jY µ = χ
L
γµY χ

L
+ ψ

R
γµY ψ

R
. (2.3)

The electromagnetic current can be defined in terms of the weak neutral current J3µ

and weak hypercharge current jY µ as

jemµ = J3
µ +

1

2
jYµ , (2.4)

or in terms of the generators (Gell-Mann–Nishijima formula) as

Q = T 3 +
Y

2
. (2.5)

The field strength ~Wµν and Bµν are given by

~Wµν = ∂µ ~Wν − ∂ν ~Wµ − g ~Wµ × ~Wν ,

Bµν = ∂µBν − ∂νBµ. (2.6)

The Lagrangian Eq. (2.1) is gauge invariant under the SU(2)L and U(1)Y trans-

formations. However, in describing the real physics, the ~Wµ and Bµ need to be

replaced by the gauge fields W±, Zµ and Aµ. W± and Zµ mediate the weak interac-

tion, and Aµ is the photon field that carries the electromagnetic force. W± bosons

9



Chapter 2. The Standard Model and Beyond

couple only to the left-handed doublet fermions, and W± fields can be written as

W± =
1√
2

(
W 1
µ ∓ iW 2

µ

)
. (2.7)

Z boson and photon couple to right- and left-handed fermions. Therefore, from

mixing of the two vector fields W 3
µ and Bµ, Zµ and Aµ fields can be defined in terms

of W 3
µ and Bµ as

Zµ =
1√

g2 + g′2

(
gW 3

µ − g′Bµ

)
,

Aµ =
1√

g2 + g′2

(
g′W 3

µ + gBµ

)
. (2.8)

Defining the weak mixing angle (Weinberg angle) in terms of the coupling constants

g and g′ as

sin θW =
g′√

g2 + g′2
, cos θW =

g√
g2 + g′2

, (2.9)

leads to redefining Zµ and Aµ fields as

Zµ = cos θWW
3
µ − sin θWBµ,

Aµ = cos θWBµ + sin θWW
3
µ . (2.10)

Using these expressions allows one to write

−gJ3
µW

3µ − g′

2
jYµ B

µ =−
(
g sin θWJ

3
µ + g′ cos θW

jYµ
2

)
Aµ

−
(
g cos θWJ

3
µ − g′ sin θW

jYµ
2

)
Zµ. (2.11)

In order to obtain the electromagnetic part from Aµ, one needs to apply the condition

g sin θW = g′ cos θW = e. (2.12)
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Hence, Eq. (2.11) becomes

−gJ3
µW

3µ − g′

2
jYµ B

µ =− ejemµ Aµ − g

cos θW
(J3
µ − sin2 θW )Zµ

=− e
∑
f

QfψfγµψfA
µ

− g

cos θW

∑
f

ψfγµ

[1

2
(1− γ5)T 3

f − sin2 θWQf

]
ψfZ

µ

=− e
∑
f

QfψfγµψfA
µ

− g

4 cos θW

∑
f

ψfγµ

[
gfV + gfAγ

5
]
ψfZ

µ, (2.13)

where gfV = 2T 3
f − 4Qf sin2 θW and gfA = −2T 3

f
1. Note that for the fermions, the

above equation should be applied to their chiral components separately.

The Electroweak Lagrangian can be rewritten as

LEW =χ
L
γµi∂µχL + ψ

L
γµi∂µψL

− g√
2

(
J+µW+

µ + J−µW−
µ

)
− ejemµAµ −

g

4 cos θW
JNCµZµ

− 1

4
~Wµν · ~W µν − 1

4
BµνB

µν , (2.14)

where jemµ is the usual electromagnetic current,

jemµ =
∑
f

Qfψfγ
µψf , (2.15)

and JNCµ is the weak neutral current,

JNCµ =
∑
f

ψfγ
µ
[
gfV + gfAγ5

]
ψf . (2.16)

The gauge symmetry prevents the gauge bosons from acquiring masses, i.e., mass

terms for any gauge bosons are prohibited since they are not invariant under gauge

transformations. Fermion masses are also prohibited because they mix left- right-

handed fields and therefore violate gauge invariance. Thus, the above Lagrangian

contains massless fields. In order to generate the masses of the physical particles, the

1The convention used in [10] has been followed in this work. In the literature, the charged and
neutral currents are affected by a factor of 1

2 . To overcome this difference, one simply needs to
redefine the coupling constants in the scattering amplitude.
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Chapter 2. The Standard Model and Beyond

symmetry gauge theory of electroweak interactions is spontaneously broken [17, 18]

when adding a complex scalar Higgs doublet φ =

(
φ+

φ0

)
to the model with potential

given by

V (φ) = µ2φ†φ+
λ

2
(φ†φ)2. (2.17)

This is called the Higgs mechanism [19–22], Fig. 2.2.

For negative µ2 and positive λ, the ground state of the potential V (φ) does not

appear at φ = 0. Since there is a circle of minima (an infinite number of minima)

centered around φ = 0, the choice of the minimum is arbitrary, see Fig. 2.2. By

convention, the minimum of the form

φ0 =
1√
2

(
0

v

)
(2.18)

has been chosen, where v is the vacuum expectation value. This approach of obtain-

ing an asymmetric ground state is called spontaneous symmetry breaking. Breaking

the gauge symmetry (albeit in a way that leaves the Lagrangian invariant) allows

us to have mass terms. After spontaneous symmetry breaking, the photon remains

massless since the electromagnetic gauge symmetry has not been spontaneously bro-

ken, and the weak gauge bosons are found to acquire mass.

2.3 Beyond the SM

The weak coupling constant g in the vertex factors for neutral and charged weak

current interactions can be defined in terms of the masses of the weak exchange

bosons Z and W± as

g2 =
8GFM

2
W√

2
=

8GFM
2
Z cos2 θW√

2
, (2.19)

where GF is the Fermi constant. The relevant SM parameter, here, is the weak

mixing angle sin2 θW . In the electroweak theory, g is linked to the electromagnetic

charge by e = g sin θW , Eq. (2.12).

In regards to the experimentally precision extraction, a renormalised definition

of the sin2 θW is required. The on-shell scheme [23–26] renormalised definition of

sin2 θW at tree level is given by

sin2 θW = 1− M2
W

M2
Z

, (2.20)
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V (φ)

Re φ

Im φ
Circle of minima

True vacuum

False vacuum

Figure 2.2: Higgs mechanism and the potential V (φ), Eq. (2.17), for negative value
of µ2.

and this definition was used broadly at an early stage. Due to finding that the

top quark mass mt is large, the above renormalised expression became largely un-

favoured because its use induced misleading radiative corrections, which means that

an alternative expression is required [9]. Currently, the most popularly used ex-

pression of the weak mixing angle is derived from the modified minimal subtraction

(MS) renormalisation scheme [27] and is given by

sin2 θW (µ)MS = e2(µ)MS/g
2(µ)MS, (2.21)

where µ is an arbitrary energy scale and given by µ =
√
|q2| ≡ Q, where q2 is the

four-momentum transfer squared. As strong coupling αs(Q) exhibits a running with

respect to the energy, so does sin2 θW as shown in Fig. 2.3.

Precision measurements can be used as Standard Model tests, where a detected

disagreement with the SM prediction will signify the signs of physics beyond the

SM. The Qweak experiment [4], which did determine the proton’s weak charge, Qp
W ,

to a precision of 6%, is suitable for probing mass scales of new physics in the TeV

range.

In addition to the Qweak experiment, previous parity-violating electron scattering
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Chapter 2. The Standard Model and Beyond

Figure 2.3: The running of sin2 θW with respect to the energy scale Q in the MS
renormalisation scheme [28]. This plot is adapted from [4].

(PVES) experiments, which are defined formally in Chapter 5, may be used to place

constraints on new physics beyond the Standard Model [29] and to reduce hadronic

structure uncertainties that are related to the knowledge of the strange quark and

the axial form factors contributions.

The Qweak experiment involves the interaction of electrons and the valence quarks

in the proton. The effective low-energy Lagrangian that characterises the virtual-

exchange of a Z0-boson can be expressed as [30]

LeqNC = −GF√
2
eγµγ5e

∑
q

C1qqγ
µq, (2.22)

where C1q are the weak vector coupling constants. The parity-violating part of the

Lagrangian can be defined as a combination of the Standard Model Lagrangian and

a Lagrangian for new physics [30]:

LeqNC = −GF√
2
eγµγ5e

∑
q

C1qqγ
µq +

g2

4Λ2
eγµγ5e

∑
q

hqV qγ
µq, (2.23)

where Λ, g and hqV are the mass scale, the coupling constant and effective coefficients

related to the new physics, respectively. The precise measurements obtained by
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Qweak collaboration put considerable constraints on many new physics scenarios, i.e.,

more precise the measurement of the proton’s weak charge means more significant

constraints on new physics.

Assuming the 95%-confidence-level, the sensitivity to the mass scale of new

physics in terms of Qp
W and its uncertainty ±∆Qp

W can be expressed as [4]

Λ±
g

= ν

√
4
√

5

|Qp
W ± 1.96∆Qp

W −Qp
W (SM)| , (2.24)

where ν2 =
√

2/(2GF ), Λ is the mass reach for new physics and 1.96 indicates that a

95%-confidence-level was chosen. The sensitivity to the mass scale can be expressed

as a function of the possible range of the flavour mixing angle, θh, of the new physics

with setting the isospin dependence by huV = cos θh and hdV = sin θh.

The Qweak result, where the most precise and smallest asymmetry measurement

was obtained, put considerable constraints on wide range of search of new physics

beyond the SM. For example, the Qweak’s measurements put considerable limits on

the studies of leptoquarks (hypothetical particles that can change quarks into leptons

and vice-versa). Furthermore, this result is sensitive to searches for an additional

neutral gauge bosons (Z ′) and different supersymmetric models. Moreover, the

information extracted from this experiment may serve as a test to identify new

physics that could be found in the future at the Large Hadron Collider (LHC).

In addition to the usefulness of PVES as a tool to probe new physics beyond

the SM, this technique can be used to provide precise information about nucleon

structure. Particularly, it places tight constraints on the size of the strange quark

contribution which is difficult to predict theoretically. Theoretical estimations for

the strangeness contribution to the nucleon electromagnetic form factors can be done

using some approaches, for example, chiral perturbation theory (ChPT), dispersion

relations, vector meson dominance (VMD) and lattice quantum chromodynamics

(LQCD). However, these estimations, as reviewed briefly in Chapter 4, widely vary.

In this work, a complete global analysis of all PVES asymmetry data, up to

the currently available limit of Q2 ∼ 1GeV2, for the proton, 4He and deuteron is

presented. A considerable remaining source of systematic uncertainty in the experi-

mental measurements of the strangeness form factors of the proton is the assumption

that charge symmetry violation (CSV) is negligible. As the CSV effects have not

been throughly quantified, several theoretical predictions of CSV [31–35] in the pro-

ton’s electromagnetic (EM) form factors are taken into account in the current work.

It is appropriate that the next chapter be dedicated to highlighting the role of

strangeness in nucleon structure. In particular, it will present a relevant perspective
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for studying the content of the strange quark-antiquark pairs of the neutral weak

form factors.
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Chapter 3

The Strangeness in the Nucleon

The first hint that the proton has a nontrivial structure occurred when Frisch

and Stern1 conducted a measurement of the proton’s magnetic moment µp [36, 37].

Their results showed the µp to be more than one nuclear magneton (µN), ∼ 2.5µN .

Then, in 1940, Alvarez and Bloch made a first direct measurement of the neutron’s

magnetic moment and was found to be ∼ −1.93(2)µN [38]. These findings violated

the assumption at the time that the proton and neutron are elementary particles.

In the late 1960s, deep inelastic scattering (DIS) experiments conducted at Stan-

ford Linear Accelerator Center (SLAC) confirmed that the nucleon is composed of

point-like Dirac particles (quarks). Soon after, quantum chromodynamics (QCD)

was developed to describe the interaction between these quarks by introducing a

gauge colour force between quarks.

The modern description of the proton is that it is composed of three valence

quarks, i.e., two up quarks and a down quark, that are held together by the strong

force. The valence quarks are surrounded by virtual QCD vacuum-generated quark-

antiquark pairs that emerge and annihilate in the quark-gluon sea inside the proton.

There is no constraint on the quark flavours of the sea quarks, however, the lightest

quark pairs (uu, dd and ss) are most likely to exist within the sea quarks. Hence,

the strange quark contribution to the proton properties derives from the sea quarks.

Fig. 3.1 illustrates this description for proton structure.

Although the net strangeness, which is a quantum number that was indepen-

dently proposed in the 1950’s by Gell-Mann2 and Nishijima [39–41], of the nucleon

is zero, the s quarks could still have a space-time distribution inside the nucleon.

At high momentum transfers, where the theory is perturbative, QCD can de-

1Stern was awarded the 1943 Nobel prize for the first measurement for the proton’s magnetic
moment, µp.

2Gell-Mann received the 1969 Nobel Prize in physics for his work on the classification of ele-
mentary particles and their associated interactions.
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Figure 3.1: The proton’s internal structure.

scribe the strong interaction and hadronic phenomena. However, at low momentum

transfers, where the theory is nonperturbative, the situation is more complicated

due to the large coupling constant αs in this momentum region (it is of the order of

unity at low energy).

Most of the observations that have been made are restricted to the proton because

the free neutron does not exist in nature. On account of this fact, the strangeness

in the proton will be briefly highlighted in the next sections in order to present

the appropriate viewpoint for discussion of the strange quark-antiquark pairs ss

content in the nucleon through the parity-violating (PV) electron scattering method

described in Chapter 5.

3.1 Strangeness in the Nucleon Mass

The contribution of the strange quark to the nucleon mass is characterised by

the strange quark sigma term, σs.

Sigma terms are, in general, given by the matrix elements of the scalar quark
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currents qq between nucleon states. Therefore, the σs and σl terms can be defined

as [42]

σs = ms

〈
N |ss|N

〉
,

σl = ml

〈
N |uu+ dd|N

〉
, (3.1)

where σl is the light quark sigma term, ml = (mu + md)/2 is the average up and

down quark mass and ms is the strange quark mass.

The strange nucleon sigma term σs has traditionally been poorly determined.

Phenomenologically, the determination of σs reveals a wide range of values, which

indicates that the strange quark contribution is between 0 and more than 30% of

the nucleon mass [43]. It is generally calculated from the small difference between

σl and the non-singlet combination σ0. The σ0 can be written as

σ0 = ml

〈
N |uu+ dd− 2ss|N

〉
. (3.2)

The σl can be derived from π-N scattering using dispersion calculation [44, 45] and

the σs can be determined from the physically observed baryon mass spectrum. The

preceding sigma terms are connected with each other by the relation

σs =
ms

2ml

(σl − σ0). (3.3)

Most commonly, one can define the y-parameter to represent the strangeness

content of the nucleon as

y =
2
〈
N |ss|N

〉〈
N |uu+ dd|N

〉 =
2mlσs
msσl

. (3.4)

In addition to characterising the purely sea quark content of the nucleon, this param-

eter plays an important role in dark matter detection rates, which depend sensitively

on the nucleon scalar matrix elements.

The determination of σs is remarkably sensitive to the difference between σl and

σ0, Eq. (3.3). A recent and comprehensive analysis that is based on the Roy-Steiner

equations for πN scattering obtained a value of σl = 59.1±3.5 MeV [46]. Given the

considerable uncertainty of the value of σs extracted from σl due to the experimental

uncertainties and variance of the πN scattering data, the limited precision of higher-

order chiral corrections to the hyperon mass and the uncertainty associated with the

quark mass ratio, the extrapolation of the data to the unphysical region (Cheng-

Dashen points), there is a notable scope for lattice QCD to present a significant
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constraint on sigma terms. In recent years, several lattice QCD studies, e.g., [47–53],

have been conducted to determine the sigma terms. Within the framework of lattice

QCD, two methods are employed to determine these sigma terms. The first is a direct

measurement of the scalar matrix elements by 3-point function methods (direct

method). The second extracts the sigma terms through the use of the Feynman-

Hellmann theorem (spectrum method).

In the first method, relevant ratios of 3-point and 2-point correlation functions

are constructed to extract the required matrix elements. The construction of the

correlation functions requires two different forms of Wick contraction. In partic-

ular, as shown in Fig. 3.2, there are contributions from quark-line connected and

disconnected operator insertions for up and down quarks and only disconnected in-

sertion for strange quarks. The disconnected contributions, which require ‘all-to-all’

quark propagators to be calculated, are extremely challenging and this is especially

important for the strange quark contributions in the nucleon [54–56].

Instead of the direct 3-point method, one can consider the Feynman-Hellman

theorem [57, 58] which relates the nucleon scalar matrix elements to the dependence

of the nucleon mass on the quark masses via the equations

σl = ml

〈
N |uu+ dd|N

〉
= ml

∂MN

∂ml

, (3.5)

σs = ms

〈
N |ss|N

〉
= ms

∂MN

∂ms

. (3.6)

The Gell-Mann-Oakes-Renner (GOR) relation [59] is usually invoked such that MN

is defined as a function of the squares of meson masses. Therefore, the derivatives are

expected to be evaluated at the quark mass values that correspond to the physical

pion and kaon masses:

σl = m2
π

∂MN

∂m2
π

, (3.7)

σs = m̄2
K

∂MN

∂m̄2
K

, (3.8)

where m̄2
K = m2

K − m2
π/2. The difficulty associated with this approach is that a

number of simulations at different values of the light and strange quark masses are

required in order to evaluate the derivative.
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Figure 3.2: Feynman diagrams of connected (left) and disconnected (right) operator
insertions that contribute to the nucleon 3-point function.

3.2 Axial Matrix Element and Strangeness in the

Nucleon Spin

In the quark-parton model (QPM), the spin-dependent structure function g1(x,Q2)

in terms of the spin-dependent quark distributions ∆q(x,Q2) is defined as

g1(x,Q2) =
1

2

∑
q

e2
q∆q(x,Q

2), (3.9)

where eq are the electric charges of the quarks introduced in Table 2.2 and

∆q(x,Q2) = q+(x,Q2)− q−(x,Q2) + q+(x,Q2)− q−(x,Q2). (3.10)

The squared four-momentum transfer Q2 can be suppressed since g1 exhibits an

approximate independence of Q2 and depends only on the Bjorken variable x in

high-Q2 DIS.

For a polarised nucleon, q+(−)(x) reflects the number density of the quark of

flavour q with the superscript + (−) reflecting that the quark’s polarisation is parallel

(anti-parallel) to that of the nucleon, and x is the fraction of the momentum of the

proton carried by the quark in the infinite momentum frame. The total contribution

of the quark and anti-quark of flavour q to the spin of the nucleon is

∆q =

∫ 1

0

∆q(x)dx. (3.11)

∆q is related to the matrix element of the axial current of the nucleon.

Within the framework of the non-relativistic quark model, which was indepen-

dently pioneered by Zweig [60] and Gell-Mann [61], the spin of the nucleon is entirely

attributed to the quarks.

An experimental constraint can be implemented on ∆u, ∆d and ∆s. There are

several measurements of spin asymmetry in DIS of longitudinally polarised muons

by longitudinally polarised nucleons, in which the cross section is described by the
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Section 3.2. Axial Matrix Element and Strangeness in the Nucleon Spin

structure function g2(x) in addition to g1(x). In this regard, there are a number of

experiments that have been conducted at, for example, SLAC [62, 63], in which a

primary concern in measuring g1(x) was to study the Ellis-Jaffe [64] and Bjorken

sum rules [65, 66].

To the first moment, working with the three lightest quark flavours, the Ellis-

Jaffe sum rule can be defined as [67]

Γ1 =

∫ 1

0

g1(x)dx =
1

2

[4

9
∆u+

1

9
∆d+

1

9
∆s
]
. (3.12)

Rewriting Eq. (3.11) in terms the SU(3)f nucleon axial charges, i.e.,

a3 = ∆u−∆d,

a8 = ∆u+ ∆d− 2∆s, (3.13)

a0 = ∆u+ ∆d+ ∆s,

leads to

Γ1 =
3

36
a3 +

1

36
a8 +

4

36
a0, (3.14)

where a3, a8 and a0 are isovector, octet and singlet combinations, respectively. To

evaluate Γ1 for the proton (Γp1), the value of a3 = −gA/gV = 1.2723± 0.0023, which

describes the ratio of axial-vector gA to vector gV couplings in neutron β-decay, is

used [15]. In addition, the assumption that the strange quark contribution is zero

(∆s = 0) resolves the difficulties associated with a0, which has not been determined

experimentally. In this case, one has a0 = a8. The value of a8 = 0.58 ± 0.03

is determined from the best fit to Λp, ΞΛ and Σn hyperon β-decays [15], with

an assumption of SU(3) flavour symmetry, i.e., assuming only three lightest quark

flavours, u, d and s. Therefore, for the Ellis-Jaffe sum rule for the proton one obtains

Γp1 =

∫ 1

0

gp1(x)dx = 0.187± 0.003. (3.15)

The Ellis-Jaffe sum for the neutron (Γn1 ) can be evaluated by changing the sign of

the isovector term a3:

Γn1 =

∫ 1

0

gn1 (x)dx = −0.025± 0.003. (3.16)

Assuming SU(3) flavour symmetry, the isovector and octet combinations, a3 and a8,

respectively, can be used to describe the octet baryon β-decay parameters F and D
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as

a3 = F +D, (3.17)

a8 = 3F −D.

The Bjorken sum rule implies an additional constraint on ∆u and ∆d as [66]∫ 1

0

[
gp1(x)− gn1 (x)

]
dx =

1

6
(∆u−∆d) =

1

6
a3. (3.18)

The Ellis-Jaffe and Bjorken sum rules need to be modified in order to account

for QCD radiative corrections that have been estimated up to order α3
s(Q

2), e.g.,

see [68, 69]. The next-to-leading order (NLO) QCD approximation to the Ellis-Jaffe

sum rule for the proton, Γp1, can be written as [67]

Γp1 =
3

36
a3

[
1− αs(Q

2)

π

]
+

5

36
a8

[
1− 7

15

αs(Q
2)

π

]
. (3.19)

Physicists have been puzzled since the discovery by European Muon Collabora-

tion (EMC) [70], in which the spin-dependent structure function g1(x) for the proton

was determined and found to be in disagreement with the Ellis-Jaffe sum rule. This

determination showed that the quarks are responsible for a relatively small fraction

of the spin of the proton and also that ∆s is small and negative. This discovery

conflicts with the quark model and this issue is known as the ‘proton spin crisis’.

In practice, comparisons of these predictions of Γ1 with experiments are model-

dependent for many reasons. To calculate the integrals of g1(x) over the full x

ranges, the data need to be extrapolated to x = 1 and x = 0. For large x, the g1(x)

structure function approaches zero as x tends to 1. However, there are difficulties

at low x related to model dependence [71]. Furthermore, including the NLO QCD

corrections to Γ1 leads to propagating uncertainties in the evaluation of g1 with the

four-momentum transfer Q2, where g1(x) has a significant Q2-dependence because

of QCD corrections. The QCD evolution of the gluon contribution to the Ellis-Jaffe

sum rule also cannot be estimated unambiguously [67]. Moreover, regarding a8, the

assumption of SU(3) flavour symmetry is violated in the nature. In spite of these

difficulties, majority of the NLO calculations conclude with a negative and small

value for ∆s, e.g., see [72, 73].

The contribution of ∆s to PVES is suppressed by the weak charge of the elec-

tron. However, ∆s is not suppressed in elastic neutrino-nucleon scattering. Fits

to neutrino-proton scattering cross section data found that ∆s is compatible with
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the result from DIS [74, 75]. Global fits of parity-violating elastic electron-proton

scattering data combined with ν–p and ν–p scattering data suggest that ∆s is neg-

ative [76, 77] in agreement with DIS.

The proton spin puzzle still exists today, and recent quantitative estimations of

the quarks’ contribution to the proton’s spin are about 30% [78–80]. The orbital

angular momentum of the quarks inside the proton is anticipated to play an impor-

tant role in solving this puzzle as discussed in [81]. The authors of [82] reported

the first lattice QCD calculation of the gluon spin in the nucleon. Their estimations

indicate that the gluon significantly contributes to the proton’s spin.

3.3 Strangeness in the Nucleon’s Momentum

The Neutrinos at the Tevatron (NuTeV) collaboration measured the fraction of

the nucleon momentum carried by the strange sea to the fraction of the momen-

tum carried by the non-strange sea using data from experiments conducted at the

Fermi National Accelerator Laboratory. The data were obtained via deep inelastic

neutrino-nucleon scattering, which is depicted in Fig. 3.3 [83, 84]. Based on these

data, the NuTeV collaboration measured the ratio ks,

ks =

∫ 1

0
x[s(x,Q2) + s(x,Q2)]dx∫ 1

0
x[u(x,Q2) + d(x,Q2)]dx

, (3.20)

and found ks = 0.42 ± 0.07(stat) ± 0.06(sys) at Q2=16 GeV2 [86]. This result

reflects the existence of the strange quark in the nucleon’s sea. However, it is

difficult to relate this result to the static properties of the nucleon [85].

Similar several experiments have been conducted, e.g., CDHS [87], Columbia-

Chicago-Fermilab-Rochester (CCFR) [88, 89], CHARMII [90], NOMAD [91, 92]

NuTeV [93–96] and CHORUS [97, 98] collaborations, and reported relatively small

values of ks compared with a recent measured value of ks = 1.13+0.08
−0.13 at x = 0.023

and Q2 = 1.9 GeV2 [99].

Beside the previous ratio ks, there is another relevant quantity,

ηs =

∫ 1

0
x[s(x,Q2) + s(x,Q2)]dx∫ 1

0
x[u(x,Q2) + d(x,Q2)]dx

, (3.21)

which describes the momentum fraction ratio of the strange quark to the total non-

strange quark content, and its values range from 5% to 10%.
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N

s/d

X

W+

νµ µ−

c

W+

s/d

µ+

νµ

Figure 3.3: Neutrino-nucleon charged current deep inelastic scattering. The neutri-
nos νµ interact with strange quark s to produce a negative muon µ− and a charm
quark c, and the c quark subsequently decay to produce a positive muon µ+, yielding
dimuon pairs (µ+µ−) [85].

3.4 Strange Vector Matrix Elements

The strange quark contribution to the nucleon EM form factors is encoded in

the strange vector matrix element
〈
N |sγµs|N

〉
.

In 1988, Kaplan and Manohar [1] proposed that the strange electric and magnetic

form factors contributions, Gs
E and Gs

M , respectively, can be accessed by measure-

ments of the neutral weak current matrix elements in neutrino-nucleon scattering.

Shortly after, in 1989, McKeown [2] and Beck [3] suggested an experimental study

to measure the weak neutral current of the proton using parity-violating electron

scattering in order to determine the strange quark contribution to the vector matrix

elements. This method generated significant interest within the community and

was followed by more than two decades of experimental investigations. This thesis

is devoted to such a method to study the strange quark contribution to the proton’s

EM form factors.

The theoretical predictions of the strangeness form factors will be reviewed in

Chapter 4. The parity-violating electron scattering method and the main experi-

mental programs that consider this method will be presented in Chapter 5.
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Chapter 4

Theoretical Prediction of GsE and

GsM

As discussed in the previous chapter, the calculation of the static properties

of the nucleon in QCD is a challenging task. This can be attributed to the fact

that the strong coupling constant, αs, is large at low energies. This means that

using a perturbative expansion is not possible to to characterise the interaction in

power series of αs. Because of the difficulty of directly calculating the strange quark

contribution to the properties of the nucleon, one needs to consider other approaches

in which controlled rough estimations can be achieved.

There are two quantities that are frequently considered to describe the behaviour

of electric and magnetic strange quark form factors, Gs
E(Q2) and Gs

M(Q2), respec-

tively, at zero momentum transfer (Q2 = 0); the strange charge mean square radius〈
r2
s

〉
E

and the strange magnetic moment µs = Gs
M(Q2 = 0). The electromagnetic

form factor provides information about the spatial distribution of the charge and

magnetisation within the nucleon, and this distribution helps us to learn the spatial

dimension of the hadrons.

The strange quark contribution to the electric form factor at zero Q2 is con-

strained to be zero as there is no net strangeness in the nucleon. Most models

are devoted to investigate the contribution to the strange magnetic moment and the

strangeness radius. Furthermore, the Q2-dependence of the EM strange form factors

has been examined by several theoretical methods.

A survey of the most popular theoretical studies is presented below. For easy

comparison, different theoretical predictions of µs and
〈
r2
s

〉
E

are summarised in

Table 4.1 at the end of this chapter.
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4.1 Theoretical Prediction of Gs
E and Gs

M

According to Steven Weinberg [100], the Goldstone bosons1 are weakly interact-

ing fields, and the loop effects are suppressed by inverse powers of the chiral symme-

try breaking scale Λχ ∼ 1 GeV associated with the power series in momentum p that

fulfils p � Λχ. Λχ = 4πfπ, where fπ is the pion decay constant. Consequently, at

low energy, the effective interaction between the Goldstone bosons can be described

perturbatively. This technique was developed by Gasser and Leutwyler [42, 101]

leading to ChPT.

Extension of the meson sector effective calculation to include the nucleon is

associated with a difficulty. The nucleon mass MN does not vanish in the chiral limit

and its value is very similar to the chiral symmetry breaking scale Λχ. This means

that the nucleon mass destroys the idea of a perturbative scheme because higher-

derivative terms which involve the nucleon field are not suppressed, i.e, MN/Λχ ∼ 1.

To deal with this difficulty, Jenkins and Manohar introduced a formalism in which

the nucleon is treated as a heavy static fermion so that the MN dependence can

be absorbed into a series of interaction vertices (moving the MN dependence from

the propagator to the vertices) with increasing power of the inverse nucleon mass

[102]. This formalism provided the so-called heavy baryon chiral perturbation theory

(BChPT).

In this section, various theoretical approaches to describe the strangeness of the

nucleon are highlighted. The survey below is by no means complete, but it provides

the most critical and widespread of several physical pictures and their results. The

reader can refer to [85, 103, 104] for general reviews on the theoretical predictions

for the nucleon’s strange vector form factors.

4.1.1 Heavy Baryon Chiral Perturbation Theory (BChPT)

Extension of the BChPT from SU(2) to SU(3) needs to be considered to cal-

culate the strange quark contributions. Introducing K loops leads to additional

phenomenological counterterms.

A number of these counterterms are fit to the experimentally measured baryon

octet magnetic moments. However, two flavour-singlet channel counterterms are still

unknown. These two counterterms are related to the strangeness magnetic moment

and radius. Therefore, the BChPT is not able to determine the strangeness content

1Goldstone bosons are massless and spinless particles associated with the models that exhibit
spontaneous symmetry breaking of global symmetries in quantum field theory. They are occasion-
ally called Nambu-Goldstone bosons.
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of the nucleon [103].

Hammer et al. analysed the Q2-dependence of Gs
M up to fourth order in the

chiral expansion O(p4) and argued that there is a significant cancellation between

loop contributions from O(p3) and O(p4), which means that the Q2 slope of the Gs
M

displays an enhanced sensitivity to an unknown O(p4) counterterm [105]. Therefore,

with this issue, one needs to request additional model-dependent assumptions to

estimate the size of the chiral counterterms in order to present predictions for the

strange vector form factors of the nucleon.

4.1.2 Vector Meson Dominance (VMD)

The vector meson dominance (VMD) model was proposed before the introduction

of QCD to describe photon-hadron interactions [106–108]. In the VMD model, the

photon can fluctuate into an intermediate vector meson, which finally interacts with

the hadron. This interaction is schematically illustrated by the Feynman diagram

in Fig. 4.1. Explicitly, the matrix element of the electromagnetic current between

any hadronic states |A〉 and |B〉 at a squared four-momentum transfer, q2, in the

vector meson resonances region can be written as a summation over intermediate

vector states V as [67]

〈B|JEMµ |A〉 =
∑
V

fV
(m2

V − q2 − iΓVmV )
〈B|Vµ|A〉, (4.1)

where mV and ΓV are the mass and the decay width of the vector meson V . fV =

m2
V /gV is the vector-meson-photon coupling constant, where gV is a constant related

to the physical vector meson mass. 〈B|Vµ|A〉 reflects the strength for the coupling

of the meson V to the state |A〉 as it experiences a transition to the state |B〉.
The electromagnetic current defined in Eq. (2.15), for the three lightest quarks

(u, d and s), can be written as a sum of the electromagnetic current of the three

lightest vector mesons (ρ, ω and φ) as

JEMµ =
1√
2
J (ρ)
µ +

1

3
√

2
J (ω)
µ − 1

3
J (φ)
µ , (4.2)

where J
(V=ρ,ω,φ)
µ are the vector meson V electromagnetic currents.

fV in Eq. (4.1) describes how much the physical state of the vector meson overlaps

with the quark-antiquark pairs created by the electromagnetic current operator when
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γ∗ V

A

B

Figure 4.1: The illustrative Feynman diagram of the vector meson dominance model.
γ∗ is a space-like photon (q2 < 0) fluctuating into an intermediate vector meson V .
A and B are the initial and final states of the hadron, respectively.

applied to the vacuum state |0〉 [67]:

〈ρ|JEMµ |0〉 =
1√
2
〈ρ|J (ρ)

µ |0〉 = fρεµ,

〈ω|JEMµ |0〉 =
1

3
√

2
〈ω|J (ω)

µ |0〉 = fωεµ, (4.3)

〈φ|JEMµ |0〉 = −1

3
〈φ|J (φ)

µ |0〉 = −fφεµ,

where εµ are polarisation vectors of the vector meson .

From the quark composition of the vector mesons, one notes that ρ is an isovector

meson, whereas ω and φ are isoscalars. The isoscalar (I = 0) and isovector (I = 1)

nucleon form factors written in terms of the combinations of the Dirac F p,n
1 and

Pauli F p,n
2 form factors of the proton and neutron are considered2

F I=0
1,2 (q2) =

F p
1,2(q2) + F n

1,2(q2)

2
,

F I=1
1,2 (q2) =

F p
1,2(q2)− F n

1,2(q2)

2
. (4.4)

Fi(q
2), for i = 1, 2, can be written as [109]

Fi(q
2) =

∑
V

aVi
m2
V − q2

, (4.5)

2Instead of considering the protons and neutrons, it is common to use their isospin symmetry
properties (see Appendix A).
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where aVi = fV g
V NN
i is the pole residual. gV NN denotes the coupling of the meson

V to the nucleon. Fi(q
2) is the approximated form of the dispersion relation:3

Fi(q
2) = Fi(0) +

q2

π

∫ ∞
t0

=m Fi(t)

t(t− q2 − iε) dt, (4.6)

with the spectral functions =m Fi(t) written as

=m Fi(t) = π
∑
V

aVi δ(t−m2
V ). (4.7)

The lower limit of integration, t0, is provided by the threshold of the lightest pos-

sible intermediate state that contributes to the form factors. The lightest possible

hadronic intermediate state in the case of the isoscalar form factor is a system of

three pions (rather than two in the case of the isovector form factor ) as long as

the small isospin breaking effect is neglected [67]. Hence, t0 is 9m2
π and 4m2

π for the

isoscalar and isovector form factors, respectively.

Within the framework of the vector meson dominance model, Hohler et al. [109]

have done a global fit of the electron-nucleon elastic cross section. They performed

a three-pole fit to both the isovector and isoscalar form factors. They fixed the

second isoscalar pole at φ mass and used the third pole to reflect the contributions

from higher resonances. In that analysis, Hohler et al. obtained a large value for

φNN coupling, and this value suggests a large strangeness content of the nucleon.

This result violates the OZI rule of the disconnected quark lines [110]4. Hohler et

al. result was supported by Jaffe who concluded that µs = −0.31 ± 0.09 µN and

〈r2
s〉E ∼ 0.14± 0.09 fm2 [111]. Jaffe indicated that these results are sensitive to the

value of the small mixing angle, ε, between ω and φ.

Forkel [112] updated Jaffe’s minimal 3-pole ansatz and then extended the pole

approximation to implement the asymptotic QCD momentum dependence and found

that the size of the 3-pole results reduced by about a factor of 2.5.

Although the results from different VMD studies are consistent with each other,

the model-dependence in such studies should be taken into account.

3The subtracted form is used here instead of the unsubtracted one (see Appendix A). The
dispersion relations approach will be revisited in Section 4.1.6.

4The OZI rule states that the contribution of the disconnected quark lines is suppressed. The
large value of φNN indicates that the OZI rule is violated where the φ meson is made of ss, which
is disconnected from the u and d quarks in the nucleon.
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4.1.3 Kaon Loop

A different model to predict the nucleon’s strangeness form factors will be briefly

highlighted in this subsection. This model does not require consistency of chiral

expansion and includes a kaon loop contribution [104, 113–116]. Such an approach

is called kaon loop model in which the proton can fluctuate into a K (the lightest

strange meson) and a hyperon Λ, then the ss quarks annihilate leaving the original

proton. The strangeness of the proton is characterised by the K+Λ0 intermediate

state, which interact with either photon or Z bosons. This process is depicted in

Fig. 4.2.

The authors of [113] and [117] performed a one-loop calculation using a monopole

form for the meson-nucleon form factor and a dipole form, respectively. Indeed, such

calculations are sensitive to the form factor and the value of the cutoff parameter Λ.

Furthermore, introducing such form factors leads to the inclusion of seagull diagrams

(contact terms at the hadronic vertices, lower two diagrams in Fig. 4.2) in order to

satisfy the Ward-Takahashi identity as required by gauge invariance. The choice of

these contact terms is not unique and, as noted in [113] results in a ∼ 30% difference

in µs and 〈r2
s〉E in two different procedures of deducing these seagull contact terms.

The strange magnetic moment and radius obtained from the one-loop calculation

performed in [113] are µs = −0.31 ± 0.05 µN and 〈r2
s〉E = −0.03 ± 0.003 fm2,

where the uncertainties represent the variation of the cutoff parameter Λ within the

range estimated from fits to baryon-baryon scattering, 1.2 ≤ ΛBonn ≤ 1.4 GeV. The

authors of [113] argued that one-loop calculations that consider only the lightest

pseudoscalar mesons are not able to characterise the nucleon form factors at low-

energy regions.

In [118], Malheiro and Melnitchouk mentioned that the impulse approximation,

in which the hadronic Fock space is truncated at the one-meson level and contribu-

tions arising from many-body currents are neglected, used in the kaon loop calcu-

lation leads to a violation of Lorentz covariance. They evaluated the contribution

stemming from this concerning violation. Once this contribution was subtracted,

they obtained a small and positive value of the strange magnetic moment, µs = 0.01

µN .

Geiger and Isgur performed a non-relativistic quark model calculation to consider

the contribution arising from a complete set of OZI-allowed strong Y ∗K∗ hadronic

loops [115], where Y ∗(K∗) is the excited intermediate baryon (meson). They accom-

plished the calculation within an unquenched quark model and obtained a small and

positive value of the strange magnetic moment with µs = 0.035 µN , and a negative

value of 〈r2
s〉E with ∼ −0.04 fm2. Meißner et al. performed calculations in which
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Figure 4.2: Feynman diagrams for kaon loop contribution with γ coupling to either
the kaon K or the hyperon Λ. The lower two diagrams (seagull diagrams) are
included to fulfil the Ward-Takahashi identity as required by gauge invariance.

the OZI-allowed φ meson coupling to the nucleon with inclusion of K∗ loops and hy-

peron excitations has been investigated within a meson-exchange model [119]. They

found positive values for both 〈r2
s〉E and µs.

Forkel et al. [120] analysed the dependence of the strange-quark content on the

NYK∗ form factors in the loop model calculations. They stated that the contri-

butions from the lightest KY intermediate states were adequate for approximate

estimates of the nucleon’s vector strangeness content in one-loop models. However,

they also pointed out that the contributions from K∗ remain non-negligible in the

large momentum transfer regions.

As a result of these difficulties, one can say that kaon loop calculations are not

able to make a conclusive statement about the sign of the 〈r2
s〉E and µs.

4.1.4 Constituent Quark Model

In [1], Kaplan and Manohar proposed that a constituent quark is comprised of a

current QCD quark that is surrounded by a complicated cloud of virtual gluons and
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qq pairs. Accordingly, it is possible that the constituent U and D quarks inside the

nucleon have a strangeness contribution. Kaplan and Manohar stressed that this

picture of constituent quarks does not contradict the quark model. In particular,

this proposed model does not destroy some of the successful predictions of the quark

model, such as the value for the baryon magnetic moments.

In this model, constituent quarks’ nontrivial structure is governed by sponta-

neously broken chiral symmetry induced by the flavour-mixing ’t Hooft interaction.

This is the so-called chiral quark model.

There are several different methods that one can use to study the strange quark

effects within the framework of the constituent quarks model. One of these method

utilises the so-called Nambu and Jona-Lasinio model (NJL) [121, 122]5.

The generalisation of the NJL model to Nf ≥ 3 including U(1)A symmetry

breaking by a 2Nf -quark interaction has been introduced in [123]. Within the

Hartree-Fock approximation, this term entirely generates flavour mixing which is

responsible for the strange quark effects in the constituent U and D quarks [123].

Forkel et al. performed an estimation of the strangeness radius of the nucleon

within the framework of the constituent quark model and obtained a positive and

small value of 〈r2
s〉E = 0.0169 fm2 [124].

Within the NJL model, the authors of [125] used Yabu-Ando approach [126] to

incorporating strange degrees of freedom into the soliton picture. They provided

limits for the strange magnetic moment with −0.05 µN ≤ µs ≤ 0.25 µN and for the

strange electric radius with −0.25 fm2 ≤ 〈r2
s〉E ≤ −0.15 fm2 [125].

In [127], the magnitude of the µs and Gs
M(Q2) for Q2 . 1.0 GeV2 have been

estimated using an extended chiral constituent quark model that studies the contri-

butions stemming from all possible five-quark Fock components to µs. The authors’

method was inspired by an idea that was proposed by Zou and Riska [128], in which

the strangeness magnetic moment of the proton can be described by including five-

quark Fock states in the proton. The authors of [127] included the contribution from

the nondiagonal matrix elements of the transition between the strangeness and the

three-quark components of the proton 〈uud|µs|uudss〉 and found that the value of

µs is small and negative.

One should concern about the associated shortcomings with the chiral quark

model, in particular, the problem of double counting. This means that there is an

ambiguity since the pseudoscalar QQ bound state and the octet of light pseudoscalar

Goldstone are introduced in the chiral quark effective theory [103].

5Yoichiro Nambu was granted one half of the Nobel Prize in Physics in 2008 for his discovery of
the mechanism of spontaneous broken symmetry in subatomic physics. The other half awarded to
Makoto Kobayashi and Toshihide Maskawa for their discovery of the origin of the broken symmetry.
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4.1.5 Skyrme and Soliton Models

Well before the advent of QCD and chiral symmetry, Skyrme assumed that the

baryons are solitons in a mesonic field theory. The Skyrme soliton is a topological

soliton constructed based on the effective Lagrangian of the chiral non-linear sigma

model6 [129, 130].

The Skyrme model considers a 2×2 unitary field. When considering the strangeness

content in the nucleon, one needs to extend the Skyrme model to SU(3).

According to [131], several calculations based on the SU(3) Skyrme model con-

tain ambiguities. SU(3) flavour symmetry breaking needs to be carefully taken into

the account. For flavour symmetry breaking, the authors of [131] introduced non-

minimal derivative terms in the Lagrangian. From that calculation, the strange mag-

netic moment and strange charge radius are shown to be negative with µs = −0.13

µN and 〈r2
s〉E = −0.11 fm2, respectively. A calculation within the chiral soliton-

quark model was done in [132, 133] and the results were a positive strange magnetic

moment and a negative strangeness radius. These studies supported a previous

analysis [134], which reported a positive strange magnetic moment of µs = 0.37 µN

based on SU(3) group structure of the chiral models’ calculations.

In the Skyrme model, the strangeness current is obtained from the difference

between the baryon number and hypercharge currents, and any calculation of strange

matrix elements depends on the small difference between two large but uncertain

quantities is therefore unreliable [124].

4.1.6 Dispersion Relations

Dispersion relations are a nonperturbative method to study the strangeness of

nucleon based on general grounds. The dispersion theory, in general, relies on some

basic principles of physics: relativistic covariance, causality and unitarity [135] (see

Appendix B).

The Dirac and Pauli form factors, F1,2(q2) (see Eq. 5.9), measured in electron

scattering, are considered as functions of the variable z = q2, and are linked to the

region of spacelike momentum transfer, Q2 = −q2 > 0. From causality, the complex

functions F1,2(z) maintain specific analytic properties that allow for a continuation

into the complex z = q2 plane, as depicted in Fig. 4.3, and lead to the dispersion

relations linking the imaginary and real parts of these form factors, i.e., Cauchy’s

6Currently, in fact, the Skyrme model can be considered as a low-energy effective theory for
QCD in the large number of the colours, Nc, limit.
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theorem. Using Cauchy’s integral formula allows one to explicitly write

F1,2(q2) = F1,2(0) +
q2

π

∫ ∞
t0

dt
=m F1,2(t)

t(t− q2 − iε) , (4.8)

where t0 is given by the lightest hadronic intermediate state contributing to the form

factors. The physical bound of F1,2(0) can be employed. The imaginary parts are

treated as spectral functions, i.e., Eq. (4.7).

The general dispersion relation is related to all possible on-shell intermediate

states. For the strangeness form factors, some of the allowed intermediate states

(continuum) contributions are purely mesonic 3π, 5π, 7π, KK, . . . and purely bary-

onic NN , ΛΛ. . . . One can also take into account the states that contain both mesons

and baryons, such as NNππ.

The on-shell continuation from KK is the most relevant to the dispersion relation

in a study of nucleon strangeness, since it forms the lightest intermediate state

comprising valence s and s quarks. In this regard, the authors of [136] performed the

first calculations. The spectral functions were related to the partial waves and the

kaon strangeness form factor [136]. Musolf et al. [136] showed that, when considering

the kaon’s strange form factor to be point-like, F
(s)
K = −1, the Born approximation of

KK → NN amplitude is similar to those resulting from one-loop kaon calculations

with a significant violation of unitarity in the physical region. Therefore, they

suggested that rescattering corrections are required by unitarity.

In [137–139], the authors improved this analysis. They fixed the J = 1 partial

wave amplitudes in the physical region at their unitarity bounds. They observed that

the time-like F s
K is dominated by the φ resonance. In their analysis, the strangeness

magnetic moment and strangeness radius were found to be µs = −0.42 µN and

〈r2
s〉E = −0.07 fm2, respectively.

The work presented in [140] discussed the importance of the contribution arising

from multi-meson intermediate states that do not contain valence s or s-quarks.

Although the contribution from these states violates the naive interpretation of the

OZI-rule, the authors found the that magnitude of this contribution was similar to

that of the lightest OZI-allowed intermediate state, the KK continuum.

4.1.7 Lattice Quantum Chromodynamics (LQCD)

The theoretical approaches discussed in the previous sections are not able to

render a complete physical understanding of the nucleon’s strangeness content.

Lattice quantum chromodynamics (LQCD), first proposed by Wilson7 in 1974 [141],

7Wilson was awarded the 1982 Nobel Prize in Physics for his work on phase transitions.
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z = q2

=m z

<e z
t0

Figure 4.3: Analytic structure for the form factors of the nucleon in the complex
z = q2 plane.

is a nonperturbative approach to solving numerically the QCD. LQCD is a gauge

theory formulated on a discrete Euclidean space-time grid (or lattice), and it has suc-

cessfully described many properties of hadrons. In this section, a general overview

of the LQCD approach will be provided.

LQCD is a nonperturbative implementation of field theory based on the Feynman

path integral formalism.

Within the framework of lattice QCD, the chiral extrapolation plays a significant

role. Lattice calculations are often performed at larger-than-physical quark masses.

For a quenched lattice theory, where vacuum polarisation loops are neglected, the

relevant theory requires to be modified to the quenched chiral perturbation the-

ory [142].

The contributions of the strange quark to the electromagnetic form factors of the

nucleon in lattice QCD can be derived from a three-point Green’s function. Both

Feynman diagrams of connected and disconnected operator insertions, illustrated in

Fig. 3.2, contribute to the nucleon three-point function. The disconnected operator

insertions are very computationally expensive compared to the connected insertions.

The first quenched lattice calculation of the strangeness magnetic moment of the
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nucleon and strangeness Sachs electric mean-square radius8 was performed in [143],

and the results of that work are µs = −0.36± 0.20 µN , 〈r2
s〉E = −0.061± 0.003 fm2

and 〈r2
s〉E = −0.16 ± 0.06 fm2 with a monopole mass from Gs

M(q2). An updated

calculation [144] shifted the value of the strange magnetic moment to be µs =

−0.28± 0.10 µN .

Within the study of the disconnected sea-quark contribution to nucleon magnetic

moments, Leinweber derived a set of QCD equalities for octet baryons under the

assumption of charge symmetry [145].

A calculation within this framework was performed in [146] and the value of

µs = −0.16 ± 0.18 µN was obtained with the ratio of s and d disconnected quark

loops lRs
d = 0.55. A similar procedure was completed in [147] and the value of

µs = −0.046 ± 0.019 µN was obtained with the ratio lRs
d = 0.139 ± 0.042, where a

correction from the quenched ChPT to full ChPT was considered.

A recent evaluation, where the full QCD was employed (vacuum polarisation

loops were taken into account, but the disconnected current was not computed

directly), has described the Q2-dependence of lRs
d, where an estimation of lRs

d from

effective field theory with finite-range regularisation was accomplished [148]. In

that work, experimental numbers for the electromagnetic factors were combined

with lattice QCD results for the connected light quark contributions, leading to an

estimate of the s quark contribution. In [148], Shanahan et al. concluded that the

strange magnetic moment is small and negative, µs = −0.07 ± 0.03 µN , whereas

they were not able to make a conclusive statement about the sign of 〈r2
s〉E.

In [149], Green et al. argued the procedure that was followed in [148] depended

on a sensitive cancellation between large quantities, and consequently is limited in

its statistical precision and somewhat responsive to systematic errors in the lat-

tice calculations. They made a direct lattice QCD calculation of the strange nu-

cleon electromagnetic form factors in a specific range of Q2 and performed model-

independent fits of the form factors using a z-expansion. The authors found that

µs = −0.022±0.004±0.004±0.006 µN and 〈r2
s〉E = −0.0067±0.0010±0.0017±0.0015

fm2 (non zero signal for the first time), where the first two uncertainties are statisti-

cal and systematic and the third uncertainty is due to extrapolation to the physical

point. A previous direct calculation found that the strange magnetic moment is

consistent with zero, µs = −0.017 ± 0.025 ± 0.007 µN (the first error is statistical

and the second error indicates the uncertainties in Q2 and chiral extrapolations),

where Nf = 2 + 1 clover fermion lattice QCD calculations have been presented

with heavier pion masses [150]. Recently, a direct estimation of the strange elec-

8Sachs and Dirac charge radii will be revisited in more detail in the next chapter.
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tromagnetic form factors including, for the first time, the physical pion mass was

presented in [151], where a model-independent z-expansion to extract the strange

magnetic moment and strange charge radius from the electromagnetic form factors

in a specific kinematic range of momentum transfer Q2 was performed. From that

calculation, the strange magnetic moment and strange charge radius are shown to

be nonzero with µs = −0.064± 0.017 µN and 〈r2
s〉E = −0.0043± 0.0021 fm2, where

the uncertainties show the combined statistical and systematic uncertainties added

in quadrature [151].

4.2 Summary and Discussion

The above theoretical review emphasises that predictions of the strange mag-

netic moment µs widely vary. Most of the theoretical frameworks lead to negative

values, while a few give positive values. A similar situation has been encountered

for the strangeness electric mean-square radius 〈r2
s〉E. Various models conclude with

positive outcomes, while the others end with negative predictions. Moreover, this

survey shows that significant theoretical uncertainties are associated with the theo-

retical approaches. For reader convenience, Table 4.1 presents a summary of various

theoretical predictions of µs and 〈r2
s〉E.

Thus far, it is possible to state that the theoretical approaches render ambiguous

estimations. Treatments within the effective theory framework such as BChPT to

predict the strangeness of the nucleon are associated with difficulties related to the

unknown low-energy constant (counterterms). Phenomenological models that use

dispersion relation involving VMD utilising pole approaches in the unphysical region

suffer from the insufficiency of the high precision data for the time-like electromag-

netic form factors. Lattice QCD is a first-principles approach to QCD, and therefore

it can provide model-independent predictions. However, most of the early lattice

QCD studies are based on the quenched approximation and they only considered the

calculation of the connected diagram contribution. Very recently, there have been

several extensive direct calculations of nucleon strangeness that involve calculations

of the disconnected diagram, which is extremely expensive to be computed.
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Table 4.1: Theoretical predictions of strangeness magnetic moment µs in units of
the nuclear magneton µN and the strangeness electric mean-square radius

〈
r2
s

〉
E

in
fm2.

Theoretical Model µs[µN ]
〈
r2
s

〉
E

[fm2] Ref.

Vector Meson Dominance (VMD) -0.31±0.09 0.14±0.09 [111]
Simple Kaon Loop -0.31±0.05 -0.03±0.003 [113]

Kaon Loop including excited hadronic states 0.035 -0.04 [115]
NJL soliton -0.05→+0.25 -0.25→-0.15 [125]

Extended Chiral Constituent Quark Model -0.067±0.004 – [127]
SU(3) Skyrme (broken symmetry) -0.13 -0.11 [131]
SU(3) Skyrme (broken symmetry) 0.37 – [134]

Dispersion -0.42 -0.07 [139]
Lattice (first quenched calculation) -0.36±0.20 -0.061→-0.16 [143]

Lattice -0.064±0.017 -0.0043±0.0021 [151]

41





Chapter 5

Parity-Violating (PV) Elastic

Electron−Nucleon Scattering

It is known that, in addition to the purely electromagnetic (EM) interaction that

conserves parity, the electron also interacts via the weak interaction that violates

parity. Despite the fact that the weak interaction is several orders of magnitude

smaller than the electromagnetic interaction, the weak interaction can play a critical

role when analysing a part of nucleon structure that cannot be investigated through

studies that only consider the EM interaction.

Nucleon structure can be described in terms of the valence quarks and the sea

quarks that are held together by the strong force carried by gluons. The strange

quark contribution to the nucleon EM form factor is then a pure sea quark effect.

In 1988, Kaplan and Manohar [1] proposed that the strange electric and mag-

netic form factors contributions, Gs
E and Gs

M , respectively, can be estimated through

the measurements of the weak neutral current matrix elements in neutrino-nucleon

scattering. Shortly after, in 1989, McKeown [2] and Beck [3] suggested an exper-

imental probe that used parity-violating electron scattering to measure the weak

neutral current of the proton in order to acquire information relevant to the strange

quark vector matrix elements. This method for the study of these matrix elements

generated significant interest among the community and was followed by more than

two decades of experimental investigations.

The PV asymmetry APV is defined as the difference divided by the sum of the

cross sections for the scattering of circularly polarised positive and negative helicity

electrons on an unpolarised target:

APV =
σ+ − σ−
σ+ + σ−

. (5.1)
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The processes of lowest order contributions to electron-nucleon scattering, plane-

wave Born approximation (tree level) with a single-boson (γ or Z0) exchange,

are depicted in Fig. 5.1. The electromagnetic interaction (γ-exchanged) is parity-

conserving, while the weak interaction (Z0-exchanged) contains vector and axial-

vector components having opposite behaviour under a parity transformation and is

the origin of the parity-violating, non-zero value of the APV . In this scattering, the

incident electron with four-momentum k = (E,~k) is scattered from a target nucleon

at rest in the lab frame with four-momentum p = (MN , 0) through scattering an-

gle θ to an outgoing electron with four-momentum k′ = (E ′, ~k′) exchanging Z0 or

photon. After the scattering process, the nucleon is described with four-momentum

p′ = (EN , ~p
′). The momentum transfer in the scattering process, the energy and

momentum lost by the electron, is given by Q = (ω, ~q), where ω = E − E ′ and

~q = ~k − ~k′. In this scattering event, the electron is treated in the extreme rela-

tivistic limit, me = 0. The invariant squared four-momentum transfer Q2 of the

scattering is defined as Q2 = ω2 − ~q2 = −q2 > 0. For elastic electron scattering,

Q2 = 4EE ′ sin2(θ/2).

The total invariant amplitude of elastic electron-nucleon scattering is the sum

of the electromagnetic Mγ and neutral weak current MZ amplitudes. The cross

section σ is proportional to Mγ and MZ :

σ α |Mγ +MZ |2. (5.2)

This relation will be revisited in a subsequent section and discussed in more detail.

For two decades, great efforts have been dedicated to the measurement of the

parity-violating asymmetry to study the strangeness content contributions to the

nucleon EM form factors.

This chapter will discuss the relevant formalism to the description of PV asym-

metry for elastic electron-proton scattering, elastic electron-helium-4 scattering and

quasielastic electron-deuteron scattering. Higher-order electroweak corrections will

be highlighted and considered in the analysis of this work. In the present work, the

axial-vector form factors are managed as implicitly containing higher-order radiative

corrections and hadronic anapole contributions, and the total of these contributions

will be evaluated from the analysis of the considered data set. The last section of this

chapter will briefly highlights the experimental programs that discuss PV electron

scattering from the proton, helium-4 or deuteron with varying kinematic conditions

and measured APV . The set of all available PV electron scattering data from the

proton, helium-4 or deuteron, up to the currently available limit of Q2 ∼ 1GeV2,

that are considered in this work will be presented at the end of this chapter.
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Figure 5.1: Lowest order amplitudes contributing to electron-nucleon scattering.
Leading order electromagnetic (γ-exchanged) and neutral (Z0-exchanged) current
amplitudes.

5.1 Nucleon Form Factors

From the fundamental coupling of an elementary fermion to the photon or to the

Z0, one can write the general form of electromagnetic and weak invariant amplitudes

as [10]

Mγ = −4πα

q2
Qf l

µJγµ ,

MZ = − 4πα

M2
Z − q2

1

(4 sin θW cos θW )2
(gfV l

µ + gfAl
µ5)(JZµ + JZµ5), (5.3)

where α = e2/(4π) is the fine structure constant, and lµ and lµ5 are leptonic vector

and axial vector currents, respectively. In the case of electron scattering, these

currents are Dirac currents and they can be defined as

lµ = ψeγ
µψe,

lµ5 = ψeγ
µγ5ψe. (5.4)

Jµ and Jµ5 are hadronic vector and axial vector currents, respectively, and they are

related to the hadronic matrix elements of the electromagnetic, vector and axial-
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vector quark current operators as

Jγµ = 〈N |Ĵγµ |N〉; with Ĵγµ =
∑
q

Qqψqγ
µψq,

JZµ = 〈N |ĴZµ |N〉; with ĴZµ =
∑
q

gqV ψqγ
µψq,

JZµ5 = 〈N |ĴZµ5|N〉; with ĴZµ5 =
∑
q

gqAψqγ
µγ5ψq. (5.5)

Qf is the electromagnetic charge of the fermion, f , and gfV and gfA are the vector and

axial-vector weak couplings defined in Chapter 2 and given explicitly in Table 2.2.

The q2-dependence in MZ , which stems from the Z0 boson propagator, can

be safely neglected since |q2| � M2
Z for the kinematics considered in this work.

Therefore, the weak interaction is commonly considered as a contact interaction

that has a strength characterised by the Fermi constant measured in muon decay

GF [10]. This constant can be expressed as

GF =
πα√

2M2
W sin2 θW

, (5.6)

where θW is the weak mixing angle and MW is the mass of the W boson. This

definition, along with the weak mixing angle defined in Eq. (2.20), which implies

that cos2 θW = M2
W/M

2
Z , yields

MZ = − GF

2
√

2
(gfV l

µ + gfAl
µ5)(JZµ + JZµ5). (5.7)

The PV term of MZ is

MZ
PV = − GF

2
√

2
(gfV l

µJZµ5 + gfAl
µ5JZµ ). (5.8)

Back to the hadronic matrix elements in Eq. (5.5), from Lorentz invariance, the

matrix element for the electromagnetic interaction can be written as [67]

〈N(p′)|Jγµ |N(p)〉 = U(p′)

[
γµF γ

1 (Q2) +
iσµνqν

2M
F γ

2 (Q2)

]
U(p), (5.9)

where U(p′) and U(p) are the nucleon spinors for the final and initial momenta p′

and p respectively, and σµν = i
2
[γµ, γν ]. The form factors F γ

1 and F γ
2 are the Dirac

and Pauli form factors, respectively. These form factors are normalised at limit
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Q2 = 0 as

F γ
1 (0) = QN ,

F γ
2 (0) = κN , (5.10)

where QN is the electric charge of the nucleon and κN is the anomalous magnetic mo-

ment of the nucleon in units of the nuclear magneton (µN). Similarly, the hadronic

matrix element for the neutral weak vector current can be expressed as

〈N(p′)|JZµ |N(p)〉 = U(p′)

[
γµFZ

1 (Q2) +
iσµνqν

2M
FZ

2 (Q2)

]
U(p). (5.11)

5.1.1 Sachs Form Factors

Linear combinations of Dirac and Pauli form factors, F1 and F2, are commonly

used. These combinations are known as Sachs form factors and may be defined

as [152]

GN
E = F1(Q2)− Q2

4M2
N

F2(Q2),

GN
M = F1(Q2) + F2(Q2), (5.12)

where GN
E and GN

M are the electric and magnetic form factors of the nucleon, respec-

tively.

A characteristic of the Sachs form factors is that, in the center of mass frame

(Breit frame), they are the Fourier transforms of the nucleon magnetic moment and

charge distributions [152]. As an illustration, expanding GN
E (Q2) at small Q2:∫

ei~q·~r ρ(r) d3r =

∫
(1− i~q · ~r − 1

2
(~q · ~r)2 + . . . )ρ(r) d3r

= QN −
1

6
q2

∫
r2 ρ(r) dr + . . .

= QN −
1

6
q2〈r2〉 + . . . . (5.13)

Then,

GN
E (Q2) = QN −

1

6
Q2〈r2〉 + . . . . (5.14)

In general, therefore, the Sachs charge radius can be defined as

〈r2〉 = −6
dG(Q2)

dQ2

∣∣∣∣∣
Q2=0

. (5.15)

47



Chapter 5. Parity-Violating (PV) Elastic Electron–Nucleon Scattering

In the Breit frame, for elastic electron scattering, the incoming electron has momen-

tum ~k = +~q/2 and scatters from a nucleon which has momentum equal in magnitude

but opposite in sign, ~p = −~q/2. The recoiled electron has momentum ~k′ = −~q/2
and the nucleon scatters with momentum ~p′ = +~q/2 [67]. The dependence of the

Sachs form factors on Q2 leads to a variation of the Breit frame with Q2.

The physical interpretation of the Sachs EM form factors of the nucleon is that

the Fourier transforms of these form factors give the static charge and magnetisation

densities for the nucleon in the Breit frame. However, the momenta of the initial

and final nucleons are differ, i.e., the final wave function is boosted from the initial

state nucleon wave function. This means that a relativistic treatment is required.

5.1.2 Flavour Decomposition

The quark current operators defined in Eq. (5.5) allow one to express the hadronic

matrix elements in terms of the quark flavour decomposition as

〈N(p′)|Jγµ |N(p)〉 = U(p′)
∑
q

Qq

[
γµF q

1 (Q2) +
iσµνqν
2Mq

F q
2 (Q2)

]
U(p),

〈N(p′)|JZµ |N(p)〉 = U(p′)
∑
q

gqV

[
γµF q

1 (Q2) +
iσµνqν
2Mq

F q
2 (Q2)

]
U(p), (5.16)

where F q
1 and F q

2 are the Dirac and Pauli, respectively, for the quark flavour q. It

is worth mentioning that F q
1 and F q

2 are identical for the electromagnetic and weak

interactions since the charges have been factored out.

From Eqs. (5.5), (5.9), (5.11) and (5.16), the Dirac, Pauli and axial form factors

of the nucleon can be written in terms of the quark flavour form factors as

F γN
1,2 =

∑
q

QqF
q
1,2,

FZN
1,2 =

∑
q

gqV F
q
1,2,

GeN
A =

∑
q

gqAG
eq
A . (5.17)

Analogously, the electromagnetic and neutral weak Sachs form factors can be written
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as

GγN
E,M =

∑
q

QqG
q
E,M ,

GZN
E,M =

∑
q

gqVG
q
E,M . (5.18)

5.1.2.1 Flavour Decomposition of the Vector Form Factors

The contributions of the heavy quarks (c, b and t) to the nucleon properties are

strongly suppressed. Therefore, from Eq. (5.18), the proton and neutron Sachs form

factors are reduced to

Gγp
E,M = QuG

u,p
E,M +QdG

d,p
E,M +QsG

s
E,M ,

Gγn
E,M = QuG

u,n
E,M +QdG

d,n
E,M +QsG

s
E,M , (5.19)

where Qu,d,s are the electric charges of the respective quarks. Here, the strange

quark contribution to the proton and neutron electromagnetic form factors have

been treated on an equal footing. Likewise, the neutral weak Sachs form factors can

be defined as

GZp
E,M = guVG

u,p
E,M + gdVG

d,p
E,M + gsVG

s
E,M ,

GZn
E,M = guVG

u,n
E,M + gdVG

d,n
E,M + gsVG

s
E,M , (5.20)

where gu,d,sV are the vector charges of the considered quarks.

Under the assumption of charge symmetry, the individual quark contributions

to the proton and neutron form factors can be related to each other, i.e.,

Gu
E,M ≡ Gu,p

E,M = Gd,n
E,M and Gd

E,M ≡ Gd,p
E,M = Gu,n

E,M . (5.21)

This assumption allows for a further reduction of the number of the parameters

existing in the system of the four preceding equations. Therefore, one can simply

define the electromagnetic and neutral weak Sachs form factors for both nucleons as

Gγp
E,M = QuG

u
E,M +QdG

d
E,M +QsG

s
E,M ,

Gγn
E,M = QuG

d
E,M +QdG

u
E,M +QsG

s
E,M ,

GZp
E,M = guVG

u
E,M + gdVG

d
E,M + gsVG

s
E,M ,

GZn
E,M = guVG

d
E,M + gdVG

u
E,M + gsVG

s
E,M . (5.22)
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This highlights the importance of the interference of electromagnetic and weak

interactions. Purely electromagnetic electron scattering deals with solely two linear

combinations of the form factors mentioned above, i.e., Gγp
E,M and Gγn

E,M . It is clear

that additional information is required in order to determine the strangeness form

factors Gs
E,M contribution. This information is given by parity violation in electron-

nucleon scattering which measures GZp
E,M .

Rearranging Gγp
E,M , Gγn

E,M and GZp
E,M in Eq. (5.22) using the electric charges of

the quarks Qu = 2/3, Qd = −1/3 and Qs = −1/3 leads to an expression for the

proton’s neutral weak form factor in terms of the well-known electromagnetic form

factors of the proton and neutron [10]:

GZp
E,M = (2guV + gdV )Gγp

E,M + (guV + 2gdV )Gγn
E,M + (guV + gdV + gsV )Gs

E,M

= gpVG
γp
E,M + gnVG

γn
E,M + g

(0)
V Gs

E,M . (5.23)

This equation contains only one significant unknown quantity, the strangeness form

factors Gs
E,M .

At tree level, the SM values of vector charges are

gpV = 1− 4 sin2 θW , g
n
V = −1 and g

(0)
V = −1. (5.24)

Thus, at tree level, the proton’s neutral weak form factor becomes

GZp
E,M = (1− 4 sin2 θW )Gγp

E,M −Gγn
E,M −Gs

E,M . (5.25)

A similar procedure can be followed to express the neutron’s neutral weak form

factor as

GZn
E,M = (1− 4 sin2 θW )Gγn

E,M −Gγp
E,M −Gs

E,M . (5.26)

5.1.2.2 Flavour Decomposition of the Axial Form Factors

From Eq. (5.17), one can define the neutral weak axial form factors of the proton

and neutron, with assuming charge symmetry, as

Gep
A = guAG

u
A + gdAG

d
A + gsAG

s
A,

Gen
A = guAG

d
A + gdAG

u
A + gsAG

s
A. (5.27)

Usually, with using SU(3) symmetry, the quark axial-vector form factors are

written in terms of the isovector G
(3)
A , isoscalar G

(8)
A and strange axial-vector Gs

A
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form factors as

G
(3)
A = Gu

A −Gd
A,

G
(8)
A =

1

2
√

3
(Gu

A +Gd
A − 2Gs

A). (5.28)

Consequently, GeN
A becomes [10]

GeN
A =

1

2
(guA − gdA)τ3G

(3)
A +

√
3(guA + gdA)G

(8)
A + (guA + gdA + gsA)Gs

A,

= gT=1
A τ3G

(3)
A + gT=0

A G
(8)
A + g

(0)
A Gs

A, (5.29)

where the Q2-dependence has been dropped for clarity, and τ3 = +1(−1) for the

proton(neutron).

At tree level, the SM values of the axial-vector charges are

gT=1
A = −1, gT=0

A = 0 and g
(0)
A = 1, (5.30)

where, from the middle equality, the SU(3) octet form factor G
(8)
A is absent at tree

level, but will emerge when radiative corrections are taken into account as will be

discussed later.

The Q2-dependence of G
(3)
A is parameterised with a dipole form GD

A(Q2) [153, 154]

as

G
(3)
A (Q2) = G

(3)
A (0)GD

A(Q2). (5.31)

The Q2-dependence of G
(8)
A and Gs

A are unknown. However, it is assumed to have

the same dipole form description. The dipole form GD
A(Q2) is defined as

GD
A(Q2) =

1(
1 + Q2

M2
A

)2 . (5.32)

The axial-vector dipole massMA is usually extracted from charged-current quasielas-

tic neutrino-nucleus scattering.

At Q2 = 0, the axial-vector form factors are normalised as the spin contributions

of the net nucleon spin, and they can be defined as

G
(3)
A (0) = ∆u−∆d,

G
(8)
A (0) =

1

2
√

3
(∆u+ ∆d− 2∆s),

Gs
A(0) = ∆s, (5.33)
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where ∆q is the net contribution of quark q to the nucleon spin. G
(3)
A (0) is well

known from β-decay. The SU(3) octet form factor G
(8)
A (0) is estimated by combining

nucleon and hyperon β-decay assuming SU(3) flavour symmetry. ∆s has been

indirectly determined from deep inelastic scattering (DIS)[154]. Other estimations of

this quantity have been undertaken through the quasielastic neutrino scattering [74],

lattice QCD [155] and global fits of parity-violating elastic electron-proton scattering

data combined with ν–p and ν–p scattering data [76, 77].

5.2 Parity Violation in Electron Scattering

As mentioned at the beginning of this chapter, the total invariant amplitude for

e–p elastic or quasielastic scattering is simply a sum of the scattering amplitudes

Mγ and MZ , as shown in Eq. (5.2)

σ = |Mγ +MZ |2 = |Mγ|2 + 2<e(Mγ∗MZ) + |MZ |2. (5.34)

The electromagnetic scattering amplitude Mγ is the dominant part of the total

amplitude. The weak neutral scattering amplitude MZ interference with Mγ,

<e(Mγ∗MZ), is suppressed at low Q2 by the Fermi constant GF . Within the range

of low Q2, the pure weak neutral scattering amplitude can be safely neglected since

it is suppressed by G2
F . The interference term is most relevant for this study because

it causes parity violation, where the PV term is encoded in MZ , Eq. (5.8), i.e., the

sign of the axial-vector parts of the MZ changes with the electron’s helicity.

Excluding the parity-conserving terms from MZ leads to

APV =
2<e(Mγ∗MZ

PV )

|Mγ|2 , (5.35)

where |Mγ|2 is cancelled in the numerator and dominates in the denominator of

Eq. (5.1). Utilising Eqs. (5.3, 5.8, 5.9, 5.11 and 5.12), one finds that the PV asym-

metry in polarised e–N scattering at tree level is given by [10]

ANPV =

[
−GFQ

2

4
√

2πα

]
.(AE + AM + AA), (5.36)

with the electric AE, magnetic AM and axial AA components of the asymmetry

defined as

AE =
εGγ,N

E GZ,N
E

ε(Gγ,N
E )2 + τ(Gγ,N

M )2
, (5.37)
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AM =
τGγ,N

M GZ,N
M

ε(Gγ,N
E )2 + τ(Gγ,N

M )2
(5.38)

and

AA =
−ε′(1− 4 sin2 θ̂W )Gγ,N

M Ge,N
A

ε(Gγ,N
E )2 + τ(Gγ,N

M )2
, (5.39)

where the Q2-dependence of the nucleon form factors has been omitted for clarity.

The kinematic variables, which depend on the four-momentum transfer Q2 = −q2

and the electron lab scattering angle θ, can be expressed as

τ =
Q2

4M2
N

, (5.40)

ε =
1

1 + 2(1 + τ) tan2 θ
2

(5.41)

and

ε′ =
√
τ(1 + τ)(1− ε2), (5.42)

where MN , ε and ε′ are the nucleon mass, the longitudinal polarisation of the virtual

photon and the scattered energy, respectively.

The values of the Standard Model parameters for the Fermi coupling GF =

1.16638 × 10−5 GeV−2, the fine structure constant α = 1/137.036 and the weak

mixing angle in the MS renormalisation scheme at Z boson’s mass sin2 θ̂W = 0.23129

are taken from the PDG [15] and will be used in the present work.

The APV defined in Eq. (5.36) has been written as a function of the squared

momentum transfer and scattering angle, APV (Q2, θ). The multiplicative factor,

−GFQ
2/(4
√

2πα), which stems from the electromagnetic and neutral weak couplings

and propagators, gives an order of magnitude of 10−6 − 10−4. This means that the

asymmetries are usually measured in parts per million (ppm).

Since APV depends on the kinematic conditions, Q2 and θ, the PV measurements

are sensitive to the AE and AM components at forward scattering angles (θ →
0; ε→ 1), while these measurements are sensitive to the AM and AA components at

backward scattering angles (θ → π; ε→ 0).

5.2.1 Strangeness Vector from APV

Using Eq. (5.25) allows one to isolate the strangeness vector, Aps, and the PV

asymmetry can be rewritten as

ApPV =

[
−GFQ

2

4
√

2πα

]
.(ApV + Aps + ApA), (5.43)
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where ApV contains the proton’s vector form factor excluding strangeness, Aps contains

the proton’s strangeness vector form factor and ApA contains the interference of

the proton’s magnetic vector and the axial-vector form factors. Explicitly, these

components are written as

ApV = (1− 4 sin2 θ̂W )− εGγ,p
E Gγ,n

E + τGγ,p
M Gγ,n

M

ε(Gγ,p
E )2 + τ(Gγ,p

M )2
, (5.44)

Aps = −εG
γ,p
E Gs

E + τGγ,p
M Gs

M

ε(Gγ,p
E )2 + τ(Gγ,p

M )2
(5.45)

and

ApA =
−ε′(1− 4 sin2 θ̂W )Gγ,p

M Ge,p
A

ε(Gγ,p
E )2 + τ(Gγ,p

M )2
. (5.46)

Analogously, AnPV can be obtained through the replacement of Gγp
E,M and Gep

A by

Gγn
E,M and Gen

A , respectively.

As mentioned previously, ApPV depends on both Q2 and θ. For fixed Q2, at a very

forward scattering angles limit (θ → 0; ε → 1) the axial AA component disappears

(ε′ → 0) and ApPV can be reduced to

ApPV =

[
−GFQ

2

4
√

2πα

]
.
(

(1− 4 sin2 θ̂W )− Gγ,p
E Gγ,n

E + τGγ,p
M Gγ,n

M

(Gγ,p
E )2 + τ(Gγ,p

M )2
(5.47)

− Gγ,p
E Gs

E + τGγ,p
M Gs

M

(Gγ,p
E )2 + τ(Gγ,p

M )2

)
.

At very backward scattering angles limit (θ → π; ε → 0 and ε′ →
√
τ(1 + τ)) ApPV

becomes

ApPV =

[
−GFQ

2

4
√

2πα

]
.
(

(1− 4 sin2 θ̂W )− Gγ,n
M

Gγ,p
M

− Gs
M

Gγ,p
M

(5.48)

−
√
τ(1 + τ)(1− 4 sin2 θ̂W )Ge,p

A

τGγ,p
M

)
.

In a case where the squared momentum transfer Q2 is small, nucleon structure

is suppressed and the parity-violating asymmetry is sensitive to the proton’s weak

charge. Therefore, ApPV is significantly simplified as

ApPV =

[
−GFQ

2

4
√

2πα

]
.(1− 4 sin2 θ̂W ). (5.49)
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The Qweak experiment has been conducted at the value of Q2 = 0.025 GeV2 to deter-

mine the weak charge of the proton, the world’s first determination of the proton’s

weak charge [4]. The level of precision required by this experiment necessitates the

inclusion of the electroweak radiative corrections.

These corrections, which generate from higher-order electroweak interactions,

are also required for precision strangeness determinations.

5.2.2 Electroweak Radiative Corrections to the Neutral Cur-

rent

Thus far, the tree-level contributions (one boson exchange, γ or Z0) in e–N

scattering have been considered. However, the neutral weak vector and axial vector

form factors derived at this level require corrections due to higher order electroweak

processes to precisely extract contributions from Gs
E,M to APV . These higher-order

corrections (radiative corrections) alter the weak vector and axial charges, gV and

gA, that appear, for example, in Eqs. (5.25) and (5.29) and, consequently, in the

expression of APV .

In the e–N scattering event, the radiative corrections arise because of the ex-

change of two vector bosons (γ, Z0 and W±) in the same scattering channel, for

example, γZ box (�γZ) diagram shown in Fig. 5.2. These corrections can be cat-

egorised into one-quark processes, which reflect scattering involving only a single

quark at a time, and many-quark processes, which involve electroweak interactions

between target quarks (anapole correction). The radiative corrections also stem

from ignoring the heavy quark (c, b and t) contributions to the decomposition of

neutral weak form factors into quark form factors, where the three lightest quark

flavours were considered.

Following the SM notation, these corrections are usually encoded in the R-

factor [10]

R = Rone-quark +Ranapole +Rheavy quarks. (5.50)

The heavy quark corrections have been calculated and were found to be ∼ 10−4 for

the vector term and ∼ 10−2 for the axial term, and are therefore neglected in the

radiative corrections [1].

The most widely used definition of the weak mixing angle sin2 θW (µ) is derived

from the MS renormalisation scheme [27]. In this scheme, the weak mixing angle

has a dependence on a renormalisation mass or energy µ. The weak mixing angle

in the MS renormalisation scheme at Z boson’s mass, sin2 θ̂W , which appears in the

expression of APV , is used in this work and its value is taken from [15]. Electroweak
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calculations within different renormalisation schemes will differ slightly since these

calculations are only accomplished up to finite order of perturbation theory.

The vector and axial-vector charges at tree level and with radiative correction R-

factors in the SM are provided explicitly in Table 5.1 [10]. After including the radia-

tive corrections, the proton’s neutral weak and axial-vector form factors, Eq. (5.25)

and (5.29), become

GZp
E,M = (1− 4 sin2 θ̂W )(1 +Rp

V )Gγp
E,M − (1 +Rn

V )Gγn
E,M − (1 +R

(0)
V )Gs

E,M ,

Gep
A =

[
− (1 +RT=1

A )G
(3)
A +

√
3RT=0

A G
(8)
A + (1 +R

(0)
A )Gs

A

]
GD
A(Q2), (5.51)

where the factors Rp
V , Rn

V and R
(0)
V reflect the electroweak radiative corrections for

vector proton, neutron and SU(3)-singlet amplitudes, respectively. RT=1
A , RT=0

A and

R
(0)
A describe the axial-vector electroweak radiative corrections for the isovector,

isoscalar, and SU(3)-singlet amplitudes. Note that the ratio RT=0
A vanishes at tree

level as was discussed above.

5.2.2.1 One-Quark Corrections

As indicated previously, the one-quark corrections to the leading order e–N

scattering arise from the scattering that proceeds via the exchange of two vector

bosons and only a single quark is involved in the process.

The box radiative corrections involving only weak bosons, i.e., �ZZ and �WW

diagrams, can be perturbatively calculated. For low-energy regions, where the theory

is nonperturbative, these two corrections are suppressed [30]. These two diagrams

render corrections to the weak charge of the proton (Eq. (7.3)) and are encoded in

Rp
V as will be discussed latter.

Recently, �γZ corrections have been considered and has been shown that these

corrections have a significant energy dependence [6, 7, 156–159]. Focusing on the

vector component of γZ box corrections, <e�VγZ , the most accurate method to calcu-

late these corrections is a dispersion relation [6]. The dispersion relation calculations

of these corrections have been improved at forward scattering angles, whereas these

corrections are unknown at backward scattering angles where the dispersion relation

is not valid. Estimates for the Q2-dependence of the �γZ correction will be discussed

in Section 6.1.

Two Feynman diagrams of one-quark processes that cause corrections to the

tree-level weak couplings are depicted in Fig. 5.2. Here, the process on the left γZ

mixing diagram represents corrections to the propagators, and the process on the

right γZ box diagram indicates the exchange of the two bosons γ and Z0 with an
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Table 5.1: The vector (upper half) and axial-vector (lower half) charges at tree level
and with the radiative correction R-factors in the Standard Model.

Tree Level Radiative Corrections Included

gpV 1− 4 sin2 θ̂W (1− 4 sin2 θ̂W )(1 +Rp
V )

gnV −1 −(1 +Rn
V )

g
(0)
V −1 −(1 +R

(0)
V )

gT=1
A −1 −(1 +RT=1

A )

gT=0
A 0

√
3RT=0

A

g
(0)
A 1 1 +R

(0)
A

excitation of intermediate hadronic states. The effective coupling constants C1q and

C2q that describe the weak interaction are given at tree level as

C1q =
gqV g

e
A

−2
, C2q =

gqAg
e
V

−2
, (5.52)

where the expressions of gq,eV and gq,eA have been provided in Table 2.2.

The SM predictions for these effective coupling constants [15] are presented in

Table 5.2. These predictions consider several vertex and box corrections.

To obtain the estimated values of RV and RA, as shown in Table 5.3, one can

write explicitly

gpV = −2(2C1u + C1d) = (1− 4 sin2 θW )(1 +Rp
V ),

gnV = −2(C1u + 2C1d) = −(1 +Rn
V ),

g
(0)
V = −2(C1u + 2C1d) = −(1 +R

(0)
V ),

gT=1
A =

C2u − C2d

1− 4 sin2 θW
= −(1 +RT=1

A ),

gT=0
A =

2
√

3(C2u + C2d)

1− 4 sin2 θW
=
√

3RT=0
A ,

g
(0)
A =

2(C2u + 2C2d)

1− 4 sin2 θW
= 1 +R

(0)
A , (5.53)

and make use of the SM predictions presented in Table 5.2.

At low momentum transfers, the one-quark corrections for the vector weak form

factors have a weak Q2-dependence and are considered to be constant [10].
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e

e

γZ0
q

q

NNN

N

NN

+

e

e

Z0

NNN

NNN

γ

Figure 5.2: Two Feynman diagrams of one-quark processes that cause corrections
to the tree-level weak couplings. The process on the left γZ0 mixing diagram with
qq loop represents corrections to the propagators. The process on the right γZ0 box
diagram indicates the exchange of the two bosons γ and Z0.

Table 5.2: The SM predictions for the effective couplings C1q and C2q and their
values at tree level [15].

Tree Level SM Predictions
C1u −0.1916 −0.1887
C1d 0.3458 0.3419
C2u −0.0374 −0.0351
C2d 0.0374 0.0247

5.2.2.2 Axial Form Factor and the Anapole Moment

Electroweak radiative corrections associated with the anapole moment are re-

ferred to as many-quark corrections. The anapole corrections occur because of the

axial-vector coupling of the photon to the nucleon [160]. Here, the photon couples

to currents of two or more quarks inside the nucleon via weak bosons exchange. A

representative Feynman diagram for many-quark corrections is presented in Fig. 5.3.

The renowned calculations of the anapole corrections achieved by Zhu et al.

in [160] have been performed in the on-shell renormalisation (OSR) scheme using

BChPT. Since the radiative corrections in the previous section are estimated in the

MS scheme, these anapole radiative corrections must be transformed to MS via

RMS

ROSR

=
1− 4 sin2 θW

1− 4 sin2 θ̂W
= 1.44, (5.54)
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Table 5.3: The values of the ratios RV and RA (one-quark corrections).

Value
Rp
V −0.0513(40)

Rn
V −0.0098(3)

R
(0)
V −0.0098(3)

RT=1
A −0.201

RT=0
A −0.278

R
(0)
A −0.618

e

e

γ

π

π

p

p

Figure 5.3: A Feynman diagram for many-quark electroweak radiative corrections
(anapole corrections) to e–p scattering. The filled and opened circles indicate the
parity-violating and parity-conserving pion-nucleon vertex, respectively.

where sin2 θW = 0.2230 in OSR [160] and sin2 θ̂W = 0.23129 in MS [15]. There-

fore, the transformation of the anapole correction between the two renormalisation

schemes reads as

RT=1,0

A(ana),MS
= 1.44RT=1,0

A(ana),OSR. (5.55)

The anapole corrections in the OSR [160] and MS schemes using Eq. (5.55) are

given explicitly in Table 5.4. In regards to the large uncertainties in Table 5.4, the

authors of [160] considered only the dominant virtual hadronic states that cause

anapole corrections, and hence they assigned significant theoretical uncertainties to

reflect the contributions from a large number of virtual hadronic states that can also

give rise to the anapole effects.

The anapole corrections of R
(0)
A have not been calculated. As treated in the
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Table 5.4: The anapole corrections in the OSR [160] and MS schemes using
Eq. (5.55).

OSR scheme MS scheme
RT=1
A(ana) −0.06± 0.24 −0.0865± 0.3463

RT=0
A(ana) 0.01± 0.14 0.0144± 0.2020

literature, the anapole corrections for R
(0)
A have been set to zero and the value of

the one-quark correction for R
(0)
A has been assigned as its uncertainty.

The axial form factor, including anapole corrections, can be given by [161]

Ge,N
A =

[
− (1 +RT=1

A )G
(3)
A τ3 +

√
3RT=0

A G
(8)
A + (1 +R

(0)
A )Gs

A +ANana

]
GD
A(Q2), (5.56)

where the anapole contribution term ANana can be written as

ANana = (RT=1
A(ana)τ3 +RT=0

A(ana))G
(3)
A . (5.57)

The axial term ApA (defined in Eq. (5.46)) is suppressed by (1− 4 sin2 θ̂W ) and it

is further suppressed by ε′ at forward angles.

The present work considers that the axial-vector form factor implicitly incorpo-

rates the axial radiative and hadronic anapole corrections, where this entire con-

tribution is to be fit to data. Therefore, this analysis uses the effective axial form

factor G̃N
A and the axial-vector component ApA becomes

ApA =
−ε′(1− 4 sin2 θ̂W )Gγ,p

M G̃p
A

ε(Gγ,p
E )2 + τ(Gγ,p

M )2
, (5.58)

where G̃p,n
A is defined as

G̃p,n
A =

g̃p,nA(
1 + Q2

M2
A

)2 , (5.59)

The normalisation g̃p,nA represent the entire axial radiative and anapole corrections

that will be fit to the data, however since the isoscalar combination is poorly de-

termined, the theoretical estimate based on an effective field theory with VMD

models [160] is employed in the present work to constrain this combination as will

be discussed in Chapter 6. The momentum dependence of the isoscalar RT=0
A and

isovector RT=1
A one-quark and anapole radiative corrections is assumed to be de-

scribed by Eq. 5.59 where the axial dipole mass is selected to be that estimated

from neutrino scattering, MA = 1.026 GeV [162].
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5.2.3 Ap
PV and An

PV with Electroweak Radiative Corrections

At this point of the discussion, it is appropriate to explicitly write the PV asym-

metry for both the proton and neutron including the electroweak radiative correc-

tions:

ApPV =

[
−GFQ

2

4
√

2πα

]
.(ApV + Aps + ApA), (5.60)

where

ApV = (1− 4 sin2 θ̂W )(1 +Rp
V )− (1 +Rn

V )
εGγ,p

E Gγ,n
E + τGγ,p

M Gγ,n
M

ε(Gγ,p
E )2 + τ(Gγ,p

M )2
, (5.61)

Aps = −(1 +R
(0)
V )

εGγ,p
E Gs

E + τGγ,p
M Gs

M

ε(Gγ,p
E )2 + τ(Gγ,p

M )2
(5.62)

and

ApA =
−ε′(1− 4 sin2 θ̂W )Gγ,p

M G̃p
A

ε(Gγ,p
E )2 + τ(Gγ,p

M )2
. (5.63)

AnPV can be obtained by using Gγn
E,M and G̃n

A instead of Gγp
E,M and G̃p

A, respectively.

5.3 Helium-4 and Deuteron PV Asymmetries

This work aims to perform a global analysis of the full set of PV asymmetries

from elastic e–helium-4 scattering and quasielastic e–deuteron scattering at low Q2

in addition to elastic e–p scattering,. In this section, the PV asymmetry structure

for helium-4 (4He) and deuteron (d) will be briefly highlighted.

The 4He nucleus is spin-0, parity even and isoscalar. Elastic electron scattering

from 4He is a pure isoscalar, 0+ → 0+, transition and therefore allows no contribu-

tions from magnetic or axial-vector currents. Thus, the elastic e-4He scattering has

been utilised to directly extract the strange electric form factor.

For 4He, the PV asymmetry based on the assumption that isospin mixing can

be neglected is written as [10]

AHePV =−
[
GFQ

2

4
√

2πα

]
.

[
(1− 4 sin2 θw)(1 +Rp

V )− (1 +Rn
V ) (5.64)

+ 2
−
(
1 +R

(0)
V

)
Gs
E

Gγ,p
E +Gγ,n

E

]
.

The isospin correction will be taken into account in Chapter 6.

The quasielastic interaction with the constituents of nucleon dominates the scat-
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tering from the deuteron. The situation for quasielastic scattering from a nuclear

target is intricate because of the nuclear structure, final state interactions, off-shell

effects, etc. [10]. These impacts are considered in the analysis presented in Chap-

ter 6.

The PV asymmetry in electron-deuteron quasielastic scattering in the static

approximation, where the proton and neutron in the deuteron are assumed to be

noninteracting particles, is given by [10]

AdPV =

(
ε(Gγ,p

E )2 + τ(Gγ,p
M )2

)
ApPV +

(
ε(Gγ,n

E )2 + τ(Gγ,n
M )2

)
AnPV

ε
(

(Gγ,p
E )2 + (Gγ,n

E )2
)

+ τ
(

(Gγ,p
M )2 + (Gγ,n

M )2
) . (5.65)

Note that, in this approximation, the quasielastic cross section is presented as a

non-coherent sum over the nucleons. It is instructive to write AdPV explicitly using

the ApPV and AnPV expressions:

AdPV =

[
−GFQ

2

4
√

2πα

]
.(AdV + Ads + AdA), (5.66)

where

AdV = (1−4 sin2 θ̂W )(1+Rp
V )− 2(1 +Rn

V )(εGγ,p
E Gγ,n

E + τGγ,p
M Gγ,n

M )

ε
(

(Gγ,p
E )2 + (Gγ,n

E )2
)

+ τ
(

(Gγ,p
M )2 + (Gγ,n

M )2
) , (5.67)

Ads = −(1 +R
(0)
V )

ε(Gγ,p
E +Gγ,n

E )Gs
E + τ(Gγ,p

M +Gγ,n
M )Gs

M

ε
(

(Gγ,p
E )2 + (Gγ,n

E )2
)

+ τ
(

(Gγ,p
M )2 + (Gγ,n

M )2
) (5.68)

and

AdA =
−ε′(1− 4 sin2 θ̂W )(Gγ,p

M G̃p
A +Gγ,n

M G̃n
A)

ε
(

(Gγ,p
E )2 + (Gγ,n

E )2
)

+ τ
(

(Gγ,p
M )2 + (Gγ,n

M )2
) . (5.69)

As can be noted, combining proton and deuteron data renders two independent

anapole form factors. The present analysis aims to extract all four form factors,

i.e., two strange form factors and two anapole form factors, by performing a global

analysis of all experimental data from elastic PV electron scattering up to Q2 ∼ 1

GeV2.

5.4 Experimental Measurements of Gs
M and Gs

E

The first measurement of APV from scattering polarised electrons from deuterium

and hydrogen was conducted in 1978 at SLAC [163]. This measurement played an
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E

important role in establishing and understanding the nature of electroweak unifi-

cation. Although the authors of [163] measured APV in deep inelastic scattering,

this experimental study established experimental techniques that allowed for many

asymmetry measurements involving scattered polarised electrons from various po-

larised and unpolarised targets at different kinematic conditions.

Table 5.5 summarises the world data of PV elastic electron scattering within the

range of Q2 considered in the present work, including the targets, kinematics and

measured asymmetry. The targets p, 4He and d indicate electron scattering from

the proton, helium-4 and deuteron, respectively. The measured asymmetry is rep-

resented by Aphys and its associated uncertainty is shown by δA, where the statistic

and systematic errors have been added in quadrature. The correlated systematic

error in the G0 experiment is shown by δAcor. The measured asymmetry Aphys and

the corresponding uncertainty are in units of ppm.

Based on the kinematic conditions, the experiments are sensitive to Gs
M , Gs

E

and G
e(T=1)
A . The Singlet Anomalous Moment of the Proton using Longitudinally

Polarized Electrons (SAMPLE) measurements are sensitive to Gs
M and G

e(T=1)
A since

they were conducted at large scattering angles. For forward-angle scattering from the

proton, the Hall A proton parity experiment (HAPPEx), PVA4, G0 and Qweak mea-

surements are sensitive to linear combinations of the electric and magnetic strange

form factors. The HAPPEx measurements from elastic scattering from 4He are

sensitive to Gs
E.
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Table 5.5: A summary of the measured PV asymmetries data considered in this work
from different experiments with varying kinematics, where Q2, θ and E are the
squared four-momentum transfer, scattering angle and beam energy, respectively.
Aphys and δA are the measured asymmetry and the corresponding uncertainty, re-
spectively, where the statistic and systematic errors have been added in quadrature.
δAcor is the correlated error in the G0 experiment [164, 165].

Experiment Target Q2 θ E Aphys δA δAcor Ref.
Qweak p 0.025 7.90 1.16 -0.2265 0.0093 0 [4]

SAMPLE d 0.038 144 0.11 -3.51 0.81 0 [166]
HAPPEx 4He 0.077 6.0 2.67 6.40 0.26 0 [167]
SAMPLE d 0.091 144 0.18 -7.77 1.03 0 [166]
HAPPEx 4He 0.091 6.0 2.91 6.72 0.87 0 [168]
HAPPEx p 0.099 6.0 3.03 -1.14 0.25 0 [169]
SAMPLE p 0.1 144 0.2 -5.61 1.11 0 [170]

PVA4 p 0.108 35.4 0.57 -1.36 0.32 0 [171]
HAPPEx p 0.109 6.0 3.18 -1.58 0.13 0 [167]

G0 p 0.122 6.68 3.03 -1.51 0.49 0.18 [164]
G0 p 0.128 6.84 3.03 -0.97 0.46 0.17 [164]
G0 p 0.136 7.06 3.03 -1.30 0.45 0.17 [164]
G0 p 0.144 7.27 3.03 -2.71 0.47 0.18 [164]
G0 p 0.153 7.5 3.03 -2.22 0.51 0.21 [164]
G0 p 0.164 7.77 3.03 -2.88 0.54 0.23 [164]
G0 p 0.177 8.09 3.03 -3.95 0.50 0.20 [164]
G0 p 0.192 8.43 3.03 -3.85 0.53 0.19 [164]
G0 p 0.210 8.84 3.03 -4.68 0.54 0.21 [164]

PVA4 p 0.22 144.5 0.31 -17.23 1.21 0 [172]
G0 p 0.221 110 0.35 -11.25 0.9 0.43 [165]
G0 d 0.221 110 0.35 -16.93 0.91 0.21 [165]

PVA4 d 0.224 145.0 0.31 -20.11 1.35 0 [173]
PVA4 p 0.230 35.3 0.85 -5.44 0.60 0 [174]

G0 p 0.232 9.31 3.03 -5.27 0.59 0.23 [164]
G0 p 0.262 9.92 3.03 -5.26 0.53 0.17 [164]
G0 p 0.299 10.63 3.03 -7.72 0.80 0.35 [164]
G0 p 0.344 11.45 3.03 -8.40 1.09 0.52 [164]
G0 p 0.410 12.59 3.03 -10.25 1.11 0.55 [164]

HAPPEx p 0.477 12.3 3.35 -15.05 1.13 0 [175]
G0 p 0.511 14.2 3.03 -16.81 1.73 1.50 [164]

HAPPEx p 0.624 13.7 3.48 -23.8 0.86 0 [176]
G0 p 0.628 110 0.68 -45.9 2.53 1.0 [165]
G0 d 0.628 110 0.68 -55.5 3.86 0.7 [165]
G0 p 0.631 15.98 3.03 -19.96 1.69 1.31 [164]
G0 p 0.788 18.16 3.03 -30.80 3.22 2.59 [164]
G0 p 0.997 20.9 3.03 -37.90 11.53 0.52 [164]
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Determination of Strangeness

Form Factor

The strangeness content of the proton acts as a background role in the interpre-

tation of the precision of the Qweak collaboration measurement. The Qweak collabo-

ration favoured the determination of Qp
W from a PVES fit over using the theoretical

strangeness determination from lattice QCD or using the Qweak datum by itself [4].

Having highlighted the formalism of the PV asymmetries of the nucleon, helium-

4 and deuteron in Chapter 5, this chapter serves to illustrate the process of the

analysis of the set of all available PVES data, up to the currently available limit of

Q2 ∼ 1GeV2 to determine the form factor strange quark content.

In general, the strangeness contributions to the EM form factors of the proton are

ideal quantities to study the role of hidden flavour in the properties of the proton.

This has motivated intense experimental measurements of these form factors. A

major remaining source of systematic uncertainty in these determinations is the

assumption that charge symmetry violation (CSV) is negligible. In the present work,

a recent determination of the CSV form factors from LQCD, as well as estimates

provided by chiral perturbation theory with resonance saturation, are used and the

set of PVES data considered here are reanalysed.

Leading electroweak corrections play a significant role in precision measurements

of the strangeness contribution to the nucleon form factors. An energy-dependent

correction arising from the γZ box diagram was highlighted by Gorchtein and

Horowitz [6]. The size of this correction is particularly significant to the Standard

Model test by the Qweak Experiment. Fortunately, the uncertainties arising from the

underlying γZ interference structure functions can be reliably constrained [7]. The

corrections reported by the constrained Adelaide-Jefferson Lab-Manitoba (AJM) [7],

which will be closely revisited in Chapter 7, updated with the improved constraints
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of quark-hadron duality [177] and a momentum dependence as proposed in [158]

have been incorporated.

This chapter begins with �γZ(E) corrections with the aim of correcting the

measured PV proton asymmetry Aphys at forward angles. The remainder of this

chapter is devoted to the extraction of strangeness form factors from a global analysis

of the PV asymmetry data with and without the constraint of CSV form factors.

6.1 The �γZ Correction

As indicated above, the corrections due to higher-order electroweak processes are

necessary for a precise interpretation of the measured PV asymmetry. The measured

PV asymmetry Aphys for the proton at forward angles shown in Table 5.5 needs to

be corrected for the energy-dependent part of the �γZ and its uncertainty.

The �γZ corrections arise from the interference γZ box diagram. Incorporating

these corrections leads to a modification of the first term in Eq. (5.61) as(
1− 4 sin2 θ̂W

)(
1 +Rp

V

)
→
(

1− 4 sin2 θ̂W

)(
1 +Rp

V

)
+�γZ(E). (6.1)

The last term of Eq. (6.1) will be defined formally in Chapter 7.

The correction �γZ is decomposed into an axial-vector electron, vector hadron

component �VγZ and a vector electron, axial-vector hadron component �AγZ :

�γZ(E) = �AγZ(E) +�VγZ(E). (6.2)

As the electron energy E goes to 0, the hadronic vector correction �VγZ(E = 0)

vanishes, and the hadronic axial-vector correction �AγZ(E = 0) dominates. The

latter correction is encoded in Rp
V .

Blunden et al. [159] presented a formulation based on dispersion relations to cal-

culate�AγZ(E) and they found, by considering all intermediate states, that <e�AγZ(E =

0) = 0.0044(4) and <e�AγZ(E = 1.165) = 0.0037(4), where E = 1.165 GeV is the

Qweak beam energy. The former value is connected to the pioneering work of Mar-

ciano and Sirlin who obtained <e�AγZ(E = 0) = 0.0052(5) [178, 179], where the

low-energy part of loop is approximated by the elastic proton contribution, and the

dominant high-energy part by the interaction with free quarks.

The calculations of Blunden et al. show that �AγZ(E) has a weak E-dependence.

Therefore, the value of �AγZ = 0.0037(4) is adopted for the E range that is considered

in the present work.

The dominant E-dependent radiative correction to Aphys is due to �VγZ(E). This
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correction has received considerable attention among the theory community. Re-

cently Hall et al. [7] utilised the parton distribution functions to constrain the

model-dependence of the interference structure functions and they obtained the

most precise calculation of �VγZ(E). The update of that calculation with the im-

proved constraints of quark-hadron duality [177] has been adopted here with the

most recent input values.

In order to apply the γZ box corrections, the δ�γZ correction is defined as

δ�γZ =�γZ(E)−�γZ(0)

=�AγZ(E) +�VγZ(E)−�γZ(0) (6.3)

where, as stated previously, �AγZ(E) = 0.0037(4) and �γZ(0) = 0.0044(4). Thus,

Eq. (6.1) becomes(
1− 4 sin2 θ̂W

)(
1 +Rp

V

)
→
(

1− 4 sin2 θ̂W

)(
1 +Rp

V

)
+ δ�γZ . (6.4)

With the updated �VγZ(E), the results of δ�γZ are presented in Table 6.1. The δ�γZ
includes an additional correction for the Q2-dependence, where the parameterisa-

tion of this dependence described in [158] has been used with the EM form factor

parameterisations from [180]. Highlighting these form factor parameterisations will

be presented in the next section.

With this modification, and from Eqs. (5.60) and (5.61), the measured PV asym-

metries are corrected as

Aphyscorr = Aphys −
[
−GFQ

2

4
√

2πα

]
δ�γZ . (6.5)

The significance of the γZ box is somewhat less pronounced in the determination

of strangeness. Nevertheless, for example, from Eq. 6.5, the correction makes about

∼1
2
-sigma shift to the central value of the precise HAPPEX proton point at Q2 ∼ 0.1

GeV2.

6.2 Parameterisation

A combined analysis of the world PV data from the proton, helium-4 and the

deuteron requires a consistent treatment of the vector and axial form factors and

radiative corrections. The theoretical asymmetry used in this analysis is written as

ATheory = η0 + ηpAG̃
p
A + ηnAG̃

n
A + ηEG

s
E + ηMG

s
M , (6.6)
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Table 6.1: The <e�VγZ(E) and δ�γZ corrections evaluated for the measured proton
PV asymmetry Aphys at forward angles.

Experiment Q2 (GeV2) E (GeV) <e�VγZ(E) (×10−3) δ�γZ (×10−3)

Qweak 0.025 1.165 5.934 ± 0.382 5.120 ± 0.671
HAPPEx 0.099 3.030 8.780 ± 0.372 7.205 ± 0.701

PVA4 0.108 0.570 3.929 ± 0.289 2.843 ± 0.580
HAPPEx 0.109 3.180 8.947 ± 0.368 7.250 ± 0.713

G0 0.122 3.030 8.780 ± 0.372 6.969 ± 0.722
G0 0.128 3.030 8.780 ± 0.372 6.907 ± 0.728
G0 0.136 3.030 8.780 ± 0.372 6.825 ± 0.737
G0 0.144 3.030 8.780 ± 0.372 6.742 ± 0.745
G0 0.153 3.030 8.780 ± 0.372 6.648 ± 0.754
G0 0.164 3.030 8.780 ± 0.372 6.534 ± 0.766
G0 0.177 3.030 8.780 ± 0.372 6.398 ± 0.780
G0 0.192 3.030 8.780 ± 0.372 6.243 ± 0.795
G0 0.210 3.030 8.780 ± 0.372 6.056 ± 0.814

PVA4 0.230 0.850 5.198 ± 0.350 3.257 ± 0.610
G0 0.232 3.030 8.780 ± 0.372 5.831 ± 0.834
G0 0.262 3.030 8.780 ± 0.372 5.527 ± 0.859
G0 0.299 3.030 8.780 ± 0.372 5.161 ± 0.885
G0 0.344 3.030 8.780 ± 0.372 4.733 ± 0.905
G0 0.410 3.030 8.780 ± 0.372 4.143 ± 0.917

HAPPEx 0.477 3.350 9.123 ± 0.365 3.749 ± 0.943
G0 0.511 3.030 8.780 ± 0.372 3.340 ± 0.898

HAPPEx 0.624 3.480 9.251 ± 0.362 2.740 ± 0.881
G0 0.631 3.030 8.780 ± 0.372 2.547 ± 0.831
G0 0.788 3.030 8.780 ± 0.372 1.753 ± 0.706
G0 0.997 3.030 8.780 ± 0.372 1.038 ± 0.525

where for the proton

ηp0 =
[−GFQ

2

4
√

2πα

]
.
[
(1− 4 sin2 θ̂W )(1 +Rp

V )− (1 +Rn
V )
εGγ,p

E Gγ,n
E + τGγ,p

M Gγ,n
M

ε(Gγ,p
E )2 + τ(Gγ,p

M )2

]
, (6.7)

ηpE =
[ GFQ

2

4
√

2πα

]
.
[ (1 +R

(0)
V )εGγ,p

E

ε(Gγ,p
E )2 + τ(Gγ,p

M )2

]
, (6.8)

ηpM =
[ GFQ

2

4
√

2πα

]
.
[ (1 +R

(0)
V )τGγ,p

M

ε(Gγ,p
E )2 + τ(Gγ,p

M )2

]
, (6.9)

ηpA =
[−GFQ

2

4
√

2πα

]
.
[(−1 + 4 sin2 θ̂W )ε′Gγ,p

M

ε(Gγ,p
E )2 + τ(Gγ,p

M )2

]
, (6.10)
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while for 4He

ηHe0 = −
[ GFQ

2

4
√

2πα

]
.
[
(1− 4 sin2 θ̂W )(1 +Rp

V )− (1 +Rn
V )
]
, (6.11)

ηHeE = −
[ GFQ

2

4
√

2πα

]
.
[
2
−
(
1 +R

(0)
V

)
Gγ,p
E +Gγ,n

E

]
, (6.12)

and ηHeM and ηHeA are zero. In the case of the deuteron target, these coefficients

(assuming static approximation) can be written as

ηd0 =
[−GFQ

2

4
√

2πα

][
(1− 4 sin2 θ̂W )(1 +Rp

V ) (6.13)

− 2(1 +Rn
V )(εGγ,p

E Gγ,n
E + τGγ,p

M Gγ,n
M )

ε
(

(Gγ,p
E )2 + (Gγ,n

E )2
)

+ τ
(

(Gγ,p
M )2 + (Gγ,n

M )2
)],

ηdE =
[ GFQ

2

4
√

2πα

]
.
[ (1 +R

(0)
V )ε(Gγ,p

E +Gγ,n
E )

ε
(

(Gγ,p
E )2 + (Gγ,n

E )2
)

+ τ
(

(Gγ,p
M )2 + (Gγ,n

M )2
)], (6.14)

ηdM =
[ GFQ

2

4
√

2πα

]
.
[ (1 +R

(0)
V )τ(Gγ,p

M +Gγ,n
M )

ε
(

(Gγ,p
E )2 + (Gγ,n

E )2
)

+ τ
(

(Gγ,p
M )2 + (Gγ,n

M )2
)], (6.15)

ηd,pA =
[−GFQ

2

4
√

2πα

]
.
[ ε′(−1 + 4 sin2 θ̂W )Gγ,p

M

ε
(

(Gγ,p
E )2 + (Gγ,n

E )2
)

+ τ
(

(Gγ,p
M )2 + (Gγ,n

M )2
)], (6.16)

ηd,nA =
[−GFQ

2

4
√

2πα

]
.
[ ε′(−1 + 4 sin2 θ̂W )Gγ,n

M

ε
(

(Gγ,p
E )2 + (Gγ,n

E )2
)

+ τ
(

(Gγ,p
M )2 + (Gγ,n

M )2
)], (6.17)

where τ , ε and ε′ have been defined in Eqs. (5.40), (5.41) and (5.42).

It has been noted that the strange form factors show a weak sensitivity to the

selection of nucleon electromagnetic form factor parameterisations. Within the Q2

range considered in this work, the central values of the nucleon EM form factor

parameterisations presented by Ye et al. in [180] are used. In their analysis, the

two-photon exchange has been incorporated. They performed a global fit within the

z-expansion framework and the nucleon form factors’ central values are presented

as coefficients in the systematic z-expansion1.

Table 6.2 represents the calculated coefficients η, presented in Eq. (6.6), which

characterise the theoretical asymmetry for the experiments (in ppm). The nucleon

form factor parameterisations provided in [180] and the values for the Standard

Model radiative corrections in Table 5.3 have been used.

1The fit parameters of the nucleon form factors are provided in Appendix C.
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In the case of the deuteron, it is essential that the nuclear effects on the parity-

violating asymmetry and their impact on the accuracy of the extraction of the single

nucleon form factors are quantified. The SAMPLE analysis of the deuteron mea-

surements [154] has considered nuclear effects. Therefore, for these measurements,

the η0, ηM and ηE are taken from [154, 162, 166]. However, no such response func-

tions are considered in the deuterium quasi-elastic results obtained from G0 [165]

and PVA4 [173] measurements. Therefore, their coefficients η are calculated in the

static approximation, i.e., Eqs. (6.13)-(6.17).

The uncertainties associated with the kinematical factors η are no more than

2% and hence have negligible effects on the current analysis and thus have been

disregarded.

In order to extract the four form factors (G̃p
A, G̃n

A, Gs
E and Gs

M) that appear in

Eq. (6.6) using the data set considered here, the Q2-dependence of the strangeness

form factors is parameterised by a Taylor expansion as will be highlighted in the

next section. In this analysis, since the entire contribution is to be fit to data, the

effective axial form factors G̃N
A , which implicitly include both the axial radiative and

anapole corrections, have been employed. For these form factors, the dipole form

G̃N
A = g̃NA

(
1 +

Q2

M2
A

)−2

(6.18)

has been used with the axial dipole mass MA = 1.026 GeV determined from neutrino

scattering [181], common to both proton and neutron form factors. The normalisa-

tions g̃p,nA are fit to the data, however since the isoscalar combination is very poorly

determined, theoretical esimates based on an effective field theory with vector-

meson dominance models have been imposed to constrain this combination, (g̃pA
+ g̃nA)/2= −0.08± 0.26 [160].

Sections 6.2.1 and 6.2.2 will describe the analysis under the assumption of exact

charge symmetry. This provides a baseline with which one can explore the implica-

tions of charge symmetry violation in Section 6.3.

6.2.1 Taylor Expansion

At low momentum transfers, a Taylor series expansion in squared momentum

transfer Q2 is sufficient and minimises the model-dependence of the determined

form factors [162]. The model-dependence of this expansion will be examined when

z-expansion fit is considered in Section 6.2.2. In this analysis, the strange electric

and magnetic form factors Q2-dependence can be parameterised by a Taylor series

expansion in Q2 as

71



Chapter 6. Determination of Strangeness Form Factor

Table 6.2: The calculated coefficients η, presented in Eq. (6.6), which charac-
terise the theoretical asymmetry for the experiments (in ppm). The squared four-
momentum transfers Q2 are in GeV2, and the scattering angles are in degree.

Experiment Target Q2 θ η0 ηE ηM ηpA ηnA
Qweak p 0.025 7.90 -0.216 2.279 0.046 0.006 0.000

SAMPLE d 0.038 144.00 -2.130 1.160 0.280 0.460 -0.300
HAPPEx 4He 0.077 6.00 6.366 16.582 0.000 0.000 0.000
SAMPLE d 0.091 144.00 -7.020 1.630 0.770 1.040 -0.650
HAPPEx 4He 0.091 6.00 7.523 20.223 0.000 0.000 0.000
HAPPEx p 0.099 6.00 -1.412 9.539 0.758 0.037 0.000
SAMPLE p 0.100 144.00 -5.495 2.113 3.453 1.569 0.000

PVA4 p 0.108 35.40 -1.820 10.070 1.050 0.259 0.000
HAPPEx p 0.109 6.00 -1.629 10.575 0.925 0.043 0.000

G0 p 0.122 6.68 -1.931 11.939 1.172 0.057 0.000
G0 p 0.128 6.84 -2.076 12.575 1.296 0.063 0.000
G0 p 0.136 7.06 -2.276 13.431 1.473 0.072 0.000
G0 p 0.144 7.27 -2.484 14.294 1.662 0.082 0.000
G0 p 0.153 7.50 -2.725 15.275 1.889 0.093 0.000
G0 p 0.164 7.77 -3.033 16.485 2.190 0.108 0.000
G0 p 0.177 8.09 -3.412 17.933 2.577 0.128 0.000
G0 p 0.192 8.43 -3.871 19.626 3.068 0.153 0.000
G0 p 0.210 8.84 -4.450 21.688 3.722 0.187 0.000

PVA4 p 0.220 144.50 -13.315 2.880 11.133 3.466 0.000
G0 p 0.221 110.00 -10.615 9.372 8.933 2.729 0.000
G0 d 0.221 110.00 -15.246 7.630 2.211 2.051 -1.376

PVA4 d 0.224 145.00 -18.651 2.168 2.672 2.505 -1.680
PVA4 p 0.230 35.30 -5.785 22.455 5.082 0.882 0.000

G0 p 0.232 9.31 -5.199 24.252 4.620 0.234 0.000
G0 p 0.262 9.92 -6.288 27.822 6.026 0.308 0.000
G0 p 0.299 10.63 -7.729 32.333 8.062 0.416 0.000
G0 p 0.344 11.45 -9.614 37.967 11.012 0.577 0.000
G0 p 0.410 12.59 -12.605 46.499 16.342 0.874 0.000

HAPPEx p 0.477 12.30 -15.820 55.646 23.000 1.133 0.000
G0 p 0.511 14.20 -17.606 60.111 27.011 1.489 0.000

HAPPEx p 0.624 13.70 -23.540 76.587 42.758 2.118 0.000
G0 p 0.628 110.00 -36.914 19.714 62.247 11.913 0.000
G0 d 0.628 110.00 -50.722 16.632 14.624 8.456 -5.657
G0 p 0.631 15.98 -24.054 77.049 44.074 2.518 0.000
G0 p 0.788 18.16 -33.078 100.263 74.553 4.453 0.000
G0 p 0.997 20.90 -45.776 132.553 131.722 8.321 0.000

Gs
E(Q2) = ρsQ

2 + ρ′sQ
4, (6.19)
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Gs
M(Q2) = µs + µ′sQ

2. (6.20)

In the language of chiral perturbation theory, the strange magnetic moment µs =

Gs
M(Q2 = 0) appears at chiral order p2. The first Q2-dependence in Gs

M(Q2), strange

magnetic radius (O(p4)), can be evaluated by chiral loop contributions associated

with the corresponding low-energy constant. However, the first Q2-dependence in

Gs
E(Q2), the electric strange radius, appears at order O(p3), and the second Q2-

dependence arises at chiral order p5.

Based on these considerations, this work performs a global fit at leading order

(LO) terms of the strangeness form factor (Eqs. 6.19 and 6.20) with four parameters,

g̃pA, g̃nA, µs and ρs, and at next-to-leading order (NLO) terms of the strangeness form

factor with six parameters, i.e., µ′s and ρ′s in addition to the previous four parameters.

The χ2 is calculated as

χ2 =
∑
i

∑
j

(Aphysi − ATheoryi )(V )−1
ij (Aphysj − ATheoryj ), (6.21)

where Aphys represents the measured asymmetries in Table 5.5. Recall that the

corrected measured PV asymmetries Aphyscorr for �γZ , Eq. (6.5), replace the measured

PV asymmetries Aphys for proton at forward angles. ATheory refers to the theoretical

predictions obtained from the fit parameters. The indicies i and j run over the data

ensemble. The matrix V represents the covariance error matrix defined as

(V )ij = (σuncori )2δij + σcori σcorj , (6.22)

where σuncori and σcori,j are uncorrelated and correlated uncertainties of the i, jth-

measurement respectively (Table. 5.5). Note that the correlated uncertainties are

only relevant for the G0 experiment, where the forward and backward data are

treated as mutually independent.

The goodness of the fit is estimated from the reduced χ2 as

χ2
red = χ2/d.o.f, (6.23)

with 33 and 31 degrees of freedom (d.o.f) for the LO and NLO fits, respectively.

Note that with the isoscalar axial charge constrained, as described above, there are

effectively 3 (5) fit parameters in the LO (NLO) fits.

In Fig. 6.1, the behaviour of evolution of µs and ρs with increasing the upper

limit of Q2 (increasing the number of data) for the LO and NLO fits is displayed. As

can been seen, including the HAPPEX data point at Q2 = 0.624 GeV2 [176] has a
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significant effect. In particular, we note that the LO fit strangeness parameters’ un-

certainties have reduced significantly and the signs of the central values for the NLO

fit have changed. Additionally, including the G0 data point at Q2 ∼ 1 GeV2 [164]

leads to a notable reduction in the uncertainties of the strangeness parameters from

the NLO fit.

The leading order fit results for the Taylor expansion form factor fit without

constraints from CSV are presented in Table 6.3, with comparisons against previous

PVES global fits [29, 162, 182, 183]. The results are compatible with earlier work,

though with significantly reduced uncertainty.

While the fit quality is reasonable, these simple leading order fits are certainly an-

ticipated to be too simple to describe these form factors over the full range 0 ≤ Q2 .

1.0 GeV2. As a result, the statistical uncertainties displayed are not representative

of the current knowledge of the strange form factors. Hence, more variation in

the Q2-dependence by extending the fits to next-leading order is considered, i.e.,

Eqs. (6.19) and (6.20). Results are shown in Table 6.4. Curiously, the additional fit

parameters are unable to make significant improvement to the χ2 and the reduced

χ2 very marginally increases for the NLO fit.

Although the data do not support any structure offered by the NLO fits, the

results at this order are treated as being better representative of the uncertainties

of the strangeness form factors, while offering some degree of smoothing of the

underlying data. With noting that given the clustering of the underlying data set,

the separation of the electric and magnetic strange form factors are most reliable

only at the discrete momentum transfers near Q2 ∼ 0.1, 0.2 and 0.6 GeV2. As such,

the NLO fits are roughly fitting 3 data points with 2 parameters for each form factor.

Attempting fits at even higher order will just amount to over-fitting the statistical

fluctuations of the data set.

The extraction of the strange form factors over the current Q2 domain is shown

in Fig. 6.2, which displays a notable constraint on Gs
M around Q2 ∼ 0.65 GeV2.

Furthermore, a comparison with recent theoretical lattice QCD results is shown in

Fig. 6.2, where the green square corresponds to the result of Gs
M(Q2 = 0.1 GeV2)

from [151] and the magenta squares represent the Gs
M and Gs

E at different values

of Q2 = 0.17, 0.62 and 0.88 GeV2 from [148]. The authors of [151] report a direct

determination of the strange electromagnetic form factors including at the physical

pion mass. In addition, they performed a model-independent extraction of the

strange magnetic moment and strange electric radius. Here, an excellent agreement

between strangeness determinations based on PVES data and lattice QCD results

over the full Q2 range is observed. These determinations are also compatible with
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Figure 6.1: Shown are µs and ρs parameters values obtained from the LO (red
square) and NLO (black square) fits at different maximum values of Q2. The error
bars are only statistical. The points have been slightly offset for clarity.
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Table 6.3: The parameter values and χ2
red obtained from previous PVES global

fits [29, 162, 182, 183] and the current global analysis at LO for the Taylor expansion
form factor fit without constraints from CSV.

ρs[GeV−2] µs χ2
red

YRCT(2006) [162] -0.06±0.41 0.12±0.55 1.3
YRCT(2007) [29] 0.02±0.18 -0.01±0.25 -
LMR(2007) [182] -0.08±0.16 0.29±0.21 1.3
GCD(2014) [183] 0.26±0.16 -0.26±0.26 1.3

Taylor 0.15±0.04 -0.12±0.04 1.1

Table 6.4: The NLO strangeness parameters values obtained from the previous
global fit [162], where Q2 < 0.3 GeV2, and from the current global analysis for the
Taylor expansion form factor fit. The errors are statistical only. The χ2 for each fit
is displayed.

Parameter YRCT(2006) [162] Taylor
ρs [GeV−2] -0.03±0.63 0.07±0.14
ρ′s [GeV−4] -1.5±5.8 0.14±0.22

µs 0.37±0.79 -0.05±0.15
µ′s [GeV−2] 0.7±6.8 -0.11±0.23

χ2
red 1.4 1.23

earlier lattice [149] and lattice-constrained [147, 184, 185] results.

Fig. 6.3 displays the 95% and 68% confidence level ellipses in the (Gs
M , G

s
E) plane

at Q2 = 0.1 GeV2 for the LO and NLO fits. This work seems to favour positive values

for the strange electric form factor and negative values for the strange magnetic

form factor. The strangeness form factors are compatible with zero at 95% and 68%

confidence level ellipses using the NLO Taylor expansion.

The linear combination of strange electromagnetic form factors, Gs
E and Gs

M ,

can be written as

Gs
E + ηGs

M =
Aphys − ANV S

ηE
, (6.24)

where

η =
ηM
ηE

, (6.25)

and ANV S is the theoretical asymmetry assuming no vector strange quark contri-

bution, i.e., Gs
E = 0 = Gs

M . The η’s have been defined for each target at the

beginning of Section 6.2. Table 6.5 presents the constraints on the net strange

quark electromagnetic form factor contribution from each measurement as a linear

combination. The calculated net strangeness signal Gs
E + ηGs

M is shown in Fig. 6.4
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Figure 6.2: The extracted strange electric and magnetic form factors from a global
fit up to Q2 ∼ 1 GeV2 using the Taylor expansion. The red (black) solid curve shows
the LO fit (NLO fit), and the bounds are shown by the dotted curves. A comparison
with recent lattice QCD results is shown where the green square (errors bars are
smaller than the symbol) corresponds to the result of Gs

M(Q2 = 0.1 GeV2) [151]
and the magenta squares represent the Gs

M and Gs
E at Q2 = 0.17, 0.62 and 0.88

GeV2 [148].

for the forward-angle e–p scattering measurements. In contrast to the large angle

scattering data, these measurements exhibit insensitivity to the axial component,

AA, of the PV asymmetry, as discussed in Chapter 5. Thus, in Fig. 6.4, using the

value of g̃pA obtained from the NLO global analysis instead of that extracted from the

LO global analysis does not lead to a significant difference. Note that the precise

HAPPEx data point appears to disagree with the forward-angle G0 data around

Q2 = 0.6 GeV2, even though these two measurements have been performed under

similar kinematic conditions.

To test the model-dependence of the Taylor expansion, the present work considers

performing a global analysis using the so called z-expansion [186, 187] as well. This

is the topic of the next section.
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Figure 6.3: The 95% and 68% confidence level ellipses in the (Gs
M , G

s
E) plane at

Q2 = 0.1 GeV2 for LO and NLO fit.

6.2.2 z-expansion

One might not expect a Taylor expansion up to ∼ 1 GeV2 to be satisfactory.

To provide an alternative functional form to the Taylor expansion, the z-expansion,

which offers improved convergence based on the analytic properties of the form

factors [186–188], will be considered.

The z-expansion is a method of extraction that provides a model independent

description of the shape of the form factors given by

G(Q2) =
kmax∑
k=0

akz
k. (6.26)

The Q2-dependence of the strange form factors using the z-expansion can be de-

scribed, also to second (nontrivial) order, as

Gs
E = ρs,zz + ρ′s,zz

2 (6.27)
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Table 6.5: The linear combination Gs
E +ηGs

M for the measurements. Gs
E +ηGs

M LO
(NLO) indicates that the ANV S has been calculated using the g̃NA extracted from
the LO (NLO) global fit.

Experiment Target Q2 θ Gs
E + ηGs

M (LO) Gs
E + ηGs

M (NLO)
Qweak p 0.025 7.9 0.002 ± 0.004 0.002 ± 0.004

SAMPLE d 0.038 144.0 -0.818 ± 0.716 -0.802 ± 0.718
HAPPEx 4He 0.077 6.0 0.002 ± 0.016 0.002 ± 0.016
SAMPLE d 0.091 144.0 0.077 ± 0.670 0.100 ± 0.675
HAPPEx 4He 0.091 6.0 -0.040 ± 0.043 -0.040 ± 0.043
HAPPEx p 0.099 6.0 0.037 ± 0.026 0.037 ± 0.026
SAMPLE p 0.100 144.0 0.362 ± 0.542 0.378 ± 0.547

PVA4 p 0.108 35.4 0.063 ± 0.032 0.063 ± 0.032
HAPPEx p 0.109 6.0 0.014 ± 0.012 0.014 ± 0.012

G0 p 0.122 6.7 0.044 ± 0.044 0.044 ± 0.044
G0 p 0.128 6.8 0.097 ± 0.039 0.097 ± 0.039
G0 p 0.136 7.1 0.082 ± 0.036 0.082 ± 0.036
G0 p 0.144 7.3 -0.007 ± 0.035 -0.007 ± 0.035
G0 p 0.153 7.5 0.042 ± 0.036 0.042 ± 0.036
G0 p 0.164 7.8 0.018 ± 0.036 0.019 ± 0.036
G0 p 0.177 8.1 -0.021 ± 0.030 -0.021 ± 0.030
G0 p 0.192 8.4 0.010 ± 0.029 0.010 ± 0.029
G0 p 0.210 8.8 -0.001 ± 0.027 -0.001 ± 0.027

PVA4 p 0.220 144.5 -0.805 ± 0.455 -0.784 ± 0.467
G0 p 0.221 110.0 0.066 ± 0.115 0.071 ± 0.117
G0 d 0.221 110.0 -0.034 ± 0.146 -0.026 ± 0.149

PVA4 d 0.224 145.0 0.126 ± 0.710 0.160 ± 0.720
PVA4 p 0.230 35.3 0.036 ± 0.027 0.037 ± 0.028

G0 p 0.232 9.3 0.006 ± 0.026 0.007 ± 0.026
G0 p 0.262 9.9 0.046 ± 0.020 0.047 ± 0.020
G0 p 0.299 10.6 0.010 ± 0.027 0.010 ± 0.027
G0 p 0.344 11.4 0.042 ± 0.032 0.042 ± 0.032
G0 p 0.410 12.6 0.060 ± 0.027 0.061 ± 0.027

HAPPEx p 0.477 12.3 0.023 ± 0.020 0.023 ± 0.020
G0 p 0.511 14.2 0.023 ± 0.038 0.024 ± 0.038

HAPPEx p 0.624 13.7 0.006 ± 0.011 0.006 ± 0.012
G0 p 0.628 110.0 -0.296 ± 0.147 -0.290 ± 0.150
G0 d 0.628 110.0 -0.085 ± 0.251 -0.076 ± 0.253
G0 p 0.631 16.0 0.064 ± 0.028 0.064 ± 0.028
G0 p 0.788 18.2 0.034 ± 0.041 0.034 ± 0.041
G0 p 0.997 20.9 0.071 ± 0.087 0.072 ± 0.087

and

Gs
M = µs + µ′s,zz, (6.28)
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Figure 6.4: The net strangeness Gs
E + ηGs

M contribution to the form factors con-
strained by the forward elastic asymmetry from different e-p scattering measure-
ments.

where

z =

√
tcut +Q2 −√tcut√
tcut +Q2 +

√
tcut

, (6.29)

and tcut = (2mK)2 with the kaon mass mK = 0.494 GeV. In the absence of

isospin violation, the cut formally starts at 9m2
π. However, the assumption that

the strangeness contribution to the 3-pion state can be neglected has been employed

in this analysis. Furthermore, with the current experimental precision, there is not

any significant sensitivity to the value of tcut. To more easily facilitate the com-

parison with the two expansion forms, for the z-expansion fits, the expansions have

been translated back in the leading Taylor form, e.g., the strange charge radius is

calculated from the fitted slope ρs,z using ρs = dGs
E/dQ

2|Q2=0.

Table 6.6 represents the parameter values and χ2 obtained from previous PVES

global fits [29, 162, 182, 183] and from the current global analysis at LO for both

Taylor and z-expansion form factor fits. These results are consistent with each

other, with significantly reduced uncertainty. In Table 6.7 the parameter values and

χ2 obtained from the global analysis at NLO for both Taylor and z-expansion form
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factor fits are reported with a comparison with the previous work [162]. It is clear

that the strangeness parameters obtained from the global analysis with either Taylor

and z-expansion show remarkable agreement with each other.

The extraction of the strange form factors over the current Q2 domain is shown

in Fig. 6.5. Based on Figs. 6.2 and 6.5, it is clear that the strange electric and

magnetic form factors have identical behaviours in both the Taylor expansion and

z-expansion fit.

Fig. 6.6 displays the 95% confidence level ellipses in the (Gs
M , G

s
E) plane at Q2 =

0.1 GeV2 for the NLO fit for both Taylor and z-expansion strangeness parameter-

isations. As can be seen, the prediction for the z-expansion global fit agrees very

well with the Taylor expansion global fit.

Given the high degree of correlation in the measurements, it is instructive to

display the joint confidence intervals. Fig. 6.7 displays the 95% confidence level

ellipses for the different values of Q2 = 0.1, 0.23 and 0.63 GeV2 for the NLO z-

expansion fit. At the low-Q2 values, the strangeness form factors are compatible with

zero at the 95% CL, with a marginal preference for positive values of the strange

electric form factor and negative values of the magnetisation, as seen previously

in [29, 189]. AtQ2 = 0.63 GeV2, there appears a clear signal for non-zero strangeness,

with a negative Gs
M and positive Gs

E. In contrast to earlier work that has suggested

vanishing strangeness at this Q2 [165, 176], the dominant difference in the present

work is the treatment of the axial/anapole form factor. As described, the isoscalar

combination is constrained by the effective field theory with vector-meson dominance

models estimate of Zhu et al. [160], while the isovector combination is determined by

the data. The best fit—for the z-expansion at NLO—results in g̃pA = −0.67± 0.25,

which is less negative than the zero-anapole approximation. As a consequence, the

data-driven fit drives the back-angle G0 results to be more consistent with a negative

Gs
M . Under these assumptions for the effective axial form factor, one can see Gs

E

∼ 0.1, which—with the strange charge factor included—is in the order of 10% of

the proton electric form factor at this momentum transfer. To investigate the effect

of the uncertainty related to the axial form factor, a conservative variation of the

axial mass MA has been considered to be MA = 1.026± 0.500 GeV. It is found that

some of the strangeness form factor results have differed as shown in Table 6.8. The

most significant shift is seen for Gs
M at the larger Q2 point, yet still within 1-sigma

uncertainty and the conclusion derived from Fig. 6.7 still holds.

Fig. 6.8 compares the extracted µs ≡ Gs
M(Q2 = 0) from this work with some

previous PVES global analyses, in addition to some theoretical lattice results. As

can be seen, there is a good agreement among the PVES global analysis results
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Table 6.6: The parameter values and χ2
red obtained from previous PVES global

fits [29, 162, 182, 183] and the current global analysis at LO for both Taylor and
z-expansion form factor fits without constraints from CSV.

ρs[GeV−2] µs χ2
red

YRCT(2006) [162] -0.06±0.41 0.12±0.55 1.3
YRCT(2007) [29] 0.02±0.18 -0.01±0.25 -
LMR(2007) [182] -0.08±0.16 0.29±0.21 1.3
GCD(2014) [183] 0.26±0.16 -0.26±0.26 1.3

Taylor 0.15±0.04 -0.12±0.04 1.1
z-exp. 0.18±0.05 -0.10±0.04 1.1

Table 6.7: The NLO strangeness parameters values obtained from the previous
global fit [162], where Q2 < 0.3 GeV2, and from the current global analysis for both
Taylor and z-expansion form factor fits. The errors are statistical only. The χ2 for
each fit is displayed.

Parameter YRCT(2006) [162] Taylor z-exp.
ρs [GeV−2] -0.03±0.63 0.07±0.14 0.08±0.17
ρ′s [GeV−4] -1.5±5.8 0.14±0.22 0.19±0.37

µs 0.37±0.79 -0.05±0.15 -0.09±0.14
µ′s [GeV−2] 0.7±6.8 -0.11±0.23 -0.06±0.29

χ2
red 1.4 1.23 1.26

Table 6.8: Strangeness form factor results at different values of Q2 ∼ 0.1, 0.23 and
0.63 GeV2 against the variation of the axial dipole mass MA = 1.026± 0.500 GeV.
Correlation coefficients between the Gs

M and Gs
E are represented by ρ.

Q2 ∼ 0.1 GeV2 Q2 ∼ 0.23 GeV2 Q2 ∼ 0.63 GeV2

Gs
M −0.09(12) −0.10(8) −0.12(4)

MA = 1.026 Gs
E 0.01(1) 0.03(2) 0.10(2)
ρ −0.90 −0.90 −0.93
Gs
M −0.10(11) −0.10(9) −0.10(4)

MA = 1.526 Gs
E 0.01(1) 0.03(2) 0.09(2)
ρ −0.90 −0.90 −0.93
Gs
M −0.13(12) −0.14(9) −0.16(4)

MA = 0.526 Gs
E 0.01(1) 0.03(2) 0.11(2)
ρ −0.91 −0.90 −0.93

within the error bars. However, the current extracted results from LO fits show

smaller uncertainties. Furthermore, µs from LO fits are compatible with a recent

lattice result obtained by Shanahan et al. [148], Sufian et al. [151] and Leinweber
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Figure 6.5: The extracted strange electric and magnetic form factors from a global
fit up to Q2 ∼ 1 GeV2 using the z-expansion. The red (black) solid curve shows the
LO fit (NLO fit) and bound shown by the dotted curves. A comparison with recent
lattice QCD results is shown where the green square (error bars are smaller than
the symbol) corresponds to the result of Gs

M(Q2 = 0.1 GeV2) [151] and the magenta
squares represent the Gs

M and Gs
E at a different value of Q2 = 0.17, 0.62 and 0.88

GeV2 [148].

et al. [147] within uncertainties. Note that, as discussed previously, the statistical

uncertainties displayed by LO fits are not representative of the current knowledge

of the strange form factors over the full range 0 ≤ Q2 . 1.0 GeV2.

It would be interesting to compare the behaviour of the evolution of µs and ρs in

the Taylor and z-expansion fits with increasing Q2 (increasing the number of data)

at LO and NLO, and this has been done in Fig. 6.9. As can be noted, to the level

of truncation of the data set at a maximum Q2, the results of µs and ρs obtained

from the LO fit for the Taylor expansion are similar to the corresponding results

obtained from the LO fit for the z-expansion. A similar conclusion applies to the

NLO for both Taylor and z-expansion form factor fits.
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Figure 6.6: The 95% confidence level ellipses in the (Gs
M , G

s
E) plane atQ2 = 0.1 GeV2

for the NLO fit for both Taylor and z-expansions strangeness parameterisations.

6.3 Sensitivity to the Charge Symmetry Viola-

tion (CSV)

As mentioned previously, a limiting factor in the precision of experimental mea-

surements of the strangeness form factors of the proton has been the uncertainty

surrounding the degree to which charge symmetry violation (CSV) affects their de-

termination from PVES experiments. In this section, the impact of CSV on the

extracted strangeness from the PVES global analysis is investigated.

While earlier theoretical predictions of CSV in the proton’s EM form factors

varied through several orders of magnitude [31–34], a recent lattice QCD calcula-

tion [35] has determined that CSV in the proton’s EM form factors is significantly

smaller than earlier expectations. Despite its importance for future measurements

of parity-violating electron-proton scattering and their subsequent interpretation

of proton strangeness, the precise influence of this recent CSV constraint has not

been thoroughly quantified. Hence, in this section, a global analysis of the full set of

parity-violating asymmetry data with non-vanishing CSV form factors is performed.
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Figure 6.7: 95% confidence level ellipses for the electric and magnetic strangeness
form factors using the NLO z-expansion in Eqs. (6.27) and (6.28) for three Q2 values
0.1, 0.23 and 0.63 GeV2.

6.3.1 Neutral Weak Form Factor and CSV

The CSV effects characterise the breaking of the approximate SU(2)-flavour

symmetry of the u and d quarks.

Charge symmetry, physically, refers to the invariance of the strong interaction

under a rotation by 180◦ about the 2-axis in isospace. Under this rotation u-quarks

turn into d-quarks and vice-versa, i.e., exchanging the proton and neutron. If the

charge symmetry is violated, the u quark in the proton is no longer the same as the

d quark in the neutron and the d quark in the proton is not the same as the u quark

in the neutron:

Gp,u
E,M 6= Gn,d

E,M ,

Gp,d
E,M 6= Gn,u

E,M . (6.30)

The CSV form factor relevant to PVES can be defined as a combination of those
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Figure 6.8: Comparison of the extracted µs ≡ Gs
M(Q2 = 0) from this work with

some previous PVES global analyses, as well as some theoretical lattice results.

terms:

GCSV
E,M =

2

3
(Gp,d

E,M −Gn,u
E,M)− 1

3
(Gp,u

E,M −Gn,d
E,M). (6.31)

In order to explore the CSV’s effect, one needs to modify the neutral form factor in

Eq. 5.51 to explicitly include a CSV term:

GZ,p
E,M =(1− 4 sin2 θ̂W )(1 +Rp

V )Gγ,p
E,M(Q2)

− (1 +Rn
V )Gγ,n

E,M(Q2)− (1 +R
(0)
V )Gs

E,M(Q2) (6.32)

− (1 +Rn
V )GCSV

E,M (Q2).

The leading moments of the GCSV
E,M form factors can be expressed as [31, 32]

GCSV
E,M (Q2) = GCSV

E,M (0)− ρCSVE,MQ
2 +O(Q4), (6.33)

with GCSV
E (0) set to zero due to charge conservation.

Based on the discussion presented above, the term η0 in the theoretical asym-

metry, i.e., Eq. 6.6, receives a correction from the CSV form factors and therefore

86



Section 6.3. Sensitivity to the Charge Symmetry Violation (CSV)

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Q2
max [GeV 2]

−0.5

0.0

0.5

µ
s

LO Fit, Taylor exp.
NLO Fit, Taylor exp.
LO Fit, z-exp.
NLO Fit, z-exp.

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Q2
max [GeV 2]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

ρ
s

[G
eV
−

2
]

LO Fit, Taylor exp.
NLO Fit, Taylor exp.
LO Fit, z-exp.
NLO Fit, z-exp.

Figure 6.9: Shown are µs and ρs parameters values obtained from the LO and NLO
for both Taylor and z-expansion fits at different maximum values of Q2. The error
bars are only statistical. The data points have been offset for clarity.
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ATheory is rewritten as

ATheory = ηCSV0 + ηpAG̃
p
A + ηnAG̃

n
A + ηEG

s
E + ηMG

s
M , (6.34)

where ηCSV0 = η0 + ηCSVE GCSV
E + ηCSVM GCSV

M , with

ηN
CSV,E

=
[ GFQ

2

4
√

2πα

]
.
[ (1 +Rn

V )εGγ,N
E

ε(Gγ,N
E )2 + τ(Gγ,N

M )2

]
, (6.35)

ηN
CSV,M

=
[ GFQ

2

4
√

2πα

]
.
[ (1 +Rn

V )τGγ,N
M

ε(Gγ,N
E )2 + τ(Gγ,N

M )2

]
. (6.36)

In the case of the PV asymmetry of 4He, in addition to the CSV at nucleon level

GCSV
E , the CSV at nuclear level FCSV should be considered. Thus, in this case ηCSV0

can be written as

ηCSV0 = ηHe0 +
[ GFQ

2

4
√

2πα

]
.
[
− 2FCSV − 4

(
1 +Rn

V

)
GCSV
E

Gp
E +Gn

E

]
, (6.37)

where ηHe0 has been defined in Eq. (6.11) and FCSV corresponds the ratio F (1)(q)/F (0)(q)

in [190]. The value of that ratio, F (1)(q)/F (0)(q) ≡ FCSV = −0.00157 given in [190]

is adopted to calculate ηCSV0 for the theoretical PV asymmetry of 4He at Q2 = 0.077

and 0.091 GeV2.

6.3.2 CSV Theoretical Effects

In order to investigate the effect of CSV on the strangeness parameter values

obtained from the analysis above, three different calculations of the CSV form factors

will be considered.

The first work considered here was completed by Kubis and Lewis [31], denoted

by ‘K&L CSV’. They used an effective field theory, supplemented with resonance

saturation to estimate the relevant contact term—where the CSV is largely driven by

ρ−ω mixing. To accomplish this, they employed a large ω-nucleon coupling constant

gω ∼ 42 taken from dispersion analysis. Combining this estimate with calculations in

BChPT and infrared regularised baryon chiral perturbation theory, Kubis and Lewis

predicted a CSV magnetic moment contribution GCSV
M (0) ≡ ku,d = 0.025 ±0.020,

which includes an uncertainty arising from the resonance parameter. For the CSV

slope parameters, they found ρCSVM = −0.08±0.06 GeV−2 and ρCSVE = −0.055±0.015

GeV−2.

The second theoretical calculation of CSV considered is from Wagman and

Miller [32], and denoted by ‘W&M CSV’. In their work, they used relativistic chiral
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perturbation theory with a more realistic ω-nucleon coupling, i.e., gω ∼ 10. That

study reported values of GCSV
M (0) = 0.012±0.003, ρCSVM = 0.015±0.010 GeV−2 and

ρCSVE = −0.018± 0.003 GeV−2.

The third determination of the CSV form factor that is employed here is based on

an analysis of lattice QCD results [35], denoted by ‘Lattice CSV’. The lattice study

found significantly smaller values of the magnetic and electric CSV form factors

compared to the previous two estimates. To study the effect of the CSV form

factors obtained from lattice QCD, with a simple interpolation, the value of GCSV
M =

0.0± 0.001 and ρCSVE = 0.0± 0.001 GeV−2 have been employed.

The first two CSV calculations were accomplished for Q2 < 0.3 GeV2. For the

considered Q2 range, these calculations need to be extended. To do so, the following

expression is used:

GCSV
ext. = GCSV (Q2 = 0.299)

(
1 +

(
Q2 − 0.299

Λ2

)2
)−2

, (6.38)

where Λ2 = 1 GeV2 was chosen to be the order of φ meson mass. The value Q2 =

0.299 GeV2 is the maximum Q2 in the data set where the original K&L and W&M

calculations of GCSV can be applied, and Q2 runs over the 0.299 GeV2< Q2 < 1

GeV2.

The uncertainties of the CSV form factors are the source of the uncertainty

that propagates into the theoretical asymmetry as systematic errors. In order to

propagate the uncertainties, the covariance matrix above, Eq. (6.22), is extended to

include a correlated uncertainty associated with the theoretical estimates of CSV.

For each theoretical description, the entire data set has been reanalysed, and the

determination of the strange magnetic moment µs (top panel) and strange electric

radius ρs (bottom panel) are presented in Fig. 6.10. Since the lattice CSV form

factors are zero with a negligible uncertainty, they are consistent with the ‘No CSV’

results. No visible impact on µs and ρs from the inclusion of the ‘W&M CSV’

form factors was found, except small shifts in the central values of µs obtained

from the NLO fits. Finally, when estimating the CSV form factors by the K&L

parameters, shifts in the central value of the strangeness magnetic moment were

observed. Nevertheless, even the ‘worst case’ scenario of K&L does not appreciably

affect the NLO fits.

For completeness, in Fig. 6.11 the 95% confidence level ellipses at Q2 = 0.1 GeV2

in (Gs
M , Gs

E) plane for the NLO z-expansion fit with and without including K&L

CSV calculations are presented. As can be noted, the zero strangeness is inside the

ellipses, and the differences between the two ellipses are not significant.
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Figure 6.10: Comparison of determinations obtained from the present work with and
without CSV for the strange magnetic moment µs (top panel) and strange electric
radius ρs (bottom panel).
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Figure 6.11: The 95% confidence level ellipses in the (Gs
M , G

s
E) plane at Q2 = 0.1

GeV2 for the NLO z-expansion fit with and without including K&L CSV calcula-
tions.
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This analysis reveals that the CSV’s effects are negligible and paves the way

for future measurements of parity-violating electron-proton scattering to extract

strangeness in the nucleon.

6.3.3 Summary and Discussion

In this chapter, a complete global analysis of all PVES asymmetry data, up to

the currently available limit of Q2 ∼ 1GeV2, for the proton, 4He and deuteron, has

been presented.

In order to extract information on the strange quark form factor using this data

set, their Q2-dependence has been parameterised by a Taylor expansion in Q2. In

regard to the axial form factors, the dipole form factor was employed to describe

the axial form factor’s Q2-dependence.

In the current study, the isovector contribution from the axial radiative and

anapole corrections were fit to data, whereas model estimates were used for the

isoscalar.

This work took into account performing the model-independent z-expansion fit

to assess the model-dependence of the Taylor expansion fit and found that both fits

produced consistent values.

The γZ exchange correction and the effect that CSV form factors have on the

extraction of strange quark contribution have been investigated. Including γZ box

contribution in the analysis led to small increases in the magnitude of the central

values of µs and ρs when compared to results obtained without constraints from the

γZ-exchange. CSV results considered in this work have small effects on the central

values of the strangeness parameters, with the largest effect, while still small, coming

from the inclusion of the CSV form factors as provided by Kubis and Lewis [31].

The latest theory estimates on CSV are small — indeed small enough that they

would not cloud the interpretation of future precision strangeness measurements.

However, one can note that the back-angle measurements do exhibit sensitivity to the

effective axial form factor, presenting an opportunity for future investigation. The

combined efforts to improve the resolution of strangeness, and reveal the structure

of the anapole form factor offer the potential to establish a precision era of QCD

and the nucleon. While further advancing the understanding of the mechanisms

underlying nonperturbative QCD, such work will serve to gain further confidence in

the use of lattice QCD for precision constraints in tests of the Standard Model.
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Interference Electroweak

Structure Functions

The interpretation of experimental results from low-energy tests of the SM high-

lights the importance of the precision of theoretical predictions. For example, the

interpretation of the Qweak result is sensitive to radiative corrections. Since most of

the radiative corrections have been calculated to the level of the precision necessary

for the Qweak experiment, the γZ box correction is usually subject to considerable

debate.

Thus far, the γZ box correction is understood within phenomenological models

such as the Adelaide-Jefferson Lab-Manitoba (AJM) [7], Gorchtein et al. (GHRM) [158]

and, Carlson and Rislow models [157].

At large Q2, the parton model provides the link between the deep-inelastic struc-

ture functions and the quark structure of the nucleon. At low Q2, the parton model

is incomplete and cannot describe the rich structure of the inelastic scattering data.

A recent new method has been developed to compute the electromagnetic Comp-

ton amplitude T γγ1 directly from a lattice calculation [8]. A possible extension to

this method involves studying the γZ interference Compton amplitude T γZ1 at low

Q2. There is a question of what accuracy for T γZ1 is required from the lattice to

improve the AJM or GHRM models.

In the next section, the γZ box correction to the proton’s weak charge Qp
W is

discussed. In Section 7.2, for a physical interpretation of the structure functions

at low Q2, AJM and GHRM phenomenological models and their construction of

interference structure functions F γZ
1,2 from the corresponding electromagnetic struc-

ture functions F γγ
1,2 will be highlighted. In Section 7.3, a brief discussion on the

recently proposed method to calculate the structure functions directly from a lattice

calculation of the Compton amplitude utilising the operator product expansion is
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presented [8]. As this method can be extended to consider T γZ1 , Section 7.4 deals

with the question about the necessary accuracy of T γZ1 on the lattice to constrain

the phenomenological models.

7.1 The γZ Box Correction to Qp
W

In the Qweak experiment, a beam of longitudinally polarised electrons accelerated

to energy E = 1.165 GeV are elastically scattered from a stationary proton target.

The resulting average Q2 of this experiment is Q2 = 0.025 GeV2.

As indicated in Eq. (5.49), at this small Q2, the proton’s structure is suppressed

and the parity-violating asymmetry is dominated by the proton’s weak charge:

ApPV =

[
−GFQ

2

4
√

2πα

]
Qp
W . (7.1)

At tree level, the proton’s weak charge is given by

Qp
W = 1− 4 sin2 θW . (7.2)

However, at the Qweak experiment precision level, radiative corrections must be taken

into account [30]:

Qp
W = (1 + ∆ρ+ ∆e)(1− 4 sin2 θW (0) + ∆′e) +�WW +�ZZ +�γZ(0), (7.3)

where �γZ(0) is the γZ box diagram calculated at E = 0.

The�γZ corrections arise from the interference γZ diagrams illustrated in Fig. 7.1,

where the �γZ can be defined as [191]

�γZ = (1− 4 sin2 θ̂W )

<e
(
M∗

γM(PV)
γZ

)
<e
(
M∗

γM(PV)
Z

) , (7.4)

where M(PV)
Z and M(PV)

γZ are the vector-axial vector (parity-violating) parts of the

Z and γZ interference amplitudes. The correction �γZ has an axial-vector electron,

vector hadron component �VγZ and a vector electron, axial-vector hadron component

�AγZ , i.e., Eq. (6.2).

The most accurate method to calculate the �VγZ contributions is the dispersion

relation [6]. The dispersion relation calculations of these contributions have been
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Figure 7.1: γZ box (left) and crossed box (right) diagrams. The wavy and dashed
lines indicate the exchanged γ and Z bosons. p, k, q and k′ are the hadron, electron,
virtual photon and outgoing electron momenta, respectively.

improved at forward scattering angles, whereas these contributions are unknown at

large scattering angles where the dispersion relation is not valid.

At forward angles, �VγZ can be computed from its imaginary part using the

dispersion relations:

<e�VγZ(E) =
2E

π

∫ ∞
νπ

dE ′
1

E ′2 − E2
=m�VγZ(E ′), (7.5)

where νπ = (W 2
π −M2)/2M . The invariant mass at the pion-production threshold

is W 2
π = (M + mπ)2, where mπ is the pion mass. From the optical theorem, the

imaginary part of the PV interference amplitude can be written in terms of the

product of leptonic Lµν and hadronic Wµν tensors as [156]

2 =mM(PV )
γZ = 4πM

∫
d3k′

(2π)32Ek′

(
4πα

Q2

)(
−2GF√

2

)
1

1 +Q2/M2
Z

LγZµνW
µν
γZ , (7.6)

where q = k − k′ is the virtual photon momentum transfer with Q2 = −q2. Using

LγZµν and W µν
γZ , as defined in [156, 191], and changing variable using

d3k′

(2π)32Ek′
→ 1

32π2k.p
dW 2dQ2, (7.7)

=m�VγZ becomes

=m�VγZ(E) =
α

(s−M2)2

∫ s

W 2
π

dW 2

∫ Q2
max

0

dQ2

1 +Q2/M2
Z

×
[
F γZ

1 + F γZ
2

s
(
Q2
max −Q2

)
Q2
(
W 2 −M2 +Q2

)], (7.8)

where k · p = ME has been evaluated in the rest frame of the proton. The total

96



Section 7.2. Phenomenological Models

c.m. energy squared is s = M(M + 2E) and Q2
max = (s − M2)(s − W 2)/s =

2ME(1−W 2/s). The structure functions F γZ
1,2 are analogues of the electromagnetic

structure functions F γγ
1,2. F γZ

1,2 are functions of Q2 and of the invariant mass W (or

of the Bjorken variable x = Q2/(W 2 −M2 +Q2) [156]).

The structure functions can be written in terms of the transverse cross section σT

(the cross section for the proton to absorb a transversely polarised photon) and lon-

gitudinal cross section σL (the cross section for the proton to absorb a longitudinally

polarised photon) [67]:

F1(W 2, Q2) =

(
W 2 −M2

8π2α

)
σT (W 2, Q2), (7.9)

F2(W 2, Q2) =

(
W 2 −M2

8π2α

)
ν

M(1 + ν2/Q2)
[σT (W 2, Q2) + σL(W 2, Q2)], (7.10)

where ν = E − E ′ is the energy transfer of the electron to the target, where E

and E ′ are the energy of the incoming and outgoing electron, respectively. These

expressions are used for both F γγ
1,2 and F γZ

1,2 .

7.2 Phenomenological Models

The physical interpretation of the structure functions takes on different charac-

ter dependent upon the kinematic region of the scattering event. At low Q2, where

the strong coupling constant αs is large, perturbation theory becomes an invalid

technique for describing the structure functions. Therefore, phenomenological mod-

els are employed instead. The low-Q2 region, itself, can be divided into two parts,

namely resonance and Regge parts.

To construct the interference structure functions, one should consider the models

that describe the electromagnetic structure functions. Below is a list of the most

commonly used models:

• Christy-Bosted parameterisation (CB) [192]

• Colour dipole model (CDP) [193]

• Regge models [194]

• Vector meson dominance model (VMD) [195]

For the cross section σ in Eqs. (7.9) and (7.10) , it is common to be divided into
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a resonance part and a non-resonant background:

σT,L = σ
(res)
T,L + σ

(bgd)
T,L . (7.11)

As discussed in the literature, the models for the description of the interference

γZ structure functions are distinguished by how the background contributions are

incorporated. However, for the resonance contributions, all of the models, except

Sibirtsev et al. (SBMT) [156], utilise the Christy-Bosted parameterisation [192] in

describing the electromagnetic structure functions at low W 2; however, these models

vary in transforming these structure functions into their counterpart γZ structure

functions.

The discussions presented in the following sections will focus on the Adelaide-

Jefferson Lab-Manitoba (AJM) model, as it obtained the most precise calculation

of �VγZ(E), and the model II of Gorchtein et al. (GHRM) [158], henceforth referred

to as the GHRM model, as it provided the largest uncertainty on the estimation of

�VγZ . The AJM and GHRM models agree well on their predicted central values for

the �VγZ(E) contribution. Both models employ VMD to account for the background

contributions to the structure functions.

7.2.1 AJM Model

Precise knowledge of the γZ structure functions, F γZ
1,2 , play an important role in a

precise evaluation of <e�VγZ . However, the difficulty of accomplishing this task stems

from the lack of experimental data for these structure functions. Their counterpart

electromagnetic structure functions, F γγ
1,2, have been estimated accurately in low-Q2

and low-W 2 regions by many experiments, and F γZ
1,2 that have been extracted at

high-Q2 and high-W 2 provide a small contribution to the <e�VγZ correction. Thus,

one needs to consider modelling these structure functions.

In constructing the AJM model, the excellent understanding of PDFs has been

utilised as additional constraints on γZ structure functions [7]. In fact, this is

an important feature of this model. The AJM model, with an extension to also

incorporate duality constraints [177], is considered in the following discussion.

In the AJM model, the integrals over W 2 and Q2 in Eq. (7.8) are divided into

three different kinematic areas [177], as illustrated in Fig. 7.2. Region I (low-Q2 and

low-W 2) itself is divided into two regions: 0 ≤ Q2 ≤ 10 GeV2 with W 2
π ≤ W 2 ≤ 4

GeV2 and 0 ≤ Q2 ≤ 1 GeV2 with 4 < W 2 ≤ 9 GeV2. In this region, the struc-

ture functions are characterised by Christy and Bosted’s (CB) parameterisation,

including resonance and background components [192]. For Region II (low-Q2 and
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Figure 7.2: Divisions of kinematic regions in the AJM model. Region I (blue) at low
W 2 and lowQ2 is described by the Christy and Bosted’s (CB) parameterisation [192];
Region II (red) at lowQ2 and highW 2 is described by Regge theory and vector meson
dominance (VMD) model [196]; and Region III (green) at high W 2 and high Q2 is
the deep-inelastic region characterised by global PDF fits to high-energy scattering
data [197].

high-W 2), the Regge model combined with the vector meson dominance (VMD)

model [196] is used over the range 0 ≤ Q2 ≤ 1 GeV2 with W 2 > 9 GeV2. In this

region, the modified CB resonance contribution [158] has been taken into account.

Here, VMD accounts for the background contribution to the structure functions

in this region. Region III (high-Q2 and high-W 2, deep-inelastic scattering region)

Q2 > 1 GeV2 and W 2 > 4 GeV2 is characterised by global PDF fits to high-energy

scattering data [197]. These global fits are performed up to next-to-next-to-leading

order in the fixed-flavour number scheme, and they include leading-twist (twist-

2) and twist-4 contributions. Furthermore, the hadron mass effects (target mass

corrections) are taken into account in these analyses.
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7.2.2 AJM γZ Interference Structure Functions

At this stage, it is appropriate to discuss the construction of the interference

structure functions from their corresponding electromagnetic structure functions in

the AJM model.

For the resonance part, the γZ structure functions construction needs to modify

the contribution from each resonance by the ratio ξR that considers the difference

between the weak neutral and electromagnetic transition amplitudes. In the case of

the transverse cross section, the ratio ξR, for the proton, has been defined as [158]

ξR =
σγZT,R
σγγT,R

=
(

1− 4 sin2 θW (0)
)
− yR, (7.12)

where

yR =
Ap
R, 1

2

An∗
R, 1

2

+ Ap
R, 3

2

An∗
R, 3

2

|Ap
R, 1

2

|2 + |Ap
R, 3

2

|2 . (7.13)

This ratio has also been used for the longitudinal cross section.

ANR,λ is the transition amplitude from nucleon N to resonance R with helicity

λ = 1
2
, 3

2
, and it is assumed to be Q2 independent [158]. ANR,λ values are estimated

from electromagnetic decays at Q2 = 0 [15].

In order to estimate the uncertainties to ξR for each resonance, the AJM model

followed the standard Gaussian (normal) distribution approach [7]. For P33(1232)

and F37(1950), according to the 2016 PDG [15], the uncertainties on their isospin

structure should be zero. However, the AJM analysis adopted the conservative error

assignment introduced in [158], where 10% and 100% errors have been assigned to

yR for the P33(1232) and F37(1950), respectively.

For the background part, the transverse and longitudinal electromagnetic cross

sections can be transformed to their γZ counterparts by the ratio [7, 158]

σγZT,L
σγγT,L

=
kρ + kω R

T,L
ω (Q2) + kφ R

T,L
φ (Q2) + kT,LC RT,L

C (Q2)

1 +RT,L
ω (Q2) +RT,L

φ (Q2) +RT,L
C (Q2)

, (7.14)

where the ratios RT,L
V are defined as the vector meson V cross sections normalised
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by the ρ meson cross section:

RT,L
V =

σγ
∗p→V p
T,L

σγ
∗p→ρ p
T,L

=
f 2
ρ

f 2
V

(
1 +Q2/m2

ρ

1 +Q2/m2
V

)2

, (7.15)

with V = ω, φ. The vector meson V leptonic decay constant fV , f 2
V ∼ 1/rV , can

be experimentally measured and hence rV = {0.67, 0.062, 0.059} for V = ρ, ω and

φ [198]. The continuum part is represented by the ratios

RT
C =

rC
rρ

(
1 +Q2/m2

ρ

1 +Q2/m2
0

)2

(7.16)

and

RL
C =

rC
rρ

[
m2

0

Q2
ln(1 +Q2/m2

0)− 1

1 +Q2/m2
0

]/[ Q2/m2
ρ

(1 +Q2/m2
ρ)

2

]
, (7.17)

where m0 = 1.5 GeV and rC
rρ

= 0.21
0.67

[158]. rC is the fraction from the continuous

mass hadronic spectrum and is defined explicitly as

rC = 1−
∑
V

rV . (7.18)

As can be seen, each term in the numerator of Eq. (7.14) is scaled by the ratio

kV . Here, a generalisation of the VMD model is adopted, assuming that the γZ

cross section for vector meson V can be obtained from the purely electromagnetic

cross section multiplied with the scaling ratio kV :

σ
γZ(V )
T,L = kV σ

γγ(V )
T,L , (7.19)

where

kρ = 2− 4 sin2 θW ,

kω = − 4 sin2 θW ,

kφ = 3− 4 sin2 θW . (7.20)

The parameters kT,LC represent the ratio of the γZ and γγ continuum contribu-

tions to the cross section. These parameters received considerable discussions in the
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literature as there is no simple approach to estimate their values. In the AJM model,

the values of kT,LC have been estimated by applying constraints from global QCD fits

of PDFs. The AJM model introduced a significant reduction in the kTC uncertainty

compared with that obtained in the GHRM model, which will be discussed in the

next section. Conversely, the AJM model, obtained a large error on kLC . That error,

however, has an insignificant impact on the estimation of �VγZ .

An additional source for uncertainty on the background part stems from the

ratios RT,L
ω and RT,L

φ in Eq. (7.14). The AJM model estimated this uncertainty by

taking the discrepancy between these ratios determined in the VMD+Regge model

at Q2 = 7 GeV2 and the measured vector meson production cross sections from

HERA [199].

In the DIS region (Region III), the AJM model computed the γZ structure

function from the ABM11 PDF parameterisation [197]. Due to the absence of inter-

ference structure functions at low Q2, the authors of [197] have taken the values for

the higher-twist contributions to F γZ
i to be the same as for F γγ

i . Therefore, in the

AJM model, a conservative 5% uncertainty on both F γZ
1 and F γZ

2 in the DIS region

has been assigned.

7.2.3 GHRM Model

In the GHRM model, the VMD+Regge parameterisation has been extended to

include the entire kinematic region of the dispersion integral.

In transforming the resonant part of the electromagnetic structure functions

into their corresponding γZ structure functions, Gorchtein et al. [158] calculated

the errors on the yR, Eq. (7.12), parameters by taking into account the extreme

values of the helicity amplitudes ANR,λ, where they assumed that the distribution

is uniform. By adding the uncertainties linearly, the GHRM model produced very

conservative errors on ξR.

In the GHRM model, the nonresonant background has been transformed by

multiplying the VMD+Regge background with the ratio defined in Eq. (7.14). The

main difference between the AJM and GHRM models is in the continuum term that

contributes to the background error. Gorchtein et al. equated the purely electro-

magnetic and γZ interference continuum term and assigned a 100% uncertainty to

this contribution.
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7.3 Structure Functions from Lattice QCD

Beside the phenomenological models, the direct computation of structure func-

tions via the hadronic tensor or Compton amplitude provide complementary meth-

ods. Therefore, in this section the structure functions within the lattice QCD frame-

work will be highlighted.

The differential cross section for deep-inelastic scattering can be divided into

leptonic and hadronic components. The hadronic tensor may be written in terms of

the form factors F1(x, q2) and F2(x, q2) as

Wµν(p, q) =
(
δµν −

qµqν
q2

)
F1(x, q2) +

1

p.q

(
pµ−

p.q

q2
qµ

)(
pν −

p.q

q2
qν

)
F2(x, q2). (7.21)

For unpolarised structure functions, the optical theorem relates the hadronic tensor

to the forward Compton amplitude

Tµν(p, q) =
(
δµν −

qµqν
q2

)
F1(ω, q2) +

1

p.q

(
pµ−

p.q

q2
qµ

)(
pν −

p.q

q2
qν

)
F2(ω, q2), (7.22)

where ω = 2p · q/q2. By crossing symmetry, Tµν(p, q) = Tµν(p,−q), hence F1 is

an even function of ω and F2 an odd function, i.e., F1(ω, q2) = F1(−ω, q2) and

−F2(ω, q2) = F2(−ω, q2). The discontinuity of the forward Compton amplitude

through the cut starting at ω = 1 in the complex ω plane gives the hadronic tensor

for nucleon targets. In the physical range 1 ≤ |ω| ≤ ∞,

=mF1,2(ω, q2) = 2πF1,2(ω, q2). (7.23)

At large Q2, the deep-inelastic structure functions can be described by the parton

model. At low Q2, however, the parton model cannot provide accurate descriptions

of the rich structure of the inelastic scattering data.

A recent new lattice method to compute the structure functions directly from

the product of electromagnetic currents was proposed in [8]. In that method, the

direct calculation of the forward Compton amplitude via the Feynman-Hellmann

technique has been performed. Applying the operator product expansion (OPE) to

the forward Compton amplitude allows one to relate the structure functions F1,2(ω)

103



Chapter 7. Interference electroweak Structure Functions

to the Mellin moments of F1,2(ω) as

Tµν(p, q) =
∞∑

n=2,4,...

{(
δµν −

qµqν
q2

)
4ωn

∫ 1

0

dxxn−1F1(x, q2) (7.24)

+
(
pµ −

p.q

q2
qµ

)(
pν −

p.q

q2
qν

) 8

2p.q
ωn−1

×
∫ 1

0

dxxn−2F2(x, q2)
}
.

Summing the geometric series in Eq. (7.24) enables the identification of specific

components of the forward Compton amplitude. For example, choosing µ = ν = 3

and P3 = q3 = q4 = 0 yields

T33(p, q) = 4ω2

∫ 1

0

dx
x

1− (ωx)2
F1(x, q2). (7.25)

Fig. 7.3 represents lattice results for the proton Compton amplitude T33(p, q) for

different momenta obtained in [8].

A possible extension to this method involves studying the γZ interference Comp-

ton amplitude T γZ1 . This leads to the question of what accuracy of T γZ1 on lattice is

necessary to improve the AJM or GHRM models. In the next section, Eq. (7.25) will

be used to calculate T γZ1 , which in turn requires a brief discussion on F γZ
1 (x,Q2).

7.4 Compton Amplitude T γZ1 and Structure Func-

tion F γZ
1

The integral over x in Eq. (7.25) is divided into the pieces described in the AJM

model. As the elastic piece is included, the elastic structure functions must also be

considered. In elastic scattering, the response functions can be expressed in terms

of combinations of squared electromagnetic form factors as [67]

W1(ν,Q2) =
Q2

4M2
(Gγp

M (Q2))2δ
(
ν − Q2

2M

)
,

W2(ν,Q2) =
(Gγp

E (Q2))2 + Q2

4M2 (Gγp
M (Q2))2

1 + Q2

4M2

δ
(
ν − Q2

2M

)
, (7.26)

whereM is the nucleon mass, andGγp
E (Q2) andGγp

M (Q2) are the electric and magnetic

form factors of the nucleon. The parameterisation of the nucleon EM form factors

presented by Ye et al. in [180] is used in the current calculations. Similarly, in the

case of the interference structure functions, these response functions can be defined
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Figure 7.3: Lattice results for the proton Compton amplitude T33(p, q) [8].

as

W1(ν,Q2) =
Q2

4M2
(Gγp

M (Q2)GZp
M (Q2))δ

(
ν − Q2

2M

)
,

W2(ν,Q2) =
(Gγp

E (Q2)GZp
E (Q2)) + Q2

4M2 (Gγp
M (Q2)GZp

M (Q2))

1 + Q2

4M2

δ
(
ν − Q2

2M

)
, (7.27)

where GZp
E,M(Q2) has been defined in Eq. (5.51), and the strangeness contribution is

neglected and the assumption of charge symmetry is employed. From Eq. (7.26) or

(Eq. (7.27) for γZ interference structure functions), F1(x,Q2), which is relevant to

the present study, can be defined as [67]

F1(x,Q2) = MW1(ν,Q2). (7.28)

Following the AJM model, 5% uncertainty has been assigned to these elastic struc-

ture functions. From Eq. (7.25), T γZ1 can be defined as

T γZ1 = 4ω2

∫ 1

0

dx
x

1− (ωx)2
F γZ

1 (x, q2). (7.29)

Before proceeding to the calculations of the proton T γZ1 at low Q2, it is impor-
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tant to check the compatibility of the structure functions at the shared boundaries

between the regions described in the AJM model. In Fig. 7.4, the structure function

F γZ
1 (W 2, Q2) has been plotted as a function of W 2 for various values of Q2 running

from Q2= 0.05 to 10 GeV2. It is obvious that the F γZ
1 shows good agreement at

the common boundaries W 2 = 4, between the CB parameterisation (Region I, blue)

and DIS structure function (Region III, green), and W 2 = 9 GeV2 between the

CB and VMD+Regge (Region II, red) parameterisations. The uncertainties on this

structure function were included as described in the previous sections.

It is also instructive to show the behaviour of these regions as a function of Q2 at

fixed W 2. In Fig. 7.5, the F γZ
1 (W 2, Q2) structure function has been plotted against

Q2 for multiple values of W 2 running from W 2= 4 to 12 GeV2. F γZ
1 shows excellent

matching at the boundaries between the regions. Furthermore, the DIS structure

functions and the CB parameterisation are well-matched in the overlapping Q2-W 2

plane.

In order to highlight the feature of the AJM model, where constraints from

PDFs [197] were employed, a comparison with the proton F γZ
1 structure function

in the GHRM model [158] is presented in Fig. 7.6 for fixed Q2 (top panels) and

fixed W 2 (bottom panels). As can be seen, the uncertainty on the resulting F γZ
1

structure function in the GHRM model is significantly overestimated compared to

those obtained from the ABM11 parton distribution functions [197].

The structure functions presented in ABM11 [197] are given at kinematics that

correspond to the squared momentum transferred greater than 0.6 GeV2, i.e., overlap

with the CB region. Using the fact that useful comparisons between several valid

models in the same region are possible enables us to study the proton T γZ1 for two

different combinations of F γZ
1 for a common Q2. As shown in Fig. 7.2, this common

Q2 can be chosen to be Q2 = 1 GeV2. Hence, in the current determination of T γZ1 ,

the two considered combinations are:

• combination I (comb. I): CB (blue, W 2
π ≤ W 2 ≤ 9 GeV2)+VMD+Regge (red,

W 2 > 9 GeV2)

• combination II (comb. II): CB (blue, W 2
π ≤ W 2 ≤ 4 GeV2)+PDF (green,

W 2 > 4 GeV2)

In Fig. 7.7, the determined T γZ1 at Q2 = 1 GeV2 with comb. I (top panel) and

comb. II (bottom panel) are depicted as a function of ω, which appears in Eq. (7.29),

with their breakdowns into the contributions from the different regions. The total

uncertainty is obtained by adding in quadrature the uncertainties from the relevant

regions.

106



Section 7.4. Compton Amplitude T γZ1 and Structure Function F γZ
1

2 4 6 8 10 12
W 2[GeV 2]

0

1

2

3

4

F
γ
Z

1

Q2 = 0.05 GeV2

2 4 6 8 10 12
W 2[GeV 2]

0.0

0.5

1.0

1.5

2.0

F
γ
Z

1

Q2 = 0.5 GeV2

2 4 6 8 10 12
W 2[GeV 2]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

F
γ
Z

1

Q2 = 1 GeV2

2 4 6 8 10 12
W 2[GeV 2]

0.0

0.2

0.4

0.6

0.8

F
γ
Z

1

Q2 = 1.5 GeV2

2 4 6 8 10 12
W 2[GeV 2]

0.00

0.05

0.10

0.15

0.20

F
γ
Z

1

Q2 = 8 GeV2

2 4 6 8 10 12
W 2[GeV 2]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

F
γ
Z

1

Q2 = 10 GeV2

Figure 7.4: Proton F γZ
1 (W 2, Q2) structure function against W 2 at fixed Q2 =

0.05, 0.5, 1, 1.5, 8 and 10 GeV2 for the CB parameterisation [192] (blue dashed),
the VMD+Regge model [196] (red dashed) and the ABM11 PDF parameterisa-
tion [197](green dashed). The common borders between these regions are indicated
by the vertical dashed lines at W 2 = 4 and 9 GeV2.
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Figure 7.5: Proton F γZ
1 (W 2, Q2) structure function against Q2 at fixed W 2 = 4, 6, 9

and 12 GeV2 for the CB parameterisation [192] (blue dashed), the VMD+Regge
model [196] (red dashed) and the ABM11 PDF parameterisation [197](green
dashed). The common borders between these regions are indicated by the verti-
cal dashed lines at Q2 = 1 and 10 GeV2.

In Fig. 7.8, a comparison of T γZ1 from both combinations is presented, and re-

markable agreement is noted in both central curve and uncertainty. Consequently,

this discussion will continue with one of these combinations.

In Fig. 7.9, a comparison of the estimated T γZ1 from F γZ
1 in the AJM model with

those obtained from F γZ
1 in the GHRM model at Q2 =1 GeV2 reveals that the T γZ1

obtained from the GHRM model shows a larger uncertainty, and this is attributed

to the continuum part treatment followed by Gorchtein et al. [158]. The central

curves of T γZ1 from the AJM model and its associated uncertainty are completely

contained within the GHRM T γZ1 ’s uncertainty. Looking more closely at Fig. 7.9,

one can see that the difference between the uncertainties of the two models is more

pronounced in the region between ω ∼ 0.5 and ω ∼ 0.85. Between these ω values,

the GHRM model shows approximately a 20% relative error on T γZ1 .

In order to constrain the phenomenological models, the necessary accuracy of

T γZ1 on lattice QCD can be found by studying the difference between the calculated

T γZ1 from the GHRM and AJM models for low-Q2 values. In Fig. 7.10, for fixed

Q2 = 1 GeV2 (top panel) and Q2 = 0.5 GeV2 (bottom panel), the magnitude of the
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Figure 7.6: Comparison of the proton F γZ
1 (W 2, Q2) structure function in the GHRM

model [158] (red dashed) with the ABM11 parton distribution functions [197] (green
dashed) for fixed Q2 (top panels) and fixed W 2 (bottom panels).

difference has been plotted (dashed blue line) against ω, and the blue shaded area

indicates the uncertainty of T γZ1 from the GHRM model, while the dashed magenta

line is the uncertainty of those from the AJM model around zero. The former line

provides a baseline that can be used to estimate the required reduction on the un-

certainty of T γZ1 from the GHRM model. From Fig. 7.10 and the uncertainty of T γZ1

from the AJM model, taking the percent error suggests a reduction of approximately

70% on T γZ1 ’s uncertainty from the GHRM model at Q2 = 1.0 and 0.5 GeV2. This

corresponds to a necessary reduction of the relative errors of lattice results for the

proton Compton amplitude T33(p, q) presented in Fig 7.3, in particular the results

obtained at ω between ω ∼ 0.6 and ω ∼ 0.85, roughly, to be between ∼ 20% and ∼
8%.

7.5 Summary and Discussion

Recently, a new lattice method was proposed [8] to calculate the structure func-

tions directly from the product of electromagnetic currents. There is a possibility

that this method can be extended to study the γZ interference Compton amplitude

T γZ1 .
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Figure 7.7: The determined proton T γZ1 with comb. I (top panel) and with comb. II
(bottom panel). The breakdown into the contributions from the different regions is
shown. The total uncertainty is obtained by adding in quadrature the uncertainties
from the relevant regions.
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Figure 7.8: A comparison between the calculated proton T γZ1 using comb. I and
comb. II.

This chapter addressed the question regarding the necessary accuracy of T γZ1

from the lattice at low Q2 to constrain phenomenological models that have been

used thus far to calculate the γZ box correction.

In order to accomplish the objectives of this study, two phenomenological models

have been considered, the Adelaide-Jefferson Lab-Manitoba (AJM) model, as it ob-

tained the most precise calculation of �VγZ(E), and the GHRM model, as it provided

the largest uncertainty on the estimation of �VγZ(E).

Since the structure function F γZ
1 is relevant to the calculation of T γZ1 , the con-

sistency of this structure function at the common boundaries between the regions

described in the AJM model was investigated and it was found that F γZ
1 shows excel-

lent matching at the boundaries between the regions. Furthermore, using Eq. (7.29),

T γZ1 has been calculated for two different combinations of F γZ
1 that can be obtained

from the AJM model Q2-W 2 plane for a common Q2 value, i.e., Q2 = 1 GeV2, and

a remarkable agreement has been found.

In order to improve the phenomenological models, the required accuracy of T γZ1
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Figure 7.9: A comparison between the calculated proton T γZ1 from the AJM and
GHRM models at Q2 = 1 GeV2.
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Figure 7.10: The magnitude of difference between the calculated T γZ1 from the
GHRM and AJM models (dashed blue line) at Q2 = 1 GeV2 (top panel) and Q2 =
0.5 GeV2 (bottom panel). The blue shaded area indicates the uncertainty of T γZ1

from the GHRM model, while the dashed magenta line shows the uncertainty of
those from the AJM model around zero.
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from lattice QCD can be estimated by studying the difference between the calculated

T γZ1 from the GHRM and AJM models for low-Q2 values. This study revealed that

a large reduction on T γZ1 ’s uncertainty from the GHRM model is needed. This

necessitates a reduction of the relative errors of the lattice results of the Compton

amplitude to be between ∼ 20% and few percent.

In order to achieve this improvement, the lattice calculations are likely to require

a two order magnitude increase in statistics.
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Chapter 8

Summary and Conclusion

The investigation of the strange quark contributions, that would necessarily be

related to the ‘sea’, is particularly interesting. The vector matrix elements of the

strange quark, which contribute to the electromagnetic (EM) form factors of the

nucleon, were the primary focus of this work. Within the context of studying the

strange quark EM form factors contribution, the two quantities usually considered

at low momentum transfers are the strange charge radius and strange magnetic

moment. These quantities play a complementary role in low-energy precision mea-

surements such as Qweak and P2 experiments.

The parity-violating electron scattering (PVES) formalism, which connects the

experimentally measured asymmetry to proton structure, was used in this work to

perform a global analysis of all available world data up to Q2 ∼ 1 GeV2 to determine

the strange quark contribution. Under charge symmetry assumption, separation of

the strange quark contributions to nucleon electromagnetic currents requires a third

combination. This combination can be obtained using parity violating electron scat-

tering from the proton, which determines the proton’s weak form factors. To build

a coherent picture of this work, the importance of the PVES technique—which is a

useful method in, for example, Qweak precision measurements—was motivated as a

starting point. In Chapter 3, the role of strangeness in nucleon structure has been

highlighted to present a relevant perspective for studying the content of the strange

quark of the neutral weak form factors. In Chapter 4, a review of the theoretical pre-

dictions of Gs
E and Gs

M was presented and it was emphasised that none of the theo-

retical approaches renders unambiguous estimates. Lattice QCD, as a first-principles

approach to QCD, can give model-independent estimations. However, the majority

of previous lattice QCD studies have been accomplished in the quenched approxi-

mation and only considered the calculation of the connected diagram contribution.

Very recently, several extensive direct calculations of the nucleon’s strangeness form
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factors that involve calculations of the disconnected diagram contribution, which is

considerably more computationally expensive, have been made. Therefore, in Chap-

ter 5, the PVES formalism, as a tool to access information about the strange quark

contributions, is introduced in detail along with a brief discussion on the radiative

corrections.

In Chapter 6, a complete global analysis of all PVES asymmetry data, up to the

currently available limit of Q2 ∼ 1GeV2, for the proton, 4He and deuteron has been

performed. The Q2-dependence of the strange quark electromagnetic form factors

has been parameterised by a Taylor expansion in Q2, and the nucleon effective axial

form factor has been described by the dipole form factor with the aim to fit the entire

contributions from the axial radiative and anapole corrections to the data. From

the description of the Q2-dependence, the global analysis was divided into a leading

order (LO) global fit with four parameters g̃pA, g̃nA, µs and ρs, and next-to-leading

order (NLO) fit of six parameters, namely, µ′s and ρ′s in addition to the previous

four parameters.

To examine the model-dependence of employing a Taylor expansion in the anal-

ysis, a z-expansion fit was performed and was found that the determinations of the

strangeness from factors from both expansions fits were in agreement.

The γZ exchange correction and the effect that the CSV form factors have on the

extraction of the strange quark contribution have been studied. Including the γZ

box contribution in the analysis resulted in small increases in the magnitude of the

central values of µs and ρs when compared to results obtained without constraints

from the γZ-exchange. The CSV results considered in this work have negligible

effects on the central values of the strangeness parameters.

From the clustering of the considered data set, the separation of the electric and

magnetic strange form factors is most reliable at the discrete momentum transfers

near Q2 ∼ 0.1, 0.2 and 0.6 GeV2. At Q2 = 0.63 GeV2, this work suggested non-

zero strangeness, with a negative Gs
M and positive Gs

E. In contrast to earlier work

that has suggested vanishing strangeness at this Q2, the dominant difference in

the present study is the treatment of the axial/anapole form factor. It was noted

that the back-angle measurements show sensitivity to the effective axial form factor,

presenting an opportunity for future investigation.

In addition, this study revealed an excellent agreement between the extracted

strangeness based on the PVES data and lattice QCD results over the full Q2 range.

The interpretation of the Qweak collaboration results is subject to calculating the

radiative corrections to the level of the required precision. The γZ box corrections

have received special attention from the physics community since the other radiative
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corrections have been calculated to the level of Qweak experiment precision. The

γZ box correction, so far, is understood within phenomenological models such as

Adelaide-Jefferson Lab-Manitoba (AJM).

Recently, a new lattice method was developed to calculate the structure functions

directly from a lattice calculation of the electromagnetic Compton amplitude T γγ1 .

This method opens the door for a possible extension which involves studying the γZ

interference Compton amplitude T γZ1 at low Q2. In Chapter 7, the question of what

accuracy of T γZ1 on the lattice is necessary to improve the phenomenological models

was studied, and was found that there is a possibility that structure functions can be

computed from a lattice calculation of the Compton amplitude with the necessary

accuracy to constrain the phenomenological models.

In summary, a complete global analysis of all PVES asymmetry data for the pro-

ton, 4He and deuteron was presented to determine the strange quark contributions

to the electromagnetic form factors of the proton. The γZ exchange correction and

the effect that the CSV form factors have on the extraction of strangeness were in-

vestigated. The CSV form factors taken into account in this work have tiny impacts

on the central values of the strangeness parameters. The results of this study provide

an update to the determination of strangeness over a range of Q2 where, under spe-

cific assumptions regarding the effective axial form factor, an non-zero strangeness

is obtained in the vicinity of Q2 ∼ 0.6 GeV2. The back-angle measurements have

sensitivity to the effective axial form factor. This presents an opportunity for future

investigation. The size of �γZ correction is particularly significant to the Standard

Model test by the Qweak experiment. This correction can be constrained by phe-

nomenological models. The significance of the �γZ is somewhat less obvious in the

determination of strangeness. Nevertheless, for example, the correction makes ap-

proximately ∼ 1
2
-sigma shift to the central value of the precise HAPPEX proton

point at Q2 ∼ 0.1 GeV2. This study found that there is a possibility that structure

functions can be calculated from a lattice calculation of the Compton amplitude

with the necessary accuracy to improve these phenomenological models.
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Appendix A

Notations and Conventions

A.1 Pauli Matrices

τ1 =

(
0 1

1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0

0 −1

)
, (A.1)

~τ = (τ1, τ2, τ3), (A.2)

τ± =
1

2
(τ1 ± iτ2), (A.3)

where τ± are isospin raising and lowering matrices. These matrices satisfy the fol-

lowing properties:

• τ 2
1 = τ 2

2 = τ 2
3 =

(
1 0

0 1

)
= I.

• det(τi)=−1; i = 1, 2, 3.

• Tr[τaτb] = 2δab.

• Tr[τi]=0; i = 1, 2, 3.

• [τa, τb] = 2iεabcτc.

• {τa, τb} = 2δab.I.

• τaτb = δab.I + iεabcτc.
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A. Notations and Conventions

The proton and neutron form an isospin SU(2) doublet

|proton〉 = |p〉 =

(
1

0

)
, |neutron〉 = |n〉 =

(
0

1

)
. (A.4)

Applying τ3, isospin raising and lowering matrices to the nucleon states yields

τ3|p〉 = |p〉, τ3|n〉 = −|n〉, τ−|p〉 = |n〉, τ+|n〉 = |p〉. (A.5)

The electric charge of the nucleon can be written as

Q =
1

2
(B + τ3), (A.6)

where baryon number B = 1. Analogous relations hold for the isospin doublet of u

and d quarks, with the proton replaced by the u quark, the neutron by the d quark

and baryon number B = 1/3 [67].
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Appendix B

The Dispersion Relation

Because of the research of Kronig and Kramers in optics, the dispersion relations

have been considered as a powerful tool to study many physics observables. The

name dispersion is related to the optical dispersion. In general, dispersion theory

relies on a few basic principles of physics: relativistic covariance, causality and

unitarity [135]. A complete set of scattering amplitudes has to be created within

the framework of the relativity and without kinematical singularities. The scattering

amplitudes and vertex functions will, in general, contain both real and imaginary

parts. The causality implies certain analytic properties of the analytic structure

amplitudes, which enable for a continuation of the scattering amplitudes into the

complex plane and lead to dispersion relations connecting the real and imaginary

parts of these scattering amplitudes. Such dispersion relations have the following

general form:

<ef(s) =
1

π
P

∫ ∞
s0

ds′
=mf(s′)

s′ − s , (B.1)

where P is the Cauchy principle value. The above relation is a consequence of using

Cauchy’s integral formula. Using the identity

1

x− x0 − iε
= P

1

x− x0

+ iπδ(x− x0) (B.2)

allows one to write the full scattering amplitude f(s) as an integral over its imaginary

part:

f(s) =
1

π

∫ ∞
s0

ds′
=mf(s′)

s′ − s− iε . (B.3)

The above dispersive integral involves all s′. Knowing f(s) at small s requires

an understanding of =mf(s) at large s′. Therefore, the subtraction technique must

be utilised to reduce the dependence on large s′. However, note that the integral
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B. The Dispersion Relation

still run over all s′. The subtracted dispersion relation can be written as

f(s)− f(0)

s
=

1

π

∫ ∞
s0

ds′

s′ − s− iε=m
[
f(s′)− f(0)

s′

]
; (B.4)

since =mf(0) = 0, the above dispersion relation can be reduced further to

f(s) = f(0) +
s

π

∫ ∞
s0

ds′
=mf(s′)

s′(s′ − s− iε) . (B.5)

The subtracted form of the dispersion relation may be required if f(z) 6= 0 as |z| →
∞, as a good behaviour at infinity is required for the derivation of the dispersion

relation. However, even if subtracted dispersion relations are not required, it may

still be useful to perform dispersion relations, particularly in the context of effective

field theories. The subtracted dispersion relation integral weights lower energies

more heavily and reduces the influence of the high-energy region to the subtraction

constant f(0).
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Appendix C

The Parameterisation of the

Nucleon Form Factors

Ye et al. determined the proton and neutron EM form factors and the associated

uncertainties using world electron scattering data [180]. In their analysis, the effects

of two-photon exchange were incorporated.

This appendix presents the fit parameters of the electromagnetic nucleon form

factors obtained by Ye et al. [180]. They performed a global fit procedure using the

parameterisation of the systematic z-expansion:

G(Q2) =
kmax∑
k=0

akz
k, z =

√
tcut +Q2 −√tcut − t0√
tcut +Q2 +

√
tcut − t0

, (C.1)

where G refers to the Gp
E, Gp

M/µp, G
n
E and Gn

M/µn with kmax = 12 for the proton

and kmax = 10 for the neutron. Here, t0 = −0.7 GeV2 and tcut = 4m2
π with the

charged pion mass mπ = 0.13957 GeV. The proton and neutron magnetic moments

are given by µp = 2.79284356 and µn = −1.91304272, respectively.

C.1 Fitting Results

The fit parameters provided in Table C.1 are obtained from fits using radius

constraints that are presented in Table C.2. For Gn
E, the 2016 PDG value 〈(rnE)2〉 =

−0.1161(22) fm2 was used.

Figs. C.1 and C.2 show the results of the fit for Gp
E and Gp

M normalised to the

dipole form factor.
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C. The Parameterisation of the Nucleon Form Factors

Table C.1: Fit parameters for the electromagnetic nucleon form factors obtained by
Ye et al. [180] using the z-expansion parameterisation.

Parameter Gp
E Gp

M/µp Gn
E Gn

M/µn
a0 0.23916 0.26414 0.04892 0.25776
a1 −1.10986 −1.09531 −0.06453 −1.07954
a2 1.44438 1.21855 −0.24083 1.18218
a3 0.47957 0.66114 0.39211 0.71102
a4 −2.28689 −1.40568 0.30045 −1.34808
a5 1.12663 −1.35642 −0.66189 −1.66244
a6 1.25062 1.44703 −0.17564 2.62435
a7 −3.63102 4.23567 0.62469 1.75123
a8 4.08222 −5.33405 −0.07768 −4.92230
a9 0.50410 −2.91630 −0.23600 3.19789
a10 −5.08512 8.70740 0.09040 −0.71207
a11 3.96774 −5.70700 0 0
a12 −0.98153 1.28081 0 0

Table C.2: Constrained values of form factor radii for Gp
E, Gp

M and Gn
M .

radius output value (fm) error (fm)
rpE 0.879 0.012
rpM 0.851 0.028
rnM 0.864 0.079

GD =
1(

1 + Q2

Λ2

)2 , (C.2)

where Λ2 = 0.71 GeV2.
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C.1. Fitting Results
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Figure C.1: Parameterisation of the Gp
E/GD (upper) and Gp

M/µpGD (lower), where
the shaded areas reflect the total uncertainties as described in the global lift pre-
sented in [180].
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Figure C.2: Parameterisation of the Gn
E/GD (upper) and Gn

M/µnGD (lower), where
the shaded areas reflect the total uncertainties as described in the global lift pre-
sented in [180].
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Appendix D

List of Conferences, Workshop

Proceedings, Submitted and

Future Publications

• Ali Alkathiri, Ross D. Young and James M. Zanotti, Interference electroweak

structure functions, in preparation.

• Ali Alkathiri, Ross D. Young and James M. Zanotti, Charge symmetry vio-

lation in the determination of strangeness form factor, submitted to Physical

Review C, arXiv:1902.01590v1.

• Ali Alkathiri, Ross D. Young and James M. Zanotti, Charge symmetry viola-

tion in the determination of strangeness form factor, Oral presentation, ‘QCD

Downunder 2017 Workshop’, Cairns, Australia, July 10-14, 2017.

• Ali Alkathiri, Ross D. Young and James M. Zanotti, Charge symmetry viola-

tion in the determination of strangeness form factor, poster presented at ‘The

International Nuclear Physics Conference 2016’, Adelaide, Australia, Septem-

ber 11-16, 2016.
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