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Abstract. We investigate the possibility of using numerical stochastic perturbation the-
ory (NSPT) to probe high orders in the perturbative expansion of lattice gauge theories
with massless Wilson fermions. Twisted boundary conditions are used to regularise the
gauge zero-mode; the extension of these boundary conditions to include fermions in the
fundamental representation requires to introduce a smell degree of freedom. Moreover,
the mass of Wilson fermions is affected by an additive renormalisation: we study how
to determine the mass counterterms consistently in finite volume. The knowledge of the
critical masses will enable high-order perturbative computations in massless QCD, e.g.
(as a first application) for the plaquette.

1 Introduction

Numerical stochastic perturbation theory (NSPT) is a technique which allows to perform perturbative
expansions numerically in a quantum (field) theory. Here, in particular, we are interested in applying
NSPT to a S U(Nc) lattice gauge theory in four dimensions with massless Wilson fermions in the
fundamental representation, see [1] for a review. When sufficient high orders are reached, it is possible
to study the divergent behaviour of a perturbative series: the pattern of divergence (e.g. renormalons)
gives information on non-perturbative physics (e.g. power corrections in the OPE). There are well-
established results in lattice gauge theories only for gluodynamics [2–4]. In fact fermions are a handle
on the beta function, they affect the running of the coupling and should control and determine the
high-order perturbative behaviour.

2 Twisted boundary conditions and smell

When a theory is defined in finite volume, the fields can have boundary conditions compatible with
all the symmetries of the action. We want to adopt twisted boundary conditions in order to remove
the gauge zero-mode (that would spoil NSPT convergence) and have a well-defined perturbative ex-
pansion in finite volume. Denoting Uµ(x) ∈ S U(Nc) a link starting at site x in direction µ̂, twisted
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boundary conditions [5] in direction ν̂ are

Uµ(x + Lν̂) = ΩνUµ(x)Ω†ν , (1)

where Ωµ ∈S U(Nc) are a set of matrices satisfying

ΩνΩµ = zµνΩµΩν , zµν ∈ZNc . (2)

Including fermions in the fundamental representations is not straightforward: the same gauge trans-
formation for the fermions reads

ψ(x + Lν̂) = Ωνψ(x) (3)

and implies an ambiguous evaluation of ψ(x+Lµ̂+Lν̂). An idea, proposed in [6], to overcome this
problem is to introduce a new quantum number so that fermions exist in different copies, or smells,
which transform into each other according to the antifundamental representation of S U(Nc). The
theory has a new global symmetry, but physical observables are singlets under the smell group. Thus,
configurations related by a smell transformations are equivalent and we are free to substitute eq. (3)
with (

ψ(x + Lν̂)
)
c,s =

∑
c′,s′

(
Ων
)
cc′
(
ψ(x)
)
c′,s′
(
Λ†ν
)

s′ s , (4)

where c, s stand respectively for colour and smell indices and Λν ∈S U(Nc). It is useful to think of the
fermion field as a matrix in smell-colour space. If the transformation matrices in smell space satisfy
the same relations as in eq. (2) (in particular we choose them to be equal to the Ωs), then twisted
boundary conditions are well-defined.

In the stochastic process, the drift due to the fermions has to be multiplied by Nf /Nc in order to
have Nf flavours in the infinite-volume limit. In other words, this implies that we are taking the Ncth
root of the Wilson fermion determinant and that we are dealing with a nonlocal action, because twisted
boundary conditions break the invariance under smell transformations. Despite that, it is possible to
show, with arguments similar to those presented in [7], that perturbatively this operation is legitimate
and leads to a renormalisable theory.

Boundary conditions determine momentum quantisation. For the gauge field, we investigated
twisted boundary conditions on a plane (i.e. directions 1̂, 2̂ are twisted, while 0̂, 4̂ are periodic) and
triple twist (i.e. directions 1̂, 2̂, 3̂ are twisted, while 0̂ is periodic). The fermion field transforms
accordingly, but direction 0̂ is always antiperiodic. With this setup, colour and momentum degrees of
freedom mix in Fourier space: the transform of a matrix field 1 in position space is a scalar function of
the momenta. Of course, not to lose degrees of freedom, momentum has a finer resolution compared
to the one with periodic boundary conditions: now it is

2π
L

(
n0 +

η

2
, n1 +

ñ1

Nc
, n2 +

ñ2

Nc
, n3 +

ñ3

Nc

)
, (5)

where

n0, n1, n2, n3 = 0, . . . , L − 1
ñ1, ñ2 = 0, . . . ,Nc − 1

ñ3 =


0 if the twist is on a plane
a value between 0 and Nc − 1, fixed by ñ1 and ñ2, for triple twist

η =


0 if direction 0̂ is periodic (gluon momentum)
1 if direction 0̂ is antiperiodic (fermion momentum)

.

1 We deal with matrices in colour space, like the gauge potential, or matrices in colour-smell space, like the fermion field.
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The traceless property of the gauge potential corresponds to the absence of degrees of freedom with
ñ1 = ñ2 = 0. The fast Fourier transform in our code has been efficiently extended to perform Fourier
transforms in smell-colour space.

In order to have full control on our implementation, we checked lowest order results of the sim-
ulations against finite-volume predictions in twisted lattice perturbation theory, introduced in [8].
Feynman rules are fairly similar to lattice perturbation theory, apart from some overall factors and
phases in propagators and vertices; all phases happen to cancel in the first-order computations we
considered. The major difference is the sum over momenta inherited by the quantisation,

∑
k

=

L−1∑
n1=0

L−1∑
n2=0

L−1∑
n3=0

L−1∑
n4=0

Nc−1∑
ñ1=0

Nc−1∑
ñ2=0

, (6)

where k is quantised according to eq. (5). When the sum involves a gluon momentum, all terms with
ñ1 = ñ2 = 0 are removed. Each fermion loop has to be divided by Nc, i.e. by the numbers of smells
running in the loop.

An interesting quantity to be studied is the 1×1 Wilson loop (plaquette)

W =
1

Nc
〈Tr UP〉 = 1 +

1
β

W (1) +
1
β2 W (2) + . . . , (7)

where UP is the product of four links and β=2Nc/g
2, g is the Yang-Mills coupling. The contribution

from the plaquettes lying on the directions µ̂ and ν̂ is

W (1)
µν = −

1
2L4

∑
k

k̂µ + k̂ν
k̂2

, (8)

so that W (1) = 1
6
∑
µ>νW (1)

µν . This expression coincides with the one presented in [9]. The agreement
between the analytic predictions and our measures can be seen in Figure 1.

τ
0 0.002 0.004 0.006 0.008 0.01

(1
)

W

2.1−

2.05−

2−

1.95−

1.9−

data
linear fit

 error bandσ1
=0τdata extrapolated at 

analytic finite-volume prediction

Figure 1. Measure of W (1) for a 24 lattice
with triple twisted boundary conditions at
three different time-steps τ of the stochastic
process and first-order integrator, Nc=3. The
lower measures correspond to the average of
the plaquette in the three planes identified by
two twisted directions, the upper ones
correspond to the average in the three planes
identified by one twisted direction and one
periodic direction; the size of the lattice has
been chosen to enhance the difference of the
plaquette value between these two groups of
planes.

3 Critical mass

The inverse of the Wilson fermion propagator in momentum space can be expressed as

aS (ap)−1 = i
∑
µ

γµ(apµ) +
1
2

(̂ap)
2
+ am + aΣ(ap, am, β−1) , (9)
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where v̄µ=sin vµ, v̂µ=2 sin( vµ2 ), m is the bare mass of the fermion and a is the lattice spacing. The self
energy Σ(ap, am, β−1) is the one-particle irreducible fermion two-point function and is proportional to
the inverse lattice spacing a−1. This function has to be renormalised in order to kill the divergence that
would arise in the continuum limit. We adopt the on-shell renormalisation scheme: in the massless
case, it follows that

am + Σ(ap = 0, am, β−1) = 0 . (10)

As observed in [10], this prescription matches the one obtained by requiring the chiral Ward identity
to hold in the continuum limit.

Wilson fermions are not equipped with chiral invariance when m = 0 and eq. (10) does not hold
for free: the self energy at zero momentum is affected by a power divergence a−1, which has to be
cured by an additive renormalisation. The critical mass mc is defined to be the value of the bare mass
such that the renormalised mass of the fermion is zero. Expanding eq. (10) in the coupling defines the
critical mass mc=

∑
k m(k)

c β
−k order by order in perturbation theory.

With the goal of simulating a massless theory, the knowledge of these mass counterterms becomes
extremely important. In NSPT it is possible to generate gauge field configurations distributed accord-
ing to exp(−S g[U]+Nf Tr log M[U]), where S g[U] is the Wilson gauge action and M[U] is the Wilson
Dirac operator; the gauge field is treated as an expansion in the coupling, U = 1+

∑
k U(k)β−k/2. This

allows to measure the perturbative expansion of the fermion propagator and infer the critical mass,

S (p) = 〈ψ(p)ψ(−p)〉 =
∫
DU e−S g[U]+Nf Tr log M[U] M[U]−1

pp . (11)

Our strategy is to collect N configurations {(n)Uτ, n = 1, . . . ,N} for different time steps τ of the
stochastic process; for each one the Landau gauge is fixed as in [11]. Then the inverse Dirac operator
is applied to a delta function in momentum space,

S (p)(n)
αβ,τ =

∑
pγ

M
[
(n)Uτ
]−1

pq,αγ
δpqδγβ , (12)

where α, β are Dirac indices; autocorrelation effects are evaluated according to [12]. It is important to
stress again that, because of twisted boundary conditions, the fermion propagator in momentum space
is not a colour matrix anymore. The average of (n)S (p)τ over all the configurations gives our Monte

Carlo estimate of S (p)τ. We can now extrapolate the stochastic time step to zero, S (p)τ
τ→0−−−→ S (p) and

invert the propagator to obtain S (p)−1. Finally, the inverse propagator is projected onto the identity in
Dirac space, Γ(ap) = 1

4 Re Tr aS (ap)−1, and the critical mass is given by the value of Γ(ap) at p = 0.
All these operations are performed order by order in perturbation theory keeping in mind that, after
the measure of the propagator, all perturbative orders β−k/2 with an odd k are discarded, since the
expansion in powers of β−1/2 is an artefact of NSPT.

With this procedure, it is possible to measure the critical mass at a certain order k̄ if the critical
masses at orders less than k̄ are known and the set of configurations is generated keeping those into
account. Γ(ap)(k) will extrapolate to zero for all orders k< k̄ and the extrapolated value at order k̄ will
give m(k̄)

c . In order to move forward and compute the next order, a new set of configurations where
m(k̄)

c is taken into account is needed.

4 Zero-momentum extrapolation and valence twist

On the lattice, we are allowed to measure Γ(ap) only for the momenta given by eq. (5); consequently,
a good functional form is needed to extrapolate our data to zero momentum.
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Figure 2: Measure of Γ(ap)(1) (left panel) and Γ(ap)(2) (right panel) for a 124 lattice with twisted
boundary conditions on a plane, Nc = 2, Nf = 2. The analytic finite-volume critical mass m(1)

c is
included in the simulation. A second-order polynomial in (ap)2 is used for fitting. Most analytic
finite-volume predictions have been drawn as lines to help the eye in the comparison.

The strategy adopted in literature (for example in [13]) has been an expansion in the lattice spac-
ing: in the infinite-volume limit, it leads to a hypercubic symmetric Taylor expansion composed of
invariants in ap, logarithms of ap and ratios of invariants; an explicit computation to order a2 is shown
in [14]. The ratios and the logarithms arise because of the infrared divergences that appear deriving
the integrands respect to a. On the other hand, working in a consistent way in finite volume does not
cause any infrared divergence: expressions for Γ(ap)(k) will be just sums of ratios of trigonometric
functions, which we can expand in a obtaining simply a combination of polynomial lattice invari-
ants 2. Still, this is not enough to perform a reliable extrapolation: from the analytic expansion of
Γ(ap)(1), we realised that even the lowest momentum allowed, πL , is far from the convergence region
of this series. This happens for reasonably big lattices, L � 32.

Now the key observation is that the boundary conditions of the “valence fermions” (i.e. the bound-
ary condition of the inverse Dirac operator in eq. (11)) are arbitrary: in principle, setting their bound-
ary conditions to be periodic could give us directly the critical mass. Unfortunately that is not possible,
because we do not have direct access to Γ(ap) but only to the propagator, which is tree-level divergent
at p=0. Despite that, switching from antiperiodic to θ-boundary conditions in the 0̂ direction for the
valence fermions,

ψ(x + L0̂) = eiθψ(x) , (13)

allows to span a number of momenta p0 =
θ
L which are within the convergence radius of the a-

expansion. The hypercubic series becomes a polynomial in p2
0. We can use that to fit the data and

extract a solid estimate of the critical mass in finite volume, as in Figure 2.
We also computed analytically the one-loop trace of the inverse of the fermion propagator in

twisted lattice perturbation theory: the agreement with our simulations is extremely good, see again
Figure 2. We also verified at this order that our renormalisation prescription is gauge-invariant (result
true at all orders thanks to the gauge-invariance of the pole mass, proven in [15]).

2 Expanding in a and sending the lattice size to infinity are operations that do not commute; this gives rise to different series
in the finite- and infinite-volume cases.
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Figure 3: Dependence of the data shown in Figure 2 on the number of configurations included in the
analysis. Left panel corresponds to Γ(ap)(1) data, right panel to Γ(ap)(2). Different colours correspond
to different momenta. Horizontal lines are the analytic finite-volume predictions.

Moreover, it has to be stressed that measuring such low momenta requires a careful analysis of the
thermalisation: this is evident from the plots in Figure 3. At the lowest order we can check directly
when the measures agree with the theoretical predictions; at higher orders, it is important to wait until
the measures stay stable. A few hundreds uncorrelated configurations are required.

5 Conclusion

We have implemented NSPT for SU(2) and SU(3) gauge theories with an arbitrary number of fermions
(with smell) in the fundamental representation and with twisted boundary conditions. We also devel-
oped a way to extract reliably the mass counterterms in finite volume and therefore keep the Wilson
fermion mass under control. All the measures have been found in very good agreement with one-loop
twisted lattice perturbation theory predictions. With this setup, it will be possible to start and collect
the critical masses and study, for example, high-orders perturbative expansions in full QCD.
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