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Abstract: We seek a simple but physically motivated model of strongly interacting matter applicable
in atomic nuclei and the dense matter in the core of neutron stars. For densities below and somewhat
above normal nuclear density, energy density functional (EDF) theory based on nucleonic degrees of
freedom is the ideal candidate. We have explored that direction within the KIDS (Korea-IBS-Daegu-
SKKU) framework, which we review in this contribution. The formalism for the KIDS-EoS and
microscopic KIDS-EDF and optimization options for the EDF are described in a practical way to
facilitate further applications. At densities higher than one nucleon per single-nucleon volume, i.e.,
roughly 0.4 fm−3, nucleonic degrees of freedom are no longer appropriate. The pseudo-conformal
symmetry emergent in dense, topologically altered nuclear matter provides a simple expression for
the energy per baryon in terms of the baryonic density. Besides resembling a simple EDF for dense
matter, the expression has the appeal that it predicts a converged speed of sound at high densities.
It can thus be implemented as a special case of the constant speed of sound (CSS) model. Here we
consider a matching between representative nucleonic KIDS-EoSs and the CSS model, including
the pseudo-conformal EoS, and apply the unified model to describe the mass–radius relation of
neutron stars and examine the compatibility of CSS cores with heavy neutron stars. Although an
abrupt transition to the pseudo-conformal regime at low densities does not favor heavy neutron stars,
intermediate scenarios including a cusp in the speed of sound are not ruled out, while some appear
more favorable to heavy stars than purely nucleonic matter.

Keywords: equation of state; energy density functional theory; KIDS framework; nuclear matter;
quark matter; pseudo-conformal matter; emergent symmetries; neutron star

1. Introduction

Multi-messenger astronomy and laboratory experiments together with ab initio nu-
clear structure and the concept of quantified theoretical uncertainties have revolutionized
studies of the nuclear equation of state (EoS). Photonic, neutrino, and gravitational detec-
tors on Earth and in space reveal the composition and dynamics of dense celestial objects
and thereby the EoS of dense baryonic matter, cold and hot [1–4]. Information on the EoS
of nucleonic matter is also obtained, at least indirectly, by studying the shapes and sizes of
atomic nuclei and the nature and properties of their excited states through electromagnetic,
weak, and hadronic probes [5–9]. Heavy-ion collisions further sharpen our knowledge
of the EoS across densities, temperatures, and isospin asymmetries [10–12]. Microscopic
calculations with controlled approximations offer valuable additional gauges [13,14], while
Bayesian analyses and machine learning translate the findings into meaningful constraints
for the EoS of baryonic matter [15,16]. The availability of exotic beams at new rare-isotope
facilities such as RAON [17] could generate even more opportunities to constrain the EoS.

Much of what we know about the EoS in cold matter at subsaturation densities we
owe to nuclear data. Connections between measured nuclear masses, sizes, and collective
motion are most directly facilitated by energy density functional (EDF) theory at the mean-
field level [6,7,18]. The procedure has traditionally been as follows: one first defines
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a phenomenological in-medium effective interaction (non-relativistic EDF models) or
Lagrangian (relativistic models). The Hartree or Hartree–Fock equations, or, for superfluid
nuclei, the Hartree–Bogolyubov or Hartree–Fock–Bogolyubov equations are solved for that
interaction or Lagrangian. The coupling strength parameters may be density-dependent
in order to take into account many-body interactions and correlations beyond mean-field.
The parameters of the model are fitted to selected nuclear data. The EoS can then be
obtained for infinite matter at the mean-field level as well. Thus the EDF model has served
traditionally as an extrapolation tool from nuclei to infinite or dense nuclear matter. The
EDF approach is justified in terms of the Hohenberg–Kohn and Kohn–Sham theorems.
Linear response theory allows for applications also in excited states within the random-
phase approximation.

As additional information is gathered regarding the EoS, especially from heavy-ion
collisions and astronomy, EDF models are adjusted accordingly. In the past ten years or
so, it was realized that the majority of EDF models fitted to nuclear data extrapolate to
unrealistic EoSs and, conversely and more seriously, that imposing realistic EoS parameters
to EDFs can lead to very strange results for nuclei [6,19–21]. Recently, the problem has been
overcome in the so-called Korea-IBS-Daegu-SKKU or KIDS framework (named after the
locale and institutes of the original developers [22]) by the use of functionals of extended
type. These accommodate realistically the density dependence of the EoS, as dictated by
the theory of interacting Fermi systems while decoupling it from largely phenomenological
parameters relevant for finite nuclei, namely the in-medium effective mass and gradient
terms [16,22,23].

EDF models remain applicable at densities above saturation as long as the nucleonic
degrees of freedom remain relevant. The nucleonic picture can be extended to accommodate
the change in baryon structure, resulting in additional repulsion and hyperons [24–26].
As more hyper-nuclear data accumulate, it will become possible to fit EDF models in the
same spirit as nucleonic EDFs. However, the hadronic picture will break down eventually
at high densities where quarks may be deconfined or percolate among tightly packed
baryons. Whether there is a phase transition or a crossover between hadronic and quark
matter is not currently known. Possible phase transitions and the existence of hybrid stars
can be investigated by analyzing the products of heavy ion collisions and astronomical
data [27,28].

For describing dense matter, as it might exist in compact stars, and the phase transition
or crossover, a number of theoretical scenarios are under investigation [29,30]. Quark
models include most prominently the bag model and extensions [31–33] and (Polyakov–)
Nambu–Jona–Lasinio models [34–38]. Also employed are quark mass scaling [39], quantum
Skyrmion crystals [40], the related pseudo-conformal model stemming from a chiral-
scale symmetric effective field theory [41], the isospin-dependent confining quark matter
(ICQM), and confined-isospin and density-dependent mass (CIDDM) models [42]. Lattice
calculations are also applied [43]. A useful constraint for the validity of any model at
high densities is provided by the predicted speed of sound u, which must remain lower
than the speed of light in vacuum c, and eventually approach the conformal limit of
u →

√
1/3c. For modeling purposes, one may assume a constant speed of sound in some

density regime [27]. The possibility to infer the quark-hadron crossover from merger and
postmerger observations of binary neutron stars has been discussed in [44].

In this work we are exploring the constant speed of sound (CSS) modeling of dense
matter, of which the pseudo-conformal model also discussed in this issue [45] can be
considered a special case. Simplicity and versatility as well as a good physical grounding
are important reasons for adopting the CSS and pseudo-conformal models. Like the
nucleonic KIDS model, we need not make a priori assumptions about what constitutes a
“physical” parameter space for the model itself, only a sound physical motivation for the
formalism and respect of certain generic physical principles. The physical motivation here
lies in the scale and local symmetries hidden in the QCD vacuum but emergent at high
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scales and leading to the pseudo-conformal regime [45,46], while the generic principles are
causality or conformality.

Confrontation even of simple models with observations can lead to new insights.
For example, although KIDS was formulated as a nucleonic model, confrontation with
astronomical data revealed the need for the symmetry energy, which is generally predicted
moderately soft at saturation density, to stiffen at high density, showing an inflection point
in the vicinity of twice the saturation density. The stiffening may be attributed to beyond-
nucleonic degrees of freedom, following a phase transition or crossover. It is consistent
with the findings of some of the quark models mentioned above as well as more agnostic
statistical or model-independent approaches [47,48], while a cusp in the speed of sound
associated with stiffening followed by softening has also been discussed [41,43,49–51]. Our
purpose here is to extend our modeling, without compromising its simplicity at this point,
so as to examine this consistency further.

The manuscript is organized as follows. In Section 2, we review the formalism required
in the description of cold non-rotating neutron stars. In Section 3, we provide a compre-
hensive overview of the KIDS formalism for the EoS and EDF and a summary of existing
applications. This material has only been published in a fragmentary manner before and
we hope that the present exposition will facilitate further applications. We provide the
formalism for the CSS model in Section 4. In Section 5, we specify the parameter sets used
in this work and we present and discuss our results. We conclude in Section 6.

2. Description of Cold Static Neutron Stars

In order to obtain the macroscopic structure of a non-rotating neutron star under the
assumption of spherical symmetry, we solve numerically the Tolman-Oppenheimer-Volkoff
(TOV) equations [52,53],

dP

dr
= −G

M(r)c2 + 4πr3P(r)

r(rc4 − 2GM(r)c2)
;

dM

dr
=

4π

c2 H(r)r2, (1)

resulting from the general relativistic hydrostatic equations. In the above, G is Newton’s
gravitational constant, M(r) is the amount of mass enclosed by a sphere of radius r around
the star’s center, P(r) is the pressure at distance r from the center, and H(r) is the energy
density at distance r. In practice, what is required is a tabulation of the baryonic density
ρ, pressure P(ρ), and energy density H(ρ), across a broad density regime from practi-
cally zero to several times the saturation density and assuming charge-neutral matter in
β−equilibrium. The tabulated values are to be input into a numerical code that solves the
above TOV equations. At each possible central density (density at the center of the star),
the code yields the radius and total mass of the star [54]. The relation between the latter
two quantities defines the neutron star mass–radius (NSMR) relation and is a major point of
comparison with observations.

For calculating and tabulating the input quantities, an EoS model for β−stable matter
is required. The composition of β−stable matter, for example, the proton fraction and the
lepton content in homogeneous matter, depends on the density. The density and composi-
tion in turn determine the pressure and energy density according to the given model.

We will distinguish three density regimes and match the corresponding EoSs: the
dilute, non-homogeneous regime in the crust, the homogeneous primarily nucleonic matter
in the saturation regime (potentially up to a few times the saturation density), and the
putative homogeneous quark matter in dense stellar cores. The description of the first
regime, involving lattice structures, nuclear clusters, and pasta phases, goes beyond the
scope of the present work, so for the EoS at low densities relevant to the crust, we will adopt
existing models from the literature, specifically tabulations of the SLy [55], BPS [56], and
D1M* [57] EoSs. For the homogeneous phase in the saturation regime, we will employ the
KIDS EoS, which is extensively presented in Section 3. It provides analytical expressions
for the energy per particle as a function of the density and isospin asymmetry. For possible
quark matter in dense stellar cores, we employ the CSS model, which is analytical. We will
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not make explicit assumptions about the precise composition of matter, which instead is
encoded in the parameters. The expressions are presented in Section 4.

For the homogeneous nucleonic regime, it remains to numerically determine the
predicted composition of matter and from that the total energy density and pressure
of β−stable matter as follows. We define the total nucleon density ρ in homogeneous
nucleonic matter, the asymmetry density ρ3, and the isospin asymmetry δ,

ρ = ρp + ρn ; ρ3 = ρn − ρp ; δ = ρ3/ρ, (2)

so that

ρp =
1
2
(1 − δ)ρ , ρn =

1
2
(1 + δ)ρ

and assume that a nucleonic EoS is given, such as KIDS, characterized by the energy per
particle E(ρ, δ). Let us also introduce the nuclear symmetry energy, which is defined as
the difference between the energy of pure neutron matter (PNM) and symmetric nuclear
matter (SNM),

Sdiff(ρ) = E(ρ, 1)− E(ρ, 0) (3)

or, more commonly, from the second derivative with respect to the asymmetry at the
saturation point of SNM,

Sd(ρ) =
1
2

d2E(ρ, δ)

dδ2

∣

∣

∣

∣

δ=0
. (4)

The numerical difference is marginal for KIDS models. In the numerical applications
of Section 5 we use S = Sd, but for the sake of completeness, in Section 3 we will provide
expressions for both cases. There will also be leptons present, specifically electrons and
beyond a certain density also muons, whose number densities ρe, ρµ we can calculate based
on the conditions of charge neutrality and β equilibrium. We first define the proton fraction
xp = ρp/ρ = (1 − δ)/2, the electron fraction xe = ρe/ρ, and the muon fraction xµ = ρµ/ρ.
We also define the chemical potential µi of each type of particle i (we trust that there will
be no confusion between µi as a symbol for the chemical potential of particle i and µ as
a symbol for the muon). We assume the state of the electron or muon gas to be that of a
cold relativistic non-interacting Fermi gas characterized by a respective Fermi momentum
kFe,µ = (3π2ρxe,µ)1/3. The chemical potentials are given by

µe =
√

m2
e c4 + c2k2

Fe ≈ ckFe = h̄c(3π2ρ)1/3x1/3
e , (5)

µµ =
√

m2
µc4 + c2k2

Fµ =
√

m2
µc4 + h̄2c2(3π2ρ)2/3x2/3

µ , (6)

where the electron mass is considered negligibly small. For the chemical potentials of
protons and neutrons, whose mass we denote m, and by virtue of

E(ρ, δ) ≈ E(ρ, 0) + S(ρ)

(

ρn − ρp

ρ

)2

, (7)

we have

µn − µp =

{

∂

∂ρn
− ∂

∂ρp

}{

(ρn + ρp)

[

E
(

ρn + ρp,
ρn − ρp

ρn + ρp

)

+ mc2
]}∣

∣

∣

∣

ρ

= 2
∂

∂δ
E(ρ, δ) ≈ 4S(ρ)(xn − xp) = 4S(ρ)(1 − 2xp). (8)

Charge neutrality dictates that

xp = xe + xµ. (9)
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The following reactions, which also involve the electron and muon neutrinos, νe, νµ,
are assumed to be in chemical equilibrium (the first pair of reactions give these conditions
the name β equilibrium):

p + e → n + νe , n → p + e + ν̄e (10)

p + µ → n + νµ , n → p + µ + ν̄µ. (11)

In equilibrium, the above lead to the following relations among the chemical potentials,

µn = µp + µe − µνe = µp + µe, (12)

µn = µp + µµ − µνµ = µp + µµ, (13)

where we have used µνe = µνµ = 0. The above also implies

µe = µµ. (14)

Equations (5), (8), and (12) give

xe + xµ − 1
2
+

h̄c(3π2ρxe)1/3

8S(ρ)
= 0, (15)

while Equations (5), (6), and (14) readily give

x2/3
e − x2/3

µ −
(

mµc2

h̄c

)2
1

(3π2ρ)2/3 = 0. (16)

The last two equations define the conditions for β equilibrium and are routinely
solved in cold neutron star matter calculations. The key EoS quantity is clearly the symme-
try energy.

For a given symmetry energy model S(ρ) and at given density ρ, Equations (15) and (16)
can be solved for the proton and lepton fractions and, therefore, also for the asymmetry δ.
Then we can obtain the total energy density as the sum of the nuclear, electron, and muon
energy densities,

H = HN +He +Hµ ≡ ρEN + ρeEe + ρµEµ

= ρE(ρ, δ) + ρmc2 + ρe h̄c
( ρe

3π2

)1/3
+ ρµ

√

h̄2c4
( ρµ

3π2

)2/3
+ m2

µc4, (17)

where m is the nucleon mass and ml is the mass of lepton l = e, µ. The nucleon is treated
non-relativistically, while the electron is considered ultra-relativistic. Finally, we obtain the
pressure as

P = PN + Pe + Pµ = ρ2 ∂EN

∂ρ
+ ρ2

e
∂Ee

∂ρe
+ ρ2

µ

∂Eµ

∂ρµ
. (18)

The speed of sound u through the nuclear medium can also be calculated,

c2
s ≡ u2

c2 =
dPN

dHN
. (19)

The matching of the KIDS EoS with the dilute-matter EoS is done at the density where
the KIDS model gives mechanically unstable matter. For the matching with CSS at high
density, see Section 4.

3. KIDS Framework for the EoS and EDF of Nucleonic Matter and CSS Extension

The KIDS theoretical framework for the nuclear EoS and EDF [22,58] is based on a
power expansion of the nuclear matter energy per particle in terms of the Fermi momentum—
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equivalently, the cubic root of the density. An expansion in powers of kF is justified with
arguments from effective field theories and the theory of interacting Fermi systems as discussed
in Ref. [22]. The reader is encouraged to turn to that publication for quantitative details. We
summarize here the qualitative points for the sake of completeness.

Following a textbook example [59], let us assume a local interaction between nucleons
with an infinitely repulsive core and a longer-range attractive part of finite depth. Let
us label the ranges of the core and attraction rc and ra, respectively. The contribution of
the repulsive core to the potential energy per particle in infinite nuclear matter is given
by Brueckner’s theory as a sum of terms proportional to (kFrc)3, (kFrc)4, etc., slowly
converging to kFrc ≈ 1. The contribution of the attractive part is given in closed analytical
form involving trigonometric functions and integrals of kFrc and kFra, which can also
be expanded in ascending odd powers of kF with expansion coefficients which quickly
diminish for higher powers. This basic approach [59] already suggests a kF expansion
for the energy per particle of nuclear matter. The importance of the k3

F and k4
F terms, in

particular, for obtaining the empirical saturation regime of symmetric matter has been
shown explicitly in the three-loop approximation of chiral perturbation theory [60].

Indeed, another way to justify the Fermi momentum expansion is via effective field
theories. In the particular case of very dilute Fermi systems, the expression for the energy
per particle is also obtained as a polynomial expansion in kF plus logarithmic functions
arising from three-fermion forces [61]. The expansion coefficients depend on the scattering
lengths and effective ranges of the interaction terms. Nuclear matter near saturation
densities is arguably far from dilute. However, certain arguments can be made that it
is dilute in terms of relevant physics, for instance in an effective theory without pions.
The one-pion-exchange potential vanishes in nuclear matter and its mean field potential
does not appear in the nucleonic fluid. Pionic contributions through loops and multipion
exchanges will have an effect that can perhaps be absorbed in the in-medium couplings
among nucleons and heavier mesons. The next heavier meson is ρ, whose mass (775 MeV
or 4 fm−1) can be treated as a large scale within some effective Lagrangian expressed
in powers of kF/mρ applicable to matter not too far from the saturation point (where
kF ≈ 1.3 fm−1). Of course, the coefficients of such a Lagrangian would have to be fitted
a posteriori.

The KIDS approach originates from such an idea. In Ref. [22], expansions in kF

including a logarithmic term were fitted to pseudodata from ab initio calculations in
nuclear matter and the fits were analyzed statistically to determine the type and number
of terms that capture the relevant physics without risking overfitting. Thus, the optimal
number of low-order expansion terms for describing normal and neutron star matter was
found to be four terms (three for symmetric matter) with no need for a logarithmic term.
In addition, the naturalness of the coefficients was confirmed by defining corresponding
dimensionless coefficients, inspecting their values after the optimal fit, and finding them to
be of the order of one [22]. The power expansion was further explored with the aid of more
pseudodata in Ref. [23].

The KIDS EoS can easily be transposed to an EDF for finite nuclei in the form of a
Skyrme functional with extended density dependence. Of course, in addition to the EoS
coefficients, for nuclei, one needs to determine also the gradient terms of the functional,
represented by the isoscalar (IS) and isovector (IV) coupling parameters C12 and D12, the IS
and IV in-medium effective mass, m∗

s = µsm and m∗
v = µvm, represented by the coupling

parameters Ceff and Deff, and at least one spin-orbit coupling term W0 (see, e.g., Ref. [58]).
A crucial novelty is that in the KIDS framework, unlike traditional Skyrme models, the
above EDF parameters are determined without altering the EoS of homogeneous matter at
all: any density dependence introduced to the EDF through the effective mass choice, for
the purpose of describing nuclei or dynamic phenomena, is compensated for in the EoS of
homogeneous matter by an equal and opposite density-dependent term of the same form
ρ5/3, while the gradient and spin-orbit terms leave no contribution to the EoS of infinite
matter. The purpose is to be able to test any given EoS in nuclei as it is. Conversely, a
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KIDS-type EDF, viewed as an extended Skyrme functional, leads to a homogeneous-matter
EoS in a straightforward manner.

We would like to stress that in this framework, the density dependence of the SNM
EoS and of the symmetry energy is completely agnostic with respect to the momentum-
dependent terms introduced for the description of nuclei: it would be the same whether
there were momentum-dependent terms or not. This versatility makes it possible to
reconcile homogeneous matter and nuclei and is absent from traditional functionals.

Next, we provide the formalism of the KIDS EoS and EDF and summarize recent
applications.

3.1. General Expression for the KIDS Equation of State (KIDS EoS)

We consider homogeneous, unpolarized nuclear matter at zero temperature and
without strangeness (extensions are possible in Ref. [26]). The proton or neutron Fermi
momentum is given by

kF p,n = (3π2ρp,n)
1/3. (20)

Recall that the kinetic energy per particle T of a non-interacting Fermi gas consisting
of protons and neutrons with equal masses m is given by

T = Tp + Tn =
3
5

h̄2

2m
(ρpk2

F p + ρnk2
Fn)/ρ =

h̄2

2m
hk(ρ

5/3
p + ρ5/3

n )/ρ ≡ h̄2

2m
τ, (21)

where hk ≡ 3
5 (3π2)2/3. Let us also define for later use τ3 ≡ hk(ρ

5/3
n − ρ5/3

p )/ρ.
In the KIDS ansatz, the potential energy per particle is expanded in powers of the

Fermi momentum or equivalently of the cubic root of the density so that the energy per
particle is given by

E(ρ, δ) = T +
imax

∑
i=0

ci(δ)ρ
1+i/3, (22)

where the isospin dependence of the interaction contribution to E is absorbed in the
coefficients ci(δ). The quadratic approximation for the isospin dependence is expressed as

ci(δ) = αi + βiδ
2 ; αi, βi = const. (23)

More precisely, taking into account the momentum dependence of an EDF of Skyrme
type, an exception must be made for i = 2:

c2(δ) = α2 + β2δ2 + Ceffhk

[

(

1+δ
2

)5/3
+
(

1−δ
2

)5/3
]

+Deffhkδ

[

(

1+δ
2

)5/3
−
(

1−δ
2

)5/3
]

(24)

≡ α2 + β2δ2 + Ceffhkc+(δ) + Deffhkc−(δ), (25)

where Ceff, Deff, as well as α2 and β2 are constants, which we will relate to Skyrme-type
parameters on the one hand and standard parameters of the equation of state (EoS) on the
other. We also defined for brevity

c+(δ) ≡
(

1+δ
2

)5/3
+
(

1−δ
2

)5/3
; c−(δ) ≡ δ

[

(

1+δ
2

)5/3
−
(

1−δ
2

)5/3
]

. (26)

Note that
ρτ = hkρ5/3c+(δ) and ρ3τ3 = hkρ5/3c−(δ). (27)

Equations (22)–(24), define the KIDS EoS. The necessary EoS parameters are αi, βi,
Ceff, and Deff, and we may call them the KIDS-EoS parameters. Their connections with the
standard EoS parameters defined at the saturation point are analytical and straightforward.
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As mentioned earlier, Ceff and Deff determine the IS and IV in-medium effective masses,
m∗

s and m∗
v . At saturation density we have

µs ≡ m∗
s /m = [1 + 2m

h̄2 ρ0Ceff]
−1 ; µv ≡ m∗

v/m = [1 + 2m
h̄2 ρ0(Ceff − Deff)]

−1. (28)

Setting Ceff = Deff = 0 implies µs = µv = 1 and simplifies the expression for c2(δ) to
the exactly quadratic form.

For most purposes, it suffices to consider three expansion terms, i = 0, 1, 2, for sym-
metric nuclear matter (SNM) and four expansion terms i = 0, 1, 2, 3, for pure neutron
matter (PNM) [22,23]. In other words, we usually consider four expansion terms (imax = 3)
but set α3 = 0. The only reason is that for most purposes additional terms in SNM or
PNM have been found inconsequential. Generally, depending on the application (e.g.,
exploring the role of high-order EoS terms in various observables) any number of terms
can be considered (see also the next section, where we provide the general expressions). In
addition, if deemed necessary or potentially interesting, one can extend the formalism to
include higher-order momentum-dependent terms.

3.2. Standard EoS Parameters in the KIDS Framework

As already described, the KIDS EoS is based on an expansion in kF. The corresponding
expansion coefficients suffice to proceed to further studies and calculations. However,
most practitioners for decades have compared and benchmarked their results in terms of
Taylor expansion coefficients of E around the saturation density [3,6,7,11,15,16,19,20]. For
the purpose of comparison and easier communication, we must calculate those coefficients
as well. In addition, to the extent that the lowest-order Taylor expansion coefficients are
relatively well known, such coefficients also provide a good starting point for explorations
with KIDS. Therefore, here we provide the expressions needed to “translate” the KIDS
language to the Taylor-expansion language and vice versa. The expansions will of course
become unusable outside the nucleonic fluid phase.

First, let us review the relevant parameters. For SNM, let us consider the satura-
tion density ρ0, the saturation energy per particle E0, the compression modulus K0, and
optionally the skewness parameters Q0,

dE(ρ, 0)
dρ

∣

∣

∣

∣

ρ=ρ0

= 0 ; E0 = E(ρ0, 0) (29)

K0 = 9ρ2
0

d2E(ρ, 0)
dρ2

∣

∣

∣

∣

ρ=ρ0

; Q0 = 27ρ3
0

d3E(ρ, 0)
dρ3

∣

∣

∣

∣

ρ=ρ0

. (30)

Higher-order parameters Rn0 = (3ρ0)
n dnE(ρ,0)

dρn

∣

∣

∣

ρ=ρ0
can also be considered at will.

The symmetry energy as a function of the density, S(ρ), was defined in Section 2,
Equations (3) (difference) or (4) (derivative). The numerical difference between the two
definitions is minor for all density domains (e.g., typical nuclear densities) where the
quadratic approximation can be considered good. The KIDS ansatz gives

S(ρ) = σ( h̄2

2m + Ceffρ)hkρ2/3 + ϕDeffhkρ5/3 +
imax

∑
i=0

βiρ
1+i/3, (31)

where, depending on the definition used,

σ ≡
{

1 − 2−2/3 ≈ 0.37 for Sdiff
5
9

1
22/3 ≈ 0.35 for Sd

, ϕ ≡
{

1 for Sdiff
5
3

1
22/3 ≈ 1.05 for Sd

. (32)

Standard parameters describing the density dependence of the symmetry energy are
also defined by convention as Taylor-expansion coefficients around the saturation density.
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Thus, we can define, besides the value J at saturation density, the slope parameter L, the
curvature Ksym, the skewness parameter Qsym,

J = S(ρ0) ; L = 3ρ0
dS(ρ)

dρ

∣

∣

∣

∣

ρ=ρ0

(33)

Ksym = 9ρ2
0

d2S(ρ)

dρ2

∣

∣

∣

∣

ρ=ρ0

; Qsym = 27ρ3
0

d3S(ρ)

dρ3

∣

∣

∣

∣

ρ=ρ0

(34)

and higher-order parameters Rsymn
= (3ρ0)

n dnS(ρ)
dρn

∣

∣

∣

ρ=ρ0
. In order to determine the KIDS-

EoS parameters giving a specific set of standard EoS parameters, we differentiate the KIDS
EoS as necessary, obtain the standard coefficients as linear functions of the KIDS coefficients
αi, βi multiplied by the respective powers of ρ1/3

0 , and invert the resulting algebraic system.
For SNM, the system reads























E0 − ( h̄2

2m + Ceffρ0)hk(ρ0/2)2/3

−(2 h̄2

2m + 5Ceffρ0)hk(ρ0/2)2/3

K0 + (2 h̄2

2m − 10Ceffρ0)]hk(ρ0/2)2/3

Q0 + (−8 h̄2

2m + 10Ceffρ0)hk(ρ0/2)2/3

· · ·
Rn0 − [ h̄2

2m Λ(−1, n) + Λ(2, n)ρ0]hk(ρ0/2)2/3























=























1 1 1 1 1
3 4 5 6 n + 3
0 4 10 18 : n(n + 3)
0 −8 −10 0 (n − 3)n(n + 3)

. . .
0 Λ(1, n) Λ(2, n) 0 . . . Λ(n, n)











































α0ρ0

α1ρ4/3
0

α2ρ5/3
0

α3ρ2
0

· · ·
αnρ1+n/3

0





















, (35)

where
Λ(i, n) = (i − 3(n − 1))(i − 3(n − 2)) · · · (i − 3)i(i + 3). (36)

The expressions for the symmetry energy parameters are completely analogous. For
3–4 SNM terms and 4 PNM or S(ρ) terms, we next provide the expressions obtained after
the matrix inversion.

Suppose we are given the values for the SNM parameters ρ0, E0, and K0 and optionally
Q0, and for the symmetry-energy the parameters J, L, Ksym, Qsym. What is the correspond-
ing KIDS EoS? In order to answer uniquely, we need also the values for the effective masses,
µs and µv. If we are unconcerned about them, we may set them equal to one. That would
mean Ceff = Deff = 0 and the quadratic approximation holding exactly. However, in the
general case, we have, inverting Equation (28),

Ceff =
h̄2

2mρ0
(µ−1

s − 1) ; Deff =
h̄2

2mρ0
[µ−1

s − µ−1
v ] (37)

and we find:

• For symmetric matter: if Q0 is unspecified, αi≥3 = 0 and the inversion of the 3 × 3
system gives





α0ρ0

α1ρ4/3
0

α2ρ5/3
0



 =





10 −3 1/2
−15 5 −1

6 −2 1/2











E0 − [ h̄2

2m + Ceffρ0]hk(ρ0/2)2/3

−[2 h̄2

2m + 5Ceffρ0]hk(ρ0/2)2/3

K0 + [2 h̄2

2m − 10Ceffρ0]hk(ρ0/2)2/3






. (38)

If Q0 is also specified (αi≥4 = 0), inversion of the 4 × 4 system gives









α0ρ0

α1ρ4/3
0

α2ρ5/3
0

α3ρ2
0









=









20 −19/3 1 −1/6
−45 15 −5/2 1/2

36 −12 2 −1/2
−10 10/3 −1/2 1/6





















E0 − ( h̄2

2m + Ceffρ0)hk(ρ0/2)2/3

−(2 h̄2

2m + 5Ceffρ0)hk(ρ0/2)2/3

K0 + (2 h̄2

2m − 10Ceffρ0)]hk(ρ0/2)2/3

Q0 + (−8 h̄2

2m + 10Ceffρ0)hk(ρ0/2)2/3













. (39)

• For the symmetry energy, the inversion of the 4 × 4 system gives
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







β0ρ0

β1ρ4/3
0

β2ρ5/3
0

β3ρ2
0









=









20 −19/3 1 −1/6
−45 15 −5/2 1/2

36 −12 2 −1/2
−10 10/3 −1/2 1/6





















J − [σ( h̄2

2m + Ceffρ0) + ϕDeffρ0]hkρ2/3
0

L − [σ(2 h̄2

2m + 5Ceffρ0) + 5ϕDeffρ0]hkρ2/3
0

Ksym + [σ(2 h̄2

2m − 10Ceffρ0)− 10ϕDeffρ0]hkρ2/3
0

Qsym + [σ(−8 h̄2

2m + 10Ceffρ0) + 10ϕDeffρ0]hkρ2/3
0













, (40)

where σ and ϕ depend on the definition used for the symmetry energy, see Equation (32).

3.3. KIDS EoS and Skyrme-Like Functional

The utility of the KIDS-EoS is that it can be generated by an extended Skyrme-type
effective interaction in the Hartree–Fock (HF) approximation and thus can be applied to
nuclear structure and response like any microscopic EDF. The Skyrme interaction is of zero
range and here it is extended to include more than one density-dependent term,

V = (t0 + y0P̂) + 1
6

imax

∑
i=1

(t3i + y3i P̂)ρ
i/3(R12)δ(r12) +

1
2 (t1 + y1P̂)[p2

12δ(r12) + δ(r12)p
2
12]

+(t2 + y2P̂)p12 · δ(r12)p12 + iW0p12 · δ(r12)S12 × p12. (41)

The notation used is standard except that we have made the substitution

tmxm → ym (m = 0, 1, 2, 3).

The interaction includes momentum-dependent terms (parameters t1,2, y1,2) and a
spin-orbit term (parameter W0). The corresponding energy per particle in HF, which
defines the corresponding KIDS EDF, is given by

E = H/ρ = T + 3
8 t0ρ − 1

8 (t0 + 2y0)ρ
2
3/ρ +

imax

∑
i=1

[ 1
16 t3iρ

1+i/3 − 1
48 (t3i + 2y3i)ρ

−1+i/3ρ2
3]

+ 1
16 (3t1 + 5t2 + 4y2)ρτ − 1

16 (t1 + 2y1 − t2 − 2y2)ρ3τ3

+ 1
64 (−9t1 + 5t2 + 4y2)∇2ρ + 1

64 (3t1 + 6y1 + t2 + 2y2)(ρ3/ρ)∇2ρ3

− 3
4 W0∇ · J − 1

4 W0(ρ3/ρ)∇ · J3, (42)

where we have introduced also the IS and IV current densities. Let us also denote the
contribution of the gradient terms in the shorthand

Egrad = C12∇2ρ + D12(ρ3/ρ)∇2ρ3. (43)

where
C12 = 1

64 (−9t1 + 5t2 + 4y2) , D12 = 1
64 (3t1 + 6y1 + t2 + 2y2). (44)

Matching with Equation (22) and taking into account that ρ2
3/ρ = δ2ρ, we obtain

the transformations from the KIDS parameters to the Skyrme parameters. In the next
subsection, we wrap up the procedure. The inverse procedure, from a KIDS-EDF to an EoS,
according to Equation (42) is of course straightforward.

For applications to open-shell nuclei within HF-Bogoliubov and quasiparticle RPA
models, pairing parameters can also be considered [62].

3.4. From EoS to EDF in Practice

In practice, when we want to test a specific set of EoS parameters in nuclei, we need
to solve the following problem: Given the EoS parameters including the effective masses
µs, µv (see Equations (28) and (37)) and the gradient coefficients of Equation (43), what
are the corresponding extended-Skyrme parameters ti, yi of Equation (41), which we can
employ in standard HF or RPA codes? (Note that the EoS parameters may be given as
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such [16] or determined from a fit of the KIDS ansatz, Equation (22), to pseudodata from ab
initio calculations [22,23,58].) Once this procedure is set up, it can be used, for example,
to find the optimal gradient parameters and/or W0 for a given EoS, or it could be used to
actually fit the EoS, effective mass, or gradient terms to nuclei—directly, without the use of
the Skyrme-type parameters ti, yi, etc. The spin-orbit parameter W0 does not enter the EoS
of homogeneous matter, so it does not need special consideration in the transformation
from EoS to EDF. Of course, it is necessary for describing nuclei and it may be found
correlated with the gradient terms when all are optimized. The same holds for pairing
parameters necessary for open-shell nuclei.

First, let us assume we have selected the SNM parameters ρ0, E0, K0 and the IS effective
mass µs. Then Equation (37) provides Ceff, Equation (38) provides αi, and finally

t0 = 8α0/3 ; t31 = 16α1 ; t32 = 16α32 ; t33 = 0. (45)

We can also specify Q0 if we wish, use Equation (39) instead of (38), and obtain
t33 = 16α33. Next, we consider the isovector quantities. We specify J, L, Ksym, Qsym, and µv,
solve Equation (40) for βi with Deff given by Equation (37), and finally obtain

y0 = − 1
2 t0 − 4β0 ; y3i = − 1

2 t3i − 24β3i (i = 1, 2, 3). (46)

As in standard Skyrme, for t1,2 and y1,2 we need both Ceff, Deff and the gradient
coefficients C12, D12 of Equation (43):









t1
y1
t2
y2









=
2
3









2 0 −8 0
−1 −3 4 12

6 −12 8 −16
3 15 −4 20

















Ceff
Deff
C12
D12









. (47)

Note that the minus sign in the transformation of the gradient terms is because we
write the contribution in the form

Cρ∇2ρ + Dρ3∇2ρ3 (48)

instead of C(∇ρ)2 + D(∇ρ3)
2. The expressions of C12 and D12 in terms of t1,2, y1,2 are

given in Equation (44). The spin-orbit coupling W0 decouples from all equations. Its value
can be set independently or fitted to data. Note that the gradient terms and W0 are not
active in homogeneous matter, so we may fit them to nuclear data for any given EoS of
homogeneous matter and effective mass values, without affecting the homogeneous EoS
at all.

As regards the kinetic and gradient terms and the spin-orbit parameter, three methods
have been in use to determine them for a given EoS:

• The most rudimentary option is to split the EoS term c2ρ5/3 into a term kc2ρ5/3, which
will provide the parameters t1, t2 of the Skyrme-type functional (for x1 = x2 = 0), and
the rest, (1 − k)c2ρ5/3, which will provide a genuine density-dependent term. The
optimal values of the constant k and at the same time W0 are determined by a fit to
a minimal amount of data (masses and radii of three nuclei). This simple procedure,
first explored in [63], typically leads to a µs close to one. It is good enough for
inspecting bulk nuclear and neutron-star properties [23,58,64], but is quite restrictive
when looking at, e.g., single-particle spectra and collective excitations.

• A second option is to select, besides the EoS parameters, the desired values for the
effective masses; and then, determine C12, D12, W0 by a fit to nuclei. This method has
been used, e.g., in the proof-of-concept study of Ref. [58] and in additional applications
in Ref. [62]. Once spectroscopic or dynamic properties are considered, the in-medium
effective mass should also come into play [16,58,65–68] and it can be fitted as well. It
may be also relevant for a precision fit to nuclear masses, which is underway.
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• A third option is to choose, besides the EoS and the effective masses, the values of
C12, D12, and W0 from the beginning. This is useful for inspecting trends [69] (by
independently varying each variable) or to reduce the parameter space [16].

Next, we summarize the various applications of KIDS so far.

3.5. Summary of Applications

KIDS was introduced in Ref. [22] in order to carry over what we know from quantum
many-body theory and from effective field theories about the static, cold, homogeneous
Fermi system of nuclear matter, namely that its energetics are expressed in terms of the
Fermi momentum or the cubic root of the density, into a model for homogeneous matter
and eventually for nuclei. Fits to EoS pseudodata from ab initio calculations revealed
the naturalness of the power expansion and its convergeness [22,23]. It was also realized
that any density dependence of the EoS can be generated by a Skyrme-type EDF with
extended density dependence. The reverse engineering of the EDF for nuclei from the
EoS of homogeneous matter was first demonstrated in Ref. [63] and carried out more fully
in Ref. [70] and finally in Ref. [58], where the APR EoS was converted to a Skyrme-type
functional and was shown to give realistic results for closed-shell nuclei regardless of
what we assumed for the effective mass. Noting that such a model, closely resembling
the Skyrme functional, can be very easily implemented in existing nuclear structure codes
(Hartree Fock, RPA, etc.), it is obvious that the framework offers enormous versatility in
different directions, for example in exploring homogeneous matter or the influence of the
effective mass in dynamic properties, as shown in subsequent applications. It can also be
extended for application to hypernuclei, as shown in Ref. [26].

Having demonstrated in Refs. [22,23] that four terms in the expansion suffice for
many applications in nuclei and neutron stars and taking advantage of the framework’s
flexibility, we have used it to constrain the curvature parameter of the symmetry energy
Ksym [62,64,71]. Binding energies and radii of closed-shell nuclei and the Sn isotopic chain
as well as the NSMR relation and deformability were used to constrain the parameter
space. Pairing parameters were introduced for this purpose in Ref. [62]. Thus we were
able to conclude that Ksym must be negative (possibly below −30 MeV) and no lower than
−200 MeV (possibly higher than −150 MeV). Also shown was that traditional EoS/EDF
models (more explicitly, Skyrme models) are overly restrictive, imposing extremely tight
artificial correlations between EoS parameters, for instance between 3J − L and Ksym [62].
This insight was conclusively confirmed by a Bayesian analysis of both isoscalar and
isovector nuclear properties, including giant resonances and the neutron skin thickness,
within KIDS and Skyrme models [16]. There, it was also shown that Ksym cannot be
constrained from nuclear properties alone but requires input from higher densities as well,
such as those offered by astronomical observations and heavy-ion collisions.

A related observation in Ref. [71] was that the neutron-skin thickness of nuclei and
the properties of neutron stars are not correlated within KIDS, i.e., the properties of dilute
matter and dense matter decouple, suggesting that varying degrees of freedom come
into play. Preliminary studies devoted to the neutron skin thickness and aiming to help
resolve the PREX-CREX discrepancy seem to confirm this view [72] and further work is in
progress. We note that predictions for the neutron skin thickness coming from KIDS EoSs
as constrained in Ref. [62], offer predictions in line with other EDFs [73].

Besides these developments on the EoS front, the KIDS model has recently also
been applied to lepton-nucleus scattering, especially in view of the role that the effective
nucleon mass plays in the cross-section predictions. Both inclusive and exclusive electron
scattering were considered in the quasi-elastic regime. Comparisons of KIDS predictions
with exclusive electron scattering data were found to favor models with a high IS effective
mass, i.e., close to one [65]. The exploration was extended to inclusive electron scattering
in Ref. [66] which considers also variations in the symmetry energy slope parameter.
Comparisons with data also seem to favor an effective mass close to the free nucleon mass.
Neutrino-nucleus scattering was investigated in Ref. [67]. The total cross section was found
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independent from the effective mass, so the axial mass could be determined independently.
Recently, the effect of the nucleon effective mass and symmetry energy on the neutrino
mean free path in a neutron star was examined [68] with important consequences for
cooling and neutrino trapping.

4. Constant Speed of Sound Model and Pseudo-Conformal Dense Matter

An interesting finding of the KIDS analyses is the apparent necessity for the EoS
to stiffen at high density in order to support a heavy neutron star [62,71]. Specifically,
the symmetry energy S(ρ) is predicted to have an inflection point below or at roughly
2ρ0 and signifies a possible phase transition or the activation of new degrees of freedom.
An early example is the Akmal–Pandharipande–Ravenhal (APR) EoS [74], where pion
condensation gives rise to an inflection point at ρ ≈ 2ρ0. Currently, it is conjectured that
hadronic matter might cross over to quarkyonic matter at high densities and support very
heavy neutron stars [49,75] or very compact (small) third-family neutron stars [76,77]. The
crossover density could be inferred from measurements by next-generation gravitational
wave detectors [44]. In Ref. [46], the mechanism of parity doubling is proposed to be
activated at about two times saturation density and lead to the onset of a pseudo-conformal
state with c2

s = u2/c2 = 1/3. This result which is discussed also in Ref. [45] in this issue,
was the motivation for the present study.

A common prediction of hybrid EoSs is that the speed of sound is not a monotonic
function of the density, but peaks at some density well above the saturation regime, reach-
ing roughly u2/c2 = 0.7 − 0.8, and then drops and stabilizes at the conformal limit of
c2

s = 1/3. In that case, the upper limit for the central density of a neutron star could
increase considerably. The conformal limit is not expected to be reached abruptly, so in
principle, we need to model the crossover regime between nucleonic and conformal matter
in a smooth way. Here we will explore a much simpler scenario: up to some density, where
an as yet unspecified value is reached for the speed of sound, we will use the nucleonic EoS;
above that density, a constant speed of sound (CSS) is assumed. The value of the CSS may
be either the conformal one or a different one. The purpose of this exercise is to examine
the trends and possibilities and gain guidance for future realistic parameterizations of
unified EoSs.

If we assume a priori that c2
s = dP/dH is constant, and given that P = ρ2d(H/ρ)/dρ,

we readily obtain that the energy density and pressure must be given by

H = Bρ1+c2
s + D ; P = Bc2

s ρ1+c2
s − D. (49)

The constants B and D remain to be determined. In the special case of c2
s = 1/3,

we have
H(ρ, δ) = B(δ)ρ4/3 + D(δ). (50)

The following values are suggested in Ref. [46] for the coefficients B and D (based on
Equation (53) therein and the associated density n0 = 0.154 fm−3):

B(0) = 1324 MeV fm , D(0) = −29 MeV fm−3, (51)

B(1) = 2387 MeV fm , D(1) = 39 MeV fm−3. (52)

For matching the KIDS EoS and the CSS EoS, a number of scenarios can be considered.
For c2

s = 1/3, we could employ the parameter set already obtained in Ref. [46] and interpo-
late at some high density, e.g., at about two times saturation density as suggested in that
work. Here we will rather take advantage of the observation that the relations (49) remain
valid for β−equilibrium matter (at least if one adopts the quadratic approximation for the
dependence on isospin asymmetry, which is not necessarily valid, but is made here lacking
a better option). Then the isospin degree of freedom need not be considered explicitly. Let
us then simply assume that, up to some onset density ρx, matter is described by KIDS,
while beyond that, the total energy density and the pressure are given by Equation (49).



Symmetry 2023, 15, 683 14 of 20

Further assuming that at ρx both P and H are continuous (also not necessarily true in the
presence of a phase transition), we can determine B and D from the values, according to
the KIDS model, at the onset density, Px = P(ρx), Hx = H(ρx). We get

B =
Hx − Px

(1 + c2
s )ρ

1+c2
s

x

; D =
c2

sHx − Px

2
. (53)

As matching density ρx we will choose the density at which the speed of sound in the
KIDS model reaches a specific maximal value c2

s,max. The constant c2
s at higher densities

will be
c2

s = c2
s,max or c2

s = 1/3.

The values we will consider to explore for c2
s,max are from 0.6 to 1.0.

5. Results and Discussion

We will now apply the standard KIDS EoS and different extensions to dense matter
in the description of β−stable matter and the NSMR relation. As already mentioned, for
the dilute, clusterized phase, which has not yet been modeled consistently within KIDS
but is necessary for describing the neutron star crust, we employ three different EoSs from
the literature, specifically the SLy [55], BPS [56], and D1M* [57] EoSs. Since the crust EoS
affects predictions for the neutron star radius in particular, the use of three different models
will give us some measure of model uncertainty in this respect. For the homogeneous
regime, we will use three representative KIDS EoS sets, labeled here KIDS-P4, KIDS-46,
and KIDS-65. For SNM, all three of them are characterized by the same parameters,

ρ0 = 0.16 fm−3, E0 = −16 MeV, K0 = 240 MeV.

For KIDS-P4, the EoS of pure neutron matter was obtained by a fit to the APR EoS [22,58].
The KIDS-46 and KIDS-65 sets, labeled here for convenience according to their L value,
were obtained by adjusting to gross nuclear properties as well as the NSMR relation [62].
The corresponding symmetry energy parameters are given in Table 1.

Table 1. Analytical EoS parameters used in this work. The numbers tabulated under “Symm. Energy”
correspond to (J, L, Ksym, Qsym) in units of MeV. The numbers tabulated under “Extension(x, y)”
correspond to the values of (ρx, B, D) in units of (fm−3, MeV fm3y, MeV/fm3), respectively, where
x = c2

s,max is the assumed onset condition for the CSS EoS, at which point the baryonic density is ρx,
while y = 1/3 or c2

s,max is the speed of sound at higher densities. The density, energy per particle,
and compression modulus of symmetric nuclear matter are set to the respective values, 0.16 fm−3,
−16 MeV, and 240 MeV, at saturation.

EoS Symm. Energy Extension(0.6,1/3) Extension(1.0,1/3) Extension(0.6,0.6) Extension(1.0,1.0)

KIDS-P4 (33, 49,−156, 580) (0.52, 1086, 75.9) (1.19, 1343,−153.6) (0.52, 1078, 151.3) (1.19, 799, 408)
KIDS-46 (32, 65,−110, 650) (0.60, 1100, 68.5) (1.09, 1282,−73.8) (0.60, 1051, 161.0) (1.09, 808, 403)
KIDS-65 (30, 46,−145, 650) (0.59, 1084, 79.0) (1.22, 1371,−185.5) (0.59, 1040, 168.3) (1.22, 800, 411)

The energy per particle in SNM, β−stable matter, and PNM, the symmetry energy,
and the speed of sound in β−stable matter as functions of the density are shown in Figure 1.
Also shown are the basic properties of nuclei calculated with respective EDFs. Specifically,
shown are the energy per particle and charge radius for the closed-shell nuclei

16,28O, 40,48,60Ca, 56,68,78Ni, 90Zr, 100,120,132Sn, 208Pb, 218U.

For the purposes of this illustration, the effective mass and gradient terms of the EDFs are
kept fixed to µs = 0.82, κ = (µ−1

v − 1) = 0.22, C12 = −65 MeV fm5, and D12 = 2.5 MeV fm5.
Only the spin-orbit coupling strength W0 is fitted to the shown data (19 data), resulting in
the following values in units of MeV fm5: 114 for KIDS-46, 111 for KIDS-65, and 128 for
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KIDS-P4. The average relative deviation per experimental datum for these values is of the
order of 0.4%. We note that for all three models, c2

s reaches 1/3 at a density about 0.4 fm−3

and it does not reach the causality limit until very high densities. We point out again
the stiffening of the EoSs at high densities. The three EoSs can support a two-solar-mass
neutron star [23,62].

Figure 1. The three nucleonic EoSs used in this work and corresponding results for selected nuclei.
The EoS of symmetric nuclear matter (SNM) is the same for all three. For KIDS-P4, the EoS of pure
nuclear matter (PNM) was obtained by a fit to the APR EoS [22,58]. The KIDS-46 (L = 46 MeV) and
KIDS-65 (L = 65 MeV) sets were obtained by adjusting to gross nuclear properties as well as the
NSMR relation [62]. Left: energy per particle for SNM, PNM, and β−stable matter and the symmetry
energy as a function of nucleon density. Inset: speed of sound for β−stable matter. Right: nuclear
masses (top) and charge radii (bottom) for the nuclei 16,28O, 40,48,60Ca, 56,68,78Ni, 90Zr, 100,120,132Sn,
208Pb, 218U. Lines are drawn to guide the eye. For the purposes of this illustration, the effective mass
and gradient terms of the EDFs are kept fixed to the values shown, while the spin-orbit coupling
strength W0 is fitted to the shown data, resulting in the following values in units of MeV fm5: 114 for
KIDS-46, 111 for KIDS-65, and 128 for KIDS-P4.

Next, we consider different matches with the CSS model and examine the resulting
NSMR relation. First, we find the density ρx at which the speed of sound in β−stable
matter according to the KIDS model reaches a given value, x = c2

s,max = 0.6 − 1.0. We
also calculate the pressure Px and energy density Hx at that density according to the KIDS
model. Assuming that at densities higher than ρx the speed of sound c2

s is steady, we then
determine the CSS parameters B and D from Equations (53).

The resulting total unified EoSs and the NSMR relations for c2
s = 1/3 are shown in

Figure 2 while the results for c2
s = c2

s,max are shown in Figure 3. Specifically, regarding EoS,
we show the pressure as a function of the baryonic density and of the energy density. We
also show the speed of sound as a function of the density.
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Figure 2. Pressure as a function of the baryonic density and of the energy density and speed of sound
as a function of the baryonic density (left), and neutron star mass–radius relations (right) for the EoSs
considered in this work, specifically: the KIDS-46, KIDS-65, and KIDS-P4 nucleonic EoSs (see Figure 1)
are adopted up to the density where the speed of sound c2

s ≡ u2/c2 reaches the indicated maximum
value c2

s,max (thick continuous lines); thereafter, the constant speed of sound, pseudo-conformal EoS
for c2

s = 1/3 is adopted (thin lines), assuming an abrupt crossover (see text). The EoSs are matched
at low densities to the crustal EoSs SLy, BPS, or D1M* models, leading to the lowest, middle, and
highest radius for a canonical star, respectively.

From Figure 2, we conclude that such an abrupt crossover to the conformal limit does
not easily support a heavy star unless we allow the speed of sound to approach the causality
limit c2

s = 1. The softening of the EoS is visible in the pressure plots. We should comment at
this point that, possibly owing to different computational details such as the very simplistic
matchings used here between the crust and core EoSs, the present calculations predict
somewhat lower maximal solar masses than those of Refs. [23,62]. The uncertainty for the
radius of a canonical star is of the order of half a kilometer.

From Figure 3, we observe that if the speed of sound is permitted to reach a relatively
high value such as those considered here and remain steady for a broader density regime,
rather than drop quickly to the conformal limit, the EoS can support even heavier stars
than with only a nucleonic EoS. In the present simplistic calculations, a maximal mass is
found for an intermediate value 0.6 < c2

s,max < 0.8. A scenario where the speed of sound
peaks around c2

x ≈ 0.7 is consistent with other studies. We observe also that the radius of a
massive star can be comparable with, i.e., not much smaller than the radius of a canonical
star. Finally, in all scenarios, very dense stars are predicted to be viable.
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Figure 3. Pressure as a function of the baryonic density and of the energy density and speed of sound
as a function of the baryonic density (left), and neutron star mass–radius relations (right) for the
EoSs considered in this work, specifically: the KIDS-46, KIDS-65, and KIDS-P4 nucleonic EoSs (see
Figure 1) are adopted up to the density where the speed of sound c2

s ≡ u2/c2 reaches the indicated
maximum value (thick continuous lines); thereafter, the constant speed of sound EoS for c2

s = c2
s,max

is adopted (thin lines), assuming a smooth crossover (see text). Also indicated are characteristic
values of a heavy neutron star’s central baryonic density. The EoSs are matched at low densities to
the crustal EoSs SLy, BPS, or D1M* models, leading to the lowest, middle, and highest radius for a
canonical star, respectively.

6. Conclusions

We have reviewed the KIDS framework for the nuclear EoS and EDF and sought a
physically motivated extension to dense matter, where the nucleonic degrees of freedom
are not necessarily justified. As physical motivation, we have considered the pseudo-
conformal symmetry emergent in dense, topologically altered nuclear matter, which leads
to a converged speed of sound at high densities and thus provides a simple expression for
the energy per baryon in terms of the baryonic density as a special case of the CSS model.
Here we resorted to a simple matching between representative nucleonic KIDS-EoSs and the
CSS model, including the pseudo-conformal EoS, and applied the unified model to describe
the mass–radius relation of neutron stars and examine the compatibility of CSS cores with
heavy neutron stars. Although an abrupt transition to the pseudo-conformal regime at low
densities does not favor heavy neutron stars, intermediate scenarios including a cusp in
the speed of sound are not ruled out, while some appear more favorable to heavy stars
than purely nucleonic matter. Improvements are needed in the EoS interpolations between
the dense, near-saturated, and dilute regimes for more accurate results, but we expect our
conclusions to remain valid.
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