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The quest for themissing piece of the puzzle

Particle Physics is awell-established field using its settledmethods of data analysis and interpretation,
along with techniques of detector calibration.

At the dawnof the era of theHiggs boson discovery, with no clear sign of newPhysicsmanifesting at
the energy range covered by the Large Hadron Collider, the quest for significant deviations of themea-
sured parameters of the Standard Model from their prediction is a mandatory plan. A fair question to
ask is: towhat extent pushing the limits of the achievable precisionmeans to rethink those procedures
we have been familiar with for a longtime?

Enabling increased precision in the electroweak sector

Produced copiously in the CMS and ATLAS experiments, the, bosons provide a unique opportunity
to set stringent limits to the Standard Model.

A precise measurement of its kinematic distributions - rapidity and transverse momentum - has
never been performed in LHC collisions due to the impossibility to fully measure the final state in lep-
tonic decays, while hadronic decays cannot be used because of the limited control of the jet energy
scale and the overwhelming background. Moreover, the holy grail of the precision measurements at
the electroweak scale - a measurement of the, boson mass at 10−4 level - has not yet been accom-
plished.

Traditionally, the efforts of the collaborations have been invested in this last charming piece of the
puzzle. Notwithstanding, a precise knowledge of the, rapidity, transverse momentum and polarisa-
tion is fundamental to give a fair assessment of its mass. In, leptonic decays, due to the neutrino
escaping direct detection, it is not possible to define a Lorentz invariant proxy for the, mass. Thus,
the estimation of the, mass is affected by the degree of knowledge of the underlying, kinematics.
The classical approach has been to finely tune the simulations to resemble themeasured distributions
of the / boson, used as a standard candle, to make assumptions on the unknown kinematics of the
, . However, not only is the validity of this method still debated in the community, especially about
the evaluation of the systematic uncertainties, but it has not been proven yet to be able to get to the
ultimate precision.

The aim of the work described in this thesis has been to present a paradigm shift, introducing a
change in the traditional conception of the, precision measurements. A totally new method has
been devised to obtain a precise assessment of the, rapidity, transverse momentum and polarisa-
tion exploiting uniquely and exclusively the correlation between the transverse momentum and the
pseudorapidity of muons emitted in, semileptonic decays.

The validity of the newprocedure relies ononly twoproperties of the, boson: it is a particle of spin
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1 and when it decays, it violates completely the parity symmetry. The former allows to obtain a well-
defined formula that links the, rapidity, transversemomentum and polarisation to the angles of the
emitted lepton in the, center ofmass. The latter allows to unfold directly the, production from the
kinematics of the emitted lepton in the frame of reference of the laboratory. An ad-hoc simulation is
used to select the, boson in all possible kinematic configurations, and for each of those, a template
is produced: this is a prediction of how the kinematics of the emitted lepton in the frame of reference
of the laboratory looks like given the assumed configuration of, production.

The fact that the, has spin 1 guarantees that the number of templates is finite. The idea is that
the correlation between the transverse momentum and the pseudorapidity of the leptons emitted in
the laboratory frame and well measured in data is given by the linear combination of the templates
obtained as aforementioned. The coefficients of this linear combination can be obtained through a
fit and will represent a measurement of the, kinematics to be performed simultaneously with the
traditional template-based, mass extraction. Due to the correlations and degeneracy among the
various templates, an extensive number of events has to be employed in order to achieve the desired
level of precision.

Setting a new standard for big-data processing

An important aspect of this procedure is the study of the feasibility in terms of computing resources. In
order for it towork, it is necessary to process a huge number of events (order of one billion) and to pro-
duce order one hundred thousand templates (including their systematic variations) under the form of
2-dimensional histograms. In this context, the development of new software tailored for this purpose
is imperative: the traditionally usedmethods are not suitable for the complexity of this analysis.

Rethinking the foundations of data processing has involved the common effort of analysers and
computer scientists. The close contact with the ROOT team at CERN has enabled an outstanding col-
laboration which set a new standard for big-data processing in the High Energy community.

A challenge in detector calibration

Once the, production has beenmeasured using one billion, decays, the next systematic limitation
for a 10−4 precise measurement of the Wmass is the knowledge of the muonmomentum scale.

Reaching this goal means having a precise knowledge of an outstanding number of details of muon
reconstruction in the tracking detector. The tradition of the offline assessment of the track parameters
has a long and glorious history in the CMS collaboration, which has allowed the conquer of many im-
portant milestones in the history of the experiment. But once again to break the wall of the ultimate
precision, a further step is needed. In the context of this thesis, a new method has been devised for
track fitting based on the Generalised Broken Line fit, in addition with a new set of procedures based
on J/ψ and / data and simulation.
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Outline of this document

With the exception of Chapter 2where the CMSdetector, our experimental setup, is described, this the-
sis contains exclusively originalwork performedby the author of this thesis and close collaborators. In
Chapter 1, the proposedmeasurements are set in the context of the electroweak precision sector and
their phenomenological concepts and their feasibility at CMS are discussed. Chapter 3 includes a brief
description of the new computing resources that have been set up for these measurements, introduc-
ing the context of big data in the field of high energy physics. Chapter 4 is entirely devoted to themuon
momentum scale calibration, starting with an original dissertation about the assessment of track pa-
rameters at silicon detectors. Then, the producedure for the calibration is discussed and its results
presented. Finally, Chapter 5 and 6 describe respectively the measurements of, differential cross
sections and angular coefficients performed on data collected by CMS in 2016, and an assessment of
the uncertainty on the, mass using the same dataset blinding its central value.
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Chapter 1

Innovating a long standing tradition

The Standard Model of Particle Physics has an outstanding success in correctly describing physics ob-
served at colliders. Nevertheless, it can not be the candidate for the ultimate theory: experimental
evidence of Dark Matter and neutrino oscillations are some example of phenomena not finding their
theoretical explanation here. Historically, electroweak fits have played a major role in predicting ob-
servablesbefore theirmeasurementandevenmoreafter thediscoveryof theHiggsboson theprogram
of deliveringmore andmore precise experimental determination of key quantities has become imper-
ative for testing the Standard Model.

It is from a position of the utmost humbleness that we have to look at the exceptional work that has
been carried on at LEP, SLC, Tevatron andmore recently at LHC toprovide valuablemeasurements and
the superlative amount of effort infused by the theory community to improve the calculations. With
this spirit, the first part of this chapter, in Sections 1.1 and 1.2 will be devoted to a brief review of the
electroweak sector of the Standard Model and the global electroweak fit, with a particular emphasis
on the measurement of the, mass.

Notwithstanding, there is small possibility of pursuing the ambition of continuously seeking the
truth without critically analysing what has been already done, while understanding if something can
be improved, at the light of the advancements in comprehension of the phenomena and of the cur-
rent available technologies. Therefore, the last Section of this chapter, 1.3, will present an original
review of the limiting factors in the determination of a measurement of the, mass below 10MeV on
a phenomenological point of view and also provide a newmethod to tackle them.

1.1 The electroweak sector of the Standard Model

The electroweak sector of the Standard Model combines the electromagnetic and weak force as ele-
mentary forces of nature at a unification scale of D = 246 GeV [1–4]. Four gauge bosons are present in
this description: amassless photon,mediator of the electromagnetic interaction, and themassive,+

,,− and / bosons, mediators of the weak interaction. In order for the latter to consistently acquire
mass, the Higgs mechanism is required [5–7].

Mathematically, this is formulated as a Quantum Field Theory under the symmetry (* (2)! ×* (1). .
While this symmetry is unbroken, the fermions and the gauge bosons aremassless. The Spontaneous
Symmetry breaking of the electroweak sector introduced by Higgs, Brout and Englert guarantees that
the,+ ,,− and/ bosons acquiremasswhile keeping the theory renormalisable. At the leading order

1



CHAPTER 1. INNOVATING A LONG STANDING TRADITION

of the perturbation theory, a precise value for the predicted masses is given:

",± =
6D

2
(1.1)

"/ =
D

2

√
62 + 6 ′2, (1.2)

where the coupling constants 6 and 6 ′ are linked to \, , theWeinberg angle, and to the electric charge
4 through the relations:

tan \, =
6 ′

6
and 6 ′ cos \, = 4. (1.3)

4 can be defined in terms of U, the fine structure constant: 4 =
√
4cU.

Moreover, the particular choice of the Higgs doublet generates an extra (* (2) symmetry which con-
strains the quantity:

d ≡ ",

"/ cos \,
(1.4)

to be equal to 1 at tree level, with small corrections at NLO. Let us now concentrate on the, boson,
main topic of the work presented in this document.

Electroweak corrections to the, mass

The expression at tree level for the, mass given in Eq. 1.1 can be rewritten in terms of U, the fine
structure constant,�� , the Fermi constant and \, :

"2
, =

cU
√
2�� sin2 \,

, (1.5)

If we take into account the electroweak corrections, i.e. radiative corrections to the leading order aris-
ing from electromagnetic and weak effects, it can be corrected in the following way [8]:

"2
, =

cU
√
2�� sin2 \,

(1 + Δ@) . (1.6)

Δ@ receives inputs from various contributions:

Δ@ = ΔU − cos2 \,
sin2 \,

Δd + Δ@@4; . (1.7)

ΔU is the correction to U due to photon vacuum polarisation and it is sensitive to the fermion masses
through log

(
A/;2

5

)
, where A is the energy of the center of mass. Δd is the deviation from 1 of the d

parameter defined in Eq. 1.4.
In the leading terms this deviation comes from corrections to the, propagator with loops contain-
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1.2. PRECISION MEASUREMENTS AS A TOOL FOR DISCOVERY

ing isodoublets and it is proportional to the isodoubletmass splitting |;2
5 1−;

2
5 2 |. Themost important

contribution comes then from the top-bottom doublet. Finally, there is a logarithmic correction due
to the Higgs bosonmass.

1.2 Precisionmeasurements as a tool for discovery

The electroweak sector of the Standard Model provides punctual predictions for the gauge boson
masses. These predictions can in turn be continuously refined improving the calculations to higher
perturbative orders and also considering corrections coming from Quantum Chromodynamics (QCD).
On the other hand, in the history of High Energy Physics, a large number of experimental measure-
ments of the relevant observables in the Standard Model have been carried out by various collabora-
tions in a large number of particle acceleration facilities.

It then becomes relevant to create an efficient framework enabling for checks of consistency be-
tween predictions and measurements. A common effort in the theoretical and experimental commu-
nities with this purpose in mind is continuously evolving and has become crucial after the discovery
of the Higgs boson and the determination of its mass. This historical turning point has marked the
completion of the list of the Standard Model parameters from an experimental point of view and from
that moment it has become possible to exploit at best the predictive power of the theory to test its
internal consistency.

Global electroweak fits and analyses have started already before the discovery of the, [9, 10] and
/ [11, 12] bosons by the UA1 and UA2 collaborations. The subsequent addition of the high precision
measurements of the / mass and sin2 \4 5 5 from LEP and SLC [13] have allowed a prediction of the
value of themass of the top quark before its discovery by CDF and D0 experiments at Tevatron [14, 15].
In turn, LEP2 andTevatronprovided valuablemeasurements of the topmass and the,mass enabling
for a prediction of the Higgs mass before its discovery [16, 17].

LHC as amachine for precisionmeasurements

After the discovery of the Higgs boson and the experimental determination of its mass, global elec-
troweak fits have acquired an even more crucial importance for discovering eventual hints of new
Physics under the form of tensions between measurements and Standard Model predictions. At the
same time, the outstanding luminosity of the LHC has opened a new era of precisionmeasurements in
the electroweak sector with an unprecedented number of events of, and / bosons having been pro-
duced. Although the clean environment of past 4+4− facilities such as LEP and SLC has been the most
favourable for precision measurements, they have been eventually limited by statistics. On the other
hand, with itsmany interesting events LHC is now reaching the level of precision set by 4+4− machines
in the determination of key observables of the electroweak sector, like sin \, [18].

3



CHAPTER 1. INNOVATING A LONG STANDING TRADITION

State of the art global electroweak fit

The two ingredients needed for a global fit are accurate measurements and precise calculations. The
experimental measurements are used as input. At tree level all the variables in the Standard Model
canbe computedby threeparameters, chosen tobe themost preciselymeasured: U, the fine structure
constant, known toa relativeprecisionof3·10−10,�� , the Fermi constant, known toa relativeprecision
of 5 · 10−7 and the mass of the / ,;/ , measured with a precision of 2MeV (2 · 10−5 relative precision)
in the scan of the / resonance in 4+4− collisions. In order to compute higher order corrections more
input is needed: the strong coupling constant U(, the running of the fine structure constant to the /
mass ΔU, the mass of the Higgs bosons and the masses of the fermions, but in practice only the mass
of the top quark ;B among the fermions matters, since it is orders of magnitude more massive than
the others and the corrections grow with the mass value.

Global fits of the electroweak sector are possible if the input parameters are over-constrained with
a prediction better than the effect of alleged new particles at one loop level. The prediction for one
parameter of the Standard Model can be obtained removing the input value of that parameter and fit-
ting all the other parameters to the theory (indirect determination). The latest version of the global
electroweak fit has been updated [19] with a combination of the most precise kinematic top quark
mass from ATLAS and CMS [20, 21] and W boson mass measurement from the ATLAS experiment [22],
a new sin2 \4 5 5 result from the Tevatron [23], a Higgs bosonmass combination released by the ATLAS
andCMS collaborations [24], and a newevaluation of the hadronic contribution toU( at the Z pole [25].
The result of this fit is reported in Figure 1.1. The set of observables used as input in the fit includes the
mass of theHiggs boson, themass of the top quark, themasses andwidths of, and / bosons, sin \, ,
U( at the / pole and measurements of the asymmetries. In Figure 1.1 shows two values for each ob-
servable: the difference between the indirect determination and the experimental value (black) and
the difference between the indirect determination and the global fit (orange). These differences and
their uncertainty bar are rescaled by the sum in quadrature of the uncertainties of experimental mea-
surement and the indirect determination. Also shown in blue and centred at zero there is the rescaled
1f uncertainty of the indirect determination. When the experimental input ismuchmore precise than
the indirect determination, the width of the blue band is 1f and the orange error bar coincides with
the black one. This is the case of the top and Higgs masses, which enter in the Standard Model only
at loop level, and of the Z mass, whose measurement is very precise. One can also notice the anticor-
relation between the top and the Higgs mass , which compete in Δ@. When instead the experimental
input is much less precise than the indirect determination, the orange and the blue bands coincide.
This is the case of those observables that are very difficult to measure (eg ΓE or '2) but this also hap-
pens when the prediction is very precise because several different observables measure essentially
the same quantity, like the Asymmetries which all measure \, . The plot shows the long standing
discrepancy between the measurements of the !' asymmetry with polarised beam at SLAC and the
b-quark forward backward asymmetry at LEP. LHC-HL will possibly be in the position to contribute to
solving this discrepancy. The final wordwill be said by the next generation of e+e- colliders [26]. These
machines will be also needed to improve the experimental determination of f=

ℎ03
1 and other Z pole

1A new value of f0
ℎ03

has been reported recently in [27] including a small correction to the LEP luminosity evaluation [28]
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1.2. PRECISION MEASUREMENTS AS A TOOL FOR DISCOVERY

observables.
On a different page, a concrete opportunity to resolve an ancient tension between measurement

and StandardModel prediction is offered by themeasurement of;, . It appears in Figure 1.1 that the
indirect determination is more precise than the direct measurement and that they differ at the level
of 2f. For this reason, the experimental community has a strong motivation to pursue a precision
measurement of;, using the unprecedented statistics collected at the LHC experiments.

3− 2− 1− 0 1 2 3

tot
σ O) / − 

indirect
(O

)2
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(Msα
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(M
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Figure 1.1: Difference of the input measurement and the indirect determination (black dots); difference of the global fit result
and the indirect determination (red bands); indirect determination centred at 0 (blue bands). From ref. [19]

1.2.1 A precisionmeasurement of the, mass

Figure 1.2 shows the experimental summary of themeasurements of the, bosonmass updatedwith
the most recent result from the LHCb collaboration.

The first precisionmeasurements of the, mass have beenperformed at LEP. At lepton colliders the
, bosonsaremainlyproduced inpairs through theprocess 4+4− → ,+,−. Thereare twomainmeth-
ods tomeasure;, at lepton colliders. The first one exploits the fact that the,+,− production cross
section f,, is sensitive to;, in the threshold region,

√
A ∼ 2;, . A measurement of f,, can then

be used to measure ;, . In the second one events with two, bosons decaying to jets are selected

and an improved Bhabha cross section. Using this new value the f0
ℎ03

agreement between the experimental and indirect deter-
mination moves from −1.6f to −0.14f.
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CHAPTER 1. INNOVATING A LONG STANDING TRADITION

and their invariant mass shape is constructed using the constraint from the known 4-momentum of
the initial state (known at a 10−4 level) that fixes the jet energies, while the jet direction is measured
by the detector. ;, is derived from a fit to the invariant mass.

On the other hand, at hadron colliders eventswith, decaying hadronically are not usable for a pre-
cision measurement of the, mass. Since the energy of the initial state is not determined, the invari-
ant mass has to be reconstructed using the jet energy scales which is known not better than 1% level,
which is not sufficient to give a competitive measurement of ;, . Moreover, due to the overwhelm-
ing background, it would be difficult to select a pure sample of, . Therefore, only events with a,
decaying leptonically can be exploited for this purpose. This brings a major drawback, though: since
an undetectable neutrino is present in the final state, it is not possible to reconstruct the invariant
mass of each event. Then, a proxy carrying information about;, has to be defined. The transverse
momentum >) of the charged lepton in the final state shows a jacobian peak at;,/2. However, this
observable is not a Lorentz invariant, its assessment will be dependent on the underlying kinematics
of the, boson, which is not experimentally accessible and has to be inferred from external inputs.
The limited knowledge of these inputs is the limiting factor in measuring;, at hadron colliders and
accounts for about 15 MeV in the final uncertainty in the measurement performed by ATLAS [22].

Themost precise singlemeasurement belongs to the ATLAS collaboration and has an uncertainty of
19MeV,while theworld averageusedas input in theglobal electroweak fit has anuncertainty of13MeV.
In addition, Figure 1.2 reports the prediction from the global electroweak fit carrying an uncertainty
of 7 MeV, each of the following effects contributing to an equal share: experimental and theoretical
determination of the top mass, experimental Z mass, ΔU(, ΔUℎ03 , while the highest contribution, 4
MeV, is given by the calculation of;, . In order to shed light on the existing tension in the predicted
andmeasured values, the next goal of the experimental community is to provide ameasurement with
an absolute precision of below 10MeV.

Figure 1.2: Measured value of;, compared to those from the ALEPH [29], DELPHI [30], L3 [31], OPAL [mWOpal], CDF [32], D0
[33] and ATLAS [22] experiments. The current prediction of ;, from the global electroweak fit is also included. Figure from
[34].
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1.3. , MASS MEASUREMENT: AN INNOVATIVE PROPOSAL

1.3 , massmeasurement: an innovative proposal

In the Standard Model phenomenology, bosons are produced at hadron colliders through the anni-
hilation of a quark and an antiquark. In proton-proton interactions the energy available in the center
of mass depends on the fraction of the proton momentum carried by the partons participating to the
hard scattering. Therefore, the computation of the cross section for the production of a, boson has
to be weighted with the probability that the interacting partons carry a fraction F of the momentum
of the proton. This probability is encoded in the Parton Distribution Functions (PDFs), which are de-
termined experimentally, and will be extensively discussed in Section 1.3.1. The total hard scattering
cross section is the sum of all possible interactions between partons, while the center-of-mass of the
initial state is unknown and changes on event by event basis:

f>> =

∫ ∑
7, 8

57 (F1, ?2) 5 8 (F2, ?2)f̂7, 8 (F1>1, F2>2, `� , `')3F13F2, (1.8)

where 57 (F) is the PDF of parton type 7 at momentum F> and f̂7 8 represents the cross section of the
interaction between partons type 7, 8. `' and `� are the renormalisation and factorisation scales re-
spectively.

These scales absorb the collinear singularities and the truncation to a given perturbative order in
the renormalisationprocedure. Therefore, they are not to be consideredobservables, but rather away
to parametrise the uncertainty of a given theory calculation: the higher the perturbative order of the
calculation, the smaller this residual uncertainty.

At hadron colliders;, is measured using events in which, decay to a charged lepton and a neu-
trino. Due to the undetected neutrino in the final state, the measurement is done using observables
in the transverse plane. The transverse momentum >) of the charged lepton is sensitive to;, at its
maximum that is also known as Jacobian peak. However, the distribution of >) is distorted by the,
transversemomentum ?) , as will be discussed in section 1.3.2. This can bemitigated if the transverse
mass;) is introduced:

;) =

√
2>)�;7AA

) (1 − cosq), (1.9)

where ®�)
;7AA

= −∑ ®>) over all the particles in the event is the missing transverse energy (MET)
and q is the angle between the lepton transverse momentum and the ®�)

;7AA
in the transverse plane.

;) has the advantage of depending on ?) only at second order, but the drawback of requiring the
measurement of the missing transverse energy which has poor scale and resolution in presence of
pileup. The transverse momentum >) can only be measured inside the detector acceptance. This
introduces an extra dependence on the PDFs that will be illustrated in Section 1.3.1. The mean value
of >) is usedasagoodestimatorof;, in the followingdiscussion. Wewill showhow its valuedepends
on the experimentally inaccessible underlying kinematics of the produced, .

7



CHAPTER 1. INNOVATING A LONG STANDING TRADITION

1.3.1 Dependence of >) on PDFs

The dependence of the >) average value on the PDFs can be illustrated in a very simplified case. We
assume here that, is produced at transverse momentum ?) = 0 by quark-antiquark collisions and
we neglect the width of the, . , bosons produced at ?) = 0 are transversely polarized. Firstly, let
us rewrite the cross section for a resonance of mass;, as:

f = f0

∫
3F13F2?1 (F1)?̄2 (F2)X(F1F2 −

;2
,

A
) (1.10)

where ?1 (F1)?̄2 (F2) are the PDFs and s is the energy of the center of mass for the proton-proton inter-
action. Changing variables to, rapidity G = 1

2 ln
F1
F2

and B = F1F2, the Jacobian is 1 and the cross
section can be rewritten as

f = f0

∫
3B3 G?1 (

√
B4 G)?̄2 (

√
B4−G)X(B −

;2
,

A
) (1.11)

and the differential cross section in one bin of rapidity is:

mf

3 G
= f0?1 (

;,√
A
4 G)?̄2 (

;,√
A
4−G) ≡ 5 ( G) (1.12)

We observe that Eq. 1.12 explicitly depends on the PDFs ?1 (;,√
A
4 G) and ?̄2 (;,√

A
4−G). Let us define the

pseudorapidity [ of the charged lepton as [ = − ln tan \
2 , \ being the decay angle. The symbol [! will

be used for the pseudorapidity in the laboratory frame and [0 for the pseudorapidity in the center of
mass frame. Let us introduce useful relations:

[! = G + [0, (1.13)

and
>) ' ;,

2
sin \∗ =

;,

4+[0 + 4−[0
. (1.14)

Eq. 1.13 is due to the addition property of rapiditywhen boosting fromone reference frame to another,
while Eq. 1.14 will be derived as a special case when dealing with the full calculation of the general
case in section 1.3.2 where the, has finite transverse momentum.

We are now ready to compute the cross section for the detection of a charged lepton in a bin of [!.
The angular cross section for emitting a charged lepton at an angle \∗ in the, reference frame from
a transversely polarized, is:

mf

m cos \∗
=
3
8
(1 ± cos \∗)2 = 3

2
4±2[

0

(4+[0 + 4−[0 )2
(1.15)

where ± is the sign of the helicity of the, boson. The cross section as a function of [0 is given by:

mf

m[0
=

mf

m cos \∗
m cos \∗

m[0
=

64±2[0

(4+[0 + 4−[0 )4
(1.16)

8



1.3. , MASS MEASUREMENT: AN INNOVATIVE PROPOSAL

m2f+

mGm[0
=
mf+

mG

mf

m[0
= 5 + ( G) 642[0

(4+[0 + 4−[0 )4
, (1.17)

where the + sign is helicity of the, boson, the cross section to get a lepton at a given pseudorapid-
ity bin Δ[! above a given momentum cut (that is equivalent to a symmetric cut in [0 in the interval(
−[02 , +[02

)
is:

mf+

m[!
=

∫ G;0F

G;7<

3 G

∫ +[02

−[02
3[0 5 + ( G) 642[0

(4+[0 + 4−[0 )4
X([! − G − [0). (1.18)

Similarly, we can define the cross section for, of opposite helicity:

mf-

m[!
=

∫ G;0F

G;7<

3 G

∫ +[02

−[02
3[0 5 − ( G) 64−2[0

(4+[0 + 4−[0 )4
X([! − G − [0). (1.19)

Inpracticewecannot select events in G and the integral is computedon thewhole G distribution. Using
Eq. 1.18 and 1.19 we can compute the mean value of >) :

< > >=

∫ [!2
[!1

3[!>( mf+
m[!

+ mf-
m[!

)∫ [!2
[!1

3[! ( mf+
m[!

+ mf-
m[!

)
, (1.20)

which can be assessed numerically using a set of PDFs. For this calculation we have used MMHT 2014
PDFs, described in [35]. The most precise PDFs available at present time also include NNPDF3.0 [36],
[37] and CT18 [38]. In Figure 1.3a and 1.3b the results of this calculation is reported. The mean of >)
and its uncertainty respectively are computed as a function of an acceptance cut in Δ[!, in a range(
−[02 , +[02

)
= (−0.8, +0.8), corresponding to >) ' 30 GeV. We observe from Figure 1.3a that the mean

value of >) changes of around 20 MeV depending on the range in acceptance, and in Figure 1.3b we
compute its uncertainty using the hessian of the PDFs. This is an evidence that due to the acceptance
in[!, only apart of the G rapidity spectrum is acceptedand therefore theobservables in the transverse
plane acquire a dependence on the input value of G given by the PDFs. In turn, since the G spectrum is
experimentally inaccessible, it is not possible to determine the relative fraction of 5 + ( G) and 5 − ( G), i.e.
the polarisation of the, , since >) in Eq. 1.14 only carries information about themagnitude of [0 and
notabout its sign. Finally,weseehowtheuncertaintyon themeanvalueof >) vanisheswhile enlarging
the range of acceptance. From a practical point of view, the reference value for the acceptance in [! in
ATLAS e CMS is |[! | < 2.4.

1.3.2 Dependence on, transverse momentum and polarisation

After having discussed a simplified case in which, is produced with ?) = 0, we discuss the general
case of finite, transverse momentum. In this situation, further polarisation states are possible for
, decaying leptonically: all the nine elements of the full , spin matrix. It is possible to define a
parametrisation of the, production cross section allowing to disentangle the production of the,

9
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Figure 1.3: Themeanof >) and its uncertainty respectively are computed as a function of an acceptance cut in Δ[!. UsingMMHT
2014 PDFs, from [35]

from its decay, in terms of the spherical harmonics [39]:

3f

3?2)3 G3 cos \∗3q∗ =
3

16c
3f*+!

3?2)3 G

[
(1 + cos2 \∗) +

7∑
7=0

�7 (?) , G)%7 (cos \∗, q∗)
]
, (1.21)

cos \∗ and q∗ being the polar and azimuthal angles of the decay of the muon in a, rest frame. The
angular coefficients �7 are functions of the, transverse momentum and rapidity, ?) and G, and to-
gether with the unpolarised cross section f*+!, encode the, production. On the other hand, the
functions %7 , spherical harmonics of degree 0, 1, 2 only depend onmuon variables and therefore carry
information on the kinematics of the detectable muon.

Firstly let us choose and define a, rest frame for carrying on our calculations. The Collins-Soper
[40] reference frame is convenient and widely used in literature. In this frame the axes are aligned as
follows:

• The Ĥ axis bisects the angle between ®>>1 and −®>>2 , defined in the Collins-Soper frame, pointing
in the direction of ?,H defined in the laboratory frame, where ®>>1 and ®>>2 are the momenta of
the two colliding protons >1 and >2, and ?,H is the component of the bosonmomentum aligned
with the beam axis.

• The F̂ axis is defined to be orthogonal to Ĥ and to lie in the colliding protons plane, pointing in
the direction of ?,) in the laboratory frame.

• The Ĝ axis is defined as the normal vector to the plane defined by the two colliding proton mo-
menta, to form a right-handed Cartesian coordinate system.

We can now compute the correlation of transversemomentumandpseudorapidity ofmuons decay-
ing from, . We define the transformations to boost a, in the laboratory frame to the CS frame. The
starting four-momentum of the, is (�, , ?F , 0, ?H), with �2, = ?2F + ?2H + ;2

, i.e. the F axis is aligned
with the ?) direction. With this choice ?) = ?F .

10



1.3. , MASS MEASUREMENT: AN INNOVATIVE PROPOSAL

A first boost of VH , WH is performed along H to cancel the, longitudinal momentum. Setting:

VH ≡ − ?H
�,

= − ?H√
;2

, + ?2H + ?2)

, WH =

√
;2

, + ?2H + ?2)√
;2

, + ?2)

,

we obtain:
(�, , ?F , 0, ?H)

VH→ (�′
, , ?F , 0, 0), with �′

, = ?2) +;2
, . (1.22)

Let us introduce the, rapidity G in the followings:

?H =
√
;2

, + ?2) sinh G �, =

√
;2

, + ?2) + ?2H =
√
;2

, + ?2) cosh G (1.23)

A second boost of VF , WF is performed along F, to cancel the, transverse momentum. Setting:

VF ≡ − ?)
�′
,

= − ?)√
;2

, + ?2)

, WF =

√
;2

, + ?2)

;,

we get:

(�′
, , ?F , 0, 0)

VF→ (�′′
, , 0, 0, 0), with �′′

, = ;, . (1.24)

We now show that this set of boosts bring us to the Collins-Soper frame. We apply them to the pro-
ton beam in the laboratory frame, defined as a photon of energy �� and momentum (0, 0,±��). The
momentum changes as:

(0, 0,±��) → (0, 0, �� (±1 + VH) ),
(0, 0, �� (±1 + VH) ) → �� (1 ± VH) (WFVF , 0,±1),

and the angle between the beamdirection the H axis in the final reference frame is ?F
;,

for both beams.
Given the choice of F axis, this reference frame follows the definition of the CS frame.

We cannowapply this boost to amasslessmuon in the laboratory framewith fourmomentumgiven
by >) (cosh [, cosq, sinq, sinh [), where >) and [ represent the transverse momentum and the pseu-
dorapidity of the muon, respectively. The angle q corresponds to q` − q, , i.e. the angle between the
muon and the, in the azimuthal direction in the laboratory frame. The boost along H from Eq. 1.22
and along F from Eq. 1.24 are now applied:

>)

©­­­­«
cosh [
cosq
sinq
sinh [

ª®®®®¬
VH→ >)

©­­­­«
WH (cosh [ + VH sinh [)

cosq
sinq

WH (sinh [ + VH cosh [)

ª®®®®¬
VF→ >)

©­­­­«
WF (WH (cosh [ + VH sinh [) + VF cosq)
WF (cosq + VF (WH (cosh [ + VH sinh [))

sinq
WH (sinh [ + VH cosh [)

ª®®®®¬
. (1.25)

11
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The energy of the muon in the CS frame is is given by:

�∗ =;,/2 = >)WF (WH (cosh [ + VH sinh [) + VF cosq)

=>)
©­­«
√
;2

, + ?2) + ?2H

;,
cosh [ − ?H

;,
sinh [ − ?)

;,
cosq

ª®®¬ . (1.26)

And using the rapidity of the, boson, G:

;,/2 =>)
©­­«
√
;2

, + ?2)

;,
cosh( G − [) − ?)

;,
cosq

ª®®¬ . (1.27)

Eq. 1.27gives the relationbetween >) ,[ andq for all possible valuesof G and?) . It isworthconsidering
the simplified case at ?) = 0, which leads to:

>) =
;,/2

cosh( G − [) ,

where the relation is independent from q and it brings to the phenomenology discussed originally in
section 1.3.1.

In analogy to section 1.3.1, we can compute the fraction of accepted events in the laboratory frame
varying the kinematics of the, in the Collins-Soper frame. We can define the phase space in the
Collins-Soper frame as a sphere of radius 1 that spans all possible values of cos \∗ and q∗, sampled
uniformly. We fix values for G and ?) andwe apply a realistic acceptance cut of |[! | < 2.4 and >) > 25
GeV and select all the couples (cos \∗, q∗) on the sphere that satisfy these conditions. In this way the
discarded values will be missing from the plot and only the portions of the sphere corresponding to
accepted eventswill be visualised. The shape and dimensions of the ”holes” in the plot give us an idea
of how G and ?) can distort the acceptance in the laboratory frame. In Figure 1.4 we show the results
of the calculations varying G and ?) independently. In Figure 1.4a we have set ?) = 0 and computed
the fraction of accepted events for a set of values of G = (0, 2, 3). Conversely, in Figure 1.4b we have
kept G fixed to 0 and used a set of values ?) = (5, 20, 40) GeV. In both cases, we can can observe how
the fraction of accepted values depends on the kinematics of the, boson in a non-trivial way, and
in turn the mean value of >) will be affected by this dependence. Adding a further complication in
the calculation, we can imagine to sample cos \∗ and q∗ according to the spherical harmonics as in
Eq. 1.21. In that case the computed acceptance will also depend on the polarisation of the, .

As a last step inouranalysis,wewill quantifyhowthe fractionof acceptedeventsdependson this. To
make this calculation it is sufficient to use Eq. 1.21 setting all �7 to 0 and turning themon one at a time.
In Figure 1.5 we report the results of the calculations for �0 in Figure 1.5a and �4 in Figure 1.5b. Again,
we can notice how the fraction of accepted events depends on the value of the underlying coefficients,
which in turn are experimentally inaccessible and have to be given as input from the PDFs and QCD
calculations.

To sum up, we have shown how a finite acceptance - which is endemic in all the particle physics

12
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(a)

(b)

Figure 1.4: Illustration of the phase space in the laboratory at fixed, G and ?) as a sphere of radius 1 and angles \! and q!

spanning all possible values of cos \∗ and q∗, sampled uniformly. 1.4a shows the case of fixed ?) for some values of G. 1.4b
shows the case of fixed G for some values of ?) .

detectors - has an impact on the observables that are used tomeasure;, , introducing a dependence
on the details of the, productionwhich are only known up to a certain level. This is themajor source
of uncertainty in the;, measurement. In the ATLAS measurement, the uncertainty due to PDFs and
polarisation amounts to 9MeV, while the uncertainty on themodelling of, transversemomentum is
about 8MeV.
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Figure 1.5: Plot of the fraction of accepted events as a function of, G and ?) and polarisation. 1.5a shows the acceptance if
only the coefficient �0 is active, while 1.5a shows the same for �4.
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, transverse momentum from state of the art calculations

At LHC the transversemomentumdistribution of produced, has its bulk at around 5GeV. This regime
of energy is purely non perturbative and fixed order calculations fail in giving a reliable prediction.
Moreover, it is not possible to obtain a precisemeasurement of this quantity. In principle, the, recoil
is sensitive to ?) but in practice due to pile up its resolution is too poor to measure with a granularity
better than ' 8 GeV [41, 42]. CMS and ATLAS are studying special low pileup runs provided by LHC
during 2017, with an integrated luminosity of about 200pb−1, and

√
A = 13 TeV, to assess the feasibility

of such a measurement.

Ona theoretical point of view, resummationmethodshavebeendevised togivea reliableprediction
of?) [43, 44]. At thepresent time, the stateof theart of resummation isN3LL+NNLO,where the fist term
indicates the third order from the leading logarithmic term in resummation calculation. The result
from [45] is shown in Figure 1.6. The uncertainty ranges between 6% and 4% for ?) < 5 GeV, and at is
∼ 2% at higher ?) .

Figure 1.6: Comparison of the normalized ?,) distribution for,+ at
√
13 TeV at NNLO, NNLL+NLO and N3LL+NNLO. The fiducial

selection >�) > 25 GeV, >miss
) > 25 GeV, |[� | < 2.5,;) > 50 GeV is applied (from [45]).

We now show that this prediction produces a distortion of the >) spectrum compatible with a;,

shiftmuch larger than 10MeV. In Figure 1.7 the shape of the nominal >) spectrum is compared to three
relevant variations: a variation of ?) spectrum of 4% in the range 0 < ?) < 5 GeV, compatible with
the state-of-the-art uncertainty; a variation of the value of;, shifted of±10MeV, the target precision;
a variation of the PDF according to their nominal uncertainty. Looking at the variation of the average
momentum as a proxi of ;, , we can observe how the injected ;, variation produces an absolute
shift of 3MeV, while ?) of 11MeV and The PDF uncertainty of 14MeV.

Thisdemonstrates thatmeasuring;, with thecurrently available inputs fromtheorydoesnotguar-
antee the achievement of the desired precision.
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Figure 1.7: The >
`
) spectrum from,+ → `+a simulated events, the effects of a ±10 MeV ;, variation, of a flat 4% variation

of the ?, below 5 GeV and the variation of the PDF within the current uncertainty, symmetrised around the nominal value, are
shown. For each variation is also reported the absolute shift (Δ`) in the mean value of the spectrum compared to the nominal
one. The PDF + U( value corresponds to the sum of squares of the shift induced by the 60 Hessian eigenvalues. The statistical
uncertainty correspondent to a integrated luminosity of 35.9 fb−1 is shown as a grey band. From [46].

1.3.3 How tomeasure the, boson production

We now show how an original method devised in the context of this work allows to assess experimen-
tally, G, ?) distributions and polarisation. This solves the issue of the dependence of the measured
value of;, from theory inputs. This section is organised as follows: in the first part we will present
a procedure that allows to measure the rapidity and polarisation in the approximation in which, is
produced with small transverse momentum. This is an original idea from the author of this disserta-
tion that has been published in [47]. Then, we will extend these concepts to determine the transverse
momentum of the, together with its rapidity and polarisation.

Experimental determination of, longitudinal motion

Whena, is producedwith small transversemomentum, its principal productionmechanism involves
the leading order parton subprocesses C3̄ →,+ and C̄3 →,−. Due to the valence quark content of
the proton, it is likely that the, will bemoving in the direction of the initial-state quark, as opposed to
antiquark. Since theelectroweakchargedcurrent totally violatesparity, thequarkmustbe left-handed
and the antiquark right-handed. For a simple argument of angular momentum conservation [48], the
direction of the spin of the, must preferencially be opposite to its direction of motion, with a small
dilution occurring in case the antiquark is carrying a higher fraction of the protonmomentum than the
quark. This argument includes cases when a, is produced by a sea quark-antiquark pair. In this case
the entity of the dilution will be higher and more, will be produced with the spin of the, along its
direction of motion. In Figure 1.8 the rapidity G distribution of the, bosons for the two left and right
helicities is shown. Due to the symmetry of the LHC beams they are symmetric.

A, produced in this configuration will show a very asymmetric decay: a left-handed,+ tends to
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Figure 1.8: , rapidity distribution for the positive (red) and negative (blue) helicity as computed using the NNPDF3.1 PDFs. a)
refers to,+ and b) refers to,−. From [47].

decay with the left-handed neutrino forward and the right-handed charged lepton backward, while a
left-handed,− tends to decaywith the left-handed charged lepton forward and the right-handedneu-
trino backward. Thus, the direction of the leptonmomentum is strongly correlated with the direction
of the spin of the, .

In [47] we have studied how the correlation of >) and [ can be exploited to access the hidden G

and helicity distributions of, bosons, given these observations. Looking at Figure 1.10, it can be
appreciated how the correlation plots of >) and [ show differences in shape for the two helicity states
of the, . Considering,+ events in the negative helicity state, when they are produced at positive G

the pseudorapidity of leptons from their decay is typically [ = G − 0.5, while when they are produced
at negative G the pseudorapidity is typically [ = G + 0.5. The two peaks of figure 1.8a are therefore
shifted by half a unit toward [ = 0 and thus there is an accumulation of events near [ = 0 in the panel
1.9a. The,+ events with positive helicity have the opposite behaviour. When produced at positive
G, the typical pseudorapidity of the lepton is [ = G + 0.5. Conversely, when they are produced at
negative G the pseudorapidity is typically [ = G−0.5. This explains the reduction of events near [ = 0
in panel 1.9b. The,− plots can be interpreted in a similar way.
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Figure 1.9: >B vs [ distribution for leptons from, decays. a),+ with negative helicity b),+ with positive helicity c),− with
negative helicity d),− with positive helicity. From [47].
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Therefore, these plots, made using observables that can be measured, can be used to discriminate
the, polarisation, which is a quantity not directly detectable. Going forward, if we reproduce the
plots of Figure 1.9 in a small bin of G, which is feasible using a simulation, we can exploit Eq.1.13 to
discriminate G in addition to, polarisation. A practical recipe for this is thoroughly discussed in [47]
and Figure 1.10 shows its final result compared with the PDFs prediction. It is argued that after taking
into account the systematic effects, the statistical precision of this analysis has a substantially smaller
uncertainty than the PDFs prediction.
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Figure 1.10: a) The result of the fit is compared to the PDFs prediction. b) Difference between fit and PDFs prediction. c) Dif-
ference between fit and PDFs prediction shifted at the same central value of the fit. d) Shape variation when modifying the ?)
spectrum. From [47].

To sum up, for the first time it is argued that the correlation between the transverse momentum
and the pseudo-rapidity of charged leptons emitted from a, decaying semi-leptonically can carry
information about the kinematics of the original, boson. Or, in other words, that an observable at
LHCexperiments canbeused tounfold variables, rapidity andpolarisationof, , not directly available
to measure.

Following theseprescription, CMShasdeliveredameasurementof the, rapidity andhelicity. It has
beenperformedonCMSdata collectedduring 2016, equivalent to an integrated luminosity of 35.9 fb−1,
in, → `a and, → 4a channels. In addition to [47], a small component due to the, longitudinal
polarisation has been added in the fit, fixed to the simulation prediction. The results of this analysis
are reported in Figure 1.11, where it can be appreciated how the final experimental uncertainty on the
fitted distribution is smaller than the prediction from MadGraph5_aMC@NLO simulation.

Experimental determination of, longitudinal and transverse motion, and its polarisation

It comesnaturally to apply the same ideadiscussed in [47] to thegeneral case inwhich, areproduced
with longitudinal and transverse momentum.

Using the formalism developed in section 1.3.2 we can plot the correlation between [ and >) in the
laboratory frame for fixed values of ?) and G of the W boson and assuming a flat distribution of q∗

and cos \∗ in the Collins-Soper frame. In the following we will drop the superscript ! in [!. We set as
range [ = (−2.4, 2.4) and >) = (0, 60) GeV. In Figure 1.12 we show the correlation plot for ?) = 10
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Figure 1.11: Measured normalized cross section as a function of., for left-handed and right-handed helicity states, for,+ →
�+a (a) and,− → �−a (b), � = `, 4. The prediction of the MadGraph5_aMC@NLO simulation is also shown as comparison. The
simulation uncertainty include the PDF, U( , `� and `' scales variation. The central value of the prediction is shown as a darker
line (from Ref. [49]).

GeV and a set of G values: (0, 1, 2). As expected from equation Eq. 1.27 the plot shifts from [ = 0
as the absolute value of G increases. More interesting is figure Figure 1.13 that shows what happens
if we keep a constant G = 0 and plot a set of ?) values (1., 5., 10.) GeV. In this case we can observe
how the width of the plot becomes thicker as the absolute value of ?) grows. This is due to the cosq
dependence of equation Eq. 1.27 which represents the cosine of q` −q, , which is not experimentally
detectable and that is integrated upon. When this dimension gets projected in the [ and >) plane, the
plot thickens as the amplitude of the oscillation grows, as shown in Figure 1.14. This figure shows also
that the population is maximal at the edges of the [, >) contour due to the jacobian of the integration
in q. Moreover, given the structure of Eq. 1.27, two events with same value of cos \∗ but opposite
q` − q, will be mapped in the same point of the [,>) plane. This means that all the harmonics in
Eq. 1.21 containing a function sinq will have a null density on the [,>) plane. This is the case for the
harmonics related to �5, �6, �7.

(a) (b) (c)

Figure 1.12: Correlation plots in [ and >) plane. 1.12a: G = 0 and ?) = 10 GeV. 1.12b: G = 1 and ?) = 10 GeV. 1.12c: G = 2 and
?) = 10 GeV.

Ifwego further in this analysiswe canaddapolarisation component to the, usingEq. 1.21, turning
on one �7 at a time and setting it to 1while keeping all the others at 0. Thiswill change the distribution
in the CS plane and the population in the [, >) plot, but not its contour. In this waywe can produce for
each G and ?) a peculiar set of plots reflecting the characteristics of themuondecay for each spherical
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(a) (b) (c)

Figure 1.13: Correlation plots in [ and >) plane. 1.13a: G = 0 and ?) = 1 GeV. 1.13b: G = 0 and ?) = 5 GeV. 1.13c: G = 0 and
?) = 10 GeV.

Figure 1.14: Illustration showing the effect of the projection of the angle q = q` − q, in the [ and >) plane.

harmonic. They are shown in Figure 1.15 for the coefficients �0, �1, �2, �3, �4. If for example we pick
�4, in Figure 1.15e, this depends on the cos \∗ variable alone and encodes the complete violation of
parity in the, decays. This can be observed in the plot as an accumulation of events in the right part
of [, >) contour. In the other plots similar features can be observed, which can allow to discriminate
?) , G and polarisation of the, if a set of templates is produced and a fit similar to the one shown in
[47] is performed.

To sum up, carrying out the complete calculation for the correlation in the [ and >) plane as a func-
tion of the kinematics of a, and the muon from its decay in the CS frame, we have extended the
method introduced in [47] to unfold not only the rapidity of the, and its polarisation, but also its
transverse momentum. This procedure will be applied to real data collected by the CMS experiment
to carry out a measurement of the distributions of, rapidity and transverse momentum and the an-
gular coefficients in Chapter 5.
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(a) (b) (c)

(d) (e)

Figure 1.15: Correlation plots in [ and >) plane, where a polarisation component to the, using Eq. 1.21, turning on one �7 at a
time and setting it to 1while keeping all the others at 0. 1.15a shows �0, 1.15b shows �1, 1.15c shows �2, 1.15d shows �3, 1.15e
shows �4.
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Chapter 2

The CMS experiment at LHC

This chapter contains the essential background to the facilities used in the analysis shown throughout
this thesis. The first two sections give an overview on the Large Hadron Collider (LHC) and the charac-
teristics of the physics events produced in its interaction points. The third section describes briefly the
Compact Muon Solenoid (CMS) experiment, whose collected data have been employed for this work.
The last sections deal with the tracking system of CMS, whose details are essential to understand the
core of the following chapters, and the reconstruction of muons, which constitute an important tool
in the CMS physics program.

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is a circular proton-proton collider located at the European Organisa-
tion for Nuclear Research (CERN).

It is contained into a circular tunnel of 27 kmof circumference, insidewhich, in twoadjacent parallel
beam pipes, the proton beams circulate in opposite directions in ultra-high vacuum. The beams are
guided inside the pipes by a strong magnetic field of 8.33 T provided by 1232 superconducting dipole
magnets. Moreover, 392 quadrupole magnets are used to focus and steer the beam.

The protons circulating in the pipes are gathered in bunches of∼ 1011 protons. Each bunch is accel-
erated crossing 8 radio frequency cavities per turn, the field of the radio frequency being synchronised
with the spacing between the bunches. Since for relativistic particles the orbit growswith their energy,
the magnetic field must grow synchronously with the energy gained at each stage.

Once the magnetic field reaches its maximum value, the beams are brought into collision at four
points around the ring, which host the four experiments of LHC: ATLAS [50], CMS [51], LHCb [52] and
ALICE [53]. The first two are multi-purpose experiments, designed to search for the Higgs boson and
new particles withmasses at the TeV scale. LHCb studies the properties of charm and beauty hadrons
and ALICE analyses the data from relativistic heavy ion collisions to study the hadronic matter in ex-
treme temperature and density conditions.

Since the LHC can not accelerate the protons from zero energy, various preliminary steps are neces-
sary before the injection in the main accelerator. The full acceleration facility is composed of a linear
accelerator (LINAC) and a chain of three synchrotrons: Booster, the Proton Synchrotron (PS) and the
Super Proton Synchrotron (SPS) where they are accelerated up to 450 GeV. The scheme representing
the full CERN acceleration complex is shown in Figure 2.1
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Figure 2.1: Scheme of the facilities of the CERN acceleration complex.

The LHC has been designed to collide protons at a nominal center-of-mass energy
√
A = 14 TeV.

Another important aspect is the collision rate, which is proportional to the instantaneous luminosity
L:

L =
5 9<2>

4cfFfG
, (2.1)

where 5 is the bunch revolution frequency, 9 the number of bunches, <> the number of protons
per bunch and fF , fG their transverse dispersion along the F and G axis. At the nominal 14 TeV LHC
conditions (L = 1034 cm−2s−1) the parameter values are: 9 = 2808, <> = 1.5×1011 and fF = fG = 16.6
`m (with fH = 7.6 cm along the beam).
The rate of productionof a givenprocess is proportional toL through the cross sectionf. Therefore,

if the process is very rare, it is necessary to maximise L to collect enough statistics. The integrated
luminosity is defined as ! =

∫
L3B and it is usually quoted to show the amount of data available for

the analyses.
Theworkdescribed in this thesiswascarriedoutondata collectedbyCMSand therefore this chapter

will give a more detailed overview of this experiment.
The LHC started its research program in spring 2010 at a center-of-mass energy of 7 TeV, and CMS

collected a total integrated luminosity of 5.6 fb−1 with a record peak luminosity of 4.0 · 1033 cm−2 s−1.
In 2012 the center-of-mass energy has been increased to 8 TeV. CMS collected 22 fb−1 with a record
peak luminosity of 7.7 · 1033 cm−2 s−1 until the beginning of 2013, when the LHC has been shut down
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to prepare the Run 2, at increased center-of-mass energy and luminosity.

LHC was reactivated in 2015 running at 13 TeV energy in the center of mass till the end of Run 2 in
2018. LHC is now restarting for Run 3 after the pandemic.

2.2 Phenomenology of pp collisions

The proton-proton (pp) interaction at the intersection points of LHC is a complex phenomenon that
involves the strong interaction of quarks and gluons composing the protons, also called partons. The
interesting part of the collision is called hard scattering and it consists of the interaction of twopartons
at high transferred momentum ?2.

Alongwith this, the event is accompaniedby several other processes: the initial and final state radia-
tion of gluons from the quarks and the soft scattering (i.e. at low ?2) of the remnants of the protons. All
these interactions together are designated underlying event. Due to colour confinement1, the quarks
created in the scatterings must combine with other quarks and antiquarks created from the vacuum
and they form composite particles, hadrons. This process is known as hadronisation and it is not fully
understood since it involves non-perturbative QCD. However, there are some models and parametri-
sations that describe it quite accurately and are used in the Monte Carlo simulations.

In addition to the underlying events, pp interactions at LHC are characterised by the presence of
pileup events. The pileup is constituted of minimum bias events (i.e. events with no hard interaction)
among protons in the same bunch crossing that cause the presence of many low energy particles.

Figure 2.2 summarises with an illustration the complex of pp interactions.

Figure 2.2: Illustration of the hard scattering process, parton shower, hadronization anddecay during the generation of an event
with two quarks in the final state. Figure from [54].

1Colour confinement is a feature of theQCD interaction that states that only non-QCD coloured objects can exist individually.
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2.3 The CMS experiment

The Compact Muon Solenoid (CMS) detector is roughly cylindrical, 21.5m long and with a radius of 7
m. It was designed around a superconducting solenoid providing a 3.8 T magnetic field. An overview
of the detector is given in Figure 2.3.

The reference frame used to describe the CMS detector and the collected events has its origin in the
geometrical center of the solenoid. In a right-handed Cartesian coordinate system, the F axis points
to the center of the LHC ring, the G axis points upwards, perpendicular to the LHC plane and the H axis
points towards the beam line. A cylindrical coordinate system is more often used. The @ =

√
F2 + G2

coordinate points from the geometrical center of the cylinder outwards, and the two angles q and \

are such that tanq = G/F and tan \ = @/H. Instead of the angle \, the pseudorapidity, defined as:

[ = − ln tan
\

2
(2.2)

is more often used, since it is additive under boosts along the H axis.
In this chapter, it is given a brief overview of the CMS detector, with particular emphasis on the

subdetectors which are used in the analysis presented in this thesis. A more complete description of
the CMS detector can be found in [51].

Figure 2.3: Overview of the CMS detector. Figure from [51].

2.3.1 Overview of the detector

The CMS detector consists of a cylindrical barrel up to |[| < 1.2 and the endcaps from |[| = 1.2 on.
This two parts almost cover the whole solid angle, up to |[| ∼ 5. The main detector is composed of
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several subdetectors that form layers at increasing values of @ in the barrel and increasing values of
|H | in the endcaps. Each layer has a different role in the detection and identification of the particles
generated in the collisions.

The experiment is built around the solenoidmagnet that takes the formof a cylindrical coil of super-
conducting cables. Thewhole structure is supportedby a steel yoke that forms thebulk of thedetector
and confines themagnetic field. The tracker, the electromagnetic calorimeter (ECAL) and thehadronic
calorimeter (HCAL) are located inside the solenoid, while in the outside the magnetic flux is returned
by an iron structure. Here the muon chambers are hosted, which constitute the last layer of the CMS
experiment.

Magnet

The superconducting magnet of CMS has been designed to reach a 4 T field in a free bore of 6 m di-
ameter and 12.5m length, for a stored energy at full current of 2.6 GJ. The flux is returned through a
10k-tons yoke comprising 5 wheels and 2 endcaps, composed of three disks each. The magnet was
designed to be assembled and tested in a surface hall (SX5), prior to being lowered 90mbelow ground
to its final position in the experimental cavern. After provisional connection to its ancillaries, the CMS
Magnet has been fully and successfully tested and commissioned in SX5 during autumn 2006. Fig-
ure 2.4 shows the intensity of the magnetic inductance ®� for various subsystems of the CMS detector.
The return flux in the barrel is between 1 and 2 T within the iron elements and typically below 0.1 T
in the muon chambers (except for a peak of 0.3 T near the air gaps interspersed in the yoke wheels).
Inside the volume of the solenoid bore � varies between 4 T in the central region and about 3 T in the
sides. In the regionoccupiedby the tracker, � is relatively uniformbutnot constant, gradually lowering
in value in the endcaps.

Figure 2.4: Longitudinal R-z view of CMS showing the module of the magnetic inductance B within different subsystems of the
detector. Figure from [55].
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Tracker

The tracker is the innermost subdetector and the closest to the interaction point. It measures 5.4m in
length and 1.1m in radius and its coverage extends up to |[| = 2.5. It is used to observe the charged
particles and measure their momentum from their curvature in the magnetic field. The tracker is
equippedwith silicondetectors: pixelmodules in the inner region, toprovide enoughgranularity close
to the beam spot, andmicrostrip modules in the outer region.

A charged particle traversing themodules of the tracker knocks electrons off the valence band, thus
creatingelectron-holepairs. In thepresenceof anexternally appliedelectric field theelectronsand the
holes are separated and collected by the electrodes, producing a signal proportional to the energy lost
by the passing particle. In the language of tracking, a signal left in one module is called hit. Through
algorithms that will be described in more details in section 2.4.2, the most probable trajectory of a
charged particle in the tracker is fitted to a set of hits, allowing for the precise measurement of the
momentum.

Calorimeters

The calorimeters are designed to absorb the particles to measure their energy. The ECAL is an ho-
mogeneous calorimeter, where the absorber material is the same as the sensitive one, made of lead
tungstate (PbWO4). It contains the electromagnetic showers of charged particles and photons and it
produces light proportional to the energy of the initial particle, which is read out by photomultipliers.
The ECAL has a barrel section and two endcaps for a total coverage up to |[| = 3. The thickness is 23
cm in the barrel and 22 cm in the endcaps.

The HCAL is designed to detect and absorbs hadrons. It is composed of layers of brass to stop the
hadrons interleaved with tiles of plastic scintillators, whose signal is read out by photodiodes. Also
the HCAL has a barrel section and two endcaps for a total coverage up to |[| = 3 and its thickness in
the barrel amounts to 1.2m.

The calorimeters are complemented in the high pseudorapidity region with two forward hadronic
calorimeters (HF) which extend the coverage to |[| = 5. They consist of layers of steel and quartz read
out by photomultiplier tubes.

Muon chambers

The muon system is equipped with various kinds of technologies. In the region |[| < 1.3 the muon
tracking system is made of drift tubes and in the region 0.9 < |[| < 2.4 of cathode strip chambers.
Resistive plate chambers are installed in the region |[| < 2.1 to provide an additional trigger system.
A more detailed description of the muon system is given in section 2.5.1.

2.3.2 Trigger

The trigger is an essential tool in the LHC experiments, as the amount of data produced per second is
huge. It is then necessary to introduce the trigger, which makes an on-line choice on the data to be
kept by the experiment on the basis of their physics content.
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In CMS the triggering system is divided in two steps. The first one is the Level-1 Trigger (L1), imple-
mented only in hardware. It exploits the information from the calorimeters and the muon chambers
to identify possible interesting processes. This first step is completed in about 12.5 `s, and reduces
the rate down to 100 kHz.

If an event passes the L1, it is passed to theHigh-Level Trigger (HLT),which exploits a simplified form
of the software used to off-line analyses for partially reconstructing the event and therefore choosing
the most interesting ones. The HLT reduces the event rate further down to about 1 kHz.

2.4 The tracking system of CMS

The tracker is an essential tool in a multi-purpose detector like CMS, as the reconstructed trajectories
of the charged particles are a vital ingredient in themeasurement of themajority of observables used
in physics analyses.

2.4.1 The CMS tracker in a nutshell

The CMS tracker is entirely based on silicon detector technology. While a large number of read-out
channels is desirable to increase the granularity of the system, thematerial used for sensors, electron-
ics, support structures and services must be light enough in order to interact as little as possible with
the particles produced in the collisions.

The tracker is composed of 1440 silicon pixel modules and 15148 silicon microstrip modules organ-
ised in layers around the interactionpoint. The regions very close to the interactionpointhaveahigher
density of particles and therefore high granularity pixel detectors are needed. The intermediate and
outer regions, where the density of particles is reduced, are equipped with microstrip detectors. An
overview of the tracker is given in Figure 2.5. In 2017 the pixel detector was upgraded to a new design
with an increased number of layers [56].

Pixel detectors

The pixel modules are arranged around three concentric layers installed at radii 4.4 cm, 7.3 cm and
10.2 cm. They are completed to each side of the barrel by two endcaps consisting in 2 disks of pixel
detectors, extending from 6 cm to 15 cm in radius at 34.5 cmand 46.5 cm from the nominal interaction
point. This ensures the existence of three measurement points for each track over almost the whole
acceptance. All the pixel sensors have a cell size of 100 × 150 `m2 with the larger side along the H

coordinate, and they can deliver a measurement of the hit position in the three coordinates @, q and
H.
The charge carriers that produce the signal in the pixel sensors are the electrons. The effect of the

magnetic field in the barrel (Lorentz angle, described in [55]) and the special arrangementwith slightly
tilted modules in the endcaps ensures the charge signal to be spread over more than one pixel. This
permits to reduce the spatial resolution to∼ 15 `mfor highmomentum tracks, which are about radial.
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Figure 3.1: Schematic cross section through the CMS tracker. Each line represents a detector
module. Double lines indicate back-to-back modules which deliver stereo hits.

layers 5 and 6. It provides another 6 r-f measurements with single point resolution of 53 µm and
35 µm, respectively. The TOB extends in z between ±118cm. Beyond this z range the Tracker
EndCaps (TEC+ and TEC- where the sign indicates the location along the z axis) cover the region
124cm < |z| < 282cm and 22.5cm < |r| < 113.5cm. Each TEC is composed of 9 disks, carrying
up to 7 rings of silicon micro-strip detectors (320 µm thick on the inner 4 rings, 500 µm thick
on rings 5-7) with radial strips of 97 µm to 184 µm average pitch. Thus, they provide up to 9 f
measurements per trajectory.

In addition, the modules in the first two layers and rings, respectively, of TIB, TID, and
TOB as well as rings 1, 2, and 5 of the TECs carry a second micro-strip detector module which is
mounted back-to-back with a stereo angle of 100 mrad in order to provide a measurement of the
second co-ordinate (z in the barrel and r on the disks). The achieved single point resolution of this
measurement is 230 µm and 530 µm in TIB and TOB, respectively, and varies with pitch in TID
and TEC. This tracker layout ensures at least ⇡ 9 hits in the silicon strip tracker in the full range of
|h |< 2.4 with at least⇡ 4 of them being two-dimensional measurements (figure 3.2). The ultimate
acceptance of the tracker ends at |h |⇡ 2.5. The CMS silicon strip tracker has a total of 9.3 million
strips and 198 m2 of active silicon area.

Figure 3.3 shows the material budget of the CMS tracker in units of radiation length. It
increases from 0.4 X0 at h ⇡ 0 to about 1.8 X0 at |h |⇡ 1.4, beyond which it falls to about 1 X0 at
|h |⇡ 2.5.

3.1.3 Expected performance of the CMS tracker

For single muons of transverse momenta of 1, 10 and 100 GeV figure 3.4 shows the expected reso-
lution of transverse momentum, transverse impact parameter and longitudinal impact parameter, as
a function of pseudorapidity [17]. For high momentum tracks (100GeV) the transverse momentum
resolution is around 1�2% up to |h |⇡ 1.6, beyond which it degrades due to the reduced lever arm.
At a transverse momentum of 100GeV multiple scattering in the tracker material accounts for 20 to

– 30 –

Figure 2.5: Schematic cross section of the CMS tracker in the @ − H plane. The strip tracker modules that provided 2D hits are
shown by thin, black lines, while those allowing the reconstruction of the third coordinate are shown by closely spaced double
lines. The pixel modules also give 3D hits. Within a given layer, each module is shifted slightly in @ or H with respect to its
neighbours to avoid gaps in the acceptance. Figure from [51].

Microstrip detectors

Further away from the interaction point the silicon strip tracker is installed. The inner silicon strip
tracker is composed of the tracker inner barrel (TIB) with four layers and the tracker inner disks (TID)
with three endcap layers. The outer part consists of the tracker outer barrel (TOB) composed of six
layers and the tracker endcaps (TEC) composed of nine disks. Within a given layer, each module is is
shifted slightly in @ or H with respect to its neighbour, and the modules overlap, to avoid gaps in the
acceptance.

The typical silicon strip module size is 10 cm × 5 cm with a strip pitch of 80 `m in the inner regions
and 20 cm× 10 cmwith a strip pitch of 140 `m in the outer regions. In the barrel, the strips are parallel
to the H axis and in the endcap they are placed along the radial coordinate. The modules provide a
measurement of the @ − q coordinate with a resolution of 20 - 50 `m.

Tomeasure the H coordinate in the barrel and the @ coordinate in the endcapwith a precision better
than the strip length some layers have an additional set of modules, tilted with respect to the original
ones by a stereo angle of 100mrad. Themeasurement of the third coordinate is obtained through the
matching of the hits measured by the tilted modules with the ones obtained with the regular ones.

2.4.2 Algorithms for track reconstruction

The procedure of fitting the trajectory of charged particles to the hit pattern is called track reconstruc-
tion.

In a constant magnetic field, charged particles travel into the tracker on a helicoidal trajectory, de-
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scribed by 5 parameters: the curvature 2 9 = ?/>) , the azimuthal and polar angles q and [, the trans-
verse impactparameter3F G and the longitudinal impactparameter3H. The impactparameters3F G and
3H are respectively the @ and H coordinate of the track at the point of closest approach to the beamline.
The standard algorithm used in CMS for track reconstruction is the Combinatorial Track Finder (CTF)
algorithm [57], which is developed in three steps: track seeding, track finding and track fitting.

The track seeding consists in a loop on all pairs of hits compatible with some kinematical cuts. The
seeding starts from the innermost pixel detectors since the high resolution on the position of the hit
reduces the number of options to consider.

The track finding and fitting steps are based on a standard Kalman filter pattern recognition ap-
proach, starting with the seed parameters. This method is used to estimate the state of a dynamic
system from a series of measurements with corresponding uncertainties. In the track reconstruction
the state is given by the helicoidal parameters that are propagated layer by layer with an inside-out
approach and fitted to the hits with a j2 fit. At each step the computation of the parameters is up-
dated with local information on the magnetic field, the spatial uncertainty and the quantity of mate-
rial crossed by the particle. The latter is shown in Figure 2.6 expressed in terms of fractional radiation
lengths, is taken from the simulation.
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Figure 3.3: Material budget in units of radiation length as a function of pseudorapidity h for the
different sub-detectors (left panel) and broken down into the functional contributions (right panel).

30% of the transverse momentum resolution while at lower momentum it is dominated by multiple
scattering. The transverse impact parameter resolution reaches 10 µm for high pT tracks, domi-
nated by the resolution of the first pixel hit, while at lower momentum it is degraded by multiple
scattering (similarly for the longitudinal impact parameter). Figure 3.5 shows the expected track
reconstruction efficiency of the CMS tracker for single muons and pions as a function of pseudo-
rapidity. For muons, the efficiency is about 99% over most of the acceptance. For |h |⇡ 0 the effi-
ciency decreases slightly due to gaps between the ladders of the pixel detector at z⇡ 0. At high h
the efficiency drop is mainly due to the reduced coverage by the pixel forward disks. For pions and
hadrons in general the efficiency is lower because of interactions with the material in the tracker.
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Figure 2.6: Material budget seen by a particle produced in the center of CMS and crossing the whole volume of the Tracker. The
material is expressed in terms of fractional radiation lengths as a function of the particle pseudorapidity and shown for the
different sub-detectors (left panel) and broken down into the functional contributions (right panel). Figure from [51].

The tracks are assigned a quality based on the j2 and the number of missing hits, and only the best
quality tracks are kept. Once the whole information is available, the Kalman filter is re-run with an
outside-in approach. The final output is the full set of helix parameters describing the trajectory at
the innermost measurement point and the full covariance matrix describing the correlations of the
parameters and their uncertainties. Figure 2.7 shows the expected muon reconstruction efficiencies
andmuon transverse momentum resolution for the CMS tracker.

Ina simplifiedapproachof ahelix inaconstantmagnetic fieldandnoenergy loss, thebending radius
of the trajectory is linked to the transverse momentum by:

2The transverse momentum >) is the component of the momentum projected along the transverse plane with respect to
the beamline.
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Figure 3.4: Resolution of several track parameters for single muons with transverse momenta of 1,
10 and 100 GeV: transverse momentum (left panel), transverse impact parameter (middle panel),
and longitudinal impact parameter (right panel).
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Figure 3.5: Global track reconstruction efficiency for muons (left panel) and pions (right panel)
of transverse momenta of 1, 10 and 100 GeV.

3.1.4 Tracker system aspects

All elements of the CMS tracker are housed in the tracker support tube, which is suspended on the
HCAL barrel. The tracker support tube is a large cylinder 5.30 m long with an inner diameter of
2.38 m. The 30-mm-thick wall of the cylinder is made by two 950-1/T300 carbon fiber composite
skins, 2 mm in thickness, sandwiching a 26-mm-high Nomex core. Over the entire length of the
tube’s inner surface, two carbon fiber rails are attached on the horizontal plane. The tracker outer
barrel (TOB) and both endcaps (TEC+ and TEC-) rest on these rails by means of adjustable sliding
pads. The tracker inner barrel and disks (TIB/TID) are in turn supported by the TOB. The angle
between the guiding elements of these rails is controlled to better than 0.183 mrad, corresponding
to a parallelism between the guides better than ±0.5mm in all directions over the full length.

An independent support and insertion system for the pixel detectors, the central section of
the beam pipe and the inner elements of the radiation monitor system spans the full length of the
tracker at its inner radius. This is composed of three long carbon fiber structures, joined together
during tracker assembly to form two continuous parallel planes, on which precision tracks for
the installation, support and positioning of each element are machined. The central element is
a 2266.5-mm-long and 436-mm-wide cylinder which is connected with flanges to the TIB/TID
detector. This element provides support and accurate positioning to the pixel detectors. Two 2420-
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Figure 3.5: Global track reconstruction efficiency for muons (left panel) and pions (right panel)
of transverse momenta of 1, 10 and 100 GeV.

3.1.4 Tracker system aspects

All elements of the CMS tracker are housed in the tracker support tube, which is suspended on the
HCAL barrel. The tracker support tube is a large cylinder 5.30 m long with an inner diameter of
2.38 m. The 30-mm-thick wall of the cylinder is made by two 950-1/T300 carbon fiber composite
skins, 2 mm in thickness, sandwiching a 26-mm-high Nomex core. Over the entire length of the
tube’s inner surface, two carbon fiber rails are attached on the horizontal plane. The tracker outer
barrel (TOB) and both endcaps (TEC+ and TEC-) rest on these rails by means of adjustable sliding
pads. The tracker inner barrel and disks (TIB/TID) are in turn supported by the TOB. The angle
between the guiding elements of these rails is controlled to better than 0.183 mrad, corresponding
to a parallelism between the guides better than ±0.5mm in all directions over the full length.

An independent support and insertion system for the pixel detectors, the central section of
the beam pipe and the inner elements of the radiation monitor system spans the full length of the
tracker at its inner radius. This is composed of three long carbon fiber structures, joined together
during tracker assembly to form two continuous parallel planes, on which precision tracks for
the installation, support and positioning of each element are machined. The central element is
a 2266.5-mm-long and 436-mm-wide cylinder which is connected with flanges to the TIB/TID
detector. This element provides support and accurate positioning to the pixel detectors. Two 2420-
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(b)

Figure 2.7: Global track reconstruction efficiencies (a) and resolution of transverse momentum (b) for single muons with trans-
versemomenta of 1, 10 and 100GeV, as computed fromsimulationbefore the startupof the experiment in the year 2008. Figures
from [51].

>) [GeV] = 0.3�d [Tm] (2.3)

and to the sagitta by:

A =
!2

8d
=
0.3�!2

8>)
, (2.4)

where ! is the length of the track measured on the transverse plane. The sagitta of a track of 100
GeV is about 1.4mm, while a track of about >) = 0.6 GeV curls inside the tracker.

Tracker alignment

Onemajor challenge in tracking is representedby the alignment of themodules of the tracker. In order
to properly reconstruct particle trajectories, the relative positions of the tracker components must be
known to a precision better than the intrinsic resolution of the modules.

The alignment procedure is run periodically in the CMS tracker. This optimisation problem can be
formulated in the context of linear least squares. The goal is to derive a set of alignment parameters,
the modules position corrections, minimising through a j2 fit the distance between the track impact
point and the related hit. In practice the reconstructed tracks are made better fit the hits by adjusting
the assumed positions of themodules. To this purpose, the Generalised Broken Line Fit is introduced.
This is a track refit that is able to incorporate the description of the multiple scattering in the track
model, thus allowing to determine the covariance matrix of all track parameters. For this reason, it is
particularly suitable to fit the tracker alignment parameters. Its original formulation [58] treats the ap-
proximate caseof a trackingdetectorwith a solenoidalmagnetic field and independent bidimensional
tracking in the bending and its perpendicular plane. Moreover, the planar trajectories are constructed
from themeasurements including thematerial around them as thick scatterers. In [59] this procedure
is extended to give a single trajectory to bidimensionalmeasurements and thematerial between adja-
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centmeasurements is described using up to two thin scatterers of null thickness, with the samemean
and variance of the material distribution. Such thin scatterers produces no spatial shift, but a scatter-
ing angle with variance given by the expected variance \20 of the multiple scattering in that mean. At
eachmeasurementplaneand thin scatterer, a local orthonormal coordinate system (C, D, E) is defined.
The theE-axis is taken to be perpendicular to the sensor plane for a measurement and parallel to the
track direction for a scatterer. At each thin scatterer the offset (C, D) is a fit parameter together with
a curvature correction Δ9, and the trajectory is constructed from the thin scatterers adding the mea-
surements and interpolating the enclosing scatterers. The procedure consists of various steps. The
first step is to adjust the absolute position and orientation of the tracker relative to themagnetic field.
This is done using two alignment parameters that describe the tilts around the F and G axes. After that,
the individual modules are aligned. The position of each module is parametrised using nine parame-
ters. Three of these describe the translational shift of themodule from the nominal position and three
describe the rotational shift. The last three parameters describe deviations in the module geometry
froma flat plane. As described in 2.4.1, within a given layer, eachmodule overlaps slightly in @ or Hwith
its neighbours. This feature offers a further constraint on the fit of the alignment parameters, as the
overlaps between the modules tightly constrain their relative position on the circumference of each
barrel layer and each endcap ring. The length scale of the tracker is given by the position of the strips
and pixel in a given silicon module, which is controlled to a precision of 10−4 by lithography.

The alignment is performed using cosmic ray data as well as data recorded during the LHC opera-
tions. The cosmic data are very useful since they impose vertical constraints, while the collision data
constrain the center of the tracker. The tracker geometry is found to be very stable with time and the
statistical accuracy of the alignment procedure is such that misalignment effects are small compared
to the intrinsic hit resolution of the modules.

This calibration provides a correction for themajor part of the alignment problem. However, a resid-
ual in the correction after the procedure is represented by so-called weak modes. These result from
combinations of alignment parameters that do not change the track-hit residuals and therefore do not
alter the total j2. A weak mode can result for instance from a twist where modules are moved coher-
ently in q by an amount proportional to the position along the H axis. Another example of weakmode
is the alteration of the scale of the tracker due to deformations of the tracker shape from a perfect
cylinder.

The weak modes have an impact on the momentum scale of tracks which is far below the nomi-
nal resolution. However, as extensively described in chapter 4, if the level precision needed for this
observable is very high, it becomes important to correct for this effect.

2.5 Muons in CMS

Muons are very important tools in CMS. They are the only particles that can traverse the whole detec-
tors and leave clear signatures in themuon chambers. Moreover, they can not be produced directly in
softQCD interactions that dominate the physics production at LHCand constitute a signature formore
interesting events. For this reason, they are the main tool for triggering. On average, a muon in the
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barrel loses 3 GeV of transversemomentumbefore it reaches the first muon station and another 3 GeV
between the first and the last muon station. Muons with lower energy can therefore not be identified.

2.5.1 Muon system

The muon system is shown schematically in Figure 2.8. It is composed of different types of gas de-
tectors organised in layers in the return yoke of the magnet. In the barrel, up to |[| = 1.3, the muon
system consists of four layers occupied by drift tube chambers (DTs). These measure the position of
the muon by converting their ionisation electrons drift time to the anode wire to a distance. In the
endcaps, between 0.9 < |[| < 2.4 where the flux of muons is higher, cathode strip chambers (CSCs)
are used.

They are organised in four layerswhere closely spaced anodewires are stretched between two cath-
odes. The ionisation electrons drift towards the closest anode wire which provides the measurement
point. The magnetic field is almost completely confined inside the steel return yoke and the trajec-
tories are not bent within the layers of the muon system. Each layer measures the straight track and
provides a vector in space called track segment. The segments are then extrapolated between the
stations to reconstruct the full track.

In order to get a faster signal for triggering, resistive plate chambers (RPCs) are installed in most of
the detector, up to |[| = 2.1. These are parallel plate gaseous detectors that combine an adequate
position resolution with a very fast response time.

Figure 2.8: Layout of one quadrant of CMS. The four DT stations in the barrel are shown in green, the four CSC stations in the
endcap in blue, and the RPC stations in red. Figure from [51].

2.5.2 Muon reconstruction

In the CMS procedure for the reconstruction of muons, tracks are first reconstructed independently in
the tracker and in themuon system. The first are called tracker tracks andhave the advantage of being
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affected very little from the material outside the tracker itself despite the fact of being reconstructed
with a low lever arm (4 Tm bending). On the other hand, the muons reconstructed exclusively in the
muon chamber are called standalone muons. They are limited by multiple scattering up to very large
momenta, but adding the constraint that the muons come from the beamspot it is possible to exploit
the full lever arm of 12 Tm.

Afterwards, the tracks are combined following twopossible approaches. The first one is to start from
a standalone muon and search for a matching track, then refit into a global muon combining the hits.
This gives major improvements in the measurement of the momentum for very high energy muons,
above 200 GeV.

The second one is to extrapolate the tracker track to themuon system taking into accountmagnetic
field, energy losses and multiple scattering, and search for at least a matching segment in the muon
chambers. This allows the identification of low energy muons that stop inside the muon chambers.
The majority of muons are reconstructed using both approaches.

Muon identification and isolation

The identification of muons is crucial in the discrimination of muons coming from decays of / ,, and
Higgs bosons frommuons produced in QCD processes. In this context, a relevant variable to consider
is themuon isolation. Amuon is isolated if the energy flow in its vicinity is belowa certain threshold. In
most CMS analyses the energy flow is computed adding up linearly the transverse momenta or trans-
verse energiesmeasured in a cone in ([, q) space,

√
Δ[2 + Δq2 ≤ ', centeredon themuon. The energy

flow is corrected for theeffectofpile-up. Aparticled isdefined tobe isolated if
√
Δ[2 + Δq2 ≤ 0.3. Since

the isolation depends on >) , the relative isolation, defined as isolation divided by >) , is commonly
used in the analyses.

In addition to isolation, other criteria are used to improve the identification of muons. Three level
of identification can be defined: loose, medium and tight identification. They are based on the defini-
tions of tracker and globalmuon and on the quality on the track fit in order tomaximise the identifica-
tion efficiency. In the analysis described in this thesis, the medium identification has been used.

Muon efficiencies

Efficiencies for each step of the muon selection and reconstruction are precisely measured in CMS
using the tag-and-probe method: dimuons from J/ψ and / are selected using strict requirements on
one lepton, called the tag lepton, and with relaxed selection on the second lepton, called the probe
lepton. The efficiency of a set selection is defined as the fraction of probes passing the selection.

The muon efficiency in CMS is factorised in multiple independent components:

Y` = Yreco · Ytrack · Yip+ID · Yiso · Ytrig. (2.5)

The tag-and-probe is performed independently for each component of Y` . The Yreco is the efficiency
to reconstruct the muon in the muon system,Ytrack is the tracker track reconstruction efficiency. Yip+ID
is the muon ID selection efficiency combined with the impact parameter selection efficiency, Yiso is
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the muon isolation efficiency given a reconstructed and identified muon. Ytrig is the trigger efficiency,
given an isolated muon.

The efficiencies have been provided by the analysis working group in CMS and are taylored for the
analysis that will be discussed in this thesis. They are computed in bins onmuon >) and [ with a fine
granularity. The ratio of each component of efficiencies between data and simulation can be used
as a scale factor to weight the simulation to match the distributions in data. The scale factors are
summarised in the plots in Figure 2.9. In addition to the efficiencies listed in Eq. 2.5, an additional
scale factors for non-isolated muons is provided and shown in Figure 2.9f.
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Figure 2.9: Scale factors for the efficiencies described in the text. Figure 2.9a shows Yip+ID, Figure 2.9b shows Yiso, Figure 2.9c
shows Yreco, Figure 2.9d shows Ytrack, Figure 2.9e shows Ytrig, and Figure 2.9f shows the efficiency for non-isolated muons.
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Chapter 3

Tools for high performance computing for data
analysis

In Chapter 1 we have discussed how the unprecedented luminosity delivered by LHC and collected
by CMS has opened a new era in the sector of high precision measurements. However, the ambitious
program of the measurement of the mass of, boson presented in Section 1.3 crucially relies on our
ability to efficiently process a very large amount of data.

While the field of big data has spread out in all sectors of technology, the high energy physics com-
munity has sought a step forwardwith the introduction of new software that can profit from the under-
lying high-performance hardwarewhile being usable by non-experts. Nowadays,multi-core hardware
is commonplace andmany-core architectures and computing clusters are increasingly available. The
CMS collaboration has already adapted its core software to efficiently run onmultiple cores. However,
on the analysis side, common frameworks hardly improvedwith respect to the 10-year-ago state of the
art [60]. The ROOT team [61] faced this challenge delivering RDataFrame, a package allowing transpar-
ent optimisations such as multi-thread data parallelism.

The RDataFrame’s team and I worked together to adapt the existing software to the needs of large
dataset precision analyses. Between the analysis conception in Section 1.3 and its practical realisation
described in Chapter 5 and 6, a common effort on both sides has been necessary to develop efficient
computing tools and in this sense this analysis hasbeen takenasa ‘guineapig’ for thesepurposes. This
Chapter documents the innovative aspects that were introduced, the performance that was achieved,
and the proof of concept applying it to the special cases of our analysis. It will be organised as follows:
first of all the key features of RDataFrame will be briefly outlined. Then, an application to the analysis
whose concept has been introduced in Section 1.3 will be presented.

The firstmilestone of this commoneffort has beenpresentedby EnricoGuiraud andmyself at one of
the seminars of the Physics Department at CERN, Using RDataFrame, ROOT’s declarative analysis tool,
in a CMS physics study[62] in October 2019, this collaboration still eagerly carries on.

3.1 The need for parallelism in data analysis

The outstanding performance of LHCduring Run1 and especially Run2 has allowed the experiments to
collect an unprecedented amount of data which can be used to deliver high precision measurements.
The plots shown in Figure 3.1 give an idea of the derivative with which the integrated luminosity in-
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creased from the beginning of Run1 in 2011 to the end of Run2 in 2018 (Figure 3.1a) and how this is
expected to evolve during HL-LHC from 2026 to 2040 (Figure 3.1b). Therefore, the beginning of Run2
of LHC hasmarked the point where a change of paradigm is needed in order to cope with the amount
of data to analyse.
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Figure 3.1: Figure 3.1a: Delivered and recorded luminosity cumulative over all years during stable beams for pp collisions at
nominal center-of-mass energy. Credits: CMS experiment. Figure 3.1b: Forecast for peak luminosity (red dots) and integrated
luminosity (violet line) in the HL-LHC era with nominal HL-LHC parameters. From [63]

Data parallelism consists in parallelisation across multiple processors in parallel computing envi-
ronments. The data can be distributed across independent nodes, which act on the data in parallel.
This can be achieved with a number of hardware architectures, from laptops to computing clusters
exploiting hundreds of cores. However, dealing withmulti-threaded programming introduces a series
of technical complexities that are normally beyond the standard knowledge of high energy physicists.
Therefore, there is a high necessity of developing a software that allows to transparently benefit from
multi-core hardware, without the need of knowing the details of its implementation.

The ROOT teamhas historically taken care of developing andmantaining the essential tools for high
energy physics analyses. Data is distributed by the collaborations in the standardised .root format
and ROOT provides the instruments for the input-output (I/O) operations. For this reasons, it is highly
preferable to seek a transparent multi-threading solution for data analysis provided by ROOT. In fact,
other solutions based on industrial tools (numpy, pandas,...) have the drawback of converting the
.root format to a more convenient one before dealing with the actual analysis.

3.1.1 RDataFrame, a swiss-army knife for data manipulation

RDataFrame is ROOT’s declarative analysis tool that has been developed with these ideas in mind.
While striving for a simple programming model, it delivers modern, elegant interfaces that are easy
to use correctly and hard to use incorrectly, while automatically parallelising data for the user. It has
been devised to scale in servers from 1 to about 100 cores to computing clusters with hundreds and
thousands of cores and it supports the most widely used programming languages in the High-Energy
community: python and C++.

The design principles of RDataFrame have been to combine elements of declarative programming
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with elements of functional programming. The first consists in providinghigh-level user interfaces that
allow to easily express the action to be done but leave the decision of how to do it to the core software.
In this way, without giving up on simplicity, it is possible to obtain a number of optimisations under
the hood: transparent parallelisation, lazy evaluation and caching. Functional programming consists
instead in allowing the users to code in terms of small reusable components. This increases thread-
safety and code correctness.

From event loop to graph structure

In order to reach its goal, RDataFramehas introducedan important paradigmshift in thewayaHighEn-
ergyPhysicsanalysis is conceived. Traditionally, the transformationsareperformedon thedataonone
event per time, therefore the whole data is accessed through a loop over all the events. RDataFrame
has abandoned this concept in favour of a graph-style analysis: transformations are performed on
dataframe objects through two types of actions: Filter applies a cut on the dataset while Define cre-
ates a new quantity (Column) starting from the existing ones. At this point, it is the user’s responsibil-
ity to correctly connect the various nodes of the computation graph. Finally, it is possible to produce
histograms with the desired quantities or other kinds of output. Figure 3.2 illustrates a schematic rep-
resentation of RDataFrame’s concept.

Figure 3.2: Schematic representation of RDataFrame’s concept. Credits: ROOT team

3.2 Optimised high performance analyses in CMS

The introduction of RDataFrame has been amajor step towards the simplification and speed up of the
high energy physics analyses. However, somemorework has been necessary in order to build a frame-
work based on RDataFrame to perform a real analysis, with the required steps and complexities. The
four experiments of LHC have developed independent schemes, therefore the first step is to adapt
its own input dataset to the format conceived by ROOT. In this Section this step will be discussed in
the context of the CMS experiment. Then, we will discuss a comprehensive analysis framework, de-
signed to be fast, tidy, flexible, and reusable. As mentioned before, the graph structure introduced by
RDataFrame is easilymanageble in simple cases, but the bookkeeping of the graph nodes can become
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increasingly complex in presence of various datasets and a huge number of operations on data. We
will show how the designed framework solves this problem using modularity. Finally, a real analysis
has to deal with the variations due to the estimation of systematic uncertainties on the observables,
hence be ready to produce multiple copies of the same histogram with some inputs varied and the fi-
nal output has to be organised and reducible to a format that can be fed to the subsequent steps of the
analysis. This Section further describes a possible solution to this problem and shows its application
to the muon momentum scale calibration (Section 4.4.2) and the measurement discussed in Section
1.3. Different ways to approach this problem are constantly developed and tested, reflecting the avail-
ability of resources in the different computing centers and the activity of the ROOT team to improve
their software and standardize solutions for the average user.

3.2.1 CMS data formats

The data model employed by CMS has a tiered structure, where each subsequent format contains a
more compact summary of the event data than its predecessor. The information read out from the de-
tector is stored in the RAW data format which takes roughly 1MB of disk space per event. Then, as the
information is refined to build higher level objects, the size typically increases by a factor 2-3 (RECO
tier). The subsequent tiers are created reducing the event content to facilitate the analyses and cali-
brations: AOD (Analysis Object Data) have been introduced during Run1 and reduce the RECO size by
85%, and MiniAOD [64] introduced after Run1 reduce the event size by a about a factor 10 compared
to the AOD. The logic of reduction of the event content from AOD to MiniAOD is keeping information
that is used by a large (' 80%) of physics analyses. At the end of Run2 CMS has decided to provide
a new tier synthesising the information of MiniAOD: the NanoAOD [65], aiming to cover the needs of
at least ' 50 − 70% of physics analyses. During Run1, the various analysis groups typically processed
theMiniAOD to produce lighter input files for the analyses containing only the relevant pieces of infor-
mation, in ROOT tree format. The advantage of introducing the NanoAOD format is centralising the
recipes in order to save computing resources. In practice, this concept has later evolved and custom
NanoAOD have been produced for calibrations and for analyses with special requirements, like the
one we have introduced in Section 1.3 and will discuss throughly in the rest of this dissertation.

3.2.2 RDataFrame-based Analysis Framework

We present now the adopted solutions for the open issues left after the adoption of RDataFrame as
backend of our analysis.

Modularity of the computing graph

In order to deal with a very complex analysis graph, we have implemented a modular analysis frame-
work. Each module takes as input a dataframe object and returns it after a number of RDataFrame’s
operations. On one side, modules allow to gather multiple actions on the same logical node, and on
the other the total volume of the code is substantially reduced. Modules can be implemented in both
python and C++ and the presence of themandatorymethods is guaranteed through the usage of class
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inheritance from a basemodule class. The linking of the variousmodules is done in python by a script
that allows the user to build the desired logical graph.

The only allowed operation inside a module is the definitions of new columns (Defines). In order
to ensure reusability of the same code, modules inputs are defined at the run time by the user while
building the logical graph, provided that theymaintain a compatible input type (boolean, Lorentz vec-
tors,...). Filter operations are allowed only during the building of the graph in order to improve their
traceability.

While building the analysis graph, the user can decide to produce a output, typically a histogram, a
ROOT tree object or a cutflow at a given node. The collection of the objects produced at the various
nodes is done internally in python and the structure of the graph guarantees that the code written in
the modules will be transparently parallelised by RDataFrame and the data will be only looped once
whatever thenumberofproducedoutputs, sinceRDataFrame’s lazyevaluation ispreserved. Figure3.3
illustrates the concept of this analysis framework. Starting from the node ‘input’, the user navigates
to the first node ‘node 1’ of the computing graph, where a series of modules containing the definition
of new columns are executed. Then, the computing graph separates into two different branches, for
example containing quantities relative to different systematic variations. Each branch develops into
morenodes andbetween ‘node1’ and ‘node2’ somecuts are applied to theevents. In correspondence
of nodes 3 and 8 histograms of desired quantities are produced.

node 1

node 2

node 3

node 4

node 5 node 6

node 7

node 8

Figure 3.3: Illustrated concepts of the analysis framework discussed in the text.
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Introducingmultidimensionality

Both the analysis conceived in Section 1.3 and themuonmomentum scale calibration in Section 4.4.2
exploit the correlations among various observables to extract variables of interest. Currently available
histograms insideROOT support up to 3dimensions, while itwould bedesirable to extend this number
to a generic N. In order to achieve this, RDataFrame has been interfaced with the recently developed
BoostHistograms. BoostHistogramsarebuilt on topof theBoost librarywithmodernC++17andboast
a number of advanced features, such as efficient use of memory, custom axis types (define how input
values should map to indices) and user-defined accumulators in cells.

The interfaceof RDataFrameandBoostHistograms is doneexplicitly usingRDataFrame’sBook class,
which allows to define an operation to be executed in parallel. There are two methods to fill an his-
togramusingmulti-threading. The first one is to create n copies of the same histogram, and let each of
them to be filled with a selected chunk of data by a single thread. At the end of this process, the final
histogramwill be the sum of all the partial histograms. Unfortunately, when the number of bins is suf-
ficiently large (about 1 billion), it is not affordable to keeping in virtual memory n copies of the same
histogram and therefore it is necessary to instantiate one single histogram that can be filled by multi-
ple threads simultaneously. This operation has to be done carefully in order to preserve thread-safety.
In our implementation, this is realised keeping track of the content of each cell in the histogram using
atomic doubles1. Finally, the multidimensional histograms can be produced and saved as numpy
arrays [66].

Dealing with systematic variations

Systematic variations are an essential part of physics analyses: on a technical point of view they are
taken into account as follows. The result of an analysis is extracted from one or more histograms of
given observables. If some of these observables are affected by a systematic, a copy of the histograms
has to be produced for each varied value of this systematic. This results in two complications: first of
all producing multiple histograms at the same node has a cost in terms of the perfomance (the order
of the variations for a precision analysis is about one thousand), and secondly the bookkeeping of the
varied histograms becomes non trivial.

In order to overcome these limitations, we have defined a new accumulator for Boost Histograms,
for both the cases of single and multiple copies in memory, which instead of returning two doubles
(resp. atomic doubles), the number of events in each cell and its error, returns an array of doubles
(resp. array of atomic doubles). In this way both issues are solved: only one histogram is produced
at the samenodeand themultiple variationsof thehistogramwill be accessedwithanextradimension
of length equal to the number of systematics.

1An atomic operation is an operation that will always be executed without any other process being able to read or change
state that is read or changed during the operation. In this context, atomic is referred to the implementation of the standard
library in C++, where it represents a type that different threads can simultaneously operate on (their instances), without raising
undefined behavior.
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Scaling with the number of threads

To conclude this chapter, we present the performance of the current implementation. For the purpose
of the test, we used a server located at INFN Pisa computing centre, bought for this analysis, equipped
with a AMD EPYC 7742 processor, 128 physical cores with double socket, 2TB memory (DDR4, 3200
MHz) and a SSD-nvme disk of 54 TB. Data is stored and read from the SSD storage. Figure 3.4 shows a
scaling plot for two different configurations, from real implementations in the analysis. It shows the
rate in MHz as a function of the number of threads. The blue dots show the performance of filling a
simple 2-dimensional histogram. In this case the level of MHz is reached already at about 16 cores
and the scaling is linear up to about 64 cores. The orange dots represent instead a 7-dimensional
histograms, while the green ones show the same histogram with a systematic variation. This adds
an extra dimension of size 2 to the histogram. In both cases, the scaling is approximately linear for a
fairly large number of cores, and the rate is well above the level of the MHz, reached already at about
32 thread. At around 48 threads, the rate saturates — as expected — as the resources used by the
computer to handle the threads do not result in improvements on processing events. Eventhough the
number of histogram saved in the run with the systematics (green dots) are three times the ones in
the run without (orange dots), the rate of events is approximately depleted by only 20% thanks to the
efficient implementation of the handling of the systematic variations. In the real analysis the number
of systematic variations can be up to about 100, and this procedure guarantees that all the histograms
are produced within one hour in world time.

8 16 32 48 64 128
number of threads

1

2

3

4ra
te

 (M
H

z)

2D
7D
7D+2 variations

Figure 3.4: Scaling plot for two 7-dimensional histograms. The orange case contains one extra dimension to provide systematic
variations.
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3.2.3 Future prospects

A large number of developments have been incorporated in the RDataFrame tool and this is currently
mantainedby theROOTteam. After thesuccessfuldemonstrationof the improvementofperformances
and the adaptation to large scale of the NanoAOD inputs, RDataFrame is considered now a viable tool
by many analyses andmigrations are foreseen for the Run3 analyses.
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Chapter 4

High precision calibration of the muonmomen-
tum scale

In Section 2.4 we have described the tracking system of CMS and the algorithms that are used tomea-
sure the tracks. Despite the outstanding quality of their implementations, when targeting a very high
precisionmeasurement it is necessary to carefully analyse all the detector effects and approximations
that could bias the determination of the track parameters. Obtaining a calibration of the CMS tracker
at the level of 2 · 10−4 has not been a trivial task: an effort of years has been necessary to firstly un-
derstand the origin of the biasing effects in the determination of track parameters and then to devise
the tools to remove them. This chapter will be devoted to describing the work done for this purpose
in details.

Our starting point is a valid attempt documented in the final summary of a pilot measurement of
the /mass by CMS used to validate the experimental uncertainties of a future;, measurement [67].
In this context, a procedure based on J/ψ and Υ resonances was devised employing a Kalman Filter.
While the quality of the results presented in [67] was outstanding, at level of few 10−4, any attempt to
apply the samemethod to the data collected by CMS in 2016, augmented in statistics and extended up
to |[| < 2.4 in acceptance, has not been satisfactory.

This has brought us to restart from scratch, almost from pen and paper, to try and figure out what
waspreventingus fromsuccessfullyperformacalibrationof the trackerofCMS.Checkingall thedetails
of the reconstruction software, we found that approximations in the various steps of track fitting could
indeed lead to a bias in the measured track parameters. The calibration performed in [67] relied on a
model that corrects the tracks based on effects linked to the physics of the detector: imperfections in
the description ofmagnetic field, material budget and residualmisalignment of the trackingmodules.
What emerged after our first studieswas that the calibrationwas insteadmixing up the physical effects
with the biases induced by the approximations in the track fit. For instance, a notorious candidate in
this context is the treatment of the material during the track fit. In the track model, material is placed
onmeasurement layers, therefore a particle is only allowed to scatter at these finite locations. This is a
limitation since a particle scatters in a continuousmean. Since the scattering angle has a dependence
on themomentumof the track, this will introduce a bias on the scale of the reconstructedmomentum,
particularly in the dense regions of the tracker.

To try and single out the effect linked to thematerial in the track fit, in Section 4.1 we setup a simpli-
fied calculation of the track parameters with a j2 fit in presence of non-uniform flaws in the trajectory
of whatever origin. Due to the dependence of the covariance matrix of the single measurements on
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the momentum of the track, the bias on the the final track parameters will also show an explicit de-
pendence on themomentum of the track, embedded in a non-trivial function. We discuss thoroughly
the details of this model and finally we validate it using a collection of tracks reconstructed by a simu-
lation of the CMS experiment, demonstrating our full comprehension of the phenomenon.

However, this simple exercise does not go beyond an assessment of our degree of understanding of
the problem. To be able to tackle the complex matter of precising measuring the scale of the momen-
tumof tracks, it has been necessary to devise new tools that allow to account for each local bias along
the trajectory. In Section 4.2 we will document a new track fit method, the Continuous Variable Helix
(CVH) Fit as an extension of the alignment procedure described in 2.4.2. The advantage of developing
and using the CVH is double: on one hand, it allows to remove a series of imperfections and approx-
imations that are present in the Kalman Filter track fit of CMS. Then, the introduction of the Geant4
propagator [68–70] allows a refined treatment of the material and multiple scattering, dumping the
aforementioned undesired effects.

With this improved baseline, the physical model introduced in [67] holds again its validity. After
describing briefly in Section 4.3 how the approximate description of magnetic field, material budgets
and alignment can produce a bias in the track parameters, in Section 4.4 we present a procedure for
extracting the correction parameters for muon momentum scale based on complex fits to the J/ψ in-
variant mass, as a refinement of the effort described in [67] which has been possible thanks to the
recent introduction of more advanced computing resources. We conclude in section 4.7 showing the
closure test and the final results.

4.1 Bias in the track parameters in a dense silicon tracking
detector

We will now derive a model that allows us to parametrise the bias of the momentum scale of a track
fitted with the standard CMS reconstruction software and validate it using a collection of tracks re-
constructed by a simulation of the CMS tracker. This will help us understand the dependence on the
material introduced by the multiple scattering in the covariance matrix of the measurements, which
will naturally emerge from our calculations, but an intuitive approach to explain this effect is given in
Appendix A. This simplified approachmakes use of the generatedparticles, towhich the reconstructed
momentum is compared track by track and the bias singled out. When calibrating data, it is necessary
to extract the corrections with a more complex procedure involving the use of the invariant mass of
dimuon resonances and therefore the derived model has to be applicable to this case also.

At the end of this section we will show that although this model correctly describes the imperfec-
tions of the scale in reconstructed momentum with respect to the generated one in the simulation, it
is too degenerate to be used in a simple fit of the corrections from the invariant mass of resonances in
data.

Let us setup a simple calculation assuming that on the transverse plane a track can be parametrised
as a parabola. Thus we have:

G = 3F G + qF + 1
2d

F2 (4.1)
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where F and G are the coordinates along and perpendicular to the track and d = >)/0.3� is the radius
of curvature of the track in presence of a uniform magnetic field �. The parameters 3F G, q and d are
found byminimising the relative j2. Following the procedure of theminimisation of the j2, the best fit
track parameters ®H =

(
3 ′
F G , q

′, d′
)
and the covariance matrix of the fitted parameters+ is:

®H = (%) (+ G G)−1%)−1%)+ G G−1 ®G (4.2)

+ = (%) (+ G G)−1%)−1 (4.3)

where+ G G is the covariance matrix of the measurements G7 : +
G G
7 8

=< G7 G 8 >. For this simplified case
% is purely geometric and encodes the spacing of the layers:

% =

©­­­­­­­­­«

1 F0 F0
2

1 F1 F1
2

...
...

...
...

...
...

1 F# F#
2

ª®®®®®®®®®¬
(4.4)

We compute now explicitly the covariance matrix + G G in a simple geometry. Let us assume we have
N+1 layers of detectors, at positions F7 , 7 = 0, .., # along the axis of the original direction of the par-
ticle, uniformly spaced and in a constant and uniform magnetic field �. The total length of the track
in the transverse plane is !. Each layer has an intrinsic hit resolution f and particles will undergo
multiple scattering 1 when crossing them. We assume that each layer has identical radiation length
ΔF/-0 .The variance of the multiple scattering angle on each layer is X\20. The total amount of mate-
rial is (# + 1)ΔF/-0 and the variance of the scattering angle of a track crossing the whole tracker is
\20 = (# + 1)X\20. The elements of the covariance matrix+ G G are:

+
G G
7, 8

= f2X7, 8 + X\20

(
!

#

)2 (
7 (7 + 1) (27 + 1)

6
+ ( 8 − 7) 7 (7 + 1)

2

)
(4.6)

where 7 runs from 0 to N and 8 runs from 7 to N.
We observe that since X\0 ∝ 1/>, the terms of + G G depend explicitly from the momentum of the

fitted track at the location where the scattering has occurred. This introduces a bias in the determina-
tion of the reconstructed momentum: smaller values of > are preferred in the fit since this maximises
the uncertainty in the propagation and minimises the j2 value. This dependence will be relevant in

1The Coulomb scatterings with the nuclei of thematerial cause themuon trajectory in the tracker to be deflected by a small
angle which is approximately Gaussian distributed with mean zero and r.m.s. given by:

\0 ' 13.6MeV
V2>

√
F

-0
, (4.5)

where V2 and > are respectively velocity and momentum and of the incident muon and F/-0 is the thickness of the scattering
medium in radiation lengths. For particleswith[ different from0 this formula is still valid in the transverseplane,while F/-0 still
represents the total crossed material. An exhaustive description of these phenomena can be found in [71], where a complete
derivation of the physical model is given.
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the description of the biases in the scale of track parameters. In the following, we will make the >)

dependence in X\0 explicit and use the notation X = 13.6MeV
√

ΔF
-0
.

4.1.1 Correlation terms in trackmomentum resolution

Computing thematrixVexplicitly foraconfigurationwith#+1 =5, 7, 9, 11 layers throughEq.4.3wecan
observe how off-diagonal terms due to themultiple scattering affect the trackmomentum resolution,
which can be extracted from the element+33:(

f>)

>)

)2
= 02 + 22 · >2) +

;∑
:=1

12
:

1 + 32
:

>2)

, (4.7)

The sum runs up to a value ; = #/2 − 1. Here the terms 22 and 02 reproduce the terms found in
literature in the simplified case of very high or very low momenta. In the first case, the resolution is
determined solely by the intrinsic spatial resolution [72]:(

f>)

>)

)
ℎ7B

= 2 · >) .

2 =
f

0.3�
1
4!2

√
720
# + 5 (4.8)

Conversely, in the limit of lowmomentumwe can obtain the momentum resolution starting from the
equation that links the transverse momentumwith the sagitta A:

>) [GeV] =
0.3�!2

8A
[T m]. (4.9)

The uncertainty on the sagitta is propagated to the momentum by:

f>) =
0.3�!2

8A2
fA = >2)

8
0.3�!2

fA . (4.10)

For a uniformly distributedmaterial the error on the sagitta due tomultiple scattering is given by [73]:

f;A
A =

!

4
√
3
13.6MeV

>)

√
!

-0
.

The related error on the momentum is given by eq. 4.10:

f;A
>) = >2)

8
0.3�!2

!

4
√
3
13.6MeV

>)

√
!

-0
, (4.11)
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thus the relative resolution is independent of momentum:(
f>)

>)

)
;A

= 0,

where 0 is a constant defined by:

0 =
2 · 13.6MeV
√
3 0.3�!

√
!

-0
. (4.12)

We see here that 02 for uniform material is proportional to !/-0, the material budget measured in
number of radiation lengths. Moreover, the constant of proportionality contains the transverse track
length !. On the other hand, additional terms 1: and 3: of Eq. 4.7 describe the correlation between
themultiple scattering and the hit resolution. In the explicit case computed in Appendix B for 5 layers
assuming a geometry resembling the one in CMS, the reference value ofmomentum for which the cor-
relation terms become relevant is about 6 GeV, and in general this number is in a relevantmomentum
range for our analyses.

4.1.2 Correlation terms in trackmomentum scale

Let us introduce the unsigned curvature 9 = 1/>) , which is the quantity directlymeasured in the track
fit and thus distributed as a Gaussian. 9may be biased and we use 92 to mean 9 after corrections.

Inserting a generic bias of the form �′ − n′9 + ?" ′/9 on each layer2 and computing the best fit track
parameters using Eq. 4.2 we find a complicated expression for the scale:

92

9
= 1 + � − n9 + ?"/9 +

;∑
:

�: − n:9 + ?":/9
1 + 32

:
92

, (4.13)

where : again runs up to a value ; that depends on the number of layers and in our calculations it
is 1,2,3,4 respectively for 5, 7, 9, 11 layers. Non-trivial 9 dependencies originate from non-uniform
biases along the trajectory combined with 9-dependent weighting of the measurements due to the
9-dependence in the covariance matrix+ G G from different relative contributions of the hit resolution
andmultiple scattering. This result is derived step by step for the simple case of a non-uniformmulti-
plicative bias on the curvature 9 in Appendix B.

On a minimisation standpoint, extracting all the correlation terms from Eq. 4.13 is challenging, be-
cause there are degeneracies in the parameter space, and where the bias is small the 3: terms are
poorly constrained.

4.1.3 Extracting correlation terms from track covariancematrix

Taking into account the full matrix + explicitly, besides +33 that we used to extract the momentum
resolution, we observe that all its entries are affected by the presence of the same correlation terms.

2The functional form of this formula will find its justification in section 4.3
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In the 3x3 covariance matrix of 3F G, q and d, the elements are of the form:

�7 8 = 07 89
2 + 27 8 +

∑
:

67 8:9
2

1 + 32
:
92

, (4.14)

and we highlight that 3: are the same as Eq. 4.13. This is also shown in the simplified calculation re-
ported in Appendix B. Since all the 6 elements of the covariance matrix have 3: in common, we can
imagine to simultaneously fit them to extract 3: and in turn using this result to constrain the correla-
tion terms in Eq. 4.13. For this test, we will use tracks produced with a CMS Monte Carlo simulation
where the information on the generated and reconstructed momentum is available.

In practice, �7 8 is not a constant for a given set of “identical” tracks: same momentum and same [,
and has a narrowbut non-trivial distribution. We can then extract themedian of�7 8 and its uncertainty
in bins of [ of the detector and 9. Moreover, since the covariancematrix elements are all dominated by
the 92 term, extracting 3: getsmore complicated. A solution to this is performing a first fit to determine
the 07 8 parameters in Eq. 4.14 and then diagonalise thematrix in the high 9 limit, where only the 07 892

term is present. Then, a second run over the track collection ismade, the diagonalisation is applied to
the covariancematrix of each track and themedians recomputed. This produces a transformedmatrix
with 92 removed from the off-diagonal terms. Figure 4.1 shows all the terms of the covariance matrix
obtained in this second run in a bin of 2.2 < [ < 2.3, obtained with the above described procedure.
They areplotted and fitted as a functionof?9, so that the redpoints correspond to trackswithnegative
sign, and the green points to tracks with positive sign.

There are a number of features that we can observe in this plot. Since we have diagonalised in the
high 9 limit, the diagonal terms show the eigenvalues of the 07 8 terms. In the diagonal the eigenvalues
are ordered by increasingmagnitude from top-left to bottom-right, and for this reason the G axis scale
of the top-left element is much smaller than the other two. As for the off-diagonal elements, with the

92 dependence not present in the leading order all that is left is the rotated 2′
7 8
+∑:

6′
7 8:
92

1+32
:
92

component.
While, due to the diagonalisation procedure 2′ and 6 ′ are not guaranteed to have the same values as
2 and 6, the denominator of the expression is left untouched. In absence of the 3: terms, this would
reduce to a constant term with no dependence on 9. What we observe is instead compatible with the
presence of three 3: terms and the fitting function interpolates well the data points. This is shown
with increased detail in Figure 4.2 where a zoomed version for one of the off-diagonal elements of the
matrix is reported. The shape of the function containing the 3: terms changes regimewhen 92 ismuch
smaller or much bigger than 1/32

:
and this can be appreciated in the plot as changes of slopes which

are highlighted in Figure 4.2. The values found for 3: in this particular bin are ' 5 GeV, ' 15 GeV, ' 30
GeV.

Another way to extract the 3: terms involves constructing a hybrid version of the analytic model
described in section 4.1. When solving the equations for the track parameters and their covariance
matrix, we had observed that the determinant of the inverse covariance matrix %) (+ G G)−1% contains
the factors 1 + 32

:
92 in the numerators. The roots of the determinants are−1/32

:
, fromwhich 3: can be

extracted. We can construct the+ G G and %matrices for single tracks using the actual hit positions and
their resolutions and multiple scattering contributions from the CMS reconstruction. Comparing the

48



4.1. BIAS IN THE TRACK PARAMETERS IN A DENSE SILICON TRACKING DETECTORCovariance Matrix Fits - Diagonalized

J.Bendavid, E.Manca Muon Calibration Status 6Figure 4.1: Elements of the covariance matrix of tracks reconstructed by the CMS detector, extracted with the procedure de-
scribed in the text. They are plotted and fitted as a function of ?9, so that the red points correspond to tracks with negative sign,
and the green points to tracks with positive sign.

numbers derived with this test with the fits of the covariance matrix, we find a very good correspon-
dence.

Covariance Matrix Fits - Diagonalized

Multiple kinks clearly visible

J.Bendavid, E.Manca Muon Calibration Status 7

Figure 4.2: Zoomed version of one element of the covariance matrix from Figure 4.1.The red points correspond to tracks with
negative sign, and the green points to tracks with positive sign. A line of the same color represents the fitting function. The
points where the convexity of the fitting function changes due to 3: terms are highlighted with blue circles.
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We can finally plug the extracted 3: values and fit the bias of the momentum scale. We use the first
three values of 3: ordered by magnitude. For this purpose, we can compare tracks generated with
known curvature and reconstructed in the CMS tracker and measure the bias in momentum scale as(
9@42= − 964<

)
/964<. In Figure 4.3 a fit to this quantity is shown in two bins of [ as a function of ?9

and ?>) , for tracks of positive sign (green) and of negative sign (red). In all cases we observe a very
good visual closure of the model with data points, even in presence of non-trivial trends, and this is
a good proof of the validation of the model derived above. However, the fit parameters in this model
are highly correlated and individual parameters are not well determined. Moreover, since the 964<

quantity is obviously not accessible in data, it is not feasible to extract such a number of terms from
more complex quantities, i.e. the invariant mass of resonances. Therefore, the procedure discussed
above has to be intended as a proof of principle and a validation of the model rather then a concrete
method to derive the scale corrections for the momentum of tracks.

(a)

(b)

Figure 4.3: Fit to
(
9@42= − 964<

)
/964< is shown in two bins of [, for a track of positive sign (green) and one of negative sign (red),

as a function of ?9 and ?>) .

4.2 Continuous Variable Helix fit for Generalized Global
Corrections

We present now a new devised procedure that has been employed to extract the corrections to local
biases due to magnetic field, energy loss and alignment for each layer. It is a generalisation of the
global alignment procedure used in CMS [74] that includes layer by layer corrections to the material
andmagnetic field, plus a simplified residual alignment correction.
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This extension of the Generalised Broken Line fit, described in Section 2.4.2, includes jacobians for
the energy loss, energy loss derivative with respect to material parameter b, and transported curvilin-
ear parameter gradient with respect to magnetic field magnitude. We start constructing a global j2

representation of the Kalman Filter based track fit, using a combination of the approach described in
[75] and theCMSglobal alignmentprocedure [74],makinguseof theGeant4propagator [68–70]. There
is an importantmodification to bementioned. With the usage of theGeant4 propagator thematerial is
not artificially constrained into thin planes as in the nominal Global Broken Line fit, but sampled with
continuity with a finer granularity then the whole distance between adjacent layers. Then, multiple
scattering can cause a displacement between one measurement and another. As a consequence, the
fitted parameters are 5 per layer rather than the 3 used in the nominal Global Broken Line fit, that we
take to correspond to the 5parameters in the curvilinear coordinate system. This new implementation
has been called Continous Variable Helix (CVH) fit.

The advantage of using the CVH fit on top of the standard Kalman track fit of CMS is the refined
treatment of material and the correction of a series of imperfections and approximations. We will
show in Section 4.3 that the CVH fit allows to restore a clear baseline where the expected bias on the
track momentum scale originates from the detector physics.

4.3 Amodel for the bias of momentum scale originating from
detector physics

In this Section, we will introduce the model used in [67] that will be used to extract the corrections
from the J/ψ dimuonmass in Section 4.4.

The transverse momentum >) is measured from a fit to the trajectory in the magnetic field, as dis-
cussed in section 2.4.2. The coordinates of the trajectory aremeasured in themodule reference frame
and the track is reconstructed using information on the location of eachmodule, on themagnetic field
and on the material in the tracker. Therefore, any flaws in the knowledge of these inputs will result in
a bias in the muon momentum scale that has to be parametrised and corrected. In this section we
discuss the causes of the mismodelling of the magnetic field, of the alignment of the modules and of
the energy loss in the tracker.

Magnetic field

The superconducting magnet has been described in 2.3.1. The map of the magnetic field in CMS had
been preciselymeasured before the experiment was installed in the cavern. However, in order to save
computing time, during the reconstruction of the tracks an approximate map is used instead of the
real one. Figure 4.4 shows the ratio of the field integral, along straight lines from the origin to the last
point in the tracker, computed with the real and approximate map as a function of [ and q. It shows
variations of the order of 10−3 that propagate to the muonmomentum scale since the transverse mo-
mentum isdirectlyproportional to themagnetic field, as eq. 2.3 shows. Moreover, after the installation
underground, the variation of the magnetic field has been measured using NMR probes. They show a
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constant value since their installation in the cavern that was measured to be 0.9992 of the value mea-
sured on the surface and it is not clear how these effects propagate to the tracker volume, but it is
plausible that the magnetic field is underestimated of the same amount. Therefore, the bias on the
momentum scale would be of the order of 8 · 10−4 which exceeds the desired precision. The map in
Figure 4.4 can be applied to each track in data as a multiplicative correction to the track momentum.

Figure 4.4: Ratio of the field integral along straight lines from the origin to the last point in the tracker, computed with the real
and approximate map as a function of [ and q

Misalignment

The alignment procedure of the tracker is described in section 2.4.2. After this procedure the positions
of themodules are knownwith a statistical accuracymuch below the intrinsicmeasurement precision
of the sensors. However, there is a residual bias introduced by theweakmodes, extensively described
in [74], that propagates to the muon momentum scale which is comparable to the level of precision
we wish to achieve.

Energy loss

A muon traversing the tracker loses energy due to ionisation. This effect is described by the Bethe-
Bloch formula, which models the energy loss of muons given the properties of the traversedmaterial.
The material in the tracker of CMS has a mean density of 0.2 g cm−3 (with the full distribution as a
function of [ shown in Figure 2.6) and the mean energy loss accounts for ∼60 MeV for a muon of 40
GeV. As thematerial with which the tracker of CMSwas built is far from being constant the energy loss
is computed from the local information of the material in the tracker during the reconstruction of the
tracks using the information from the Bethe-Bloch formula and a model of the material distribution.
Therefore, an imperfectmodelling of the localmaterial budgetwould result in a bias in the energy loss
and would in turn affect the momentummeasurement at a level above the required precision.

We will now show how these three effects propagate to the momentum scale of the tracks. The
unsigned curvature 9 is proportional to the magnetic field � through:

9 =
1

0.3�d
, (4.15)
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from which it is clear that any flaws in the magnetic field map propagates to 9 with a multiplicative
factor:

92 = (1 + �) · 9, (4.16)

where � is a small number. The misalignment of the modules in the tracker causes an additive bias
in the muon momentum scale which is opposite in sign for positive and negative muons, as it can be
understood from Figure 4.5. The correction of the curvature can thus be expressed as:

92 = 9 + ?", (4.17)

where ? is the muon charge and" is the magnitude of the correction.

Figure 4.5: Misalignment of the tracker modules. The trajectories of the two muons in the tracker bend in opposite directions
due to the magnetic field in the tracker. The actual trajectories in the misaligned tracker (left) will be reconstructed as if the
detector was perfectly aligned (right). This leads to an additive term to the curvature, opposite in sign for the twomuons.

Finally, any flaws in the modelling of the energy loss will result in a charge independent additive
bias to themeasured energy. Since in our samples themuons are ultra relativistic, the energy is equal
to the module of the momentum (3D). Therefore:

�2 = � + n, (4.18)

which propagates to the curvature as:

9 =
1

� sin \
→ 92 =

1
� sin \ + n sin \

=
9

1 + 9n sin \
. (4.19)

Accounting for all the effects, the corrected curvature can be expressed as:

92 = � · 9 + 9

1 + 9n sin \
+ ?", (4.20)

and, expanding the energy loss term to first order and gathering sin \ inside the n term:

92

9
= 1 + � − n9 + ?"/9, (4.21)
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where �, n and " are the correction parameters for each [ and q bin of the detector. The values of
these parameters are expected to be small according to the discussion of section 4.3. � should be less
than 10−3, " is expected to be less than 10−4 GeV and n should be of the order of a few MeV. Those
variations are to be compared to the typical momentumofmuons from / or, decays, around 40GeV.

This simplified model arises from Eq. 4.13 when the biases are sufficiently uniform along the tra-
jectory and the additional terms can be neglected. In this sense, it can be taken as the first order of a
series expansion. Wenowshow that theCVH fit restores abaselinewhereEq. 4.21well describes thebi-
ases in the momentum scale. Figure 4.6 shows how themodelling of the quantity

(
9@42= − 964<

)
/964<

improves moving from the standard Kalman track fit of CMS (Figure 4.6a) to the CVH fit (Figure 4.6b).
In both panels

(
9@42= − 964<

)
/964< is shown as a function of ?>) for a set of positive (green dots) and

negative (red dots) tracks, obtained from a simulation of the CMS detector. The data points are over-
laid with a fitting function following the model of Eq. 4.21. While in the case of Kalman fit there is a
clear deviation from the simple model, when CVH fit is run the data points follow this model closely.
Therefore, tracks fitted with the CVH fit on top of the standard Kalman are used for the momentum
scale calibration.

(a) (b)

Figure 4.6:
(
9@42= − 964<

)
/964< is shown as a function of ?>) for a set of positive (green dots) and negative (red dots) tracks,

obtained from a simulation of the CMS detector, for the standard Kalman track fit of CMS (Figure 4.6a) and for the CVH fit (Fig-
ure 4.6b). The data points are overlaid with a fitting function following the model of Eq. 4.21.

4.4 Extracting corrections from the invariant mass of dimuon
resonances

Corrections to the trackmomentum scale and resolution are extracted from the invariantmass of J/ψ ,
while the/ eventswill beused tovalidate theprocedureand toderive thecorrections for the resolution
at high >) . The invariant dimuonmass can be expressed as a function of the curvature of the positive
and negative muons as:

;2 =
1
9+

1
9−

[
4Δ[ + 4−Δ[ − 2 cos Δq

]
, (4.22)

where Δ[ and Δq are the difference between the pseudorapidity and the azimuthal angles of the two
muons and 9+ and 9− their curvature. Here we assume that the bias on the dimuon mass only origi-
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nates from the bias on the measured curvature, since the angles [ and q are measured with a much
better precision. Then we can express the ratio between the reconstructed and true mass as:

;2
@42=

;2
B@C4

=
92+9

2
−

9+9−
. (4.23)

The biasing effects are assumed to vary with the geometry of the tracker, therefore the corrections
are extracted as a function of [ of the detector. Since the two muons can be in a different [ bin, the
parameters �," and n can be different. We can then propagate the expression of the corrections on
single muons Eq. 4.21 to the invariant mass as:

;2
@42=

;2
B@C4

=

(
1 + �+ − n+9 + "+

9+

) (
1 + �− + n−9 + "−

9−

)
(4.24)

Instead, for the resolution we can use Eq. 4.7 and extend to the resolution on the mass:(f;
;

)2
=

(f9
9

)2
+
+
(f9
9

)2
−

=02+ +
22+
92

+ 12+
1 + 32+9

2
+ 02− + 22−

92
+ 12−
1 + 32−9

2 ,

(4.25)

where we have kept only the leading order term in the correlation terms since we have shown from
previous studies that this is sufficient to measure the momentum resolution in CMS to the desired
level [76].

The quantity;B@C4 in Eq. 4.24 is the targetmass of the calibration, which has to be known at amuch
better level than the desired precision of the procedure. The mass of the J/ψ towards which we cali-
brate is known at the level of 10−6 [77].

4.4.1 Measured and simulated event samples

The calibration is performed on a sample of data collected by CMS in 2016 at
√
A = 13 TeV and lumi-

nosity 17 fb−1 using dimuon resonances: J/ψ and / . Figure 4.7 shows the dimuonmass distribution in
CMS collectedwith various dimuon triggers at 13 TeV in 2016. For the J/ψ , events are required to have
passed the OR of various trigger paths, while for / a single or double muon trigger path is employed.

For what concerns J/ψ , at analysis level we only accept events with reconstructed muon >) > 1.5
GeVand |[| < 2.4and invariantmass in the range2.9 < ;`` < 3.3GeV, anda loose requirementon the
muon identification, for about 85million events effectively in acceptance. A sample of J/ψ simulated
events has been generated with a J/ψ gun interfaced with PYTHIA8[79] and PHOTOS[80], with no pile
up. These events are required to pass the same set of analysis level acceptance cuts as data, for about
32million events effectively accepted. Figure 4.8 shows the distributions of >) and [ of the positive
muon in data and simulation, normalised to their integral. We notice how the two distributions differ
substantially in shape, due to the different underlying spectra of the J/ψ . This is suboptimal for this
analysis andwill introduce complications in the derivation of themuonmomentum scale parameters,
as will be discussed in Section 4.5 and in the final discussion in 4.7.
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As for the / , events are required to have a reconstructed muon >) > 20 GeV and |[| < 2.4 and
invariant mass in the range 75 < ;`` < 115 GeV, a loose requirement on the muon identification, for
about 5million events effectively in acceptance. A sample of / simulated events has been generated
with POWHEG[81] with MiNNLO%([82, 83] interfaced with PYTHIA8[79] and PHOTOS[80]. These events
are required to pass the same latest set of analysis level acceptance cuts as data. Figure 4.9 shows
the distributions of >) and [ of the positivemuon in data and simulation, normalised to their integral.
These distributions have a very good agreement in shape.

4.4.2 Fit to the invariant mass of J/ψ and /

The first step is extracting the value of A20:4 = ;@42=/;B@C4 and resolution f from J/ψ and / events.
The invariant mass is computed in a grid

(
[+, [−, >+) , >

−
)

)
. For the J/ψ the adopted binning in [ is

48 bins in the range |[| < 2.4, while >+) and >−) are binned with 8 bins whose edges correspond to
(2.6, 3.4, 4.4, 5.7, 7.4, 10.2, 13., 18.) GeV. This results in about 150k kinematic bins. As for the / , the
samebinning in[ is usedwhile >+) and >−) arebinnedwith4binscorresponding to (25, 38, 44, 48.7, 100)
GeV, for a total of about 40k kinematic bins. The J/ψ dimuonmass is binnedwith 100 bins in the range
(2.9, 3.3) GeV, while the / dimuon mass is binned with 100 bins in the range (75, 115) GeV. Therefore,
the total number of bins is about 14million for the J/ψ and 4million for the / .

Computing a grid of this size is not trivial and it is performed using the high performance computing
procedure described in Chapter 3. Thanks to this technology, despite the remarkable size of such a 5-
dimensional histogram(4-dimensional gridplus the invariantmassdimension) the run time is reduced
5minutes using 24 cores.

After dumping the grids, a further selection is made to remove the underpopulated regions in the
phase space. Only the kinematic bins in which at least 500 events are present will be used for the
analysis. This operation reduces the number of kinematic bins to about 12k for the J/ψ and 3k for the
/ .

A kernel model for resonance lineshape

The invariant mass distribution in each bin of the grid is then fitted to extract A20:4 and f. Usually,
the lineshape of a dimuon resonance is modelled by a Crystalball function which describes a Gaus-
sian core and a tail parameter to encode the energy loss due to final state radiation. However, the
performance of such a model is not adequate for the requirements of this analysis and an alternative
model is proposed based on the generator level information. Dimuon simulated events are selected
in each kinematic bin using the reconstructed momenta. Their generated invariant masses are com-
puted using the generator momenta after final state radiation, stored and used to build a probability
distribution function of the generated mass %(;64<). In the case of the J/ψ the distribution of ;64<

is essentially a delta-function with a small radiative tail. In the case of the / this is a more complex
distribution including the finite width and W∗ effects. The value of the probability density function for
a given mass;@42= and parameters A20:4 and f is given by:
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Figure 4.7: Dimuonmass distribution collectedwith various dimuon triggers at 13TeV in 2016with 13.1 fb−1. The colouredpaths
correspond to dedicated dimuon triggers with low >) thresholds, in specific mass windows, while the light gray continuous
distribution represents events collected with a dimuon trigger with high >) thresholds. From [78].
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Figure 4.8: Measured (red line) and simulated (blue line) single-muon kinematic distributions, for the positive muon of J/ψ de-
cays: [ in 4.8a and >) in 4.8b.
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Figure 4.9: Measured (red line) and simulated (blue line) single-muon kinematic distributions, for the positivemuonof / decays:
[ in 4.9a and >) in 4.9b.
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%A76 (;@42=) =
∫
;64<

%(;64<)
1

f · ;64<

√
2c

4
− 1
2

(
;@42=−A20:4·;64<

f·;64<

)2
3;64< (4.26)

Conceptually, thismodel is constructed in the followingway. In a given kinematic bin, the value of the
content of each bin of ;@42= is taken to be the sum of < Gaussians of unit area with mean ;64< and
sigma f, where < is the number of generated events which contribute to that kinematic bin. Themain
approximation in this model is that the resolution f is the same for all the events with the same;64<.
This is oneof the reasonswhywehave toadopt agridwith sufficiently small granularity. Moreover, this
model factorises out the effects due to final state radiation and, in case of the / , the natural width and
W∗. When fitting J/ψ data, an exponential probability density function %196 is added to take account of
the background. In this case, the total likelihood is given by:

L = − log
∑ (

5196%196 (;@42=) +
(
1 − 5196

)
%A76 (;@42=)

)
(4.27)

with the sum running on number of bins of ;@42=. The fraction of background events in data varies
from about 10% to a few percent depending on the kinematic bin.

Fits to the grid are performed simultaneously with a very fast and robust implementation based on
jax [84] and advanced minimisation algorithms. It can also run on GPU. Figure 4.10 shows the result
of this fit in J/ψ data for two bins on the grid: Figure 4.10a in the barrel and Figure 4.10b in the endcap.

(a) (b)

Figure 4.10: Fits to the invariant mass in of J/ψ with the kernel model. Blue dots represent the data point, the orange line
is the sum of the kernel model and the exponential background and the dashed green line in the sole contribution from the
exponential background. Figure 4.10a shows a bin in the barrel and Figure 4.10b shows a bin in the endcap.

Extraction of the parameters

After obtaining the parameters A20:4 and f and their covariance matrix for each bin on the grid, let
us indicate it with the subscript ‘binned’, we can minimise the difference with respect to their values
computed with our model, Eq. 4.24 for the scale and 4.25 for f and extract the relative parameters for
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the corrections:
j2 =

∑
717<

D)�−1D (4.28)

where

D =

©­«
(
1 + �+ − n+9 + "+

9+

) (
1 + �− + n−9 + "−

9−

)
02+ +

22+
92

+ 12+
1+32+92

+ 02− + 22−
92

+ 12−
1+32−92

ª®¬
717<

−
(
A20:42, f2

) 717<
17<<43

(4.29)

and � is the covariance matrix of A20:4 and f. The sum runs over the bins in the grid. We actually
minimise A20:42 and f2 because it is more convenient from a computational point of view.

The expression for the model for A20:4 and f depends explicitly on the curvature 9 and the depen-
dence on [ is encoded inside the parameters. While fitting, the dependence on 9 is removed by ex-
plicitly computing on each bin of the grid

(
[+, [−, >+) , >

−
)

)
the mean value of each term containing a

function of 9.

The parameter values in a given bin of [+ can be constrained by multiple bins on the grid since in
principle [− can assume arbitrary values. In practice, the angle of separation of the two muons from
a decay of a J/ψ is very narrow, so that [− is typically contained in the range ([+ ± Δ[), where Δ[ has
the size of 0.2, corresponding to about 2 bins in the grid. This is not the case of the / which is generally
produced with a small momentum, thus the separation between the muons is wider and spanned
across the grid.

In Figure 4.11 a summary plot for the fitted A20:4 in J/ψ simulation (Figure 4.11a) and data (Fig-
ure 4.11b) is shown. The corresponding plot of f in J/ψ is shown for simulation (Figure 4.11c) and
data (Figure 4.11d). They show a flattened version of the 4-dimensional grid, unrolled in such a way
that [+ is the external dimension, while >−) the internal one. Each blue dot represents the value of
A20:4 or f in a bin in this unrolled scheme. The envelope of this plot is then effectively a profile in [+.
Thebluedots are overlaid by a thin red line, following closely the trendof thedata points. It represents
the fittedmodel as per Eq. 4.29. We observe that the scale in Figure 4.11a and Figure 4.11b is different:
the simulation is essentially flat and needs very small corrections, while data is off up to some 10−3 in
the endcaps. In all cases themodel is able to synthesise the overflowing information contained in the
grid.

Single muon fits on the simulation

In parallel to the above described procedure, a fit to parameters of the scale and resolution based on
the comparison of the generated and reconstructed curvature is set up. This is useful to check the
validity of the model and to measure the 3 parameter in the resolution, which depends only on the
details of the software of the track reconstruction as throughly discussed in Section 4.1.
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Figure 4.11: Summary plot of the values fitted using J/ψ events. Fitted A20:4 in simulation (Figure 4.11a) and data (Figure 4.11b),
and fitted f in simulation (Figure 4.11c) and data (Figure 4.11d). The blue dots represent the value of A20:4 or f in a bin in the
unrolled 4-dimensional grid. The red line is the model from Eq. 4.29 interpolating the points.
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4.5 Effects due tomuonmomentum resolution in the calibration

A precise calibration of the muon momentum resolution is crucial when calibrating the scale at the
target level of 10−4. The resolution affects the average generated invariant mass when computed in
the bins of the grid. Figure 4.12a shows the average value of ;64< (plotted in green) as a function
of [ of the positive muon compared with the invariant mass computed with the generated momenta
smeared by the expected resolution of the reconstructed simulation (plotted in blue). We observe that
thegenerated invariantmass, beingverynarrow, is flatwithina relative rangeof10−5, but the smearing
induces a variation which can be as big as about 2 · 10−4, which is beyond the desired precision.

Conversely, the generated invariantmass of the / , shown in Figure 4.12b varies with amuch bigger
scale than the J/ψ , having a large natural width. The reconstruction resolution adds a variation of
about 3 · 10−4 on top of this.
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Figure 4.12: Comparison of the invariantmass of generated events (green) with itself after smearing of themuonmomentawith
the reconstruction resolution of the simulation (blue). Figure 4.12a shows the J/ψ and 4.12b shows the / . The bottom panels
show the ratio of the two curves in the main panels.

In the J/ψ , theoutlinedeffectwill bias thederivationof the scale parameters. This ismitigated in the
calibration in the followingway. First of all, the resolution of the data and simulation is extracted from
J/ψ events, as described in Section 4.5.1. Then, the invariant mass of generated events is smeared as
in Figure 4.12a and it is used to build the kernel model of Eq. 4.26 in place of the target mass;64<. In
this way the effects due to the resolution in each cell of the grid are reduced.

On the other hand, a mismatch of the resolution between data and simulation can produce a non-
closure that is of the sameorder of the desired precision. This happens for the following reason. When
events are selected in a bin of a measured quantity >, the average true value of the selected event is
not the center of the bin and this produces a small bias n>:

n> = f2>
1

5 (>)
m 5

m>
. (4.30)

Here f2> is the square of the resolution of >, 5 (>) its distribution and m 5 /m> is the derivative of the
spectrum. Because of this effect when we plot a variable as a function of > we introduce a bias that
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dependson the resolution and that ismore importantwhen theunderlying spectrum is steep, as in the
case of the muon momentum distribution. This affects the closure of the calibration on both J/ψ and
/ and a precisematching of the resolution in data and simulation together with a careful equalisation
of the underlying spectra is required in order to mitigate it.

4.5.1 Measurement of themuonmomentum resolution

The parameters of the muon momentum resolution are extracted in data with a simultaneous fit of
the events from J/ψ and / . In the simulation, such a simultaneous fit can not be performed since the
samples for J/ψ and / do not have the same resolution, because the first one has been producedwith-
out pile-up. Therefore, the resolution parameters in the simulation are derived from a fit of J/ψ events
only. In the definition of the resolutionmodel, Eq. 4.3, the dependence on the length of the track from
the parameters has been removed to better appreciate their physicalmeaning. While 02, 12 and 22 are
left free in the minimisation, 3 is fixed to the value obtained in the single muon fit in the simulation
which is found to be fairly constant to about 10 GeV in [ and grows to about 15 GeV at |[| = 1.5where
the amount of material in the tracker is high. This is in the same ballpark as the study reported in 4.1.
In Figure 4.13 the fitted values of 02, 12, 22 and 3 are shown.

Figure 4.13a is a measurement of thematerial budget of the tracker, which is extracted from low >)

J/ψ . The fitted value in data is slightly higher than the one fitted from simulation. As for Figure 4.13b
and 4.13c, the disagreement in data and simulation is due to the fact that the J/ψ alone in simulation
does not have enough lever arm in >) to correctly fit these terms and they are respectivaly underesti-
mated and overestimated.

The fitted parameters in simulation are then used to smear the invariant mass of the simulated
events to be used as target mass for the extraction of the correction parameters for the muon mo-
mentum scale. Since the absolute value of the resolution matters in the effect shown in Figure 4.12a,
in principle the simulation should be smeared to match the resolution of data. In practice, this effect
is small given the narrowwidth of the J/ψ , andmoreover this is not feasible in the context of this anal-
ysis since the spectra of data and simulation of muon [ and >) shown in Figure 4.8 are very different.
This implies that a smearing of the simulation using the extracted parameters does not provide an
equalisation of data and simulation.

Not having a consistent resolution for J/ψ and / in the simulated samples also implies that it is not
possible to extract the correct parameters 12 and 22 to smear the/ simulation tomatchdata. However,
as seen from Figure 4.14, the / resolution in data and simulation agrees below 5% and the residual
biasing effect on the scale is expected to be small.

4.6 Calibration of muonmomentum scale

The second step in themuonmomentum calibration is extracting the parameters for the correction of
the scale from J/ψ events. Figure 4.15 shows the results of the fit performed in the simulation (blue
dots,mc) and data (red dots, data). While the correction of the simulation is rather flat, in data, the �

parameter at |[| ' 1.3 drops with a very high derivative to about −0.8 · 10−4 in the endcaps. In this
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Figure 4.13: Results of the fit to J/ψ events of the muon momentum resolution. It is performed on the simulation (blue dots,
mc) and data (red dots, data). 4.13a shows the 02 parameter, 4.13b the 12 parameter, 4.13c the 22 parameter, and 4.13d the 3
parameter.
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Figure 4.14: Comparison between the resolution in data (red dots) and simulation (blue dots) for / events, a function of [ (Fig-
ure 4.14a) and >) (Figure 4.14b) of the positive muon.

transition region themagnetic field acquires a �@ component besides the �H one as themagnetic flux
has to close. Moreover, from this regionmoving towards the endcaps themagnetic field is affected by
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the iron of the muon chambers, and a mismodelling of its quantity and shape can induce a variation
with respect to the expected value of the magnetic field map.

Thematerial correction n in data peaks at about 5MeV in correspondence of the regionof the tracker
where more material is present due to the cables and services. The " term encoding residual weak
modes in the alignment looks very consistent to what is modelled in the simulation.
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Figure 4.15: Results of the fit to the corrections, performed in the simulation (blue dots, mc) and data (red dots, data). 4.15a
shows the � parameter, 4.15b the n parameter and 4.15c the" parameter.

4.7 Closure of themomentum scale calibration

After extracting the values for the corrections in data and simulations from J/ψ , they can be applied
event by event to J/ψ and / . Then, the entire procedure of measurement of A20:4 is repeated and the
agreement between data and simulation is verified before and after the corrections. This is shown in
Figure 4.16. In the left panels, the difference of fitted scales in data and simulation are shown before
the corrections. Conversely, in the right panels theagreement is shownafter the correctionshavebeen
applied.

Overall, the agreement between data and simulation is reasonable even before applying the cor-
rections, since the CVH fit and the application of the magnetic field map in Figure 4.4 to data events
provide a good baseline. The corrections highly improve the agreement as a function of [ of the posi-
tivemuon in the endcaps, comparing Figure 4.16a and 4.16b, while the closure plot as a function of >)
in Figure 4.16d shows an improvement on the lowest pt bins in J/ψ and / with respect to Figure 4.16d
and equally good overall agreement elsewhere.

Since the scale corrections have been derived using the J/ψ only, the closure plots of the J/ψ are to
be interpreted as a validation of the procedure. The >) dependence of the the J/ψ after calibration
shows a residual effect of the mismatch of the spectra of data and simulation, which results in a 10−4

non closure. This effect can be removed with a dedicated simulation.
On the other hand, the closure on the / represents a test of the validity of the model that has been

used to derive the corrections, Eq. 4.21. Being parametric in >) , it can be precisely computed using
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Figure 4.16: Agreement betweenmeasured scale in data and simulation before (left panels) and after (right panels) applying the
corrections. This is shown as a function of [ of the positive muon (top panels) and >) of the positive muon (bottom panels).

a huge number of low >) muons and the corrections can be extrapolated to a different phase space
on / events. The closure test computed with the / shows a very good agreement between data and
simulation, at the level of 2 ·10−4 in thewhole phase space. Face value, this number propagates to the
final measurement of ;, to about 16 MeV. However, in practice, the analysis is performed on many
bins in [ and >) of the muon and the final uncertainty on ;, is given by the combination of all the
points in the phase space, which amounts to (6 ± 1) · 10−5. In addition to this, an uncertainty will be
propagated using the full covariancematrix of the parameters. This contribution is anyways expected
to be small, of the order of the error bars of the plot in Figure 4.15a which is the dominant correction
in the / phase space. This procedure will be Illustrated when the fit for assessing the final uncertainty
on;, will be described, in Chapter 6.

To conclude, the muon momentum scale calibration outlined in this thesis can be improved in the
future if an improved simulation of J/ψ is produced. Not only should the underlying spectra of muon
[ and >) agree to a better level, but it should also be produced with pile-up, so that a combined fit
of J/ψ and / can be performed to extract the resolution parameters as it has been done for data in
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CHAPTER 4. HIGH PRECISION CALIBRATION OF THE MUONMOMENTUM SCALE

Section 4.5.1. Matching the resolution of data and simulation in J/ψ and / can remove some residual
non-closure which can be of the order of 10−4.
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Chapter 5

Measurement of, differential cross sections

This Chapter presents a practical realisation of the analysis conceived in Section 1.3 using data col-
lected by the CMS experiment in 2016 at

√
A = 13 TeV, for an integrated luminosity of 35.9 fb−1. The

aimof thismeasurement consists in theexperimental assessmentof thedoublediffential cross section
of, ?) , G and the angular coefficients as a function of ?) and G.

First of all,, events are selected from data and are expected to be affected by a number of back-
groundswhose entity can be reducedwith the selection, but not completely removed, since their kine-
matics partially overlaps with the signal spectra. Themain reducible backgrounds in this analysis are
muons from semileptonic decays of heavy flavour mesons and / decays to two muons, in case one
muonescapesdetection. Muons from, bosondecays to g arealsoconsideredasourceofbackground.
Minor reducible backgrounds, contributing to less than the percent level to the overall yield include
muons from BB̄ and single top, and diboson events: //,,, and,/. An accurate description of the
samples used, their calibrations and the event selection will be given in section 5.1, while details of
the treatment of the backgrounds will be extensively discussed in section 5.3.

The main step of this analysis is the construction of the signal templates, distributions of >) and [

of the muons used to unfold the cross sections of the, boson production described in Section 1.3.
This is done using a generator of, events decaying to muons. Distributions of muon >) and [ are
generated in bins of, ?) and G, for spherical harmonic according to Eq. 1.21. The angular coefficient
decomposition holds in the hypothesis of the vectorial nature of a, boson decaying to two fermions,
andwhile constructing the templates it is crucial to restore this regime. This allows to decouple the,
production from its decay products so that the information on, production is encoded in the value of
the angular coefficients and theunpolarised cross section in eachbin of ?) and G. Theprocedure intro-
duced in section 5.2, used to build the signal templates, is independent on the details of the generator
used in the simulation, therefore it is possible to unfold the double differential cross section of ?) and
G and the angular coefficients fitting the sum of signal and background templates to the distribution
of muon >) and [measured in data.

In this process, it is essential that the propagation of the generated muon inside the simulation of
the CMS detector is accurate enough, so that theoretical and experimental effects can be decoupled
using well calibrated templates. The fit is performed in the hypothesis that all differences between
data and simulation is due to, production, and this is ensured applying systematic uncertainty of
experimental origin to signal and background templates. In addition, some systematic uncertainties
of theoretical origin are applied to background templates.
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CHAPTER 5. MEASUREMENT OF, DIFFERENTIAL CROSS SECTIONS

5.1 Measured and simulated event samples

For this analysis events have been selected using a single muon trigger, corresponding to the logical
OR of multiple HLT paths. The paths used in this specific case require at least one loosely isolated
muon in the event, with some requirements on the track quality, >) > 24 GeV and |[| < 2.5.

Simulations of signal andbackgroundprocesses used throughout the analysis have been generated
with different Monte Carlo generators:

• POWHEG[81]withMiNNLO%([82, 83] interfacedwithPYTHIA8[79]andPHOTOS[80]hasbeenused
for, → `a,, → ga, / → `` and / → gg. For all these processes, this package provides a
description of the event kinematic accurate up to next-to-next-leading-order QCD corrections,
besides to the soft or collinear radiation included in the parton shower provided by PYTHIA8,
and leading-order electroweak corrections;

• POWHEG interfaced with PYTHIA8 has been used to generate BB̄ events;

• MC@NLO[85] to generate single top events;

• PYTHIA8 for diboson events: //,,, and,/.

All Monte Carlo samples have been processed through the full simulation of the CMS experiment
based on GEANT4[68] and reconstructed using the same algorithms used for data. A realistic detector
alignment is included in the simulation, as well as the simulated HLT paths used to select data. Sim-
ulation of in-time and out-of-time interactions (pile-up) is also included, and events are weighted so
that the number of reconstructed vertices of the simulation matches the one of the data.

During the first period of data taking in 2016, the tracker of CMS has been affected by a severe in-
efficiency in the strip modules. Due to the increased luminosity, the read-out chips have been experi-
encing deadtime after events depositing a large amount of charge (highly ionising particles) and this
caused the chips to become inefficient for a number of bunch crossing. As a result, hits were lost and
reconstructed tracks were shorter. This effect has finally been corrected with a tune of the “VFP” pa-
rameter. However, since the reconstruction conditions of data before and after the fix are different, the
2016 dataset has been divided in “preVFP” and “postVFP”. Dedicated simulations have been provided
with the inclusion of this effect, and both “preVFP” and “postVFP” simulations have been corrected
with the related efficiencies formuon identification, tracking, trigger and impact parameter described
in Section 2.5.2. ‘preVFP” and “postVFP” will be treated in the following as two different datasets and
fitted simultaneously.

Finally, the early 2016 dataset has been affected by themuon prefiring: due to a phase between the
ECAL read-out and the trigger, caused by radiation damage, an event can be assigned to the previous
bunch crossing (i.e. the trigger prefires). The rules of the trigger will then prevent this event to be
recorded resulting in a loss of efficiency. This effect has beenmeasured using a sample of unprefirable
eventsand theassessedprefiringprobabilityhasbeenused tocorrect thesimulation. All the simulated
events are weighted to match the integrated luminosity of the data sample.
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5.2. SIGNAL MODELLING

5.1.1 Event selection

, events are selected in data and simulated samples requiring exactly one identified muon in the
event, with 25 < >) < 65 GeV, |[| < 2.4 and with small impact parameters 3F G < 0.05 cm and
3H < 0.2cm. The latter isused tosuppress thecontributions fromQCDand top,wheremuonsdecaying
from b quarks can have large impact parameters. In addition, the identifiedmuonmust have fired the
trigger. At this stage of the analysis no requirements are made on muon isolation and on transverse
mass;) since all the events in the;) -isolation plane will contribute to the final fit.

5.1.2 Calibration of physics object

The selected events are then calibrated before being used for the measurement. Due to time con-
straints, we have not applied the calibration described in Chapter 4. Moreover, themissing transverse
energy is calibrated using the Jet Energy Corrections computed by CMS.

5.2 Signal modelling

The main step of the analysis is modelling the signal using the phenomenological prescriptions dis-
cussed in section 1.3.3. The goal is obtaining a series of templates of muon >) and [ to extract the
double differential cross section of, ?) , G and the angular coefficients, Eq. 1.21. Each template cor-
responds to one histogram of muon >) and [ in a bin of the ?) − G plane1 where all the muons have
decayed according to one angular decay mode described by one spherical harmonic. This is done in
two steps: first of all the simulation of the signal at generator level is used to derive theweights in each
?) and G bin needed to select one particular decay mode of the muon. Then, the weights are applied
one at a time to a distribution of muon >) and [ in a bin of ?) and G.

5.2.1 Derivation of weights for angular decaymodes

Weights are derived from a simulation of the signal at generator level with full acceptance. The char-
acteristics of the POWHEG and PHOTOS generators allow to select generatedmuons before final state
radiation: this is crucial in order to restore a regime of pure QCD where Eq. 1.21 holds. The angles \∗

and q∗ of these so defined preFSRmuons in the Collins-Soper frame are used to compute the value of
the angular coefficients in the ?) − G plane. This is done using the method of momenta proposed in
[86].

The momentum of 5 (\∗, q∗), for specific values of ?) and G is defined as:

〈 5 (\∗, q∗)〉 =
∫ 1
−1 3 cos \

∗
∫ 2c
0 3q∗ 5 (\∗, q∗)3f(\∗, q∗)∫ 1

−1 3 cos \
∗
∫ 2c
0 3q∗3f(\∗, q∗)

, (5.1)

1Since G is symmetric with respect to 0, due to the symmetry of the beams, only its absolute value will be considered in the
following.
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The value of each angular coefficient, �7 , can be extracted evaluating the momentum of the related
spherical harmonic:

〈1
2
(1 − 3 cos2 \∗)〉 = 3

20

(
�0 −

2
3

)
,

〈sin(2\∗) cosq∗〉 =1
5
�1,

〈1
2
sin2 \∗ cos(2q∗)〉 = 1

20
�2,

〈sin \∗ cosq∗〉 =1
4
�3,

〈cos \∗〉 =1
4
�4,

〈sin2 \∗ sin(2q∗)〉 =1
5
�5,

〈sin(2\∗) sinq∗〉 =1
5
�6,

〈sin \∗ sinq∗〉 =1
4
�7.

.
1
1

(5.2)

Thesemomenta are evaluated using the simulation, selecting events in bins of ?) and G and exchang-
ing integrals for sums. Figure 5.1 shows the results of these computations. The values of the angular
coefficients are plotted as a function of ?) and G. At leading order in U(,, has only longitudinal mo-
mentum, ?) = 0 and �4 is the only angular coefficient different from zero as a function of G. At O(U()
only �0, �1, �2, �3 and �4 are different from zero. Moreover, the Lam-Tung relation holds [87], stat-
ing that �0 = �2. At O(U2(), with which the plots in Figure 5.1 are produced, the Lam-Tung relation is
violated and �5, �6, �7 acquire a contribution from gluon loops, anyways they remain much smaller
than the other coefficients manifesting at O(U().

5.2.2 Construction of the signal templates

Using the values of the angular coefficients in the plane of ?) and G it is possible to construct the signal
templates. Given ?) and G, there is a 2:1 relation between cos \∗,q∗ andmuon >) and [, as discussed
in Section 1.3. Therefore, after selecting a bin of ?) and G, each histogram of muon >) and [ can be
reweighted according to:

E7 =
�7%7 (cos \∗, q∗)∑7

8=0 � 8% 8 (cos \∗, q∗) + 1 + cos2 \∗
. (5.3)

The function at the denominator
∑7

8=0 � 8% 8 (cos \∗, q∗) +1+cos2 \∗ is numerically equal to the differen-
tial cross section of ?) , G, cos \∗,q∗ and as a result it will remove any angular dependence of themuon
from the bosonmatrix element,making the distribution flat in the (cos \∗, q∗) plane. Then, the numer-
ator will morph the distribution according to the i-th spherical harmonic, normalised to the expected
number of events.

After reweighting with the weights derived on the whole phase space with full acceptace, the tem-
plates of muon >) and [ are constructed for each bin of ?) and G with the full simulation of the CMS
experiment using the same selection and reconstruction algorithms employed for data. The informa-
tion related to the, production is encoded in the normalisation of each template, whichwill be fitted
from data. The width of the bins of ?) and G is chosen to ensure that the dependence on the shape of
the underlying distributions affecting the templates is negligible, so that the only relic dependence on
the generator is the model used for final state radiation.

In order to have fully populated distributions, the signal templates are limited to the region ?) < 60
GeV and | G | < 2.4, where the acceptance is higher than 20%. A plot of the acceptance in,+ and,−

is shown in Figure 5.2. It encodes both the effects from geometrical acceptance and reconstruction
efficiency. We observe that the scale in the H axis of these plots goes up to about 0.5. The dominant
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Figure 5.1: The value angular coefficients extracted from the simulation of the signal at generator level at O(U2() as a function
of ?) and G.

effect in this computation is due to the acceptance in muon >) .

The events in the region of phase space ?) > 60 GeV or | G | > 2.4 are gathered in a single tem-
plate that will be considered a source of background. Figure 5.3 shows a collection of signal templates
obtained with this procedure.
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5.3 Backgroundmodelling

The background sources in this analysis can be divided in two categories. The first one contains the
prompt muons originating from electroweak processes (Drell-Yan, BB̄, single top and diboson produc-
tion) producing a single isolatedmuon in the signal region. the second category includes non-prompt
muons from heavy flavour decays in QCDmultijet events. These two classes of events are treated dif-
ferently in the analysis. The backgrounds of electroweak origin are well modelled by the Monte Carlo
simulations and can therefore be directly subtracted using this prediction. On the other hand, the con-
tribution from non-prompt muons from QCD multijet events is not well modelled in the simulation
and has to be estimated from data using the fake rate method.

5.3.1 The fake rate method

Let us consider the plane in phase space defined by the transverse mass ;) and the muon isolation.
These variables are uncorrelated in QCDmultijet events, therefore cuts can be applied to one of these
variables without affecting the other. We define four regions in this plane:

low;) isolated region (LI): ;) < 40 GeV and isolation< 0.15;

low;) anti-isolated region (LA): ;) < 40 GeV and isolation> 0.15;

high;) isolated region (HI): ;) > 40 GeV and isolation< 0.15;

high;) anti-isolated region (HA): ;) > 40 GeV and isolation> 0.15;
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Figure 5.2: Signal acceptance in the plane of, ?) and G, in the range considered in the fit, estimated using the,+ (Figure 5.2a)
and,− (Figure 5.2b).
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We will use these regions to define the fake rate as the background selection efficiency. The high;)

region is populatedby signal events,while the low;) region ismostly populatedbyQCDevents. Since
;) and isolation are uncorrelated for QCD events, the equivalence

fake rate =
#��

#�� + #��
=

#!�

#!� + #!�
(5.4)

holds. Therefore, it is possible to measure the fake rate in the low;) region and extrapolate it to the
high;) region, where most of the interesting events are located.

5.3.2 Estimation of the fake rate

We can obtain a rough estimate of the fake rate in the LI, LA and HA regions from data subtracting the
electroweak component using the prediction fromMonte Carlo. Then, using Eq. 5.4, we can compute
the number of QCD events in the HI region as:

#�� =
#!�

#!� + #!�
· (#�� + #��) (5.5)

While this procedure is not meant to obtain the ultimate measurement of the number of QCD events,
it allows to define a template to be used in the final fit, where the fake rate estimation will be allowed
to float and to be adjusted with the correct yields of the electroweak components fitted from data.

The fit is performed in 4-dimensions, with all the four regions contributing to theminimisation. This
allows to constrain the number of events due to QCDmultijets in situ. This is done with the following
procedure. Two sets of nuisance parameters are defined. The first set is allowed to change the normal-
isation of the QCD background independently in the low and high ;) region. In the second set, one
nuisance parameter per [ − >) bin is allowed to change the fake rate simultaneously in the low and
high ;) region, as per Eq. 5.4. These nuisance parameters do not make any constraint on the likeli-
hood and are freely-floating. This is done during the minimisation of the other parameters, therefore
the fit will automatically adjust the electroweak component that has to be subtracted from data in Eq.
5.4. In the end of the minimisation, the fit is expected to show a good agreement between data and
simulation in all the four regions.

5.3.3 Templates for backgrounds

Figure 5.4 shows the templates for the background processes obtained with the samples and selec-
tionsdescribed in Section 5.1, in theHI region. Figure 5.4f shows the template forQCDevents obtained
with Eq. 5.5 and used as input for the fit.

5.4 Systematic uncertainties

The predictions for the signal and background yields and kinematics are taken fromMonte Carlo sim-
ulations, as described in section 5.1. They are affected by systematic uncertainties of experimental
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Figure 5.4: Templates for the backgroundprocesses obtainedwith the samples and selections described in Section 5.1, in theHI
region. Figure 5.4a shows the template for the signal events falling outside the fit range. Figure 5.4b, 5.4c, 5.4d, 5.4e,5.4f show
respectively the templates for, to g, Drell-Yan, top, diboson and QCD processes.

and theoretical origin, which are taken into account in the measurement. In order for the fit to work
unbiasedly, it is of utmost importance that the simulation is well calibrated so that any discrepancy is
only due to the underlying, kinematics to be fitted. This will be guaranteed by assigning a correct
systematic to each ingredient.

5.4.1 Experimental systematic uncertainties

Jet Energy Corrections

Muon scale and resolution calibration

Efficiency Scale Factors The scale factors for efficiency described in Section 2.5.2 have statistical and
systematic uncertainties. The statistical uncertainty takes into account the size of the sample used for
thederivationof the efficiencieswhile the systematic uncertainty is obtainedwith analternative fitting
model. While the systematic uncertainty is taken to be fully correlated in the [->) plane, the statistical
uncertainty is decorrelated in bins of the same granularity as the efficiency derivation in [->) .

Trigger prefire correction
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CHAPTER 5. MEASUREMENT OF, DIFFERENTIAL CROSS SECTIONS

Luminosity The CMS experiment has measured the luminosity of the dataset used in this analysis
with an uncertainty of 1.2%. Since the overall normalisation of the simulated samples is based on the
value of the integrated luminosity, a systematic uncertainty of 1.2% on the total event yield of each
simulated sample has been considered.

5.4.2 Theoretical systematic uncertainties

While this analysis is designed to be insensitive to the, productionmodelled in the simulation, some
background processes can still show a small dependence on it. Therefore, systematics of theoretical
origin are applied as follows.

PDFs The simulated samples of, and / have been generated using NNPDF31[37]. This set is dis-
tributedwith102hessian variations, encodingalternative sets of PDFsandU(. Aspreviouslydiscussed,
the signal templates are not sensitive to the values of the PDFs used in the simulation. However, the
events which fall out from the boundaries defined for the fit range in ?) and G, gathered in the low
acceptance template, rely on the description of the PDFs in the simulation and therefore a systematic
uncertainty due to this effect will be applied in the fit, correlated in the [ − >) plane. The same uncer-
tainty is applied to, to g events and to Drell Yan events.

, and / transverse momentum As for the PDFs, the low acceptance,, to g and Drell Yan templates
depend on the underlying boson transverse momentum. An uncertainty accounting for this effect is
appliedusing the following recipeproposed in [49], thatmakesuseof the renormalisation (`') and fac-
torisation (`� ) scales. For the Drell Yan template, six alternative versions have been considered. The
sample has been reweighted multiplying `' and/or `� for a factor 2 or 0.5, discarding the extremal
cases to satisfy 0.5 ≤ `7/` 8 ≤ 2, as described in Ref. [88]. The low acceptance template and, to g

template have been reweighted in a more refined way, allowing the variation to describe a less con-
strained ?) dependence. The six scale variations have been split in three ?) bins each (low [0,5 GeV],
mid [5 GeV,15 GeV], high [15 GeV,∞]), and an alternative template is produced reweighting only the
events in the considered bins for the 6 MC scale variations, for a total of 18 variations. In both cases,
these systematic variations are taken fully correlated in the [ − >) plane.

Final state radiation

Electroweak background cross sections Anadditional uncertainty on the electroweak cross sections
of the background channels has been considered. All these uncertainties are fully correlated in the
[− >) plane. A 4% uncertainty has been considered for, to g to take into account the residual uncer-
tainty related to the lower leptonmomentum. A 6% and 16% uncertainty has been considered for top
and diboson channels, respectively, to take into account the theoretical uncertainties related to the
encoded cross section.
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5.5 Global Fit

The information synthetised in the signal andbackground templates is condensed in a global fit aimed
at unfolding the double differential cross section of ?) and G and the angular coefficients from the ob-
served distribution of muon >) and [. The fit is performed using an extended binnedmaximum likeli-
hood fit, independently for each, boson charge. The observed muon >) and [ distribution is fitted
to the sum of the templates of the signal and background processes in the four regions of the phase
space in ;) and isolation. The fit is allowed to modify the freely-floating signal strength modifiers
and to unfold the related cross section. Nuisance parameters associated to the systematic uncertain-
ties discussed in section 5.4 contribute to the minimisation and can act on the freely-floating signal
strength modifiers, on the fixed background strength modifiers, and to the unfolded cross sections.
Details of the technical implementation of the fit will be given in Section 5.5.2.

The results are presented in terms of the unfolded cross sections and angular coefficients. The
physics parametrisation of Eq. 1.21 has the disadvantage of not being linear in the fitted parameters,
since the angular coefficients show the unpolarised cross section in the denominator. For this reason,
the fit is performed using the decomposition in helicity cross sections presented in [39], which is in-
stead linear in the fitted parameters. Since there exists a one to one correspondence between helicity
cross sections and angular coefficients, the latter are computed after the fit using the full covariance
matrix.

Theadoptedprocedureallows toobtain the firstmeasurementof thedoubledifferential unpolarised
cross section of the, boson. Of notable interest are the integratedmeasurements of the, cross sec-
tion in rapidity and ?) with an uncertainty which is competitive with the state of the art calculations.
While the first has been recently published by CMS [49], the second is a totally new result which is im-
portant per se, and can also be used improve the measurement of ;, . This procedure also allows
to measure for time the first the angular coefficients as a function of, ?) and G but in this case the
precision is smaller and the purpose of including them in the fit is limited to the constrain in situ of
the degrees of freedom needed for an agnostic ;, measurement. Among the angular coefficients,
�4 plays a major role since it is the only onemanifesting at leading order and encodes the majority of
the dependence of the, production from the PDFs. In this Chapter, results for the unpolarised cross
section and for �4 are shown as a function of ?) and G and also integrated in one variable at a time.

The fit is performed in three different configurations. The simplest one is the fit to the “Asimov”
dataset, consisting in the sum of all the templates, normalised to match the data luminosity. In this
dataset the signal strength modifiers are all ones by definition, and no real minimisation takes place.
The central values and nuisance parameters are kept fixed to the prediction and the uncertainties are
propagated to the final results. This allows to check the consistency of the fittedmodel and the covari-
ance matrix and the estimation of the errors obtained with this procedure are representative of the
final uncertainties in the fit to real data.

A further step in the fit validation is defining an “Asimov” dataset changing the values of the sig-
nal strength modifiers and let the minimiser assess them. In this way, the unbiasedness of the fit can
be checkedwhile factorising the experimental effects on the templates from the theoretical ones. Ran-
domising thismodified ‘Asimov” datasetwith Poissonian fluctuations it is possible to show the robust-
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ness of the fit on many toy experiments.
Finally, the fit can be run on real data. For each fit configuration, the results will be presented in

terms of unfolded cross sections and angular coefficients.

5.5.1 Inputs to the global fit

The fit is performed on the four regions of ;) and isolation defined in section 5.3. In each region,
templates for signal andbackgroundprocesses are computed. The templates havebeenderivedusing
the analysis framework discussed in Chapter 3. For the signal, 7-dimensional histograms are used: [,
>) , charge, ;) , isolation, G and ?) , one for each helicity cross section. For the backgrounds and for
observeddata, 5-dimensional histogramsare used: [, >) , charge,;) and isolation. This configuration
allows to obtain all the templates for both charges and for all the four regions at the same time with
an extremely good performance, less than one hour in real world time.

These tensorial histograms are then converted to numpy arrays and projected along the [, >) , ;)

and isolation axes and fed to the fit. Each charge is fitted individually. After the projections, we have
6 times 8 signal templates for as many bins in G and ?) for each helicity cross section. G is binned
with equally-spaced bins from 0 to 2.4, while ?) is binned from 0 to 60 GeV with edges corresponding
to (0, 2, 3.7, 5., 6.3, 8, 9.8, 12, 15.2, 19, 24.5, 33.2, 60), chosen to equipopulate the bins. [ is binnedwith
48 equal bins from−2.4 to 2.4 and >) with 60 equal bins from 25 to 55GeV. These limits are defined by
the detector acceptance and efficiency and the bin size is limited by themuonmomentum resolution.
The bins in ;) and isolation are chosen to define the four regions of section 5.3: one bin between 0
and 40 GeV and one between 40 and 100 GeV in;) , and for the isolation one bin between 0 and 0.15
and one between 0.15 and 1.

In total, there are 432 processes for signal, 288 of which correspond to the helicity cross sections rel-
ative to �0, �1, �2, �3, �4 and the unpolarised cross section and are freely-floating, and the remnants,
the helicity cross section relative to �5, �6 and �7,ware treated as background and they are fixed to
prediction since the [−>) distribution in data is not sensitive to them, as discussed in section 1.3. One
process is dedicated to each electroweak background and two separated processes are defined for the
QCD background: one for the low;) region and one for the high;) region, defined as described in
section 5.3.

5.5.2 Technical implementation of the fit

The negative log-likelihood of the fit can be written as:

! = − ln (L(data|-, ))) =
nbins∑
7

(
<obs7 ln <exp

7
(-, )) + <

exp
7

(-, ))
)
+ 1
2

nuisances∑
9

(\9 − \09)
2,

<
exp
7

(-, )) =
processes∑

>

`><
exp
7,>

nuisances∏
9

^\9
7,>,9

. (5.6)
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The index 7 runs over the bins of the templates and <obs
7

is the number of observed events in each bin,
assuming independent Poisson distributions. The index > runs over the processes, <exp

7
is the number

of expected events per bin; <exp
7,>

is the number of expected events per bin per process; `> is the signal
strength modifier per signal process. The index 9 runs over the systematic uncertainties; \9 is the
associated nuisance parameter; ^7,>,9 is the size of the systematic uncertainty per bin, per process, per
nuisance.

The signal strengthmodifiers `> of the signal processes are freely floating in the fit and represent the
parameters of interest (POIs) of the fit. The signal strength modifiers for background processes are in-
stead fixed to unity. The systematic uncertainties have been implemented with log-normal variations
of of the yield <

exp
7,>

, with mean 0 and width equal to ln ^7,>,9 . With this choice, the nuisances result in a
multiplicative factor ^\9 on the event yields (with ^\9 = 1 before the fit). A unit Gaussian constraint to
\9 is added toL for each nuisance parameter.

The uncertainties and the covariancematrices for the POIs and the nuisance parameters are derived
from the Hessian of the likelihood at the minimum:

+−1
7, 8 = − m2!

mF7mF 8

��
®F= ®̂F ,

®F = {-, )},
(5.7)

where+−1 is the inverse of the covariancematrix of the POIs and the nuisance parameters and ®̂F is the
value of the parameters that maximises the likelihood.

The cross sections 2 are unfolded simultaneously to the POIs fit using the predicted cross sections
for each process. The fit is allowed to change the predicted cross sections through dedicated nuisance
parameters.

Technically, the fit hasbeen implementedwithin the frameworkofCombine, thepackagedeveloped
for the CMS Higgs measurements and widely used by the CMS analyses. The core of the fit, in term of
minimisation and errors propagation, has been written using TensorFlow. Its features, and in partic-
ular the efficient calculation of the gradients with the backpropagation, allowing for a semi-analytical
minimisation, guarantees theprecisionand robustnessneeded for this complex fit and it is particularly
critical in the non-convex region of the likelihood, where the usual minimisers fail. Moreover, the im-
plementation in TensorFlow allows the parallelisation of the fit and the optimisation of the memory
consumption. The fit can run on both CPUs and GPUs.

5.5.3 Systematic uncertainties

As discussed in section 5.4, systematic uncertainties of experimental and theoretical origin affect the
signal and background templates. They are implemented inside the fit as nuisance parameters of two
categories: nuisance parameters affecting the normalisation of the templates and nuisance parame-
ters affecting the shape of the templates. The normalisation uncertainties are fully correlated among
all[−>) bins,while the correlations in the shapeuncertainties aremodelleddependingon the system-
atic under examination. The summary of the systematics that have been taken into account is shown
in Table 5.1.
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Table 5.1: Systematic uncertainties considered in the fit for each source and each process. A log-normal nuisance parameter is
appliedwhere the explicit value is shown, and it represents the value of the ^ parameter. A shape nuisance parameter is applied
where ”shape” is reported. The total number of nuisance parameters per source is also reported.

Nuisance Signal //W∗ , → ga Top Diboson Low-acc. #nui.

Data Luminosity 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 1
f,→ga - - 4% - - - 1
fB - - - 6% - - 1
fdiboson - - - - 16% - 1
JES, �* shape shape shape shape shape shape 2
>
`
) scale shape shape shape shape shape shape 1

SFstat shape shape shape shape shape shape 144
SFsyst shape shape shape shape shape shape 1
L1 trigger prefire shape shape shape shape shape shape 1
PDF - shape shape - - shape 100
;, shape - - - - shape 1
?/) (MC Scale) - shape - - - - 6
?,) (MC Scale binned in ?,) ) - - shape - - shape 18

5.5.4 Expected results

In this Section, fit results on the “Asimov” dataset are shown. In Figure 5.5a the double differential
unpolarised cross section in as a function of, ?) and G, for,+ , unrolled in one dimension. The
related integratedplot in ?) as a function of G is shown in 5.5c and the integratedplot in G as a function
of ?) is shown in 5.5b.

In FigureC.8 the analogueplots for �4 are shown. Figure 5.7 andFigure 5.8 show the relatedplots for
,− . Since in the case of the expected results the central values are fixed to prediction, it is interesting
to analyse the fit uncertainties that represent a projection of the expected uncertainty when fitting
data. The uncertainties shown on data contain contributions of statistical and systematic origin. We
observe from Figure 5.5b and 5.7b that the fit precision in the first bins of ?) is of order of 3%, which is
better than the uncertainty band of the prediction, encoding the PDF uncertainty of NNPDF31 and the
QCDscale variationsof POWHEG-MiNNLO.Moreover, an additional uncertainty to thepredictionhas to
be accounted for non-perturbative effects which are not shown in the plotted band. As for Figure 5.5c
and 5.7c, the precision is of the order of 2%, which is comparable with the results of [49]. For what
concerns �4, the uncertainties are order of 200% as a function of ?) and below 40% as a function of G,
less precise than the prediction.

In the analysis of the uncertainties in the fit it is interesting to understand the contribution of each
group of nuisances to the total uncertainty of the double differential unpolarised cross section. One
group is defined for each of the normalisation and shape uncertainty source listed in Table 5.1. The
groups are mutually exclusive and cover all the systematic uncertainties considered in the analysis.
The impact of a group is the result of the combined variation of all the nuisance parameters within the
group. It is defined as:

�{\9 }� (`>) =
√
�)
>,�+

−1
� �>,� , (5.8)
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where+� is the subset of the covariancematrix correspondent to thenuisances of the group� and�>,�

is the covariancematrix between `% and the nuisances of the group. An additional group is defined for
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Figure 5.7: Placeholders for,− .
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the statistical uncertainty, estimated from the covariancematrixwithout systematic uncertainties, but
using post-fit nuisance parameters values. The uncertainty derived summing the group impacts can
differ from the total uncertainty on the POIs because this neglects the correlations among different
groups.

Figure 5.9a shows the relative impact due to each group of nuisance to each bin of the double differ-
ential unpolarised cross section in,+ . It canbeobserved that the bulk of the uncertainty is due to the
statistical error and to the statistics of the simulation, varying from about 1% to 10%. These two con-
tributions are expected to be similar since the number of events in the simulation is of the same order
as the data. Among the other systematics, the uncertainty from luminosity dominates and amounts
to sub-percent to about 5%.

Extending the concept of group impacts to include other POIs, it is possible to compute the contri-
bution to the total uncertainty of the double differential unpolarised cross section from the angular
coefficients. This is shown in Figure 5.9b, from which we can observe that the other angular coeffi-
cients contribute to the total uncertainty of the unpolarised cross section with similar fractions. This
can be considered a breakdown of the statistical uncertainty shown in Figure 5.9a. These single frac-
tions can be higher than the total uncertainty since, as mentioned before, the correlations among the
the various coefficients are neglected to single out each contribution. Nonetheless, it is evident that
the the highest contribution to the total uncertainty is given by the angular coefficients rather than the
nuisance parameters in the fit.

This can be understood analysing the correlations among the fitted parameters. The correlation
matrix of the unpolarised cross sections and the angular coefficients is shown for,+ in Figure 5.10.
Each block of the matrix gathers all the fitted bins in the ?) and G plane unrolled in the same logic as
Figure 5.5a and C.8. The matrix for,− looks very similar.

There are two kind of patterns that we can observe. Within the single blocks related to one coeffi-
cient or to the unpolarised cross section, there is a clear pattern of anticorrelation in the neighbouring
?) bins in the samebin of G. Milder correlation patterns are also visible between the same ?) bin of dif-
ferent G bins. Theorigin of these correlations canbe tracedback to the characteristics of the templates

0 10 20 30 40 50
-3

-2

-1

0

1

A 4 prediction
pseudo data

0 10 20 30 40

0

2

(a)

0 10 20 30 40 50 60-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

A 4 pdf uncertainty
qcd scale uncertainty
pseudo data

0 10 20 30 40 50 60
qT (GeV)

0

1

2

da
ta

/p
re

di
ct

io
n

(b)

0.0 0.5 1.0 1.5 2.0 2.5-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

A 4 pdf uncertainty
pseudo data

0.0 0.5 1.0 1.5 2.0 2.5
y

0.5

1.0

1.5

da
ta

/p
re

di
ct

io
n

(c)

Figure 5.8: Placeholders for,− .
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involved in the fitting procedure. Templates of nearby G and ?) bins compete for the same region in
the [ and >) plane, since they change smoothly as a function of G and ?) , even overlapping partially.
On the other hand we can also observe correlations among different coefficients. This kind of pattern
can be understood looking at the contour of the various templates. In some regions of the [ and >)

plane, templates relative to different angular coefficients can show a very similar contour, therefore
the fit is not able to completely decouple the two.

The large (anti-)correlations will propagate on the fit result inflating the final uncertainties on the
parameters. This explains the high impacts to the unpolarised cross section from the other angular
coefficients. Moreover, the degeneracy of the templates can produce anomalous high-frequency oscil-
lations in the predicted distributions. In practice, the correlations are spread-out across multiple bins
and when integrating over either ?) or G, this effect is largely diluted and suppressed.

5.5.5 Validation on pseudo data

Before fitting real data, a further validation step can be done in order to demonstrate that the fit result
has no dependence on the generator that has been used to prepare the signal templates. A “pseudo
data” sample is constructed in the followingway, using,+ . Thesignal simulationhasbeen reweighted
to another prediction obtained using MC@NLO. Then, the backgrounds are also added, without any
reweighting or modification. These pseudo data are then randomised and fitted in place of the real
data against the templates built in Section 5.2. The starting values of the nuisance parameters are
also randomised.

This simplified procedure allows to test the unbiasedness of the fit while decoupling the experimen-
tal systematic effects, which are identical in the templates and in the pseudo data by construction,
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from the theoretical ones. Therefore, the fit is performed keeping only the systematics of theoretical
origin. Themuon [ and >) distribution of the pseudodata obtainedwith this procedure, togetherwith
the input templates is shown in Figure 5.14, for postVFP channel. Figure 5.14a shows the unrolled dis-
tribution in thewhole planewhile Figure 5.14b and 5.14c show the integrated distribution, fromwhich
it can be appreciated the small deviation from 1 in the ratio panel due to the mismatched underlying
, kinematics. The same distributions are displayed using post-fit values in Figure 5.15: with the,
differential cross sections unfolded from data, the agreement in [ and >) is restored.

Figure 5.16 shows the result of the fit for the unpolarised cross section for one toy experiment: un-
rolled in Figure 5.16a, integrated in ?) as a function of G is shown in 5.16c and the integrated plot in G

as a function of ?) is shown in 5.16b. The “true” value of the unpolarised cross section used to build
the pseudo data is displayed with a blue line. All the data points agree within 1f with its true value.

5.5.6 Final results

Figure 5.10
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(a)

(b) (c)

Figure 5.11: .

(a)
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Figure 5.12: .
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Figure 5.13: .
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Figure 5.14: Placeholder for data.
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(a)

(b) (c)

Figure 5.15: Placeholder for data.
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Figure 5.16: Placeholder for data.
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Chapter 6

Assessment of the uncertainty on, mass

The phenomenological procedure described in Section 1.3 and its experimental realisation presented
in Chapter 5 have allowed a precise measurement of the, production and especially, ?) . These
measurements provide the necessary degrees of freedom to constrain the, production inside the
detector acceptance whenmeasuring the, mass.

The experimental setup described in Chapter 5 enables for a simultaneous measurement of the,
differential cross sections and mass with limited technical modifications. Signal templates as a func-
tion of variousmass hypotheses have alreadybeenproduced to treat the, mass as a nuisanceparam-
eter. A measurement of the, mass can be performed removing its constraint on the likelihood and
leaving it freely-floating in the fit. Moreover,,+ and,− can be fitted simultaneously to get a single
value of;, .

Before disclosing the fitted result on data, the toy study presented in Section 5.5.5 will be repeated
to demonstrate that the fit is able to measure the, production andmass with no bias.

6.1 Validation on pseudo data

6.2 Final results

(a) (b) (c)

Figure 6.1: Placeholder for data.
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(a)

Figure 6.2: Placeholder for data.
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Appendix A

Effect of material in the track momentum reso-
lution

Consider the tracker of length 2! shown in Figure A.1. There are 2# measuring layers equally spaced
and there is nomaterial, with the exception of a scattering layer positioned in themiddle. If the mate-

Figure A.1: Cartoon illustrating the correlation betweenmultiple scattering and spatial hit resolution on themomentum resolu-
tion.

rial in the scattering layer is negligible, the scattering can be ignored and the momentum resolution
f>) />) of this tracker only contains the contribution from the hit resolution 4.8:(

f>)

>)

)2
<= ;0B

= >2)
f

0.3�
1
4!2

√
720

2# + 5 . (A.1)

The other limiting case is when the angle \0 in the scattering layer is large compared to f/!. In this
case the measurement of the momentum in the first and second half of the tracker are not correlated
and the resulting momentum resolution is simply 1/

√
2 of the momentum resolution computed with

one half of the tracker: (
f>)

>)

)2
;0B

=
1
√
2
>2)

f

0.3�
1
!2

√
720
# + 5 (A.2)
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The ratio between the two limiting cases is:(
f>)
>)

)2
;0B(

f>)
>)

)2
<= ;0B

=
4
√
2

√
2# + 5
# + 5 ∼ 4 (A.3)

In the general case, when the scattering angle \ is comparable to f/! the momentum resolution is
given by an expression that contains the correlation between the scattering angle and the position
resolution.
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Appendix B

Explicit computationofbias in trackparameters
due to non-uniform flaws in the trajectory

Wemake an explicit calculation of the bias in track parameters due to non-uniform flaws in the trajec-
tory in a simple case of amultiplicative bias � ' 1 + � to the track curvature 9. We assume that on the
transverse plane a track can be parametrised as a parabola. In the first half of the trajectory we have:

G = 3F G + qF + 1
2d

F2, (B.1)

where d = 1/0.3�9 is the radius of curvature of the track in terms of the assumed uniform magnetic
field �. In the second half of the trajectory:

G = 3F G + qF + �

2d
F2 (B.2)

Here F and G are the coordinates along and perpendicular to the track and the parameters 3F G, q and
d are found by minimising the relative j2. Following the procedure of the minimisation of the j2, the
best fit track parameters ®H =

(
3 ′
F G , q

′, d′
)
and the covariance matrix of the fitted parameters+ is:

®H = (%) (+ G G)−1%)−1%)+ G G−1 ®G (B.3)

+ = (%) (+ G G)−1%)−1 (B.4)

where+ G G is the covariance matrix of the measurements G7 : +
G G
7 8

=< G7 G 8 >.
For the sake of this calculation, wewill assume a detector of five uniformly spaced layers. Using the

general formula in Eq. 4.6 we can compute+ G G for this simplified case:

+5
G G =

©­­­­­­­«

f2 0 0 0 0
0 1

16X
292!2 + f2 1

8X
292!2 3

16X
292!2 1

4X
292!2

0 1
8X

292!2 5
16X

292!2 + f2 1
2X

292!2 11
16X

292!2

0 3
16X

292!2 1
2X

292!2 7
8X

292!2 + f2 5
4X

292!2

0 1
4X

292!2 11
16X

292!2 5
4X

292!2 15
8 X

292!2 + f2

ª®®®®®®®¬
(B.5)

In the notationwe are using, the scattering angle \0 is expressed as X9 tomake the dependence on the
curvature 9 explicit. f is the resolution of the single hit and ! is the length of the track in the tranverse
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plane. In this simplification, we will assume that the hit resolution andmaterial are the same for each
layer.

In case of a uniform bias � on the curvature 9, i.e. choosing eq. B.2 for the whole trajectory, the
values of the track parameters at the minimum of the j2 are:

3
C<7 5
F G = 0

qC<7 5 = 0

dC<7 5 =
1

0.3��9
=

d

�
,

(B.6)

then 9C<7 5 = � ·9. If the bias is only inserted in the second part of the trajectory, the values of the track
parameters that minimise the j2 are instead:

3 ′
F G =

X2�0.3�93!4 − X20.3�93!4

160
(
X292!2 + 80f2

) +
3
(
X2�0.3�93!4 − X20.3�93!4

)
560

(
3X292!2 + 560f2

) − 9(� − 1)0.3�9!2
1120

q′ = −
3
(
X2�0.3�93!3 − X20.3�93!3

)
40

(
X292!2 + 80f2

) + X20.3�93!3 − X2�0.3�93!3

7
(
3X292!2 + 560f2

) − 13
560

(� − 1)0.3�9!

1
2d′

=
X2�0.3�93!2 − X20.3�93!2

7
(
3X292!2 + 560f2

) + 1
28

(15� − 1)0.3�9

(B.7)

We observe from Eq B.7 that all the track parameters are embedded in a complex expression depen-
denton9. In the limit� → 1all theparameters areunbiased,while in the limitX → 0, i.e. no scattering
on the layers, Eq B.7 tends to Eq. B.6 and the regime of uniform bias is restored. Therefore, the root of
the extra functions of 9 in Eq B.7 with respect to Eq. B.6 is due to the off-diagonal terms of + G G origi-
nating frommultiple scattering. Studying the formula for the bias in 9 in Eq B.7 we can make we can
make some further observations:

9′

9
= 2X2!292

� − 1
7
(
3X292!2 + 560f2

) + 1
14

(15� − 1)

= 1 + 2X2!292 � − 1
7
(
3X292!2 + 560f2

) + 1
14

(15� − 1) − 14
14

= 1 + 5 · 10−4 · X2 !
2

f2
92

� − 1(
0.05 · X2 !2

f2
92 + 1)

)
︸                                             ︷︷                                             ︸

non-uniform bias

+ 15
14

(� − 1)︸      ︷︷      ︸
uniform bias

,

(B.8)

where we have decoupled the contributions originating from uniform and non uniform biases along
the trajectory. In this expression the pure numbers are linked to choice of the geometry encoded in
%, while X, ! and f are properties of the detector. To make a realistic case, in CMS we can choose
X ' 0.013 GeV

√
0.1, ! ' 1m and f ' 50`m, so that:

X
!

f
' 80 GeV.
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Plugging these numbers in Eq. B.8, we can make a plot of the ratio between the non-uniform and uni-
form contributions as a function of 9, in Figure B.1. From Eq. B.8, it is clear that themultiplicative bias
� cancels in the ratio. Therefore, the relative importance of the two terms is only given by the prop-
erties of the detector under study. In the case that we have considered, the value of the non-uniform
contribution with respect to the simple uniform is about 2% at 0.2 GeV−1, corresponding to 5 GeV and
it grows to about 1% at 1 GeV−1.
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Figure B.1: Plot of the ratio between the non-uniform and uniform contributions as a function of 9.

Doing a partial fraction decomposition of Eq. B.8, the bias on the curvature can be reduced to the
form: ∑

:

67:

1 + 32
:
92

(B.9)

with the index : running over the number of layers minus 3 and 7 is the index of the track parameter
and runs from 1 to 3. We highlight that the terms 3: do not have the index 7 since they are in common
to all the parameters.

Let us now compute the 3x3 covariance matrix of the track parameters using Eq. B.4:
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APPENDIX B. EXPLICIT COMPUTATION OF BIAS IN TRACK PARAMETERS DUE TO NON-UNIFORM FLAWS IN THE TRAJECTORY

With calculation analogous to Eq. B.8, we observe that the elements of the covariancematrix can be
reduced to the form:

�7 8 = 07 89
2 + 27 8 +

∑
:

57 8:9
2

1 + 32
:
92

, (B.11)

with the index : running over the number of layers minus 3 and 7, 8 are the index of the matrix. We
observe here that the 3: are the same numbers as in B.9.
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Appendix C

Additionalmaterial fordifferential cross sections
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APPENDIX C. ADDITIONAL MATERIAL FOR DIFFERENTIAL CROSS SECTIONS

0 10 20 30 40 50
-6

-4

-2

0

2

4A 2 prediction
aMC@NLO
pseudo data

0 10 20 30 40

0

500

(a)

0 10 20 30 40 50 60-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

A 2 aMC@NLO
pdf uncertainty
qcd scale uncertainty
pseudo data

0 10 20 30 40 50 60
qT (GeV)

-2500

0

2500

da
ta

/p
re

di
ct

io
n

(b)

0.0 0.5 1.0 1.5 2.0 2.5-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

A 2 aMC@NLO
pdf uncertainty
pseudo data

0.0 0.5 1.0 1.5 2.0 2.5
y

-20

0

da
ta

/p
re

di
ct

io
n

(c)

Figure C.3: .

0 10 20 30 40 50
-2

-1

0

1

2

A 3 prediction
aMC@NLO
pseudo data

0 10 20 30 40
-200

0

(a)

0 10 20 30 40 50 60-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

A 3 aMC@NLO
pdf uncertainty
qcd scale uncertainty
pseudo data

0 10 20 30 40 50 60
qT (GeV)

-100

0

da
ta

/p
re

di
ct

io
n

(b)

0.0 0.5 1.0 1.5 2.0 2.5-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

A 3 aMC@NLO
pdf uncertainty
pseudo data

0.0 0.5 1.0 1.5 2.0 2.5
y

-50

0

50

da
ta

/p
re

di
ct

io
n

(c)

Figure C.4: .

0 10 20 30 40 50

-1

0

1

2

3

A 0 prediction
aMC@NLO
pseudo data

0 10 20 30 40
-50

0

(a)

0 10 20 30 40 50 60-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

A 0 aMC@NLO
pdf uncertainty
qcd scale uncertainty
pseudo data

0 10 20 30 40 50 60
qT (GeV)

-20

0

20

da
ta

/p
re

di
ct

io
n

(b)

0.0 0.5 1.0 1.5 2.0 2.5-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

A 0 aMC@NLO
pdf uncertainty
pseudo data

0.0 0.5 1.0 1.5 2.0 2.5
y

-2.5

0.0

2.5

da
ta

/p
re

di
ct

io
n

(c)

Figure C.5: .

98



0 10 20 30 40 50
-3

-2

-1

0

1

2

3

4A 1 prediction
aMC@NLO
pseudo data

0 10 20 30 40
-100

0

100

(a)

0 10 20 30 40 50 60-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

A 1 aMC@NLO
pdf uncertainty
qcd scale uncertainty
pseudo data

0 10 20 30 40 50 60
qT (GeV)

-50

0

da
ta

/p
re

di
ct

io
n

(b)

0.0 0.5 1.0 1.5 2.0 2.5-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

A 1 aMC@NLO
pdf uncertainty
pseudo data

0.0 0.5 1.0 1.5 2.0 2.5
y

-10

0

10

da
ta

/p
re

di
ct

io
n

(c)

Figure C.6: .

0 10 20 30 40 50
-6

-4

-2

0

2

4A 2 prediction
aMC@NLO
pseudo data

0 10 20 30 40

0

500

(a)

0 10 20 30 40 50 60-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

A 2 aMC@NLO
pdf uncertainty
qcd scale uncertainty
pseudo data

0 10 20 30 40 50 60
qT (GeV)

-2500

0

2500

da
ta

/p
re

di
ct

io
n

(b)

0.0 0.5 1.0 1.5 2.0 2.5-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

A 2 aMC@NLO
pdf uncertainty
pseudo data

0.0 0.5 1.0 1.5 2.0 2.5
y

-20

0

da
ta

/p
re

di
ct

io
n

(c)

Figure C.7: .

0 10 20 30 40 50
-2

-1

0

1

2

A 3 prediction
aMC@NLO
pseudo data

0 10 20 30 40
-200

0

(a)

0 10 20 30 40 50 60-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

A 3 aMC@NLO
pdf uncertainty
qcd scale uncertainty
pseudo data

0 10 20 30 40 50 60
qT (GeV)

-100

0

da
ta

/p
re

di
ct

io
n

(b)

0.0 0.5 1.0 1.5 2.0 2.5-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

A 3 aMC@NLO
pdf uncertainty
pseudo data

0.0 0.5 1.0 1.5 2.0 2.5
y

-50

0

50

da
ta

/p
re

di
ct

io
n

(c)

Figure C.8: .

99





Acknowledgements

101





Bibliography

[1] S. L. Glashow, “Partial-symmetries of weak interactions”, Nuclear Physics 22, 579–588 (1961)
http://dx.doi.org/10.1016/0029-5582(61)90469-2.

[2] A. Salam and J. Ward, “Electromagnetic and weak interactions”, Physics Letters 13, 168–171
(1964) http://dx.doi.org/10.1016/0031-9163(64)90711-5.

[3] S.Weinberg, “AModel of Leptons”, Phys. Rev. Lett.19, 1264–1266 (1967)10.1103/PhysRevLett.
19.1264.

[4] S. Weinberg, “Effects of a Neutral Intermediate Boson in Semileptonic Processes”, Phys. Rev. D
5, 1412–1417 (1972) 10.1103/PhysRevD.5.1412.

[5] P. Higgs, “Broken symmetries, massless particles and gauge fields”, Physics Letters 12, 132–133
(1964) http://dx.doi.org/10.1016/0031-9163(64)91136-9.

[6] P. W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons”, Phys. Rev. Lett. 13, 508–509
(1964) 10.1103/PhysRevLett.13.508.

[7] F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge Vector Mesons”, Phys. Rev.
Lett. 13, 321–323 (1964) 10.1103/PhysRevLett.13.321.

[8] M. Martinez et al., “Precision tests of the electroweak interaction at the Z pole”, Rev. Mod. Phys.
71, 575–629 (1999) 10.1103/RevModPhys.71.575.

[9] U. Collaboration, “Experimental observation of isolated large transverse energy electrons with
associated missing energy at s=540 GeV”, Physics Letters B 122, 103–116 (1983) https://doi.
org/10.1016/0370-2693(83)91177-2.

[10] UA2, “Observation of Single Isolated Electrons of High Transverse Momentum in Events with
Missing Transverse Energy at the CERN anti-p p Collider”, Phys. Lett. B 122, 476–485 (1983) 10.
1016/0370-2693(83)91605-2.

[11] UA1, “Experimental Observation of LeptonPairs of InvariantMass Around 95-GeV/c2 at the CERN
SPS Collider”, Phys. Lett. B 126, 398–410 (1983) 10.1016/0370-2693(83)90188-0.

[12] UA2, “Evidence for /0 → 4+4− at the CERN >̄> Collider”, Phys. Lett. B 129, 130–140 (1983) 10.
1016/0370-2693(83)90744-X.

[13] “Precisionelectroweakmeasurementson theZ resonance”, PhysicsReports427, 257–454 (2006)
https://doi.org/10.1016/j.physrep.2005.12.006.

[14] “Observation of Top Quark Production in pp Collisions with the Collider Detector at Fermilab”,
Phys. Rev. Lett. 74, 2626–2631 (1995) 10.1103/PhysRevLett.74.2626.

103

https://doi.org/http://dx.doi.org/10.1016/0029-5582(61)90469-2
https://doi.org/http://dx.doi.org/10.1016/0031-9163(64)90711-5
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1103/PhysRevD.5.1412
https://doi.org/http://dx.doi.org/10.1016/0031-9163(64)91136-9
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/RevModPhys.71.575
https://doi.org/https://doi.org/10.1016/0370-2693(83)91177-2
https://doi.org/https://doi.org/10.1016/0370-2693(83)91177-2
https://doi.org/10.1016/0370-2693(83)91605-2
https://doi.org/10.1016/0370-2693(83)91605-2
https://doi.org/10.1016/0370-2693(83)90188-0
https://doi.org/10.1016/0370-2693(83)90744-X
https://doi.org/10.1016/0370-2693(83)90744-X
https://doi.org/https://doi.org/10.1016/j.physrep.2005.12.006
https://doi.org/10.1103/PhysRevLett.74.2626


BIBLIOGRAPHY

[15] “Observation of the Top Quark”, Phys. Rev. Lett. 74, 2632–2637 (1995) 10.1103/PhysRevLett.
74.2632.

[16] T. C. Collaboration, “Observation of a new boson at amass of 125 GeV with the CMS experiment
at the LHC”, Physics Letters B 716, 30–61 (2012) http://dx.doi.org/10.1016/j.physletb.
2012.08.021.

[17] T. A. Collaboration, “Observation of a new particle in the search for the Standard Model Higgs
boson with the ATLAS detector at the LHC ”, Physics Letters B 716, 1–29 (2012) http://dx.doi.
org/10.1016/j.physletb.2012.08.020.

[18] CMS, “Measurement of the weak mixing angle using the forward-backward asymmetry of Drell-
Yan events in pp collisions at 8 TeV”, Eur. Phys. J. C 78, 701 (2018) 10.1140/epjc/s10052-018-
6148-7.

[19] J. Haller et al., “Update of the global electroweak fit and constraints on two-Higgs-doubletmod-
els”, The European Physical Journal C 78, 675 (2018) 10.1140/epjc/s10052-018-6131-3.

[20] ATLAS, “Measurement of the top quark mass in the BB̄ → lepton+jets channel from
√
A = 8 TeV

ATLAS data and combination with previous results”, Eur. Phys. J. C 79, 290 (2019) 10 . 1140 /
epjc/s10052-019-6757-9.

[21] “Measurement of the top quark mass using proton-proton data at
√
(A) = 7 and 8 TeV”, Phys.

Rev. D 93, 072004 (2016) 10.1103/PhysRevD.93.072004.

[22] ATLAS, “Measurement of the,-boson mass in pp collisions at
√
A = 7 TeV with the ATLAS de-

tector”, Eur. Phys. J. C 78, [Erratum: Eur.Phys.J.C 78, 898 (2018)], 110 (2018) 10.1140/epjc/
s10052-017-5475-4.

[23] CDF, D0, “Tevatron Run II combination of the effective leptonic electroweakmixing angle”, Phys.
Rev. D 97, 112007 (2018) 10.1103/PhysRevD.97.112007.

[24] “Combined Measurement of the Higgs Boson Mass in >> Collisions at
√
A = 7 and 8 TeV with the

ATLAS and CMS Experiments”, Phys. Rev. Lett. 114, 191803 (2015) 10.1103/PhysRevLett.114.
191803.

[25] M. Davier et al., “Reevaluation of the hadronic vacuum polarisation contributions to the Stan-
dardModel predictions of themuon 6−2 andU(;2

/) using newest hadronic cross-section data”,
Eur. Phys. J. C 77, 827 (2017) 10.1140/epjc/s10052-017-5161-6.

[26] A. e. a. Abada, “FCC Physics Opportunities”, The European Physical Journal C 79, 474 (2019).

[27] P. Janot andS. Jadach, “ImprovedBhabha cross section at LEP and thenumber of light neutrino
species”, Phys. Lett. B 803, 135319 (2020) 10.1016/j.physletb.2020.135319.

[28] G. Voutsinas et al., “Beam-beam effects on the luminosity measurement at LEP and the num-
ber of light neutrino species”, Phys. Lett. B 800, 135068 (2020) 10.1016/j.physletb.2019.
135068.

[29] ALEPH Collaboration, “Measurement of the W boson mass and width in 4+4− collisions at LEP”,
Eur. Phys. J. C 47, 309–335 (2006) 10.1140/epjc/s2006-02576-8.

104

https://doi.org/10.1103/PhysRevLett.74.2632
https://doi.org/10.1103/PhysRevLett.74.2632
https://doi.org/http://dx.doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/http://dx.doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/http://dx.doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/http://dx.doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1140/epjc/s10052-018-6148-7
https://doi.org/10.1140/epjc/s10052-018-6148-7
https://doi.org/10.1140/epjc/s10052-018-6131-3
https://doi.org/10.1140/epjc/s10052-019-6757-9
https://doi.org/10.1140/epjc/s10052-019-6757-9
https://doi.org/10.1103/PhysRevD.93.072004
https://doi.org/10.1140/epjc/s10052-017-5475-4
https://doi.org/10.1140/epjc/s10052-017-5475-4
https://doi.org/10.1103/PhysRevD.97.112007
https://doi.org/10.1103/PhysRevLett.114.191803
https://doi.org/10.1103/PhysRevLett.114.191803
https://doi.org/10.1140/epjc/s10052-017-5161-6
https://doi.org/10.1016/j.physletb.2020.135319
https://doi.org/10.1016/j.physletb.2019.135068
https://doi.org/10.1016/j.physletb.2019.135068
https://doi.org/10.1140/epjc/s2006-02576-8


BIBLIOGRAPHY

[30] DELPHI, “Measurement of theMass andWidth of the, Boson in 4+4− Collisions at
√
A = 161-GeV

- 209-GeV”, Eur. Phys. J. C 55, 1–38 (2008) 10.1140/epjc/s10052-008-0585-7.

[31] T. L. Collaboration, “Measurement of the mass and the width of the W boson at LEP”, The Euro-
pean Physical Journal C - Particles and Fields 45, 569–587 (2006).

[32] “PreciseMeasurementof the,-BosonMasswith theCDF IIDetector”,Phys.Rev. Lett.108, 151803
(2012) 10.1103/PhysRevLett.108.151803.

[33] “Measurement of the, Boson Mass with the D0 Detector”, Phys. Rev. Lett. 108, 151804 (2012)
10.1103/PhysRevLett.108.151804.

[34] LHCb, “Measurement of the, bosonmass”, (2021), arXiv:2109.01113 [hep-ex].

[35] L. A. Harland-Lang et al., “Parton distributions in the LHC era: MMHT 2014 PDFs”, The European
Physical Journal C 75, 204 (2015).

[36] R. D. Ball et al., “Parton distributions for the LHC run II”, Journal of High Energy Physics 2015, 40
(2015).

[37] R. D. Ball et al., “Parton distributions from high-precision collider data”, The European Physical
Journal C 77, 663 (2017).

[38] T.-J. Hou et al., “New CTEQ global analysis of quantum chromodynamics with high-precision
data from the LHC”, Phys. Rev. D 103, 014013 (2021) 10.1103/PhysRevD.103.014013.

[39] E. Mirkes, “Angular decay distribution of leptons from W-bosons at NLO in hadronic collisions”,
Nucl. Phys. B 387, 3–85 (1992) 10.1016/0550-3213(92)90046-E.

[40] J. C. Collins and D. E. Soper, “Angular distribution of dileptons in high-energy hadron collisions”,
Phys. Rev. D 16, 2219–2225 (1977) 10.1103/PhysRevD.16.2219.

[41] T. C. collaboration, “Measurement of the transverse momentum spectra of weak vector bosons
produced in proton-proton collisions at $$ \sqrt{s}=8 $$TeV”, Journal of High Energy Physics
2017, 96 (2017).

[42] ATLAS Collaboration, “Measurement of the transverse momentum distribution of, bosons in
>> collisions at

√
A = 7 TeVwith the ATLAS detector”, Phys. Rev. D 85, 012005 (2012) 10.1103/

PhysRevD.85.012005.

[43] J. Collins et al., “Transversemomentumdistribution in Drell-Yan pair andWandZboson produc-
tion”, Nucl. Phys. B 250, 199–224 (1985) https://doi.org/10.1016/0550-3213(85)90479-
1.

[44] S. Catani et al., “Universality of non-leading logarithmic contributions in transverse-momentum
distributions”,Nucl. Phys.B596, 299–312 (2001)https://doi.org/10.1016/S0550-3213(00)
00617-9.

[45] W. Bizoń et al., “The transverse momentum spectrum of weak gauge bosons at N3LL + NNLO”,
The European Physical Journal C 79 (2019) 10.1140/epjc/s10052-019-7324-0.

[46] V. Bertacchi, “Towards a simultaneous measurement of, boson mass and production proper-
ties with the CMS detector”, Presented 23 Jul 2021 (2021), https://cds.cern.ch/record/
2776894.

105

https://doi.org/10.1140/epjc/s10052-008-0585-7
https://doi.org/10.1103/PhysRevLett.108.151803
https://doi.org/10.1103/PhysRevLett.108.151804
https://arxiv.org/abs/2109.01113
https://doi.org/10.1103/PhysRevD.103.014013
https://doi.org/10.1016/0550-3213(92)90046-E
https://doi.org/10.1103/PhysRevD.16.2219
https://doi.org/10.1103/PhysRevD.85.012005
https://doi.org/10.1103/PhysRevD.85.012005
https://doi.org/https://doi.org/10.1016/0550-3213(85)90479-1
https://doi.org/https://doi.org/10.1016/0550-3213(85)90479-1
https://doi.org/https://doi.org/10.1016/S0550-3213(00)00617-9
https://doi.org/https://doi.org/10.1016/S0550-3213(00)00617-9
https://doi.org/10.1140/epjc/s10052-019-7324-0
https://cds.cern.ch/record/2776894
https://cds.cern.ch/record/2776894


BIBLIOGRAPHY

[47] E. Manca et al., “About the rapidity and helicity distributions of the W bosons produced at LHC”,
Journal of High Energy Physics 2017, 130 (2017).

[48] Z. Bern et al., “Left-handed, bosons at the LHC”, Phys. Rev. D 84, 034008 (2011) 10.1103/
PhysRevD.84.034008.

[49] CMS Collaboration, “Measurements of the W boson rapidity, helicity, double-differential cross
sections, and charge asymmetry in pp collisions at

√
A = 13 TeV”, Phys. Rev. D 102 (2020) 10.

1103/physrevd.102.092012.

[50] T. A. Collaboration, “The ATLAS Experiment at the CERN Large Hadron Collider”, Journal of In-
strumentation 3, S08003 (2008), http://stacks.iop.org/1748-0221/3/i=08/a=S08003.

[51] T.C.Collaboration, “TheCMSexperimentat theCERNLHC”, Journalof Instrumentation3, S08004
(2008), http://stacks.iop.org/1748-0221/3/i=08/a=S08004.

[52] T. L. Collaboration, “The LHCbDetector at the LHC”, Journal of Instrumentation 3, S08005 (2008),
http://stacks.iop.org/1748-0221/3/i=08/a=S08005.

[53] T.A.Collaboration, “TheALICEexperimentat theCERNLHC”, Journalof Instrumentation3, S08002
(2008), http://stacks.iop.org/1748-0221/3/i=08/a=S08002.

[54] M. Bachtis and S. Dasu, “Heavy Neutral Particle Decays to Tau Pairs in Proton Collisions at
√
A =

7TeVwith CMS at the CERN LargeHadron Collider”, PhD thesis (CERN, 2012), http://cds.cern.
ch/record/1462018.

[55] B. Mangano and L. Foa, “The CMS Tracker: contributions to hardware integration, software de-
velopment and first data taking”, PhD thesis (Scuola Normale Superiore, SNS, 2013), http://
cds.cern.ch/record/1558329.

[56] T. T. G. of the CMS Collaboration, The CMS Phase-1 Pixel Detector Upgrade, 2020, arXiv:2012 .
14304 [physics.ins-det].

[57] W. Adam et al., Track Reconstruction in the CMS tracker, tech. rep. CMS-NOTE-2006-041 (CERN,
Geneva, 2006), https://cds.cern.ch/record/934067.

[58] V. Blobel, “A new fast track-fit algorithm based on broken lines”, Nuclear Instruments and Meth-
ods inPhysicsResearchSectionA: Accelerators, Spectrometers, Detectors andAssociatedEquip-
ment 566, TIME 2005, 14–17 (2006) https://doi.org/10.1016/j.nima.2006.05.156.

[59] V. Blobel et al., “Fast alignment of a complex tracking detector using advanced track models”,
ComputerPhysicsCommunications182, ComputerPhysicsCommunicationsSpecial Edition for
Conference on Computational Physics Trondheim, Norway, June 23-26, 2010, 1760–1763 (2011)
https://doi.org/10.1016/j.cpc.2011.03.017.

[60] A. Rizzi, “TheEvolutionofAnalysisModels forHL-LHC”, EPJWebofConferences245, 11001 (2020)
10.1051/epjconf/202024511001.

[61] I. Antcheva et al., “ROOT — A C++ framework for petabyte data storage, statistical analysis and
visualization”, Computer Physics Communications 180, 2499–2512 (2009).

[62] E. Manca and E. Guiraud, Using RDataFrame, ROOT’s declarative analysis tool, in a CMS physics
study, https://indico.cern.ch/event/849610/.

106

https://doi.org/10.1103/PhysRevD.84.034008
https://doi.org/10.1103/PhysRevD.84.034008
https://doi.org/10.1103/physrevd.102.092012
https://doi.org/10.1103/physrevd.102.092012
http://stacks.iop.org/1748-0221/3/i=08/a=S08003
http://stacks.iop.org/1748-0221/3/i=08/a=S08004
http://stacks.iop.org/1748-0221/3/i=08/a=S08005
http://stacks.iop.org/1748-0221/3/i=08/a=S08002
http://cds.cern.ch/record/1462018
http://cds.cern.ch/record/1462018
http://cds.cern.ch/record/1558329
http://cds.cern.ch/record/1558329
https://arxiv.org/abs/2012.14304
https://arxiv.org/abs/2012.14304
https://cds.cern.ch/record/934067
https://doi.org/https://doi.org/10.1016/j.nima.2006.05.156
https://doi.org/https://doi.org/10.1016/j.cpc.2011.03.017
https://doi.org/10.1051/epjconf/202024511001
https://indico.cern.ch/event/849610/


BIBLIOGRAPHY

[63] O. e. a. Aberle, High-Luminosity Large Hadron Collider (HL-LHC): Technical design report, CERN
Yellow Reports: Monographs (CERN, Geneva, 2020), 10.23731/CYRM-2020-0010.

[64] G. Petrucciani et al., “Mini-AOD: A New Analysis Data Format for CMS”, 664, 072052 (2015).

[65] Rizzi, Andrea et al., “A further reduction in CMS event data for analysis: the NANOAOD format”,
EPJ Web Conf. 214, 06021 (2019).

[66] C. R. H. et al., “Array programming with NumPy”, Nature 585, 357–362 (2020) 10.1038/s41586-
020-2649-2.

[67] CMS Collaboration,W-likemeasurement of the Z bosonmass using dimuon events collected in pp
collisions at

√
A = 7 TeV, tech. rep. (CERN, Geneva, 2016), https://cds.cern.ch/record/

2139655.

[68] S. A. et al., “Geant4 simulation toolkit”, Nuclear Instruments and Methods in Physics Research
SectionA:Accelerators, Spectrometers,DetectorsandAssociatedEquipment506, 250–303 (2003)
https://doi.org/10.1016/S0168-9002(03)01368-8.

[69] A. et al., “Geant4developmentsandapplications”, IEEETransactionsonNuclearScience53, 270–
278 (2006) 10.1109/TNS.2006.869826.

[70] J. A. et al., “Recent developments in Geant4”, Nuclear Instruments and Methods in Physics Re-
search Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 835, 186–
225 (2016) https://doi.org/10.1016/j.nima.2016.06.125.

[71] J. Marion and B. Zimmerman, “Multiple scattering of charged particles”, Nuclear Instruments
and Methods 51, 93–101 (1967) http://dx.doi.org/10.1016/0029-554X(67)90367-9.

[72] R. Gluckstern, “Uncertainties in track momentum and direction, due to multiple scattering and
measurementerrors”,Nuclear InstrumentsandMethods24, 381–389 (1963)https://doi.org/
10.1016/0029-554X(63)90347-1.

[73] ParticleDataGroup, “Reviewof Particle Physics”, Chin. Phys.C38, 090001 (2014)10.1088/1674-
1137/38/9/090001.

[74] T. C. collaboration, “Alignment of the CMS tracker with LHC and cosmic ray data”, Journal of
Instrumentation 9, P06009–P06009 (2014) 10.1088/1748-0221/9/06/p06009.

[75] W. Hulsbergen, “The global covariance matrix of tracks fitted with a Kalman filter and an appli-
cation in detector alignment”, Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment 600, 471–477 (2009) https:
//doi.org/10.1016/j.nima.2008.11.094.

[76] E. Manca, “Validation of the muon momentum resolution in view of the W mass measurement
with the CMS experiment”, PhD thesis (INFN, Pisa, 2016).

[77] Particle Data Group, “Review of Particle Physics”, PTEP 2020, 083C01 (2020) 10.1093/ptep/
ptaa104.

[78] “Dimuon spectrum 2016”, (2016), https://cds.cern.ch/record/2212114.

[79] T. Sjöstrand et al., “An Introduction toPYTHIA 8.2”, Comput. Phys. Commun. 191, 159–177 (2015).

107

https://doi.org/10.23731/CYRM-2020-0010
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://cds.cern.ch/record/2139655
https://cds.cern.ch/record/2139655
https://doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1109/TNS.2006.869826
https://doi.org/https://doi.org/10.1016/j.nima.2016.06.125
https://doi.org/http://dx.doi.org/10.1016/0029-554X(67)90367-9
https://doi.org/https://doi.org/10.1016/0029-554X(63)90347-1
https://doi.org/https://doi.org/10.1016/0029-554X(63)90347-1
https://doi.org/10.1088/1674-1137/38/9/090001
https://doi.org/10.1088/1674-1137/38/9/090001
https://doi.org/10.1088/1748-0221/9/06/p06009
https://doi.org/https://doi.org/10.1016/j.nima.2008.11.094
https://doi.org/https://doi.org/10.1016/j.nima.2008.11.094
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://cds.cern.ch/record/2212114


BIBLIOGRAPHY

[80] P. Golonka and Z. Was, “PHOTOS Monte Carlo: a precision tool for QED correctionsin Z and W
decays”, Eur. Phys. J. C 45, 97–107 (2006).

[81] P. Nason, A Newmethod for combining NLO QCD with shower Monte Carlo algorithms, 2004.

[82] P. F. Monni et al., “MiNNLOPS: a new method to match NNLO QCD to parton showers”, Journal
of High Energy Physics 2020 (2020) 10.1007/jhep05(2020)143.

[83] P. F. Monni et al., “MiNNLOPS: optimizing 2 → 1 hadronic processes”, Eur. Phys. J. C 80, 1075
(2020) 10.1140/epjc/s10052-020-08658-5.

[84] J. Bradbury et al., JAX: composable transformations of Python+NumPy programs, version 0.2.5,
2018, http://github.com/google/jax.

[85] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential
cross sections, and their matching to parton shower simulations”, J. High Energy Phys. 07, 079
(2014).

[86] E. Mirkes and J. Ohnemus, “W and Z polarization effects in hadronic collisions”, Phys. Rev. D 50,
5692–5703 (1994).

[87] C. S. Lam andW.-K. Tung, “Systematic approach to inclusive lepton pair production in hadronic
collisions”, Phys. Rev. D 18, 2447–2461 (1978).

[88] R. Gauld et al., “Precise predictions for the angular coefficients in Z-boson production at the
LHC”, J. High Energy Phys. 2017 (2017).

108

https://doi.org/10.1007/jhep05(2020)143
https://doi.org/10.1140/epjc/s10052-020-08658-5
http://github.com/google/jax

	The quest for the missing piece of the puzzle
	Innovating a long standing tradition
	The electroweak sector of the Standard Model
	Precision measurements as a tool for discovery
	A precision measurement of the W mass

	W mass measurement: an innovative proposal
	Dependence of pT on PDFs
	Dependence on W transverse momentum and polarisation
	How to measure the W boson production


	The CMS experiment at LHC
	The Large Hadron Collider
	Phenomenology of pp collisions
	The CMS experiment
	Overview of the detector
	Trigger

	The tracking system of CMS
	The CMS tracker in a nutshell
	Algorithms for track reconstruction

	Muons in CMS
	Muon system
	Muon reconstruction


	Tools for high performance computing for data analysis
	The need for parallelism in data analysis
	RDataFrame, a swiss-army knife for data manipulation

	Optimised high performance analyses in CMS
	CMS data formats
	RDataFrame-based Analysis Framework
	Future prospects


	High precision calibration of the muon momentum scale
	Bias in the track parameters in a dense silicon tracking detector
	Correlation terms in track momentum resolution
	Correlation terms in track momentum scale
	Extracting correlation terms from track covariance matrix

	Continuous Variable Helix fit for Generalized Global Corrections
	A model for the bias of momentum scale originating from detector physics
	Extracting corrections from the invariant mass of dimuon resonances
	Measured and simulated event samples
	Fit to the invariant mass of J/ψ and Z 

	Effects due to muon momentum resolution in the calibration
	Measurement of the muon momentum resolution

	Calibration of muon momentum scale
	Closure of the momentum scale calibration

	Measurement of W differential cross sections
	Measured and simulated event samples
	Event selection
	Calibration of physics object

	Signal modelling
	Derivation of weights for angular decay modes
	Construction of the signal templates

	Background modelling
	The fake rate method
	Estimation of the fake rate
	Templates for backgrounds

	Systematic uncertainties
	Experimental systematic uncertainties
	Theoretical systematic uncertainties

	Global Fit
	Inputs to the global fit
	Technical implementation of the fit
	Systematic uncertainties
	Expected results
	Validation on pseudo data
	Final results


	Assessment of the uncertainty on W mass
	Validation on pseudo data
	Final results

	Effect of material in the track momentum resolution
	Explicit computation of bias in track parameters due to non-uniform flaws in the trajectory
	Additional material for differential cross sections
	Acknowledgements
	Bibliography

