
ATL-PHYS-PUB-2021-011

ATLAS PUB Note

September 6, 2021

Evaluating statistical uncertainties and correlations
using the bootstrap method

The ATLAS Collaboration

The bootstrap method is a powerful technique to evaluate the statistical uncertainty of a
measurement and correlations between bins. This method uses a set of replicas of the nominal
dataset, derived by introducing Poisson perturbations corresponding to statistical fluctuations.
Each replica is then analyzed in the same way as the nominal dataset to arrive at a set of replica
measurements. The statistical uncertainty and correlations can then be extracted from these
replica measurements. This note describes a version of the bootstrap method suitable for data
analysis in high energy physics and provides an associated software implementation. Various
applications are discussed, such as determining the statistical error on systematic uncertainties.
A novel feature of the provided software is that the fluctuations that generate the bootstrap
replicas are deterministic. This makes it is possible to evaluate statistical correlations between
measurements that are using fully or partially overlapping input data, even if the associated
analyses are performed by different teams, or years apart.

[06-09-2021] Updated link to published BootstrapGenerator software to point to permanent
Zenodo DOI.

© 2021 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

Contents

1 Introduction 2

2 Nomenclature 3

3 Description of method 4
3.1 Description of method 4
3.2 Example 1: Calculation of the statistical uncertainties for an unfolded measurement 5
3.3 Example 2: Propagation of control or signal region uncertainties 5
3.4 Example 3: Propagation of uncertainties in an unbinned fit 6
3.5 Example 4: Correlation between multiple measurements 6
3.6 Example 5: Statistical uncertainty on systematics 6

4 Implementation 6
4.1 BootstrapGenerator 7
4.2 TH1Bootstrap and derived classes 7
4.3 TH1Bootstrap initialisation 8
4.4 TH1Bootstrap filling 8
4.5 TH1Bootstrap manipulation 9
4.6 TH1Bootstrap statistical error and correlations 10

5 How to cite 12

6 Conclusion 12

Appendix 14

A Example 14

1 Introduction

Rigorous evaluation of statistical uncertainties in particle physics measurements and searches can be a
challenging task. These kinds of analyses are often complex, and many involve non-trivial procedures such
as propagation of statistical uncertainties across different subsets of the data or through detector-correction
procedures. Complications in evaluating statistical uncertainties and correlations arise due to partial
correlation of events in related measurements, the migration of events between bins, and in general the
breakdown of the assumption of Gaussian behaviour in low-statistics regions. In such cases, the usual
formulae used to calculate statistical uncertainties may become unreliable, or too complex to propagate (for
example, through procedures like Iterative Bayesian Unfolding [1]).

This note presents a method based on the Bootstrapping technique [2, 3], which provides a reliable approach
to propagating and evaluating statistical uncertainties, and which was first used by ATLAS in Ref. [4].
With this method, pseudo-experiments are generated in a coherent way such that it is possible to evaluate
statistical correlation amongst measurements performed by different analyses. Tools have been developed
within the ATLAS collaboration that extend the usual ROOT histogramming classes to formalise the use

2

of this method. Since these tools are of general use, the collaboration is making these tools public. The
software is available on Zenodo at the link given by Ref. [5]. This is the companion note for these tools. It
explains the method and describes its software implementation.

The note is structured as follows. First, a glossary of the nomenclature used in this note is provided in
Section 2. Second, the method is explained qualitatively in Section 3, along with examples of potential
applications of the method. Third, the details of how the method is implemented in the newly-released
public code is explained in Section 4. Finally, a detailed example of how the code can be used are is given
in Appendix A.

2 Nomenclature

For maximal clarity, and to minimise ambiguities or confusion, we begin the note with a glossary of the
terms used in the rest of the note.

• Ensemble: a set of replicas for a given event or dataset. See Replica.

• Measurement: in this note, a measurement refers to the calculation of the value of an observable or
parameter of interest, and the related uncertainties. For example, the event yield of a given bin of
a differential cross-section measurement should be understood as a separate measurement in this
context.

• Nominal: the nominal event is taken to be the raw, unmodified event from a data or simulation
sample, before the application of the Bootstrap method. The set of nominal events taken together
is the nominal dataset. The nominal analysis refers to the set of operations performed using the
nominal events leading to the nominal measurement of some observable. One may speak of a
nominal histogram to mean a histogram filled with nominal events.

• Pseudo-dataset: see Replica.

• Pseudo-experiment: see Replica.

• Pseudo-random number: A pseudo-random number is a number generated in a quasi-random way
by a computer programme. Although these are colloquially referred to as “random”, they in fact do
repeat after a long period, and are reproducible given a particular seed. As such, they are properly
called pseudo-random.

• Replica: a replica is a “copy” of the nominal dataset that contains its own unique statistical
fluctuations. In this note, each replica dataset contains all the events of the nominal dataset, but
each event has been assigned a unique and deterministically-generated weight sampled from a
Poisson distribution with a mean of unity. A replica may also be referred to as a pseudo-dataset
or pseudo-experiment. A set of N replica datasets together is referred to as an ensemble of replica
datasets, pseudo-datasets or pseudo-experiments. Colloquially, the word toy can be used to refer to
these concepts, although it may refer to either the replica dataset or the measurement performed using
the replica depending on the context. The replica analysis refers to the set of operations performed
using a given ensemble of replica events leading to a replica measurement of some observable. One
may speak of a replica histogram to mean a histogram filled with the corresponding replica events.

3

• Seed: the seed of a pseudo-random number generator is a value (or set of values) that is given to the
generator to initialise it. Seeds are used to guarantee reproducibility. For a given initialising set
of seeds, the sequence of pseudo-random numbers produced by the generator will always be the
same. In this note, three seeds (corresponding to event number, run number and sample number for
simulation) are used to uniquely but reproducibly initialise the pseudo-random number generator for
each event, when generating the Poisson weights for the ensemble of replica events.

• Toy: see Replica.

3 Description of method

3.1 Description of method

For a given analysis, events from a statistical process are collected to form a dataset. This dataset is
subsequently analyzed to perform a measurement. The bootstrap method can be thought of as considering
alternative datasets otherwise collected under the same conditions, i.e. datasets that might have been
collected in parallel universes. As defined in Section 2, such alternative datasets are referred to as replica
datasets, and lead to corresponding replica measurements.

In the original bootstrap method [2, 3], each pseudo-dataset is created by sampling Nnom events with
replacement from the nominal dataset, where Nnom is the number of events in the nominal dataset. This
results in an ensemble of pseudo-datasets that all have the same size. This does not reflect the reality of
collider experiments, where the size of the dataset is itself a Poisson variable. Hence, a common approach
is to instead sample a unique weight for each event from a Poisson distribution with a mean of unity. A
weight of 0, which occurs with 36.8% probability, effectively removes an event from the dataset, while a
weight of e.g. 3 (6.1% probability) would correspond to the event being selected 3 times. The size of the
resulting replica datasets will follow a Poisson distribution with mean Nnom, since sums of independent
Poisson variables is a Poisson variable with mean equal to the sum of means (Pois(N) ∼

∑N
i=1 Pois(1)). This

approach also has a computational advantage since one can create a whole ensemble of pseudo-datasets
in a single loop through the nominal dataset by sampling a vector of Poisson weights for each event,
corresponding to the different replicas.

The method employed by ATLAS (see Ref. [5] for link to associated software) assigns a unique and
deterministic Poisson weight for each event and replica that is based on the event number and an index of
the associated replica dataset. As a consequence, complex statistical correlations between two different
analyses that use partially overlapping datasets can be fairly easily evaluated as the replica datasets will
contain the same statistical fluctuation for the shared events. This applies to all features extracted from the
dataset, division, subtraction, likelihood fits, and so on. If the measurement concerns multiple objects
within an event (for example jet production rates), then all objects from a given event will correctly be
treated as fully correlated.

For example, consider the ratio r̂ = â/b̂ between two measurements â and b̂, performed with partially
overlapping data. The nominal measurement r̂0 is performed using the nominal dataset, while a series of
bootstrap measurements are performed using an ensemble of pseudo-experiments. A replica measurement
r̂i = âi/b̂i is performed using replica datasets i. In such replica measurements, the shared evens have
the same fluctuations away from the nominal dataset, which will affect the measurements coherently:
in the same direction if the measurements are positively correlated or in opposite direction if they are

4

anti-correlated. The distribution of measurements r̂i can be treated as the probability distribution function
of r̂ and an uncertainty on this quantity can be derived from this distribution, e.g. from its standard deviation
if appropriate.

Furthermore, using the ensemble of bootstrap replicas, it is possible to evaluate the statistical covariance
between any two observables a and b according to

COV(a, b) =
1

Nrep

Nrep∑
i=0
(ai − ā)(bi − b̄), (1)

where Nrep is the number of bootstrap replicas, and ai and bi are the measured values of the observables
in bootstrap replica i. The variance of a, which is often taken as the square of its statistical uncertainty,
is obtained from Eq. 1 by setting b = a, i.e. σa =

√
COV(a, a) and in the same way σb =

√
COV(b, b).

Similarly, the correlation between the measurements is given by ρab = COV(a, b)/(σa σb).

Further reading on this method can be found in Refs. [6] and [7]. The bootstrap implementation that is
described in this note was first employed by the ATLAS collaboration in jet cross-section measurements
at 7 TeV [4], 8 TeV [8] and 13 TeV [9], where the method was used to propagate statistical uncertainties
through the particle-level unfolding procedure, and evaluate the statistical correlations between different
measurements. It has also been used in jet calibration and performance studies, such as Refs. [10]
and [11].

Specific examples that may help in understanding how the method operates and the situations where it can
be useful are given in the follow sub-sections.

3.2 Example 1: Calculation of the statistical uncertainties for an unfolded measurement

Measurements of particle-level differential cross-sections have correlations between bins due to event
migrations between the bins (at the unfolding step), but also due to the fact that it is possible to have several
histogram entries per event. These cases are correctly handled by the replica histograms, if the unfolding is
performed separately for each replica. In the Refs. [8] and [9], an ensemble of 10000 replicas was used to
calculate a covariance matrix for the inclusive jet cross-section in each jet rapidity bin. The total statistical
uncertainty was obtained from the covariance matrix, where bin-to-bin correlations were also encoded.
The separate contributions from the data and from the MC statistics were obtained from the same procedure
by fluctuating only either the data or the simulated events. Furthermore, an overall covariance matrix was
constructed to describe the full statistical covariance among all analysis bins.

3.3 Example 2: Propagation of control or signal region uncertainties

In many analyses, one or several control regions are used to evaluate a background process in a so-called
signal or search region. It is most often quite cumbersome to propagate the effect of statistical uncertainties
in the control region(s) into the signal region. The bootstrap method is very useful in this situation as it
stores replica histograms for each distribution. The full analysis is repeated for each replica, including
determining the transfer factors (or likelihood fit). This leads to a slightly different constraint on the
signal or search region for each replica, which in turn yields the propagated statistical uncertainty on the
final measurement. Similarly, if a search has overlapping signal regions, these are not always statistically
combined due to the difficulty in evaluating correlation from the shared events between regions. The

5

exclusion from the most sensitive region is often chosen in such cases, which weakens the final result since
information from other regions is thrown away. With the bootstrap method one could use all the signal
regions since the correlations from the overlapping events are correctly accounted for.

3.4 Example 3: Propagation of uncertainties in an unbinned fit

This method can also be used for an unbinned fit, where the fit is repeated for each replica. While the
BootstrapGenerator class (see Section 4.1) can be used to deterministically seed the pseudo-random
generation of numbers, we do not delve deeper into this possibility as this note concentrates on the
implementation of the method in histograms, which are binned by definition.

3.5 Example 4: Correlation between multiple measurements

Since each event has a unique seed determined by run/event/sample number, one can fill different
distributions and get the same fluctuations in their replica histograms. This means that a given event will be
associated with a particular set of fluctuations, regardless of which histogram(s) are filled with it. Therefore,
different measurements, potentially made by different teams, which use a subset of the same events, would
fluctuate their objects in the same way for those events. This allows the calculation of cross-correlations, or
correlations between different measured spectra, either within the same analysis or different one. Indeed, if
the replica histograms are preserved and published, a post-hoc assessment of the statistical cross-correlation
of different measurements is possible. There are already examples of ATLAS measurements that have
preserved their replica histograms in their HEPData entries, such as Refs. [12] and [13].

3.6 Example 5: Statistical uncertainty on systematics

When evealuating a systematic uncertainty, a histogram filled using a nominal calibration is often divided
by a histogram filled using the same sample but an alternative calibration, resulting in a relative systematic
uncertainty. Often, the corresponding bins in each histogram are filled with many of the same events,
the correlation must be taken into account when evaluating the statistical uncertainty on their ratio. By
generating replicas for the nominal histogram and systematic histogram, and dividing the synchronized
replicas, the proper statistical uncertainty—including correlations—can be found by simply calculating
the standard deviation of replica measurements for each histogram bin. This information is particularly
useful as an input when smoothing the systematic uncertainty shape, as was done for example in Refs. [10]
and [11].

4 Implementation

The ROOT data analysis package is ubiquitous in the HEP community, so the Bootstrap method was
implemented as an extension to the ROOT histogramming classes in C++. The ROOT classes have a
Python interface called PyROOT. The additional Bootstrap classes are similarly integrated into PyROOT.
The code for these additional Bootsrap objects is collected in Ref. [5], and the implementation is discussed
below.

6

4.1 BootstrapGenerator

The BootstrapGenerator class is the one that sets the pseudo-random number seed and generates
the pseudo-random numbers used to fill the replica histograms in the Bootstrap method. In order to be
integrated into the ROOT framework, the BootstrapGenerator class inherits from the generic ROOT
classes TNamed, like most other ROOT objects. It also inherits from TArrayI, in order to efficiently store
arrays of integers.

The key BootstrapGenerator member variables are:

• fNReplica: this is an integer that stores the number of Bootstrap replica histograms to use in the
Bootstrap method (usually of the order of 1000);

• fSeeds: an array of integers storing the seeds to use when generating pseudo-random numbers;

• fStoch: a pointer to a StochasticLib2 object, an external C++ pseudo-random number generator
class;

• fArray: inherited from the TArrayI, an array of integers storing the pseudo-randomly generated
numbers;

The BootstrapGenerator class has several constructors that set these member variables, populating
them either with default values or those provided as arguments, and initialises the pseudo-random number
generator. There are also dedicated setter and getter methods to manipulate the member variables, although
the user should not need to do so in most cases.

The method that does the heavy lifting in the BootstrapGenerator class is the Generatemethod, which
takes the event’s run number and event number as unsigned integer inputs. If one is using the Bootstrap
method on MC simulation, and additional integer may be provided that corresponds to the sample number
of the simulated sample (since MC samples may use the same run and event numbers). The method collects
this set of integers and uses them to set the seed of the pseudo-random number generator. In this way, each
event of any data or MC sample is assigned a unique, reproducible seed. Then, an array of size equal to the
number of replica histograms fNReplica, which houses the relevant pseudo-random numbers drawn from
a Poisson distribution with rate parameter equal to 1.

The pseudo-random numbers are then unique for a given set of run, event and channel numbers. They are
used to fluctuate the amount by which each replica histogram is filled, as described below.

4.2 TH1Bootstrap and derived classes

In this section and hereafter we will focus on the TH1Bootstrap class, but TH2Bootstrap and
TH3Bootstrap classes are also implemented, which behave exactly the same as their one-dimensional
counterparts.

The most common type of histogram used in ROOT is the TH1 class, which presents one-dimensional
histograms. It has derived classes TH1F and TH1D that represent histograms where the x-axis values
are stored as C++ float and double values respectively. These objects are referred to collectively as
TH1* objects hereafter. The implementation of the Bootstrap method described here seeks to create
versions of these classes that automatically apply the Bootstrap method, with very little change in usage

7

1 // Initialisation using a BootstrapGenerator
2 nrep = 1000; //number of replicas
3 auto gen = new BootstrapGenerator("Gen", "Gen", nrep);
4 auto reco_hist1 = new TH1DBootstrap("reco_hist1", "", 10, 0, 10, nrep, gen);
5 auto reco_hist2 = new TH1DBootstrap("reco_hist2", "", 10, 0, 10, nrep, gen);
6

7 // Initialisation without a BootstrapGenerator
8 auto truth_hist = new TH1DBootstrap("truth_hist", "", 10, 0, 10, nrep)

Listing 1: An example of how TH1Bootstrap objects are initialised either with an explicit BootstrapGenerator
object which can be shared between TH1DBootstrap instances or with an implicit internal BootstrapGenerator.

for the user compared to the TH1* classes. They are referred to as TH1Bootstrap, TH1FBootstrap and
TH1DBootstrap (or TH1*Bootstrap collectively).

The TH1Bootstrap class is the base class from which TH1FBootstrap and TH1DBootstrap inherit. It
forward-declares the methods of TH1FBootstrap and TH1DBootstrap, and has member variables for
the number of replica histograms and the associated BootstrapGenerator object (see Section 4.1) that
generates the pseudo-random Poisson numbers that affect the replica histograms.

4.3 TH1Bootstrap initialisation

The Bootstrap histogram classes are effectively wrappers around regular ROOT histogram objects. The
“main” histogram, which takes the place of the TH1* object the user would be used to, is referred to as the as
the “Nominal” histogram and is a member variable of the corresponding TH1*Bootstrap class (accessed
by a dedicated GetNominal() method). In addition to the nominal histogram, the Bootstrap histogram
classes have an array of other TH1* objects, which represent the replica histograms. These normally do not
need to be individually manipulated by the user, but can be accessed by GetReplica(int iReplica)
method. When a new TH1*Bootstrap object is created, the nominal and all replica histograms are all
initialised at once with the binning specified by the user.

Each TH1Bootstrap object may either create its own BootstrapGenerator object on initialisation, or
one may specify a particular instance of BootstrapGenerator when constructing a TH1Bootstrap. The
latter option is preferred, since it’s more efficient in terms of memory use, and simplifies the Fill method
described below.

The typical constructor for a TH1Bootstrap object would therefore be: TH1Bootstrap(const char
*name, const char *title, int nreplica, BootstrapGenerator *boot = nullptr), where
if the final BootstrapGenerator argument is left empty, a dedicated object will be created, and the user
is responsible for passing the event, run and sample numbers to the object each time it is filled. Example
pseudo-code that show how these objects are initialised can be found in Listing 1, with a more complete
example in Appendix A.

4.4 TH1Bootstrap filling

In the simplest case, TH1*Bootstrap objects use the set of pseudo-random Poisson values already
generated by their BootstrapGenerator object to fill the replica histograms. This means that the

8

1 // number of replica histograms to use, with common BootstrapGenerator
2 int nrep = 1000; // number of replicas
3 auto gen = new BootstrapGenerator("Gen", "Gen", nrep);
4

5 // Book bootstrap objects that use the above generator
6 auto reco_hist = new TH1DBootstrap("reco_hist", "", 10, 0, 10, nrep, gen);
7 auto truth_hist = new TH1DBootstrap("truth_hist", "", 10, 0, 10, nrep, gen);
8

9 for (int i = 1; i < nevent; i++) { // for each event...
10

11 //(...)
12

13 // The next line generate the random Poisson weights for the current event
14 // nrep random weights are produced , one for each bootstrap replica
15 gen->Generate(/*run number*/ 12345, /*event number*/ i, /*sample number if MC*/

6789);
16

17 // The Poisson weights can be accessed using GetWeight().
18 int bsWeight5 = gen->GetWeight(5); // Poisson weight for BS replica 5
19

20 // Fill the bootstrap objects, which access the pseudo-random
21 // numbers from the associated BootstrapGenerator under the hood
22 // where particle and trutParticle are some four-momenta for reco-level
23 // and particle -level particles...
24 reco_hist ->Fill(particle.Pt(), 1.0);
25 truth_hist ->Fill(truthParticle.Pt(), 1.0);
26

27 //(...)
28 }

Listing 2: An example of how TH1Bootstrap objects are filled using a common BootstrapGenerator object.

associated Generate() method should be called for each event (setting the unique seed with event, run
and sample numbers), before filling any Bootstrap histograms, via the usual Fill(double x,double
w) method. If the TH1Bootstrap was not associated to a particular BootstrapGenerator upon
initialisation, one should also specify the run, event and sample numbers when filling so that the
internal BootstrapGenerator may set the correct seed: Fill(double x, double w, unsigned
int RunNumber, unsigned int EventNumber, unsigned int mcChannelNumber).

In either case, when filling a Bootstrap histogram, the set of pseudo-random Poisson integers is accessed
from the BootstrapGenerator. The fill is executed separately for each replica histogram, but unlike the
nominal that is filled once, the replica histograms are filled according to the pseudo-random integers from
the array. This means the replica histograms may be filled with weight 0, 1 or more depending in the value
of the random integer. Examples of pseudo-code showing how to fill a TH1Bootstrap can be found in
Listings 2 and 3, with a more complete example in Appendix A.

4.5 TH1Bootstrap manipulation

The TH1Bootstrap classes also come with implementations of the usual methods for histogram manipula-
tion that ROOT users would expect: AddBinContent(), Add(), Multiply(), Divide(), Scale(),
Rebin()... are all implemented, and apply these operations to the nominal histogram, but also to each

9

1 // Althernatively , don’t specify a generator in which case one will be made
2 // behind the scenes, but you’ll need to provide extra information when filling
3 int nrep = 1000; // number of replicas
4 auto other_hist = new TH1DBootstrap("other_hist", "other_hist", 10, 0., 10., nrep);
5

6 for (int i = 1; i < nevent; i++) { // for each event...
7

8 //(...)
9

10 other_hist ->Fill(truthPart.Pt(), 1.0, /*run number*/ 12345, /*event number*/ i, /*
sample number if MC*/ 6789);

11 }

Listing 3: An example of how TH1Bootstrap objects are filled using an implicit internal BootstrapGenerator
object.

of the replica histograms. This means that once a set of TH1Bootstrap objects have been initialised,
the user can continue the analysis, filling, combining, taking ratios, and so on, without worrying about
the replica histograms, which are handled under the hood. Pseudo-code that shows the manipulation of
TH1Bootstrap can be found in Listing 4, with a more complete example in Appendix A.

4.6 TH1Bootstrap statistical error and correlations

Once the filling and manipulation is done, one can call the helper functions GetBootstrapMean(),
GetBootstrapRMS() to calculate the mean and error in each bin from the replica histograms, and
GetBootstrapCorel(), GetCovarianceMatrix(), GetCorrelationMatrix()... to assess sta-
tistical correlations between bins. The covariance between two bin event yields bi and bj of bins i and j,
respectively, is given according to Eq. 1 using the formula below:

Ci j =
1

Nrep

Nrep∑
k=1
(bik − b̄i)(bjk − b̄j), (2)

where k is an index corresponding to the replica, Nrep is the number of replicas, b̄i and b̄j are the average
event yields of bi and bj , respectively, across all replicas.

These simple methods complete the bootstrap method, allowing the user to calculate statistical errors and
correlations correctly, without worrying about keeping track of the replica histograms themselves. To
combine results with other measurements, one need only keep bootstrap replica histograms and call the
statistical errors and correlation methods after combining the results. This is achieved with the Append()
function, which appends two 1- or 2-D THBootstrap instances. For the 1-D case, this appends the
bins from one histogram to another for both the nominal instance and the replicas. In the 2-D case, the
histograms are first collapsed to one dimension, by appending the x-bins from the second y-bin to those
from the first y-bin, and so on. The resulting TH1Bootstrap can then provides correlations between
the two spectra that were appended. Example pseudo-code showing how TH1Bootstrap objects can be
appended, and how the correlation matrix is extracted, can be found in Listing 5, with a more complete
example in Appendix A.

10

1 // Book bootstrap objects
2 int nrep = 1000; //number of replicas
3 float lumi = 36000;
4 auto gen = new BootstrapGenerator("Gen", "Gen", nrep);
5 auto reco_hist = new TH1DBootstrap("reco_hist", "reco_hist", 10, 0., 10., nrep, gen)

;
6 auto background_hist = new TH1DBootstrap("background_hist", "background_hist", 10,

0., 10., nrep, gen);
7 auto truth_hist = new TH1DBootstrap("truth_hist", "truth_hist", 10, 0., 10., nrep,

gen);
8 auto data_hist = new TH1DBootstrap("data_hist", "data_hist", 10, 0., 10., nrep);
9

10

11 // Fill them
12 for (int i = 1; i < nevent; i++) { // for each event...
13 gen->Generate(runNumber , eventNumber , sampleNumber);
14 //(... fill Boostraps ...)
15 }
16

17 // Manipulate them as normal TH1 objects these operations will be applied also
18 // to each replica histogram in addition to the nominal histogram.
19

20 // Bin-by-bin corrections factors. Copy truth, divide bin-by-bin by reco
21 auto c_factors = (TH1DBootstrap*)truth_hist ->Clone();
22 c_factors ->Divide(reco_hist);
23

24

25 auto unfolded_hist = data_hist ->Clone();
26 unfolded_hist ->Add(background_hist , -1);
27 unfolded_hist ->Multiply(c_factors);
28 unfolded_hist ->Rebin(2);
29 unfolded_hist ->Scale(1./lumi);
30

31 // The next line calculates the bootstrap stat uncertainties and
32 // updates the bin errors of the nominal histogram accordingly
33 unfolded_hist ->SetErrBootstrapRMS();
34

35 // The bootstrap errors can now be accessed like this:
36 double bsError1 = unfold_hist ->GetNominal()->GetBinError(1);

Listing 4: An example of how TH1Bootstrap objects are manipulated using the usual TH1 operations like Add
Scale and so on.

11

1

2 // Define two bootstrap histograms for two different observables A and B
3 int Nrep = 1000;
4 TH1DBootstrap spectrumA(100, 0, 100, Nrep);
5 TH1DBootstrap spectrumB(100, 0, 100, Nrep);
6

7 // Fill both spectra with different variables.
8 // To calculate correlations between the different variables ,
9 // we put the measurements "side-by-side", append to 200 bins

10 spectrumA.Append(spectrumB);
11

12 // We can now access the full correlation matrix (200 x 200)
13 auto corrMatrix = spectrumA.GetCorrelationMatrix();
14

15 // Statistical correlation between first and second bin of A
16 double corr_A1_A2 = corrMatrix ->GetBinContent(1,2);
17 // Statistical cross-correlation between first bin of A and first of B:
18 double corr_A1_B1 = corrMatrix ->GetBinContent(1,101);

Listing 5: An example of how to extract a correlation matrix from a TH1Bootstrap object that includes cross-
correlations between two different observables.

5 How to cite

If you use the TH*DBootstrap classes described above for your work, please reference this note and the
following publications where the code was first used, using the .bib entries in Listing 6.

6 Conclusion

This note was written to accompany the public release of the ATLAS BootstrapGenerator code [5],
and to explain the main features of the boostrap method and how it is implemented in software. The
method allows for a rigorous and reproducible evaluation of the statistical covariance across several related
measurements. The software package, which is made public by ATLAS extends the usual ROOT histogram
classes to implement this method, with minimal change to the user.

12

1 @Article{STDM-2012-03,
2 author = "{ATLAS Collaboration}",
3 title = "{Measurement of dijet cross sections in \(pp\) collisions at

\(7\,\text{TeV}\) centre-of-mass energy using the ATLAS detector}",
4 journal = "JHEP",
5 volume = "05",
6 year = "2014",
7 pages = "059",
8 doi = "10.1007/JHEP05(2014)059",
9 reportNumber = "CERN-PH-EP-2013-192",

10 eprint = "1312.3524",
11 archivePrefix = "arXiv",
12 primaryClass = "hep-ex",
13 }
14 @Article{STDM-2015-01,
15 author = "{ATLAS Collaboration}",
16 title = "{Measurement of the inclusive jet cross-sections in proton--

proton collisions at \(\sqrt{s} = 8\,\text{TeV}\) with the ATLAS detector}",
17 journal = "JHEP",
18 volume = "09",
19 year = "2017",
20 pages = "020",
21 doi = "10.1007/JHEP09(2017)020",
22 reportNumber = "CERN-EP-2017-043",
23 eprint = "1706.03192",
24 archivePrefix = "arXiv",
25 primaryClass = "hep-ex",
26 }
27 @Article{STDM-2016-03,
28 author = "{ATLAS Collaboration}",
29 title = "{Measurement of inclusive jet and dijet cross-sections in proton

--proton collisions at \(\sqrt{s} = 13\,\text{TeV}\) with the ATLAS detector}",
30 journal = "JHEP",
31 volume = "05",
32 year = "2018",
33 pages = "195",
34 doi = "10.1007/JHEP05(2018)195",
35 reportNumber = "CERN-EP-2017-157",
36 eprint = "1711.02692",
37 archivePrefix = "arXiv",
38 primaryClass = "hep-ex",
39 }

Listing 6: Citations to include if using the classes described in this note.

13

Appendix

A Example

A detailed an annotated example on how to use the bootsrap classes for bin-by-bin unfolding is given in
Listing 7. The code can be compiled in C++:

1

2 #ifdef __CLING__
3 R__LOAD_LIBRARY(libBootstrapGenerator.so)
4 #endif
5

6 //import Boosrap classes
7 #include "BootstrapGenerator/BootstrapGenerator.h"
8 #include "BootstrapGenerator/TH1DBootstrap.h"
9 #include "BootstrapGenerator/TH2DBootstrap.h"

10

11 #include <cstdio>
12

13 #include "TH2D.h"
14 #include "TRandom3.h"
15 #include "TVector3.h"
16 #include "TLorentzVector.h"
17 #include "TFile.h"
18 #include "TStopwatch.h"
19 #include "TSVDUnfold.h"
20 #include "TMath.h"
21 #include "TCanvas.h"
22 #include "TLegend.h"
23

24 void UnfoldingExample()
25 {
26 // use 1000 replicas , and 1 million events
27 int nrep = 1000, nevent = 100000;
28

29 // Book a generator:
30 auto gen = new BootstrapGenerator("Gen", "Gen", nrep);
31

32 // Transfer matrix
33 auto transfer_hist2d = new TH2DBootstrap("transfer_hist2d", "transfer_hist2d", 10,

0., 10., 10, 0., 10., nrep, gen);
34

35 // Spectra
36 auto truth_hist = new TH1DBootstrap("truth_hist", "truth_hist", 10, 0., 10., nrep,

gen); // Truth spectra
37 auto reco_hist = new TH1DBootstrap("reco_hist", "reco_hist", 10, 0., 10., nrep,

gen); // Reco spectra
38 auto data_hist = new TH1DBootstrap("data_hist", "data_hist", 10, 0., 10., nrep,

gen); // Data spectra
39

40 // "Systematics"
41 auto data_hist_up = new TH1DBootstrap("data_hist_up", "data_hist_up", 10, 0., 10.,

nrep, gen); // Systematic shifts of data Up and
42 auto data_hist_dn = new TH1DBootstrap("data_hist_dn", "data_hist_dn", 10, 0., 10.,

nrep, gen); // Down

14

43

44 // Generate particles with E between 0 and 10 at random angles:
45 TRandom3 *rnd = new TRandom3();
46

47 for (int i = 1; i < nevent; i++) {
48 if (i % 10000 == 0) {
49 printf("Processed %d events\n",i);
50 }
51

52 // Truth particle. Here we simply sample from uniform distribution
53 double pT = rnd->Rndm(1.0) * 10.;
54 double phi = TMath::TwoPi() * rnd->Rndm();
55 double eta = rnd->Gaus(1.0);
56

57 // Detector "smeared" quantities
58 double pT_reco = pT * rnd->Gaus(0.98, 0.1); // assume bias -2%, smear 10%
59 double phi_reco = phi * rnd->Gaus(1., 0.01); // assume no bias, smear 1%
60 double th_reco = eta * rnd->Gaus(1., 0.01); // assume smear 1%
61

62 // fill Lorentz vectors for truth and reco
63 TLorentzVector p_truth, p_reco;
64 p_truth.SetPtEtaPhiM(pT, eta, phi, 0); // assume m=0
65 p_reco.SetPtEtaPhiM(pT_reco, eta_reco, phi_reco, 0); // assume m=0
66

67

68 // "Systematics" shift of 1%
69 TLorentzVector p_reco_up , p_reco_dn;
70 p_reco_up.SetPtEtaPhiM(pT_reco, eta_reco, phi_reco, 0); p_reco_up * 1.01;
71 p_reco_dn.SetPtEtaPhiM(pT_reco, eta_reco, phi_reco, 0); p_reco_up * 0.99;
72

73 // Update weights:
74 gen->Generate(219305, i);
75

76 truth_hist ->Fill(p_truth.Pt(), 1.0);
77 if (rnd->Rndm() > 0.05) { // 5% inefficiency in detector reconstruction
78 transfer_hist2d ->Fill(p_reco.Pt(), p_truth.Pt());
79 reco_hist ->Fill(p_reco.Pt(), 1.0);
80 if (rnd->Rndm() < 0.2) { // Only 20% of the events make the "data" spectrum
81 data_hist ->Fill(p_reco.Pt(), 1.0);
82 data_hist_up ->Fill(p_reco_up.Pt(), 1.0);
83 data_hist_dn ->Fill(p_reco_dn.Pt(), 1.0);
84 }
85 }
86

87 }
88

89 // Unfolding result
90 TH1D *unfolded_hist = nullptr;
91 TH1D *unfolded_hist_up = nullptr;
92 TH1D *unfolded_hist_dn = nullptr;
93

94 // Unfolding replicas results
95 TH1D **unfolded_replicas = new TH1D*[nrep];
96 TH1D **unfolded_replicas_up = new TH1D*[nrep];
97 TH1D **unfolded_replicas_dn = new TH1D*[nrep];
98

99 // Nominal unfolding

15

100 auto tsvd_unfold_object = new TSVDUnfold((TH1D*)data_hist ->GetNominal(),
101 (TH1D*)reco_hist ->GetNominal(),
102 (TH1D*)truth_hist ->GetNominal(),
103 (TH2D*)transfer_hist2d ->GetNominal());
104 unfolded_hist = tsvd_unfold_object ->Unfold(6.0); // use kreg = 6.0
105 delete tsvd_unfold_object;
106

107 tsvd_unfold_object = new TSVDUnfold((TH1D*)data_hist_up ->GetNominal(),
108 (TH1D*)reco_hist ->GetNominal(),
109 (TH1D*)truth_hist ->GetNominal(),
110 (TH2D*)transfer_hist2d ->GetNominal());
111 unfolded_hist_up = tsvd_unfold_object ->Unfold(6.0); // use kreg = 6.0
112 unfolded_hist_up ->Add(unfolded_hist , -1); // Make bootstrap of the difference to

get error on systematic
113 delete tsvd_unfold_object;
114

115 tsvd_unfold_object = new TSVDUnfold((TH1D*)data_hist_dn ->GetNominal(),
116 (TH1D*)reco_hist ->GetNominal(),
117 (TH1D*)truth_hist ->GetNominal(),
118 (TH2D*)transfer_hist2d ->GetNominal());
119 unfolded_hist_dn = tsvd_unfold_object ->Unfold(6.0); // use kreg = 6.0
120 unfolded_hist_dn ->Add(unfolded_hist , -1); // Make bootstrap of the difference to

get error on systematic
121 delete tsvd_unfold_object;
122

123 // Replica unfolding
124 for (int i = 0; i < nrep; ++i) {
125 tsvd_unfold_object = new TSVDUnfold((TH1D*)data_hist ->GetReplica(i),
126 (TH1D*)reco_hist ->GetReplica(i), // Use replicas of transfer matrix so that
127 (TH1D*)truth_hist ->GetReplica(i), // MC uncertainty is included.
128 (TH2D*)transfer_hist2d ->GetReplica(i));
129 unfolded_replicas[i] = tsvd_unfold_object ->Unfold(6.0);
130 delete tsvd_unfold_object;
131

132 tsvd_unfold_object = new TSVDUnfold((TH1D*)data_hist_up ->GetReplica(i),
133 (TH1D*)reco_hist ->GetNominal(),
134 (TH1D*)truth_hist ->GetNominal(),
135 (TH2D*)transfer_hist2d ->GetNominal());
136 unfolded_replicas_up[i] = tsvd_unfold_object ->Unfold(6.0);
137 unfolded_replicas_up[i]->Add(unfolded_replicas[i], -1); // Make bootstrap of the

difference to get error on systematic
138 delete tsvd_unfold_object;
139

140 tsvd_unfold_object = new TSVDUnfold((TH1D*)data_hist_dn ->GetReplica(i),
141 (TH1D*)reco_hist ->GetNominal(),
142 (TH1D*)truth_hist ->GetNominal(),
143 (TH2D*)transfer_hist2d ->GetNominal());
144 unfolded_replicas_dn[i] = tsvd_unfold_object ->Unfold(6.0);
145 unfolded_replicas_dn[i]->Add(unfolded_replicas[i], -1); // Make bootstrap of the

difference to get error on systematic
146 delete tsvd_unfold_object;
147 }
148

149 // Collect unfolded result with synchornized replicas
150 auto unfolded_bootstrap = new TH1DBootstrap("result", "result", unfolded_hist ,

unfolded_replicas , nrep);

16

151 unfolded_bootstrap ->SetErrBootstrapRMS(); // Only containts statistical error from
data in this example

152

153 // Evaluate error on systematic shift error
154 auto unfolded_bootstrap_up = new TH1DBootstrap("relSysUp", "sysUp",

unfolded_hist_up , unfolded_replicas_up , nrep);
155 auto unfolded_bootstrap_dn = new TH1DBootstrap("relSysDown", "sysDown",

unfolded_hist_dn , unfolded_replicas_dn , nrep);
156

157 unfolded_bootstrap_up ->SetErrBootstrapRMS();
158 unfolded_bootstrap_up ->Divide(unfolded_bootstrap); // make it relative
159

160 unfolded_bootstrap_dn ->SetErrBootstrapRMS();
161 unfolded_bootstrap_dn ->Divide(unfolded_bootstrap);
162

163 // Save unfolded result, with synchronized replicas
164 TFile file("unfold.root", "RECREATE");
165 unfolded_bootstrap ->Write();
166 ((TH1D*)unfolded_bootstrap_up ->GetNominal())->Write();
167 ((TH1D*)unfolded_bootstrap_dn ->GetNominal())->Write();
168 file.Close();
169

170 // Make a plot showing things work
171 TCanvas c("c", "c", 600, 600);
172

173 truth_hist ->Scale(1.0/5.0);
174 truth_hist ->GetNominal()->SetLineColor(kRed);
175 truth_hist ->GetNominal()->Draw("hist");
176

177 unfolded_bootstrap ->GetNominal()->SetLineColor(kBlue);
178 unfolded_bootstrap ->GetNominal()->Draw("hist same");
179

180 data_hist ->GetNominal()->Draw("hist same");
181

182 TLegend legend(0.5, 0.75, 0.9, 0.90);
183 legend.AddEntry(truth_hist ->GetNominal(), "True spectra", "l");
184 legend.AddEntry(data_hist ->GetNominal(), "Reco spectra", "l");
185 legend.AddEntry(unfolded_bootstrap ->GetNominal(), "Unfolded spectra", "l");
186 legend.Draw();
187

188 c.SaveAs("unfolding.png");
189

190 TH2D axis("axis", "axis", 1, 0, 10, 1, -0.10, 0.10);
191 axis.Draw("axis");
192

193 unfolded_bootstrap_up ->GetNominal()->SetMarkerStyle(1);
194 unfolded_bootstrap_up ->GetNominal()->SetMarkerColor(kRed);
195 unfolded_bootstrap_up ->GetNominal()->SetLineColor(kRed);
196 unfolded_bootstrap_up ->GetNominal()->Draw("pe same");
197

198 unfolded_bootstrap_dn ->GetNominal()->SetMarkerStyle(1);
199 unfolded_bootstrap_dn ->GetNominal()->SetMarkerColor(kBlue);
200 unfolded_bootstrap_dn ->GetNominal()->SetLineColor(kBlue);
201 unfolded_bootstrap_dn ->GetNominal()->Draw("pe same");
202

203 TLegend legend_systematics(0.2, 0.80, 0.6, 0.90);

17

204 legend_systematics.AddEntry(unfolded_bootstrap_up ->GetNominal(), "Positive
uncertainty shift", "lpe");

205 legend_systematics.AddEntry(unfolded_bootstrap_dn ->GetNominal(), "Negative
uncertainty shfit", "lpe");

206 legend_systematics.Draw();
207

208 c.SaveAs("syserr.png");
209

210 delete unfolded_bootstrap;
211 }

Listing 7: An complete example of how to use TH1Bootstrap objects for a a simple bin-by-bin unfolding in C++.

References

[1] G. D’Agostini, A multidimensional unfolding method based on Bayes’ theorem,
Nucl. Instrum. Meth. A 362 (1995) 487, issn: 0168-9002 (cit. on p. 2).

[2] B. Efron, Bootstrap Methods: Another Look at the Jackknife, Annals Statist. 7 (1979) 1
(cit. on pp. 2, 4).

[3] B. Efron and R. Tibshirani, An Introduction to the Bootstrap, Chapman & Hall, 1994
(cit. on pp. 2, 4).

[4] ATLAS Collaboration, Measurement of dijet cross sections in pp collisions at 7TeV centre-of-mass
energy using the ATLAS detector, JHEP 05 (2014) 059, arXiv: 1312.3524 [hep-ex]
(cit. on pp. 2, 5).

[5] ATLAS Collaboration, BootstrapGenerator, version 1.11.2, Zenodo, 2021,
url: https://doi.org/10.5281/zenodo.5361038 (cit. on pp. 3, 4, 6, 12).

[6] G. Bohm and G. Zech, Introduction to statistics and measurement analysis for physicists, 2005,
isbn: 978-3-945931-13-4 (cit. on p. 5).

[7] G. J. Babu, P. K. Pathak, and C. R. Rao, Second-Order Correctness of the Poisson Bootstrap,
The Annals of Statistics 27 (1999) 1666, issn: 00905364,
url: http://www.jstor.org/stable/2674086 (cit. on p. 5).

[8] ATLAS Collaboration, Measurement of the inclusive jet cross-sections in proton–proton collisions
at
√

s = 8TeV with the ATLAS detector, JHEP 09 (2017) 020, arXiv: 1706.03192 [hep-ex]
(cit. on p. 5).

[9] ATLAS Collaboration, Measurement of inclusive jet and dijet cross-sections in proton–proton
collisions at

√
s = 13TeV with the ATLAS detector, JHEP 05 (2018) 195,

arXiv: 1711.02692 [hep-ex] (cit. on p. 5).

[10] ATLAS Collaboration, Determination of jet calibration and energy resolution in proton-proton
collisions at

√
s = 8 TeV using the ATLAS detector, (2019), arXiv: 1910.04482 [hep-ex]

(cit. on pp. 5, 6).

[11] ATLAS Collaboration, Jet energy scale measurements and their systematic uncertainties in
proton-proton collisions at

√
s = 13 TeV with the ATLAS detector, Phys. Rev. D 96 (2017) 072002,

arXiv: 1703.09665 [hep-ex] (cit. on pp. 5, 6).

18

https://doi.org/10.1016/0168-9002(95)00274-X
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1007/JHEP05(2014)059
http://arxiv.org/abs/1312.3524
https://doi.org/10.5281/zenodo.5361038
http://www.jstor.org/stable/2674086
https://doi.org/10.1007/JHEP09(2017)020
http://arxiv.org/abs/1706.03192
https://doi.org/10.1007/JHEP05(2018)195
http://arxiv.org/abs/1711.02692
http://arxiv.org/abs/1910.04482
https://doi.org/10.1103/PhysRevD.96.072002
http://arxiv.org/abs/1703.09665

[12] ATLAS Collaboration, HEPData Record: Measurement of the inclusive jet cross-sections in
proton-proton collisions at 8 TeV with the ATLAS detector, 2017,
url: https://www.hepdata.net/record/ins1604271?version=1 (cit. on p. 6).

[13] ATLAS Collaboration, HEPData Record: Measurement of inclusive jet and dijet cross-sections in
proton-proton collisions at 13 TeV with the ATLAS detector, 2017,
url: https://www.hepdata.net/record/ins1634970?version=1 (cit. on p. 6).

19

https://www.hepdata.net/record/ins1604271?version=1
https://www.hepdata.net/record/ins1634970?version=1

	1 Introduction
	2 Nomenclature
	3 Description of method
	3.1 Description of method
	3.2 Example 1: Calculation of the statistical uncertainties for an unfolded measurement
	3.3 Example 2: Propagation of control or signal region uncertainties
	3.4 Example 3: Propagation of uncertainties in an unbinned fit
	3.5 Example 4: Correlation between multiple measurements
	3.6 Example 5: Statistical uncertainty on systematics

	4 Implementation
	4.1 BootstrapGenerator
	4.2 TH1Bootstrap and derived classes
	4.3 TH1Bootstrap initialisation
	4.4 TH1Bootstrap filling
	4.5 TH1Bootstrap manipulation
	4.6 TH1Bootstrap statistical error and correlations

	5 How to cite
	6 Conclusion
	Appendix
	A Example

