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A B S T R A C T 

Quasi-periodic eruption (QPE) is a rare phenomenon in which the X-ray emission from the nuclei of galaxies shows a series of 
large amplitude flares. Only a handful of QPEs have been observed but the possibility remains that there are as yet undetected 

sources in archi v al data. Gi ven the volume of data available a manual search is not feasible, and so we consider an application of 
machine learning to archi v al data to determine whether a set of time-domain features can be used to identify further light curves 
containing eruptions. Using a neural network and 14 variability measures we are able to classify light curves with accuracies of 
greater than 94 per cent with simulated data and greater than 98 per cent with observational data on a sample consisting of 12 light 
curves with QPEs and 52 light curves without QPEs. An analysis of 83 531 X-ray detections from the XMM Serendipitous Source 
Catalogue allowed us to reco v er light curv es of known QPE sources and examples of sev eral cate gories of variable stellar objects. 

Key words: machine learning – galaxies: nuclei – X-rays: galaxies. 
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 I N T RO D U C T I O N  

he role of machine learning in astrophysics is becoming pro-
ressively important, with the scope and scale of surv e ys and
lanned missions resulting in ever-increasing volumes of data and
n growing archives for current missions. Citizen science projects,
ike Galaxy Zoo (e.g. Lintott et al. 2008 ) will struggle to cope with
he volume of data that is expected to be produced with planned
urv e y missions. There is a pressing need to develop automated
ools which can process and reduce volumes of data to manageable
mounts. Transient events of many types have been the focus of
everal machine learning approaches. Due to their fleeting nature
nd the time sensitive nature of follow-up efforts, automation has
he potential to increase the number of transient events detected,
nd to allow for them to be detected sooner. This will allow a
reater proportion of their lifetimes to be monitored and including
utomation in processing pipelines also allows for such events to
e detected before a scientist could interact with the observed data.
pproaches in using supervised and unsupervised machine learning

o detect and classify a greater proportion of transient events in (near)
eal time (e.g. Narayan et al. 2018 ; Muthukrishna et al. 2019a , 2022 ;

uthukrishna, Parkinson & Tucker 2019b ) using optical observa-
ions have allowed supernovae and some other classes of transients to
e detected during the course of the events, although understandably
he accuracy of these techniques increases as more of the events
re detected. High-energy data present different challenges, as the
tatistics underpinning observed data are different due to the typically
ow count rates. Attempts at detecting X-ray transient sources using
upervised learning (random forest methods) with the 2XMM and
XMM Serendipitous Source Catalogues hav e achiev ed accuracies
f � 97 per cent (Lo et al. 2014 ) and � 92 per cent (Farrell, Murphy
 E-mail: robbie.webbe@bristol.ac.uk 

e  

e  

o  
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 Lo 2015 ) across multiclass classifications using combinations of
ime-domain and spectroscopic features. 

With new classes of X-ray transients like quasi-periodic eruptions
QPEs) continuing to be disco v ered it is important to develop
ethods for detecting these new classes both in archival data and

ontinuing and planned surv e ys as soon as possible to develop our
nderstanding of these transients. If it is possible to detect QPEs with
stablished machine learning techniques and variability features used
o detect other types of variability, this could significantly increase
ur known QPE host population. 
The first QPEs were detected in the active galactic nu-

leus (AGN) GSN 069 by Miniutti et al. ( 2019 ), and four
urther likely sources were subsequently identified in the ex-
ragalactic sources RX J1301.9 + 2747 (Giustini, Miniutti &
axton 2020 ), eRASSU J023147.2 −102010 (eRO-QPE1), and
RASSU J023448.9 −441931 (eRO-QPE2; Arcodia et al. 2021 ), and
MMSL1 J024916.6 −041244 (Chakraborty et al. 2021 ). Although

ll AGN show X-ray variability, QPEs are characterized by short
ived, large scale changes in X-ray luminosity with eruptions ap-
earing greater in amplitude, peaking at earlier times, and having
horter durations with increasing photon energy bands. Of those
bjects, two were detected by direct analysis of observations of
imilar sources (GSN 069 and RX J1301.9 + 2747, Miniutti et al.
019 ; Giustini et al. 2020 ). The sources eRO-QPE1 and eRO-QPE2
ere detected by means of a blind search through data released by the

ROSITA instrument, with a simple cut by count rate and significant
ariability being used to identify sources for further examination
Arcodia et al. 2021 ). The search which identified the QPE candidate
ource XMMSL1 J024916.6 −041244 used the quasi-periodic auto-
ated transit search algorithm (Carter & Agol 2013 ; Chakraborty

t al. 2021 ) which was originally intended for the identification of
xoplanet transits. QPEs appear to be transient phenomena, with the
ruptions seen in XMMSL1 J024916.6 −041244 not appearing in an
bservation 15 yr after that in which they were observed, and the
© 2023 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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Table 1. Details of XMM–Newton observations of five QPE host galaxies 
used in generating the training data. Observation exposures and numbers of 
eruptions contained are listed in the last two columns. 

Object OBSID Exposure (ks) Erup. 

GSN 069 0823 680 101 63.3 2 
– 0831 790 701 141.4 5 
– 0851 180 401 135.4 5 
– 0864 330 101 141.0 4 
RX J1301.9 + 2747 0124 710 801 29.8 1 
– 0851 180 501 48.4 3 
– 0864 560 101 134.9 8 
XMMSL1 J024916.6 −041244 0411 980 401 11.7 1 
eRASSU J023147.2 −102010 0861 910 201 94.2 2 
– 0861 910 301 90.2 1 
eRASSU J023448.9 −441931 0872 390 101 95.0 9 
– 0893 810 501 25.0 3 
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Figure 1. Example of an X-ray light curve containing QPEs. Light curve is 
from XMM–Newton observation 0823680101 of GSN 069, where the counts 
are binned at rates of (a) 50 s, (b) 250 s, and (c) 1000 s. 
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ruptions in GSN 069 having not been observed in the most recent
bservations (Miniutti et al. 2023 ) following an extended period 
hen they were visible. 
The mechanism which causes the appearance of QPEs is currently 

nknown, but possible explanations which have been proposed for 
he phenomena include: accretion from an orbiting object (King 
020 , 2022 ; Chen et al. 2022 ; Krolik & Linial 2022 ; Lu & Quataert
022 ; Wang et al. 2022 ; Zhao et al. 2022 ; Linial & Sari 2023 );
ollision between an orbiting body and the AGN’s accretion disc 
Sukov ́a et al. 2021 ; Xian et al. 2021 ; Franchini et al. 2023 ; Linial &

etzger 2023 ); tearing of warped accretion discs (Raj & Nixon 2021 ;
usoke et al. 2023 ); accretion from interacting stellar extreme mass

atio inspirals (Metzger, Stone & Gilbaum 2022 ); disc instabilities 
Sniegowska et al. 2020 ; Kaur, Stone & Gilbaum 2022 ; Pan et al.
022 ); and gravitational lensing in supermassive black hole binary 
ystems (Ingram et al. 2021 ). Ultimately, in order to provide a greater
vidence base upon which to make rigorous determinations as to the 
rue mechanism for the creation of QPEs we need to identify more
ources, and so exploiting future surv e ys as well as archi v al data will
e important. 
In this paper, we aim to determine whether light curves containing 

PEs can be distinguished from those which do not by means of
n automated system based upon a series of time-domain variability 
eatures. For the purposes of this analysis we will be focusing on the
emporal features of QPEs as seen in the five host objects identified
o date. We aim to identify patterns of variability which are quasi-
aussian in appearance with long periods of quiescence between 

ruptions. This will allow us to identify future QPE candidates in 
arge surv e y data or by searching through archi v al databases. We do
his by means of a neural network trained on simulated data and also
est the resulting classifier on real observational data from XMM–
ewton . In Section 2 , we describe the generation of the simulated

raining data sets, the variability features to be used and how the
ptimal architecture for the classifiers will be determined. We report 
he results of the classifier against the simulated and real data sets in
ection 3 . In Section 4 , we discuss the results of the classifier and how

t can be used to exploit readily available archival data catalogues, 
nd in Section 5 , we consider the performance of the classifier and
venues for future work. 

 M E T H O D S  

.1 Obser v ational data preparation 

he training data which we have used in this analysis are derived
rom a series of XMM–Newton observations, listed in Table 1 , 
f the QPE sources GSN 069, RX J1301.9 + 2747, XMMSL1
024916.6 −041244, eRASSU J023147.2 −102010, and eRASSU 

023448.9 −441931. We obtained the data from the XMM Science 
rchive 1 and reprocessed all observations using XMM Science 
nalysis System. 2 For all light curves, the EPIC pn camera event 
ata were extracted for photon energies in the range 0.2–2.0 keV, 
ackground and barycentre corrected, and was binned at a rate of 10
. We use photon energies in this range as eruptions in this energy
ange have been easily detectable in known QPE sources and have 
reviously been used to characterize QPE profiles (Miniutti et al. 
019 ; Giustini et al. 2020 , etc.). The resulting light curves were then
anually screened for flaring events before being passed for analysis. 
 http:// nxsa.esac.esa.int/ nxsa-web/ 
 version xmmsas 20190531 1155-18.0.0. 

t

x

n example of a screened light curve containing QPEs is displayed
n Fig. 1 . 

For each of these observations we then created light-curve seg- 
ents which isolated each eruption, giving a total of 43 segments,

ach containing one eruption, from 12 observations, and fit a model
o the segments of the form 

( t) = x q + A exp 

(− ln (2) ( t − t peak ) 2 

t 2 dur 

)
(1) 
RASTAI 2, 238–255 (2023) 
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here x q is the quiescent baseline count rate in the vicinity of
ach eruption, A is the amplitude of the eruption relative to this
uiescent count rate, t peak is the time of the peak of the eruption
ithin the segment, and t dur is the duration of the eruption as
efined as the full width at half-maximum of the Gaussian profile
f the eruption. For the purposes of the feature extraction we only
nclude the first eruption seen in observation 0861910201 of eRASSU
023147.2 −102010, as the second eruption appears to o v erlap with
he first, and there is no ‘quiescent’ phase on either side of the
eak as the observation ends before the eruption has completed. As
uch there is no baseline against which the peak height could be
ompared for this second eruption and was therefore not suitable
or feature extraction. We accept that excluding the features of this
ruption could ne gativ ely impact the ability of the classifier to detect
ther sources with o v erlapping eruptions. We then used the positions
f the peaks within the eight observations for which there were
ultiple profiled eruptions to determine the recurrence times between

ruptions for each observation, and thus the average duty cycle ( � )
or each observation. The duty cycle is calculated as 

 = 

t dur 

t rec 
. (2) 

or the purposes of testing the neural networks against real obser-
ational data, we also include 57 light curves from other low-mass
GN. These light curves are of AGN which were selected by Webbe
 Young ( 2023 ) as part of a targeted search for QPE host galaxies

elected by mass from the Chandr a ACIS Surv e y for X-ray AGN in
earby Galaxies catalogue (She, Ho & Feng 2017 ) which showed
o signs of QPE-like behaviour. Details of all observations used in
he final e v aluation phase of the neural network performance can be
ound in Table A1 in Appendix A . 

.2 Simulated light-cur v e generation 

n order to produce a training data set of an appropriate size for
he training of the neural network, we used the features of the
ruptions already observed (amplitude, duration, and duty cycle)
nd the algorithm for generating light curves outlined in Timmer
t al. ( 1995 ). We generate light curves with total durations of 100
s, and time bins of 50, 250, and 1000 s. We use a value of 250
 for the time binning as it fits typical binning values used in the
iterature, and then the choices of 50 and 1000 s were made as values
hich could show the variability at the lower level which might
e expected to be affected by Poisson noise, and a higher level at
hich we start to reach the durations of individual eruptive events.
ith these time bins and considering the typical count rates seen in

he data we find that including Poisson noise is not required when
raining the model (see Section 5.1 ). A simple power-law model was
hosen as a typical underlying PSD of the form f −β with values of
being randomly drawn from a normal distribution with β = 2 . 06

nd σβ = 0.01 as per Gonz ́alez-Mart ́ın & Vaughan ( 2012 ). Values
or the index of the power spectra are generated with NUMPY . As the
enerated light curves have x̄ = 0, we shift the resulting light curves
p by (10 + δ) x min , where δ is sampled from a normal distribution,
nd x min is the lowest point in the raw light curve. In order to create
 sub-population of light curves which contain QPE signals we then
ultiply half of the simulated light curves with a signal of the form 

( t) = 1 + A 

M ∑ 

m = 1 

exp 

(− ln (2) ( t − t 0 − [ m − 1] t rec ) 2 

t 2 dur 

)
, (3) 

here A is the amplitude of the eruptions being modelled, t dur is the
uration, t 0 is the peak time of the first eruption in the series, t rec is
ASTAI 2, 238–255 (2023) 
he recurrence time between eruption peaks, and where M satisfies 

 = 

⌊
T 

t rec 

⌋
+ 3 . (4) 

his gives us a balanced data set for training and validation. To
imulate a range of possible eruption profiles, we randomly sample
alues for A , t 0 , t dur , and � on the basis of the eruptions profiled in
ection 2.1 . Values for t 0 are sampled from a uniform distribution
uch that t 0 ∈ [ −t rec , 0), and the values for A , t dur and � are sampled
rom exponentially modified Gaussian distributions (e.g. Gladney,
owden & Swalen 1969 ; Grushka 1972 ). We sample from such a
istribution as it provided a high-quality fit to the distribution of
bserved parameter values. These simulated light curves are then
rocessed to create non-parametric statistical features, as outlined in
ection 2.3 . 

.3 Variability measures 

e will be using a set of variability statistics calculated from our
imulated sample, and then from the real testing sample, to determine
hether a light curve does or does not contain QPEs. Some of these

eatures have been used previously in attempts to characterize light-
urv e variability (Sokolo vsk y et al. 2017 ), and some hav e been
sed in coordination with machine learning techniques like self-
rganizing maps (Faisst et al. 2019 ) to characterize AGN variability.
ue to the use of simulated light curves in the training and validation

teps of our machine learning workflow, we do not have errors on the
imulated light curves. As such, we choose 14 features which do not
ely on the existence of uncertainties within the data being analysed.

e extract these features from the simulated light curves and the
bservational data at all three time bins of 50, 250, and 1000 s in
rder to observe the effects of time binning on detection accuracy. 

.3.1 Feature 1 - standard deviation normalized by the mean 

n order to remo v e an y issue caused by the different count rates for
bservations, we use the standard deviation divided by the mean
ount rate 

 1 = 

√ ∑ 

i ( x i −x̄ ) 2 

N−1 

x̄ 
, (5) 

here N is the number of points in the light curve, x i is the count rate
f individual points on the light curve, and x̄ is the average count
ate. 

.3.2 Features 2–7 - proportion of the light curve further than 1 σ
o 6 σ from the mean 

 light curve where the points are normally distributed about a mean
ount rate will have proportions of points at given numbers of σ from
he mean count rate. These features are calculated as 

 n = 

N x, ( n −1) σ

N 

, n ∈ [2 , 7] , (6) 

here N x , ( n − 1) σ is the number of points where | x i − x̄ | > ( n − 1) σ .

.3.3 Feature 8 - inter-quartile range normalized by σ

or a light curve where the points are normally distributed about the
ean, the middle 50 per cent of points should be within 0.674 σ of
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he mean, and so it should be that IQR = 0.674 σ . 

 8 = 

I QR 

σ
(7) 

.3.4 Feature 9 - skew 

he skewness of a light curve will determine how asymetrically the 
ndividual count rates are around the mean value. For this analysis, 
e use the Fisher–Pearson coefficient of skewness: 

 9 = g 1 = 

m 3 

m 

3 / 2 
2 

, (8) 

here 

 i = 

1 

N 

∑ 

( x − x̄ ) i (9) 

nd m i is the bias sampled i th central moment. 

.3.5 Feature 10 - Kurtosis 

he Kurtosis of a light curve will determine, relati vely, ho w likely it
s that the light curve will contain extreme outlying values. For this
nalysis, we use the Fisher coefficient of Kurtosis: 

 10 = g 2 = 

m 4 

m 

2 
2 

− 3 , (10) 

here m 4 and m 2 are calculated as described in equation ( 9 ). 

.3.6 Feature 11 - reverse cross-correlation normalized by σ

o provide a second measure of the asymmetry of the light curves be-
ng analysed, we calculate the cross-correlation for the observations 
ith themselv es, being rev ersed along the time axis. To mitigate for
ifferent average count rates across observations, we normalize all 
e viations for indi vidual data points by the standard deviation for the
bservations as a whole: 

 11 = 

∑ 

i 

( x i − x̄ )( x N−i − x̄ ) 

σ 2 
, (11) 

here x i are the count rates of individual points in the light curve,
 N − i is the counterpart point on the reversed light curve, and N is the
umber of points in the light curve. 

.3.7 Feature 12 - first maximum of the autocorrelation function 

s a measure of coherent periodic variability, we take the height of
he first peak of the normalized autocorrelation function. This is the 
rst peak after the autocorrelation function has crossed zero, and is
ormalized by the autocorrelation at t = 0. 

 12 = max 

(
ACF ( t) 

ACF ( t = 0) 

)
(12) 

.3.8 Feature 13 - consecutive same sign deviation proportion 

e consider the proportion of sets of three consecutive points from
he light curve which all display the same sign deviation from the
ean count rate. In some examples in the literature (e.g. Wozniak 

000 ; Shin, Sekora & Byun 2009 ), a choice is made to require all
hree points to be at least some multiple of σ from the mean value,
ut we choose not to include this extra distinction in order to not
nadvertently prejudice our results, or to cause degeneracies with 
eatures 2–7: 

 13 = 

N 3 x 

N − 2 
, (13) 

here N 3 x is the number of sets of three consecutive points in the
ight curve which have the same sign deviation from x̄ . 

.3.9 Feature 14 - Von Neumann ratio 

he final feature compares the difference in the deviation between 
uccessive pairs of points to the total variance of the light curve: 

 14 = η = 

∑ N−1 
i= 1 ( x i+ 1 − x i ) 2 / ( N − 1) 

σ 2 
, (14) 

here x i and x i + 1 are pairs of consecutive points. 

.4 Neural network ar chitectur e 

he neural networks being applied and e v aluated in this work are built
sing the TENSORFLOW (Abadi et al. 2015 ) package for PYTHON . We
reate networks with an input layer, either one or two hidden layers,
nd an output layer. The input has nodes as required by the number
f input features, and the output layer has two nodes to force a
inary classification between light curves containing QPEs or not. 
e use the RELU acti v ation function, and as we are considering a

lassification problem our loss function of choice is CROSS ENTROPY .
utputs from the network are then passed to a SOFTMAX layer to
ive the probability that light curves belong to the classes. The
idden layers are allowed to have between 3 and 196 nodes, and
he precise final architecture for each input data set is determined by
ERAS TUNER (O’Malley et al. 2019 ). We use the HYPERBAND tuner
rom KERAS TUNER for this optimization. The training and e v aluation
f networks with the simulated data uses accuracy as the metric to be
ptimized, which forms part of the determination as to the optimal
rchitecture: 

ccuracy = 

T P + T N 

T P + F P + T N + F N 

, (15) 

here TP is the number of true positive, FP is the number of false
ositive, TN is the number of true ne gativ e, and FN is the number of
alse ne gativ e classifications. F or these purposes, we consider those
ight curves which contain QPEs as being classified as positive, with a
robability, as determined by the neural network, of containing QPEs 
eing greater than 50 per cent . When we e v aluate the performance
gainst the real data sets we also consider purity, completeness, and
he F 1 score for each network where 

urity = 

T P 

T P + F P 

, (16) 

ompleteness = 

T P 

T P + F N 

, (17) 

nd 

 1 Score = 

2 × Purity × Completeness 

Purity + Completeness 
. (18) 

e use these additional measures as the observational data set is less
alanced, with only 17.4 per cent of the real observations containing 
PEs. These metrics are not used to inform further amendments 

o the architecture of the network, or the weightings applied to
ndividual nodes, but are simply used to illustrate the ef fecti veness
f the network in classifying real observational data. 
RASTAI 2, 238–255 (2023) 
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R

Table 2. Optimal architecture for the neural net- 
works at each time binning value as determined by 
keras tuner . 

Time bin (s) No. hidden layers Nodes 

50 1 [110, 2] 
250 1 [49, 2] 
1000 2 [23, 91, 2] 

Table 3. Classification accuracy for 18 000 simulated 
light curves in the validation phase, and 10 000 in the 
testing phase. 

Time bin (s) Validation Testing 

50 0.9404 0.9379 
250 0.9489 0.9502 
1000 0.9467 0.9495 
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Figure 2. Confusion matrix showing the classification of 57 light curves 
without QPEs and 12 with light curves with QPEs present. The light curves 
were binned at a rate of 50 s, and their full details are given in A1 . Threshold 
probability for requiring a QPE is set at 0.500. 

Figure 3. Confusion matrix showing the classification of 54 light curves 
without QPEs and 12 with light curves with QPEs present. The light curves 
were binned at a rate of 250 s, and their full details are given in A1 . Threshold 
probability for requiring a QPE is set at 0.500. 
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 RESU LTS  

.1 Simulated light-cur v e classification 

e simulated 100 000 light curves, with 50 000 to contain QPEs, and
0 000 without QPEs, with a duration of 100 ks and time binning
f 50, 250, and 1 ks in the manner described in Section 2.2 and
xtracted from them the variability features described in Section 2.3 .
rom the population of 100 000 simulated light curves at each time
inning rate, we set aside 10 000 light curves for testing and split the
emainder in the ratio 80:20 for training and validation. 

The optimal architectures for the neural networks were determined
s described in Section 2.4 and allowed to vary between different
alues for the time binning both for the number of nodes in any hidden
ayers, and by the number of hidden layers which were allowed
o exist. The optimal architectures for the two lower time binned
etworks included only one hidden layer, while the 1 ks binned
etwork contained two hidden layers. In all cases, there was an
utput layer which was fixed to contain two nodes in order to force
 binary output choice between the light curve containing QPEs or
ot. The full architectures are given in Table 2 . 
Across all three time bin values we achiev ed v ery high lev els of

ccuracy when classifying the simulated data sets, with the validation
nd testing accuracy being greater than 94 per cent in all cases and
re given in Table 3 . Validation and testing accuracy were greatest
or the 250 s binned data sets. Differences in performance are,
o we ver, only marginal and the slight changes in accuracy upon
lassifying the simulated testing data set suggests that the model was
ot significantly o v erfit to the training data. 

.2 Obser v ational data classification 

he observational data, as listed in Table A1 , were rebinned to rates
f 50, 250, and 1000 s and features were extracted for all available
ight curves. There were three observations without QPEs which
ould not be rebinned at a rate of 250 s, and a further two which
ould not be rebinned at a rate of 1000 s as well due to the limitations
n good time intervals. The results of their classification are given in
able 4 . 
There is no clear hierarchy when classifying real observational

ata, and at first it appears that all three sets of observational
ata are classed with equally poor performance, although the 250
 binning performs slightly below the other two classifiers. The
ASTAI 2, 238–255 (2023) 
ompleteness of close to 1.0 and low levels of purity suggest that
ll light curves are being strongly predicted as containing QPEs.
he drop in accuracy when classifying real observational data rather

han simulated data suggests at first that there may be features of
he real observational data which are not appropriately captured
n the simulated data sets. The confusion matrices showing the
lassifications of the observational data against all three classifiers
re show in Figs 2 , 3 , and 4 . From the confusion matrices, we can
ee that the o v erall accurac y is lowered by large numbers of light
urves being incorrectly classified as containing QPEs. When we
lot the QPE probabilities of the three classifiers, we can see that
he QPE probabilities generally are quite high and close to 1.0 in
he majority of cases, as shown in Fig. 5 , but that those light curves
ontaining QPEs do tend to be classed more strongly as containing
PEs than those without, and as such we should consider the level

t which we delineate between QPE and non-QPE containing light
urves. We do consider the benefits of probability calibration, as
utlined in Guo et al. ( 2017 ), but find that calibration by means
f isotonic regression using SKLEARN (Pedregosa et al. 2011 ) does
ot beneficially redistribute the probabilities, with the granulation of
robabilities close to 1.0 being lost. 
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Figure 4. Confusion matrix showing the classification of 52 light curves 
without QPEs and 12 with light curves with QPEs present. The light curves 
were binned at a rate of 1000 s, and their full details are given in A1 . Threshold 
probability for requiring a QPE is set at 0.500. 
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Table 5. Average and spread on feature values for the 14 features as described 
in Section 2.3 . Values stated are the mean and σ from all 50 000 simulated 
light curves used in the training, validation, and testing phases for each of the 
three values for time binning in the samples with and without imposed QPE 

signals. 

Feature � T QPE sample Non-QPE sample 

f 1 50 0.881 ± 0.449 0.047 ± 0.009 
250 0.883 ± 0.448 0.048 ± 0.010 
1000 0.878 ± 0.449 0.051 ± 0.010 

f 2 50 0.134 ± 0.105 0.358 ± 0.047 
250 0.134 ± 0.105 0.358 ± 0.048 
1000 0.135 ± 0.106 0.359 ± 0.051 

f 3 50 0.057 ± 0.028 0.029 ± 0.021 
250 0.057 ± 0.028 0.029 ± 0.021 
1000 0.057 ± 0.030 0.029 ± 0.023 

f 4 50 0.025 ± 0.018 0.0003 ± 0.0016 
250 0.025 ± 0.018 0.0003 ± 0.0016 
1000 0.025 ± 0.019 0.0002 ± 0.0018 

f 5 50 0.011 ± 0.011 (2.0 ± 223.6) × 10 −7 

250 0.011 ± 0.011 (5.0 ± 474.3) × 10 −7 

1000 0.011 ± 0.012 (4.0 ± 632.4) × 10 −7 

f 6 50 0.0049 ± 0.0071 0.0 ± 0.0 
250 0.0049 ± 0.0071 0.0 ± 0.0 
1000 0.0049 ± 0.0078 0.0 ± 0.0 

f 7 50 0.0025 ± 0.0047 0.0 ± 0.0 
250 0.0025 ± 0.0047 0.0 ± 0.0 
1000 0.0026 ± 0.0053 0.0 ± 0.0 

f 8 50 0.445 ± 0.574 1.50 ± 0.22 
250 0.445 ± 0.572 1.49 ± 0.22 
1000 0.448 ± 0.570 1.48 ± 0.23 

f 9 50 3.24 ± 2.38 − 0.0012 ± 0.3978 
250 3.24 ± 2.37 0.002 ± 0.399 
1000 3.16 ± 2.24 − 0.0029 ± 0.4044 

f 10 50 15.8 ± 25.0 − 0.63 ± 0.49 
250 15.7 ± 24.4 − 0.626 ± 0.491 
1000 14.4 ± 19.7 − 0.637 ± 0.504 

f 11 50 1.33 ± 700.05 5.9 ± 913.9 
250 1.12 ± 141.10 0.066 ± 182.072 
1000 − 0.44 ± 34.89 0.22 ± 46.05 

f 12 50 0.62 ± 0.34 0.12 ± 0.09 
250 0.616 ± 0.337 0.124 ± 0.088 
1000 0.575 ± 0.318 0.125 ± 0.089 

f 13 50 0.98 ± 0.04 0.97 ± 0.02 
250 0.914 ± 0.096 0.922 ± 0.039 
1000 0.731 ± 0.216 0.839 ± 0.077 

f 14 50 0.017 ± 0.125 0.0049 ± 0.0031 
250 0.176 ± 0.308 0.027 ± 0.017 
1000 1.15 ± 0.68 0.114 ± 0.068 
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 DISCUSSION  

.1 Simulated light-cur v e feature distributions 

he simulated light curves were created according to a well- 
stablished algorithm which has been used for many purposes (e.g. 
 ̈ubner et al. 2022 ; Panagiotou, Kara & Dovciak 2022 , etc.), and

everal of the features selected were chosen to match approaches 
aken in other attempts to identify variability in time-domain data 
e.g. Sokolo vsk y et al. 2017 ; P ashchenko, Sokolo vsk y & Gavras
018 ; Faisst et al. 2019 , etc.). None of the features were, ho we ver,
elected with the expectation that they would serve this specific 
urpose in the identification of light curves containing QPEs. When 
e look at the features being extracted from the simulated light 

urves, we can see that there are several all-time binning rates which
ppear to distinguish well between light curves with and without 
PEs. Features 1, 2, 4, 8, 9, and 12 across all-time binning rates

re separated by at least 1 σ , as shown in Table 5 . It should be
oted that all of the features except 9 and 11 are constrained to be
ositive only. In some of the cases the feature distributions cannot 
e used in all cases to classify the light curve as containing a QPE
r not, but specific values may be strong indicators as containing a
PE or not. In the cases of Features 6 and 7, any non-zero value is

trongly indicative of a light curve containing QPEs, but not all QPE
ontaining light curves have non-zero values for these features. The 
alues for Feature 1, which appear to be a good way of distinguishing
etween the two classes, should also be taken with a measure of
aution. They are affected by the factor which shifts the light curves
rom being zero-centred (a necessary step for the imposition of the 
PE signals in the light-curve generation), and a further investigation 
ould be needed in order to determine what effect varying this factor
as on the distributions for Feature 1 in the two classes and whether
t remains a distinguishing factor. If we consider the distributions 
f the features, as shown in Figs 6 , 7 , and 8 we can see that for
RASTAI 2, 238–255 (2023) 

Table 4. Classification accuracy for observational XMM light curves of objects as listed in Table A1 . Classifications are 
made on the basis of a cut at 50 per cent threshold probability for containing a QPE or not. 

Time bin (s) No. with QPE No. without QPE Accuracy Purity Completeness F 1 score 

50 12 57 0.319 0.203 1 .0 0.338 
250 12 54 0.212 0.188 1 .0 0.316 
1000 12 52 0.328 0.208 0 .917 0.338 
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Figure 5. Probability that individual light curves in the observational data 
sample contain QPEs as per the results of the neural network classification. 
Panels show the results for light curves binned at (a) 50 s, (b) 250 s, and 
(c) 1000 s. The QPE and non-QPE samples displayed are normalized by the 
number of light curves in each sample. 
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everal of the features the populations show differences, both for the
imulated and observed samples. Features 1, 2, 3, 8, and 12 all show
istinct differences between the QPE and non-QPE populations, with
he distributions for the real observed light curves and the simulated
ight curves in each class clearly overlapping for all three time bin
alues. Fig. 9 shows how these five features interact in more detail.
rom this we can see that the combinations of f 1 and f 2 , f 2 and f 3 ,
 2 and f 12 , and f 8 and f 12 appear to show a high level of separation
etween the two classes of simulated light curves. 

Kolmogoro v–Smirno v testing for all 14 features reveals that for the
imulated feature distributions the classes are distinct at the 1 per cent
onfidence level for each individual feature at all-time bin values.
n comparing the feature distributions for the two classes of real
bservations, Features 1, 2, 4, 8, 9, 10, and 13 were individually
ignificantly different at the 1 per cent confidence level for all-time
in values. Features 3, 5, and 14 were all individually significantly
ifferent at a confidence level of 5 per cent for all three time bin
alues, and Feature 12 was significant at 10 per cent . Features 6 and
1 were also individually significantly different at the 10 per cent
evel for time binning of 50 s, but were not significantly different at
he other two time bin values. Feature 7 did not show a significant
ifference at any value for time binning. Features 6 and 7 are,
o we ver, af fected by the time binning of the simulated light curves,
s all simulated light curves are of duration 100 ks, and so the number
f points in the light curves decreases by a factor of twenty as the
ime binning increases from 50 to 1000 s. Additionally, these results
ith regards to the observational feature distributions should be taken
ith some caution due to the reduced sample size; the QPE class only

ontains 12 light curves binned at 1000 s. 
If we consider networks trained for only individual features, and

ith architecture optimized as described in Section 2.4 , we find that
ertain features at dif ferent v alues for the time bin appear to be more
nformative than others. With a time binning of 50 s, we achieve a
ASTAI 2, 238–255 (2023) 
lassification accuracy of 0.870 and F 1 score of 0.609 using only
eature 3. With a time binning of 250 s, we achieve a classification
ccuracy of 0.970 and F 1 score of 0.917 using only Feature 8, or an
ccuracy of 0.894 and F 1 score of 0.588 using only Feature 12. With
 time binning of 1 ks, we achieve a classification accuracy of 0.922
nd F 1 score of 0.828 using only Feature 9. 

.2 Thr eshold pr obability optimization 

ur default measure for distinguishing between light curves contain-
ng QPEs and not containing QPEs was to compare the classification
robabilities, as the output of a SOFTMAX layer, and assign the
lass as that which has the highest probability. With our problem
eing that of a binary classification this means that initially we set a
ominal threshold probability of 50 per cent between the two classes.
ollowing the results of the classification of the observational data

n Section 3.2 we then considered whether an adjustment to the level
t which we split the two classes could impro v e the performance.
e perform a simple grid search for threshold probability between
 and 1 at steps of 0.000 001 with the results of the classification
t all three neural networks and find that altering the level at which
e delineate between light curves containing QPEs and those which
o not can significantly impro v e the performance of the classifier.
he full results of the optimization are given in Table 6 , and the
ssociated optimized confusion matrices are displayed in Fig. 10 , 11
nd 12 . By varying the threshold probability at which we distinguish
etween QPE and non-QPE containing light curves we were able to
ake significant impro v ements in the accuracy and F 1 scores for all

hree data sets. In the case of all three classifiers, we can impro v e
he accuracy by raising the required QPE probability. For each of the
hree classifiers, the optimal QPE probability was very close to 1.0,
hich is indicated by the distributions of light-curve probabilities

s seen in Fig. 5 . In all three cases by optimizing the accuracy we
educe the completeness of the classifier, but given that the sample
eing classified is biased towards light curves not containing QPEs
he increase in false ne gativ e classifications is far outweighed by the
ecreases in each case of false positive classifications. For the 50 s
lassifier, 4 out of the 12 QPE containing light curves are misclassi-
ed at a higher probability, but an additional 46 of the 57 non-QPE

ight curves are then correctly classified, and we see a similar increase
n the performance of the 250 s classifier. The greatest increase in
erformance is seen in the 1000 s classifier, where at the optimal
hreshold probability level for accuracy we reduce the misclassifica-
ion rate for non-QPE containing light curves to 0 per cent . 

After optimization with all three classifiers there is one false
e gativ e result which appears in all three samples, and one false
ositive which appears in both the 50 and 250 s binned data sets.
bservation 0304 190 101 of NGC 1331 is classed as containing a
PE with probability 0.999 999, 0.999 976, and 0.999 329 across

he 50, 250, and 1000 s classifiers, respectively. The light curve
or observation 0304 190 101 of NGC 1331 is shown in Fig. 13 .
bservation 0861 910 301 of eRASSU J023147.2 −102010 is classed

s not containing a QPE with probability 0.986 134, 0.995 476,
nd 0.318 089 across the 50, 250, and 1000 s classifiers, respec-
ively. The light curve for observation 0861 910 301 of eRASSU
023147.2 −102010 is shown in Fig. 14 . 

If we look at the individual features, extracted from the 250 s
inned light curves, which achieved the highest levels of classifi-
ation accuracy, we find that in both cases many of the features
or the erroneously classified light curves are more indicative of
heir incorrect classes. For observation 0304 190 101 of NGC 1331
eatures 1, 9, and 10 were outliers for the non-QPE class, with
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Figure 6. Distribution of feature values for the 14 features used in the classification derived from light curves binned at 50 s. Box plots display the distribution 
of features from left to right for the populations of: simulated light curves containing QPEs (red); simulated light curves without QPEs (blue); observed light 
curves containing QPEs (green); and observed light curves without QPEs (purple). Feature values have been normalized between 0 and 1. 
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Figure 7. Distribution of feature values for the 14 features used in the classification derived from light curves binned at 250 s. Box plots display the distribution 
of features from left to right for the populations of: simulated light curves containing QPEs (red); simulated light curves without QPEs (blue); observed light 
curves containing QPEs (green); and observed light curves without QPEs (purple). Feature values have been normalized between 0 and 1. 
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R

Figure 9. Distribution of feature values for Features 1, 2, 3, 8, and 12. For clarity the features for a sample of 10 000 of each of the simulated populations of 
light curves are shown in red (QPE) and blue (non-QPE). Histograms show the frequency density distribution of features for all 50 000 light curves in each class. 
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eatures 1 and 9 showing significant differences between the two
lasses. For values of f 1 = 1.52 and f 9 = 1.59 this observation sits at
.42 σ (147.2 σ ) and 0.70 σ (3.98 σ ) from the mean for the QPE (non-
PE) class. The average deviation from the class feature means for
bservation 0304 190 101 was 1.50 σ for the QPE class, and 34.51 σ
or the non-QPE class. For observation 0861 910 301 of eRASSU
023147.2 −102010 Features 4, 5, 6, 7, 8, 12, and 14 were outliers for
he QPE class, with Features 4, 5, 6, 8, and 12 being the most extreme
alues for the QPE class. For values of f 4 = 0.0, f 5 = 0.0, f 8 = 1.36, and
 12 = 1.36, this observation sits at 0.156 σ (1.34 σ ), 0.011 σ (0.935 σ ),
.060 σ (1.605 σ ), and 1.26 σ (1.79 σ ) from the mean for the non-QPE
QPE) class. The average deviation from the class feature means for
bservation 0861 910 301 was 0.858 σ for the QPE class, and 10.22 σ
or the non-QPE class. As the features o v erall for both of these obser-
ations would seem to indicate that both share more in common with
he QPE class it is evident that the effects of individual features which
ay be more important than others are causing the misclassifications.
ASTAI 2, 238–255 (2023) 
A particular issue in this classification is the high rate of false
ositive identifications, as QPEs are rare in appearance. If we look
t those light curves which do not contain QPEs, we see a distinct
ifference in the average count rates for those which are correctly
r incorrectly identified across all three time bin values. Those light
urves which do not contain QPEs have average count rates of 0.402,
.439, and 0.447 cts s −1 across the three time bin values when
onsidering those which are available for classification. The average
ount rates for those observations which are categorized correctly
and incorrectly) are 0.472 (0.051) for the 50 s sample, 0.447 (0.005)
or the 250 s sample, and 1.045 (0.103) cts s −1 for the 1000 s sample.
bservation 0304 190 101, shown in Fig. 13 , is misclassified with all

hree networks and has an average count rate of 0 . 0047 cts s −1 ,
ndicating that even when binned at 250 s it is likely that there will
e a high proportion of empty bins and as such the classification
ay well be affected by Poisson noise due to the low count

ates. 
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Table 6. Optimal ranges for the cut in probability value at which we define 
a light curve as containing QPEs or not. Threshold probability ranges are 
closed intervals which give the optimized threshold probability values for 
accuracy , purity , completeness, and F 1 score. 

Time bin (s) Metric Conf. range Metric value 

50 Accuracy [0.999 206, 0.999 211] 0 .8841 
Purity [0.999 206, 0.999 211] 0 .6429 

Completeness [0, 0.778 044] 1 .0 
F 1 score [0.999 206, 0.999 211] 0 .6923 

250 Accuracy [0.999 886, 0.999 944] 0 .8939 
Purity [0.999 977, 0.999 998] 1 .0 

Completeness [0.0, 0.986 412] 1 .0 
F 1 score [0.999 886, 0.999 893] 0 .6666 

1000 Accuracy [0.999 330, 0.999 455] 0 .9844 
Purity [0.999 330, 1.0] 1 .0 

Completeness [0.0, 0.999 999] 1 .0 
F 1 score [0.999 330, 0.999 455] 0 .9565 

Figure 10. Confusion matrix showing the classification of 57 light curves 
without QPEs and 12 with light curves with QPEs present. The light curves 
were binned at a rate of 50 s, and their full details are given in A1 . Threshold 
probability for requiring a QPE is set at the level which optimizes accuracy 
of 0.999 21. 
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Figure 11. Confusion matrix showing the classification of 54 light curves 
without QPEs and 12 with light curves with QPEs present. The light curves 
were binned at a rate of 250 s, and their full details are given in A1 . Threshold 
probability for requiring a QPE is set at the level which optimizes accuracy 
of 0.9999. 

Figure 12. Confusion matrix showing the classification of 52 light curves 
without QPEs and 12 with light curves with QPEs present. The light curves 
were binned at a rate of 1000 s, and their full details are given in A1 . Threshold 
probability for requiring a QPE is set at the level which optimizes accuracy 
of 0.9994. 
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.3 Application to the XMM Serendipitous Source Catalogue 

aving achieved high levels of accuracy in classifying simulated 
ight curves, and with the moderate level of success achieved in 
lassifying real observational data, we now consider whether any 
ew QPE candidates can be identified through application of the 
etworks to the XMM Serendipitous Source Catalogue. 
We filter the XMM Serendipitous Source Catalogue (4XMM- 

R12) 3 for observations which contain pn detections, have light- 
urve data which are created as described in Webb et al. ( 2020 ), and
av e total e xposure times greater than 50 ks. Detections are referred
o by their ‘SRCID’ tags as given in the 4XMM-DR12 data release.

e also screen for any detections which could be spurious (possibly
ear an extended bright source, or where the detector co v erage is
articularly low) using the criteria that SUM FLAG = 0 . From the
otal catalogue of 939 270 items this creates a sample of 83 531
etections for consideration. We download the pn light-curve data 
or these detections, and then screen these light curves for time bins
f less than 50 s, and rebin the light curve to 50, 250, and 1000 s.
ue to issues with very low-count-rate observations as identified in 
 ht tp://xmmssc.irap.omp.eu/Cat alogue/4XMM-DR12/4XMM DR12.ht ml 

 

a

ection 4.2 , we then screen for any light curves with an average count
ate below 0 . 01 cts s −1 . Finally, due to issues with flaring events
hich are common at the start or end of observations depending
n their position during observing cycles we then remo v e the first
nd last 15 ks of each observation. Features are then extracted from
ach of the three light curves for each detection and the objects are
lassified according to the networks as trained in Section 2.4 , and
ested on the observational data as described in Section 3.2 . As the
henomenon we are trying to find is very rare, we want to reduce
he numbers of false positi ve e vents in any sample which is to be
cheduled for follow-up by an e xpert observ er. In Fig. 10 , 11 , and
2 , we can see that with very high threshold probabilities we could
till flag very large numbers of false positive results given the total
ample size. As such, we select detections from the catalogue for
urther re vie w based on the result of classification from all three
etworks. In order for a light curve to be flagged for further re vie w,
e require that it achieves a score of: 

(i) 0.999 with features extracted from a 50 s binned light curve, 
(ii) 0.9999 with features extracted from a 250 s binned light curve,

nd 
(iii) 0.999 with features extracted from a 1000 s binned light curve. 
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R

Table 7. Predictions for the 11 observations of known QPE sources contained within the XMM Serendipitous Source 
Catalogue (4XMM-DR12). For each object we note the observation ID, the predictions from the three networks for 
the three time bin values (P50, P250, and P1000), and whether the light curve is flagged for further inspection as per 
the methodology in Section 4.3 . 

Object OBSID Eruptions P50 P250 P1000 Flag 

GSN 069 0823 680 101 2 0 .999 0.9999 1 .000 Y 

– 0831 790 701 5 0 .9986 0.9993 red0 .999 N 

– 0851 180 401 5 0 .999 0.9999 0 .999 Y 

– 0864 330 101 4 0 .829 0.9772 0 .996 N 

RX J1301.9 + 2747 0124 710 801 1 0 .998 98 0.9995 1 .000 N 

– 0851 180 501 3 1 .000 0.9995 1 .000 Y 

– 0864 560 101 8 0 .998 0.9999 0 .999 N 

XMMSL1 J024916.6 −041244 0411 980 401 1 0 .768 0.9721 0 .999 N 

eRASSU J023147.2 −102010 0861 910 201 2 0 .998 98 0.9998 0 .984 N 

– 0861 910 301 1 0 .952 0.9767 0 .161 N 

eRASSU J023448.9 −441931 0872 390 101 9 1 .000 0.9999 1 .000 Y 
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At these threshold probabilities, we achieve purity (and complete-
ess) scores of 0.6 (0.75), 0.86 (0.58), and 0.85 (0.92) with the 50,
50, and 1000 s classifiers, respectively, on our initial testing data,
ith 22 per cent , 11 per cent , and 20 per cent of the light curves in
ur sample being flagged at these threshold probability levels. With
hese selection criteria from the total sample of 83 531 detections,
05 light curves are identified for further examination with six being
lassified as containing QPEs with a probability of 1.0 across all
hree networks. 

When this selection criteria is applied to the known observations
f QPE candidates which are in the 4XMM-DR12 catalogue we find
hat for the 11 observations which are in the catalogue only four meet
ur selection criteria. Of those seven observations which do not meet
he criteria, one only fails the criteria for one of the three networks.
n all but one of the cases the predictions for the observations are
trongly fa v oured towards containing QPEs, see Table 7 for the
ull results. The very low score for observation 0861 910 301 of
RASSU J023147.2 −102010 when binned at 1 ks is an outlier.
hese results are not entirely unexpected due to the nature of the
re-processed light curves available with the XMM Serendipitous
ource Catalogue. The light curves which are associated with the
atalogue are for the full range of energies detected by XMM–
ewton (0.2–12.0 keV), and we know from previous examination
f QPE sources that the phenomenon is largely contained to lower
nergies (Miniutti et al. 2019 ; Giustini et al. 2020 ; Arcodia et al.
021 ; Chakraborty et al. 2021 , etc.). As such, the variability which is
lear and evident in the 0.2–2.0 keV band appears suppressed and of
 smaller amplitude when observed in the full 0.2–12.0 keV range,
nd it is not surprising that fewer of the known QPE sources meet our
riteria for flagging in this case. Across the different time bin values,
e observe changes in the features when considering the light curve

or the full 0.2–12.0 keV energy band. Feature 1 for all observations
ecreased with a change to the energy band, Feature 9 displayed an
verage decrease across all three time bin values, and for 50 and 250
 binned curves Feature 8 displayed an average increase. All three
f these changes are indicative of movement from QPE to non-QPE
opulations, and would explain the decreased probabilities of the
lassifications towards containing QPEs. 

We then manually examined the light curves for the 705 detections
hich were flagged from the Serendipitous Source Catalogue. The
rst result of note is that a large proportion of the flagged detections
ame from observations which contained several detections flagged
s containing QPEs. Of the 705 detections, 484 (69 per cent of all
ASTAI 2, 238–255 (2023) 
agged detections) came from a combination of 37 observations, all
f which contained at least five detections. Observation 0604 960 301
ontained 46 detections which were flagged as containing QPEs at the
onserv ati ve cuts implemented in the methodology described abo v e.
n the case of some of these observations, there are unusual patterns
ffecting the detections which are flagged as containing QPEs. One
xample is that of observation 0804 680 101, where there are five
etections flagged as containing QPEs which all show a similar
rofile with peaks simultaneously in their light curves. See Fig. 15
or the 250 s binned light curves for sources 6, 7, 10, 11, and 22
rom observation 0804 680 101. For this specific observation, there
re peaks across the light curves of all five objects simultaneously
t ∼15 ks , ∼24 ks , ∼75 ks , ∼100 ks , and ∼115 ks after the start
f the observation. These features are evident in the light curves for
ll five sources, despite them being located on different parts of the
etector, with source 6 being located on CCD 1, sources 7 and 10
eing located on CCD 11, and sources 11 and 22 being located on
CD 10, and without o v erlapping ra w positions on the detectors.
he manner in which the light curves are created is standard across
ll detections in the catalogue. It requires the automatic detection of
ource locations, with background regions being drawn from empty
egions on the same CCD as the source. Any other detections flagged
n the background region are screened out. That sources located on
ifferent parts of the detector should have simultaneous, correlated
ariability is unlikely, and at present it is unknown as to what may
e causing these features to appear across multiple detections in
ertain observations, but a manual recreation of the light curves for
hese detections appears to show that background features are not
ppropriately being subtracted. 

The 705 detections were then grouped by observation ID, to allow
or faster manual filtering by repeated features across detections in
he same observation, and were then all reviewed manually. From
his sample, we were able to identify 27 detections where their
ight curves warranted further examination. The details of these 27
etections are listed in Table B1 . The detections were then cross-
eferenced with the SIMBAD astronomical data base (Wenger et al.
000 ) to determine the names and types of sources to determine if
he objects could be AGN as viable QPE sources. In the cases where
here was no correlated source in SIMBAD, we then referenced
he identities of those sources through NASA/IPAC Extragalactic
atabase. Of these sources, 19 were identifiable as stars or X-ray
inary systems and not appropriate for further analysis to determine
he presence of QPEs, and the remaining eight were galaxies or un-
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lassified sources. For those eight sources, we then downloaded and 
eprocessed the observation event lists, manually screened for flaring 
vents, and created light curves for the 0.2–2.0 and 2.0–12.0 keV 

ands to determine whether the variability was present in soft X-ray 
ands. Of those eight sources, the variability was not present at lower
nergies for detections 200 823 401 010 018, 204 045 402 010 025,
nd 206 019 305 010 009. F or the remaining fiv e sources, we then
reated light curves in three narrower energy bands, 0.2–0.5, 
.5–1.0, and 1.0–2.0 keV, to determine whether the variability 
hich appears in the soft X-rays follows the energy-dependent 

haracteristics seen in confirmed QPE sources. At this stage, 
e ruled out detections 200 773 401 015 192, 201 068 601 010 017,
06 010 101 010 020, 207 277 801 010 019, and 208 235 803 010 011
s there is no significant difference seen in the variability in the three
nergy bands, with the flare being the same width, peaking at the
ame time and having the same amplitude against the quiescent rate 
n all three narrower bands. We give an example of a source which has
een flagged and examined in further detail in Fig. 16 . In this case,
he source identified (SRCID 207 223 603 010 022) by the automatic
lassification pipeline and manual inspection was classified as a red 
w arf, lik ely displaying chromospheric flares, and as such no further
nalysis is required. At this stage, our pipeline has not identified any
ew candidate QPE sources, with common sources of contamination 
eing: instrumental background subtraction; chromospheric flares 
rom red dwarfs; and flares from other classes of variable stars. 
 C O N C L U S I O N S  

n this analysis, we set out to determine whether it would be possible
o identify light curves containing QPEs by means of time-domain 
nly features and commonly used machine learning classification 
echniques. This analysis used the freely available TENSORFLOW 

ackages for PYTHON and features which had been previously used 
o classify other types of variability (Sokolo vsk y et al. 2017 ; Faisst
t al. 2019 ), and were able to achieve accuracies of o v er 94 per cent
n classifying simulated light curves and accuracies of o v er 98
per cent in classifying real observational data. The classification 
ccuracy we have obtained is greater than that of Lo et al. ( 2014 )
 ∼77 per cent ) when only considering time-domain features and also 
ses a smaller number of features (14 rather than 27). The accuracy
e have achieved is even greater than that obtained by Lo et al.

 2014 ) ( ∼97 per cent ) and Farrell et al. ( 2015 ) ( ∼92 per cent ) when
onsidering non-temporal features, which we do not consider in this 
nalysis, in addition to time-domain features. We chose not to use
pectral features as part of the network training process for two
easons: Simulating spectral features alongside temporal features 
ould have been more computationally demanding; it could bias 
ur classifier towards only finding QPE hosts with spectral features 
hat are similar to those which have already been discovered. As all
urrent QPE hosts have very soft spectra we could miss out on some
arder X-ray sources of QPEs. As it is, the training on features sets
akes of the order of minutes on a standard desktop computer, and
he time taken for the creation of features and classification of light
urves with the networks once trained is trivial. 
RASTAI 2, 238–255 (2023) 
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.1 Further work 

urther work could provide several ways to improve the efficacy of
ur classifier. Our approach to simulating light curves is itself limited
y the number of eruptions which have currently been detected. With
n increase in the number of known QPEs we could impro v e our
nderstanding of the underlying distributions for the QPE features
nd so create a more accurate training data set. Our approach has
lso not required any information on the brightness of sources being
onsidered, as this could be impacted by the sensitivity of different
nstruments. We should also consider the features being used in
he classification process and whether the features created by the
imulated data set adequately represent those seen in observational
ata. Feature 1 is likely to not be representative of real observational
ata for the reasons identified in Section 4.1 . A further correction to
he baseline of light curves after the QPE signals have been imposed
ould alter the ef fecti veness of and authenticity of this feature, but
he issues caused by Poisson noise at very low count rates may mean
hat it would be better to eliminate the feature entirely. Features 13
nd 14 also do not appear to follow the same distributions in the
imulated and observational data sets, as shown in Figs 6 , 7 , and
 , and corrections to the generation process could be considered
n order to make them more representative of the observational
ata. When we consider subsets of 13 of the 14 features, we find
hat impro v ed performance in classifying the observational data
ample is possible. With 1000 s binned light curves, we can achieve
n accuracy of 96 . 9 per cent when Feature 3 is omitted. Further
ASTAI 2, 238–255 (2023) 
nalysis of combinations of fewer features may identify the optimal
pproach moving forward. Additionally, we can consider data from
nstruments other than XMM–Newton . We have chosen not to include
nstrumental effects in generating light curves and features in order
o allow this tool to be applied to data from other observatories,
nd including QPE features derived from observations of QPE
ources with Chandra and NICER and other observatories may
urther impro v e the accurac y of these classifiers. An investigation
nto the effects of including Poisson noise in the populations of
imulated light curves found a decrease in the ability of the classifiers
o distinguish between light curves containing QPEs or not. The
ddition of noise increased the baseline variance of the light curves
hich made the two classes in training appear less distinct. Ho we ver,

t count rates typical of the data sets in which QPEs are detected,
he degradation in performance was small. With the additional
omputational power and time which was required to include Poisson
oise in simulating light curves we do not consider that it is likely
o produce impro v ements in the classification accuracy in the future.
urther applications of similar methods in other wavebands may
llow for the detection of other types of astrophysical transient, and
he network design with a SOFTMAX layer allows us to extend to
uch a multiclass problem. Additionally, it may be preferable when
orking with other catalogues of data to train the network using

he F β metric. In this instance, we found a slight decrease in the
fficacy of the classifier when applied to real data when training with
 β , and the number of light curves flagged for manual inspection,
hen the networks were optimized for accuracy, in Section 4.3 was
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anageable. With a larger catalogue it may be beneficial to train 
ith F β tuned to produce a smaller number of objects for manual

nspection, even if the proportion of false positive results in that 
ample could be higher. 

Ultimately, this analysis can serve as a benchmark for the de- 
ection of QPEs in X-ray light curves with machine learning. The 
lassification has been achieved with high levels of accuracy in 
imulated light-curve sets and high, albeit lower, accuracy in real 
bservational data. While we were not able to conclusively identify 
ny new QPE sources in the XMM Serendipitous Source Catalogue 
e have identified two sources which show some QPE-like behaviour 
hich could be followed up with further observation. 
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able A1. Details of observations of low-mass AGNs which were identified
s part of a manual search for QPE candidates. Values for M BH are given
s log ( M BH /M �) and are as per CHANSNGCAT. Those observations which
ould not be rebinned at 250 s are denoted with ( ∗), and those which could
ot be rebinned at 1000 s are denoted with ( † ) against their observation ID
umbers. 

GN name M BH OBSID Exp. (ks) 

XMM J123103.2 + 110648 4.87 0145 800 101 107 .0 
– 0306 630 101 80 .9 
– 0306 630 201 99 .5 

RASSU J023147.2 −102010 5.78 0861 910 201 94 .2 
– 0861 910 301 90 .2 

RASSU J023448.9 −441931 4.96 0872 390 101 95 .0 
– 0893 810 501 25 .0 

SN 069 5.99 0657 820 101 14 .9 
– 0740 960 101 95 .1 
– 0823 680 101 63 .3 
– 0831 790 701 141 .4 
– 0851 180 401 135 .4 
– 0864 330 101 141 .0 
– 0864 330 201 133 .1 
– 0864 330 301 133 .2 
– 0864 330 401 136 .1 

GC1331 5.48 0304 190 101 65 .9 
GC3367 5.64 0551 450 101 31 .4 
GC3599 5.85 0411 980 101 6 .9 

– 0556 090 101 43 .6 
GC4467 5.86 0112 550 601 24 .6 

– 0510 011 501 ( † ) 10 .1 
– 0761 630 101 118 .0 
– 0761 630 201 118 .0 
– 0761 630 301 117 .0 

GC4476 5.58 0200 920 101 109 .3 
– 0551 870 401 21 .6 
– 0551 870 601 21 .3 
– 0603 260 201 17 .9 
– 0803 670 501 132 .0 
– 0803 670 601 65 .0 
– 0803 671 001 63 .0 
– 0803 671 101 131 .9 

GC4559 5.14 0152 170 501 42 .2 
– 0842 340 201 75 .4 

GC4654 5.07 0651 790 201 28 .9 
GC5273 5.97 0112 551 701 17 .1 

– 0805 080 401 110 .9 
ASTAI 2, 238–255 (2023) 
able A1 – continued 

GN name M BH OBSID Exp. (ks) 

– 0805 080 501 28 .0 
GC6946 5.43 0093 641 501 ( ∗) 8 .6 

– 0093 641 601 ( ∗) 10 .1 
– 0093 641 701 ( ∗) 11 .3 
– 0200 670 101 16 .4 
– 0200 670 201 ( † ) 14 .4 
– 0200 670 301 15 .6 
– 0200 670 401 21 .2 
– 0401 360 101 20 .9 
– 0401 360 201 24 .4 
– 0401 360 301 24 .4 
– 0500 730 101 31 .9 
– 0500 730 201 37 .3 
– 0691 570 101 119 .3 
– 0794 581 201 50 .0 
– 0870 830 101 17 .9 
– 0870 830 201 17 .7 
– 0870 830 301 16 .0 
– 0870 830 401 17 .8 

GC7314 5.59 0111 790 101 44 .7 
– 0311 190 101 83 .9 
– 0725 200 101 140 .5 
– 0725 200 301 132 .1 
– 0790 650 101 65 .0 

GC925 6.0 0784 510 301 50 .0 
– 0862 760 201 42 .0 

X J1301.9 + 2747 6.65 0124 710 801 29 .8 
– 0851 180 501 48 .4 
– 0864 560 101 134 .9 

MMSL1 J024916.6 −041244 5.29 0411 980 401 11 .7 
– 0891 800 601 33 .8 

PPENDI X  B:  TO P  C A N D I DAT E S  F RO M  X M M  

SC  ANALYSI S  

able B1 containsp details of those detections from the XMM
erendipitous Source Catalogue (4XMM-DR12) which were manu-
lly identified as containing significant variability and where follow-
p analysis was performed. Table B1 lists the type of object
orresponding to the detection and whether it contains QPEs if a
alaxy. 
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Table B1. Details of detections from the XMM SSC which were flagged as containing QPEs and were followed up with manual inspection. The last three 
columns contain details as to the type of astrophysical object, whether the variability is seen when only the 0.2–2.0 keV band light curve is created, and whether 
the energy dependent and temporal characteristics are indicative of QPE behaviour. Sources are listed in order of their 4XMM Catalogue source IDs. 

SRCID OBSID Source No. Object name Type Soft variability QPE-like? 

200 287 402 010 079 0655 050 101 11 2XMM J001527.9 −390507 Star N/A N/A 

200 560 203 010 005 0801 610 101 4 [BHR2005] 832-14 Low-mass star N/A N/A 

200 669 401 010 002 0501 790 101 2 Cl ∗ NGC 2547 JND 13-98 Star N/A N/A 

200 669 401 010 075 0501 790 101 15 Cl ∗ NGC 2547 NTJ 7-2323 Low-mass star N/A N/A 

200 773 401 015 192 0555 630 401 136 2XMM J150122.1 −414227 X-ray source Y N 

200 823 401 010 018 0203 560 201 12 SDSS J111740.11 + 074411.7 Quasar N N/A 

201 068 601 010 017 0803 990 301 4 [CPS95] X-12 X-ray source Y N 

201 080 604 010 030 0555 780 601 5 [LBX2017] 780 High proper motion star N/A N/A 

– 0604 960 801 3 – – – –
– 0604 961 201 5 – – – –
201 111 202 010 026 0305 540 701 14 [GY92] 463 T-Tauri star N/A N/A 

201 111 202 010 048 0800 031 001 3 [GY92] 259 Young stellar object N/A N/A 

201 125 903 010 151 0403 200 101 85 V ∗ V1320 Ori BY Dra variable N/A N/A 

201 428 001 010 001 0142 800 101 1 X LMC X-4 High-mass XRB N/A N/A 

202 010 902 010 004 0821 240 301 3 WISEA J020621.12 −002346.7 Star N/A N/A 

204 045 402 010 025 0674 050 101 34 2CXO J202103.2 + 365423 X-ray source N N/A 

206 006 901 010 002 0600 690 101 2 UCAC4 509-131194 High proper motion star N/A N/A 

206 010 101 010 020 0844 860 101 8 XMMU J004705.9 −205239 X-ray source Y N 

206 019 305 010 009 0601 930 501 6 WISEA J213740.24 + 002048.0 IR source N N/A 

206 048 602 010 005 0604 860 201 5 WISEA J181323.39 −325230.9 Red dwarf N/A N/A 

206 939 901 010 022 0693 990 301 10 WISEA J111949.13 + 065305.6 Star N/A N/A 

207 216 201 010 018 0721 620 101 18 2MASS J08384128 + 1959471 Erupti ve v ariable star N/A N/A 

207 223 603 010 022 0722 360 301 22 WISEA J220310.58 −344406.7 Red dwarf N/A N/A 

207 277 801 010 019 0790 380 901 18 [ELK2021] 22 Galaxy Y N 

207 437 002 010 001 0743 700 201 1 TYC 4682-1697-1 Star N/A N/A 

207 810 401 010 007 0781 040 101 7 SDSS J032048.68 + 003234.0 Low-mass star N/A N/A 

208 235 803 010 011 0823 580 301 11 WISEA J124901.51 −410131.6 IR source Y N 
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