RAS Techniques and Instruments

RASTAI 2, 238-255 (2023)
Advance Access publication 2023 May 18

https://doi.org/10.1093/rasti/rzad015

Searching for quasi-periodic eruptions using machine learning

Robbie Webbe “* and A. J. Young

H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, UK

Accepted 2023 May 5. Received 2023 May 2; in original form 2023 February 2

ABSTRACT

Quasi-periodic eruption (QPE) is a rare phenomenon in which the X-ray emission from the nuclei of galaxies shows a series of
large amplitude flares. Only a handful of QPEs have been observed but the possibility remains that there are as yet undetected
sources in archival data. Given the volume of data available a manual search is not feasible, and so we consider an application of
machine learning to archival data to determine whether a set of time-domain features can be used to identify further light curves
containing eruptions. Using a neural network and 14 variability measures we are able to classify light curves with accuracies of
greater than 94 per cent with simulated data and greater than 98 per cent with observational data on a sample consisting of 12 light
curves with QPEs and 52 light curves without QPEs. An analysis of 83 531 X-ray detections from the XMM Serendipitous Source
Catalogue allowed us to recover light curves of known QPE sources and examples of several categories of variable stellar objects.
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1 INTRODUCTION

The role of machine learning in astrophysics is becoming pro-
gressively important, with the scope and scale of surveys and
planned missions resulting in ever-increasing volumes of data and
in growing archives for current missions. Citizen science projects,
like Galaxy Zoo (e.g. Lintott et al. 2008) will struggle to cope with
the volume of data that is expected to be produced with planned
survey missions. There is a pressing need to develop automated
tools which can process and reduce volumes of data to manageable
amounts. Transient events of many types have been the focus of
several machine learning approaches. Due to their fleeting nature
and the time sensitive nature of follow-up efforts, automation has
the potential to increase the number of transient events detected,
and to allow for them to be detected sooner. This will allow a
greater proportion of their lifetimes to be monitored and including
automation in processing pipelines also allows for such events to
be detected before a scientist could interact with the observed data.
Approaches in using supervised and unsupervised machine learning
to detect and classify a greater proportion of transient events in (near)
real time (e.g. Narayan et al. 2018; Muthukrishna et al. 2019a, 2022;
Muthukrishna, Parkinson & Tucker 2019b) using optical observa-
tions have allowed supernovae and some other classes of transients to
be detected during the course of the events, although understandably
the accuracy of these techniques increases as more of the events
are detected. High-energy data present different challenges, as the
statistics underpinning observed data are different due to the typically
low count rates. Attempts at detecting X-ray transient sources using
supervised learning (random forest methods) with the 2XMM and
3XMM Serendipitous Source Catalogues have achieved accuracies
of >~ 97 per cent (Lo et al. 2014) and =~ 92 per cent (Farrell, Murphy
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& Lo 2015) across multiclass classifications using combinations of
time-domain and spectroscopic features.

With new classes of X-ray transients like quasi-periodic eruptions
(QPEs) continuing to be discovered it is important to develop
methods for detecting these new classes both in archival data and
continuing and planned surveys as soon as possible to develop our
understanding of these transients. If it is possible to detect QPEs with
established machine learning techniques and variability features used
to detect other types of variability, this could significantly increase
our known QPE host population.

The first QPEs were detected in the active galactic nu-
cleus (AGN) GSN 069 by Miniutti et al. (2019), and four
further likely sources were subsequently identified in the ex-
tragalactic sources RX J1301.9+2747 (Giustini, Miniutti &
Saxton 2020), eRASSU J023147.2—102010 (eRO-QPE1), and
eRASSU J023448.9—-441931 (eRO-QPE2; Arcodia et al. 2021), and
XMMSL1 J024916.6—041244 (Chakraborty et al. 2021). Although
all AGN show X-ray variability, QPEs are characterized by short
lived, large scale changes in X-ray luminosity with eruptions ap-
pearing greater in amplitude, peaking at earlier times, and having
shorter durations with increasing photon energy bands. Of those
objects, two were detected by direct analysis of observations of
similar sources (GSN 069 and RX J1301.94-2747, Miniutti et al.
2019; Giustini et al. 2020). The sources eRO-QPE1 and eRO-QPE2
were detected by means of a blind search through data released by the
eROSITA instrument, with a simple cut by count rate and significant
variability being used to identify sources for further examination
(Arcodia et al. 2021). The search which identified the QPE candidate
source XMMSL1 J024916.6—041244 used the quasi-periodic auto-
mated transit search algorithm (Carter & Agol 2013; Chakraborty
et al. 2021) which was originally intended for the identification of
exoplanet transits. QPEs appear to be transient phenomena, with the
eruptions seen in XMMSL1 J024916.6—041244 not appearing in an
observation 15 yr after that in which they were observed, and the

© 2023 The Author(s).

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.

$20Z Jaquiaoa( 90 U0 J8sSn ASIT( UOJ0JYouAkg usuoia|g sayosinaq Aq 9782/ 1 2/8€2/1/Z/a111e/nsel/woo dnooiwepese//:sdiy woll papeojumod


http://orcid.org/0000-0003-1689-3723
http://orcid.org/0000-0003-3626-9151
mailto:robbie.webbe@bristol.ac.uk
http://creativecommons.org/licenses/by/4.0/

eruptions in GSN 069 having not been observed in the most recent
observations (Miniutti et al. 2023) following an extended period
when they were visible.

The mechanism which causes the appearance of QPEs is currently
unknown, but possible explanations which have been proposed for
the phenomena include: accretion from an orbiting object (King
2020, 2022; Chen et al. 2022; Krolik & Linial 2022; Lu & Quataert
2022; Wang et al. 2022; Zhao et al. 2022; Linial & Sari 2023);
collision between an orbiting body and the AGN’s accretion disc
(Sukova et al. 2021; Xian et al. 2021; Franchini et al. 2023; Linial &
Metzger 2023); tearing of warped accretion discs (Raj & Nixon 2021;
Musoke et al. 2023); accretion from interacting stellar extreme mass
ratio inspirals (Metzger, Stone & Gilbaum 2022); disc instabilities
(Sniegowska et al. 2020; Kaur, Stone & Gilbaum 2022; Pan et al.
2022); and gravitational lensing in supermassive black hole binary
systems (Ingram et al. 2021). Ultimately, in order to provide a greater
evidence base upon which to make rigorous determinations as to the
true mechanism for the creation of QPEs we need to identify more
sources, and so exploiting future surveys as well as archival data will
be important.

In this paper, we aim to determine whether light curves containing
QPEs can be distinguished from those which do not by means of
an automated system based upon a series of time-domain variability
features. For the purposes of this analysis we will be focusing on the
temporal features of QPEs as seen in the five host objects identified
to date. We aim to identify patterns of variability which are quasi-
Gaussian in appearance with long periods of quiescence between
eruptions. This will allow us to identify future QPE candidates in
large survey data or by searching through archival databases. We do
this by means of a neural network trained on simulated data and also
test the resulting classifier on real observational data from XMM-
Newton. In Section 2, we describe the generation of the simulated
training data sets, the variability features to be used and how the
optimal architecture for the classifiers will be determined. We report
the results of the classifier against the simulated and real data sets in
Section 3. In Section 4, we discuss the results of the classifier and how
it can be used to exploit readily available archival data catalogues,
and in Section 5, we consider the performance of the classifier and
avenues for future work.

2 METHODS

2.1 Observational data preparation

The training data which we have used in this analysis are derived
from a series of XMM-Newton observations, listed in Table 1,
of the QPE sources GSN 069, RX J1301.94+2747, XMMSLI1
J024916.6—041244, eRASSU J023147.2—102010, and eRASSU
J023448.9—441931. We obtained the data from the XMM Science
archive! and reprocessed all observations using XMM Science
Analysis System.? For all light curves, the EPIC pn camera event
data were extracted for photon energies in the range 0.2-2.0 keV,
background and barycentre corrected, and was binned at a rate of 10
s. We use photon energies in this range as eruptions in this energy
range have been easily detectable in known QPE sources and have
previously been used to characterize QPE profiles (Miniutti et al.
2019; Giustini et al. 2020, etc.). The resulting light curves were then
manually screened for flaring events before being passed for analysis.

Thttp://nxsa.esac.esa.int/nxsa-web/
2version xmmsas_20190531_1155-18.0.0.
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Table 1. Details of XMM-Newton observations of five QPE host galaxies
used in generating the training data. Observation exposures and numbers of
eruptions contained are listed in the last two columns.

Object OBSID Exposure (ks) Erup.
GSN 069 0823680101 63.3 2
- 0831790701 141.4 5
- 0851180401 135.4 5
- 0864330101 141.0 4
RX J1301.9+2747 0124710801 29.8 1
- 0851180501 484 3
- 0864 560 101 134.9 8
XMMSLI1 J024916.6—041244 0411980401 11.7 1
eRASSU J023147.2—102010 0861910201 94.2 2
- 0861910301 90.2 1
eRASSU J023448.9—-441931 0872390 101 95.0 9
- 0893810501 25.0 3
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Figure 1. Example of an X-ray light curve containing QPEs. Light curve is
from XMM-Newton observation 0823680101 of GSN 069, where the counts
are binned at rates of (a) 50 s, (b) 250 s, and (c) 1000 s.

An example of a screened light curve containing QPEs is displayed
in Fig. 1.

For each of these observations we then created light-curve seg-
ments which isolated each eruption, giving a total of 43 segments,
each containing one eruption, from 12 observations, and fit a model
to the segments of the form

—1In (2)(t - tpeak)z )

2
s dur

x(t) = xq + Aexp ( (1)
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where x, is the quiescent baseline count rate in the vicinity of
each eruption, A is the amplitude of the eruption relative to this
quiescent count rate, fqx is the time of the peak of the eruption
within the segment, and 74, is the duration of the eruption as
defined as the full width at half-maximum of the Gaussian profile
of the eruption. For the purposes of the feature extraction we only
include the first eruption seen in observation 0861910201 of e(RASSU
J023147.2—102010, as the second eruption appears to overlap with
the first, and there is no ‘quiescent’ phase on either side of the
peak as the observation ends before the eruption has completed. As
such there is no baseline against which the peak height could be
compared for this second eruption and was therefore not suitable
for feature extraction. We accept that excluding the features of this
eruption could negatively impact the ability of the classifier to detect
other sources with overlapping eruptions. We then used the positions
of the peaks within the eight observations for which there were
multiple profiled eruptions to determine the recurrence times between
eruptions for each observation, and thus the average duty cycle (A)
for each observation. The duty cycle is calculated as

A= tdj. 2)
trec

For the purposes of testing the neural networks against real obser-
vational data, we also include 57 light curves from other low-mass
AGN. These light curves are of AGN which were selected by Webbe
& Young (2023) as part of a targeted search for QPE host galaxies
selected by mass from the Chandra ACIS Survey for X-ray AGN in
Nearby Galaxies catalogue (She, Ho & Feng 2017) which showed
no signs of QPE-like behaviour. Details of all observations used in
the final evaluation phase of the neural network performance can be
found in Table A1 in Appendix A.

2.2 Simulated light-curve generation

In order to produce a training data set of an appropriate size for
the training of the neural network, we used the features of the
eruptions already observed (amplitude, duration, and duty cycle)
and the algorithm for generating light curves outlined in Timmer
et al. (1995). We generate light curves with total durations of 100
ks, and time bins of 50, 250, and 1000 s. We use a value of 250
s for the time binning as it fits typical binning values used in the
literature, and then the choices of 50 and 1000 s were made as values
which could show the variability at the lower level which might
be expected to be affected by Poisson noise, and a higher level at
which we start to reach the durations of individual eruptive events.
With these time bins and considering the typical count rates seen in
the data we find that including Poisson noise is not required when
training the model (see Section 5.1). A simple power-law model was
chosen as a typical underlying PSD of the form f~# with values of
B being randomly drawn from a normal distribution with 8 = 2.06
and og = 0.01 as per Gonzdlez-Martin & Vaughan (2012). Values
for the index of the power spectra are generated with NUMPY. As the
generated light curves have X = 0, we shift the resulting light curves
up by (10 + 8)Xmin, Where § is sampled from a normal distribution,
and x,,;, is the lowest point in the raw light curve. In order to create
a sub-population of light curves which contain QPE signals we then
multiply half of the simulated light curves with a signal of the form

M _ P _ 2
X(l) —14+A Zexp ( In (2)0 to [m 1]trec) ) ’ (3)
m=1

2
[dur

where A is the amplitude of the eruptions being modelled, 74, is the
duration, f, is the peak time of the first eruption in the series, t. is
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the recurrence time between eruption peaks, and where M satisfies

]
M=|—|+3. 4
trec

This gives us a balanced data set for training and validation. To
simulate a range of possible eruption profiles, we randomly sample
values for A, 1y, tqy» and A on the basis of the eruptions profiled in
Section 2.1. Values for #, are sampled from a uniform distribution
such that 7y € [, 0), and the values for A, 74, and A are sampled
from exponentially modified Gaussian distributions (e.g. Gladney,
Dowden & Swalen 1969; Grushka 1972). We sample from such a
distribution as it provided a high-quality fit to the distribution of
observed parameter values. These simulated light curves are then
processed to create non-parametric statistical features, as outlined in
Section 2.3.

2.3 Variability measures

We will be using a set of variability statistics calculated from our
simulated sample, and then from the real testing sample, to determine
whether a light curve does or does not contain QPEs. Some of these
features have been used previously in attempts to characterize light-
curve variability (Sokolovsky et al. 2017), and some have been
used in coordination with machine learning techniques like self-
organizing maps (Faisst et al. 2019) to characterize AGN variability.
Due to the use of simulated light curves in the training and validation
steps of our machine learning workflow, we do not have errors on the
simulated light curves. As such, we choose 14 features which do not
rely on the existence of uncertainties within the data being analysed.
We extract these features from the simulated light curves and the
observational data at all three time bins of 50, 250, and 1000 s in
order to observe the effects of time binning on detection accuracy.

2.3.1 Feature 1 - standard deviation normalized by the mean

In order to remove any issue caused by the different count rates for
observations, we use the standard deviation divided by the mean
count rate

Z,‘(Xi*f)z
fi=+ (5)
1= — —

X

where N is the number of points in the light curve, x; is the count rate
of individual points on the light curve, and ¥ is the average count
rate.

2.3.2 Features 2-7 - proportion of the light curve further than 1o
to 60 from the mean

A light curve where the points are normally distributed about a mean

count rate will have proportions of points at given numbers of o from

the mean count rate. These features are calculated as

Nt,(nf Do
N

where Ny (, — 1)o is the number of points where |x; — X| > (n — 1)o.

fo= ,n€(2,7], (6)

2.3.3 Feature 8 - inter-quartile range normalized by o

For a light curve where the points are normally distributed about the
mean, the middle 50 per cent of points should be within 0.674c of
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the mean, and so it should be that IQR = 0.674¢.

_IQR
- o

s (N

2.3.4 Feature 9 - skew

The skewness of a light curve will determine how asymetrically the
individual count rates are around the mean value. For this analysis,
we use the Fisher—Pearson coefficient of skewness:

ms

fo=81= "5, 3)
m;
where
1 —\i
m; = N Z(x —X) )

and m; is the bias sampled ith central moment.

2.3.5 Feature 10 - Kurtosis

The Kurtosis of a light curve will determine, relatively, how likely it
is that the light curve will contain extreme outlying values. For this
analysis, we use the Fisher coefficient of Kurtosis:

ny
Jio=g=—-3 (10)
mj

where my and m;, are calculated as described in equation (9).

2.3.6 Feature 11 - reverse cross-correlation normalized by o

To provide a second measure of the asymmetry of the light curves be-
ing analysed, we calculate the cross-correlation for the observations
with themselves, being reversed along the time axis. To mitigate for
different average count rates across observations, we normalize all
deviations for individual data points by the standard deviation for the
observations as a whole:

fll:z:w7 (11)

. o?

1
where x; are the count rates of individual points in the light curve,
Xy — ; s the counterpart point on the reversed light curve, and N is the
number of points in the light curve.

2.3.7 Feature 12 - first maximum of the autocorrelation function

As a measure of coherent periodic variability, we take the height of
the first peak of the normalized autocorrelation function. This is the
first peak after the autocorrelation function has crossed zero, and is
normalized by the autocorrelation at r = 0.

ACF(1) )

ACF(t = 0) (12)

f12 = max (

2.3.8 Feature 13 - consecutive same sign deviation proportion

We consider the proportion of sets of three consecutive points from
the light curve which all display the same sign deviation from the
mean count rate. In some examples in the literature (e.g. Wozniak
2000; Shin, Sekora & Byun 2009), a choice is made to require all
three points to be at least some multiple of o from the mean value,
but we choose not to include this extra distinction in order to not
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inadvertently prejudice our results, or to cause degeneracies with
Features 2-7:

N 3x
N -2’
where Ns, is the number of sets of three consecutive points in the
light curve which have the same sign deviation from X.

Sz = 13)

2.3.9 Feature 14 - Von Neumann ratio

The final feature compares the difference in the deviation between
successive pairs of points to the total variance of the light curve:

SN i — x)2/(N = 1)
o? ’

Su=n= (14)

where x; and x; + | are pairs of consecutive points.

2.4 Neural network architecture

The neural networks being applied and evaluated in this work are built
using the TENSORFLOW (Abadi et al. 2015) package for PYTHON. We
create networks with an input layer, either one or two hidden layers,
and an output layer. The input has nodes as required by the number
of input features, and the output layer has two nodes to force a
binary classification between light curves containing QPEs or not.
We use the RELU activation function, and as we are considering a
classification problem our loss function of choice is CROSS ENTROPY.
Outputs from the network are then passed to a SOFTMAX layer to
give the probability that light curves belong to the classes. The
hidden layers are allowed to have between 3 and 196 nodes, and
the precise final architecture for each input data set is determined by
KERAS_TUNER (O’Malley et al. 2019). We use the HYPERBAND tuner
from KERAS_TUNER for this optimization. The training and evaluation
of networks with the simulated data uses accuracy as the metric to be
optimized, which forms part of the determination as to the optimal
architecture:

TP+TN
TP+FP+TN+FN’

where TP is the number of true positive, FP is the number of false
positive, TN is the number of true negative, and FN is the number of
false negative classifications. For these purposes, we consider those
light curves which contain QPEs as being classified as positive, with a
probability, as determined by the neural network, of containing QPEs
being greater than 50 per cent. When we evaluate the performance
against the real data sets we also consider purity, completeness, and
the F score for each network where

Accuracy = (15)

Purit; rr (16)
urity = ————,
YS TP Y FP
TP
Completeness = ————, (17)
TP+ FN
and

2 x Purity x Completeness
F, Score = =1 P . (18)
Purity 4+ Completeness

We use these additional measures as the observational data set is less
balanced, with only 17.4 per cent of the real observations containing
QPEs. These metrics are not used to inform further amendments
to the architecture of the network, or the weightings applied to
individual nodes, but are simply used to illustrate the effectiveness
of the network in classifying real observational data.
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Table 2. Optimal architecture for the neural net-
works at each time binning value as determined by
keras_tuner.

Time bin (s) No. hidden layers Nodes
50 1 [110, 2]
250 1 [49, 2]
1000 2 [23,91,2]

Table 3. Classification accuracy for 18000 simulated
light curves in the validation phase, and 10000 in the
testing phase.

Time bin (s) Validation Testing
50 0.9404 0.9379
250 0.9489 0.9502
1000 0.9467 0.9495

3 RESULTS

3.1 Simulated light-curve classification

We simulated 100 000 light curves, with 50 000 to contain QPEs, and
50000 without QPEs, with a duration of 100 ks and time binning
of 50, 250, and 1 ks in the manner described in Section 2.2 and
extracted from them the variability features described in Section 2.3.
From the population of 100000 simulated light curves at each time
binning rate, we set aside 10 000 light curves for testing and split the
remainder in the ratio 80:20 for training and validation.

The optimal architectures for the neural networks were determined
as described in Section 2.4 and allowed to vary between different
values for the time binning both for the number of nodes in any hidden
layers, and by the number of hidden layers which were allowed
to exist. The optimal architectures for the two lower time binned
networks included only one hidden layer, while the 1 ks binned
network contained two hidden layers. In all cases, there was an
output layer which was fixed to contain two nodes in order to force
a binary output choice between the light curve containing QPEs or
not. The full architectures are given in Table 2.

Across all three time bin values we achieved very high levels of
accuracy when classifying the simulated data sets, with the validation
and testing accuracy being greater than 94 per cent in all cases and
are given in Table 3. Validation and testing accuracy were greatest
for the 250 s binned data sets. Differences in performance are,
however, only marginal and the slight changes in accuracy upon
classitying the simulated testing data set suggests that the model was
not significantly overfit to the training data.

3.2 Observational data classification

The observational data, as listed in Table A1, were rebinned to rates
of 50, 250, and 1000 s and features were extracted for all available
light curves. There were three observations without QPEs which
could not be rebinned at a rate of 250 s, and a further two which
could not be rebinned at a rate of 1000 s as well due to the limitations
on good time intervals. The results of their classification are given in
Table 4.

There is no clear hierarchy when classifying real observational
data, and at first it appears that all three sets of observational
data are classed with equally poor performance, although the 250
s binning performs slightly below the other two classifiers. The
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Figure 2. Confusion matrix showing the classification of 57 light curves
without QPEs and 12 with light curves with QPEs present. The light curves
were binned at a rate of 50 s, and their full details are given in Al. Threshold
probability for requiring a QPE is set at 0.500.
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Figure 3. Confusion matrix showing the classification of 54 light curves
without QPEs and 12 with light curves with QPEs present. The light curves
were binned at a rate of 250 s, and their full details are given in Al. Threshold
probability for requiring a QPE is set at 0.500.

completeness of close to 1.0 and low levels of purity suggest that
all light curves are being strongly predicted as containing QPEs.
The drop in accuracy when classifying real observational data rather
than simulated data suggests at first that there may be features of
the real observational data which are not appropriately captured
in the simulated data sets. The confusion matrices showing the
classifications of the observational data against all three classifiers
are show in Figs 2, 3, and 4. From the confusion matrices, we can
see that the overall accuracy is lowered by large numbers of light
curves being incorrectly classified as containing QPEs. When we
plot the QPE probabilities of the three classifiers, we can see that
the QPE probabilities generally are quite high and close to 1.0 in
the majority of cases, as shown in Fig. 5, but that those light curves
containing QPEs do tend to be classed more strongly as containing
QPEs than those without, and as such we should consider the level
at which we delineate between QPE and non-QPE containing light
curves. We do consider the benefits of probability calibration, as
outlined in Guo et al. (2017), but find that calibration by means
of isotonic regression using SKLEARN (Pedregosa et al. 2011) does
not beneficially redistribute the probabilities, with the granulation of
probabilities close to 1.0 being lost.
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Figure 4. Confusion matrix showing the classification of 52 light curves
without QPEs and 12 with light curves with QPEs present. The light curves
were binned at arate of 1000 s, and their full details are given in A1. Threshold
probability for requiring a QPE is set at 0.500.

4 DISCUSSION

4.1 Simulated light-curve feature distributions

The simulated light curves were created according to a well-
established algorithm which has been used for many purposes (e.g.
Hiibner et al. 2022; Panagiotou, Kara & Dovciak 2022, etc.), and
several of the features selected were chosen to match approaches
taken in other attempts to identify variability in time-domain data
(e.g. Sokolovsky et al. 2017; Pashchenko, Sokolovsky & Gavras
2018; Faisst et al. 2019, etc.). None of the features were, however,
selected with the expectation that they would serve this specific
purpose in the identification of light curves containing QPEs. When
we look at the features being extracted from the simulated light
curves, we can see that there are several all-time binning rates which
appear to distinguish well between light curves with and without
QPEs. Features 1, 2, 4, 8, 9, and 12 across all-time binning rates
are separated by at least 1o, as shown in Table 5. It should be
noted that all of the features except 9 and 11 are constrained to be
positive only. In some of the cases the feature distributions cannot
be used in all cases to classify the light curve as containing a QPE
or not, but specific values may be strong indicators as containing a
QPE or not. In the cases of Features 6 and 7, any non-zero value is
strongly indicative of a light curve containing QPEs, but not all QPE
containing light curves have non-zero values for these features. The
values for Feature 1, which appear to be a good way of distinguishing
between the two classes, should also be taken with a measure of
caution. They are affected by the factor which shifts the light curves
from being zero-centred (a necessary step for the imposition of the
QPE signals in the light-curve generation), and a further investigation
would be needed in order to determine what effect varying this factor
has on the distributions for Feature 1 in the two classes and whether
it remains a distinguishing factor. If we consider the distributions
of the features, as shown in Figs 6, 7, and 8 we can see that for
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TableS. Average and spread on feature values for the 14 features as described
in Section 2.3. Values stated are the mean and o from all 50 000 simulated
light curves used in the training, validation, and testing phases for each of the
three values for time binning in the samples with and without imposed QPE

signals.

Feature AT QPE sample Non-QPE sample
f 50 0.881 £ 0.449 0.047 £ 0.009
250 0.883 £ 0.448 0.048 £ 0.010
1000 0.878 £ 0.449 0.051 £ 0.010
b 50 0.134 £ 0.105 0.358 £ 0.047
250 0.134 £ 0.105 0.358 £ 0.048
1000 0.135 £+ 0.106 0.359 + 0.051
f 50 0.057 £ 0.028 0.029 £ 0.021
250 0.057 £ 0.028 0.029 + 0.021
1000 0.057 £ 0.030 0.029 £ 0.023
fa 50 0.025 £+ 0.018 0.0003 £ 0.0016
250 0.025 £ 0.018 0.0003 £ 0.0016
1000 0.025 £ 0.019 0.0002 £ 0.0018
f5 50 0.011 £ 0.011 (2.0 4 223.6) x 1077
250 0.011 £ 0.011 (5.0 &+ 474.3) x 1077
1000 0.011 £ 0.012 (4.0 + 632.4) x 1077
fe 50 0.0049 £ 0.0071 0.0 £ 0.0
250 0.0049 £ 0.0071 0.0 = 0.0
1000 0.0049 + 0.0078 0.0 £ 0.0
f 50 0.0025 £ 0.0047 0.0 £ 0.0
250 0.0025 £ 0.0047 0.0 £ 0.0
1000 0.0026 £ 0.0053 0.0 £ 0.0
R 50 0.445 £ 0.574 1.50 £ 0.22
250 0.445 £+ 0.572 1.49 £ 0.22
1000 0.448 £ 0.570 1.48 £ 0.23
fo 50 324 £ 238 —0.0012 £ 0.3978
250 3.24 + 237 0.002 £ 0.399
1000 3.16 £ 2.24 —0.0029 + 0.4044
fio 50 15.8 £ 25.0 —0.63 £ 0.49
250 157 £ 244 —0.626 £ 0.491
1000 144 £ 197 —0.637 £ 0.504
JSu 50 1.33 & 700.05 5.9 4+ 913.9
250 1.12 £ 141.10 0.066 £+ 182.072
1000 —0.44 £ 34.89 0.22 + 46.05
fi2 50 0.62 + 0.34 0.12 = 0.09
250 0.616 £ 0.337 0.124 + 0.088
1000 0.575 £ 0.318 0.125 £ 0.089
i3 50 0.98 + 0.04 0.97 + 0.02
250 0.914 £ 0.096 0.922 £ 0.039
1000 0.731 £ 0.216 0.839 + 0.077
fia 50 0.017 £ 0.125 0.0049 £ 0.0031
250 0.176 £ 0.308 0.027 £ 0.017
1000 1.15 £ 0.68 0.114 £ 0.068

Table 4. Classification accuracy for observational XMM light curves of objects as listed in Table Al. Classifications are
made on the basis of a cut at 50 per cent threshold probability for containing a QPE or not.

Time bin (s) No. with QPE No. without QPE Accuracy Purity Completeness Fy score
50 12 57 0.319 0.203 1.0 0.338
250 12 54 0.212 0.188 1.0 0.316
1000 12 52 0.328 0.208 0.917 0.338
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Figure 5. Probability that individual light curves in the observational data
sample contain QPEs as per the results of the neural network classification.
Panels show the results for light curves binned at (a) 50 s, (b) 250 s, and
(c) 1000 s. The QPE and non-QPE samples displayed are normalized by the
number of light curves in each sample.

several of the features the populations show differences, both for the
simulated and observed samples. Features 1, 2, 3, 8, and 12 all show
distinct differences between the QPE and non-QPE populations, with
the distributions for the real observed light curves and the simulated
light curves in each class clearly overlapping for all three time bin
values. Fig. 9 shows how these five features interact in more detail.
From this we can see that the combinations of f; and f>, f> and f;,
/> and fi,, and f3 and fi, appear to show a high level of separation
between the two classes of simulated light curves.

Kolmogorov—Smirnov testing for all 14 features reveals that for the
simulated feature distributions the classes are distinct at the 1 per cent
confidence level for each individual feature at all-time bin values.
In comparing the feature distributions for the two classes of real
observations, Features 1, 2, 4, 8, 9, 10, and 13 were individually
significantly different at the 1 per cent confidence level for all-time
bin values. Features 3, 5, and 14 were all individually significantly
different at a confidence level of 5 per cent for all three time bin
values, and Feature 12 was significant at 10 per cent. Features 6 and
11 were also individually significantly different at the 10 per cent
level for time binning of 50 s, but were not significantly different at
the other two time bin values. Feature 7 did not show a significant
difference at any value for time binning. Features 6 and 7 are,
however, affected by the time binning of the simulated light curves,
as all simulated light curves are of duration 100 ks, and so the number
of points in the light curves decreases by a factor of twenty as the
time binning increases from 50 to 1000 s. Additionally, these results
with regards to the observational feature distributions should be taken
with some caution due to the reduced sample size; the QPE class only
contains 12 light curves binned at 1000 s.

If we consider networks trained for only individual features, and
with architecture optimized as described in Section 2.4, we find that
certain features at different values for the time bin appear to be more
informative than others. With a time binning of 50 s, we achieve a

RASTAI 2, 238-255 (2023)

classification accuracy of 0.870 and F; score of 0.609 using only
Feature 3. With a time binning of 250 s, we achieve a classification
accuracy of 0.970 and F score of 0.917 using only Feature 8, or an
accuracy of 0.894 and F; score of 0.588 using only Feature 12. With
a time binning of 1 ks, we achieve a classification accuracy of 0.922
and F; score of 0.828 using only Feature 9.

4.2 Threshold probability optimization

Our default measure for distinguishing between light curves contain-
ing QPEs and not containing QPEs was to compare the classification
probabilities, as the output of a SOFTMAX layer, and assign the
class as that which has the highest probability. With our problem
being that of a binary classification this means that initially we set a
nominal threshold probability of 50 per cent between the two classes.
Following the results of the classification of the observational data
in Section 3.2 we then considered whether an adjustment to the level
at which we split the two classes could improve the performance.
We perform a simple grid search for threshold probability between
0 and 1 at steps of 0.000001 with the results of the classification
at all three neural networks and find that altering the level at which
we delineate between light curves containing QPEs and those which
do not can significantly improve the performance of the classifier.
The full results of the optimization are given in Table 6, and the
associated optimized confusion matrices are displayed in Fig. 10, 11
and 12. By varying the threshold probability at which we distinguish
between QPE and non-QPE containing light curves we were able to
make significant improvements in the accuracy and F scores for all
three data sets. In the case of all three classifiers, we can improve
the accuracy by raising the required QPE probability. For each of the
three classifiers, the optimal QPE probability was very close to 1.0,
which is indicated by the distributions of light-curve probabilities
as seen in Fig. 5. In all three cases by optimizing the accuracy we
reduce the completeness of the classifier, but given that the sample
being classified is biased towards light curves not containing QPEs
the increase in false negative classifications is far outweighed by the
decreases in each case of false positive classifications. For the 50 s
classifier, 4 out of the 12 QPE containing light curves are misclassi-
fied at a higher probability, but an additional 46 of the 57 non-QPE
light curves are then correctly classified, and we see a similar increase
in the performance of the 250 s classifier. The greatest increase in
performance is seen in the 1000 s classifier, where at the optimal
threshold probability level for accuracy we reduce the misclassifica-
tion rate for non-QPE containing light curves to 0 per cent.

After optimization with all three classifiers there is one false
negative result which appears in all three samples, and one false
positive which appears in both the 50 and 250 s binned data sets.
Observation 0304 190 101 of NGC 1331 is classed as containing a
QPE with probability 0.999999, 0.999976, and 0.999 329 across
the 50, 250, and 1000 s classifiers, respectively. The light curve
for observation 0304 190 101 of NGC 1331 is shown in Fig. 13.
Observation 0861 910301 of eRASSU J023147.2—102010 s classed
as not containing a QPE with probability 0.986 134, 0.995476,
and 0.318 089 across the 50, 250, and 1000 s classifiers, respec-
tively. The light curve for observation 0861910301 of eRASSU
J023147.2—102010 is shown in Fig. 14.

If we look at the individual features, extracted from the 250 s
binned light curves, which achieved the highest levels of classifi-
cation accuracy, we find that in both cases many of the features
for the erroneously classified light curves are more indicative of
their incorrect classes. For observation 0304 190 101 of NGC 1331
Features 1, 9, and 10 were outliers for the non-QPE class, with
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Figure 6. Distribution of feature values for the 14 features used in the classification derived from light curves binned at 50 s. Box plots display the distribution
of features from left to right for the populations of: simulated light curves containing QPEs (red); simulated light curves without QPEs (blue); observed light
curves containing QPEs (green); and observed light curves without QPEs (purple). Feature values have been normalized between 0 and 1.
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Figure 7. Distribution of feature values for the 14 features used in the classification derived from light curves binned at 250 s. Box plots display the distribution
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curves containing QPEs (green); and observed light curves without QPEs (purple). Feature values have been normalized between 0 and 1.
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Figure 8. Distribution of feature values for the 14 features used in the classification derived from light curves binned at 1000 s. Box plots display the distribution
of features from left to right for the populations of: simulated light curves containing QPEs (red); simulated light curves without QPEs (blue); observed light
curves containing QPEs (green); and observed light curves without QPEs (purple). Feature values have been normalized between 0 and 1.
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Figure 9. Distribution of feature values for Features 1, 2, 3, 8, and 12. For clarity the features for a sample of 10000 of each of the simulated populations of
light curves are shown in red (QPE) and blue (non-QPE). Histograms show the frequency density distribution of features for all 50 000 light curves in each class.

Features 1 and 9 showing significant differences between the two
classes. For values of fj = 1.52 and fo = 1.59 this observation sits at
1.420 (147.20) and 0.700 (3.980) from the mean for the QPE (non-
QPE) class. The average deviation from the class feature means for
observation 0304 190 101 was 1.50c for the QPE class, and 34.51¢
for the non-QPE class. For observation 0861 910301 of eRASSU
J023147.2—102010 Features 4, 5, 6,7, 8, 12, and 14 were outliers for
the QPE class, with Features 4, 5, 6, 8, and 12 being the most extreme
values for the QPE class. For values of f; = 0.0, fs = 0.0, fg = 1.36, and
f12 = 1.36, this observation sits at 0.1560 (1.340), 0.0110 (0.9350),
0.0600 (1.6050), and 1.260 (1.790) from the mean for the non-QPE
(QPE) class. The average deviation from the class feature means for
observation 0861 910 301 was 0.858¢ for the QPE class, and 10.22¢
for the non-QPE class. As the features overall for both of these obser-
vations would seem to indicate that both share more in common with
the QPE class it is evident that the effects of individual features which
may be more important than others are causing the misclassifications.
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A particular issue in this classification is the high rate of false
positive identifications, as QPEs are rare in appearance. If we look
at those light curves which do not contain QPEs, we see a distinct
difference in the average count rates for those which are correctly
or incorrectly identified across all three time bin values. Those light
curves which do not contain QPEs have average count rates of 0.402,
0.439, and 0.447 cts s~! across the three time bin values when
considering those which are available for classification. The average
count rates for those observations which are categorized correctly
(and incorrectly) are 0.472 (0.051) for the 50 s sample, 0.447 (0.005)
for the 250 s sample, and 1.045 (0.103) cts s~! for the 1000 s sample.
Observation 0304 190 101, shown in Fig. 13, is misclassified with all
three networks and has an average count rate of 0.0047 cts s™',
indicating that even when binned at 250 s it is likely that there will
be a high proportion of empty bins and as such the classification
may well be affected by Poisson noise due to the low count
rates.
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Table 6. Optimal ranges for the cut in probability value at which we define
a light curve as containing QPEs or not. Threshold probability ranges are
closed intervals which give the optimized threshold probability values for
accuracy, purity, completeness, and F score.

Time bin (s) Metric Conf. range Metric value
50 Accuracy [0.999 206, 0.999 211] 0.8841
Purity [0.999 206, 0.999 211] 0.6429
Completeness [0, 0.778 044] 1.0
F score [0.999 206, 0.999 211] 0.6923
250 Accuracy [0.999 886, 0.999 944] 0.8939
Purity [0.999 977, 0.999 998] 1.0
Completeness [0.0, 0.986412] 1.0
Fy score [0.999 886, 0.999 893] 0.6666
1000 Accuracy [0.999 330, 0.999 455] 0.9844
Purity [0.999 330, 1.0] 1.0
Completeness [0.0, 0.999 999] 1.0
Fy score [0.999 330, 0.999 455] 0.9565
1.0
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No QPE
a 0.6
©
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Figure 10. Confusion matrix showing the classification of 57 light curves
without QPEs and 12 with light curves with QPEs present. The light curves
were binned at a rate of 50 s, and their full details are given in Al. Threshold
probability for requiring a QPE is set at the level which optimizes accuracy
of 0.999 21.

4.3 Application to the XMM Serendipitous Source Catalogue

Having achieved high levels of accuracy in classifying simulated
light curves, and with the moderate level of success achieved in
classifying real observational data, we now consider whether any
new QPE candidates can be identified through application of the
networks to the XMM Serendipitous Source Catalogue.

We filter the XMM Serendipitous Source Catalogue (4XMM-
DR12)* for observations which contain pn detections, have light-
curve data which are created as described in Webb et al. (2020), and
have total exposure times greater than 50 ks. Detections are referred
to by their ‘SRCID’ tags as given in the 4XMM-DR12 data release.
We also screen for any detections which could be spurious (possibly
near an extended bright source, or where the detector coverage is
particularly low) using the criteria that SUM_FLAG=0. From the
total catalogue of 939270 items this creates a sample of 83531
detections for consideration. We download the pn light-curve data
for these detections, and then screen these light curves for time bins
of less than 50 s, and rebin the light curve to 50, 250, and 1000 s.
Due to issues with very low-count-rate observations as identified in

3http://xmmssc.irap.omp.eu/Catalogue/4XMM-DR12/4XMM _DR12.html
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Figure 11. Confusion matrix showing the classification of 54 light curves
without QPEs and 12 with light curves with QPEs present. The light curves
were binned at a rate of 250 s, and their full details are given in A1. Threshold
probability for requiring a QPE is set at the level which optimizes accuracy
of 0.9999.
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Figure 12. Confusion matrix showing the classification of 52 light curves
without QPEs and 12 with light curves with QPEs present. The light curves
were binned at a rate of 1000 s, and their full details are given in A1. Threshold
probability for requiring a QPE is set at the level which optimizes accuracy
of 0.9994.

Section 4.2, we then screen for any light curves with an average count
rate below 0.01 cts s~!. Finally, due to issues with flaring events
which are common at the start or end of observations depending
on their position during observing cycles we then remove the first
and last 15 ks of each observation. Features are then extracted from
each of the three light curves for each detection and the objects are
classified according to the networks as trained in Section 2.4, and
tested on the observational data as described in Section 3.2. As the
phenomenon we are trying to find is very rare, we want to reduce
the numbers of false positive events in any sample which is to be
scheduled for follow-up by an expert observer. In Fig. 10, 11, and
12, we can see that with very high threshold probabilities we could
still flag very large numbers of false positive results given the total
sample size. As such, we select detections from the catalogue for
further review based on the result of classification from all three
networks. In order for a light curve to be flagged for further review,
we require that it achieves a score of:

(1) 0.999 with features extracted from a 50 s binned light curve,

(1) 0.9999 with features extracted from a 250 s binned light curve,
and

(iii) 0.999 with features extracted from a 1000 s binned light curve.
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Table 7. Predictions for the 11 observations of known QPE sources contained within the XMM Serendipitous Source
Catalogue (4XMM-DR12). For each object we note the observation ID, the predictions from the three networks for
the three time bin values (P50, P250, and P1000), and whether the light curve is flagged for further inspection as per

the methodology in Section 4.3.

Object OBSID Eruptions P50 P250 P1000 Flag
GSN 069 0823680101 2 0.999 0.9999 1.000 Y
- 0831790701 5 0.9986 0.9993 red0.999 N
- 0851180401 5 0.999 0.9999 0.999 Y
- 0864330101 4 0.829 0.9772 0.996 N
RX J1301.94-2747 0124710801 1 0.998 98 0.9995 1.000 N
- 0851 180501 3 1.000 0.9995 1.000 Y
- 0864560 101 8 0.998 0.9999 0.999 N
XMMSLI1 J024916.6—041244 0411980401 1 0.768 0.9721 0.999 N
eRASSU J023147.2—102010 0861910201 2 0.998 98 0.9998 0.984 N
- 0861910301 1 0.952 0.9767 0.161 N
eRASSU J023448.9—-441931 0872390101 9 1.000 0.9999 1.000 Y

At these threshold probabilities, we achieve purity (and complete-
ness) scores of 0.6 (0.75), 0.86 (0.58), and 0.85 (0.92) with the 50,
250, and 1000 s classifiers, respectively, on our initial testing data,
with 22 per cent, 11 per cent, and 20 per cent of the light curves in
our sample being flagged at these threshold probability levels. With
these selection criteria from the total sample of 83531 detections,
705 light curves are identified for further examination with six being
classified as containing QPEs with a probability of 1.0 across all
three networks.

When this selection criteria is applied to the known observations
of QPE candidates which are in the 4XMM-DR12 catalogue we find
that for the 11 observations which are in the catalogue only four meet
our selection criteria. Of those seven observations which do not meet
the criteria, one only fails the criteria for one of the three networks.
In all but one of the cases the predictions for the observations are
strongly favoured towards containing QPEs, see Table 7 for the
full results. The very low score for observation 0861910301 of
eRASSU J023147.2—102010 when binned at 1 ks is an outlier.
These results are not entirely unexpected due to the nature of the
pre-processed light curves available with the XMM Serendipitous
Source Catalogue. The light curves which are associated with the
catalogue are for the full range of energies detected by XMM-
Newton (0.2-12.0 keV), and we know from previous examination
of QPE sources that the phenomenon is largely contained to lower
energies (Miniutti et al. 2019; Giustini et al. 2020; Arcodia et al.
2021; Chakraborty et al. 2021, etc.). As such, the variability which is
clear and evident in the 0.2-2.0 keV band appears suppressed and of
a smaller amplitude when observed in the full 0.2-12.0 keV range,
and it is not surprising that fewer of the known QPE sources meet our
criteria for flagging in this case. Across the different time bin values,
we observe changes in the features when considering the light curve
for the full 0.2-12.0 keV energy band. Feature 1 for all observations
decreased with a change to the energy band, Feature 9 displayed an
average decrease across all three time bin values, and for 50 and 250
s binned curves Feature 8 displayed an average increase. All three
of these changes are indicative of movement from QPE to non-QPE
populations, and would explain the decreased probabilities of the
classifications towards containing QPEs.

We then manually examined the light curves for the 705 detections
which were flagged from the Serendipitous Source Catalogue. The
first result of note is that a large proportion of the flagged detections
came from observations which contained several detections flagged
as containing QPEs. Of the 705 detections, 484 (69 per cent of all
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flagged detections) came from a combination of 37 observations, all
of which contained at least five detections. Observation 0604 960 301
contained 46 detections which were flagged as containing QPEs at the
conservative cuts implemented in the methodology described above.
In the case of some of these observations, there are unusual patterns
affecting the detections which are flagged as containing QPEs. One
example is that of observation 0804 680 101, where there are five
detections flagged as containing QPEs which all show a similar
profile with peaks simultaneously in their light curves. See Fig. 15
for the 250 s binned light curves for sources 6, 7, 10, 11, and 22
from observation 0804 680 101. For this specific observation, there
are peaks across the light curves of all five objects simultaneously
at ~15 ks, ~24 ks, ~75 ks, ~100 ks, and ~ 115 ks after the start
of the observation. These features are evident in the light curves for
all five sources, despite them being located on different parts of the
detector, with source 6 being located on CCD 1, sources 7 and 10
being located on CCD 11, and sources 11 and 22 being located on
CCD 10, and without overlapping raw positions on the detectors.
The manner in which the light curves are created is standard across
all detections in the catalogue. It requires the automatic detection of
source locations, with background regions being drawn from empty
regions on the same CCD as the source. Any other detections flagged
in the background region are screened out. That sources located on
different parts of the detector should have simultaneous, correlated
variability is unlikely, and at present it is unknown as to what may
be causing these features to appear across multiple detections in
certain observations, but a manual recreation of the light curves for
these detections appears to show that background features are not
appropriately being subtracted.

The 705 detections were then grouped by observation ID, to allow
for faster manual filtering by repeated features across detections in
the same observation, and were then all reviewed manually. From
this sample, we were able to identify 27 detections where their
light curves warranted further examination. The details of these 27
detections are listed in Table B1. The detections were then cross-
referenced with the SIMBAD astronomical data base (Wenger et al.
2000) to determine the names and types of sources to determine if
the objects could be AGN as viable QPE sources. In the cases where
there was no correlated source in SIMBAD, we then referenced
the identities of those sources through NASA/IPAC Extragalactic
Database. Of these sources, 19 were identifiable as stars or X-ray
binary systems and not appropriate for further analysis to determine
the presence of QPEs, and the remaining eight were galaxies or un-
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Figure 13. Light curve for observation 0304 190 101 of NGC 1331 which
was misclassified as containing QPEs when binned at 50 and 250 s. The light
curve is shown binned at rates of (a) 50 s, (b) 250 s, and (c) 1000 s and was
misclassified in all cases. It appears likely that the misclassification is due to
the effects of Poisson noise being more amplified given the low average count
rate, which would be most noticeable for the two shorter time bin values.

classified sources. For those eight sources, we then downloaded and
reprocessed the observation event lists, manually screened for flaring
events, and created light curves for the 0.2-2.0 and 2.0-12.0 keV
bands to determine whether the variability was present in soft X-ray
bands. Of those eight sources, the variability was not present at lower
energies for detections 200 823401010018, 204 045402010 025,
and 206 019305010009. For the remaining five sources, we then
created light curves in three narrower energy bands, 0.2-0.5,
0.5-1.0, and 1.0-2.0 keV, to determine whether the variability
which appears in the soft X-rays follows the energy-dependent
characteristics seen in confirmed QPE sources. At this stage,
we ruled out detections 200773401 015192, 201068 601 010017,
206010101 010020, 207277 801 010019, and 208 235 803 010011
as there is no significant difference seen in the variability in the three
energy bands, with the flare being the same width, peaking at the
same time and having the same amplitude against the quiescent rate
in all three narrower bands. We give an example of a source which has
been flagged and examined in further detail in Fig. 16. In this case,
the source identified (SRCID 207 223 603 010 022) by the automatic
classification pipeline and manual inspection was classified as a red
dwarf, likely displaying chromospheric flares, and as such no further
analysis is required. At this stage, our pipeline has not identified any
new candidate QPE sources, with common sources of contamination
being: instrumental background subtraction; chromospheric flares
from red dwarfs; and flares from other classes of variable stars.
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Figure 14. Light curve for observation 0861910301 of eRASSU
J023147.2-102010 which was misclassified as not containing QPEs. The
light curve is shown binned at rates of (a) 50 s, (b) 250 s, and (c) 1000 s and
was misclassified in all cases.

5 CONCLUSIONS

In this analysis, we set out to determine whether it would be possible
to identify light curves containing QPEs by means of time-domain
only features and commonly used machine learning classification
techniques. This analysis used the freely available TENSORFLOW
packages for PYTHON and features which had been previously used
to classify other types of variability (Sokolovsky et al. 2017; Faisst
et al. 2019), and were able to achieve accuracies of over 94 per cent
in classifying simulated light curves and accuracies of over 98
per cent in classifying real observational data. The classification
accuracy we have obtained is greater than that of Lo et al. (2014)
(~77 per cent) when only considering time-domain features and also
uses a smaller number of features (14 rather than 27). The accuracy
we have achieved is even greater than that obtained by Lo et al.
(2014) (~97 per cent) and Farrell et al. (2015) (~92 per cent) when
considering non-temporal features, which we do not consider in this
analysis, in addition to time-domain features. We chose not to use
spectral features as part of the network training process for two
reasons: Simulating spectral features alongside temporal features
would have been more computationally demanding; it could bias
our classifier towards only finding QPE hosts with spectral features
that are similar to those which have already been discovered. As all
current QPE hosts have very soft spectra we could miss out on some
harder X-ray sources of QPEs. As it is, the training on features sets
takes of the order of minutes on a standard desktop computer, and
the time taken for the creation of features and classification of light
curves with the networks once trained is trivial.
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Figure 15. Light curves for five sources flagged as containing QPEs within
the observation 0804 680 101. All light curves are binned at 250 s and show
a consistent pattern of variability despite sources being located on different
sections of the detector. Panels display (from top to bottom) the light curve
for sources 6, 7, 10, 11, and 22.

5.1 Further work

Further work could provide several ways to improve the efficacy of
our classifier. Our approach to simulating light curves is itself limited
by the number of eruptions which have currently been detected. With
an increase in the number of known QPEs we could improve our
understanding of the underlying distributions for the QPE features
and so create a more accurate training data set. Our approach has
also not required any information on the brightness of sources being
considered, as this could be impacted by the sensitivity of different
instruments. We should also consider the features being used in
the classification process and whether the features created by the
simulated data set adequately represent those seen in observational
data. Feature 1 is likely to not be representative of real observational
data for the reasons identified in Section 4.1. A further correction to
the baseline of light curves after the QPE signals have been imposed
could alter the effectiveness of and authenticity of this feature, but
the issues caused by Poisson noise at very low count rates may mean
that it would be better to eliminate the feature entirely. Features 13
and 14 also do not appear to follow the same distributions in the
simulated and observational data sets, as shown in Figs 6, 7, and
8, and corrections to the generation process could be considered
in order to make them more representative of the observational
data. When we consider subsets of 13 of the 14 features, we find
that improved performance in classifying the observational data
sample is possible. With 1000 s binned light curves, we can achieve
an accuracy of 96.9 per cent when Feature 3 is omitted. Further
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Figure 16. Light curves for the detection of 207 223 603 010 022 as source
22 in observation 0722360 301. Top panel (a) shows the full band 0.2-12.0
keV light curve binned at a rate of 50 s for the source and the lower panel (b)
shows the energy dependence of the flare located around 60 ks after the start
of the observation binned at a rate of 250 s.

analysis of combinations of fewer features may identify the optimal
approach moving forward. Additionally, we can consider data from
instruments other than XMM-Newton. We have chosen not to include
instrumental effects in generating light curves and features in order
to allow this tool to be applied to data from other observatories,
and including QPE features derived from observations of QPE
sources with Chandra and NICER and other observatories may
further improve the accuracy of these classifiers. An investigation
into the effects of including Poisson noise in the populations of
simulated light curves found a decrease in the ability of the classifiers
to distinguish between light curves containing QPEs or not. The
addition of noise increased the baseline variance of the light curves
which made the two classes in training appear less distinct. However,
at count rates typical of the data sets in which QPEs are detected,
the degradation in performance was small. With the additional
computational power and time which was required to include Poisson
noise in simulating light curves we do not consider that it is likely
to produce improvements in the classification accuracy in the future.
Further applications of similar methods in other wavebands may
allow for the detection of other types of astrophysical transient, and
the network design with a SOFTMAX layer allows us to extend to
such a multiclass problem. Additionally, it may be preferable when
working with other catalogues of data to train the network using
the F metric. In this instance, we found a slight decrease in the
efficacy of the classifier when applied to real data when training with
Fg, and the number of light curves flagged for manual inspection,
when the networks were optimized for accuracy, in Section 4.3 was

$20Z Jaquiaoa( 90 U0 J8sSn ASIT( UOJ0JYouAkg usuoia|g sayosinaq Aq 9782/ 1 2/8€2/1/Z/a111e/nsel/woo dnooiwepese//:sdiy woll papeojumod


art/rzad015_f15.eps
art/rzad015_f16.eps

manageable. With a larger catalogue it may be beneficial to train
with Fg tuned to produce a smaller number of objects for manual
inspection, even if the proportion of false positive results in that
sample could be higher.

Ultimately, this analysis can serve as a benchmark for the de-
tection of QPEs in X-ray light curves with machine learning. The
classification has been achieved with high levels of accuracy in
simulated light-curve sets and high, albeit lower, accuracy in real
observational data. While we were not able to conclusively identify
any new QPE sources in the XMM Serendipitous Source Catalogue
we have identified two sources which show some QPE-like behaviour
which could be followed up with further observation.
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APPENDIX A: OBSERVATIONS USED FOR
TESTING

Table Al contains a list of all XMM observations of AGN which
were processed and used in the real data testing phase. In all cases,
the pn light curves were binned at 50, 250, and 1000 s to account
for shot-noise in lower count-rate observations. Mass estimates are
either taken from or the CHANSNGCAT catalogue.
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Table A1. Details of observations of low-mass AGNs which were identified
as part of a manual search for QPE candidates. Values for Mgy are given
as log (Mgu/Mg) and are as per CHANSNGCAT. Those observations which
could not be rebinned at 250 s are denoted with (), and those which could
not be rebinned at 1000 s are denoted with (}) against their observation ID

numbers.

AGN name Mgu OBSID Exp. (ks)
2XMM J123103.24110648 4.87 0145800 101 107.0
- - 0306 630 101 80.9
- - 0306 630201 99.5
eRASSU J023147.2—102010 5.78 0861910201 94.2
- - 0861910301 90.2
eRASSU J023448.9—-441931 4.96 0872390101 95.0
- - 0893810501 25.0
GSN 069 5.99 0657820101 14.9
- - 0740960 101 95.1
- - 0823680101 63.3
- - 0831790701 141.4
- - 0851180401 1354
- - 0864330101 141.0
- - 0864 330201 133.1
- - 0864330301 133.2
- - 0864 330401 136.1
NGC1331 5.48 0304 190 101 65.9
NGC3367 5.64 0551450101 31.4
NGC3599 5.85 0411980101 6.9
- - 0556090 101 43.6
NGC4467 5.86 0112550601 24.6
- - 0510011501 (1) 10.1
- - 0761630101 118.0
- - 0761630201 118.0
- - 0761630301 117.0
NGC4476 5.58 0200920101 109.3
- - 0551870401 21.6
- - 0551870601 21.3
- - 0603260201 17.9
- - 0803670501 132.0
- - 0803670601 65.0
- - 0803671001 63.0
- - 0803671101 131.9
NGC4559 5.14 0152170501 422
- - 0842340201 75.4
NGC4654 5.07 0651790201 28.9
NGC5273 5.97 0112551701 17.1
- - 0805080401 110.9
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Table A1 - continued

AGN name Mgy OBSID Exp. (ks)
- - 0805080501 28.0
NGC6946 543 0093 641501 (x) 8.6
- - 0093 641601 (%) 10.1
- - 0093 641701 (x) 11.3
- - 0200670 101 16.4
- - 0200670201 (1) 14.4
- - 0200670301 15.6
- - 0200670401 21.2
- - 0401360 101 20.9
- - 0401360201 24.4
- - 0401360301 24.4
- - 0500730101 31.9
- - 0500730201 37.3
- - 0691570101 119.3
- - 0794 581201 50.0
- - 0870830101 17.9
- - 0870830201 17.7
- - 0870830301 16.0
- - 0870830401 17.8
NGC7314 5.59 0111790101 44.7
- - 0311190101 83.9
- - 0725200101 140.5
- - 0725200301 132.1
- - 0790650 101 65.0
NGC925 6.0 0784510301 50.0
- - 0862760201 42.0
RX J1301.942747 6.65 0124710801 29.8
- - 0851 180501 48.4
- - 0864560 101 134.9
XMMSLI J024916.6—041244  5.29 0411980401 11.7
- - 0891800601 33.8

APPENDIX B: TOP CANDIDATES FROM XMM
SSC ANALYSIS

Table B1 containsp details of those detections from the XMM
Serendipitous Source Catalogue (4XMM-DR12) which were manu-
ally identified as containing significant variability and where follow-
up analysis was performed. Table B1 lists the type of object
corresponding to the detection and whether it contains QPEs if a
galaxy.
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Table B1. Details of detections from the XMM SSC which were flagged as containing QPEs and were followed up with manual inspection. The last three
columns contain details as to the type of astrophysical object, whether the variability is seen when only the 0.2-2.0 keV band light curve is created, and whether

the energy dependent and temporal characteristics are indicative of QPE behaviour. Sources are listed in order of their 4XMM Catalogue source IDs.

SRCID OBSID Source No. Object name Type Soft variability QPE-like?
200287402010079 0655050 101 11 2XMM J001527.9—-390507 Star N/A N/A
200560203010005 0801610101 4 [BHR2005] 832-14 Low-mass star N/A N/A
200669401010002 0501790 101 2 Clx NGC 2547 JND 13-98 Star N/A N/A
200669401010075 0501790 101 15 Clx NGC 2547 NTJ 7-2323 Low-mass star N/A N/A
200773401015192 0555630401 136 2XMM J150122.1—-414227 X-ray source Y N
200823401010018 0203560201 12 SDSS J111740.11+074411.7 Quasar N N/A
201068601010017 0803990301 4 [CPS95] X-12 X-ray source Y N
201080604010030 0555780601 5 [LBX2017] 780 High proper motion star N/A N/A
- 0604 960 801 3 - - - -
- 0604961201 5 - - - -
201111202010026 0305540701 14 [GY92] 463 T-Tauri star N/A N/A
201111202010048 0800031001 3 [GY92] 259 Young stellar object N/A N/A
201 125903010151 0403200 101 85 Vi V1320 Ori BY Dra variable N/A N/A
201428001010001 0142800 101 1 X LMC X-4 High-mass XRB N/A N/A
202010902010004 0821240301 3 WISEA J020621.12—002346.7 Star N/A N/A
204045402010025 0674050 101 34 2CX0 J202103.24-365423 X-ray source N N/A
206006 901010002 0600690 101 2 UCAC4 509-131194 High proper motion star N/A N/A
206010101010020 0844 860 101 8 XMMU J004705.9—205239 X-ray source Y N
206019305010009 0601930501 6 WISEA J213740.24+002048.0 IR source N N/A
206 048602010005 0604 860201 5 WISEA J181323.39—-325230.9 Red dwarf N/A N/A
206939901010022 0693990301 10 WISEA J111949.13+065305.6 Star N/A N/A
207216201010018 0721620101 18 2MASS J08384128+1959471 Eruptive variable star N/A N/A
207223603010022 0722360301 22 WISEA 1220310.58—344406.7 Red dwarf N/A N/A
207277801010019 0790380901 18 [ELK2021] 22 Galaxy Y N
207 437002010001 0743700201 1 TYC 4682-1697-1 Star N/A N/A
207 810401010007 0781040 101 7 SDSS J032048.68+003234.0 Low-mass star N/A N/A
208235803010011 0823580301 11 WISEA 1124901.51—-410131.6 IR source Y N
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