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Abstract

Emission from X-ray binaries is variable on a wide range of timescales. On long
timescales, changes in mass accretion rate drive changes in spectral state. There is
also rapid variability, the power spectrum of which consists of a low frequency quasi-
periodic oscillation (QPO) superimposed on a broad band noise continuum. Here
I investigate a model intended to quantitatively explain the observed spectral and
variability properties. I consider a truncated disc geometry whereby the inner regions
of an optically thick, geometrically thin accretion disc evaporate to form an optically
thin, large scale height accretion flow. The QPO is driven by Lense-Thirring precession
of the entire hot flow and the broad band noise is due to fluctuations in mass accretion
rate which propagate towards the central object. Mass conservation ties these two
processes together, enabling me to define a model for the QPO and broad band noise
which uses only one set of parameters. I am thus able fit the model to data. The
accretion rate fluctuations drive fluctuations in the precession frequency, giving rise to
a quasi-periodic oscillation rather than a pure periodicity. The model thus predicts
recent observations which show the QPO frequency to correlate with flux on short
timescales. I then investigate a more unique model prediction. As the flow precesses,
the patch of the disc preferentially illuminated by the flow rotates such that a non face
on observer sees a quasi-periodic shift between blue and red shift in the iron K, line.

An observation of such an effect would constitute excellent evidence for the model.
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Chapter 1
Introduction

1.1 X-ray binaries

In this thesis, I develop a physical model designed to self-consistently explain the
spectral and timing properties of the X-ray emission driven by mass accretion onto
a black hole or neutron star. Since black holes are the simpler of the two classes of
object, they are the focus of most of my efforts. However, I also make attempts to use
the same model in order to explain the common observational properties of the two
object classes. In this section, I introduce these objects and the systems in which they

reside.

1.1.1 Compact objects

When a star runs out of fuel to power fusion reactions, its ultimate fate is determined by
its mass. For the most massive stars, a supernova explosion leaves behind the remains
of its core in the form of a compact object. If degenerate neutron pressure can arrest
the collapse of the core, a neutron star is formed. If the progenitor was sufficiently
massive for gravitational collapse to overcome even this force, the core collapses into
a singularity and a black hole is formed. A black hole has only two properties: mass
and spin (in theory, a black hole could also have a charge but this is unlikely for an
astrophysical black hole). The black hole horizon is defined as the point where the
escape velocity is the speed of light. For a Schwarzschild black hole (non spinning),
this is given by Rg = 2GM/c* = 2R,. Here, R, is a gravitational radius. Because
this is a characteristic size scale, it is often convenient to write distances in units of

1



1. Introduction 2

R,. Thus, hereafter I will use the convention R = rR,. Generally, the black hole is
spinning and its angular momentum Jgy can be expressed with the dimensionless spin
parameter a, = Jgp/(McR,). In this case, space-time is well described by the Kerr
metric and it can be shown (e.g. Kato, Fukue & Mineshige 1998) that the horizon
generalises to rg = 1 + \/1—7013, which reduces to rg = 2 in the Schwarzschild limit.
It is also clear from this expression that a? < 1.

A key prediction of general relativity is that, in a strong gravitational field, there
is a region in which there are no stable orbits. Again using the Kerr metric, it can
be shown that a test mass orbiting interior to the radius of the last stable orbit, 7,
will be sure to eventually fall beyond the horizon if gravity is the only force present
(see e.g. Kato, Fukue & Mineshige 1998). Figure 1.1 shows the dependence of the last
stable orbit on spin. Positive values of a, are for prograde motion and negative values
are for retrograde.

The fundamental difference between black holes and neutron stars is that a neutron
star has a solid surface and black holes do not. However, the gravitational field expe-
rienced by the accretion flow is similar for both objects because a neutron star outer
radius coincides approximately with its own last stable orbit. The exact value of neu-
tron star mass and outer radius depends on its equation of state and is still an active
area of research but for canonical assumptions, they are thought to be M ~ 1.4M

and R ~ 10 km (see e.g. Haensel et al 2007).

1.1.2 Mass transfer in X-ray binaries

A binary system consists of two stars orbiting around a common centre of mass. In
an X-ray binary (XRB), one of the stars is a compact object and mass is transferred
from the companion star. The gravitational energy lost by this accreting gas can be
converted very efficiently into emission which peaks in the X-rays, giving rise to the

term X-ray binaries. In a high-mass X-ray binary (HMXRB), the companion star has
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Figure 1.1: Last stable orbit as a function of the dimensionless spin parameter, a,.

a mass typically larger than 10 M meaning that it is very luminous, of spectral type
O or B and is younger than ~ 107 years. In a low-mass X-ray binary (LMXRB), the
companion star is typically smaller than ~ 1 M, and so is generally older. Figure 1.2
illustrates the Roche potential created by the gravitational pull of the two stars. If the
companion star fills its Roche-Lobe, either by expansion through stellar evolution or
by contraction of the binary orbit, mass can pass through the L; point and fall onto
the compact object (see e.g. Frank, King & Raine 1992). In this thesis, I concentrate
on systems in which accretion is dominated by this process of Roche-Lobe overflow (in
general, accretion can also be powered by a large scale wind). This encapsulates all

LMXRBs and some HMXRBs.

Gas which passes through L; cannot fall straight onto the compact object because
it has angular momentum. Instead, particles orbit the compact object to form an

accretion disc. Viscosity erodes the angular momentum of these orbits, meaning that
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Figure 1.2: The Roche potential in a binary system. Here, the more massive of the

two stars is in the foreground.

material spirals slowly inward. In a simple system, the disc will be truncated by gravity

at the last stable orbit where material, rather than spiralling slowly inward, enters free

fall.

The rate of gravitational energy loss in an accretion disc is proportional to the mass
accretion rate, M. If the disc is in thermal equilibrium, the temperature at any point
of the disc is related to the luminosity as L oc T* and therefore 7% o M. The mass
accretion rate is not constant over long timescales if the disc is subject to the hydrogen
ionisation instability. For low mass accretion rates, the disc is cool so the material is
mostly neutral. Because neutral material has a much lower opacity than free electrons
(e.g. Cannizzo & Reiff 1992), radiation can escape and cool the disc. However, a small
increase in temperature may lead to photons in the high energy Wien tail of the thermal
distribution becoming energetic enough to ionise hydrogen in some region of the disc.
The resulting photo-ionised absorption edge drives a sharp rise in opacity. This heats

the disc, meaning more photons can ionise hydrogen and further increase the opacity.
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This runaway heating increases the local mass accretion rate, making it higher than
the input mass accretion rate (coming through L;). This reduces the density in the
region thus reducing the pressure. The region cools and hydrogen recombines leading to
runaway cooling (Frank, King & Raine 1992; Kato, Fukue & Mineshige 1998; Cannizzo
1993). This is a local instability but an increase in mass accretion rate will flow through
to the next disc annulus, heating that region and sparking off runaway heating there.
Heating and cooling waves can therefore run through the entire disc leading to a global
instability. Cooling is, however, slowed because the luminous inner disc irradiates
the outer disc, keeping hydrogen from recombining even at large radii (van Paradijs
& McClintock 1994; van Paradijs 1996). Eventually, since the mass accretion rate
is higher than that provided by the companion, the inner regions become starved of
material which reduces the luminosity enough to allow hydrogen to recombine in the
outer regions (King & Ritter 1998; Lasota 2001).

Although all XRBs show long time scale (i.e. days, weeks, years) variability, not all
are subject to the hydrogen ionisation instability. Thus sources can be placed in one
of two categories: persistent and transient. Persistent sources have been ‘on’ since the
birth of X-ray astronomy whereas transient sources are usually ‘off” but occasionally
rise to outburst. Figures 1.3, 1.4 and 1.5 (reproduced from Done, Gierliniski & Kubota
2007) show 1.5-12 keV light curves as seen by the all sky monitor (ASM) on board the
Rossi X-ray timing explorer (RXTE). The luminosity is expressed as a fraction of the
Eddington luminosity which is the limit whereby outward radiation pressure balances

inward gravitational force giving

ArGMm,c

LE‘dd i — (11)
or

where m,, is a proton mass and or is the Thompson cross-section. All the sources
in Figure 1.3 are black hole (BH) HMXRBs with mass transfer dominated by Roche-
Lobe overflow, Figure 1.4 is for BH LMXRBs and Figure 1.5 is for neutron star (NS)
LMXRBs. We see that all of the BH HMXRBs are persistent sources and all of the
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Figure 1.3: Long term light curves for a selection of BH HMXRBs as seen by the RXTE

ASM (with mission days on the x-axis).

BH LMXRBs are transient sources. Thus the outer disc in BH HMXRBs is always
hot enough for hydrogen to be ionised. This is partly because of a high input mass
accretion rate and also due to irradiation from the companion star (van Paradijs 1996;
Menou, Narayan & Lasota 1999). The outer disc for BH LMXRBs, in contrast, is
cooler thus the hydrogen ionisation instability causes transient behaviour. Figure 1.5
shows that many (in fact most) NS LMXRBs are persistent and some are transient.
This is because neutron stars are less massive than black holes meaning that the binary
separation is less so the outer edge of the disc has a higher temperature (King, Kolb &
Burderi 1996; King et al 1997; Dubus et al 1999; Chakrabarty & Morgan 1998; Ergma
& Antipova 1999; Gladstone, Done & Gierlinski 2007; Done, Gierlinski & Kubota
2007).



1. Introduction

XTE J1118+480 m=8.5 d=1.7

!

L/ Lgga

m10™* 107 001 o1

4
10 TRTRE L LTESFE AL T
B1BDD S10HHE SE000

A, I

it
1500 S1600

i

Lol LD T L R
52100 32400 Sa500 B2E00 B2¥00

4&1 543—47 m=9.4 4=

\

] t

|
52000 54000

51700 52800
T T T T T T T T T T T T T
~F XTE J1550—564 m=10 d=5.19 1F XTE J1550-564 m=10 d=59 E
aF ‘\ : A\ ;
EH v AL 7/ ‘ ]
R " ¥
= H { $ {
P v ¥ i 1 ; Lt
ek ¥ LR | 1
N ]
! - -
3 Ll 1 1 Lipulimnicimnte e onemi ), |, RNl LLimien, . . NEIEE Sl Timnnem o nil R0/, (MaimEminiminrimn i ! EIEE
51100 a1304a 51300 E1400 E1BOG 51800 S1604 a1700 51800 E1800 BROOO S0 Saa0d
T —_————_—
—F 4U 1630—4% m=[10] d=10 1 F 40U 1680—47 m=[10] d=10 E
=L 4k v -
ja oty H ) e
35' ! ‘ f by ‘H ¥ LIRS \ 3
" 4t T b AL A e
I3 | A
L ]
S E . o 1 1 AR AT LRLERARLLIE TR 10 o doad i, .1, Ll Eieie BRI INE R IRl LRl Lo
S0E00 50900 50400  S0500  S0B0O0  BOVOD 50800 50800 5L000 51100 SL200 51300 51400
T T T T T T T T
—F AU 1830—4% m=[10] d=10 3
- " N X ]
= F #",,‘.‘.l 'h' ﬂtﬂ"ﬁhﬁ‘\w', 1
. . ¥ ‘f' t ,’ o ' 3
3zt W *
[=]
7
=
—
ki
= NI 1 L 1 1 1 1 1 LI I
BEGOO BIBOOD  GIYO0 S2O00  S3VO0 SI000  SIL00 5IFO0 53O0 53400
T T T T T T T T T T T T
= 40 1830—47 m=[101] d=10 XTE J1650—-500 m=7.43 d=32.6 3
=L <" ]
;ED T 1) Jarm
oL [ *ﬁ ’. ey 1
1A v ! + A t
7 ' ¥ ' '
=} H ¥ E
1 4
=1 LA I U0 W, | | 100 ) 0 OO 0 | Y AP
51800 52000 B2100 BEROD 2800 52400 52200 52300 E2400 BEEOD S2800 52700
T T T T T T T T T T T T T
~F (RO 1855—40 m=89 d=2.2 F CRO 1855—40 m=6.9 d=2.2 e
- - - - -.-U |
< F“ \y \”-—-ﬂ-“' fl=r
Azl ) L. ]
g . . "
n : ' L ¥
[=] f ' ’t T F 1
ki
= LA . L ) . 11 L1l IS | ———— |0 AR
S0200 BOBOO BO400 SO5M S0600 S0v00 EB400 EBEGO 53600 §8%00 53800 BERZ00 E4000
Time (MID} Time (MID}

Figure 1.4: Long term light curves for a selection of BH LMXRBs as seen by the RXTFE

ASM (with mission days on the x-axis).
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Figure 1.5: Long term light curves for a selection of NS LMXRBs as seen by the RXTFE

ASM (with mission days on the x-axis).
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1.2 Radiative processes in X-ray binaries

Wheather transient or persistent, the observed spectrum of an XRB is dramatically
different for different X-ray luminosities (and therefore mass accretion rate). Figure 1.6
shows the spectrum of the BH LMXRB GRO J1655-40 for 4 different mass accretion
rates during its 2005 outburst (plotted in units of energy x flux in order to show where
the flux peaks on a logarithmic scale '). The most striking difference is between the
red line and the blue line. The red line is dominated by a thermal component whereas
the blue line is dominated between ~3-100 keV by a power law. Because of their
comparative luminosities and the band pass in which they peak, these two spectral
‘states’ are referred to as the high/soft state (red line) and the low/hard state (blue
line).

We can identify the high/soft state (HSS) spectrum with the sort of thermalised
accretion disc discussed in the previous section. An accretion disc also seems to be
present at low energies in the low/hard state (LHS) but clearly a few more physical
processes are at work. If some corona containing energetic electrons is present near
the disc, photons from the disc will be Compton up-scattered resulting in a power
law spectrum. Some fraction of photons emitted from the corona will then reflect off
the disc to give a reflection spectrum with the most prominent feature being the iron
K, line visible at ~6.4 keV. In the transition from LHS to HSS, the source passes
through intermediate states depicted by the green and black lines. These intermedi-
ate states clearly contain the same spectral components as the HSS and LHS. During
the transition from LHS to HSS, the power law becomes softer as the disc compo-
nent becomes stronger. The observed spectra also display absorption features resulting
from interaction between the intrinsic photons and the extrinsic interstellar medium.
The spectral states of black hole binaries (BHBs) can therefore generally be explained

with four radiative processes: quasi-thermal emission, Comptonisation, absorption and

1On a logarithmic scale, dlogF is the constant so EF(E)dlogE = EF(E)dE/E = F(E)dE
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Figure 1.6: A selection of spectral states from the 2005 outburst of GRO J1655-40, as
seen by RXTE. The blue line represents the low/hard state, the red line the high/soft
state and the black and green lines represent the transition between the two (interme-

diate states).

reflection. The spectral states of neutron star binaries (NSBs) are complicated some-
what by the solid surface of the star (see chapter 3), but can also be modeled with
the same contributing components. I will summarise these processes in the following

sub-sections.
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1.2.1 Quasi-thermal disc emission

The standard Shakura & Sunyaev (1973) disc solution consists of gas particles in nearly
Keplerian orbits which are influenced only by the gravity of the central object (i.e. the
disc has negligible self gravity). Angular momentum is slowly transported outwards by
viscosity giving the gas a small inward velocity, v, << vs. The disc is geometrically thin
(with aspect ratio h/r ~ 0.01) and optically thick meaning that liberated gravitational
energy is radiated locally with a black body spectrum. If half of the liberated potential
energy in an annulus of width dr is radiated (virial), then the luminosity from that

annulus is _
GMM

I —

d 2R?

Each annulus radiates like a black body, so we can write dL = AocT* = 2x 27 R dR oT*

dR. (1.2)

and re-arrange to obtain

T GMM
~ 87R30’

Here o is the Stefan-Boltzmann constant. The total observed spectrum can be es-

(1.3)

timated simply by summing the black body contribution from each annulus, as is
illustrated in Figure 1.7. Because the peak temperature of the contribution increases
for smaller radii, this is called a ‘multi-coloured’ black body spectrum. Conserving

angular momentum as well as energy gives

7= S8 (0 Rl D). (1.4
This is the stress free inner boundary condition which arises because there is no viscosity
interior to R;,. There are also some relativistic effects that must be considered (Novikov
& Thorne 1973) but these are fairly small corrections. It is then possible to fit this
predicted spectrum to HSS data in order to derive the position of the disc inner radius.
If this is at the last stable orbit, the relation plotted in Figure 1.1 can therefore be used
to measure the black hole spin (e.g. Kubota, Makishima & Ebisawa 2001; Gierlinski &
Done 2004; Middleton et al 2006; McClintock et al 2006; Kolehmainen & Done 2010).
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Figure 1.7: Schematic of a multi-coloured black body disc. Each annulus emits a black

body with the peak temperature T oc r—3/4.

The nature of viscosity in the disc does not influence the emitted spectrum as
long as the emission thermalises. Shakura & Sunyaev introduced the « prescription,
whereby the radial viscous force is proportional to the pressure. This is equivalent to
setting the kinematic viscosity to v = acsH, where ¢, is the sound speed, H is the
disc semi-thickness and « is the dimensionless viscosity parameter. It is likely that the
physical origin of this viscosity lies in the magneto rotational instability (MRI; Balbus
& Hawley 1998). If different disc annuli are connected via magnetic fields, differential
rotation will tangle up the field lines giving rise to the shearing force required for

outward transport of angular momentum.

1.2.2 Comptonisation

Compton scattering is simply the transfer of energy between a photon and electron

via a collision. Figure 1.8 illustrates a geometry whereby a photon with an energy e,
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Figure 1.8: Schematic illustrating a collision between an electron with energy E and a

photon with energy €;,.

collides with an electron with velocity [ and energy E. The photon recoils from the
collision and its new energy is €,,;. Note the electron will also recoil but this is not

pictured. The new photon energy is given by

€in(1 — B cosb;)
1 — 3cosbe+ €n/v(1 —cosbi,)

€Cout =

(1.5)

Here, v = (1 — 3%)7'/2 is the Lorentz factor, 6,; is the angle between incident photon

and (incident) electron, 6., is the angle between the output photon and the (incident)

electron and 6;, is the angle between incident and output photons. Note that (3 is

velocity in units of ¢ and € is represented as a fraction of the rest frame electron energy,
2

mec?. The energy of the electron is £ = (v — 1)/?m,c?.

If the electron is at rest (i.e. 5= 0) and ¢;,, << 1 (the Thompson limit), equation
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1.5 can be simplified using a binomial expansion to
€out R €in[l — €in(1 — cosby,)]. (1.6)

If we imagine many such collisions in an isotropic distribution of photons and electrons,
the average output energy is €, =~ €;,[1 — €;,] (e.g. Rybicki & Lightman 1979). The
average change in energy is therefore Ae &~ —¢? . The electron which was originally at
rest has recoiled after the collision meaning that the photon has passed energy to the
electron.

In a thermal distribution of electrons, the typical random velocity is v* ~ 3kT,/m..
The electron temperature can be re-written in dimensionless units as © = kT, /m.c?,
meaning that the average electron velocity in the distribution is 3* = 3©. If the electron
and photon distributions are again isotropic, in the limit of © << 1 and ¢;, << 1, it

can be shown using equation 1.5 (e.g. Rybicki & Lightman 1979)
Cout = (1440 +1602..)ein ~ (1 + 40)e,. (1.7)

The average change in photon energy when a distribution of photons are scattered by
a thermal distribution of electrons is therefore Ae = 40¢;, (for €, < 30). Because
the electrons pass energy to the photons, this process is called Compton up-scattering.

Because energy can only be exchanged in a collision, the total energy transferred
depends on the likelihood of a collision. In the ¢ << 1 Thompson limit, electrons
have a cross section or (the Thompson cross-section) for interaction with photons. A
photon travelling a path length R sweeps out a volume Rop. The optical depth is

defined as the number of electrons in this volume and so is given by
T =nRor, (1.8)

where n is the electron (volume) density. The scattering probability is 1 — e™” which

reduces to ~ 7 for 7 << 1.
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Therefore, if a distribution of seed photons are incident on some thermal cloud of
electrons, a fraction ~ 7 of these photons will be scattered up to an energy of (1+40)e;,.
These output photons can also be scattered and the total number of scattering orders
possible, N, is limited by the electron temperature such that (1+40)Ve¢;, ~ 30. Figure
1.9 illustrates that, because each scattering order is subject to the same fractional
energy shift and the same fractional shift in flux, the output flux for ¢;, < € < 30 can
be represented by a power law F'(€) oc e~ where

log(7)

~ Tog(1 £ 10)" (1.9)

The differential photon spectrum 2 is thus N(e) oc €' where I' = a + 1 is the photon
index. Both functions will display low and high energy turn-offs at ~ ¢;, and ~ 30
respectively.

Perhaps the most intuitive way to think of Compton scattering is in terms of the
energetics. The electrons are being heated by gravitational collapse and so have a
luminosity Lj. They are also being cooled by interactions with seed photons which
have a luminosity Ls. The heating and cooling reach an equilibrium in order to main-
tain a temperature © for an optical depth 7. Pietrini & Krolik (1995) calculated the
parameter dependencies numerically and recovered the simple empirical scaling relation

LAY 1
~1.6(=—= — 1.10
@ (Lh) x ’7'@ ( )

This relation shows very clearly that, if the luminosity of seed photons illuminating the
electron distribution (L;) increases, this will cool the electrons and soften the output
power law spectrum.

It is therefore possible to explain much of the observed spectral evolution of XRBs
with a simple disc plus corona model in which the corona contains a population of

thermal electrons which interact with seed photons provided by the disc. As the disc

2For a detector with a perfectly flat energy response, this is proportional to the count rate.
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Figure 1.9: Schematic illustrating thermal Comptonisation. A population of seed pho-
tons (red) is incident on a population of thermally distributed electrons. The output
spectrum can be approximated by a power law because each scattering order is subject

to the same fractional energy shift and the same fractional shift in flux
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Figure 1.10: Left: A flat (I' = 2) power law spectrum as observed through a cloud of
hydrogen with column density log,, Ny = 19—23. Right: The same intrinsic spectrum
as seen through a cloud with log,, Ny = 22 with progressively heavier elements being

introduced to the column (with solar abundance) for each line.

luminosity increases, the luminosity of disc photons incident on the corona will nat-
urally increase thus softening the resultant power law emission. This also cools the
coronal electrons, leading to the high energy turn-off moving to lower energies, as

observed (e.g. Ibragimov et al 2005).

1.2.3 Absorption

Intrinsic emission is modified by photo-electric absorption by material along the line
of sight. This could be the interstellar medium of our galaxy (or the host galaxy for
extra-galactic sources) or some kind of wind either from the accretion flow itself or
the companion star. The amount of absorption is governed by the optical depth of
the absorbing medium such that a fraction e™7 of the intrinsic emission is transmitted.
Whereas the interaction cross-section for free electrons (in the Thompson limit) is
o(E) = or, the cross-section for bound atoms is much more complex. A hydrogen atom

has one bound electron with binding energy 13.6eV. Since the atom can only absorb
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photons with enough energy to un-bind the electron, the cross-section of hydrogen is
zero below 13.6eV with a sharp edge at Fe44 = 13.6eV and a slow decline going as
~ (E/E.45) "> above this. We can combine nR = Ny (where n is now the hydrogen
atom density) to make the column density. Figure 1.10 (left; reproduced from Done
2010) shows a flat (I" = 2) power law spectrum as observed through a cloud of hydrogen
with column density Ny = 10 — 10?%cm ™2 (black-cyan). A typical column through

our galaxy has Ny > 10%%cm~2.

Heavier elements are also present, which have progressively larger binding energies.
There are a number of energy shells, but the highest energy edge always results from
an electron escaping from the innermost (K') shell. The total absorption cross-section
is therefore a sum, weighted by relative abundances, of the cross-section for each ele-
ment. Heavier elements have higher E,q44. but lower abundance and therefore a smaller
influence on the total absorption cross-section. Figure 1.10 (right; also reproduced
from Done 2010) shows the transmitted emission from a flat power law through a
log,, Ny = 22 column. Different lines show the effect of adding progressively heavier
elements, assuming solar abundances. The last astrophysically abundant element is
iron, thus the magenta line shows the spectrum as observed through a neutral column

with solar abundances.

Photo-electric absorption leaves an ion and a free electron. The remaining elec-
trons in the ion are more tightly bound and thus have a higher binding energy. Figure
1.10 (right) effectively assumes that the free electrons always combine with the photo-
ionised ions before the next absorption event. However, if the X-ray irradiation is
very intense, there may on average be many absorption events by the time the ions re-
combine meaning that the cross-section is actually dominated by the collisions between
photons and ions rather than collisions between photons and neutral atoms. The cross-
section therefore depends on the balance between recombination and photo-ionisation.

For higher ionisation states, more elements are, on average, completely stripped of
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Figure 1.11: A flat power law spectrum as observed through a cloud with log,, Ny = 23

with solar abundances and ionisation state ranging from log,, £ = 0 — 1000.

electrons meaning they do not contribute to the cross-section at all. Thus, the higher
the ionisation state, the lower the total absorption cross-section. The ionisation state
can be parametrised by the ionisation parameter ¢ = L/nc?, where L is the source
luminosity (see e.g. Done 2010; Fabian et al 2000). Figure 1.11 (reproduced from
Done 2010) shows the transmitted flux for a column density of Ny = 10*cm™2, with
the number by each line representing log,, . We see that increasing ionisation does
indeed reduce the overall absorption cross-section. Also, we can see for intermediate
values of log;, &, there are more edges than for neutral material. This is because, if
there is not almost complete ionisation or neutrality, there are at least two relatively

abundant ionisation states for each element.
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Figure 1.12: Left: Optical depth for neutral material with solar abundance and Ny =
1.5 x 10**em™2 (black) together with the optical depth for electron scattering. Right:
The corresponding reflection spectrum from such material. Both plots are reproduced

from Done (2010).

1.2.4 Reflection

Some fraction of the flux emitted from the Comptonising corona will be incident on
the disc and thus have some probability of scattering off electrons therein and be-
ing reflected into the line of sight. The reflection probability is set by the relative
importance of scattering and photo-electric absorption. Figure 1.12 (left) shows the
photo-electric absorption optical depth for neutral material (with the exception of hy-
drogen and helium which are fully ionised) with Ny = 1.5 x 10**cm™2 (black) along
side the full (Klein-Nishima) electron scattering optical depth (grey) which drops-off
from the Thompson limit for £ ~ 511keV due to inelastic scattering. Thus we can
see that photo-electric absorption will be important for £ < 10keV because, the more
photons are absorbed at a given energy, the fewer are available to scatter into our line
of sight. Above ~ 10keV, electron scattering dominates. There will also be fluorescence

lines resulting from an electron dropping to fill a lower shell thus emitting a photon
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with energy equal to the difference in shell energies. The most common transition of
this kind is the K, line which results from an electron falling from the L (n = 2) shell
down to the K (n = 1) shell.

Figure 1.12 (right) shows the reflection spectrum for a flat power law illuminating
continuum, assuming all elements except for hydrogen and helium are bound (usually
referred to as neutral reflection despite the assumed ionisation of hydrogen and helium).
At low energies, we see that the reflection fraction increases with energy due to the
reducing absorption cross-section. We also see many fluorescence lines with the most
prominent being the iron K, line. This is because the iron lines occur at the energy
least suppressed by absorption, plus lighter elements are more likely to de-excite via
Auger ionisation where an outer electron is lost instead of a photon being emitted. At
high energies, the spectrum is dominated by inelastic electron scattering. High energy
photons do scatter, but they lose a significant fraction of their incident energy from
down-scattering. This bump at 20-50keV is often termed the reflection hump (George
& Fabian 1991; Matt, Perola & Piro 1991).

Since the low energy reflection spectrum depends on absorption, reflection is sen-
sitive to the ionisation state of the reflecting material. As Figure 1.11 shows, the
absorption cross-section reduces with increased ionisation. This means that the total
reflected flux increases with the ionisation parameter . Figure 1.13 shows a reflection
model which considers ionisation state and also calculates self-consistent fluorescence
lines, for four different values of . As expected, the < 10keV spectrum increases in
flux with & but the reflection hump, which is dominated by free electron scattering, is
left largely unaffected by the change in absorption. Also the edges and emission lines
are broader for higher ¢ as free electron scattering becomes increasingly important with

increasing ionisation.

Finally, we must consider that the disc is rapidly spinning. A non face-on observer

will therefore see part of the disc moving rapidly towards them and the other side
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Figure 1.13: Reflection spectrum from a constant density slab including self-consistent
line and and recombination continuum emission. Different lines represent different

ionisation states with log,, { ranging from 0 — 1000.
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Figure 1.14: Observed line profile resulting from assuming the rest frame reflection

spectrum to be a d—function iron K, fluorescence line. Since the disc is spinning
rapidly, a number of processes serve to broaden and skew the line meaning that the

observer sees a broad line even if the rest frame line is very narrow.
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rapidly away. This gives rise to a number of effects which are illustrated in Figure
1.14 (Fabian et al 2000) under the assumption that the rest frame reflection spectrum
is simply a d—function iron fluorescence line. Emission from the approaching and
receding sides is respectively blue and red shifted by the Doppler effect, giving rise to
the ‘two horn’ profile pictured in the top plot. Doppler boosting of the blue wing plus
length contraction in the line of sight lead to the skewed profile shown in the second
plot down. Gravitational redshift also serves to move everything to a slightly lower
energy. Since the final line profile includes all of these effects, it is relatively broad
even if the line is very narrow in the rest frame. These effects provide a potentially
very powerful diagnostic for the accretion flow because a smaller inner disc radius gives
rise to more rapid rotation, thus greater smearing and skewing (e.g. Fabian et al 1989;

2000; Reis et al 2009; Miller et al 2006).

1.3 The truncated disc model

It is clear that a two component spectral model, in which a disc interacts with some
Comptonising region, can explain much of the spectral behaviour of XRBs. It is,
however, unclear what exactly this Comptonising region is. It could be a coronal layer
covering the disc above and below the mid-plane (sandwich model: Haardt & Maraschi
1991; 1993). However, in this geometry the luminosity of disc photons intercepted
by the coronal layer will be too large for the source to produce the hard power law
emission observed in the LHS (Dove et al 1997; Gierlinski et al 1997; Poutanen, Krolik
& Ryde 1997); particularly when reprocessing of coronal emission in the disc is taken
into account (Malzac, Dumont, & Mouchet 2005; Stern et al 1995). If, instead, the layer
is only partially covering, it will be sufficiently starved of disc photons (patchy corona:
Galeev, Rosner & Vaiana 1979; Haardt, Maraschi & Ghisellini 1994). Alternatively,
the corona could be positioned above the black hole, in the form of a wind or the base

of a jet (lamp post model: Markoff, Nowak & Wilms 2005; Miller et al 2006). However,



1. Introduction 25

the corona in this geometry would also be prevented from emitting a hard spectrum
due to the large incident luminosity of disc (plus reprocessed) photons. This can be
remedied if the coronal region is assumed to be moving away from the disc (outflowing
corona: Beloborodov 1999; Malzac, Beloborodov & Poutanen 2001). The picture I
consider throughout this thesis is the truncated disc model (e.g. Esin, McClintock &
Narayan; Done, Gierliniski & Kubota 2007) whereby the thin disc truncates at some
radius r, > 1, and is replaced interior to this by some hot, optically thin accretion

flow which acts as the Comptonising region.

The truncated disc geometry is illustrated in Figure 1.15. As the truncation radius
moves in, the source transitions from the LHS, through the intermediate state, to the
HSS. As this happens, the disc luminosity and temperature increase (as observed) and
the luminosity of seed photons incident on the flow increases, thus cooling the electrons
and softening the power law emission. The spectra can be fit if the truncation radius is
assumed to move from r, ~ 60 in the LHS to 7, & ri4, in the HSS (e.g. Di Salvo et al
2001). The evolution of the reflection spectrum can also be interpreted in this picture.
As r, moves in, the luminosity of flow photons incident on the disc increases thus
strengthening the appearance of reflection features in the spectrum and increasing the
disc ionisation, as observed (e.g. Gierlinski et al 1999). In addition to this, as r, moves
in, the amount of smearing and skewing of the iron line caused by increasingly rapid
rotation of the inner disc should increase. There have been studies showing the data
to be consistent with this picture (Gilfanov, Churazov & Revnivtsev 1999; Zdziarski,
Lubinski & Smith 1999; Ibragimov et al 2005; Gilfanov 2010; Zycki, Done & Smith
1999; Gierlinski et al 1999) but there are also contradictory studies (Miller et al 2006;
Miller et al 2009; Reis et al 2008; 2011) which have themselves been challenged on the
grounds of both instrumental effects (Done & Diaz-Trigo 2010; Kolehmainen & Done
2010) and uncertainty over the detailed shape of the underlying continuum spectrum

(Kolehmainen, Done & Diaz-Trigo 2011; 2012). Since there is thus no unambiguous
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Figure 1.15: Schematic illustrating the truncated disc interpretation of the spectral

state transitions.
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evidence as yet to rule out the truncated disc model, and all alternative geometries
(e.g. Markoff, Nowak & Wilms 2005; Miller, Homan & Miniutti 2006) run into other
difficulties (Done, Gierlinski & Kubota 2007), I use it as my framework in which to
interpret the short timescale variability which forms the main subject of this thesis.
In this section, I will first discuss some of the physics associated with optically
thin accretion flows and disc truncation before introducing short timescale variability.
Analysis and modelling of this rapid variability holds the key to breaking the spectral
degeneracy and resolving the contention in the literature over different accretion ge-
ometries because it provides us with vastly more information than simply considering
the time averaged spectrum. The ultimate goal of this body of work is to explain the
observed variability properties of XRBs in the context of the truncated disc model. In
this section, I review the characteristic timescales we may expect to be associated with

the accretion flow as a first step towards this goal.

1.3.1 Optically thin accretion flows

As discussed in section 1.2.1, the thin disc solution of Shakura & Sunyaev is based on
the assumption that the disc is very optically thick. When the mass accretion rate is
very low in quiescence, the density will be very low and this assumption breaks down.
The disc no longer radiates like a black body and thus heats up (since black body radi-
ation provides the most efficient cooling mechanism). This increases the internal (gas
and radiation) pressure, causing the disc to expand vertically into a large scaleheight
accretion flow. In such an optically thin, geometrically thick accretion flow, ions and
electrons do not undergo enough collisions to thermalise (Stepney 1983; Shapiro, Light-
man & Eardley 1976; Ichimaru 1977; Narayan & Yi 1995). The ions are hotter than
the electrons because they hold all the gravitational energy, whereas Compton cooling
is dominated by the electrons which have a far larger photon interaction cross-section.

Another result of the sparsity of collisions is advective cooling and thus such accretion
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Figure 1.16: Schematic view illustrating the results of Mayer & Pringle (2007). The
initial sandwich configuration (top; with only one side of the sandwich shown) is mod-
ified by mass transfer (arrows) between the disc (blue) and corona (red). Eventually,

the inner regions of the disc evaporate and the outer regions condense.
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flow solutions are often referred to as advection dominated accretion flows (ADAFSs;
Narayan & Yi 1995; also see Ichimaru 1977; Rees et al 1982).

The truncated disc model thus consists of a geometrically thin, optically thick disc
(the disc) and a geometrically thick, optically thin flow (the flow), with some (poorly
understood) transition at r, which moves in as the mass accretion rate increases. It is
possible to gain some understanding as to how such a two component accretion flow
may form by considering the vertical density structure of the disc. If the disc is in
hydrostatic equilibrium, the density will drop off from the midplane value at large
z (Frank, King & Raine 1992). Consequently, the optical depth in these regions is
lower than in the midplane and so a coronal layer could plausibly form on the top
and bottom of the disc (i.e. a sandwich model geometry). Mayer & Pringle (2007)
assume such a sandwich geometry and consider thermal interaction between the disc
and coronal layer. They show that, after the system is left to evolve, the balance of
heating and cooling leads to a truncated disc solution (the authors’ schematic diagram
is reproduced in Figure 1.16) where the disc evaporates interior to the truncation radius
(labelled Ry,.) and the flow condenses outside of some radius > Ry, to form a truncated
disc / hot inner flow configuration with an overlap region. In intuitive terms, they
find that heating dominates for R < R and cooling dominates for R > Ry.. If the
mass accretion rate through the disc were to increase, this would increase the disc
luminosity meaning that cooling can dominate for a greater range of radii; i.e. the

truncation radius moves in.

1.3.2 Short timescale variability

In addition to long term changes in mass accretion rate, XRBs also display variability
on timescales far too short (1072 — 100s) to result from global changes in accretion
geometry. The properties and amplitude of this variability, as will be reviewed in

section 1.4, are heavily dependent on spectral state. Figure 1.17 shows two light curves
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Figure 1.17: Count rate as a fraction of the mean plotted against time for XTE J1550-
564 in the LHS (blue) and the HSS (red). We clearly see that the LHS light curve

displays a far larger fractional variability than that of the HSS.

from XTE J1550-564 in both the HSS (red) and LHS (blue). We clearly see that the
LHS light curve is far more variable than the HSS light curve on timescales ~ 100s.
Since the emission is stable when only a disc is present and variable when the flow is
prominent, it may be inferred that the variability originates in the flow with the disc
remaining fairly stable (e.g. Churazov, Gilfanov & Revnivtsev 2001)

The variability displayed in Figure 1.17 is aperiodic: there is strong variability on
a range of timescales. In addition to this, a single timescale is often picked out by

far more coherent quasi-periodic oscillations (QPOs). In Figure 1.18 I have plotted 3s
of data from XTE J1550-564 in an intermediate state. The raw data (grey) display
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variability on a range of timescales but it is just about possible to pick out a QPO
with period ~ 1/4 s by eye. The short timescale noise in the raw light curve ({,4.,(t))
can be smoothed out by averaging each point over the previous tgp.+ seconds (so only
variability on timescales longer than ¢, remains), to create the function lsem(t).
This new light curve, however, still contains long time scale variability. Filtering the
raw light curve on ;.4 seconds creates o, (t) which only contains the long term trends.

I use tspore ~ 0.18s and ;5,4 ~ 0.39s and calculate the light curve plotted in red by

lQPO (t) - \/lshort(t)Q - llong(t)Z + ,UQ, (1.11)

where p is the average value of l,4,,(t). The QPO is now very clear and can be fit with
a sine wave (black line) to show that it is coherent over the 3s duration plotted; i.e. the
phase, amplitude and period stay fairly constant. The best fit sine wave has a period
of topo = 0.256s. Even the smoothed light curve is far from perfectly described by a
sine wave: this is a quasi-periodic oscillation rather than simply a periodic one. As
we will see later, the QPO period shortens as the spectrum softens and the truncation
radius is inferred to move in.

Whereas the spectral properties of XRBs are fairly well understood, there is very
little consensus in the literature as to the origin of the variability properties. There
are, however, a few characteristic time scales which we may expect to be associated
with the accretion flow. Simple consideration of these time scales forms the first step

to building a model for the variability properties of XRBs.

1.3.3 Characteristic timescales of the accretion flow

The characteristic timescales of the accretion flow can be grouped into two classes:
timescales associated with bound orbits in the Kerr metric (relativistic timescales) and

timescales associated with the physics of the accretion flow itself (accretion timescales).
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Figure 1.18: 3s light curve of XTE J1550-564 in an intermediate state (grey). This
raw light curve can be filtered using equation 1.11 to produce the red line which has

a clear periodicity. The black line is the best fitting sine wave which has a period of

0.256s.
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Relativistic timescales

Relativistic bound orbits differ from those in Newtonian mechanics. I have already
discussed the last stable orbit in section 1.1.1, the prediction of which is is one major
difference between the Kerr metric and the flat metric always assumed in Newtonian
mechanics. Figure 1.19 illustrates an elliptical orbit (blue dotted line) of a test particle
around a massive object at the origin. This can be described by the three polar
coordinates ¢(t), 0(t) and r(¢t). This is a closed orbit, meaning that the particle will
keep following the same blue dotted line as it orbits the central object. Mathematically,
we can say that each coordinate varies with an angular velocity €24, €2y and €2, for the
o(t), 6(t) and r(t) coordinates respectively (i.e. ¢(t) = —Q2¢(t)). In Newtonian
mechanics, orbits always close and thus obey

Qp=Qy=Q, = r*3/2Ri. (1.12)
g

A non-zero 7(t) denotes an elliptical (as opposed to circular) orbit and a non-zero (t)
results from the z—axis not being orthogonal to the plane of the orbit (Figure 1.19).
However, if the central object is a spinning black hole with a spin axis aligned with

the z—axis, it is possible to show from the Kerr metric (see e.g. Merloni et al 1999)

that
Qy # Qy # Q.. (1.13)
Specifically
a, — r—3/2 c
1+ a.r=32R,
4a 3a?
2 2 * *

0 — 72 — 61 + 8a,r'/? — 3a, ( c )2. (1.14)

r2(r3/2 4 a,)? R_g

So the orbital motion in the ¢ direction departs from Newtonian mechanics only for

the very inner regions of the accretion flow. When 6 = 7/2; this reduces to the
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Figure 1.19: A bound elliptical orbit (blue dotted line), described by the three coordi-
nates ¢(t), 0(t) and r(t). The orbit closes because all three coordinates vary with the

same angular velocity.

a, = 0 (Schwarzschild) case, giving Qy = Q4 = 7732(¢/R,), which is consistent with
classical mechanics. However, even in this limit, there is a small correction to €2, =
r~2\/r —6(c/R,) which only tends to the Newtonian case for r >> 6.

The non-degeneracy between coordinate velocities creates two effects. Perihelion
precession is a rotation of the orbit’s semi-major axis with an angular velocity Qpp =
€2, — Qy|. This was observed in Mercury’s orbit of the sun by Urbain le Verrier in
1859 (although it would be nearly 60 years before the observation could be correctly
interpreted). Frame dragging is a slow rotation of the orbit’s plane. This is also named
Lense-Thirring precession after the authors who first derived it (Lense & Thirring 1918;
although there is evidence that much of the merit for the derivation belongs to Einstein:
Pfister 2007) and the angular velocity of precession is given by Qpr = |, — Q4.

Relativistic corrections consistent with frame dragging were recently measured in the
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orbit of Gravity Probe B around Earth (Everitt et al 2011), although there were high
uncertainties in these measurements. However, this effect is much larger around a
compact object because the curvature of space-time is so much greater near a black
hole or neutron star. It is therefore possible that the observed variability in XRBs
is some modulation of these orbital motions. In 1998-99, a slew of authors (Stella
& Vietri 1998; Stella, Vietri & Morsink 1999; Merloni et al 1999; Markovic & Lamb
1998; Cui, Zhang & Chen 1998) noted that the QPO period is commensurate with the
Lense-Thirring precession period at r,, as estimated by spectral fitting. For example
a moderate spin of a, = 0.5 and a black hole mass of 10M, gives a Lense-Thirring
period of t;r = 2w /Qpr ~ 0.26s at a radius of r &~ 9. This is the same period as the
QPO plotted in Figure 1.18, for which the truncated disc model estimates r, ~ 10. As

the truncation radius moves in, both t.r(r,) and the QPO period decrease.

Accretion timescales

The time dependence of an accretion disc is described by the diffusion equation

%—f = %% {RI/Q%(VERI/Q)} : (1.15)
which is derived using mass, angular momentum and energy conservation (see e.g.
Frank, King & Raine 1992, equation 5.6). Here, ¥ is the surface density and v is
the kinematic viscosity. Frank, King & Raine (1992) use an illustrative example with
v = constant to study how a ring of mass m and radius Ry evolves with time. In this

case, the initial surface density is

m

B(RE=0) = 5

§(R— Ry) (1.16)

and it can be shown that the surface density at a position x = R/Ry and time ¢, =

12vt/ R is given by

1 2
Nz, t,) = %t*lxl/‘l exp {— :ﬁ } Lya(22/t.), (1.17)
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where I /4(2) is a modified Bessel function. This is the Green’s function which describes
how the disc reacts to a perturbation in the surface density (or any related physical
quantity).

Figure 1.20 shows that the Green’s function causes the mass in the ring, which
started out all at x = 1, to spread out with the peak of the distribution slowly drifting
towards the compact object (i.e. the ring is being accreted). If we treat this initial
ring of mass as a density perturbation, we can see that it is being damped out. From
equation 1.17, we can see that damping occurs on a characteristic timescale given
by setting the argument of the exponential term to unity. This is called the viscous

timescale, obtained by setting 2%t, ~ 1 to get

tuise ~ R /v. (1.18)
By the same argument, the velocity of the radial drift illustrated in Figure 1.20 is given
by

VR ~ R/tvisc- (119)
The disc therefore acts as a filter to fast variability. Perturbations in 3 on timescales

shorter than ¢, will be strongly damped because the disc cannot react quickly enough.

We can use the « prescription (v = acsH) to show
buise = 0™ (/1) (1.20)

This allows us to compare the viscous timescales of disc and flow assuming o ~ 0.1 for

both and h/r ~ 0.01 and ~ 0.2 for disc and flow respectively. This gives

tuise(disc) = 450s (M /10My)(r/6)%/ (1.21)
and

tuise( flow) = 1s (M/10Mpg)(r/6)>/>. (1.22)
Therefore, the truncated disc model is consistent with Figure 1.17 which shows that the

(disc dominated) HSS is stable on the ~ 100s timescales on which the (flow dominated)
LHS is highly variable.
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ZTR2/m

Figure 1.20: A ring of material starting at Ry is spread out by the response of the disc
with the peak of the distribution slowly moving towards the black hole (equation 1.17).
The modified Bessel function in the Green’s function is calculated using codes in Press

et al (1992).
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We also expect the amplitude of disc variability to be suppressed compared to the
flow. This is because the disc has more independent regions per radial extent than
the flow. To illustrate this, consider an accreting ring with constant h/r and width
AR. We can model independent regions as spherical bubbles just small enough to fit
in the ring. The bubbles therefore have a radius H, the ring width is AR = 2H and it
is possible to fit (2rR)/(2H) bubbles in the ring. There are therefore N = m(h/r)~*
independent regions in the ring. Let us assume that each region generates fluctuations

in, say, mass accretion rate to produce N uncorrelated 1, (t) functions with averages

fn, and variances o2. If the N regions all produce a similar amplitude of variability
(i.e. p, = u, 0, = o), the summed contribution of the ring has an average fio; &~ Np

and variance o2, ~ No?. The fractional variability of the ring is therefore

Otot/ 110t ~ N~2(0 /1) o (h/r)(a /1), (1.23)

and so we do indeed expect suppressed disc variability.

1.4 Spectral and timing properties of black hole bi-

naries

The spectral and variability properties of XRBs are tightly correlated; thus a great
deal of insight can be gained from considering their simultaneous evolution. The power
spectrum provides a measure of the varability amplitude as a function of frequency (i.e.
1/timescale) and so is a useful tool in characterising variability. In this section, I first
introduce the power spectrum before summarising the parallel evolution of the spectral

and timing properties of BHBs.
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1.4.1 The power spectrum

The power spectrum, or power spectral density (PSD; I will use the two terms in-
terchangeably) is the modulus squared of the Fourier transform of a light curve. By
definition, it is a continuous function and so the process of estimating the PSD from a

discrete data set is not trivial.

The Fourier transform

The Fourier transform gives a decomposition of a signal h(t) into sine waves. The
contribution to the signal at a given frequency f is given by a(f)cos(2mft — ¢(f)).
Every frequency therefore has an amplitude, a(f), and a phase, ¢(f). If h(t) is infinitely

long and continuous, it relates to its Fourier transform such that

H(P) = / " ety
h(t) = +OOH(f)e‘2”ftdt. (1.24)

In general, both functions are complex but, since we will be considering it to be the
observed signal, h(t) is real. This means that the complex conjugate of H(f) obeys
the identity H*(f) = H(—f). Of course, we observe h(t) neither continuously nor for
an infinitely long time. We instead collect some number of X-ray photons in each time
interval, dt, to record a (background subtracted) count rate, hy(tx), at time t; = kdt
where 0 < k£ < N — 1. The total duration of the light curve is therefore T'= Ndt. The

discrete Fourier transform of hy is given by (e.g. Deeming 1975; Press et al 1992)

=2

Ho(f) =Y hi(ty)e?m /N, (1.25)
0

b
Il

where f, = n/(Ndt) for 1 < n < N/2. This means that the lowest frequency we
can study is 1/7 and the highest is the Nyquist frequency, 1/(2dt). The frequency

resolution available to us is df = 1/(Ndt). Computing this is very expensive as it
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requires ~ N? calculations. It is common to use the fast Fourier transform (FFT)
algorithm which dramatically cuts this number to ~ Nlog, N (Press et al 1992). The
way this algorithm works means that it requires N to be an integer power of 2. The
FFT then gives us the amplitude a; and phase ¢, as a function of frequency for a

discretely sampled time series of finite length.
Estimating the power spectrum from discrete data sets
The power spectrum is given by

P(f) = H(f)I* = a*(f). (1.26)

Since we do not have H(f), we must estimate the power spectrum from H,(f,). The

periodogram is defined as

2T
[2N?

2T

P(fn) = [ Hu(fa)? = PR (1.27)

where p is the average (background subtracted) count rate. This normalisation means
that the integral of P(f,,) over a range f; to fy gives the squared fractional rms over
that frequency range. For this reason, I will always plot power spectra in units of
frequency x power (i.e. units of fractional rms squared). The Poisson counting error
on the count rate contributes a (approximately; see van der Klis 1989) constant power
given by P,uise = 2(p + B)/p? for this normalisation, where B is the average back-
ground count rate. In order to consider the underlying variability independent from
instrumental effects, we must therefore use the white noise subtracted periodogram,
P(fa) = P(fa) = Proise-

The periodogram calculated for hy(t;) only provides a poor estimate for the power
spectrum of h(t). The dispersion of the periodogram points is described approximately
by a x? distribution with 2 degrees of freedom meaning that the error on every peri-
odogram point is ~ P(f,) (e.g. van der Klis 1989; Papadakis & Lawrence 1993); i.e.

100% fractional error! A better estimate can be obtained using one or a combination
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of two techniques. The first is ensemble averaging. This involves splitting the light

curve into M intervals and averaging the periodograms from each interval; i.e.

fa) = 34 Z Po(f) (1.28)
with error
- M JR—
dP(fn) = — P(fn))* (1.29)

The second technique is geometric re-binning such that the (integer) number of points
in the J™ frequency bin is

N,(J) < ¢, (1.30)

where ¢y is some constant larger than unity. The width of the J* bin is therefore

Af; =df N,(J) and the maximum frequency in the bin is

Fonaa(J [ZN )+ 1/2| df

(1.31)

The minimum frequency in each bin is simply frin(J) = fiae(J — 1), meaning the
frequency at the centre of each bin is f(J) = (fmax(J) + finin(J))/2. For large values
of J, the ratio f;/f;_1 tends to a constant value (logarithmic re-binning), however
for low J values, the bin spacing is wider than logarithmic to ensure that every bin
contains at least one linearly spaced data point.

The estimated power in the bin is then
2 rimin £ (fn)

Pbin(fJ) - Np(J) 5

(1.32)

where nmin = 1 + Z‘] ' N,(j) and nmaz = Z}]:1 N,(j). If ensemble averaging has

been carried out, the error can be estimated as

@m:: dP(f,)?

dPyin(f1) = N, ()
p

(1.33)
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If no ensemble averaging has been carried out, the error estimate is given by the
standard deviation around the mean power.

With enough smoothing, the power spectral estimate becomes well behaved such
that Py, (fs) belongs to a Gaussian distribution with width dPy;,(f) and centre P(f)
meaning a model can be fit to the power spectrum by reducing x?. We do, however, lose
information from this smoothing. Ensemble averaging reduces the duration, 7', and
therefore the lowest frequencies are lost. Binning clearly decreases the frequency reso-
lution. All the results in this thesis are for XRBs which have low variability amplitude
below ~ 0.01 Hz and so a typical observation of a few ks is easily long enough to do
ensemble averaging without losing important information. I therefore use binned and
averaged power spectral estimates throughout this thesis, referring to them hereafter

simply as the power spectrum P(f), with error dP(f).

1.4.2 Power spectral properties of black hole binaries

In Figure 1.21, I plot 5 representative ~ 3 — 31keV PSDs from the 2002 outburst
of GX339-4. We see that QPOs appear in the PSD as narrow peaks and aperiodic
variability appears as broad band noise (BBN). The properties of these power spectral

features vary dramatically during spectral evolution of the source.

PSDs 1 & 2: type-C QPO

PSDs 1 and 2 show strong BBN along with a QPO which is very weak in PSD 1 and
dominant in PSD 2. Such QPOs which are present alongside strong BBN are classed as
type-C QPOs (Casella, Belloni & Stella 2005). In the LHS, a QPO is often not observed,
although it is likely that one is present but merely hidden by strong BBN. It is clear to
see in PSD 2 that the QPO has a harmonic structure with peaks at the fundamental,
foro ~ 5Hz, along side a sub-harmonic at 1/2fopo and a second harmonic at 2fgpo

(a third harmonic is also often visible). These peaks are well described by Lorentzian
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Figure 1.21: Five representative PSDs displaying type-C (1 and 2), type-B (3) and

type-A (4) QPOs in addition to a typical HSS PSD displaying a low level of red noise

(5).
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Figure 1.22: Low frequency break (f; in the text, v, on the plot) plotted against QPO
frequency (fopo in text, vgpo on the plot) for a number of different objects. In (a), the
black points are BHBs, the red points are atolls and the blue points are a millisecond
X-ray pulsar (see chapter 3). In (b), the black points are all the objects in (a), the
red points are z-sources (again, see chapter 3) and the blue points are objects which
display two QPOs. Different symbols correspond to different individual objects, see
the original plot in Wijnands & van der Klis 1999 for details.
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functions with three parameters: amplitude (i.e. integrated fractional rms), centroid
frequency, f., and width, Af. The width and centroid frequency can be combined into
the quality factor, @ = f./Af. For the hardest spectra, type-C QPOs are broad with
@ ~ 1 —10. As the source transitions through the intermediate state, the coherence
increases before reaching a plateau at @@ ~ 10 (e.g. Rao et al 2010). The @ of each
harmonic is tied to the fundamental, except for the sub-harmonic which can sometimes
be less coherent (Rao et al 2010). The BBN can be (roughly) fit with two Lorentzians
with characteristic frequencies f, and fj, which pick out low and high frequency breaks

labelled in Figure 1.21.

During the rise to outburst, fopo, f, and (to a far lesser extent) fj, increase with
the amount of power above ~ 10Hz remaining roughly constant (Gierlinski, Nikotajuk
& Czerny 2008). Figure 1.22, taken from Wijnands & van der Klis (1999), shows that
foro and f, are tightly correlated (also see Klein-Wolt & van der Klis 2008). In this
plot, only the black points are for black holes with all others being for neutron stars. I
leave the details of NSBs to chapter 3 but we already see that the variability properties
are similar for both objects in addition to the spectral properties. In BHBs, the type-C
QPO frequency moves from ~0.1-10 Hz.

The BBN can be interpreted in the truncated disc model as originating from turbu-
lence stirred up by the inherently variable MRI (e.g. Balbus & Hawley 1998; Krolik &
Hawley 2002). The disc and flow will respond to this turbulence by damping any fluc-
tuations on frequencies greater than the local viscous frequency (fuise(r) = 1/tyise(r)).
Due to the difference in scaleheight, the disc will damp these fluctuations more effi-
ciently than the flow. The blue lines in Figure 1.23 illustrate that the noise from each
radius in the flow will therefore peak at f,;s.(r) thus implying that f, = fyisc(r,) and
Jn & fuise(r:), where r; is the inner radius of the flow. As the truncation radius moves
in, the regions of the flow fluctuating at low frequencies condense onto the disc and so

this variability is lost. The inner radius of the flow, in contrast, hardly moves and thus
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the power above ~ 10Hz remains constant. If the QPO (black line) is some modula-
tion of Lense-Thirring precession at the truncation radius, its centroid frequency will

increase as the truncation radius moves in, as is observed.

PSDs 3-5: the rest

PSD 3 is significantly different from the first two. We still see a fairly strong QPO
with harmonic structure but the BBN has almost completely disappeared. This is
classed as a type-B QPO. PSD 4 is different again. This is a type-A QPO which is
characterised as being very broad and weak (a very large integration time is needed to
clearly pick the feature out), with no coincident BBN. It is unclear whether the three
QPO types have a common physical origin. It is also unclear why the BBN disappears
so suddenly. PSD 5 is for the HSS. The main characteristic of this is the low level of
variability which is, of course, consistent with the HSS light curve shown in Figure 1.17
and easy to explain with a disc dominated accretion geometry. There are sometimes
very weak QPOs observed during the HSS with fgopo > 10 Hz for which the origin is,

again, unclear.

1.4.3 Spectral evolution

The evolution of spectral and variability properties can be coupled together in a model
independent fashion using hardness vs intensity diagrams (HIDs) and hardness vs rms
diagrams (HRDs). In this case, the hardness ratio is defined as the 16-20/2-6 keV
count rate and the intensity is defined as the PCU2 count rate (one of the proportional
counter units of the proportional counter array; PCA). Figure 1.24 shows the HID
and HRD for the 2002 outburst of GX339-4, adapted from Belloni (2010a). Following
Belloni (2010), Motta et al (2011), Belloni et al (2005), I use this as a ‘prototypical’
outburst.

In Figure 1.24, consecutive observations are connected with a line showing that the
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Figure 1.23: Schematic illustrating how the truncated disc model can qualitatively
explain the evolution of the BBN. The variability generated in each region of the flow
peaks at the local viscous frequency. As the truncation radius moves in, low frequency

power is lost.
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source follows a characteristic ‘q’ shaped track. The direction of motion is always anti-
clockwise. Plainly, LHS observations are all on the far right of the diagram because
the spectrum is dominated by a hard power law and HSS observations reside on the
far left because the spectrum is dominated by a disc component. We can now clearly
see that the fall back to quiescence happens at lower flux than the rise to outburst.
For this reason, it seems best to define the state transitions by the spectral hardness

rather than count rate (e.g. Belloni 2010).

We can also use variability properties to differentiate between spectral states. The
5 different kinds of marker in this Figure represent the 5 different varieties of PSD
illustrated in Figure 1.21. Filled circles correspond to PSD 1 (weak type-C QPO), open
circles to PSD 2 (strong type-C QPO), filled stars to PSD 3 (type-B QPO), open stars
to PSD 4 (type-A QPO) and crosses to PSD 5 (very weak red noise). Remarkably, all of
the observations with type-A and B QPOs occur over a very narrow range of hardness
during both the rise and the fall. This implies that there is something unique about
this hardness range and so the intermediate state is split up into the hard intermediate
state (HIMS), with type-C QPOs, and the soft intermediate state (SIMS), with type-A
and B QPOs. This is illustrated at the bottom of the Figure where the type of QPO

present for a given range of hardness is labelled.

Radio observations also point to the existence of a collimated jet which displays a
connection with the X-ray states and transitions. A compact and mildly relativistic jet
is observed in the LHS and HIMS but not in the HSS (Fender, Belloni & Gallo 2004).
The transition between these two regions marks the ejection of a fast relativistic jet,
observed as a bright radio flare. Fender, Belloni & Gallo (2004) dub the narrow region
on the HID at which this occurs the ‘jet line’ and remark that it coincides with the
transition between HIMS and SIMS (which they dub the ‘QPO line’). This leaves
open the possibility that the material responsible for the BBN is being ejected in the
jet thus naturally explaining the transition from type-C to type-B QPOs. However,
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Figure 1.24: HID and HRD of the 2002/2003 outburst of GX339-4. The four state
classifications are labelled at the top with the different varieties of QPO labelled at the

bottom.
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Fender, Belloni & Gallo (2005) use a bigger sample to show that the lines do not always
coincide but are always close.

Whereas the HID is q shaped, the HRD follows a linear track with only the SIMS
observations falling below the trend line (mainly because of the lack of BBN in the
PSD). This, again, can be interpreted with a moving truncation radius. As Figure
1.23 illustrates, the radial extent of the variable flow governs the range of frequencies
at which significant variability is present. Since the hardness is ultimately governed
by the luminosity of disc photons seen by both the observer and the flow, both the

hardness and rms are driven by the position of the truncation radius.

1.5 Higher order statistics

Statistical techniques which compare how timing properties depend on energy band
provide the most powerful tools to derive the underlying physics driving the emission

in XRBs. In this section, I summarise some of these techniques.

1.5.1 Frequency resolved spectroscopy

Frequency resolved spectroscopy involves comparing the variability amplitude of differ-
ent energy bands. Figure 1.25 shows PSDs from GX339-4 (reproduced from Wilkinson
& Uttley 2009) in the LHS for 0.5-1keV (solid red line) and 2-10keV (dotted blue line)
energy bands. It is clear that the two PSDs have different shapes. It is also possible
to see that there is more integrated power in the soft (0.5-1keV) band compared with
the hard (2-10keV) band.

Integrating the PSD for each energy band over only a narrow frequency range
(rather than over all frequencies) isolates the fractional variability amplitude as a
function of energy and frequency. Multiplying the fractional variability through by

the average count rate in that energy band, p(FE), gives the absolute variability as a
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Figure 1.25: Soft and hard band PSDs for GX339-4, as seen by XMM Newton (re-
produced from Wilkinson & Uttley 2009). The solid red line is for 0.5-1keV and the
dotted line is for 2-10keV. Note, the y—axis is plotted on a linear scale.

function of energy and frequency. The spectrum which varies in the frequency range

f—Af/2to f+ Af/2is therefore given by

S(E. f) = n(E)\/P(E. [)AF. (1.34)

This is extremely useful because it is in units of count rate and so spectral components
can be recognised in the data.

The right hand panel of Figure 1.26 is taken from Revnivtsev, Gilfanov & Churazov
(1999) and shows the spectrum of Cygnus X-1 in the LHS for three different frequency
ranges, plotted as a ratio to a power law with I' = 1.8. It is clear that the power law
is harder and the reflection features are weaker for higher frequencies. The first (and

to date only) intuitive explanation for this in the literature, offered in Ingram & Done
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Figure 1.26: Right: Frequency resolved spectra for Cygnus X-1 in the LHS (Revnivt-
sev, Gilfanov & Churazov 1999). The slow variability displays a softer spectrum and
stronger reflection features than the fast variability. Left: The interpretation of this in

a truncated disc geometry (see text).

(2011; 2012) which form the basis for Chapters 4 and 5 of this thesis, is demonstrated
by the schematic in Figure 1.26 (left). This shows a truncated disc geometry, in which
the inner regions vary more rapidly than the outer regions because of the difference
in local viscous timescale. Because the outer regions are closer to the disc, electrons
there will see a greater flux of disc seed photons and therefore will be cooler than those
in the inner regions. Therefore the inner regions emit the hardest spectrum (the blue
line in the cartoon) and dominate the high frequency spectrum. By much the same
argument, the disc sees a greater flux of Comptonised photons from the (closer by)
outer regions than from the inner regions, meaning that the slowly varying spectrum
from the outer region displays stronger reflection features. We therefore see that this
technique effectively probes the spectrum as a function of radius, since all characteristic

frequencies of the accretion flow have a radial dependence.
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1.5.2 Correlated variability

A ubiquitous property of emission from accreting objects is the strong correlation
observed between different energy bands. Figure 1.27 is taken from Churazov, Gilfanov
& Revnivtsev’s (2001) study of Cygnus X-1 in the HIMS. The left hand panel shows the
count rate in a soft (< 3.3keV) energy band, S(t), plotted against the corresponding
count rate in a hard (> 9.4keV) energy band, H(t). Each point is averaged over 16s
and so the highest variability frequency visible is 0.03125Hz. It is clear that the two
correlate, with the points being well described by the straight line, S(t) = A+ B H(t)
where A > 0. This shows that the spectrum varies in shape as well as intensity (as
we already know from frequency resolved spectroscopy). The authors find a similarly
good linear relation between the count rate in each energy channel, C'(E,t), and the
hard band such that C(E,t) = A(E)+ B(E) H(t). A(E) and B(E) therefore represent
the constant and variable components of the spectrum respectively. In the right hand
panel of Figure 1.27, both components are unfolded around the PCA response using
a I' = 2.5 power law model and plotted in units of energy x flux. A(F) (which is in
absolute units) is represented by the open circles and B(E) (which has an arbitrary
normalisation) is represented by the filled circles. Clearly the shape of the constant
component is well described by the multi-coloured disc black body model (with peak
temperature kTy, = 0.5keV) shown in yellow whereas the variable component looks like
Comptonisation plus reflection. Finally, the solid square points are selected for high
and low flux intervals of H(¢). The green lines approximate these points reasonably
well using a model M (E) = A(E) + I B(E), where [ is the only free parameter. Thus

the stable disc / variable corona picture is appropriate, at least for the SIMS.

Another manifestation of the correlated nature of XRB variability is the linear rms-
flux relation. This can be calculated by splitting the light curve into ~ 3s segments and
finding the mean (flux) and standard deviation (o) in each segment before plotting o

against flux. Figure 1.28, from Uttley & McHardy (2001) shows that, after binning, the
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Figure 1.27: Left: Soft band (< 3.3keV) count rate plotted against hard band (>
9.4keV) count rate for Cygnus X-1 in the SIMS (Churazov, Gilfanov & Revnivtsev
2001). The two correlate and the points can be fit with the straight line S(t) =
A+ B.H(t). Right: This relation can be used (see text) to define constant, A(E) and
variable, B(FE), components shown in the right hand plot. The constant component is
the shape of a disc spectrum whereas the variable component contains power law and

reflection components.
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Figure 1.28: The rms-flux relation for the BHB Cygnus X-1 and the accreting millisec-
ond X-ray pulsar SAX J1808.4-3658 (Uttley & McHardy 2001).

relation is clearly linear both for the BHB Cygnus X-1 and the atoll source (millisecond
X-ray pulsar) SAX J1808.4-3658. This is seemingly a ubiquitous property of emission
from accretion. Linear rms-flux relations have been observed in BHBs, NSBs, an active
galactic nucleus (AGN) and an ultra luminous X-ray (ULX) source (Uttley & McHardy
2001; Uttley 2004; Gaskell 2004; Uttley, McHardy & Vaughan 2005, Heil & Vaughan
2010; Heil, Vaughan & Uttley 2011; 2012).

The fact that the different energy bands and timescales are correlated tells us that,
in a picture where different frequencies are generated in different regions of the flow,
these regions must be in causal connection (Uttley, McHardy & Vaughan 2005). The
truncated disc interpretation of the PSD is consistent with this as long as we consider
the mass accretion rate fluctuations stirred up in each region of the flow to propagate
towards the compact object (Lyubarskii 1997). As I show explicitly in Chapters 4 and
5, the linear rms-flux relation (and the linear relation between S(t) and H(t); Kotov,
Churazov & Gilfanov 2001) can be reproduced once we consider propagation (Arévalo

& Uttley 2006).
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1.5.3 The cross spectrum

The cross spectrum is particularly useful for studying accreting objects because it picks
out correlated variability. Moreover, unlike the power spectrum, the cross spectrum
contains information on both variability amplitude and phase. If we imagine measuring
light curves from a range of subject bands, s(F,t), and a reference band, r(t), the cross

spectrum is
C(E, f) = S*(E, ))R(]). (1.35)

This is a complex function and so has real and imaginary parts given by

RICE, N = RISE, HIRR)] + S[S(E, NISIR(S)]
= |C(E, )l cos A(E, [)
SICE NI = RISE, NISIR)] = SIS(E, HIRIRS)]
= |C(E, f)[sin A(E, [). (1.36)

where A(E, f) is the frequency dependent phase lag of the subject band (centred at
E) with respect to the reference band (so A > 0 is for the subject band lagging the
reference band). We now hit the same problem we encountered for the power spectrum:
we cannot measure continuous and infinite functions, only finite and discretely binned
light curves. This problem can be solved by separately smoothing the real and imagi-
nary parts of the cross spectrum in the same way as described for the power spectrum
in section 1.4.1. After this smoothing has been performed (which is hereafter assumed

rather than written explicitly), we can recover the value of the phase lag

SCE
tan A(E, f) = w, (1.37)
and the associated time lag
A
tiag (B, f) = éi’ff) (1.38)

The left hand panel of Figure 1.29, from Nowak et al (1999), shows the time lag of
the 8.2-14.1keV band with respect to the 0.0-3.9keV band for Cygnus X-1 in the LHS,
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as seen by the RXTE PCA. We see that the hard lags the soft with the amplitude of
the lag reducing with increasing frequency. The right hand panel, taken from Kotov,
Churazov & Gilfanov (2001), shows the time lag, again for Cygnus X-1, for a frequency
bin centred on 2.5Hz as a function of energy (the reference band is trivially where the
lag is zero). We see that the lag amplitude increases with subject band energy.

As shown by Kotov, Churazov & Gilfanov (2001) and Arévalo & Uttley (2006),
this can be explained in the propagating mass accretion rate fluctuations model of
Lyubarskii (1997) if the outer regions emit a softer spectrum than the inner regions.
Consider a perturbation at large » which modulates the soft spectrum immediately. It
will take some time to propagate to the inner regions where it is emitted in the hard
spectrum. The larger the separation between energy bands, the further the perturba-
tion has to travel to get to the hard emitting region. Also, all regions in the flow can
vary slowly but only the inner regions can vary quickly. Therefore a slow perturbation
is more likely to have travelled a long distance than a fast perturbation which must
have originated at small . Such a model, using propagating fluctuations in an inhomo-
geneous emitting region, was used to create the red line in the right hand panel (Kotov,
Churazov & Gilfanov 2001). The model I consider in this thesis is naturally consistent
with this reasoning because the outer regions of the flow see more seed photons and are
therefore cooler than the inner regions. This assumption is, of course, also consistent
with the results of frequency resolved spectroscopy.

The cross spectrum can also be used to study the amplitude of correlated variability.

The covariance spectrum, which is analogous to the power spectrum is given by

(£, f)I”
Cov(E, f) = —7", (1.39)
[R(f)I?
where |R(f)]? is the white noise subtracted power spectrum of the reference band. If
a normalisation analogous to equation 1.27 is used, integrating Cov(E, f) from f; to

fo gives the (squared) correlated fractional variability amplitude of the subject band

in that frequency range. In XRBs, the intrinsic variability is highly correlated and so
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Figure 1.29: Left: Time lag of hard (8.2-14.1keV) emission with respect to soft (0-
3.9keV) emission in Cygnus X-1, plotted as a function of frequency (Nowak et al
1999). Right: Time lag of the subject band with respect to a reference band centred on
~3keV, plotted as a function of subject band energy for Cygnus X-1 (Kotov, Churazov
& Gilfanov 2001).

Cov(E, f) provides an estimate of the subject band power spectrum except the white
noise in the subject band automatically cancels and so does not need to be subtracted.
The reference band white noise still has to be subtracted but it is selected as the band

with the highest signal to noise so as to reduce errors. Therefore, the formula
S(E, f) = n(E)\/Coo(E, [)AT. (1.40)

gives the frequency resolved spectrum but with much smaller errors, particularly for
high energies and high frequencies where the signal to noise is generally poor (Wilkinson
& Uttley 2009).

Figure 1.30, reproduced from Wilkinson & Uttley (2009), shows the unfolded fre-
quency resolved spectrum of SWIFT J1753.5-0127 in the LHS, calculated using this
method. The green line is the mean spectrum, the red line is for ‘slow’ variability

(~ 0.004 — 0.4Hz) and the blue line is for ‘fast’ variability (0.25 — 10Hz). These data
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are from the XMM Newton European Photon Image pn Camera (EPIC-pn) which has
much better low energy coverage than the RXTFE PCA. This means that the disc peak
energy is within the observable band pass. The authors fit all three spectra with an
absorbed disc plus power law model. If the disc were completely stable, the disc nor-
malisation would drop to zero for the red and blue lines. We see that this is not the
case and thus this is the first (and only) proof that the disc varies in the LHS. It is
not clear from this exactly what variability amplitude the disc contributes relative to
the power law because decomposing a frequency resolved spectrum into additive spec-
tral components is formally inappropriate if those components are correlated with one
another. Since the disc and power law do correlate, a disc, d(FE,t), plus power law,

pl(E,t), spectral model has a power spectrum

P(E,f) = |D(E,f)|*+|PL(E, )|
12| D(E, f)||PL(E, f)| cos A(E, f). (1.41)

Since the cross term does not vanish (at least not for low frequencies), we cannot trust
the quantitative information provided by the fit in Figure 1.30. We can, however, see
that there is disc variability which (unsurprisingly) peaks at lower frequencies. More

work is needed to quantitatively ascertain how important disc variability is in the LHS.
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Figure 1.30: Frequency resolved spectrum for SWIFT J1753.5-0127 in the LHS, calcu-

lated using the covariance spectrum (Wilkinson & Uttley 2009). The mean spectrum

is in green, the fast variability in blue and the slow variability in red. We clearly see

that disc emission does contribute the the variability in the LHS.



Chapter 2
Low frequency QPO

spectra and
Lense-Thirring

Precession

2.1 Introduction

Relativistic precession models associate the low frequency QPO (LF QPO) with the
Lense-Thirring precession frequency at the truncation radius (Stella & Vietri 1998;
Stella et al 1999; Psaltis & Norman 2000, Fragile et al 2001). In this picture, a moving
truncation is responsible both for the changing spectral shape and the moving QPO
frequency. However, there are several problems with such an identification. Firstly,
this associates the frequency with the inner edge of the thin (cool) disc, yet the QPO
(and all the rapid variability) is associated with the Comptonised emission, not the
disc (Churazov et al 2001; Sobolewska & Zycki 2006; Belloni et al 1997; Cui et al 1999;
Casella et al 2004). Secondly, and more fundamentally, it requires that all BHB are
spinning. Given their birth in the collapsing core of a massive star this is not surprising,
with estimates of a, < 0.8 — 0.9 (Gammie, Shapiro & McKinney 2004). However, this
allows for a range of spins in BHBs, as is also suggested by observations (Davis, Done
& Blaes 2006; Shafee et al 2006). The Lense-Thirring precession timescale depends
strongly on spin, so predicts that the same truncation radius in BHBs of different spin

61
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should give different QPO frequencies. Yet observations seem to show little difference
in QPO frequencies from object to object (Sobczak et al 2000; Pottschmidt et al 2003,
Kalemci et al 2004, Belloni et al 2005). This makes any Lense-Thirring model appear
uncomfortably fine-tuned, especially in the light of tight correlation between the low
frequency break in the power spectrum and QPO frequency which extends across both
black holes and neutron stars (Wijnands & van der Klis 1999). The low frequency break
is most plausibly from the viscous timescale at r, (Psaltis & Norman 2000; DGKO07),
so does not depend on spin, unlike a Lense-Thirring model for the QPO. Any range
in spin between different objects (and neutron star spins are known to range between
a, = 0.2 — 0.4, while the black hole spins can plausibly be significantly larger) should
then give rise to a large dispersion in the break-QPO relation, yet the data limit this
to less than a factor of 2 (Klein-Wolt & van der Klis 2008).

This chapter is adapted from Ingram, Done & Fragile (2009) in which we show
how Lense-Thirring models can match the observations by considering the physical
interpretation of recent numerical simulations. Specifically, we suggest that the shape
of the warped, geometrically thick accretion flow which fills the region inside r, affects
the frequency at which it precesses. We discuss how this precession can modulate the
hard X-ray emission in order to produce the observed energy dependence as well as

frequency behaviour of the QPO.
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2.2 Predictions for low frequency QPO spectra from

Lense-Thirring precession

2.2.1 Point particle

The Lense-Thirring precession frequency for prograde orbits in the limit of a small

perturbation with respect to the equatorial plane is

4a, 3a*] (2.1)

fir = ‘f¢>_f0|:f¢> [1_\/1_m+ r2

where f, = c¢/[2nR,(r*/? + a.)], a. is the dimensionless spin per unit mass and r is the
dimensionless orbital radius (in units of R, = GM/c?).

We assume a black hole mass of 10M throughout this paper. Figure 2.1 shows
the precession frequency for a variety of black hole spins from 0.3 < a, < 0.998 as a
function of radius down to the last stable orbit, r,,. This clearly shows that the highest
frequency predicted is heavily dependent on spin, and that these are well in excess of the
~ 10Hz maximum observed QPO frequency for a, > 0.3. The corresponding Keplerian

frequencies (upper lines) plotted for comparison trace out even higher values.

2.2.2 Solid disc with inner radius at the last stable orbit

The simple estimates in the previous section assumed single particle orbits at the
truncation radius of the thin disc, r,. However, the energy dependence of the QPO
clearly associates it with the hot flow rather than the disc. Thus we consider Lense-
Thirring precession of the geometrically thick, hot flow interior to the truncated disc
as illustrated in Figure 2.2. Fragile et al. (2007) estimate the associated frequency
assuming that the black hole torque from the misalignment makes the entire flow

precess as a solid body between an inner and outer radius, r; and r, (again scaled in
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Figure 2.1: Lense-Thirring precession frequency for a point particle and Keplerian
orbital frequency plotted against orbital radius. The solid black, red, green, blue and
magenta lines depict a, = 0.3, a, = 0.5, a, = 0.7, a, = 0.9 and a =, 0.998 respectively.
The dashed lines represent the limits of the observed range. Although Lense-Thirring
precession gives predictions closer to observation than Keplerian frequencies, the peak

frequency and a, dependence do not match observation.
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Figure 2.2: Schematic diagram of the geometry considered. The inner flow (grey with
blue angular momentum vector) precesses about the black hole angular momentum
vector whilst the outer disc (red/orange) remains aligned with the binary partner. The

flow extends between r; and r,,.

units of R, to make them dimensionless). This gives

(5-20)  afl—(ri/ro)*] ¢
(L +20) p32rl P L — (ryfr,)5/2] By

Joree = (2.2)

where the moment of inertia of the disc is calculated assuming a surface density of the
form 3 = X, (r/r;)¢. Classical advection dominated accretion flows give ¢ = 0.5, while
thin discs have ( ~ —0.5, and the numerical simulations give ¢ ~ 0. We choose ( = 0,
but note this makes less than a factor of 2 difference from the other prescription for the
resultant QPO frequency even at the largest radii, and that this difference decreases

monotonically as r, decreases.

Figure 2.3 shows the precession frequency plotted against r, for a number of spins
with r; = ri,. These frequencies are always higher at a given r, as the effective radius
is a surface density weighted average from r; to r, We still, however, see the same two
problems encountered in section 2.2.1, namely, that the peak frequency is too high and

varies too strongly with spin.
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Figure 2.3: Precession frequency of an inner flow of varying outer radius. The solid
black, red, green, blue and magenta lines represent spin values of a, = 0.3, a, = 0.5,
a, = 0.7, a, = 0.9 and a, = 0.998 respectively. The green dashed line represents a
point particle for a, = 0.7. The minimum radius is the last stable orbit as a function of
spin. We see that, as in the case of point particle Lense-Thirring, the peak frequency

is both higher than observed values and has too strong a spin dependence.
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2.2.3 Inner radius

So far we have considered a flow with its inner radius at the last stable orbit. Instead,
the precession timescale is set by where the surface density drops significantly, as
the region interior to this will not contribute significantly to the moment of inertia.
Full general relativistic simulations of the magneto-rotational instability (MRI, the
underlying source of the stresses which transport angular momentum) show that this
drops sharply at around 1.5 x 7, (e.g. Fig 4. in Krolik, Hawley & Hirose 2005) for
thick flows aligned with the black hole spin.

However, we are considering Lense-Thirring precession so the key issue is that
the flow is misaligned. The extra torques on the flow give extra contributions to the
stresses. Simulations (e.g. Fragile et al 2007) have shown this to increase the inward
velocity, and therefore decrease the density of the flow. Figure 2.4 shows the surface
density profile obtained from two simulations, both of a flow misaligned by 15° but
with differing black hole spin. The blue points are for a, = 0.9 (Fragile et al 2007)
and the red points are for a, = 0.5 (Fragile et al 2009). We have fit the data with a
smoothly broken power law function ¥,2%/(1 4 27)¢+%/7 where x = r/r;. This gives
2% and z7¢ for r << r; and r >> r;, respectively, while v controls the sharpness of the
break. We fix ¢ = 0 (see Section 2.2.2) and obtain r; ~ 9 for a, = 0.9 and r; ~ 8 for
a, = 0.5, both of which are significantly larger than r;,, — 1.5 r,, for untilted flows.

Ideally, we would now like to re-plot Figure 2.3 using the inner radius for a mis-
aligned flow. However, we only have two simulation points for r; which is clearly
inadequate for our purposes. We therefore make an analytical approximation in the

next section in order to address this point.

Solid flow with inner radius set by bending waves

The additional torques will be strongest where the flow is most misaligned, so these

should track the shape of the flow. This is set by bending waves, which communicate
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Figure 2.4: Surface density as a function of radius recovered from numerical simulations
of a misaligned flow (Fragile et al 2007) with a, = 0.5 (red) and a, = 0.9 (blue). Data
points have been fit by a double law which breaks at r;. We find 7;(a, = 0.5) ~ 8 and
ri(a, =0.9) ~ 9.

the warp and twist in initially circular and coplanar orbits, against viscous damping.
Analytic approximations to the resulting shape can be calculated assuming linear per-
turbations in an initially thin disc (e.g. Ferreira & Ogilvie 2008). The global structure
then depends on the ratio of the viscosity parameter, «, relative to the disc semi-
thickness, H = hR,. For a > h/r, warped disturbances via Lense-Thirring precession
are propagated by viscous decay which eventually drags the inner disc into alignment
with the black hole spin, while the outer disc aligns with the orbital plane of the
companion star (Bardeen & Peterson 1975, King et al 2005). The Bardeen-Petterson
transition radius can be roughly defined as the point where viscosity can no longer
propagate warps in the disc outward quickly enough to prevent a twisting of the disc

due to differential precession.
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However, we are considering instead a hot inner flow which is geometrically thick
so a < h/r. In this case, the warp is propagated via bending waves. The local
sound crossing timescale is shorter than the precession timescale throughout the flow
allowing the material to be strongly coupled by pressure waves. Consequently, the flow
precesses as a solid body (Fragile et al 2007) with its shape influenced by the bending
waves (Ferraria & Ogilvie 2008; Pringle 1992, Lubow et al. 2002). Undamped bending

waves have a characteristic wavelength of

A~ % (%) (2.3)

These waves are, therefore, smooth at large radii and oscillatory at small radii due to
the strong r dependence of the wavelength. Figure 12 in Fragile et al (2007) and Figure
10 in Fragile et al (2009) show the tilt angle of the flow at varying radii for a, = 0.9
and 0.5, respectively. This tilt angle increases dramatically at small radii in a manner
similar to that of the bending waves. It could be that this rapid change in disc tilt
gives rise to additional stresses which lead to the observed drop off in surface density.
It is encouraging that Figure 13 in Fragile et al (2007) seems to support this assertion
as it shows that the viscosity parameter of the disc, «, increases rapidly at small radii.

The largest radius at which the rate of change of disc tilt is significant is r ~ /4
ie. at r; ~ 2.5(h/7“)_4/5ozi/5 (using equation 2.3) as this is the first point at which
the bending waves have room to turn over. A more rigorous treatment by Lubow et
al (2002) gives r; ~ 3.O(h/r)*4/5a3/5. Both of these expressions give ~ 10 and 8 for
a, = 0.9 and 0.5, respectively, for h/r = 0.2, in agreement with the simulations (see
Section 2.2.3).

Figure 2.5 shows the precession frequency recalculated assuming the inner radius as
above. We see that the expected decrease in QPO frequency with spin is offset by the
increase in inner radius with spin. Counter-intuitively, the QPO probes smaller radii
in the flow for lower black hole spins! Figure 2.5 is in fact remarkably like the observed

data in that it predicts a maximum frequency of ~ 10 Hz for all spins considered here
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h/r = 0.2 and inner radius set by the bending wave region r; = 3.0(h/r)
et al 2002) for spins of a. = 0.3 (black), a, = 0.5 (red), a, = 0.7 (green), a, = 0.9
(blue) and a, = 0.998 (magenta). The expected increase in QPO frequency with a, is

mostly cancelled out by the increased radial extent of the bending wave region, and

the maximum QPO frequency is ~ 10H z, as observed.

(a. > 0.3). It also predicts the frequency to be mostly dependent on the outer radius of
the flow, not spin, which allows the QPO frequency to tightly correlate with any other
frequency picked out by this radius, e.g. the low frequency break in the broad band
power spectrum (Psaltis et al 1999; Wijnands & van der Klis 1999; Psaltis & Norman
2000).

This is a very encouraging result, but we caution that many more simulations are



2. Low frequency QPO spectra and Lense-Thirring precession 71

needed to quantify the behaviour the inner radius as a function of spin, and to assess the
effect of misalignment angle (both current simulations are for 15°). Such simulations
also mean that the simplified form of the surface density profile in equation 2 can be
replaced by the observed precession frequency of the flow. However, the two current
simulations show the drawback of this approach as this is also sensitive to the outer
boundary condition. Our model sets the outer radius of the precessing flow by the
inner edge of the truncated disc. The flow can only freely precess in the region where
there is no thin disc blocking the mid-plane. Instead, the current simulations only
include the hot flow, and its effective outer radius is larger for the a, = 0.5 run than
in the a, = 0.9 and the precession frequency directly observed from the simulations is
roughly a factor of two higher for a, = 0.9 than for 0.5. Thus the simulations need also
to include an outer boundary condition in order to properly explore parameter space,
and to consider the additional torque on the flow from the interaction between the thin

disc and hot flow which adds a great deal of complexity.

2.3 Discussion

The Lense-Thirring frequency of the inner flow precessing as a solid disc does not match
observed LF QPO frequencies if we assume the inner radius of the flow is set by the
last stable orbit. However, recent numerical simulations show that the surface density
profile of a misaligned flow drops substantially at radii which are significantly larger
than r, for a, = 0.9 and a, = 0.5. We postulate that this radius is set by the shape of
the bending waves which distort the disc. This radius increases with a, in a way that
counteracts most of the expected increase in QPO frequency with spin at a given r,.
This results in a maximum value of ~ 5 — 10Hz for a 10M black hole of almost any
spin, as observed.

Clearly this conclusion depends on the outcome of future numerical simulations. It

also depends on the flow being misaligned! The Bardeen-Peterson effect dictates that
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a misaligned thin disc will gradually align with the black hole at small enough radii
(Bardeen & Peterson 1974). Most analytical estimates predict that the disc should
be more or less aligned at typical values of the truncation radius (e.g. Fragile et al
2001). This, therefore, implies that the flow should be aligned if most of the material
for the hot flow accretes through the outer disc which, in turn, implies that it shouldn’t
precess! However, the thin disc alignment should be rather different for a truncated

thin disc. We intend to explore this effect in future work.

These caveats aside, we have a very attractive model for the origin of the low
frequency QPO in black hole binaries. This is made even more compelling as it ties the
QPO to the hot flow, so should directly modulate the Comptonised tail, as observed,

even though the outer radius r, is determined by the thin disc.

There are several processes which can imprint the modulation on the spectrum. The
flow is translucent (optical depth, 7 ~ 1) so there can be weak projected area effects.
More importantly, the flow can self-occult causing a dip in the flux of maximum depth
exp(—7) when the flow is aligned with the observer’s line of sight. There should also
be a variation in the number of seed photons from the disc irradiating the flow which,
for example, will give maximum flux when the flow is maximally misaligned with the
disc. Relativistic effects can also contribute to the modulation (Schnittman, Homan &

Miller 2006; Schnittman & Rezzolla 2006)

These effects will give a stronger modulation for higher inclination angles, and
higher optical depth. There is observational evidence for both of these, with a compi-
lation of BHB showing that the maximum QPO r.m.s. strength increases with incli-
nation, and with mass accretion rate i.e. optical depth of the hot flow (Schnittman,
Homan, & Miller 2006). This can also explain why the QPOs appear stronger on the
hard—to—soft transition during the rapid rise to outburst than on the soft-to—hard tran-
sition on the decline. The hysteresis effect (plausibly caused by the rapid rise driving

the disc into a non-steady state configuration: Done, Gierliniski & Kubota 2007) means
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that the luminosity during the rise is higher, so the mass accretion rate through the
hot flow and hence its optical depth are both also larger, giving stronger modulation.

This all fits well with the observations that broader, weaker QPOs are seen in the
low inclination systems such as 4U 1543-47 (Schnittman, Homan & Miller 2006). Our
model also predicts that Cyg X-1 should have the weakest QPOs, as observed, as it is
both at low inclination and is stable to the hydrogen ionisation instability which drives
the enhanced optical depth seen during hysteresis (DGKO07).

The physical processes in our model are scale invariant, so predict that the fre-
quencies for a given black hole spin, a,, depend linearly on mass, as generally assumed
(Vaughan & Uttley 2005; Gierlinski et al 2008; Middleton et al 2008). The BHB alone
probably span 6 — 14M, (Remillard & McClintock 2006), so this predicts a factor of

2.3 variation in frequency which may be detectable.

2.4 Conclusions

Lense-Thirring precession of a radially extended section of the hot inner flow in the
truncated disc models can match the properties of the low frequency QPO in BHB.
The outer radius of the precessing flow is set by the truncation radius of the cool disc.
This sweeps inwards as the source makes a transition from the low/hard to high/soft
state (DGKO7). The surface density of a misaligned flow drops off at an inner radius
greater than the last stable orbit (Fragile et al 2007). The expected increase in QPO
frequency with spin is mostly counteracted by the increasing inner radius in our (albeit
speculative) models for r;. This gives a maximum predicted QPO frequency of 6-
10 Hz irrespective of spin, as observed in all BHB. Thus while the QPO mechanism
fundamentally depends on black hole spin, the behaviour of the inner radius of the hot
flow means that it does not give a simple diagnostic of a,.

The QPO arises from the hot flow, so naturally modulates the hard X-ray flux

through a combination of self occultation, projected area and relativistic effects. These
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become stronger as a function of inclination and optical depth, as observed.

This gives the first mechanism for the QPO which predicts both its frequency and
spectral behaviour, and embeds it firmly in the models for the accretion flow and
associated jet. If confirmed by further numerical simulations, this solves the 20 year

mystery of how these characteristic frequencies arise in the accretion flow.



Chapter 3
A physical

interpretation of the
variability power

spectral components in

accreting neutron stars

3.1 Introduction

Neutron star binaries (NSBs) can be distinguished into two sub-types: the Z-sources
and the atoll sources, so named after the shape they trace out on an X-ray colour-
colour diagram. The Z-sources are the most luminous (L/Lg4q > 0.5) while the atolls
are seen over the same range of Eddington fractions (~ 1072 — 1) as BHBs (see e.g.
van der Klis 2006; 1997). Since BHBs and atolls are both powered by accretion in a
similar gravitational potential, it should be possible to apply the ideas developed thus
far for BHBs to atoll sources.

The spectral evolution of atolls is often studied using a colour-colour diagram (CD).
Figure 3.1 shows a CD for 5 outbursts of the transient atoll source Aquila X-1, repro-
duced from Reig et al (2004). Here, hard colour is (9.7-16keV counts)/(6.0-9.7keV
counts) and soft colour is (3.5-6.0keV counts)/(2.0-3.5keV counts). This can be split
into 3 states: the extreme island state (EIS), the island state (IS) and the banana
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Figure 3.1: Colour-colour diagram for the atoll source Aquila X-1 for 5 different
outbursts (reproduced from Reig et al 2004). Hard colour is defined as (9.7-16keV
counts)/(6.0-9.7keV counts) and soft colour as (3.5-6.0keV counts)/(2.0-3.5keV counts).
The source traces out a characteristic C or atoll shape which can be split into the ex-
treme island state (EIS), island state (IS) and banana branch. The dashed arrow

illustrates increasing X-ray luminosity.
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branch. The dashed line points out increasing X-ray luminosity.

The main spectral differences between atolls and BHBs can be attributed to the
solid neutron star surface. For example, coherent pulses are caused by hotspots forming
on the neutron star surface, either due to larger scale magnetic fields (the atoll sub-
class know as millisecond accreting X-ray pulsars; Gierlinski & Done 2002a; Wilkinson
et al 2011; Liu et al 2007) or nuclear burning (X-ray bursts; Strohmayer & Bildsten
2006). Both processes give an excellent estimate of the neutron star spin frequency
with X-ray bursts in the millisecond X-ray pulsars SAX J1808.4-3658 and XTE J1814-
338 occurring at identical frequencies to the corresponding pulses within an error of

~ 1 Hz (Chakrabarty et al 2003; Strohmayer & Bildsten 2003).

These spin constraints tell us that even the most rapidly spinning neutron stars are
only rotating at approximately half the Keplerian rotational frequency (at r ~ 6). As
remarked in section 1.2.1, Newtonian gravity predicts that half of the rest mass energy
of the accretion flow is locked up in the kinetic energy of the accreting gas particles.
Material accreting onto the neutron star surface must therefore slow down to the spin
frequency of the neutron star and so a boundary layer forms in which the lost kinetic
energy is liberated as radiation. In General Relativity, the energy of the boundary
layer is even larger (Sunyaev & Shakura 1986; Sibgatullin & Sunyaev 2000) giving it
a comparable luminosity to the rest of the accretion flow. This will plainly affect the
spectrum, as will direct thermal emission from the surface due to irradiation and/or

conduction.

Figure 3.2 (reproduced from Done, Gierlinski & Kubota 2007) shows unfolded,
unabsorbed spectra for the atoll 4U 1705-44 (a) in the IS and (b) on the banana
branch with the model extrapolated beyond the low energy band pass of the PCA. We
see that, as for BHBs, the spectrum can be fit with disc (red), Comptonisation (blue)
and reflection (green) components. However, there are differences. The low energy

turn-off of the Comptonised emission is not tied to the disc temperature because the
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Figure 3.2: RXTE spectra of the atoll 4U 1705-44 (a) in the IS and (b) on the banana
branch, reproduced from DGKO07. The spectra have been unfolded and unabsorbed
and the best fitting models have been extrapolated below the PCA bandpass (3keV).
Spectrum (a) is fit with a blackbody (red), its thermal Comptonisation (blue) and
reflection (green). Spectrum (b) is fit with a disc blackbody (red), Comptonisation

seeded by the (unseen) emission from the NS surface and reflection (green).

dominant source of seed photons is the thermal emission from the neutron star surface.
Also, we see that the Comptonised spectrum in (b) is so optically thick that it is nearly
thermal. It is possible to explain the different tracks followed by BHBs and atolls on a
CD by considering these extra processes (Gierlinski & Done 2002b; Done & Gierlinski
2003; Done, Gierlinski & Kubota 2007).

There are also comparisons to be drawn between the PSDs of black hole and neutron
star binaries. Atoll power spectra can also be approximately described as broad band
noise, characterised by low and high frequency breaks at f, and f;, respectively, with a
LF QPO superimposed. Whereas fj, remains roughly constant, f, moves with the QPO
frequency, fopo. We can see by turning back to Figure 1.22, which shows f;, plotted



3. A physical interpretation of the variability power spectral components
in accreting neutron stars 79

against fopo for both black holes and neutron stars, that power spectral evolution is
very similar for both classes of object. In (a), the black points are for BHBs with the
red and blue points for atolls (the blue points are millisecond pulsars). In (b), the black
points are all of the points from (a), the red points are Z-sources and the blue points
are for objects which display two QPOs. It is clear that all of these objects (except
for possibly the Z-sources) lie on the same relation with the factor ~ 10 difference in
average frequency between black holes and neutron stars consistent with a factor ~ 10
mass scaling. This strongly implies that common processes give rise to these features

in both object classes (Wijnands & van der Klis 1999; Klein-Wolt & van der Klis 2008).

We can therefore interpret the power spectral evolution of atolls in the picture
developed thus far for BHBs, with the LF QPO produced by Lense-Thirring precession
of the entire hot inner flow. Numerical simulations show that angular momentum
transport in the accretion flow takes place via stresses (a.k.a. ‘viscosity’) generated
by the magneto rotational instability (MRI: Balbus & Hawley 1998). This process
generates fluctuations in all quantities (e.g. Krolik & Hawley 2002). However, the mass
accretion rate at any given radius cannot change faster than the local viscous timescale,
so fluctuations at each radius are damped on this timescale (Lyubarskii 1997; Psaltis
& Norman 2000; also see Titarchuck & Osherovich 1999; Misra & Zdziarski 2008 for a
slightly different approach). As illustrated in Figure 1.23, this gives rise to self-similar
fluctuation power between the viscous timescale at the inner and outer radii of the flow.
(Lyubarskii 1997; Churasov et al 2001; Nowak & Wagoner 1995; King et al 2004). The
inner radius of the flow is now presumably the neutron star surface, thus giving rise
to a constant component at f,. The evolution of the continuum power spectrum can
therefore determine the inner and outer radii of the flow, and these can be used to

predict the LE QPO frequency, to compare with that observed.

Atoll power spectra also display a pair of kHz QPOs, a feature not (unambiguously)
observed in BHB power spectra. The peak frequency of both the upper, f.xm., and
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lower, firr., QPO is seen to increase as the source spectrum softens such that it
correlates with the break frequency and the LF QPO. (see e.g. the reviews by van der
Klis 2005, hereafter vdK05; McClintock & Remillard 2006, hereafter MRO6; and Done,
Gierlinski & Kubota 2007, hereafter DGKO07). Relativistic precession models (Stella
& Vietri 1998; 1999) identify furpm. and fixm. respectively as some modulation of the
orbital, fs(r,), and the perihelion precession, f,,(r,), frequencies, both evaluated at

the truncation radius.

This chapter is adapted from Ingram & Done (2010). In this paper, we studied atolls
with well constrained spins using the assumption that furm. = fs(r,) in order to give
an accurate determination of the truncation radius. This identification independently
constrains a key parameter of the LF QPO model. Hence we used the atolls to outline

a self-consistent model for all the observed components in the power spectrum.

3.2 The origin of the broad band power spectrum

We choose atoll sources with multiple observations showing the power spectral evolution
so as to test the model over a wide range of r,. We consider only low spin systems
(a. < 0.3), because higher spins lead to an equatorial bulge of the neutron star which
distorts space-time from being well described by the Kerr metric (Miller et al 1998).
This leads us to pick the atoll systems 4U 1728-34 and 4U 0614409 (van Straaten et
al 2002), both of which have spin a, ~ 0.2 and (assumed) mass M ~ 1.4M. Typical
power spectra of 4U 1728-34 and 4U 0614409 are shown in the top and bottom panels
respectively of Figure 3.3. We see that the QPOs can be fit with narrow Lorentzians
with the broad band noise requiring a number of broad Lorentzians (although note
that the Lorentzian labelled L; is sometimes referred to as the hectohertz QPO; e.g.
van Straaten 2002; van Straaten et al 2003; Di Salvo et al 2001).
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Figure 3.3: Power spectra and fit functions for 4U 1728-34 (top) and 4U 0614409
(bottom), reproduced with the permission of van Straaten et al (2002) and the AAS.
Lorentzians represent the following components: the low frequency Lorentzian L,
(peaking at fi; dashed line), the LF QPO (peaking at fgopo; dotted line), the high
frequency Lorentzian (peaking at fj,; dot-dashed line) and the kHz QPOs (peaking at
fier- and fupp.; triple dot-dashed). When there are two dashed lines present, as in
the bottom panel, we will refer to the left hand one as L, and the right hand one as

Ly with one assumed to be a continuation of L.
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3.2.1 Outer radius

The evolution of the high and low frequency breaks can be qualitatively explained in the
truncated disc/hot inner flow model. The inner radius of the flow remains constant at
the neutron star radius, so giving the constant high frequency power, while the outer
radius sweeps inwards, leading to the progressive loss of low frequency components
(Gierlinski, Nikolajuk & Czerny 2008). Quantitatively this can be modelled by each
radius generating noise power as a zero-centred Lorentzian with width Af = fis.
The viscous frequency fuisc = 1.5a(h/r)?fs, where « is the Shakura-Sunyaev viscosity
parameter, h/r is the disc semi-thickness and f, is the rotational frequency of fluid
particles within the flow. However, none of these are necessarily straightforward to
define. MRI simulations of black hole accretion flows show that o and h/r vary with
radius (e.g. Fragile et al 2007, 2009). Additionally, h/r should change during state
transitions as the hot inner flow collapses. In neutron stars especially, this collapse
marks the transition from the hard X-ray emission region being an extended optically
thin boundary layer which merges smoothly onto the hot inner flow, to a much more
compact boundary layer. As well as the impact of such a transition on h/r, the viscosity
mechanism in the boundary layer may well be very different to that of the standard
MRI, and the azimuthal velocity field is dominated by that of the star rather than

being Keplerian.

This makes neutron stars somewhat more complex than black holes. However, their
saving grace is that we can use their additional kHz QPOs to independently determine
r, assuming that furm, = fe(r,) = ¢/ [QWRQ(T§/2 + a.)] (it should be safe to assume f
at the inner edge of the disc to be Keplerian). The blue triangular points in Figure
3.4 show that this requires r, to decrease from 20 — 8RR, consistent with the expected

change in radius from the spectral softening seen from the island state to the lower

banana branch (Barret 2001).

The square magenta points in Figure 3.4 show the high frequency break (hectohertz)
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Figure 3.4: Plot of characteristic frequencies plotted against 7, as inferred from the

assumption furp, = fx(ro). The blue triangular points represent f,xy. and the square

magenta points represent f,. The orange crossed points represent the LF QPO fre-

quencies and the circular points the low frequency break. The black points are for

power spectra where there is no ambiguity over what the break frequency is whereas

the red points are for f, = fi» and the green points for f, = fyrr.
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frequency, which remains approximately constant as discussed earlier and the crossed
orange points show the LF QPO frequency. This correlates with the low frequency
break (e.g. Wijnands & van der Klis 1999), which is represented by the circular points.
Of these, the black points represent data where f;, is unambiguously identified in the
power spectra. However, this becomes difficult at the highest ukHz QPO frequencies
(i.e. smallest radii) as there is an additional component observed in the low frequency
power spectrum e.g. the lower panel of Figure 3.3, where two low frequency Lorentzians
are required. It is not immediately clear which one of these corresponds to f; e.g. van
Straaten et al (2002) refer to the lowest frequency Lorentzian as L, and call the other
Ly r while Altamirano et al (2008) put L, on the right and term the other Ly,. Here
we only use L, where this break is unambiguously determined by the data. Where
there are two competing low frequency components we refer to the lowest frequency
one as Ly, and the other as Lypr. The green points in Figure 3.4 represent fy 1 p
whereas the red points represent fi. The green points connect smoothly onto the
black points where f; is unambiguously determined, while the red points do not. Thus
it seems most likely that the higher of the two low frequency components represents

the continuation of the break frequency determined by r,.

Of these 6 points with a split break frequency, 4 are from observations of 4U 1728-34
and 2 from 4U 0614+09. If we analyse the colour-colour diagram of 4U 1728-34 (Di
Salvo et al 2000), we see that these 4 observations (9-12 of 19) occur just before the
transition between the island state and the banana branch. Intriguingly, the geometry
inferred from models of the spectral evolution require an overlap between the hot flow
and truncated disc close to the transition. The splitting of the break frequency then
has an obvious interpretation with the outer radius of the hot flow being larger than
the inner radius of the thin disc. The hot flow in this overlap region will have smaller
scale fluctuations, as the size scale of the magnetic field is limited by the thin disc in

the mid plane. Thus f;» can be interpreted as the viscous frequency at the edge of the
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corona with fi . r being the viscous frequency at the truncation radius.

3.2.2 Inner radius

We assume that the lower break frequency, fj, is identified with f,;s.(7,), and we use the
independent constraints on r, from the ukHz QPO above to track out the unknown
variation in fus (o¢ a(h/r)*fs(r)). We parameterise this as a power law, so that
fo = fuise(ro) = Ar; 7. We then use the best fit values of A and 7 derived from the low
frequency break to determine r; = [(Af,)]"/7 assuming that the high frequency break
in the noise power (hectohertz component) is the viscous frequency at ;.

However, as discussed in the previous section, we do not necessarily expect this
power law representation of f,s.(r) to stay constant as the truncation radius sweeps in
and the source spectrum softens due to the collapse of the more extended hot flow into
the boundary layer, with its potentially very different viscosity and azimuthal velocity.
Instead we split the radial range in 7, into four groups of points, each described by a
different best fit power law. The top panel of Figure 3.5 shows this best fit power law
relation for each group of points, with a clear change in both slope and normalisation
as the truncation radius moves inwards. Quantitatively, the inferred value of v moves
from 3.25 (blue), 3.02 (magenta), 2.88 (green) to 2.69 (red). We can now use our
moving power law representation in order to extrapolate values for r; = [(Af,)]"?
taking care to use the correct values of v and A for a given value of f,.

The lower plot of Fig. 3.5 shows the derived values for r; with error bars including
the systematic error in determining the best fit values of A and . We infer from
this that the radius of the neutron star lies at r; =~ 4.5 +0.04 = 9.2 £ 0.1 km. This
would mean that the neutron star is slightly smaller than its own last stable orbit
(5.3 R, for a, = 0.2), indicating a soft equation of state, but we caution that the exact
value depends on the accuracy of our assumed power law representation of the viscous

frequency with radius. Any more complex form will extrapolate to a different inner
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radius, and the value of this radius may also be affected by time dilation. Nonetheless,
the remarkable constancy of the derived inner radius gives some confidence in our
approach, and the value of 9.2 km is very close to the ‘canonical’ assumption of 10 km

for a 1.4M, neutron star.

3.3 Testing Lense-Thirring in atolls

Now we have both the inner and outer radius for the hot flow, we can directly calculate
the predicted Lense-Thirring precession frequency. However, there is one additional free
parameter which is the mass distribution in the hot flow, which can be parameterised
by ¢, the radial dependence of the surface density, ¥ = 3;(r/r;)~¢ (see IDF09 and
Fragile et al 2007). The LF QPO frequency is then predicted to be

(5 —2¢) a [l — (rifro))' "] ¢

3.1
7T(]_ + QC) Tg/27§r3/2+C[1 — (’I"Z'/TO)5/2_<] Rg ( )

fprec =

Simulation data for black holes shows ¢ ~ 0 (e.g. Fragile et al 2007) but neutron
stars have a solid surface which could give a rather different situation where the flow
is increasingly concentrated on the neutron star surface as the accretion rate increases.
Nonetheless, assuming ¢ = 0, and taking r; fixed at 4.5 (see previous section) gives
quite a good fit (grey line) to the observed LF QPO (black circles) as shown in Fig 3.6.

The fit can be made even better by allowing ( to vary. As r, decreases the ex-
pectation is that the flow goes from being similar to the BH case, to being more and
more concentrated in the boundary layer i.e. we expect an increase in ¢ as the dense
boundary layer begins to dominate the surface density of the flow. Such an increase in
the surface density profile is also implied by the change in viscous frequency implied
from the previous section, since surface density is inversely proportional to the radial
velocity v, = Rfyise. We fit our Lense-Thirring model to the four different sets of points
from before and obtain excellent agreement with observation if ¢ takes the values —0.7

(blue), —0.3 (magenta) 0.6 (green) and 2.7 (red) i.e. ( increases with decreasing r,
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Figure 3.5: Top panel: Break frequency plotted against truncation radius, r,, with four
separate power law fits: v = 3.25 (blue), 3.02 (magenta), 2.88 (green) and 2.69 (red).
This treatment assumes that the viscous frequency is given by a power law, the index
of which becomes less negative as r, reduces. fi, is then fi;s.(r,) and r; is the value of

r that gives fuisc(r) = fn. Bottom panel: Inferred values for r; plotted against 7.
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Figure 3.6: LF QPO frequency plotted against truncation radius (black circles). The
grey line tracks Lense-Thirring precession frequency of the inner flow with r; = 4.5 and
(¢ = 0. The blue, magenta, green and red squares are for ( = —0.7, —0.3, 0.6 and 2.7

respectively and use the r; values from the bottom plot of Figure 3.5.
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as expected. However, a quantitative understanding of how these parameters should
interact in neutron stars is a very difficult goal as the boundary conditions associated

with accreting neutron stars are so poorly understood.

3.4 Conclusions

We show that the broadband continuum noise power and LF QPO seen in atolls and
BHB can be self-consistently explained in the same truncated disc/hot inner flow model
which describes their spectral evolution. We test this on the atoll systems, as these
have strong kHz QPOs which most probably pick out the truncation radius of the thin
disc, r,, so this key parameter is known independently. Using the standard assumption
that the upper of the two kHz QPOs marks the Keplerian frequency gives that r,
decreases from 20 — 8 R, during the marked spectral transition seen in atolls from the
hard (island) state to soft (banana branch) spectra.

The low frequency break seen in the noise power is then consistent with being the
viscous timescale of the hot flow at r,. All smaller radii in the hot flow contribute
to the noise power, giving the broad band continuum power spectrum. The highest
frequency noise component marks the viscous timescale at the inner edge of the hot
flow, r;. We use our parameterisation of f,;s. to calculate r; and find that this remains
remarkably constant at r; ~ 4.5 = 9.2 km for a 1.4M, neutron star.

The truncated disc model also gives a physical interpretation for the observed ‘split-
ting’ of the lowest frequency noise component seen close to the spectral transition. At
this point the spectral models predict that the disc overlaps the hot flow, so there is
a component which tracks turbulence in the hot flow within the disc inner radius, and
another component which tracks the true outer edge of the hot flow which extends over
the disc.

With all of the parameters of the truncated disc geometry constrained, we are then

able to test the Lense-Thirring precession model for the LF QPO presented in IDF09.
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This gives a fairly good match to the data at large truncation radii, but increasingly
underestimates the QPO frequency as r, decreases. Nonetheless, it still only 25 per cent
too low even at the smallest r,. However, there is still one additional free parameter
which is the radial dependence of the surface density of the hot flow. Allowing this to
change so that the flow becomes increasingly concentrated towards r; as the truncation
rate decreases, as expected from the collapse of a hot flow into the boundary layer,
gives an excellent match to the data. However, we caution that the expected evolution
of the surface density is not well understood quantitatively for neutron stars.

It must also be noted that considering the whole flow to precess removes a previous
objection to Lense-Thirring precession as the origin of the LF QPO. If the LF QPO is
produced by Lense-Thirring at r, then this implies the moment of inertia of the neutron
star is too large (Markovic and Lamb 1998). Instead, in our model the LF QPO is
produced at some mass weighted radius between r, and r; with the weight increasingly
towards r; for softer spectra (higher frequencies). Thus for the lowest values of r, ~ 8.5,
the LF QPO is predominantly produced by material at r; = 4.5 rather than at r,, so
the moment of inertia is correspondingly reduced.

Overall, we present a model of the power spectrum in which both broad band con-
tinuum and LF QPO components are interpreted physically. This forms a framework in
which the characteristic frequencies in the power spectrum can be used as a diagnostic

of the properties of the accretion flow in strong gravity.



Chapter 4
A physical model for

the continuum

variability and QPO in

accreting black holes

4.1 Introduction

Despite being known about for ~ 25 years (e.g. van der Klis 1989), there is still no con-
sensus in the literature as to the origin of the QPO and broad band variability observed
in the PSD of black hole and neutron star binaries. There are multiple potential models
for the LF QPO which fall into 2 main categories: those associated with a geometrical
misalignment of the accretion flow and black hole spin (Stella & Vietri 1998; Fragile,
Mathews & Wilson 2001; Schnittman 2005; Schnittman et al 2006; Ingram, Done &
Fragile 2009, hereafter IDF(09), and those associated with wave modes of the accretion
flow (Wagoner et al 2001; Titarchuk & Oscherovich 1999; Cabanac et al 2010). Most
of these concentrate on matching the QPO frequency, but the spectrum of the QPO
gives additional constraints. This is similar to that of the spectrum of the broadband
variability, showing that they both arise predominantly from the Comptonising region
rather than the disc (e.g Gilfanov et al 2003; Sobolewska & Zycki 2006), favouring
models in which the modulation arises directly from the Comptonised emission e.g.
IDF09, where the QPO is set by Lense-Thirring (vertical) precession of the entire hot
91
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inner flow interior to the disc truncation radius at r,, or by a mode of the hot inner

flow (Cabernac et al 2010).

The physical origin for the viscosity of the flow is the Magneto-Rotational Instability
(MRI: Balbus & Hawley 1991). This is inherently variable, with large fluctuations
in all quantities, both spatially and temporally (Krolik & Hawley 2002), making it
a natural origin for the broad band noise (Noble & Krolik 2009; Ingram & Done
2010; Dexter & Fragile 2011). However, these fluctuations also effectively shred any
coherent wave modes in the flow (see e.g. Reynolds & Miller 2009; Henisey et al 2009).
This casts doubt on trapped wave propagation as the origin of the LF QPO, leaving
Lense-Thirring precession as the most likely candidate. As shown in the two previous
chapters, precession of the entire hot flow from r, to r; can match the observed LF
QPO frequency in both BHBs (IDF09) and neutron stars (NS; Ingram & Done 2010),
and provides a clear mechanism to match the spectrum as this is a modulation of the

Comptonising region.

Thus the entire power spectrum can be explained by MRI fluctuations in a hot
flow, which is also precessing around the black hole. However, the power spectrum
does not represent all the information contained in the variability, as it uses only
Fourier amplitudes, not phases. This is important as the light curves contain additional
correlations which give a linear rms-flux relation (Uttley & McHardy 2001). This is
equivalent to the flux on these timescales having a log-normal distribution (Negoro et
al 2000), and rules out simple models of the variability where the light curve is made
from adding together multiple, uncorrelated events (Uttley & McHardy 2001; see also
DGKO7). Instead, this can be produced if the light curve is made from a multiplicative
process, rather than an additive one. Again, the MRI in the hot flow gives a physical
interpretation to this. The MRI at large radii produces intrinsic fluctuations in the
density of the flow. These fluctuations propagate down to smaller radii on a viscous

timescale, so all higher frequency fluctuations are smoothed out. These smoothed and
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lagged fluctuations in mass accretion rate modulate the MRI fluctuations produced
by the next radius, and so on, down to the smallest radii in the flow (Luybarski
1997: hereafter L97). This naturally produces a light curve which has an rms-flux
relation/log-normal flux distribution (Uttley, McHardy & Vaughan 2005; Kotov et al
2001: hereafter KO1; Arevalo & Uttley 2006: hereafter AUOG6; also see Misra & Zdziarski
2008).

This chapter is adapted from Ingram & Done (2011) in which we use these ideas to
build a model for the entire power spectrum, where the broadband noise arises from
propagation of MRI fluctuations through the hot flow from r, to r; and the LF QPO

arises from Lense-Thirring precession of the same hot flow.

4.2 The simplified model

We first introduce the simplified toy model considered in IDF09 and Ingram & Done
(2010), whereby the low frequency break, f,, occurs at the viscous frequency of the trun-
cation radius and the QPO frequency, fgpo, is the precession frequency of the flow. Us-
ing the Shakura Sunyaev (1973) viscosity prescription, f, = fuisc(r0) = a(h/7)? fi(r,) =
—v,(1,)/ R, where « is the viscosity parameter, h/r the flow semi-thickness, fj the Ke-
plerian frequency and v, is the infall velocity. The Lense-Thirring precession frequency
is then a weighted average of the point particle precession frequency at each radius in

the hot flow, so

frzo forfr2ridr
f;” fe2r3dr

(Liu & Melia 2002) where r; is the innermost point of the flow (i.e. the surface density

fprec = fQPO - (41)

is negligible interior to this), ¥ is the surface density and
da,  3a,
Jrr = [k [1_\/1_T3/2+ 7‘2] (42)

is the point particle Lense-Thirring precession frequency for a dimensionless spin pa-

rameter a, (Merloni et al 1999). Here, r is dimensionless, expressed in units of
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Figure 4.1: The QPO-break relation plotted in dimensions of ¢/ R, for a fiducial mass
of 10 and 1.4M, for black holes (black circles) and neutron stars (red triangles) respec-
tively. The fact that these frequencies lie on the same relationship for the two objects
implies a common physical origin. The lines are predictions of the simplified model for
spins of a, = 0.2 (dot-dashed), 0.5 (dashed) and 0.998 (solid) with r, ranging from r;
to 100 and r; = r,. For the blue lines, we assume the viscous frequency to be pro-
portional to the Keplerian frequency. For the green lines, we assume f,;,c = Br=""f;

where B = 0.03 and m = 0.5 and find good agreement with the trend in the data.
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R, = GM/c*. Tn the weak field limit (a, << 1 and/or r >> 1), equation 4.2 re-

duces to

a, ¢

—
mre Ry

(e.g. van der Klis 2006; Stella & Vietri 1998). An analytic form for the integrals in

fLr = fnodat = (4.3)

equation 4.1 can therefore be obtained in the weak field limit if we assume ¥ oc (r/r;) ¢
between an inner and outer radius for the hot flow r; and r, (Fragile et al 2007, IDF09).

This gives
(5-20)  afl—(r/r)V**] ¢
T(L+20) 327 PR — (1 fr,)3/2¢) By

foro = (4.4)

Hence this model predicts the relation between fopo and f, which can be compared
to the multiple observations of these frequencies in both black holes and neutron stars
(e.g. Wijnands & van der Klis 1999; Klein-Wolt & van der Klis 2008). The observed
relation is continuous, implying that these frequencies show the same behaviour in
both sources, i.e. that neither can depend strongly on any property of the neutron
star surface but are instead set by the accretion flow itself. We re-plot this data in
Figure 4.1, normalising the frequencies by mass for a fiducial mass of 1.4 and 100, for
neutron stars (red triangles) and black holes (black circles), respectively. This shows
even more clearly that the two different types of object show the same observed relation
between these frequencies as they now occupy the same range.

The blue lines show the prediction of the toy model, where the hot flow has constant
a = 0.2 and h/r = 0.2, surface density constant with radius (i.e. ¢ = 0: Fragile et
al 2007) between r, and r;, where r; is given by the bending wave radius. Warps in
a large scale height flow are communicated via bending waves which have wavelength
9

/4 and so are smooth at large r and oscillatory at small 7. The bending wave

radius (r; = 3.0(h/r)~*5a2/": Fragile et al 2007; 2009; Fragile 2009; IDF09) marks the

AoxXr

transition between the two regimes. We show a, = 0.2 (dot-dashed), a, = 0.5 (dashed)
and a, = 0.998 (solid). While this very simple model predicts frequencies which are

fairly close to the observations, it is clear that the gradient of this model in log space
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is different from that observed.

Plainly the assumptions above are very simplistic. Global analytic models of the
hot flow with a standard « viscosity do not have f,,. o fx as they depart from
the self-similar solutions at r < 100 due to the requirement that the flow becomes
supersonic (Narayan, Kato & Honma 1997; Gammie & Popham 1998). Full numerical
simulations also show that « is not constant (e.g. Fragile et al 2007; 2009). Ingram &
Done (2010) also suggest that ¢ can change in neutron stars as the material piles up
onto a boundary layer. However, the similarity between the mass scaled frequencies
seen in neutron stars and black holes shown in Fig. 4.1 make this now seem unlikely
to be an important effect as it would not affect the black holes.

Here then we simply assume that a(h/r)? is a power law function of radius, so that
fuise = Br~ ™ fr. We choose values for B and m which allow us to match the data in
Figure 4.1. We see good agreement with the observations for B = 0.03 and m = 0.5
(green lines), again for a, = 0.2 (dot-dashed), a, = 0.5 (dashed) and a, = 0.998 (solid).

We use this specific prescription for the viscous frequency in the following section.

4.3 The full model

We consider a model where local fluctuations in the mass accretion rate of the flow
propagate down towards the central object (e.g. L97; KO1). Our method mainly follows
that of AU06, with a few small differences.

We split the flow into annuli, characterised by a radius 7, and width dr,, with
logarithmic spacing so dr,, /1, is a constant for all annuli from r, to r;. We assume that
the generated power spectrum of mass accretion rate fluctuations at radius r,, is given

by a zero centred Lorentzian cutting off at the viscous frequency

1
> 1 + (f/fvisc(rn))Q

where fyisc = —Riv,« /r = Br~™fg as discussed at the end of section 4.2 and a tilde
9

[ (ra, f)I? (4.5)
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denotes a Fourier transform. This approximates the MRI generating a white noise
of variability power which is then damped by the response of the flow on timescales
shorter than ¢,,.(r). Note that magnetic fields can also affect the mass accretion rate
by driving direct angular momentum loss through an outflow (jet/wind). This process
is damped, not on the viscous timescale, but on the time it typically takes for magnetic
field fluctuations to randomly align over enough neighbouring annuli to drive significant
angular momentum loss (¢,,44; King et al 2004). We ignore this effect here .

We start at the outermost annulus, so vy = r,, and generate the time dependent fluc-
tuations in mass accretion rate, m(ry, t), from equation 5.4 using the method of Timmer
& Koenig (1995). We normalise each m(r,,t) to have a mean of unity and fractional
variability 0 /I = Fyu.v/Nge. where F,q, is the fractional variability per decade in radial
extent and Ny is the number of annuli per decade in radial extent. Thus the mass
accretion rate across the first annulus is M(ry,t) = Myrn(ry,t) where M, is the mean
mass accretion rate. This then propagates inward to the second annulus, travelling a
distance dry, which takes a time t,,, = R, dri/v,(r1). When it arrives at ro, it has

been filtered by the response of the flow which we take from Psaltis & Norman (2000)

to get ~
: M(ry, f
Mf(ﬁzaf) S8 ( ) = (4.6)
\/1 + [(drn/rn)(f/fvisc(rn))]
The mass accretion rate at the n'® annulus is then given by
M (1, t) = My(rp_1,t = tiag)rin(rp, t) (4.7)

where t,, = R, dr,/v,(r,). However, equation 4.6 only filters out fluctuations on

much shorter timescales (by a factor dr/r) than the typical timescales generated in

the annulus (equation 5.4) and so we can say ]\;[f(rn, f) =~ M(ry,, f) to a very good

approximation. The mass accretion rate at the n'* annulus is therefore given by

M, t) = M (11, t — tiag)1in(r, 1), (4.8)

until the N*" annulus which is r;.
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To transform this into a light curve requires an emissivity, €(r) such that the lu-
minosity from each annulus is given by dL(r,t) = 1/2 M (ry,t)e(r)radr,c® where we
assume the emissivity e(r) oc 7~7b(r) where b(r) is a boundary condition. For a Newto-
nian thin disc, 7 = 3 and we have the stress free inner boundary b(r) = 3(1 — \/7;/7,,)
but we note that the large scale magnetic fields present in the large scale height flow
can give a stressed inner boundary condition b(r) = 1 (Agol & Krolik 2000; Beckwith
Hawley & Krolik 2008). Also « is, in general, a free parameter since the emission need
not exactly follow the radial dependence of gravitational energy release as long as the
total energy release is gravitational. A different emissivity for different energy bands
gives a way for the model to predict frequency dependent time lags between hard and

soft X-ray bands (K01; AU06).

4.4 The fiducial model

Figure 4.2b shows 20s of the resulting light curve for a fiducial set of input parameters
for a black hole mass of M = 10M, and a spin of a, = 0.5. We assume r; = 2.5, r, = 20,
Foor = 0.4, B =10.03, m = 0.5, v = 4.5 with a stressed inner boundary condition (see
Section 4.2). We calculate the light curve with 2?2 time points, corresponding to
~ 4096 s (a typical length for an RXTE observation) of data on a time binning of
0.00097 s, and 30 radial bins per decade in radius.

Figure 4.2a (red) shows the PSD of this light curve, while the black and green
points show the effect of changing the number of radial bins per decade to Ng. = 10
and Ng.. = 50, respectively. Clearly, the high frequency power is not well resolved with
only 10 radial bins per decade, while the difference between 30 and 50 is very small.
Hence we use Ng.. = 30 for the fiducial model. For all PSDs, we use a combination of
ensemble averaging and geometric rebinning. Each periodogram is calculated for 128s
of data. Since we simulate 4096s of data, we can average over M = 32 realisations.

Geometrical rebinning is always carried out using a rebinning constant of ¢y = 1.05.
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Figure 4.2: Top (a): The simulated power spectral density calculated using 10 (black),
30 (red) and 50 (green) radial bins per decade. We see that 10 bins is not enough to
resolve the high frequency power but 30 bins is a good approximation. Bottom left
(b): A 20 second section of the simulated light curve (using 30 radial bins per decade).
Bottom right (¢): The rms-flux relation for the light curve shown. We see that this is

linear as observed.
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The PSD shows the same characteristic broadband noise features as are seen in the
power spectra of black hole binaries, namely band limited noise, with low and high
frequency breaks, peaking between 0.1-10 Hz. Figure 4.2c shows the rms-flux relation
for the fiducial light curve, derived from splitting this into 4s segments. As with the
data (Uttley & McHardy 2001), we see a large scatter before binning (grey points) but,

after binning (red crosses), we retrieve a linear flux-rms relation (AU06).

4.5 The truncated disc/hot inner flow model

The major prediction of the truncated disc/hot inner flow model is that the spectral
softening as the source brightens from a low/hard through to intermediate states is
caused by the truncation radius of the thin disc moving inwards (e.g. DGKO07; Gier-
linski, Done & Page 2008). This radius also sets the outer edge of the hot flow, so this

predicts that r, decreases also.

Figure 4.3 shows the predicted PSD for r, = 50, 20 and 10, as required to match the
energy spectral evolution (and low frequency QPO: IDF09), with all other parameters
held constant at the fiducial model values described above. The model predicts that
decreasing the outer radius of the hot flow leads to less low frequency power, while the
high frequency power remains constant. This is precisely what is seen in the PSD of

the data (DGKO07; Gierlinski, Nikolajuk & Czerny 2008).

This is the first physical model of the power spectral behaviour which naturally
reproduces the observations. The low frequency break is close to the frequency of the
viscous timescale at r,, as proposed by e.g. Churazov et al (2001); Gilfanov & Areief
(2005); DGKO7; Ingram & Done (2010). However, the high frequency break is not at

the viscous frequency at r;. We explore the origin of the high frequency break below.
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Figure 4.3: PSD calculated using the fiducial parameters with r, = 50 (black), 20 (red)

and 10 (green) with total fractional variability generated per decade in radius, F,q,

held constant. This has the same characteristics as the observed PSD of the data as the

source softens from a low/hard to intermediate state, namely that the low frequency

power drops while the high frequency power remains constant.
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Figure 4.4: Left (a): The grey lines are the power spectra of 5 simulated m(r,t)

functions. We simulate 30 of these functions but, for clarity, only plot 5 without
showing the errors. The red line is the PSD of the light curve created by assuming there
to be no propagation (i.e.M (r,,t) = 1(r,,t)) and an emissivity index of 4.5. Because
the functions we sum over are uncorrelated, the PSD of the light curve looks like the
(weighted) sum of the 100 PSDs with the only difference being the normalisation.
Right (b): The grey lines are now the power spectra of M(r,,t) functions, i.e. we now
allow propagation. These are correlated at low frequencies but not at high frequencies
allowing the model to reproduce the observed linear sigma-flux relation. The red line
is the PSD of the light curve if we do not consider the propagation time between annuli
(i.e. tjqg = 0) and the blue line results if we do consider the propagation time. We see
that the red line differs from the top plot in 2 ways: the normalisation is much higher
and high frequency noise is lost. However, much more high frequency noise is lost
for the blue line indicating that considering lags reduces high frequency noise. These
plots illustrate that the prediction from shot noise models such as the top plot that the
observed high frequency break is the viscous frequency at the inner radius breaks down
once we consider a more advanced model capable of reproducing other observational

properties.
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4.5.1 Effect of propagation on the PSD shape

Figure 4.4a shows a model where the variability at each radius is a Lorentzian at the
local viscous frequency (see equation 5.4), but with no propagation so there is no causal
connection between annuli. We show the PSD of the resulting (7, t) functions from
5 of the 25 individual radial annuli (rings 1,7,13,19 and 25), from r, to r; as the grey
lines on Figure 4.4a. These peak, as expected, at fyisc(ro) and fyise(r;). The total
variability (red) is an emissivity weighted sum of these fluctuations, but since they are
uncorrelated, the effect of this is to strongly dilute the total variability seen. This total
PSD does have fj, & fus(r;) ~ 12Hz as our emissivity weighting strongly favours the
smallest radii, but f, > fuisc(70) (~ 10Hz and ~ 0.3Hz respectively). In fact, to achieve
fP; o< fO as observed, we would have to assume a completely flat emissivity profile,
which seems very unlikely. More fundamentally, such uncorrelated fluctuations cannot

reproduce a linear rms-flux relation.

This is in sharp contrast to a model where fluctuations propagate down in radius.
The resulting PSD from the same set of radii are shown in Figure 4.4b, where the
power in each annulus increases strongly with radius as the MRI power generated in
each annulus is modulated by the propagating fluctuations from all radii prior to it.
The red line shows the resulting emissivity weighted power spectrum from the total
flow assuming that time lags between radii are negligible. This preserves the maximum
correlation between variability at different annuli i.e. gives the least dilution between
fluctuations in different annuli. This is very different to that in Figure 4.4a, both
in normalisation and shape. The normalisation is dramatically enhanced because the
long timescale fluctuations are correlated together, so at low frequencies the power from
different radii add together as they are in phase. This gives f, & fuisc(75) ~ 0.3Hz as the
correlated variability weighting to larger radii is stronger than the emissivity weighting
to smaller radii. However, at the fastest timescales, the power is mainly generated at

the smallest radii, so it does not correlate with any other fluctuations generated at
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larger radii, so is not enhanced in the same way.

The blue line shows how time delays dramatically change the high frequency break
as the propagation time prevents the mass accretion rate from two consecutive annuli
from being correlated on time scales shorter than t;,,. This reduces the correlation
between the fastest timescale variability, strongly suppressing high frequency power.
Thus in the propagating fluctuation model, the low frequency break is f, & f,isc(70) but
frn << fuise(ri), which appears to be consistent with the King et al (2004) model for the
Case timag >> tyise (see Figure 3b therein). This makes intuitive sense, since this limiting
case prevents angular momentum loss driven directly by magnetic field fluctuations
from significantly affecting the short timescale variability, effectively aligning their

assumptions with ours.

4.5.2 Emissivity and boundary condition

We use an emissivity to translate the fluctuations in mass accretion rate to a luminosity.
This emissivity is in two parts, firstly a power law dependence in radius, and secondly
a boundary condition. Our fiducial model parameters have v = 4.5 and a stressed
boundary condition, b(r) = 1. This emissivity peaks at r;, so fluctuations from the
very smallest radii are given most weight.

Figure 4.5 compares this (black line) with results using the same power law radial
dependence, but with a stress-free inner boundary condition (red line), b(r) = 3(1 —
m) This emissivity goes to zero at the innermost radius, so the highest frequency
fluctuations are strongly suppressed. However, this also has a more subtle effect on the
region between the two breaks, as there is a gradual decrease in weighting of fluctuations
below r = 2r;, and a stronger weighting to the fluctuations at larger radii, giving the
tilt between f, and f;.

This effect is similar to that of changing the radial dependence of the emissivity.

The green line shows v = 3 with a stress-free boundary condition, showing an even
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Figure 4.5: The PSD calculated assuming b(r) = 1 and v = 4.5 (black), b(r) =stress
free and v = 4.5 (red), b(r) =stress free and v = 3 (green), all with r; = 2.5. The blue
points are for b(r) =stress free, v = 3 and r; = 6. This illustrates that we can reduce
the predicted high frequency noise by changing boundary condition, emissivity index

or inner radius.
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stronger tilt to the PSD between f, and f;, (green). However, it is also similar to
changing the inner radius of the flow. The blue line in Figure 4.5 shows the resulting
PSD from v = 3 and a stress-free inner boundary condition with r; = 6. Thus there
are degeneracies between the two parts to the emissivity and the inner radius, making
it unlikely that they can all be uniquely constrained by the observed PSD.

It is clear from this analysis that while the low frequency break is fairly strongly
linked to the viscous timescale of the outer radius of the hot flow (as assumed in section
4.2), the high frequency break is rather more complex, depending on propagation
correlations, emissivity, boundary condition and inner radius in addition to the viscous
timescale. This makes it difficult to directly associate the high frequency break with any
physical parameter of the models. Instead, we now use the additional information from
the QPO to remove some of the degeneracies inherent in this model for the broadband

noise.

4.6 The QPO: Precession and surface density

For our fiducial model, we used the observed relation between the low frequency break
and LF QPO to set the radial dependence of the viscous timescale, assuming that
the low frequency break was set by the viscous timescale at r, and that the QPO
was Lense-Thirring precession of the entire hot flow from r, to r; (Section 4.2). This
assumed that the surface density of the hot flow, ¥ = Y(r/r;)~¢ between 7, and
r;, with ¢ = 0. However, the broadband noise model described above calculates a

self-consistent surface density as mass conservation implies

M(rp,t) = =21r,0,.(rn)X(r,, 1), (4.9)

(Frank, King & Raine 1992) where v, is now expressed in units of ¢, M in units of Mo,

% in units of My/(cR,) and 7 in units of R,. Using our velocity prescription, we can
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then easily show
M(Tm t)yrm=1/2

X(rp,t) = B

(4.10)

This means that, for the time averaged surface density, ( = 1/2 — m giving extra
physical motivation for the parameters used in section 4.2 (¢ = 0 and m = 1/2). Note
that equation 4.10 results from assuming the angular momentum loss from outflows to
be negligible (Pringle 1981; Livio & Pringle 1992).

Figure 4.6 shows ¥(r,) plotted at a number of different times (0, 256, 512, ..., 1792 s)
along with the corresponding M (r, ) function. M (r,t) is quite clearly more variable at
small r. This is because we have assumed the variability generated in each logarithmic
annulus to be the same but annuli at smaller radii include also the fluctuations that
have propagated down from large r and so the emitted variability is greater (see Figure
4.4b). We do not see a drop off in surface density at the bending wave radius like that
seen in simulations (e.g. Fragile 2009) because we assume that the infall velocity can be
given by a power law. It is clear that, for the surface density drop off at a given point,
the infall velocity must accelerate at that point. In a future paper, we will investigate
this model with a more advanced velocity prescription.

Therefore the broadband noise model above, set by r;, r, and F,, predicts the QPO
frequency at any point in time. The fluctuations in surface density with time predict
that the QPO frequency changes, i.e. it is quasi—periodic rather than truly periodic.
However, the precession frequency will not respond instantaneously to these changes,
as their effect is only communicated across the entire hot flow by bending waves. These
travel at the sound speed, faster by a factor ~ « than the viscous timescale across the
region, so we calculate the QPO frequency every ~ 4 s rather than at every point. We
then average these values to get the predicted QPO frequency (by combining equation
4.1 and equation 4.2 numerically rather than assuming the weak field limit as before)

and use the dispersion around this to set the r.m.s. variance of these QPO frequencies,

aQProO-
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Figure 4.6: Top: Mass accretion rate as a function of radius shown here at a number
of different times. Bottom: Surface density as a function of radius shown at the same
times as the lines of corresponding colour in the top plot. This is calculated by applying

mass conservation in the flow.
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Fig. 4.7 shows ogpo/foro as a function of fopo as r, varies from 300-10 in the
fiducial model. This decrease in r, not only leads to an increase in QPO frequency, but
also to a decrease in the QPO width, or equivalently, an increase in its coherence/quality
factor @ = fopo/ogro. An increase in QPO coherence during the transition from
low /hard state to hard intermediate state is commonly observed in BHBs (although @
tends to plateau at ~ 10 for fopo 2 1; Belloni, Psaltis & van der Klis 2002; Rao et al
2010). Our model provides the first physical explanation for this effect as the smaller
the radial extent, the higher the QPO frequency, but also the smaller the fluctuation
power, giving smaller jitter in frequency. The red squares in Fig 4.7 show the observed
frequency and width of the QPO from data from the 1998 rise to outburst of the BHB
XTE J1550-564 (see section 7). The model matches the trend in the data fairly well,
and forms a lower limit to the width of the QPO. However, other effects such as the
on-time of the QPO (see Lachowicz & Done 2010) can decrease the coherence of the

signal, so our model only predicts an upper limit for the quality factor, @, of the QPO.

The model also predicts another correlation, one between the QPO frequency and
flux on short timescales. The top plot of Figure 4.8 shows this for the fiducial model
(i.e. 7, = 20), with precession frequency calculated every 4s together with the instan-
taneous luminosity at that time. After binning (red crosses), there is a clear linear
relation between the two. This happens because both the QPO frequency and the
luminosity depend on the mass accretion rate fluctuations. A perturbation in mass
accretion rate at large r will lead to a perturbation in the surface density. This will
reduce the precession frequency but will have little effect on the luminosity because the
emissivity is quite steeply weighted towards small . Later on, this perturbation will
have propagated inwards to small » where it has the effect of increasing the precession
frequency, but now also has much more of an effect on the luminosity. Heil, Vaughan
& Uttley (2011) have recently discovered this correlation in data from the 1998 rise

to outburst of XTE J1550-564 (a similar correlation was previously discovered for a
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Figure 4.7: Fractional variability of the precession frequency plotted against the average
precession frequency (black line). These are calculated by measuring the precession
frequency every 4s for a number of different truncation radii, ranging from 300 — 10,
and taking the average and standard deviation over a 2048s duration. The red squares
show the observed QPO width and frequency in data from the 1998 rise to outburst
of XTE 1550-564. We see broad agreement with the data, however, other effects such
as on-time of the QPO can decrease the coherence of the signal so we note that we are

only able to predict a lower limit for the width of the QPO
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Figure 4.8: Precession frequency plotted against luminosity, where both are calculated
at 4s intervals using the fiducial model parameters (grey points). After binning (red
crosses), we clearly see a linear relationship between the two quantities. This rela-
tionship has recently been discovered in data from the 1998 rise to outburst of XTE
J1550-564 (Heil, Vaughan & Uttley 2011), demonstrating the substantial predictive

power of this model.
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Figure 4.9: The full PSD calculated using the fiducial model parameters with r, = 50
(black), 20 (red) and 10 (green). Here, the QPO is represented by a Lorentzian centred
at the precession frequency with the width set by the r.m.s variance in precession

frequency (see text).

type-B QPO by Nespoli et al 2003). They also find that the gradient of this relation
is steeper for observations with a higher QPO frequency. This is also predicted by
the model as illustrated in the bottom plot of Figure 4.8 where we have measured
the gradient of the fgpo-L relation and the average QPO frequency for 11 different
r, values. There is clearly a very strong correlation as is seen in the data. This is
because an absolute change in precession frequency depends on a fractional change in
mass accretion rate whereas an absolute change in luminosity depends on an absolute
change in mass accretion rate. The same absolute change in mass accretion rate at a
given radius and time constitutes a larger fractional change for small r, than for high
r,. Therefore the luminosity will experience exactly the same change in both instances

but the precession frequency will undergo a larger change when r, is smaller. The
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fact that these are predicted properties of the model constitutes strong support for its
validity.

To include the QPO into our power spectral model, we must predict a shape for
the QPO light curve as well as a frequency. The data show that the QPO has a power
spectrum which can be represented by a Lorentzian at the fundamental frequency,
foro, together with its second and third harmonic and sub-harmonic i.e. at 2fgpo,
3foro and 1/2fopo (e.g. Belloni, Psaltis & van der Klis 2002). Our model for the
QPO in terms of Lense-Thirring precession predicts the shape of the modulation of
the emission from the hot flow via variation of projected area, self-occultation and
seed photons (IDF09). We will explore this further in a later paper (Ingram, Done
& Zycki in prep), but here we simply assume that all the harmonics have the same
quality factor, (), and allow the power in each harmonic to be a free parameter. We
then generate a QPO light curve, Lgpo, using these narrow Lorentzians as input to the
Timmer & Koenig (1995) algorithm, and add this to the light curve already created
for the broadband noise.

We show an example of the final predicted PSD in Figure 4.9, using the fiducial
model parameters with r, = 50 (black), 20 (red) and 10 (green). For clarity, we have
set the normalisation of all the harmonics other than the fundamental to 0, set the
width of the QPO using the model prediction of ogpo/ foro, and set its rms power to
be constant across the three simulations. These PSD show all the main features seen

in the data during spectral transitions of BHB (Gierlinski, Nikolajuk & Czerny 2008).

4.7 Conclusions

The truncated disc/hot inner flow model designed to describe the spectral evolution of
BHB can also give a self consistent geometry in which to model the correlated evolution
of the power spectrum. Propagating fluctuations through a hot flow which extends from

and outer to inner radius, r, — r;, can produce the band limited noise characteristic
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of the continuum power spectrum, as well as producing the rms-flux relation (L97;
KO01; AU06). Lense Thirring precession of this same hot flow can produce the QPO,
with frequency set by the same parameters of r, and r;, together with the surface
density of the flow (IDF09). The surface density is itself given self consistently by
mass conservation from the propagating fluctuations. This predicts that the surface
density fluctuates, so predicts that the QPO frequency will vary on short timescales
(i.e. that it is a quasi rather than true period). These fluctuations set an upper
limit to the coherence of the QPO, and this increases (i.e. width decreases) as r,
decreases. This is due to the decrease in fluctuation power due to the smaller range
of radii from which to pick up variability. All these features are well known properties
of the data (e.g. Remillard & McClintock 2006; DGKOT7): this model gives the first
quantitative description of their origin. The fluctuations also predict that the flux and
QPO frequency are correlated on short timescales, as a perturbation in the surface
density at large radii leads to a longer QPO frequency but has little effect on the
luminosity. As this propagates down, it weights the mass distribution to smaller radii,
increasing the QPO frequency but also increasingly contributing to the luminosity due
to the centrally peaked emissivity. This behaviour has also recently been observed

(Heil, Vaughan & Uttley 2011).

The model also gives a framework in which to interpret some otherwise very puzzling
aspects of the energy dependence of the variability seen in BHB. The extended emission
region can be inhomogeneous, with different parts of the flow producing a different
spectrum. The outermost parts of the flow are closest to the cool disc, so will intercept
more seed photons and have a softer spectrum than that produced in the more photon-
starved inner part of the flow (Kawabata & Mineshige 2010; Makishima et al 2008;
Takahashi et al 2008). This implies that a larger fraction of the lower energy Compton
scattered photons come from larger radii in the flow than the higher energy ones.

The higher frequency variability is preferentially produced at the smallest radii, where
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the spectrum is hardest. The flow at these small radii is also furthest from the cool
disc, so has little reflection spectrum superimposed on the Compton continuum. Thus
the model predicts that the fastest variability has the hardest spectrum and smallest
reflected fraction, while slower variability has a softer spectrum and larger reflected
fraction. This trend is also observed in the data (Revnivtsev et al 1999), and is very
difficult to interpret in any other geometric picture as the inner disc edge cannot change

in radius on even the longest timescale (few seconds) over which this relation is seen.

Similarly, the propagating fluctuations model means that a fluctuation starts at
larger radii and then accretes down to smaller radii. Thus the fluctuation first affects
the region producing a softer spectrum, then propagates down to smaller radii which
produce the harder spectrum, so the hard band lags the soft band. The size of this lag
depends on the frequency of fluctuations considered. Slow fluctuations (low frequencies)
are produced at the outermost radius, so have the longest propagation time down to
the innermost radius. High frequencies are produced only close to the inner radius,
so only have a short distance to travel and hence have shorter lags. This gives rise to
the frequency dependent time lags seen in the spectrum (Miyamoto & Kitamoto 1989;
Revnivtsev et al 2001; K01; AU06). The precession model for the QPO also predicts
harmonic structure. As the flow precesses, Comptonised emission is modulated by
self occultation in the observer’s line of sight and variation in seed photons from the
changing projected area of the disc. In general this predicts non-sinusoidal variability,
with the harmonic structure of the QPO being dependent on the details of the geometry
of the flow. This gives rise to the prospect of actually using the PSD of BHBs to probe
the geometry of the flow in detail.

While the many successes of the model are clearly evident, it is also clear that it is
still far from complete. The most obvious outstanding issues are of the interaction of
the hot flow with the truncated disc. The mechanism by which the cool disc truncates

is not well established, though evaporation powered by thermal conduction between the
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two different temperature fluids almost certainly plays some role in this (Liu et al 1997;
Rozanska & Czerny 2000; Mayer & Pringle 2007). Whatever the mechanism, it seems
physically unlikely that this will give a smooth transition between a cool thin disc and
the hot flow. Any inhomogeneities will probably also be amplified by the difference
in velocity between the disc and flow (discs are close to Keplarian, while the hot flow
is strongly sub Keplarian) so there will be a shearing turbulent layer formed between
them. Recent results show that there is variability associated with the truncated disc
at a few 10s of seconds in the low/hard state of the bright BHBs GX339-4 and SWIFT
J1753.5-0127 (Wilkinson & Uttley 2009), suggesting that there is considerable com-
plexity in the disc truncation (see also Chiang et al 2010). Full numerical simulations
of the MRI in a composite truncated disc/hot inner flow geometry are probably re-
quired in order to show the effect of these. However, such simulations are way beyond
current computer capabilities. A more tractable issue is the effect of relativity on the
propagating fluctuations. Near the black hole, light bending and time dilation should
be important and consequently future versions of this model need to take these effects
into account. The final goal should of course be the creation of a fully relativistic model
which can produce a Fourier resolved spectrum with both energy and time dependence
such that we can test it against observations such as the PSD, the energy spectrum,
the lag spectrum, the cross spectrum etc. This is of course very ambitious but it is
the only way we can genuinely achieve a full theoretical understanding of what drives

mass accretion and emission in BHBs.



Chapter 5
Modelling variability in

black hole binaries:
linking simulations to

observations

5.1 Introduction

In the previous chapter (based on Ingram & Done 2011; hereafter ID11), we explored
a model to explain the PSD of BHBs in the truncated disc / hot inner flow geometry
initially proposed to explain the observed spectral transitions. Here the QPO is driven
by Lense Thirring precession of the entire hot flow (as considered in Chapter 2) and
the broad band variability is a result of propagating mass accretion rate fluctuations
in the same hot flow. Crucially, these two processes are linked such that a few physical
parameters (inner and outer radius of the hot flow, surface density of the hot flow)
set both the QPO and broad band noise properties. Precession of the fluctuating
flow modulates its observed emission, imprinting the QPO on the broad band noise,
while fluctuations in the flow cause fluctuations in the precession frequency, making a
quasi-periodic rather than periodic oscillation.

This chapter is adapted from Ingram & Done (2012a), in which we develop a more
advanced version of the model which is in better agreement with the results of General
Relativistic Magnetohydrodynamic (GRMHD) simulations. We fit the model to data
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from the 1998 outburst of XTE J1550-564, allowing us to directly compare the results of
simulations with observations of BHBs. This model is now publically available within

the spectral fitting package XSPEC (Arnaud et al 1996) as a local model, PROPFLUC.

5.2 The model

As in ID11, the model consists of fluctuations in mass accretion rate which propa-
gate towards the black hole (following Lyubarskii 1997, Kotov et al 2001 and AU06)
within a flow that is precessing. Here we develop the model to include a number of im-
provements which allow us to gain more physical insight from the best fit parameters.
Most significantly, we change our underlying assumption about the viscous frequency
Juise(r). In ID11 we assumed that this was a power law between r; and r,, the inner
and outer radius of the precessing hot flow. Here we have it be a smoothly broken
power law, with the radius of the break being the bending wave radius, 7y, expected
from a misaligned flow. The viscous frequency is related to the surface density profile,
Y via the radial infall velocity v,(r) as fuisc(r) = —v,(r)/R and mass conservation
sets M o Y27mrv,. Hence we can use the surface density profiles from the GRMHD
simulations to derive fy;s.(r), which is especially important as the QPO frequency is

dependent on X(r).

We also change the assumed emissivity from ID11, where € oc 7~7b(r) (where b(r)
was an unknown boundary condition) to € oc r~73(r) i.e. we tie the emission to where
the mass is in the flow. We describe the details of the model below, mainly focusing
on these improvements made since ID11. Note that we assume a 10 solar mass black

hole throughout.
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5.2.1 Steady state properties

The surface density of the flow sets the QPO frequency by global precession as

[° for fi¥ridr
fr:“ fr2r3dr

Foree = (5.1)

where f; is the Keplerian orbital frequency and f7r is the point particle Lense-Thirring
precession frequency (equation 4.2).

We use the GRMHD simulations of tilted flows to guide our description of ()
(Fragile et al 2007; 2009; Fragile 2009). These can be well fit by a smoothly broken

power law function

EoMO I)‘
cR, (14 xr)CHN/s

Y(rp,t) = (5.2)

(IDF09), where z = r/ry, is radius normalised to the bending wave radius ry, =
3(h/r)=% 5a2 °, %, is a dimensionless normalisation constant and M, is the average
mass accretion rate which we will assume stays constant over the course of a single
observation. This gives ¥ oc r* for small r and 3 o< r~¢ for large r, where x governs
the sharpness of the break. The bending wave radius occurs at radii larger than the last
stable orbit because there are additional torques created by the misaligned black hole
spin which result in additional stresses i.e. enhanced angular momentum transport.
The material in falls faster, so its surface density drops.

Mass conservation then sets the viscous frequency as

M, 1 (142 eHV/E ¢
fvisc(rn) - —_— = ) A2 - (53)
2 R2Y(r,t) 27Ty, z R,

such that f,;s. oc 7672 for large r and fyise o< 7~ 12 for small 7.

5.2.2 Propagating mass accretion rate fluctuations

As in ID11 (and AU06), we start by splitting the flow up into N annuli of width dr,,

such that r; = r, (the truncation radius) and ry = r;+dr,, & r; (the inner radius of the
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flow). We assume that the power spectrum of variability generated in mass accretion
rate at the n'” annulus is given by a zero centred Lorentzian cutting off at the local

viscous frequency

- 1

m(ry, f)* o

‘ ( )’ 1 + (f/fvisc(rn))Z

where a tilde denotes a Fourier transform and f,;s.(r,) is derived from Equation 5.3.

(5.4)

We use the method of Timmer & Koenig (1995) to generate mass accretion rate
fluctuations, m(r,, t), which satisfy equation 5.4. These are normalised to have a mean
of unity and fractional variability o /I = F,q/v/Nge. where, unlike ID11, F,,, and N,
are the fractional variability and number of annuli per decade in viscous frequency
rather than radius. These two descriptions are exactly equivalent where f,;,. is a power
law function of radius as in ID11, as dfyise/ fuise = dr/r. However, the more physical
smoothly broken power law form for f,;s. does not retain this property. We choose to
parametrise the noise power in terms of dfy;se/ foise and discuss the implications of this
in section 5.2.3.

The mass accretion rate through the outer annulus is given by M (r1,t) = Myrn(ry, t).
Variability is generated in every other annulus according to Equation 5.4, but this is
also accompanied by the noise from the outer regions of the flow which propagates

inwards. Thus the mass accretion rate at the n'* annulus is given by

M(rp,t) = M(rp_1,t — tiag)m(ry, t), (5.5)
where t1,, = —R,dr,,/v,(rn) = dr,/(ry fuise(Ts)) is the propagation time across the n'”
annulus and v, (r,,) = —Ryry fyisc(1,) is the infall velocity.

To convert these mass accretion rate fluctuations into a lightcurve, we assume that

the luminosity emitted from the n* annulus is given by
AL (1, t) = 1/2 M (1, t)ce(ry)radr,, (5.6)
where the (dimensionless) emissivity is given by

€(rn) = €or, ' b(1), (5.7)
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and + is the emissivity index, 7 the emission efficiency (this may be smaller than unity
due to e.g. advection), b(r) the boundary condition and ¢, is a normalisation constant.
In ID11, we considered two boundary conditions: the ‘stress free’ boundary condition
b(r) = 3(1 — y/7,/r;) and the ‘stressed’ boundary condition b(r) = 1. Here, however,
we make the intuitive and physical assumption that the boundary condition is set by
the surface density such that b(r) oc X(r,, t) where X (ry,, t) is the time averaged surface
density. This allows the model to link the emission with the amount of material in a
particular annulus.

The fluctuating mass accretion rate will also have an effect on precession because
mass conservation needs to hold on short time scales as well as long time scales, which
gives M (rp,t) o< X(rp, t)27r? fuise. This means that the surface density at time ¢ is
given by

S(r f) = YoM (rp,t) a?
('ﬁw )_ CRg (1+x5)(§+)\)/’€7

(5.8)

which trivially averages to equation 5.2 on long time scales. Because the surface density
sets the precession frequency (equation 5.1), we see that the fluctuations in mass ac-
cretion rate cause the precession frequency to vary, thus allowing the model to predict

a quasi-periodic oscillation rather than a purely periodic oscillation.

5.2.3 Surface density profile

In ID11, we parametrised the viscous frequency with a power law. The fiducial model
parameters therein gave fis. = 0.03r7%5 f,, corresponding to a surface density profile
Y(r) = constant between the inner and outer radii which were set to r; = 2.5 and
ro = 50 respectively. By comparison, the GRMHD titled flow simulations of Fragile
et al (2009) also give X(r) = constant at large radii, but then smoothly break at the
bending wave radius to a much steeper dependence. The most relevant simulation
to this paper is the case with a, = 0.5 as this is likely closest to the spin of XTE
J1550-564 (e.g. Davis, Done & Blaes 2006; Steiner et al 2011). This has surface
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Figure 5.1: Top left: Surface density as a function of radius for the fiducial model

parameters in ID11 (solid black line), simulations of a misaligned accretion flow around

a 10 solar mass black hole with a, = 0.5 (red dashed line) and the fiducial model

parameters we choose for this paper (green dot-dashed line). The red dashed line

is calculated using equation 5.2 with A\ = 7.6, k = 5, ( = 0 and ry, = 8.08 (the

parameters which best fit the simulation data). For the dot-dashed green line, A = 1

with all other parameters the same. Top right: The viscous frequency as a function of

radius resulting from assuming the surface density to be given by the corresponding

line in the top panel. Bottom: The PSD predicted using the surface density given by

corresponding lines in the top panel.
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density parameters (Equation 5.2, see Figure 4 in IDF09) of r,, = 8.1 (corresponding
to h/r =0.21), k =5, A = 7.6 and ¢ = 0.

In the top of Figure 5.1, we plot these two different surface density prescriptions
(top left) and their resulting viscous frequencies (top right), with the power law shown
by the black solid line and the broken power law shown by the red dashed line. In the
case of the broken power law, we choose the normalisation ¥q = 33.3 to ensure that
both assumptions become consistent with one another at large radii. The bottom plot
of Figure 5.1 shows the PSD resulting from the two different prescriptions. The new
(and more physically realistic) surface density prescription predicts much less noise at
high frequencies than the previous model, where the surface density remained constant

down to the innermost radii.

To retrieve sufficient high frequency power in order to match the data requires A = 1
rather than 7.6 (green dot-dashed lines in the top plots of Figure 5.1). This gives a
more gradual drop-off in surface density, leading to a less severe transition in viscous
frequency at the bending wave radius and hence more high frequency power (green
points in the bottom plot of Figure 5.1). We discuss the physical implications of this

in more detail in Section 6.2.1. For now, however, we use A = 1 for our fiducial model.

We can also use the fiducial model parameters to explore the significance of assum-
ing dfvise/ fuise = constant (hereafter df / f for simplicity). From equation 5.3, df / f and

dr/r are related as

C+A

rrF+1

(df/f) = (dr/r) —(A+2), (5.9)

where we employ the convention df /f < 0 and dr/r > 0 (since f;s. is higher for smaller
r). Since, by definition, each ring generates the same fractional variability, each must
contain the same number of independent regions, implying (dr/r) = A(h/r). Here, A is
a constant which sets the resolution (A = 2 means each independent region covers the

whole vertical extent of the flow). We can therefore rearrange equation 5.9 to obtain
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Figure 5.2: Flow scale height as a function of radius as predicted by the fiducial model.

The dotted line represents the bending wave radius which sets the break in the function.

an expression for the flow scale height

(hjr) = L) ;jﬁl —(+2)| (5.10)

The formula linking the bending wave radius with the scale height (evaluated at the
bending wave radius) can then be used to show (df/f)/A = (3)5/4ai/2r;£/4(§/2 —\/2—
2). Figure 5.2 shows the scale height as a function of r for the fiducial parameters. We
see that our df /f = constant assumption means we predict the scale height to drop

off at small radii, consistent with simulation results (Figure 13 in Fragile et al 2007).
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Figure 5.3: Top: A 10s segment of the light curve calculated using the fiducial model
parameters and r, = 50. Bottom: The sigma-flux relation for the above light curve.

We see this is linear as is seen in the data.
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Figure 5.4: The predicted PSD for the fiducial model parameters with r, = 50 (black),
20 (red) and 10 (green). For clarity the normalisation of the fundamental is set to

increase as r, reduces and all the other QPO components are normalised to zero.

5.2.4 The fiducial model

Following the discussion in section 5.2.1, we use model parameters g = 33.3, 14, = 8.1,
k=5, A=1and ( =0. Wealsoset r; = 2 and 7 = 4 but note that the new assumptions
for surface density coupled with the new boundary condition mean the model is now
much less sensitive to the parameter r; than its predecessor in ID11. Figure 5.3 (top)
shows a 10s segment of the light curve created using these assumptions and with
ro = 50. We use Ny, = 15 (i.e. 15 annuli per decade in viscous frequency) with 222
time steps, giving a duration of 4096s (similar to a typical RXTE observation) for a
time bin of dt = 9.7 x 10~%. Figure 5.3 (bottom) confirms that this light curve has the
linear sigma-flux relation implied by its skewed nature. The PSD of this light curve is
represented by the red points in Figure 5.1 (bottom).

We calculate the QPO as in ID11, but we briefly summarise this here for complete-
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ness. The QPO fundamental frequency is set to the average (over the 4096s duration)
precession frequency calculated from Equation 5.1. In principle we can calculate the
width of the QPO from the fluctuations in frequency which result from fluctuations in
surface density. However, these only set a lower limit to the width of the QPO since it
can also be broadened by other processes (ID11), so we leave this as a free parameter.
We can in principle predict the harmonic structure in the QPO lightcurve by a full
Comptonisation calculation of the angle dependent emission from a precessing hot flow
(Ingram, Done & Zycki in preparation). Until then, we simply allow the normalisations
of the harmonics to be a free parameter but fix their width so that they have the same
quality factor as the fundamental (apart from the sub-harmonic which is free: Rao et
al 2010). We use the method of Timmer & Koenig (1995) to generate a light curve
from these narrow QPO Lorentzians and add this to the light curve already created
for the broad band noise.

Figure 5.4 shows the full PSD given by the fiducial model parameters with r, = 50
(black), r, = 20 (red) and r, = 10 (green). For clarity we set the normalisations of
the QPO harmonics to zero, and increase the normalisation and quality factor of the
fundamental as r, decreases to match with the data. This captures the essence of the

observed evolution of the PSD in terms of a decreasing truncation radius.

5.3 Fitting to data

We use RXTE data from the 1998 outburst of XTE J1550-564 (Remillard et al 2002;
Sobczak et al 2000; Rao et al 2010; Wilson & Done 2001; Altamirano 2008). We look at
5 specific observations with observational IDs: 30188-06-03-00, 30188-06-01-00, 30188-
06-01-03, 30188-06-05-00 and 30188-06-11-00; hereafter observations 1-5 respectively.
We only consider energy channels 36-71 (corresponding to 13.36-27 keV) in order to
avoid disc contamination.

For all PSDs, we use a combination of ensemble averaging and geometric rebinning.
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Figure 5.5: Best fit PSDs along with data points for observations 1-5. The rejection

probability, P,.;, and truncation radius, r,, are included in each plot. The rest of the

best fit physical parameters are included in table 5.1.
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Each periodogram is calculated for 128s of data. Since we simulate 4096s of data, we
can average over M = 32 realisations. For the observed data, the duration of the
observation limits us to M = 41, 26, 13, 14 and 14 for observations 1-5 respectively.
Geometrical rebinning is always carried out using a rebinning constant of ¢y = 1.05.
Since this smoothing should lead to statistically well behaved PSDs with Gaussian
error distributions (for both observed and simulated data), we carry out the fit using
a x? minimization test. However, to test our assumption of Gaussian errors, we do
a posteriori checks on the goodness of fit using the rejection probability method of
Uttley et al (2002) and Markewicz et al (2003). This involves comparing the agree-
ment between data and model with the agreement between the model and alternative

realisations which use the same parameters. The minimized x? value is calculated as

2 (Pmod(fJ) _PobS(fJ))2
X _zj: dpglod(fJ)—i_dpfbs(fJ)' (511)

We then simulate many more (1000) realisations with the same model parameters (i.e.
we change the seed for the random number generator) in order to calculate many values

of

2 _Z (Proa(f) _Pk(fJ))2 (5.12)

T LR () + dP(fS)

where Py.(f7) is the PSD of the k™ realization. The rejection probability, P, is given
by the percentile of y? values which are smaller than x?. This method therefore asseses
the likelihood that P,us(f;) does not belong to the distribution that P,,.q(f;) and each
Pi(f7) belong to without making any assumptions about the shape of that distribution.

We incorporate our model for the power spectrum into XSPEC, using the local model
functionality. This is now available publically as PROPFLUC, described in detail in the
appendix. Our model outputs a PSD rather than the more familiar flux as a function
of energy. We fit each observed PSD to derive the parameters of the smoothly broken
power law surface density. We assume that the shape of the surface density stays

constant across all datasets, but its normalisation >y can change. We also allow the
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Obs | X ¢ A K r; To h/r (row) Foar | v
1 5.43 68.0 | 0.41 (4.6) 0.32
2 10.48 45.7 1 0.27 (6.5) 0.31
3 2173 =0]=09|=30|=3.3]25.0|0.21(8.0) 0.36 | 5.28
4 30.03 16.3 | 0.13 (12.03) | 0.43
5 30.36 12.8 ] 0.12 (12.1) | 0.48

Table 5.1: Best fit physical parameters for observations 1-5. A = symbol indicates that

the parameter has been fixed.

bending wave radius to be a free parameter, 4, = 3(h/r)f4/5az/5 (where h/r is the
scaleheight of the flow). As we have fixed the spin, the best fit value of 7, gives us an
estimate of the scale height of the flow which may change through the transition due
to the increase in seed photons from the disc cooling the flow. The inner radius of the
flow is tied across all the data sets, and we fit for r,. The remaining free parameters
which determine the broadband noise are the level of MRI fluctuations generated over
each decade in frequency, F,q-, and the emissivity index, v (held constant across all 5
observations).

While XsPEC can fit the model to the 5 PSD simultaneously, this is very slow.
Instead, we used trial and error to set values of the parameters which are tied across
all the datasets and then fix these to fit the remaining parameters for each PSD indi-

vidually.

5.3.1 Fit results

The data and best fit model PSD are shown in Figure 5.5. These give a reduced x? value
of 1.09 (764.6 for 704 degrees of freedom). We calculate the rejection probability to be
Pej = 4%, 62%, 22%, 77% and 7% for observations 1-5 respectively. The lowest values

of P,.; obviously imply a very good fit but even the higher values are still acceptable.
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Figure 5.6: Distribution of x? values calculated using the best fit model parameters for
observation 4. The green line illustrates that this is a nearly Gaussian distribution. The
red dashed line picks out the x? value for this observation and we see that, although it
is larger than the mean x7 value, it still lies believably within the distribution meaning

we can be confident that the model fits.
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Figure 5.6 shows the distribution of x3 values from the P,.; calculation (black stepped
line) using the best fit parameters for observation 4. The red dashed line shows the x?
value for this observation and we see that, although it is larger than most x? values, it
still lies believably within the distribution. We also plot (green solid line) a Gaussian
with the same mean, standard deviation and normalisation as the distribution and we
see very good agreement between the two. This confirms that the PSD estimate we
use does indeed give (approximately) Gaussian errors and therefore x? is a reliable

measure of goodness of fit.

Table 5.1 shows all of the best fit physical parameters. The truncation radius moves
from r, = 68 — 13, while F,,, increases throughout the transition. In addition, our
new parametrisation means that we can directly explore the change in bending wave
radius, 7y, and surface density normalisation, >3. The bending wave radius increases,
implying that the flow scaleheight, h/r, is collapsing. This makes sense physically
as the decreasing truncation radius means that the flow is cooled by an increasing
number of seed photons, so the electron temperature decreases. The spectra also show
that the optical depth increases (as is also implied by the increasing surface density
normalisation). This increases the coupling between electrons and ions so the ion
temperature also decreases (Malzac & Belmont 2009). The flow is held up (at least
partly) by ion pressure so the scale height of the flow collapses.

Note that, in our model, the characteristic frequency fs.(Tp) decreases as the
other characteristic frequencies increase. This at first seems to contradict the results
of Lorentzian fitting which always show the high frequency break, f,, to increase. This
apparent contradiction occurs due to the effect of propagation on the PSD shape as
discussed in ID11. As the truncation radius moves in and the range of frequencies pro-
duced by the flow narrows, the highest frequencies become less affected by destructive
interference and thus, even though the generated variability peaks at a lower frequency

as the r, moves in, the emitted variability actually peaks at higher frequencies, as
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Figure 5.7: The red dashed line is the PSD predicted using the fiducial model parame-
ters with 7, = 50 (i.e. A = 1) whereas the black dashed line is for A = 7.6 with all other
parameters the same. For the green solid line, we use the same parameters as used for
the black line but we have changed the model by assuming the annulus containing 74,
to be more variable than the other annuli. We see we can recover the amount of high

frequency power required to match the observations using this assumption.

observed.

5.4 Discussion

We have improved upon the model of ID11 by including a surface density profile which
has the same shape as predicted by GRMHD simulations. We obtain an excellent fit to
data for five observations and the evolution of the best fit parameters is self-consistent.
However, we require the surface density interior to the bending wave radius to drop-off

as 7 with A ~ 1, where as the simulations predict A ~ 7 (see Figure 5.1). A possible
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reason for this apparent discrepancy is that the torque created by the misalignment
between flow and black hole angular momenta not only creates a drop-off in surface
density but also generates extra turbulence which we do not account for in our model.
Because the surface density sets the emissivity, we can still reproduce the observations
by over predicting the surface density at small r to compensate for under predicting the
intrinsic variability. In Figure 5.7, we re-plot the predicted PSD for A = 7.6 (dashed
black line) and A = 1 (dashed red line) without errors for clarity. For the green solid
line, also plotted without errors, we have changed the model slightly. We again set
A = 7.6 but now the fractional variability in the annulus containing 74, is higher
(by a factor of 10) than that at all other annuli so as to approximate the additional
turbulence created by the bending waves. We see that it is possible to qualitatively
reproduce the shape of the broad band noise using a surface density profile consistent
with simulations if we include this extra assumption.

It is interesting that the green line in Figure 5.7 does not have a flat top between
low and high frequency breaks as the model generally predicts, but rather has a ‘bump’
at ~ THz and another at ~ 0.15Hz. There are actually many observations of bumpy
power spectra such as this which cannot be well described by the model in its current
state (e.g. Axelsson et al 2006; Wilkinson & Uttley 2009). In fact, even the data
considered here show evidence that a double hump is a more appropriate description
than flat top noise (especially observations 1 and 5). It therefore looks likely that the
variability generated by the MRI is not as uniform as we naively assume and actually
some regions produce more variability than others thus giving rise to a bumpy power

spectrum such as the green line in Figure 5.7.

5.5 Conclusions

We have made some improvements to a model designed to predict the power spectral

behaviour of BHBs in the context of a truncated disc / hot inner flow geometry which
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can also explain the energy spectral evolution. The model uses simple, theoretically
motivated assumptions in order to reproduce the shape and evolution of the broad-
band noise with the extra requirement that the QPO is generated by Lense-Thirring
precession of the entire hot inner flow. Because the model now assumes a surface den-
sity profile consistent with that predicted by GRMHD simulations, we can now gain
more physical insight from the evolution of best fit parameters which reproduce the
observed evolution of the PSD. A coherent picture is now emerging: as the truncation
radius, 7,, moves inwards, the increased number of seed photons incident on the flow
cool it, thus reducing both the electron and ion temperatures, T, and T; respectively.
The Comptonised emission from the flow is therefore softer and, in addition to this,
the lower ion temperature gives rise to a lower pressure meaning that the scale height
of the flow, h/r, should collapse. The bending wave radius, which sets the shape of

the surface density, is given by ry, = 3(h/r)~4/5a2"

and therefore increases as h/r
collapses. Also, because the volume of the flow is reducing, the surface density must
increase and, by mass conservation, the infall velocity decreases. When we fit the model
to five observations of XTE J1550-564, we see all of these trends: r, reduces and 1y,

increases as does Yy, the normalisation of the surface density (and also the inverse of

the normalisation of the infall velocity).

Since the model has the capability to reproduce other higher order statistical prop-
erties seen in the data such as time lags and the frequency resolved spectrum, it is very
attractive. However, although we believe the trends in best fit parameter values to be
reliable, their absolute values should not be taken too seriously. This is because there
are a few complexities not currently included in the model. For example, we currently
effectively assume that the disc is stable which is not true, at least in the low/hard
state (Wilkinson & Uttley 2009). Although we only consider energies at which the
Comptonized emission dominates, the disc is feeding the flow and therefore disc vari-

ability should propagate to the flow and modulate the hard emission. This means that
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the lowest frequencies in the PSD are actually being generated in the disc and not in
the flow, meaning we over predict the truncation radius, r,. In fact, it could be that
the entire low frequency Lorentzian in the PSD is generated in the disc (perhaps from
the presumably turbulent process of disc truncation) before propagating to the flow,
with the MRI only generating the high frequency Lorentzian. This would provide an
alternative explaination for the double humped nature of the observed BHB PSD.

The main uncertainty associated with the model is that it is unclear exactly how
the disc and flow couple together. Although the most likely truncation mechanism
is evaporation via thermal conduction (e.g. Liu, Meyer & Meyer-Hofmeister 1997;
Roézaniska & Czerny 2000; Mayer & Pringle 2007), the details of this process are still
far from well understood and, in particular, numerical simulations of a truncated disc /
hot inner flow configuration are far beyond current computing capabilities. Whatever
the specific nature of the coupling, it seems very likely that the disc will exert a torque
on the flow, especially in a region where the flow overlaps the disc, which would slow
down precession. This means that r, would need to be smaller in order for the model
to reproduce both the QPO and the broad band noise. For this reason, we see our best

fit values of r, as upper limits rather than definitive measurements.

Still, it is extremely encouraging that this model can produce a good fit to PSD
data whilst also having the potential to qualitatively reproduce many other properties

seen in the data.

5.6 Appendix: Using propfluc

This model is publically available as the XSPEC local model, PROPFLUC. Here we

include some tips for anyone wanting to use the model.



5. Modelling variability in black hole binaries: linking simulations to
observations 137

5.6.1 Data

We use powspec from XRONOS in order to create a power spectrum from the observed
light curve. We set norm=-2, which means white noise will be subtracted and choose
the minimum lightcurve time step, which is dtq,, = 0.390625 x 10~2s for RXTE data.
We set the number of time steps per interval to 2!% = 32768, meaning that the duration
of an interval is 2'%dt,,, = 128s. This means that a periodogram will be calculated
for each interval with minimum frequency 1/128Hz and maximum (Nyquist) frequency
1/(2dt,ps) = 128Hz. The number of intervals per frame should be set to maximum so
that powspec averages over as many intervals as the length of the observation allows
and we use a geometric re-binning with a constant factor of 1.045, resulting in 150 new
bins. The resulting binned power spectrum can then be written to a data file in the

form

[, df, P, dP.
XSPEC, however is expecting to recieve data in the form
Emina Emaxa F(Emax - Emzn)a dF(Emax - Emm)

where F,,;, and F,,,, are the lower and upper bounds of each energy bin and F' is the

flux. It is therefore neccessary to create a data file with inputs

fmim fma;ra P(fmaa: _fmin)a dp(fmazr - fmm) (513)

where f,.;, and f,... are the lower and upper bounds of each frequency bin. As f
marks the centre of a bin and df is defined such that f,,.. = f +df and f,.;, = f —df,

this equation can be re-written as
f—=df, f+df, 2Pdf, 2dPdf.

We then use f1x2xsp in order to convert this into a .pha file and also generate a

diagonal response function. The data can now be loaded into XSPEC and, eventhough
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the axis on the plots are by default labeled as flux and energy, it is in fact reading
in a power spectrum as a function of temporal frequency (i.e the command ip euf
will show frequency multiplied by power plotted against frequency for both data and

model).

5.6.2 Model

The model consists of a FORTRAN program, propfluc.f, and a data file lmodel_pf .dat.
These two files are all that is needed to load the model using the local model func-
tionality. The model has 18 parameters, summarised in table 5.2, plus XSPEC always
includes a 19"* normalization parameter which must be set to (and fixed at) unity. The
simulated light curve is generated using a time step of dt = dt s/4 = 9.76562 x 10™*s.
It is important that this time step is short because the Nyquist frequency must be
higher than the highest frequency at which significant variability is generated. The
final power spectrum is calculated using 2'7 steps per interval, meaning that each in-
terval is 2Y7dt = 2Ydt s /4 = 2% dt s = 128s. The simulated power spectrum is then
binned into the same frequency bins used for the observed power spectrum. For this
reason, it is vital that the periodograms are calculated on the same interval (i.e. 128s)
for both model and data, the use of two different intervals could result in empty bins
in the simulated power spectrum which doesn’t help x?! In table 5.2 we see that it is
possible for the user to decide on the length of simulated light curve (parameter 17).
Since the interval length is fixed, this dictates how many intervals the power spectrum
is averaged over. We recommend nn = 22 (32 intervals) for fitting but this does make
the code very slow. Preliminary fitting is best done with nn = 20 (8 intervals) as this
is faster but provides a good enough PSD estimate to work with. It should be noted
that this setting slightly under predicts the power but it is a constant offset and so the
best fit found using nn = 20 has a higher value for F,,. than that found using nn = 22

but the other parameters are largely unaffected. The main advantage of using nn = 22
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is that x? gives a much more reliable estimate of goodness of fit.

The model is difficult to fit, partly because of the stochastic nature of the power
spectrum and partly because of the complicated relationship between parameters. We
recommend finding a good fit by eye first and fixing a few key parameters before fitting.
We set XSPEC to calculate the gradient in y? numerically rather than analytically and
set the critical Ay? value to 0.1 rather than the default 0.01. Finally, the third column
of table 5.2 shows all of our best fit model parameters for observation 1, with a =

symbol indicating that the parameter is fixed.
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Parameter | Comments Obs 1
1 | Sigma0 Normalization of surface density. 5.43
2 | row Bending wave radius - dictates 4.60
where X(r) breaks.
3 | kappa Dictates sharpness of the break. =3.0
4 | lambda Dictates X(r) for 7 < rpy. =0.9
5 | zeta Dictates X(r) for 7 > 7. =0.0
6 | Fvar Intrinsic amount of variability generated 0.32
per decade in fyisc.
7 | fbmin This 18 fyise(To). It is much easier 0.129
to set this instead of r,.
8 |ri Inner radius =33
9 | sig-qpo QPO width (fundamental). Width of higher 0.0226
harmonics is tied to this.
10 | sig_subh | Width of the subharmonic. This can have a 0.0283
different () value to the other harmonics.
11 | n_gpo Normalization of fundamental. 0.244806
12 | nh Normalization of second harmonic. 0.1706
13 | n_3h Normalization of third harmonic. 0.1018
14 | n_subh Normalization of sub-harmonic. 0.0967
15 | em_in Emissivity index (i.e. 7). 5.281
16 | dL The model gives the option to generate a =0.0
Gaussian error on each point of the simulated
lightcurve, thus creating white noise. To match
a typical RXTE observation, this needs
to be dL ~ 0.8, however we recommend setting
this to zero and using white noise subtracted data.

Table 5.2: Summary of model parameters.
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Parameter

Comments

Obs 1

17

nn

Sets the number of time steps in the simulated
light curve (i.e. the light curve has a total
duration of of 2""dt). This must be an

integer because the model uses a fast fourier
transform algorithm (Press et al 1992). The PSD
estimate of the model must be calculated on the
same interval as the data (128s) and therefore the
value of nn used dictates how many intervals are

averaged over.

=22.0

18

Ndec

Sets the radial resolution. If this is particularly
high, the code is very slow! Ng.. = 15 should be
sufficient. The total number of annuli used is
sufficient. The total number of annuli used is

calculated from this.

=15.0

Table 5.3: Table 5.2 continued.
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Chapter 6
The effect of frame

dragging on the iron K,

line in X-ray binaries

6.1 Introduction

Over the course of the previous chapters, I have presented evidence that the spectral
and timing properties of XRBs can be self-consistently explained with a truncated
disc / hot inner flow accretion geometry, with the entire hot inner flow precessing due
to the relativistic effect of frame dragging. In our model, it is this precession which
gives rise to the low frequency QPO in XRBs. This is not the first model to associate
the QPO with Lense-Thirring precession. Stella & Vietri (1998) and Stella, Vietri &
Morsink (1999) showed that the Lense-Thirring precession frequency of a test mass
at the truncation radius is broadly consistent with the QPO frequency. Schnittman
(2005) and Schnittman, Homan & Miller (2006) developed this into a fully relativistic
description of a misaligned ring, showing that its direct emission and iron line signature
should be modulated on the precession frequency, which could be somewhat higher than
observed. However, the real problem with these models is that the energy spectrum
of the QPO is dominated by the Comptonised emission (Sobolewska & Zycki 2006;
Rodriguez et al 2004), requiring that the QPO mechanism predominantly modulates
the hot flow rather than the disc (although the variability could be produced elsewhere
before propagating into the flow; Wilkinson 2011). Since our model considers the entire

143
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hot flow to globally precess, it naturally explains the QPO spectrum. Such global
precession has been seen in recent numerical simulations (Fragile et al 2007, Fragile
2009). I show in chapter 2 of this thesis (based on Ingram, Done & Fragile 2009) that
the predicted frequency range is completely consistent with the type-C QPO in BHBs
and also in NSBs (chapter 3 based on Ingram & Done 2010).

There are other more subtle properties that are naturally explained by the pre-
cessing flow model. In chapter 4 (based on Ingram & Done 2011), I show that the
correlation between QPO frequency and total flux observed on short time scales (Heil,
Vaughan & Uttley 2011) is predicted by the model presented in this thesis. This is be-
cause the propagating fluctuations in mass accretion rate which give rise to the broad
band noise (e.g. Lybarskii 1997; Arevalo & Uttley 2006) will affect the moment of
inertia of the flow leading the precession frequency to fluctuate. The linear relation
with flux then occurs because both the flux and the precession frequency depend on
mass accretion rate. Although it is very encouraging that this property is predicted
by the model, we still do not have unambiguous proof that the flow precesses - a QPO
produced from any mode of the hot flow will also couple to fluctuations propagating

through the hot flow, and should give an fgpo-flux relation.

The interpretation of the QPO as vertical precession requires a truncated disc as
otherwise the flow could not cross the equatorial plane. The issue of whether or not the
disc truncates is still somewhat controversial. Nowak et al (2011) show that the broad
iron line in a low/hard state of Cyg X-1 can be variously interpreted as implying a disc
anywhere from 6 —32R,, (for their Obs 4) depending whether the continuum is thermal
Comptonisation, non-thermal Comptonisation, multiple Compton components or in-
cludes a jet contribution. Fabian et al (2012) show another deconvolution of a similarly
shaped spectrum from Cyg X-1, where the spectrum below 10 keV is dominated by
highly ionised, highly smeared reflection, with a very small inner radius of ~ 1.3R,

and a very steep emissivity profile (a.k.a. the lightbending model). However, this
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lightbending geometry seems to be inconsistent with the independent requirement on
the un-truncated disc geometry that the source is beamed away from the disc in order
to produce an intrinsically hard spectrum (Malzac, Beloborodov & Poutanen 2001).
Although the only models for rapid spectral variability currently in the literature
involve inhomogeneous emission in an extended Comptonising region (Kotov, Churazov
& Gilfanov 2001; Arevalo & Uttley 2006; this thesis) where the line profile is consistent
with a truncated disc (Makishima et al 2008), the issue is clearly still very controversial.
This chapter is adapted from Ingram & Done (2012b) in which we use the truncated
disc geometry in order to propose a distinctive test of a wertical precession origin of
the QPO. As a tilted flow precesses, the illumination pattern on the disc rotates. The
resulting iron line is boosted and blue shifted at a time when the flow illuminates the
approaching side of the disc, and red shifted when the flow illuminates the receding
side of the disc. Since this periodic rocking of the iron line is a requirement of the
Lense-Thirring QPO model, this also offers a potentially unambiguous test of disc
truncation. Our geometry differs from the Schnittman, Homan & Miller (2006) model,
where a precessing inner disc ring produces the iron line and continuum. Instead, we
have a hot inner flow replacing the inner disc to produce the continuum, and precession
of the entire hot flow produces a rotating illumination pattern which excites the iron

line from the outer thin disc.

6.2 Model geometry

In this section, we outline the geometry used for our QPO model. We assume that the
spin axis of the compact object is misaligned with that of the binary system as may be
expected from supernova kicks (Fragos et al 2010). Due to frame dragging, the orbit
of an accreting particle from the binary partner will precess around the spin axis of
the compact object. The effect of frame dragging on an entire accretion flow depends

on the dynamics of the flow. A thin accretion disc being fed by a binary partner out
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of the spin plane of the compact object will form a Bardeen Petterson configuration
(Bardeen & Petterson 1975) where the outer regions align with the binary partner and
the inner regions align with the spin of the compact object, with a transition between
the two regimes at rgp. The value of rgp is not well known, with analytical estimates
ranging from ~ 10 —400 R, (see e.g. Bardeen & Petterson 1975; Papaloizou & Pringle
1983; Fragile, Mathews & Wilson 2001). In the thin disc regime, warps caused by the
misaligned black hole propagate in a viscous manner. This means that the time scale on
which a warp is communicated is much longer than the precession period and therefore
a steady configuration forms. In contrast, warps in a large scale height accretion flow
are communicated by bending waves (see e.g. Lubow, Ogilvie & Pringle 2002; Fragile
et al 2007) which propagate on approximately the sound crossing timescale which is
shorter than the precession period. For this reason, the hot flow can precess as a solid
body with the precession period given by a surface density weighted average of the
point particle precession period at each radius (Liu & Melia 2002), while a cool disc
forms a stable warped configuration. This solid body precession of a hot flow has been
seen explicitlly in recent numerical simulations (Fragile et al 2007) for the special case

of a large scale height flow which we consider here.

The key aspect is that the flow angular momentum has to be misaligned with the
black hole spin. Yet the outer thin disc will warp into alignment with the black hole at
rgp. Since this radius is poorly known, there are two possible scenarios. Firstly rgp
may be small enough for the outer thin disc to still be aligned with the binary partner
at the truncation radius. In this case, the hot flow is misaligned with the black hole spin
by the intrinsic misalignment of the binary system which will naturally lead to solid
body precession of the entire flow. Secondly, if rzp is large, the disc and hence hot flow
are intrinsically aligned with the black hole spin. However, precession may be possible.
The flow has a large scale height, so is sub-Keplerian. At the truncation radius it

overlaps with the Keplerian disc, so this overlap layer is probably Kelvin-Helmholtz
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unstable, producing turbulence. Clumps forming from random density fluctuations
in regions high above the midplane could temporarily mis-align the flow leading to
intermittent precession. This predicted intermittency has the advantage of naturally
explaining the observed random jumps in QPO phase (Miller & Homan 2005; Lachowicz
& Done 2010).

Here we assume the first geometry i.e. assume that rgp is very small. However, the
effect of rotating illumination on the iron line is qualitatively the same in the second
geometry, differing only in the details. In the next section, we outline the geometry
used. We work under the assumption that the central object is a black hole, but the

geometry is valid for neutron stars also.

6.2.1 Disc

The geometry we consider for the two component accretion flow is illustrated in Figure
6.1. We assume that the disc has angular momentum vector set by the binary system,
J 5s, and that this is misaligned with the spin axis of the black hole (the z-axis) by an
angle 3. The flow angular momentum vector, J flow> Precesses around the z-axis with
phase given by the precession angle, 7. The plane of the disc is the plane orthogonal
to J g, while the plane of the flow is orthogonal to .J flow- 1 this coordinate system,
the binary partner will orbit in the ‘disc’ plane. The observer’s position is described by
an inclination angle, #;, and a viewer azimuth, ¢;, which can take the range of values
0<6; <7/2and 0 < ¢; < 27. Here, 6; is defined with respect to the binary (i.e. the
disc) angular momentum vector and ¢; is defined with respect to the x-axis.

The flow then precesses around a circle centred on the black hole spin axis, from
being aligned with the disc when v = 0, to being misaligned by angle 23 with respect
to the disc when v = 7. We can define a vector 7, which points from the black
hole to any point on the disc plane. If the top of the flow is its brightest part, the

region of the disc most strongly illuminated by the flow for a given v is where the
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Figure 6.1: Schematic diagram illustrating the coordinate system we are considering.
The black hole is at the origin and the black hole angular momentum vector is aligned

with the z-axis. See text for details.

angle between 7, and J flow 15 smallest. The smallest this angle can ever be is for
7, = € when v = 7; i.e. this is the most that the flow angular momentum vector ever
aligns with any azimuth of the disc plane. € therefore defines the azimuth of the disc
which sees the maximum illumination from the flow. Material in the disc is spinning
rapidly and, because precession is prograde, this orbital motion is anti-clockwise for
our geometry. The viewer azimuth ¢; therefore specifies the direction with respect to
the viewer in which disc material in the maximally illuminated region (i.e. on the é
axis) is moving. For ¢; = 0, the receding part of the disc is most strongly illuminated
as the flow precesses. Instead, for ¢; = 7/2 the maximum illumination is on the patch
directly in front of the black hole. For ¢; = 7 the maximum illumination is on the
approaching side of the disc, while for 37 /2 it it for the patch directly behind the black
hole. We assume that the disc is razor thin and flat (i.e. no flaring). The mathematical

definitions for the geometry we use are outlined in the appendix (section 6.7.1).
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Figure 6.2: Schematic diagram illustrating the cross section of the flow. See text for

details.

6.2.2 Flow

Unlike the disc, the flow has volume and scale height, so we must make some assump-
tions about its shape. We assume that it is a crushed sphere; i.e. viewed from above it
is circular but it has an elliptical cross section as illustrated in Figure 6.2. The semi-
major axis of the ellipse is r, and the semi-minor axis is h,. We choose to parametrise
this by defining a scaleheight, h/r, such that h, = (h/r)r,. Figure 6.2 also shows that
we set an inner radius, r;, such that the core of the quasi-spherical flow is missing.
This is to incorporate a flavour of the numerical simulations which show that shocks
(at the bending wave radius) can truncate the inner region of the hot flow (Fragile
et al 2007). Any point on the flow surface is then a distance r away from the black
hole, where r is a function of the angle 6;. We assume that each radius of the surface
radiates the gravitational potential energy released at that radius (i.e. we use a surface
rather than a volume emissivity). This gives a simple analytic model where the central
parts of the flow (outside of r;) are brighter than the outer parts, but that these bright

regions are near the poles which gives a reasonable reflection fraction, (Q2/27) while
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also giving a reasonable precession frequency (set by r;, 7,, M, the surface density
profile which we assume to be constant, and a,, where a, is the dimensionless spin
parameter: equation 1 in Ingram, Done & Fragile 2009). Note that, even though this
is a simplified prescription, the most influential aspect of the flow geometry is where
the brightest region lies. In nearly all imaginable geometries, this point lies at the
pole of the flow (as it does for our geometry). Thus our mathematically convenient
assumptions for flow geometry should provide us with results not materially different
from a far more difficult calculation assuming a geometry identical to the Fragile et
al (2007) simulation. More details of the flow geometry are presented in the appendix
(section 6.7.1).

Fundamentally, the precession frequency modulates the continuum as the pole
moves in and out of sight. The QPO maximum occurs when the pole faces the ob-
server and the minimum when it faces away. Thus the region of the disc preferentially
illuminated is in front of the black hole (from the point of view of the observer) at
the QPO maximum and behind for a QPO minimum. Because precession is prograde,
this means that the flow illuminates the approaching disc material during the rise to
a QPO maximum (because the pole has to first move towards us in order to face us)
and the receding material on the fall to a QPO minimum. Below we calculate the
self-consistent illumination pattern for the disc as a function of QPO phase for our

assumed geometry.

6.3 Implications of a precessing flow

6.3.1 Disc irradiation

Each flow surface element will radiate a luminosity dL over a semi-sphere (because
the element radiates away from the black hole). A disc surface element with area

dAy will intercept some fraction of this luminosity. This fraction can be calculated
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Figure 6.3: Disc irradiation by the flow as seen by a viewer with 6; = 60° and ¢; = 0°
(left) or ¢; = 90° (right). The flow is shown in grey with black gridlines for clarity.
The truncation radius is r, = 60. The luminosity incident on the disc is grouped into
8 bins with black, red, green, blue, cyan, magenta, yellow and orange representing the
dimmest to brightest patches on the disc. The solid black line in the top picture of
each plot indicates the black hole spin axis. Flow precession causes the characteristic

illumination pattern to rotate around the disc.
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Figure 6.4: The iron line profile as seen by a viewer with 6; = 60° and ¢; = 0° (left) or
¢; = 90° (right). The rest frame iron line profile is assumed to be a —function at 6.4
keV and the truncation radius is r, = 60 as in Figure 6.3. Different colours represent
different snapshots in time with black, red, green, blue and cyan representing the top
to bottom snapshots pictured in Figure 6.3. The rotation of the illumination pattern

causes the iron line profile to rock from red to blue shift.
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Figure 6.5: The iron line profile as seen by a viewer with 6; = 60° and ¢; = 0° (left) or
¢; = 90° (right). The rest frame iron line profile is still assumed to be a d—function at
6.4 keV but the truncation radius is now r, = 10. The different colours represent the
same snapshots in time as in Figure 6.4. We see the motion of the iron line is different
here compared to Figure 6.4. Due to stronger Doppler (and relativistic) boosting in

the inner disc, the red wing never dominates in the £ < 6.4 keV region.
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self-consistently from the projected area of the disc element. The disc element will
not intercept any of the luminosity from the flow element if it makes an angle greater
than 7/2 with a vector which is orthogonal to the flow element and points away from
the black hole (i.e. if it is not in the unit semi-sphere of the flow element). Also, as
observers with 6; < 90°, we only observe reflected photons which are intercepted by

the top of the disc.

The total incident luminosity on the disc surface element is calculated by integrating
over the surface of the entire flow. We do this calculation for every disc surface element
over a full range of precession angles (0 < v < 27) in order to build a picture of disc
irradiation as a function of precession angle (and therefore time). The details of this
calculation are presented in the appendix (section 6.7.2). For simplicity, we use a
Euclidean metric i.e. assume that light travels in straight lines. This should be a fairly
reasonable approximation because we assume a fairly large value of r; throughout the
paper (following Dexter & Fragile 2011; Ingram & Done 2012a; Fragile 2009) and so
lightbending is not very significant (e.g. Fabian et al 1989).

Throughout the paper, we will use the values r; = 7, f = 15° and h/r = 0.9
(we discuss our reasoning for these fiducial values in section 6.3.3). Figure 6.3 shows
the resulting illumination pattern with r, = 60, with snapshots taken at five different
values of precession angle v for an inclination angle of ; = 60°. The left hand plot
shows the pattern as seen by an observer at ¢; = 0°, whereas the right hand plot shows
this for ¢; = 90°. The luminosity is grouped into bins of equal logarithmic size with
black, red, green, blue, cyan, magenta, yellow and orange representing the dimmest to
brightest bins respectively. The flow is shown in grey with black gridlines included for
clarity. In the top picture of each plot, we also include a straight black line to illustrate
the orientation of the black hole spin axis. This is misaligned with J ps by B = 15°
but, as Figure 6.3 demonstrates, the apparent misalignment between these two vectors

depends on the viewing position. We clearly see the flow precess, with the pole of the
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flow moving in a circle around the black hole spin axis. As it does, the brightest part
of the disc is always the region closest to the pole of the flow meaning that it rotates
around the disc. Because of our asymmetric geometry, the flow starts off aligned with
the disc, is misaligned by 23 when v = 7 before aligning again for v = 27. For ¢; = 0,
the maximum misalignment (giving the maximum illumination of the disc) is on the
right hand (receding) side of the disc, while for ¢; = 90 it is directly in front of the
black hole, but in both cases the illumination pattern rotates. In the next section, we

will discuss how this will affect the observed iron K, line.

6.3.2 Effect on the iron K, line profile

When the flow emission irradiates the disc, bound atoms in the disc will fluoresce to
produce emission lines, the most prominent being the iron K, line at ~ 6.4 keV (George
& Fabian 1991; Matt, Perola & Piro 1991). However, this line is in the rest frame of
the disc which is rotating rapidly meaning that a non face-on observer will see some
regions of the disc moving towards them and others receding. Doppler shifts mean that
emission from the approaching side is blue shifted while that on the receding side is red
shifted. Also, length contraction along the line of motion beams the emission in that
direction. Thus the blue shifted emission from the approaching side is also boosted in
comparison to the red shifted emission, leading to a broadened and skewed iron line.
An additional energy shift is provided by time dilation and also gravitational redshift
which combine to broaden the line even further (Fabian et al 1989; 2000). Figure
6.3 clearly shows that, according to this model, the disc irradiation pattern rotates
around the disc meaning that sometimes the brightest region of the disc is receding
(e.g. the ¢; = 0°, v = 47 /5 scenario in Figure 6.3), and sometimes the brightest region
is approaching (e.g. the ¢; = 90°, v = 27/5 scenario in Figure 6.3). Therefore, as
the flow precesses, the iron line will periodically rock between red and blue shift. In

this example, the material in the disc and the irradiation pattern are both rotating
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anti-clockwise. In general, they they could both be moving clockwise but the resulting
pattern is the same (maximum blueshift, QPO maximum, maximum redshift, QPO
minimum). Lense-Thirring precession is prograde, so the disc and flow will never be
rotating in opposite directions, making this periodic shifting of the iron line profile a

unique prediction of the model.

We use the illumination pattern on each surface element of the disc to set the
amount of intrinsic iron line emission. We assume that this is a d—function at Fy =
6.4keV and then use the radius and azimuth of the surface element of the disc and
the inclination of the observer to calculate the shifted line emission (see the appendix;

section 6.7.4).

Figure 6.4 shows the iron line profile at five snapshots of time with black, red, green,
blue and cyan lines corresponding to v = 0, 27 /5, 47/5, 67 /5 and 87 /5 respectively. We
use the same parameters as for Figure 6.3. The details of this calculation are presented
in the appendix (section 6.7.4). For simplicity, we do not include light bending but this
should not be a large effect for the comparatively large radii we consider. The left hand
plot is for ¢; = 0%, r, = 60 (i.e. corresponding to the left plot of Figure 6.3) and we
see that the iron line does indeed rock between red and blue shift as the illumination
pattern rotates. Note that, for these parameters, the 2nd and 5th snapshots have an
identical iron line profile, as do the 3rd and 4th snapshots. The right hand plot is for
¢; = 90° r, =60 (i.e. corresponding to the right hand plot in Figure 6.3). We see that
the periodic rocking has a different phase and the peak flux of the blue wing is much
larger. This is because, for the ¢; = 0° case, the approaching side of the disc is never
the brightest part, whereas this does happen for the ¢; = 90° case. This movement of
the iron line is obviously a very distinctive model prediction and so could provide a
detectable, unambiguous signature of a vertically tilted, prograde precessing flow i.e.

a clean test of a Lense-Thirring origin of the QPO.

Figure 6.5 shows the same thing but now r, = 10. We see that Doppler (and
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relativistic) boosting of the blue wing is now such a large effect that the red wing never
dominates even when the flow is preferentially illuminating the receding material. As
such, the motion of the iron line is different. Crucially, although the exact shape of
the iron line depends on the illumination pattern and thus the details of the assumed
flow geometry, this dependence on truncation radius is really quite robust to changes
in flow geometry. The differences between Figures 6.4 and 6.5 are driven primarily by
the difference in disc angular velocity (i.e. the position of the truncation radius) and
not the details of the modelling. Thus this effect could provide a robust diagnostic for

the accretion flow geometry.

6.3.3 Modulation of the continuum

As the flow precesses, the luminosity seen by the observer will change periodically
giving rise to a strong QPO (with the quasi-periodicity provided by frequency jitter
among other processes; Ingram & Done 2012a; Heil, Vaughan & Uttley 2011; Lachowicz
& Done 2010). This is because the total surface area of the flow viewed by the observer
changes and, also, some regions of the flow are brighter than others meaning that a
trough in the light curve would typically occur when the brightest regions of the flow
(i.e. the poles) are hidden. The calculation for this process is similar to that performed
in section 6.3.1. Each flow surface element emits a luminosity dL. The observer at
0;, ¢; will see no luminosity from this surface element if they are not within the unit
semi-sphere of the element, and we also remove luminosity from lines of sight which
are obstructed by the disc. We can then integrate over every flow element to calculate
the observed luminosity as a function of precession angle.

The blue lines in Figure 6.6 show the observed luminosity expressed as a fraction
of the total luminosity, L., plotted against precession angle. We use the fiducial
parameters r; = 7, = 15° and h/r = 0.9 and consider the r, = 60 example. The
solid line is for ¢; = 0° and the dashed line represents ¢; = 90°. As expected, the
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observed luminosity varies with precession angle and the phase depends on ¢;. The
fractional rms is 8.4% and 4.2% for ¢; = 0° and ¢; = 90° respectively. These values
are lower than the observed QPO rms values of ~ 10 — 15%. However, the predicted
values would be higher if we were to consider that the flow is fed by disc photons, the
flux of which incident on the flow will change periodically as the flow precesses. We
ignore this process here because it will affect the direct and reflected emission equally

and so will not contribute to the rocking iron line effect.

For the green line, we plot the total luminosity incident on the disc (which deter-
mines the iron line / reflected flux) as a function of precession angle. Because the disc
is flat, this does not depend on ¢;. This effectively tracks the misalignment between
flow and disc with the minimum reflection occurring when the flow is aligned (v = 0)
and the maximum when the flow is misaligned by 23 (v = 7). Hence the direct and
intercepted emission are generally out of phase. The black lines show the reflection
fraction (intercepted/direct) with the solid and dashed lines representing ¢; = 0 and
90° respectively. This corresponds to the solid angle of the disc, and the time averaged
ratio for ¢; = 0% is /27 = 0.263, and with /27 = 0.238 for the ¢; = 90° case. These
values are fairly representative of those observed for the low/hard state (e.g. Gierlinski

et al 1999; Zycki, Done & Smith 1998; Gilfanov 2010).

Note that a large value of h/r gives a reasonable reflection fraction but under
predicts the QPO rms. If we had considered, for example, an overlap region between
disc and flow, disc flares or a small disc scale height, we could have achieved a reasonable
reflection fraction and the correct QPO rms (for this we would also need to consider the
variation in disc seed photons) for a far lower value of h/r. However, these effects are
all very difficult to model and our assumed geometry should not significantly affect the
final results. Thus we choose the fiducial parameter values to give reasonable results

for a simplified geometry.
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Figure 6.6: Emission as seen by a viewer at ¢; = 60° and ¢; = 0° (solid lines) or
¢; = 90° (dashed lines). The blue line represents emission directly observed from the
flow. We see that precession of the flow introduces a strong periodicity. The green
line represents the total luminosity intercepted by the disc. This also has a periodicity
because the misalignment between disc and flow changes as the precession angle, v,
evolves. It does not, however, depend on the position of the observer. The black line

is the ratio between direct and reflected (intercepted) light, (€2/27).
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6.4 Spectral modelling

We now use a full reflected spectrum rather than just a line, and recalculate the effect
of the rotating disc illumination pattern and varying effective area of the flow for this
more realistic scenario. We consider the same two values of truncation radius as those
considered previously, r, = 60 and r, = 10. These values correspond to precession
frequencies of fopo(r, = 60) = 0.145 Hz and fgopo(r, = 10) = 5.36 Hz for the fiducial
parameters, a spin of a, = 0.5 and a mass of M = 10M,, (i.e. 2.9 and 107.1 a.(M /M)
Hz). They also correspond to different spectral states, with r, = 60 giving rise to
a low/hard state (LHS) spectrum and r, = 10 leading to a soft intermediate state
(SIMS) spectrum. The QPO in the LHS spectrum will be of type-C whereas it will be
of type-B for the SIMS spectrum.

6.4.1 Method

For both the LHS and SIMS spectra, we include quasi-thermal disc emission, Comp-
tonised flow emission and a reflection spectrum. We use XSPECv12 (Arnaud 1996)
throughout. We describe the disc with DISKBB (Mitsuda et al 1984), and for simplicity
we assume that this spectrum is constant. This is not strictly true. Figure 6.3 shows
that the inner disc is periodically obstructed by the flow, giving a small periodicity
in the hottest part of the disc emission. Also, the non-reflected photons which illumi-
nate the disc will thermalise and add to the intrinsic disc emission, and this additional
thermal emission will vary in intensity, being stronger when the flow is at its maxi-
mum misalignment angle to the disc, and weakest when the flow is aligned with the
disc. This additional thermal emission is also periodically redshifted /blueshifted in the
same way as the line. However, these effects should be small as they are diluted by
the much larger constant flux from the disc. We will investigate this in a future paper,
as evidence for this may have been observed (Wilkinson 2011). However, here we are

interested in the iron line region and so ignore this potential contribution to the QPO
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in the disc spectrum.

For the flow we assume that every element emits the same spectrum, meaning that
the periodicity is in the normalisation of the flow spectrum. We describe the spectrum
by the Comptonisation model NTHCOMP (Zdziarski, Johnson & Magdziarz 1996; Zycki,
Done & Smith 1999) which produces a power law spectrum with high and low energy
cut-offs governed by the electron temperature and disc photon temperature (kTy, tied
to the disc temperature) respectively. We fix the normalisation of this by the angle
averaged flux from the flow (L), to set the flux from each surface element of the flow.
We then use the method described in section 6.3.3 to determine the modulation of the
observed continuum, to calculate the factor by which to multiply the normalisation of

NTHCOMP as a function of phase angle.

We use the method described in section 6.3.2 to calculate the illuminating flux from
the flow at each surface element in the disc, and use this to set the normalisation of
the illuminating NTHCOMP model. We describe the shape of the resulting reflected
emission by RFXCONV (Ross & Fabian 2005; Done & Gierlinski 2006; Magdziarz &
Zdziarski 1995; Kolehmainen, Done & Diaz Trigo 2011). This is similar in form to the
IREFLECT model in XSPEC but replaces the very approximate ionisation balance incor-
porated in this model with the much better Ross & Fabian (2005) calculations. This
outputs a partially ionised (parametrised by log,, &) reflection spectrum, including the
self consistent emission lines, for a general illuminating spectrum. We fix the inclina-
tion angle of the reflector at #; and abundances at solar. We calculate the reflected
emission from this illuminating flux assuming /27 = 1. This is an underestimate as
RFXCONV assumes that the disc is illuminated isotropically, whereas in our geometry
the illumination is preferentially at grazing incidence. However, the amount of reflec-
tion is also set by the unknown details of the shape of the flow, so this approximation

is good enough to demonstrate the general behaviour of the model.

The reflected emission from each surface element is shifted in energy depending on
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LHS SIMS

PHABS Ny (em™2) | 1 x 102 | 1 x 10%
DISKBB kTy, (keV) | 0.1 0.5

norm 1x10° |5 x10*
NTHCOMP | kT (keV) | 0.1 0.5

kT, (keV) | 100 60

r 1.7 2.4

norm 5 4
RFXCONV | Q/27 1 1

log,, & 24 3

norm 5 4
QPO ro (Ry) 60 10
modulation | 5 (degrees) | 15 15
& ri (Ry) 7 7
smearing h/r 0.9 0.9

Table 6.1: Summary of the parameters used for both the LHS and SIMS spectral

models.

the radius and azimuth (see the appendix; section 6.7.4). We sum the reflected emission

from all the disc elements to derive the total reflected emission for each phase. This

gives the correct relative normalisation of the continuum and reflected flux, and how

this changes as a function of precession phase angle v for a given set of model (r,, r;,

B, h/r, 0;, ¢;) and spectral (kTy, ', log&, kT,) parameters.

6.4.2 Phase resolved spectra

The parameters used for each state are shown in Table 6.1. We assume that kT, I’

and disc ionisation increase as the rise to outburst continues whereas kT, decreases,
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Figure 6.7: LHS spectrum for five snapshots in time calculated using the model de-
scribed in the text, using the parameters listed in Table 6.1. We use the same conven-
tion as for Figures 6.4 and 6.5 with black, red, green, blue and cyan representing the
first to last snapshots. The top plot is a broadband spectrum with all of the compo-
nents. The disc and Comptonisation components are both represented by dotted lines
and the total spectrum as well as the reflection component are represented by solid
lines. The bottom right plot zooms in on the intrinsic iron line and the bottom left
plot zooms in on the iron line region of the total spectrum. We see that the motion
of the iron line is still present but dilution from the continuum makes the effect much

more subtle in the total spectrum.
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Figure 6.8: SIMS spectrum for five snapshots in time calculated using the model de-
scribed in the text, using the parameters listed in Table 6.1. We use the same conven-
tions as for Figure 6.7. We see that, as for the —function calculation, the movement

of the iron line is characteristically different for the SIMS compared with the LHS.
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as is commonly observed. The resultant time averaged LHS (r, = 60) spectrum has
a 2 — 10 keV flux of ~ 0.3 Crab and /27 = 0.24 (or iron line equivalent with of
150 eV when fit by a diskline profile rather than a full reflected spectrum). For the
SIMS (7, = 10) spectrum, the flux is ~ 0.66 Crab and the reflection has /27 = 0.42
(iron line equivalent width of ~ 240 eV) with a much steeper continuum. These
values are typical of those observed in the relevant states for fairly bright BHBs (e.g.
GRS19154104 in its QPO state: Ueda et al 2010, and the intermediate state of GX339-

4; Tamura et al 2012), justifying our choice of parameters.

Figure 6.7 shows the LHS spectrum as viewed from a position with ¢; = 90° and
0; = 60° at five different snapshots in time. We use the same convention as for Figures
6.4 and 6.5 with black, red, green, blue and cyan representing v = 0, 27 /5, 4w /5, 67/5
and 87 /5 respectively. The top plot shows the total spectrum (upper solid lines) and
its components, the constant disc (black dotted line just seen in the lower left hand
corner of the plot), variable flow (dotted continuum lines just underneath the total
spectra - the symmetry means that the red dotted line is the same as the cyan, while
the green is the same as the blue) and reflected spectra (lower solid lines). We clearly
see the flow continuum oscillate while the reflection spectrum rocks between red and
blue shift, as well as changing in normalisation. The reflection spectrum is in phase
with the continuum in this example because ¢; = 90° (see Figure 6.6) but, in general,
there is a phase difference between the two components. The lower left plot zooms
in on the iron line region in the total spectrum, while the lower right plot shows the
changes in the reflected emission. We see that the reflected spectrum displays similar
behaviour to the corresponding d—function (right hand plot of Figure 6.4). The rocking
movement in the underlying reflection spectrum is still visible in the total spectrum,

though somewhat diluted by the changing continuum level.

Figure 6.8 shows the same thing but for the SIMS. As for the J—function iron line

profile in section 6.3.2, we see that the major effect is now the strength and position of
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the blue wing rather than a rocking motion from blue to red due to the much stronger
Doppler boosting in the inner disc. Nonetheless, there is still a clear periodic shift in
the line shape with QPO phase, although the pronounced rocking of the iron line peak
energy predicted for the LHS provides more of a ‘smoking gun’ for the Lense-Thirring

model.

6.5 Observational predictions

In this section, we consider how this effect may be best observed. One potential method
is to look at phase lags between different energy bands. We could define a red wing
energy band (say 5.4 — 6.4keV) and a blue wing energy band (say 6.4 — 7.4keV) and
look for a phase lag between the two. However, Figures 6.7 and 6.8 show that, due to
dilution from the periodically varying continuum, the energy shifting of the iron line is
very subtle in the total spectrum. This means that the phase lag between red and blue
wings is very small (2 — 6 x 107%7) for our model and, consequently may be difficult

to observe. Instead, we consider phase resolved spectroscopy.

6.5.1 Phase binning

The random phase jumps and varying period characteristic of QPO light curves make
phase resolved spectroscopy difficult. Naively folding the light curve on the QPO period
is not appropriate. It is, however, possible to isolate the maximum and minimum phase
bins of the QPO by averaging over the brightest and faintest points in the light curve.
Miller & Homan (2005) did this for two GRS 19154105 light curves, both containing
a strong type-C QPO. This allowed them to compare the spectra corresponding to
the QPO peak and trough. This analysis can be taken a step further because a rise
will always follow a trough and a fall will always follow a peak. This simple phase

binning can therefore provide four phase bins as opposed to two. Crucially, our model
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Figure 6.9: The 2-20 keV integrated flux of the LHS model with ¢; = 90° and 6; = 60°
plotted against precession angle. The dashed lines are flux thresholds. Intervals of
the light curve above the top dashed line are considered to be the QPO peak, intervals
below the bottom dashed line are considered to be the trough. The rising section which
will always follow a trough will have the bluest iron line profile. The falling section

which always follows the peak will have the reddest iron line profile.
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Figure 6.10: Top: Phase binned spectra calculated assuming r, = 60, ¢; = 90° and
0; = 60° plotted as a ratio to a power law with photon index I' = 1.6. These four phase
bins are for the QPO minimum (green), rise (blue), maximum (black) and fall (red).
As expected, the rise has the most heavily blue shifted iron line and the fall has the
most heavily red shifted iron line. Bottom: The red fall spectrum subtracted from the
blue rise spectrum. The solid line is for the r, = 60 example shown in the top plot
and the dashed line is for r, = 10. The shape of this difference spectrum is different
for the two truncation radii. There is no negative section in the dashed line because

strong Doppler boosting in the inner disc prevents the red wing from dominating.
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predicts that the maximum red shift always follows the QPO peak and the maximum
blue shift always follows the QPO trough. This is because the pole of the flow (which
is the brightest region) faces us, then is moving away from us, then faces away from
us, then is moving towards us (before facing us again). Therefore the flow illuminates
the observer, then the receding (red shift) part of the disc, then the region hidden to
the observer then the approaching (blue shift) part of the disc.

Figure 6.9 shows the 2-20keV light curve of our LHS model with ¢; = 90° and
0; = 60°. We define a peak as the brightest 10% of the light curve and a trough as
the faintest 10%. These thresholds are shown as dashed lines. We can therefore isolate
the trough, the blue rise, the peak and the red fall. This flux selection means that the
majority of the counts lie in the more interesting rise and fall sections as opposed to the
peak and trough (unlike the flux selection of Miller & Homan who were interested in
the peak and trough spectra). Figure 6.10 (top) shows the result of averaging spectra
belonging to each of these four phase bins. The green line is the trough spectrum, the
blue line is the rise spectrum, the black line is the peak spectrum and the red line is the
fall spectrum. All are plotted as a ratio to a power law with photon index I' = 1.6. We
use this photon index rather than I' = 1.7 because the reflection hump makes the total
spectrum harder than the underlying Comptonisation. As expected, the rise spectrum
contains the most heavily blue shifted iron line and the fall spectrum contains the most
heavily red shifted iron line. Because we tie the normalisation of the power law across
the four spectra, we can see that the peak spectrum has the highest flux, the trough

spectrum has the lowest and the rise and fall have comparable flux.

In the bottom plot of Figure 6.10, we plot the red fall spectrum subtracted from the
blue rise spectrum. We use the absolute spectrum in units of energy x flux rather than
a ratio to a power law. The solid line is for the example shown in the top plot where
r, = 60 and the dotted line is for r, = 10. When r, = 60, the red wing of the iron line

dominates during the fall meaning that the solid line in the bottom plot dips below
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zero for 5.4 2 E 2 6.4. During the fall, the blue wing dominates which gives rise to the
hump in the 6.4 2 E 2 7.4 region. Due to relativistic boosting, the blue hump is larger
than the red dip. When r, = 10, the inner regions of the disc are moving much faster
than the r, = 60 case and therefore the Doppler boosting is a much more significant
effect. So much so, in fact, that the red wing of the iron line never dominates over the
blue wing, even during the fall. The dotted line in the bottom plot therefore contains
no red dip but only a blue hump. The peak of the blue hump is lower for r, = 10 than
for r, = 60 but the area under the line is greater. This is because the iron line is more
heavily smeared in the r, = 10 case, again due to faster orbital motion closer to the

black hole.

For both the LHS and the SIMS, the difference in iron line profile between the QPO
rise and the QPO fall is significant, offering the possibility of direct observation for a
range of spectral states. Note that this association of the rise with the bluest profile
and the fall with the redest profile is robust as long as we are confident that the top
(pole) of the flow is brighter than the sides. Because type-B QPOs provide a far cleaner
signal than type-C QPOs, which are always coincident with broad band variability, it
will be easier to observe this effect for a source in the SIMS. However, the QPO phase
dependence of the iron line is particularly distinctive for the LHS model. An enhanced
blue wing on the QPO rise, as predicted for the SIMS model, may feasibly be produced
by some other process. A dominant red wing on the QPO fall and an enhanced blue
wing on the rise, as predicted for the LHS model, can only realistically be produced
by precession and a large truncation radius. Moreover, an observation showing that
the difference spectrum changes between states as we predict (i.e. the bottom plot of
Figure 6.10) would surely provide excellent evidence, not only of the precession model,
but also that the truncation radius moves between the LHS and the SIMS. In the next

section, we assess the likelihood of achieving such observational confirmation.
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6.5.2 Simulated observations

We test the feasibility of observation directly by simulating phase resolved spectra
using the FTOOL FAKEIT. This adds Poisson noise to a model before subtracting
a representative background and deconvolving around a given response matrix. We
simulate LHS spectra for 50 phase bins evenly spaced in precession phase angle, .
We assume 100s exposure for each phase bin. This corresponds to 50 x 100s = 5ks of
good time. We sort the simulated data into four phase bins just as we did with the
model. For the simulated data, there is just one QPO cycle with a long exposure but,
for observational data there will be many short exposure QPO cycles to average over.
As long as any fluctuations in the accretion geometry over this time are varying around

an average value, the two processes should be equivalent to a good approximation.

The top left plot in Figure 6.11 shows the result of simulating the response of
the Rossi x-ray timing explorer (RXTE) proportional counter array (PCA; top layer,
detector 2). We unfold the spectrum around a flat power law and, as for the model,
take the ratio to a power law with photon index I' = 1.6. We use the same model as
that shown in the top plot of Figure 6.10; i.e. r, = 60, ¢; = 90°, 6, = 60°. Again,
the green points are the trough, the blue points are the rise, the black points are the
peak and the red points are the fall. Although a shift in line energy is visible between
the rise and fall spectra, it is unlikely to be statistically significant due to a high noise
level and low spectral resolution. The two observations of GRS 19154105 studied by
Miller & Homan (2005) were both seen with RXTE and, as such, the data were of a
comparable quality to our simulation. They fit the QPO peak and trough spectra with
a simple continuum model plus a Gaussian function for the iron line. When allowed
to be free in the fits, the centroid energy of the Gaussian was higher for the trough
spectrum than for the peak spectrum in both observations. However, they were also
able to achieve statistically acceptable results by fixing the centroid energy to the value

measured for the total spectrum. Therefore, although there is some evidence that the
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Figure 6.11: Simulated observations of the phase binned spectra shown in Figure 6.10
with r, = 60, ¢; = 90° and 6; = 60°. These spectra are unfolded around a flat power
law and plotted as the ratio to a power law with I' = 1.6 and unity normalisation.
Again the four phase bins are for the QPO minimum (green), rise (blue), maximum
(black) and fall (red). Observed with the RXTE PCA or the XMM Newton EPIC-pn
for bks, it is difficult to see by eye the difference in iron line peak energy between
different phase bins. In contrast, a 100ks EPIC-pn exposure recovers the model well

and the LOFT LAD does so with an exceptionally high precision for a 5ks exposure.



6. The effect of frame dragging on the iron K, line in X-ray binaries 173

line energy shifts, it is by no means statistically significant. It should be possible to
achieve a slightly more significant result with RXTFE data by comparing the rise and
fall phases rather than the peak and trough, but this is always marginal in practice

due to the limited energy resolution of RXTE fast timing modes.

The top right plot of Figure 6.11 shows the same thing but for the XMM Newton
European photon imaging pn camera (EPIC-pn). The Poisson noise level seems to
be marginally worse compared with the simulated PCA data. Although the spectral
resolution of the EPIC-pn is far better than that of the PCA, its effective area is less
(~ 0.05m? compared with ~ 0.12m?) meaning that we require a very heavy re-binning
to get a reasonable signal to noise. Therefore, it may prove difficult to observe this
effect using either RXTE or XMM Newton. However, the number of counts in the rise
and fall phase bins could be maximised by halving the peak and trough phase bins and
adding them to either the rise or the fall (i.e. the first half of the peak phase becomes
part of the rise and the second half becomes part of the fall).

A longer exposure is required to reduce the counting errors. In the bottom right
hand panel of Figure 6.11, we plot the result of assuming a 100ks exposure for the
EPIC-pn. Encouragingly, we see that the dominant red wing in the falling phase is
indeed resolved. However, over such a long exposure time, parameters such as r, may

have systematically moved and so care must be taken to take this into consideration.

The size of the effect is also dependent on our assumptions. A smaller flow scale-
height would increase the size of this effect because the flux emitted from the poles
of the flow would be an even greater fraction of the flux emitted from the entire flow.
Frame dragging could therefore have a larger effect on the iron line than we predict
here making it easier to observe with current instruments than our simulations imply.
However, it also must be noted that the continuum will be more complicated than
we assume here with some QPO phase dependent spectral pivoting resulting from a

variation in the flux of disc photons incident on the flow. This will make observation
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harder.

The bottom left hand plot of Figure 6.11 shows the potential impact of the proposed
mission LOFT (the large observatory for x-ray timing). We use the ‘required’ response
of the large area detector (LAD), which is the principle instrument of the mission.
Because the LAD has an exceptionally large effective area (10-12m?), the results are
far clearer than those provided by current missions. In fact, the noise level is so low
with LOFT, it would be possible to constrain spectra for far more than four phase
bins. We could also constrain these spectra for less than 5ks good time, meaning that

we could conduct detailed studies of the evolution of the phase resolved spectra.

6.5.3 RMS spectum

Since we calculate 50 spectra for both the LHS and SIMS models, it is simple to
calculate the rms spectrum of the QPO. This is simply the standard deviation of each
energy channel in absolute units (i.e. not divided through by the average). Figure
6.12 shows this for the LHS model (top) and the SIMS model (bottom) with the mean
spectrum plotted in black and the QPO spectrum plotted in red. Since the QPO
spectrum is fairly sensitive to model assumptions, it provides a good way to constrain
model parameters against observation. For the models we use here, the misalignment
angle ( is large and thus we see reflection features in the LHS QPO spectrum as the

amount of reflection changes with QPO phase.

By contrast, in the SIMS, the extent of the flow is so small (r; = 7 and r, = 10) that
even this large misalignment angle does not give rise to significant variability in the
total reflection fraction. Previous rms spectral analyses of the QPO have not looked
at this in detail (e.g. Sobolewska & Zycki 2006). We plan to address this issue in a

future work (Axelsson et al in preparation).
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Figure 6.12: Mean and QPO spectra for the LHS (top) and SIMS (bottom) models.
The QPO spectum is calculated by measuring the standard deviation of each energy

channel around the mean value across 50 values of precession angle.
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6.6 Conclusions

The truncated disc / precessing inner flow model for the spectral timing properties of
XRBs predicts a QPO phase dependence of the iron line profile. This results from the
inner flow preferentially illuminating different regions of the disc as it precesses. When
the brightest region of the disc is moving towards us, the iron line will be blue shifted
and boosted. When the brightest region is receding, the iron line will be red shifted. As
the illumination pattern rotates around the disc, the iron line rocks between blue and
red shift. This process always happens in a particular order with the most heavily blue
shifted iron line profile following the QPO trough and the most heavily red shifted iron
line profile following the QPO peak. It is possible to isolate the peaks and troughs in
a light curve using a simple flux selection. The rising phase, which follows the trough,
is predicted to have the bluest iron line and the falling phase, which follows the peak,

is predicted to have the reddest iron line.

We predict this QPO phase dependence of the iron line profile to be present for a
large range of spectral states (and therefore truncation radii). This means that it may
be best to search for the effect in spectra containing type-B QPOs which have very little
broad band variability associated with them and therefore provide a much cleaner signal
than type-C QPOs. However, the nature of the iron line phase dependence changes
with truncation radius. When it is large, the red wing can dominate over the blue wing
during the fall from QPO peak to trough. When it is small, Doppler boosting from the
rapidly moving inner regions of the disc means that the red wing can never dominate
over the blue wing. The characteristic shape of the difference spectrum between rise
and fall should therefore change as the spectrum evolves from the LHS to the SIMS.
The dominant red wing of the QPO fall spectrum in the LHS (the ‘red dip’ in the
difference spectrum) is the most unique model prediction but if we wish to observe
this, we must disentangle the underlying QPO signal from the broad band noise. This

will be the subject of a future paper. An observation of the effect in both states, along
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with confirmation that the difference spectrum changes with state, would constitute
excellent evidence, not only of the precession model, but also that the truncation radius
moves between the LHS and the SIMS.

Quasi-periodic shifting of the iron line peak energy is a unique prediction of the
Lense-Thirring precession model for the low frequency QPO in XRBs. We have shown
that it may be possible to observe such an effect with current missions, but that LOFT
will be able to measure this with precision, enabling us to place accurate constraints

on the accretion geometry.

6.7 Appendix

6.7.1 Geometry

In order to perform our calculations, we must define some vectors using the coordinate
system outlined in Figure 6.1. We represent the z, y and z axes with the standard ¢,

i and k unit basis vectors. It then follows from Figure 6.1 that

JBS = —sinﬁijtcosﬁé

cos (3 i—i— sin 3 k. (6.1)

>
I

The three vectors i, ¢ and J pg therefore form a right handed Cartesian coordinate
system: the disc basis vectors. We can define a vector, ry 7;, which points from the

origin (the black hole) to any point on the disc where
Ty = COS ¢q i+ sin dg . (6.2)

Note, because the disc is razor thin, there is no Jzg component (i.e. Jpg.iy = 0) and
¢q is simply the angle between 7, and the x-axis. We also define a vector pointing from

the origin to the observer using the disc basis vectors

S = sin 6; cos ¢; i + sin 6 sin ¢; € + cos b; JBS. (6.3)
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In order to describe points on the surface of the flow, we must define flow basis
vectors. The ‘z-axis’ of this right handed coordinate system is J flow Which precesses
around E as illustrated in Figure 6.1. The other two basis vectors, &, and y 5 must

therefore also precess with the flow. We use

T, = cosvi%—sinvi
gf = —cosﬂsin’yi—l—cosﬁcosvijtsinﬂﬁ
zﬂow = sinﬁsin'yi— sin (3 cos 7y i—i— cos 3 E, (6.4)

such that z, = i when v = 0 but, as the precession angle unwinds, the axes move. We

can then specify a point in the flow with the vector ry 7, where
Py =sinfycosdy T, + sin by sin ¢y gf + cos 0y Zﬂow. (6.5)

Here, 0 is the angle between 7, and iﬂow and ¢y is the angle between 7,(0; = 7/2)
and i

Because our flow is elliptical with semi-minor axis in the J flow direction and semi-
major axis in the a = cos ¢y &, + sin ¢y gf direction, the distance from the origin to

any point on the surface is

Tl
0,) — o0 . 6.6
rs(1) V/ (hosin@y)? + (r, cos ;)2 (6.6)

Because 7 is uniquely determined by 6, we can define dr = |r(8;) — (0 + dby)|.
We need to be able to write down the unit vector normal to the flow surface. We
can do this using a few identities. Imagine a triangle drawn between the two focuses
of the ellipse, F7 and F,, and any point on the circumference of the ellipse, P. We
know that the distance from the origin to either focus is f = /72 — hZ and also that
the three sides of the triangle add up to 2r, 4+ 2f. We can define the angle between the
line from P to Fy (P F}) and the line from P to Fy (P Fy) as ¢». We know that the

surface area unit vector, A, goes directly between these two lines such that the angle
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between —A and each line is 1 /2. We can say that A points from some point z, a to
the point on the flow surface, P, in such a way that this condition is satisfied. Say that

d is the distance from P to F; and ) is the angle between the lines Fy, F} and Fy P.

We can use the cosine rule a few times to show that d = \/f2 + 7“]20 — 2frysinfy and
cosQ = (f>—r2+r,d)/(f d). Tt is then possible to show that

rply— o

A= (6.7)
\/a:g + 17 — 22,75 8in 0y
where
2r2 + d* — 2r,d — 2.f*
cos 1) = a2, — d) (6.8)
and
d si 2
L sin(u/2) .

Cosin(r—¢/2-Q)
We will also need to define a vector which points from a given point on the flow to

a given point on this disc. This can be written as
(G =—rs iy +7a by (6.10)
From this, it is simple to show that the distance between the two points is
C=ri+ri—rrg bty (6.11)

All of these vectors will become very useful for the following sections.

6.7.2 Disc irradiation calculations

So, we need to calculate what luminosity a disc element with surface area dA; =
rqdggdry will intercept from a flow surface element emitting a luminosity dL over a
semi-sphere (because it only emits away from the rest of the flow). We can then
integrate over all flow elements to work out the total flow luminosity that the disc

element intercepts. For the disc patch to see anything at all from a given flow element,
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it must pass two tests. First, does it lie in the unit semi-sphere of the flow element;
ie. is Aé > 0. Also, because we are viewing the top of the system (6; < 90°), we
only see luminosity which has reflected off the top of the disc. Therefore, we only
count luminosity incident on the top of the disc in our integral. This means we require
§ J s < 0. If one of these conditions isn’t met, the luminosity intercepted by the disc

element is dL, = 0. If both are, we have
(_Q'ZBS)dAddL
2m(?

We see that, the amount of luminosity intercepted depends on the projected area of

dL, = (6.12)

the disc patch as seen by the flow element. If the patch is face-on as seen by the
flow, § J ps = 1 and the projected area is dA,. This area reduces as the patch turns
away from the emitting flow element. The total luminosity incident on a disc patch is

calculated by adding up the contribution from every flow element.

6.7.3 Flow modulation calculations

We now need to calculate how much luminosity a telescope with effective area A.ss
will intercept from a given flow element in order to again integrate over the whole flow.
For the telescope to see any luminosity at all, two tests must again be passed. First
of all, the viewer must be in the unit semi-sphere of the flow element. This means we
require A.8 > 0. We also won't see anything if the emission is blocked by the disc. We
know the emission definitely won’t be blocked by the disc if the flow element is above
the disc; i.e. ff.z ps > 0. Even if the element is below the disc plane, we still might
be able to see through the hole in the centre of the disc. So, imagine a point on the
flow which is below the disc plane, emitting along the vector S. At some point it will
intercept the disc plane. The distance between the flow element and the point where
the vector crosses the disc plane is (. This point will be a distance r4 from the origin.
We can write

A

(8= —rylp+raly (6.13)
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Dotting both sides with J pg and rearranging gives

—Ty ﬁf-iBs
= 6.14
¢ cos 0; ( )

We then know that
3=+t + 20 S 0y (6.15)

If r3 < 72, we still see the flow element through the hole in the disc. If not, it is hidden
by the disc.

So, if the unit-sphere and disc obstruction tests are not passed, the luminosity
intercepted by the telescope is dL.,s = 0. Otherwise, this is

Aeff dL
ALy = —S1F 22 6.16
b 2w D? ( )

where D is the distance to the source. Note, because the telescope is so far away and is
pointed straight at the black hole, we can say that the projected area of the telescope
as seen by any flow element is A.¢¢. We then just set A.;;/(2rD?) = 1, because it only

tells us about normalisation, and sum up the contribution from each flow element.

6.7.4 Iron line profile calculations

A disc element at r, 7, is rotating with Keplerian velocity vg. An observer at 6;, ¢;
then sees the disc patch travelling towards them at a velocity of v = vy sin ¢ sin 6; where
¢ = ¢; — ¢q. The tangent points of the disc will therefore travel towards the observer
at a velocity of +wvy sin ;. This means that a photon emitted will energy FE.,, with be

red shifted by

cos v
[rq(1 + tan?&,) — 2]1/2 |’

Eem/Eobs - (1 - 3/Td)_1/2 1+ (617)

where

cosa = sin¢sin Oi(cos2 0, + cos® ¢ sin® Hi)_l/Q

tané, = cos@sinf;(1 — cos® psin®6;) "2, (6.18)
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(Fabian et al 1989; 2000).
For a given precession angle, 7, the flow luminosity incident on a disc patch de-
scribed by rq and ¢4 is L,(r4, ¢gq). If this luminosity were all emitted at energy E.,,,

the observer would see a luminosity, all at E,,, of
dLobs ~ Lr(rda ¢d) (Eobs/Eem)3 COS 61 (619)

Here, the approximations come from assuming light to travel in a straight line. Through-
out this paper, we ignore gravitational light bending thus taking these to be good ap-
proximations. This should be apropriate since the inner radius of the flow is assumed
to be r; = 7 throughout and light bending effects outside of this radius will be minimal.
The total observed luminosity as a function of energy is calculated by summing the
contribution from each disc patch. As the flow precesses and the function L,(rq, ¢q)

evolves, the observed iron line profile will change.



Chapter 7
Concluding remarks

In this thesis, over the course of 5 papers, I have investigated a model intended to
quantitatively explain the spectral and variability properties observed for XRBs. Set
in the framework of the truncated disc model which was originally designed to explain
the long term spectral transitions with a moving truncation radius, the first premise
of the variability model is that, as the truncation radius moves in, all characteristic
frequencies associated with that radius increase and thus the characteristic frequencies
measured in the PSD also increase. Following authors such as Stella & Vietri (1998)
and Markovié¢ & Lamb (1998), I associate the low frequency QPO with Lense-Thirring
precession. However, in our model the entire inner accretion flow precesses as a solid
body as has been seen in the recent numerical simulations of Fragile et al (2007; 2009).
This extra step allows the model to reproduce the observed QPO frequency range in
both BHBs (Ingram, Done & Fragile 2009) and NSBs (Ingram & Done 2010) with the
extra advantage of predicting a QPO in the Comptonised emission rather than the
disc, as is observed (Sobolewska & Zycki 2006, Rodriguez et al 2004). Fluctuations in
mass accretion rate driven by the intrinsically variable MRI (Balbus & Hawley 1998)
but damped on the local viscous timescale in the accretion flow (Psaltis & Norman
2000; Churasov, Gilfanov & Revnivtsev 2001; Lyubarski 1997) can then produce the
broad band noise observed in the PSD. In our model, the disc is stable and the flow is
variable with the variability amplitude from a given annulus of the inner flow peaking
at the local viscous timescale. Thus the low frequency variability is produced in the
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outer flow and the high frequency variability in the inner part. As the truncation radius
moves in, the lowest frequency noise is lost and the low frequency break in the power

spectrum moves to higher frequencies.

The two processes can be tied together simply by imposing mass conservation. This
allowed us to define a model for the QPO and broad band noise which uses only one
set of parameters. We were thus able to fit the model to a series of observed PSDs
(Ingram & Done 2011; Ingram & Done 2012a). Since this is a physical model, we
can gain insight from the evolution of best fit parameters values which imply that the
flow scale height collapses as the truncation radius moves in, consistent with the gas
pressure reducing with temperature in the flow. Mass conservation also implies that
the mass accretion rate fluctuations will drive fluctuations in the surface density and,
consequently, the precession frequency, giving rise to a quasi-periodic oscillation rather
than a pure periodicity. Since the total variability amplitude of the mass accretion
rate fluctuations reduces as the truncation radius moves in, we naturally predict the
QPO to be less coherent in the LHS than in the HIMS, as is observed (Rao et al 2010;
Belloni 2010).

Also, one of the key predictions of this model is the short timescale QPO-flux
correlation (Heil, Vaughan & Uttley 2011). Since the flux and precession frequency are
both sensitive to the mass accretion rate fluctuations, the two correlate on short time
scales (~3s). This was discovered in RXTE data from XTE J1550-564 after I wrote
the original PROPFLUC code. When we looked for this property in the simulated data,
it was present and, in fact, a necessary consequence of the assumptions we had already
made. In addition to this, since the outer regions of the flow see a greater luminosity
of seed photons than the inner regions and contribute slower variability, the frequency
resolved spectrum (Revnivtsev, Gilfanov & Churazov 1999) can naturally be explained,
at least qualitatively. This also allows the model to reproduce the observed phase lags

between energy bands (Arévalo & Uttley 2006; Kotov, Chirazov & Gilfanov 2001).
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Although this is encouraging, it by no means constitutes unambiguous proof for the
model. Chapter 6 summarises our latest paper (Ingram & Done 2012b) in which we
suggest a potentially unambiguous test for the precession model. As the flow precesses,
the patch of the disc preferentially illuminated by the flow rotates such that a non face
on observer sees a quasi-periodic shift between blue and red shift in the iron K, line. We
use a spectral model in order to predict the spectral shape as a function of QPO phase
and simulate observation with RXTE, XMM Newton and the proposed ESA mission
LOFT. We find that it may be difficult to constrain the spectral shape sufficiently with
archival RXTE or XMM Newton data (consistent with Miller & Homan 2005). This
could perhaps be solved with a very long XMM Newton observation. However, the

effect will be clearly observable using LOFT, should it fly.

For all the successes of the model, there are weaknesses. Our assumption of a
completely stable disc conflicts with observation (Wilkinson & Uttley 2009). Future
versions of the model must incorporate disc variability. This could solve two other
problems highlighted in chapter 5. Firstly, the model always predicts flat top noise
whereas the observed PSD always has a ‘double hump’ shape that only approximates
to flat top noise. Secondly, in order to achieve a fit to the PSD, we had to assume a
surface density profile with a much more gradual drop-off at small radius than that
predicted by the simulations (Fragile 2009; Ingram, Done & Fragile 2009). Perhaps the
low frequency hump is actually generated in the inner few R, of the outer disc (before
propagating into the flow) and the flow only generates the high frequency hump. Since
we will not then need the flow to produce variability on such a wide frequency range,
it will be possible to reproduce the observations with the steep surface density drop-
off measured from the simulations. If this transition region has constant width with
its inner edge defined by the truncation radius, a moving truncation radius will still

naturally give rise to a moving break frequency in the PSD.

However, in order to do this, we need to guide our assumptions with observation.
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Currently, there are very few observations in which the disc is confirmed to be signif-
icantly variable (due to the high RXTE energy bandpass and comparative sparsity of
suitable XMM Newton observations) and no one has actually measured the disc PSD or
even confirmed if the inner regions of the disc are more variable than the outer regions.
I believe it is possible to use Fourier techniques to answer some of these questions. Ad-
vances in our theoretical understanding of disc variability are also required. It seems
plausible that a transition region between disc and flow will generate a large amount of
turbulence, which could be a good candidate for the observed disc variability. However,

is has not yet been possible to conduct a simulation of such a two phase flow.

This highlights another challenge. The Fragile et al (2007; 2009) simulations imply
that a large scale height accretion flow can precess as a solid body if it is misaligned
with the spin axis of the central black hole. In contrast, analytical work suggests the
central regions of a thin disc should align with the black hole and the outer regions
align with the binary system (the Bardeen-Petterson effect: Bardeen & Petterson 1975;
Papaloizou & Pringle 1983; King et al 2005). If the flow is fed by a Bardeen-Petterson
disc which aligns with the black hole spin axis from a large radius, it will not be
misaligned and thus will not be expected to precess. However, there is uncertainty in
the literature as to where this alignment occurs. If this happens at » < 10, the flow is
intrinsically misaligned and is predicted to precess (although the effect on precession
of torque from the disc must also eventually be taken into account). In fact, for
relatively low values of @ and/or high values of h/r, the disc does not fully align with
the black hole spin plane in any region (Zhuravlev & Ivanov 2011). Future simulations
considering a large scale height accretion flow with cooling artificially introduced at a
few tens of R, may yield a truncated disc / hot inner flow configuration and go some way

to addressing this fundamental uncertainty (P. Chris Fragile; private communication).

Clearly, the model requires further development and refinement but I believe this

work should be the first in what will eventually be a widely used technique of power
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spectral fitting. Spectral fitting using physical models has been common place for
decades and has formed the corner stone of our understanding of XRBs. The next
step, as our observational capabilities and theoretical understanding increase, is to
complement this with PSD fitting and advancing this even further to incorporate phase

information.
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