
2.738

The Compression Optimality of
Asymmetric Numeral Systems

Josef Pieprzyk, Jarek Duda, Marcin Pawłowski, Seyit Camtepe, Arash Mahboubi and

Paweł Morawiecki

Article

https://doi.org/10.3390/e25040672

https://www.mdpi.com/journal/entropy
https://www.ncbi.nlm.nih.gov/pubmed/?term=1099-4300
https://www.mdpi.com/journal/entropy/stats
https://www.mdpi.com
https://doi.org/10.3390/e25040672

Citation: Pieprzyk, J.; Duda, J.;

Pawłowski, M.; Camtepe, S.;

Mahboubi, A.; Morawiecki, P. The

Compression Optimality of

Asymmetric Numeral Systems.

Entropy 2023, 25, 672. https://

doi.org/10.3390/e25040672

Academic Editor: T. Aaron Gulliver

Received: 27 February 2023

Revised: 13 April 2023

Accepted: 15 April 2023

Published: 17 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

The Compression Optimality of Asymmetric Numeral Systems

Josef Pieprzyk 1,2,* , Jarek Duda 3 , Marcin Pawłowski 3 , Seyit Camtepe 2 , Arash Mahboubi 4

and Paweł Morawiecki 1

1 Institute of Computer Science, Polish Academy of Sciences, 01-248 Warsaw, Poland
2 Data61, CSIRO, Sydney, NSW 2122, Australia
3 Institute of Computer Science and Computer Mathematics, Jagiellonian University, 30-348 Cracow, Poland
4 School of Computing and Mathematics, Charles Sturt University, Port Macquarie, NSW 2444, Australia

* Correspondence: josef.pieprzyk@gmail.com

Abstract: Source coding has a rich and long history. However, a recent explosion of multimedia

Internet applications (such as teleconferencing and video streaming, for instance) renews interest in

fast compression that also squeezes out as much redundancy as possible. In 2009 Jarek Duda invented

his asymmetric numeral system (ANS). Apart from having a beautiful mathematical structure, it is

very efficient and offers compression with a very low coding redundancy. ANS works well for any

symbol source statistics, and it has become a preferred compression algorithm in the IT industry.

However, designing an ANS instance requires a random selection of its symbol spread function.

Consequently, each ANS instance offers compression with a slightly different compression ratio. The

paper investigates the compression optimality of ANS. It shows that ANS is optimal for any symbol

sources whose probability distribution is described by natural powers of 1/2. We use Markov chains

to calculate ANS state probabilities. This allows us to precisely determine the ANS compression

rate. We present two algorithms for finding ANS instances with a high compression ratio. The first

explores state probability approximations in order to choose ANS instances with better compression

ratios. The second algorithm is a probabilistic one. It finds ANS instances whose compression ratios

can be made as close to the best ratio as required. This is done at the expense of the number θ

of internal random “coin” tosses. The algorithm complexity is O(θL3), where L is the number of

ANS states. The complexity can be reduced to O(θL log2 L) if we use a fast matrix inversion. If the

algorithm is implemented on a quantum computer, its complexity becomes O(θ(log2 L)3).

Keywords: entropy coding; source coding; lossless compression; ANS

1. Introduction

The increasing popularity of working from home has dramatically intensified Internet
traffic. To cope with heavy communication traffic, there are essentially two options. The first
option involves an upgrade of the Internet network. This is, however, very expensive and
not always available. The second option is much cheaper and employs compression of
transmitted symbols. It also makes sense as typical multimedia communication is highly
redundant. Source coding has a long history, and it can be traced back to Shannon [1]
and Huffman [2]. The well-known Huffman code is the first compression algorithm that
works very well for symbol sources, whose statistics follow the natural powers of 1/2.
Unfortunately, Internet traffic sources almost never have such simple symbol statistics.

Compression algorithms can be divided into two broad categories: lossy and lossless.
Lossy compression does not allow users to recover original data but is widely used for
multimedia data such as voice, music, video and picture, where a loss of a few least
significant bits does not matter. Ahmed et al. [3] have introduced a lossy compression that
applies discrete cosine transform (DCT). The algorithm is now used to compress images
(JPEG [4] and HEIF formats), video (MPEG and AVC formats) and music (such as MP3
and MP4 [5,6]). In contrast to lossy compression, a lossless one guarantees the recovery
of original data at the receiver side. The lossless compression family includes Huffman
code [2] and its variants (see [7] for example), arithmetic coding (AC) [8–10], Lempel–Ziv

Entropy 2023, 25, 672. https://doi.org/10.3390/e25040672 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e25040672
https://doi.org/10.3390/e25040672
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-1917-6466
https://orcid.org/0000-0001-9559-809X
https://orcid.org/0000-0002-5145-9220
https://orcid.org/0000-0001-6353-8359
https://orcid.org/0000-0002-0487-0615
https://orcid.org/0000-0003-3349-8645
https://doi.org/10.3390/e25040672
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e25040672?type=check_update&version=3

Entropy 2023, 25, 672 2 of 23

compression and its variants [11–13], prediction by partial matching (PPM) [14], run-
length encoding (RLE) [15] and, last but not least, asymmetric numeral systems (ANS) [16].
Recent developments in quantum technology bring us closer to the construction of real-life
quantum computers [17]. A natural question is whether or not compression of quantum
data is feasible [18,19]. The question has been answered in the affirmative in the work [20],
which shows how to compress an ensemble of qubits into exponentially fewer qubits. An
implementation of quantum compression on IBM quantum computers is reported in the
work [21].

ANS introduced by Duda in [16] offers a very versatile compression tool. It allows the
compression of symbols that occur with an arbitrary probability distribution (statistics).
ANS is also very fast in both hardware and software. Currently, ANS is the preferred
compression algorithm in the IT industry. It has been adopted by Facebook, Apple, Google,
Dropbox, Microsoft, and Pixar, to name a few main IT companies (for details see https:
//en.wikipedia.org/wiki/Asymmetric_numeral_systems, accessed on 13 April 2023). ANS
can be seen as a finite state machine (FSM) that starts from an initial state, absorbs symbols
from an input source one by one and squeezes out binary encodings. The heart of an
ANS algorithm is its symbol spread function (or simply symbol spread for short) that assigns
FSM states to symbols. The assignment is completely arbitrary as long as each symbol s is
assigned a number Ls of states such that ps ≈ Ls/L, where ps is probability of the symbol s
and L = 2R is the total number of states (R is a parameter that can be chosen to obtain an
acceptable approximation of ps by Ls/L).

Consequently, there are two closely related problems while designing ANS. The
first, called quantisation, requires from the designer to approximate a symbol probability
distribution P = {ps|s ∈ S} by its approximation Q = {qs = Ls/L|s ∈ S}, where S is the
set of all symbols (also called an alphabet). It is expected that ANS implementation for
Q achieves a compression ratio that is as close as possible to the symbol source entropy.
The second problem is the selection of a symbol spread for fixed ANS parameters. It turns
out that some symbol spreads are better than others. Again, an obvious goal is to choose
them in such a way that the average encoding length is as small as possible and close to the
symbol source entropy.

Motivation. Designers of ANS have to strike a balance between efficiency and compression
quality. The first choice that has to be made is how closely symbol probabilities ps need

to be approximated by Ls
L . Clearly, the bigger the number of states (L = 2R), the better

approximation and better compression. Unfortunately, a large L slows down compression.
It turns out that the selection of a symbol spread has an impact on the quality of compression.
For some applications, this impact cannot be ignored. This is true when ANS is applied
to build a pseudorandom bit generator. In this case, the required property of ANS is
minimal coding redundancy. Despite the growing popularity of ANS, there is no proof of
its optimality for arbitrary symbol statistics. This work does not aim to prove optimality,
but rather, it aims to develop tools that allow us to compare the compression quality of
different ANS instances. It means that we are able to adaptively modify ANS in such a way
that every modification provides a compression ratio gain (coding redundancy reduction).
The following issues are the main drivers behind this work:

• Investigating symbol quantisation and its impact on compression quality.
• Understanding the impact of a chosen symbol spread on the ANS compression ratio.
• Designing an algorithm that allows us to build ANS instances that maximise compres-

sion ratio or equivalently minimises coding redundancy.

Contributions. They are as follows:

• The application of Markov chains to calculate ANS compression ratios. Note that
Markov chains have been used in ANS analysis previously. The work [22] applies
them for analysis of ANS-based encryption while the paper [23] uses Markov chains
to prove the asymptotic optimality of ANS.

• Designing “good” ANS instances whose state probabilities follow the approximation
log2 e/x, where x is an ANS state.

https://en.wikipedia.org/wiki/Asymmetric_numeral_systems
https://en.wikipedia.org/wiki/Asymmetric_numeral_systems

Entropy 2023, 25, 672 3 of 23

• A randomised algorithm that permits the building of ANS, whose compression ratio is
close or alternatively equal to the best possible. The algorithm uses a pseudorandom
number generator (PRNG) as a random “coin”.

• An improvement of the Duda–Niemiec ANS cryptosystem that selects at random ANS
instances with best compression ratios.

The rest of the work is organised as follows. Section 2 puts the work in the context
of the known source coding algorithms. Section 3 describes the ANS compression and
its algorithms. Section 4 studies the optimality of ANS. Section 5 shows how Markov
chains can be used to calculate ANS state equilibrium probabilities and, consequently,
average lengths of ANS encodings. Section 6 presents an algorithm that produces ANS
instances whose state probabilities follow the approximation log2 e/x. Section 7 describes
an algorithm that permits obtaining the best (or close to it) compression ratio. Section 8
suggests an alternative to the Duda–Niemiec ANS encryption. The alternative encryption
called cryptographic ANS allows us to design an ANS secret instance whose compression
ratio is close to the best one. Section 9 presents the results of our experiments and finally,
Section 10 concludes our work.

2. Arithmetic Coding versus Asymmetric Numeral Systems

Two variants of ANS (tabled tANS and range rANS) are often used as a direct replace-
ment not only for Huffman coding to improve compression ratio but also for arithmetic
coding (AC [8–10]) to improve speed. In contrast to Huffman coding (which can handle
whole bits only), AC and ANS can process fractions of bits. This requires an additional
buffer to store bit fractions and accumulate them until getting a whole bit, which is next
released into the output bitstream. AC applies a buffer that stores a range represented by
two numbers whose length depends on the probability of encoded symbols. On the other
hand, ANS maintains a buffer with a single natural number, whose length reflects both the
probability of the encoded symbol and the previous contents of the buffer. In other words,
compared to AC, ANS needs a single number only to store the current state.

For both AC and ANS, there are two possible implementation options. The first applies
basic arithmetic operations (addition, multiplication and division) performed on large states
very close to Shannon entropy. This option has a lower memory cost and is convenient for
vectorisation in CPU/GPU architectures. More importantly, it allows for the modification of
symbol probabilities on the fly. This option is used in both AC and rANS. The second option
translates compression into FSM. It avoids arithmetic operations (especially multiplication)
and is recommended for fixed symbol probability distributions. Importantly, it allows for
joint compression and encryption. This option is used by quasi-AC, M coder, and tANS.

2.1. Arithmetics: AC versus rANS

A classical AC for binary alphabet (bitwise) uses one multiplication per symbol
and two for a large alphabet. In contrast, rANS uses one multiplication per symbol no
matter how big the alphabet is. This is true for the rANS decoder, as its encoder requires
integer division, which is notoriously expensive on most CPU architectures. However,
in many applications, decoding speed is more important than encoding speed. One of
the fundamental differences between AC and ANS is encoding and decoding orders.
For AC, the orders are the same, while for ANS, decoding is executed in reverse. This
means that AC is advantageous for some applications, such as streaming. On the other
hand, the ANS reverse decoding order enables methods such as the alias method (https://
fgiesen.wordpress.com/2014/02/18/rans-with-static-probability-distributions, accessed
on 13 April 2023) and the BB-ANS method of Townsend et al. [24], which are not possible
with AC. rANS uses a state determined by a single natural number that makes low-level
optimisation and vectorisation possible. In contrast, AC has to keep two numbers that
define a state and a current range.

 https://fgiesen.wordpress.com/2014/02/18/rans-with-static-probability-distributions
 https://fgiesen.wordpress.com/2014/02/18/rans-with-static-probability-distributions

Entropy 2023, 25, 672 4 of 23

In practice, rANS is used for relatively large alphabets ranging from 28 to 216 symbols,
whose probability distribution needs a regular update. For static probability distribution,
rANS applies alphabets with 256 symbols. It also copes very well with much larger
alphabets with, say, 225 symbols [25]. An obvious advantage of a large alphabet used in
rANS is a reduction of the required number of steps. Consider two alphabets: one with
two and the other with 256 symbols. The number of steps for the larger alphabet can
then be reduced by the factor of 8, and there is no need for binary conversion of states.
A drawback of rANS with large alphabets is the growing size of tables and an increase
in the number of variables. A typical compromise to cope with the dilemma is to deploy
byte-oriented arithmetics.

In contrast, AC is usually applied for binary alphabets [26,27]. As we have already
pointed out, this creates a significant computational overhead as symbols of large alphabets
need to be represented in binary. Fortunately, AC can also work directly with large
alphabets. This is referred to as range coding. Note that the implementation of both
AC and rANS requires a similar number of operations (with the exception that rANS needs
a single multiplication per symbol while AC needs two). However, the main advantage of
rANS over AC is a shorter state. A state for AC is determined by two numbers, while a
state for rANS consists of a single integer. Moreover, rANS is easier to parallelise due to
the fact that the decoder goes through the exact same states as the encoder (albeit in reverse
order) [28]. Consequently, rANS low-level implementations can be easily optimised and
vectorised (SIMD, GPU).

2.2. FSM Representation: Quasi-AC, M Coders and tANS

It turns out that the most expensive arithmetic operation applied in compression is
multiplication. To improve efficiency, the idea is to eliminate multiplication altogether. This
can be done for a majority of popular entropy coders with a relatively small number of
states. As an entropy coder can be seen as FSM, it is enough to determine its state-transition
table. An encoding table accepts a pair (symbol, current state) and outputs (binary encoding,
next state). Clearly, there must exist a corresponding decoding table that reverses encoding.
Quasi-AC is an example of an FSM representation for AC (https://kuscholarworks.ku.edu/
bitstream/handle/1808/7210/HoV93.qtfull.pdf;sequence=1, accessed on 13 April 2023).
There is also a very popular 64-state M coder (https://iphome.hhi.de/marpe/mcoder.htm,
accessed on 13 April 2023), which is the core of the Context Adaptive Binary Arithmetic
Coder (CABAC). The coder is used in MPEG video compressors. As far as we know, all
FSM variants of AC are restricted to binary alphabets. Theoretically, larger alphabets can
also be converted into their binary equivalents. However, the number of states would
be much larger than for ANS as each AC state consists of a pair of numbers (the range).
In contrast, thanks to single-number states, ANS can be easily converted into its FSM
equivalent for a large alphabet. Table-based ANS (tANS) usually uses from 4 to 8 times
more states than the alphabet size. It means that for an alphabet containing 256 symbols,
tANS needs 2048 states. This tANS variant is used in a popular FSE implementation of the
Zstandard compressor and it rebuilds encoding/decoding tables for every new symbol
frame (30 kB in length).

2.3. LIFO Handling and Statistical Modelling

ANS works according to the last-in-first-out (LIFO) principle. This technical difficulty
is solved by encoding symbols backwards and storing a final state. Then decoding can
proceed forward from the final state. If an initial encoding state is fixed and known to a
decoder, then the decoder can verify decompression correctness. This way, we obtain a
popular checksum mechanism for free. For simple statistical models (like Markov), we
can directly encode backwards and use a context of future-forward decoding. For more
sophisticated models (like a popular adaptive update of the probability distribution) we
can use an additional buffer to store symbol statistics. An encoder first makes a statistical
analysis of incoming symbols in their natural (forward) order. It stores the observed proba-
bility distribution of symbols in the buffer. Knowing probability distribution, the encoder
can next design an appropriate instance of ANS and share it with the decoder. Finally,
the encoder processes symbols backwards. The decoder recovers symbols in their natural

https://kuscholarworks.ku.edu/bitstream/handle/1808/7210/HoV93.qtfull.pdf;sequence=1
https://kuscholarworks.ku.edu/bitstream/handle/1808/7210/HoV93.qtfull.pdf;sequence=1
https://iphome.hhi.de/marpe/mcoder.htm

Entropy 2023, 25, 672 5 of 23

order. Note that the decoder needs to know where a binary frame terminates. There are
essentially the following two options: in the first, we can fix the length of a binary frame; in
the second option, we can use a sentinel value that is chosen from a set of low-probability
symbols (that do not occur in the current symbol frame).

2.4. Industry Status

For AC, there are implementations that achieve compression speeds from ∼50 (al-
phabet with two symbols) to ∼150 MB/s/core (alphabet with 256 symbols). On the
other hand, consider ANS: its compression speed ranges from ∼500 (for FSE implemen-
tation of tANS) to ∼1500 MB/s/core (for vectorised SIMD rANS) (see https://github.
com/jkbonfield/rans_static, https://sites.google.com/site/powturbo/entropy-coder, ac-
cessed on 13 April 2023) . For GPU, there are available vectorised rANS implementa-
tions (e.g., Facebook or NVidia) reaching speeds of hundreds GB/s (see https://github.
com/facebookresearch/dietgpu, https://developer.nvidia.com/blog/latest-releases-and-
resources-feb-3-10/#software-releases, accessed on 13 April 2023). To our best knowledge,
we are not aware of such fast implementations for AC. There are also available FPGA
implementations processing one symbol per cycle [29]. As a consequence, in recent years,
ANS has started to dominate the compression market for various applications. Notable
examples include compression for:

• General purpose—Facebook Zstandard (tANS) [30] has become probably the most
popular replacement of the gzip algorithm (built-in Linux kernel),

• Genetic data—almost the default is CRAM (rANS) citecram, which is a part of the
SAMtools library,

• 3D data (meshes, point clouds)—the Google Draco 3D compressor (rANS) used by
Pixar,

• Images—JPEG XL (rANS) [31] is recommended by Adobe and often provides the
best benchmark performance (https://cloudinary.com/blog/contemplating-codec-
comparisons, accessed on 13 April 2023).

The exception is video compression, which is still dominated by AC. This is due to the
following two factors: the first one concerns intellectual property and patent issues in rela-
tion to the legacy compression algorithms (https://en.wikipedia.org/wiki/Asymmetric_
numeral_systems, accessed on 13 April 2023); the second factor is backward encoding
required by ANS, which complicates the implementation of compression.

3. Asymmetric Numeral Systems

Here we do not describe the ideas behind ANS design. Instead, we refer the reader
to original papers by Duda [16,32] and the ANS Wikipedia page, whose URL address
is given in the previous section. A friendly introduction to ANS can be found in the
work [22]. The ANS algorithm suite includes initialisation, compression (encoding), and
decompression (decoding). Algorithm 1 shows initialisation— it also serves as a reference
for basic ANS notation.

A compression algorithm accepts a symbol sequence s and outputs a bitstream b. In
most cases, the probability distribution of symbols is unknown so it has to be calculated.
This is done by pushing symbols one by one to a stack and counting their occurrences.
When the last symbol sℓ is processed, the symbol statistics are known, and compression
can start. It means that compression starts from the last symbol sℓ. Algorithm 2 describes
the ANS compression steps.

https://github.com/jkbonfield/rans_static
https://github.com/jkbonfield/rans_static
https://sites.google.com/site/powturbo/entropy-coder
https://github.com/facebookresearch/dietgpu
https://github.com/facebookresearch/dietgpu
https://developer.nvidia.com/blog/latest-releases-and-resources-feb-3-10/#software-releases
https://developer.nvidia.com/blog/latest-releases-and-resources-feb-3-10/#software-releases
https://cloudinary.com/blog/contemplating-codec-comparisons
https://cloudinary.com/blog/contemplating-codec-comparisons
https://en.wikipedia.org/wiki/Asymmetric_numeral_systems
https://en.wikipedia.org/wiki/Asymmetric_numeral_systems

Entropy 2023, 25, 672 6 of 23

Algorithm 1: ANS Initialisation

Input: a symbols source S, its symbol probability distribution p : S→ [0, 1] and a
parameter R ∈ N+.

Output: instantiation of encoding and decoding functions:
• C(s, x) and ks(x);
• D(x) and k(x).

Steps: proceed as follows:

• Calculate the number of states L = 2R;
• Determine the set of states I = {L, . . . , 2L− 1};
• Compute integer Ls ≈ Lps, where ps is probability of s; s ∈ S;
• Choose symbol spread function s : I→ S, where Ls = {x : s(x) = s} denotes

a set of states assigned to the symbol s and Ls = |Ls|;
• Establish coding function C(s, y) = x for y ∈ {Ls, . . . , 2Ls − 1},

which assigns states x ∈ Ls according to symbol spread function;
• Compute ks(x) = ⌊log2(x/Ls)⌋ for x ∈ I and s ∈ S. It gives

the number of output bits per symbol;
• Construct decoding function D(x) = (s, y), which for x ∈ I, assigns

its unique symbol (given by the symbol spread function) and the
integer y, where Ls ≤ y ≤ 2Ls − 1. Note that D(x) = C−1(x);

• Calculate k(x) = R− ⌊log2(y)⌋, which determines the number of bits
that need to be read out from the bitstream;

Algorithm 2: ANS Encoding

Input: a symbol sequence s = (s1, s2, . . . , sℓ) ∈ S∗ and an initial state x = xℓ ∈ I, where
ℓ = |s|.

Output: a bitstream b = (b1|b2| . . . |bℓ) ∈ {0, 1}∗, where |bi| = ksi (xi) and xi is state in i-th
step.

Steps: for i = ℓ, ℓ− 1, . . . , 2, 1 do
s := si;
k = ks(x) = ⌊log2(x/Ls)⌋;

bi = x mod 2k;
x := C(s, ⌊x/2k⌋), where / stands for integer division;

store the final state x0 = x;

Note that the bitstream is created by the concatenation of individual encodings. This
is denoted by b = (b1|b2| . . . |bℓ), where bi is a binary encoding (sequence of k bits);
i = 1, . . . , ℓ. Decompression steps are shown in Algorithm 3. Note that LSB(b)k and
MSB(b)k stand for the k least and most significant bits of b, respectively.

Algorithm 3: ANS Decoding

Input: a bitstream b ∈ {0, 1}∗ and the final state x = x0 ∈ I.
Output: symbol sequence s ∈ S∗.
Steps: while b 6= ∅ do

(s, y) = D(x);
k = k(x) = R− ⌊log2(y)⌋;
b = MSB(b)k;
b := LSB(b)|b|−k;

x := 2ky + b;

ANS Example

Given a symbol alphabet S = {a, b, c}, where pa = 3
16 , pb = 5

16 , pc = 8
16 and the

parameter R = 4. The number of states is L = 2R = 16 and the state set equals to
I = {16, 17, . . . , 31}. A symbol spread s : I→ S can be chosen at random as long as (1) the

Entropy 2023, 25, 672 7 of 23

number of elements in Li equals to Li and (2) the chosen states in Li are in the increasing
order. So we assume that

s(x) =







a if x ∈ {18, 22, 25} = La

b if x ∈ {19, 20, 23, 26, 28} = Lb

c if x ∈ {16, 17, 21, 24, 27, 29, 30, 31} = Lc

(1)

~

w

�

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

c c a b b c a b c a b c b c c c

where La = 3, Lb = 5 and Lc = 8. The encoding table C(xi, si) = (xi+1, bi)
def
≡ (xi+1

bi
) is

shown in Table 1.

Table 1. ANS for 16 states (symbol probabilities {3/16, 5/16, 8/16}).

si\xi 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

a (22
00) (22

01) (22
10) (22

11) (25
00) (25

01) (25
10) (25

11) (18
000) (18

001) (18
010) (18

011) (18
100) (18

101) (18
110) (18

111)

b (26
0) (26

1) (28
0) (28

1) (19
00) (19

01) (19
10) (19

11) (20
00) (20

01) (20
10) (20

11) (23
00) (23

01) (23
10) (23

11)

c (16
0) (16

1) (17
0) (17

1) (21
0) (21

1) (24
0) (24

1) (27
0) (27

1) (29
0) (29

1) (30
0) (30

1) (31
0) (31

1)

This example is used throughout the work to illustrate our considerations.

4. Optimality of ANS—Bounds and Limits

There are two main factors that determine how well ANS compresses symbol se-
quences: (1) compression quality of the underlying ANS encoder and (2) the length of
auxiliary data needed by a decoder to recover symbols from bitstream. Auxiliary data
include symbol statistics, the ANS spread function, a chosen sentinel value (or the length of
bitstream), and the final ANS state. Note that auxiliary data introduces a loss of compres-
sion quality. The loss is significant for relatively short symbol sequences, but it becomes
negligible for very long files. In this section, our considerations are focused on ANS
compression quality only. We ignore auxiliary data.

Given an ANS instance designed for a memoryless symbol alphabet with its probability
distribution p = {ps; s ∈ S} and the parameter R. The set of all ANS states is I =
{2R, . . . , 2R+1 − 1}. ANS is optimal if the average length of the binary encoding is equal to
the alphabet entropy or

1

ℓ

ℓ

∑
i=1

|bi| = H(S) = ∑
s∈S

ps log2 p−1
s , (2)

where a sequence s = (s1, s2, . . . , sℓ) consists of ℓ symbols. The sequence s is also called a
symbol frame. The same symbols of the frame can be grouped so we get

1

ℓ

ℓ

∑
i=1

|bi| =
1

ℓ
∑
s∈S

∑
s∈s

|bs| = ∑
s∈S

∑s∈s |bs|

ℓ
. (3)

Note that 1
ℓ ∑s∈s |bs| = ps log2 p−1

s . So we have proven the following lemma.

Lemma 1. Given an alphabet S whose probability distribution is p = {ps; s ∈ S} and ANS for S.
Then ANS is optimal if and only if

1

ℓ
∑
s∈s

|bs| = ps log2 p−1
s for all s ∈ S, (4)

Entropy 2023, 25, 672 8 of 23

where s is a symbol sequence, which repeats every symbol ℓ · ps times.

A caveat—strictly speaking Equation (3) holds when probabilities ps are natural powers of
1/2. In other cases, the left-hand side is a rational number while the right-hand side is an
irrational one. Consequently, Equation (3) is an approximation determined by the applied
calculation precision.

Let us have a closer look at how ANS encodes symbols. According to Algorithm 2,
a symbol s is encoded into bi = x (mod 2k), where ks = ⌊log2(x/Ls)⌋ and

x ∈ {2R, . . . , 2R+1 − 1}. The length ks of encoding depends on the state x. The short-
est encoding is when x = 2R and the longest when x = 2R+1 − 1. It means that

⌊log2(2
R/Ls)⌋ ≤ ks ≤ ⌊log2((2

R+1 − 1)/Ls)⌋.

As Ls = 2R ps, we get ⌊log2 p−1
s ⌋ ≤ ks ≤ ⌊log2 p−1

s (2− 1
2R)⌋. Consider a general case when

2−(i+1) < ps < 2−i. Then ks ∈ {i, i + 1}. If ps = 2−i, then the inequality

⌊log2 2i⌋ ≤ ks ≤ ⌊log2 2i(2−
1

2R
)⌋

points to a single encoding length ks = i. The above leads us to the following conclusion.

Lemma 2. Given ANS described by Algorithm 2. Then a symbol s is encoded into a binary string
of the length ks, where

• ks = i if ps = 2−i,

• ks ∈ {i, i + 1} if 2−(i+1) < ps < 2−i. This includes an interesting case when 2−1 < ps < 20

with ks ∈ {0, 1}—some symbols are encoded into void bits ∅.

Consider a general case of a symbol alphabet S with an arbitrary probability distribu-
tion p = {ps; s ∈ S} (not necessarily the natural powers of 1/2). Given an ANS instance
designed for the distribution p and the set of states I = {2R, . . . , 2R+1 − 1}. We start from
an observation that the average length (the expectation) of binary encoding of a single
symbol s ∈ S into a binary encoding bs is equal to

E(bs) =
1

R ∑
x∈I

p(x)ks(x) =
1

R ∑
x∈I

p(x)⌊log2(x/Ls)⌋, (5)

where a state probability distribution is P = {p(x); x ∈ I}. Note that optimal encoding of
s ∈ S occurs when |bs| = log2 p−1

s and does not (directly) depend on the encoding function
C. It, however, has a direct impact on state probabilities. Assume that we have found
an ANS instance which is optimal. This means that each symbol is compressed into its
binary encodings whose expected length equal to the symbol entropy. This implies that the
following system of equations must hold:

1

R ∑
x∈I

p(x)ks(x) = log2 p−1
s for s ∈ S. (6)

Consequently, we have proven the lemma presented below.

Lemma 3. Given an ANS instance designed for the symbol probability distribution {ps; s ∈ S}
and the set of states I = {2R, . . . , 2R+1 − 1}. Then ANS is optimal if its state probabilities satisfy
relations given by Equation (6).

Let us discuss briefly the consequences of Lemma 3.

• In general, ANS allows us to attain close to optimal compression. However, finding an
appropriate coding function C seems to be a challenge, especially for a large enough
R, where enumeration of all possible C is not possible. There is also a possibility that
there is no such C.

Entropy 2023, 25, 672 9 of 23

• The system given by Equation (6) is underdetermined so its solutions create a linear
subspace. To see that this is true, it is enough to observe that for a given symbol, the
symbol spread assigns more than one ANS state. Consequently, we have |S| equations
in 2R variables.

• The work [33] shows how to change the state probabilities so they follow a uniform
distribution using a pseudorandom bit generator (PRBG). This interference has been
necessary to provide confidentiality and integrity of a compressed stream. Unfortu-
nately, the price to pay is a loss of compression ratio. This approach can be applied
here. It would involve a design of PRBG with fine control of probability distribution,
which could be a very difficult task. Additionally, running PRBG would be much
more expensive than a single call to C.

• An optimistic conclusion is that ANS has no structural weaknesses. Whether or not
it attains close to optimal compression ratio depends on the coding function C or
alternatively on the symbol spread.

It is important to make clear the difference between the optimal and the best com-
pression ratios. Given an instance of ANS. We can exhaustively run through all possible
symbol spreads and identify the one whose compression ratio is the best. This obviously
does not guarantee that such ANS is optimal.

5. State Probabilities and Markov Chains

ANS can be looked at as FSM, whose internal state x ∈ I changes during compression.
The behaviour of ANS states is probabilistic and can be characterised by state probability
distribution {p(x); x ∈ I}. For a given symbol s ∈ S, the average encoding length of s is
κ(s) = ∑x∈I ks(x)p(x), where ks(x) is the length of an encoding assigned to s when ANS is
in the state x (see Algorithm 2). The average length of ANS encodings is κ = ∑s∈S psκ(s).
When we deal with an optimal ANS, then κ = H(S), which also means that κ(s) = H(s) =
log2 p−1

s for all s ∈ S. Typically, compression quality is characterised by a ratio between
the length of a symbol sequence and the length of the corresponding bitstream. A better
measure from our point of view is coding redundancy, which is defined as ∆H = κ− H(S).
The measure has the following advantages:

• Easy identification of an optimal ANS instance when ∆H = 0;
• Quick comparison of two ANS instances—a better ANS has a smaller ∆H;
• Fast calculation of the length of a redundant part of bitstream, which is ℓ · ∆H bits,

where ℓ is the number of symbols in the input sequence.

To determine ∆H for an ANS instance, it is necessary to calculate probability distribu-
tion {p(x); x ∈ I}. It depends on a (random) selection of symbol spread. Note that ANS
state transitions are probabilistic and can be described by a matrix. If one of the matrix
eigenvalues is equal to λ = 1, then the corresponding eigenvector points to an equilibrium
probability of the related Markov chain [23,34–36]. Note that the ANS Markov chain is in
equilibrium when state probabilities do not change after processing single symbols.

Algorithm 4 shows steps for the construction of a system of linear equations, whose
solution gives an equilibrium probability distribution Peq = {p(x); x ∈ I}. The encoding
table C(s, x) = x′ shows transition of a state x to the next state x′ while encoding/com-
pressing a symbol s.

Entropy 2023, 25, 672 10 of 23

Algorithm 4: Equilibrium of ANS States

Input: ANS encoding table E(s, x) and symbol probability distribution {ps; s ∈ S}.
Output: probability distribution Peq = {p(x); x ∈ I} of ANS Markov chain equilibrium.
Steps:
• initialise 2R × 2R matrix M to all zeros except the main diagonal

M[i, i] = −1 for i = 0, . . . , 2R − 1 and the last row, where M[2R − 1, j] = 1 for j = 1, . . . , 2R;
• create a vector B with 2R entries with all zero entries except

the last entry equal to 1;

for x ∈ {2R, . . . , 2R+1 − 2} and s ∈ S do
find E(s, x) = x′;
M[x′mod 2R, x mod 2R] := M[x′mod 2R, x mod 2R] + ps;

• solve M · X = B using Gaussian elimination;
• return X→ Peq = {p(x); x ∈ I};

Example 1. Consider the ANS instance from Table 1. According to the above algorithm, we obtain
a matrix M as follows:

M =



























































− 1
2

1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 1
2

1
2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 3
16

3
16

3
16

3
16

3
16

3
16

3
16

3
16

0 0 0 −1 5
16

5
16

5
16

5
16 0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 5
16

5
16

5
16

5
16 0 0 0 0

0 0 0 0 1
2 −

1
2 0 0 0 0 0 0 0 0 0 0

3
16

3
16

3
16

3
16 0 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 0 5
16

5
16

5
16

5
16

0 0 0 0 0 0 1
2

1
2 −1 0 0 0 0 0 0 0

0 0 0 0 3
16

3
16

3
16

3
16 0 −1 0 0 0 0 0 0

5
16

5
16 0 0 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 1
2

1
2 0 −1 0 0 0 0

0 0 5
16

5
16 0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 1
2

1
2 0 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
2 −1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



























































The vector B = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]. The equilibrium probabilities (p(16), . . . ,
p(31)) are

(

367

4590
,

367

4590
,

1933

24480
,

1189

14688
,

991

14688
,

991

14688
,

367

6120
,

157

2448
,

1519

24480
,

1189

24480
,

367

7344
,

677

12240
,

367

7344
,

1933

36720
,

157

3060
,

157

3060

)

.

Now it is easy to calculate both the average encoding length κ = 1.4790168845 and alphabet entropy
H(S) = 1.4772170014. ANS leaves a coding redundancy ∆H = κ − H(S) = 0.0017998831 bits
per symbol.

Let us change the symbol spread by swapping states 25 with 28 so we have the following
symbol spread

s(x) =
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

c c a b b c a b c b b c a c c c

.

The encoding function C(s, y) is:

s\y 3 4 5 6 7 8 9 10 11 12 13 14 15

a 18 22 28 − − − − − − − − − −

b − − 19 20 23 25 26 − − − − − −

c − − − − − 16 17 21 24 27 29 30 31

Entropy 2023, 25, 672 11 of 23

The encoding table is given in Table 2.

Table 2. ANS for 16 states with state swap (symbol probabilities {3/16, 5/16, 8/16}).

si\xi 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

a (22
00) (22

01) (22
10) (22

11) (28
00) (28

01) (28
10) (28

11) (18
000) (18

001) (18
010) (18

011) (18
100) (18

101) (18
110) (18

111)

b (25
0) (25

1) (26
0) (26

1) (19
00) (19

01) (19
10) (19

11) (20
00) (20

01) (20
10) (20

11) (23
00) (23

01) (23
10) (23

11)

c (16
0) (16

1) (17
0) (17

1) (21
0) (21

1) (24
0) (24

1) (27
0) (27

1) (29
0) (29

1) (30
0) (30

1) (31
0) (31

1)

After running Algorithm 4, we obtain equilibrium probabilities (p16, . . . , p31) as follows:
(

3071

38400
,

3071

38400
,

8077

102400
,

4981

61440
,

4177

61440
,

4177

61440
,

3071

51200
,

65

1024
,

6321

102400
,

3071

61440
,

3071

61440
,

17159

307200
,

4981

102400
,

5419

102400
,

13

256
,

13

256

)

.

The average encoding length κ = 1.4789314193. This ANS instance leaves coding redundancy
∆H = κ − H(S) = 0.0017144179 bits per symbol. Clearly, it offers better compression than the
first variant.

The following remarks summarise the above discussion:

• The extensive practical experience and asymptotic optimality of ANS (see [23]) jus-
tifies the conclusion that ANS offers a very close-to-optimal compression when the
parameter R is big enough so Ls = 2R ps for all s ∈ S. In general, however, for arbitrary
symbol statistics, ANS tends to leave coding redundancy ∆H 6= 0.

• In some applications where ANS compression is being used heavily (for instance,
video/teleconference streaming), it makes sense to optimise ANS so ∆H is as small as
possible. Note that the smaller ∆H, the more random the bitstreams. This may increase
the security level of systems that use compression (for instance, joint compression and
encryption).

• It is possible to find the best ANS instance by an exhaustive search through all distinct

symbol spreads. For L = 2R states, we need to search through L!
∏s∈S Ls ! ANS instances.

This is doable for a relatively small number of states. For ANS in our example, the

search space includes 16!
8!·5!·3! = 720720 instances. For a bigger L (say, above 50), an

exhaustive search is intractable.

6. Tuning ANS Symbol Spreads

For the compression algorithms such as Zstandard and LZFSE, a typical symbol
alphabet contains n = 256 elements. To obtain a meaningful approximation of the alphabet
statistics, we need a bigger number L of states. A rough evaluation of compression ratio
penalty given in [37] tells us that choosing L = 2n incurs a entropy loss of ∆H = 0.01
bits/symbol; if L = 4n, then ∆H = 0.003 and if L = 8n, then ∆H = 0.0006. This confirms
an obvious intuition that the bigger number of states L, the better approximation and,
consequently, compression ratio. However, there is a “sweet spot” for L, where its further
increase slows compression algorithm but without a noticeable compression ratio gain.

Apart from approximation accuracy of symbol probabilities so ps ≈ Ls/L, the symbol
spread s : I → S has an impact on compression ratio. Intuitively, one would expect that

symbol spread is chosen uniformly at random from all L!
∏s∈S Ls ! possibilities. It is easy to

notice that they grow exponentially with L. An important observation is that the probability
distribution of ANS states during compression is not uniform. In fact, a state x ∈ I occurs
with probability that can be approximated as p(x) ≈ log2(e)/x. Note that this is beneficial
for a compression ratio, as smaller states (with shorter encodings) are preferred over larger
ones (with longer encodings). The natural probability bias of states has an impact on the
compression ratio, making some symbol spreads better than the others. Let us take a closer
look at how to choose symbol spread so it maintains the natural bias.

Entropy 2023, 25, 672 12 of 23

Recall that for a given symbol s ∈ S and state x ∈ I, the encoding algorithm (see
Algorithm 2) calculates k = ks = ⌊log2

x
Ls
⌋, extracts k least significant bits of the state as

the encoding of s and finds the next state x′ = C(s, ⌊ x
2k ⌋), where C(s, y) is equivalent to a

symbol spread s and x′ ∈ Ls. Consider properties of coding function C(s, y) that are used
in our discussion.

Fact 1. Given a symbol s and coding function C(s, ⌊ x
2k ⌋). Then the collection of states I is divided

into Ls state intervals Ii, where

• Each interval Ii consists of all consecutive states that share the same value ⌊ x
2k ⌋ for all x ∈ Ii,

• Coding function assigns the same state x′ = C(s, ⌊ x
2k ⌋) for x ∈ Ii and x′ ∈ Ls,

• The cardinality of Ii is 2k, where k = ks = ⌊log2
x
Ls
⌋ and I = ∪i=1,...,Ls

Ii.

Example 2. Take into account ANS described in Table 1. For the symbol a, the collection of states
I = {16, . . . , 31} splits into La = 3 intervals as follows:

I1 = {16, 17, 18, 19} I2 = {20, 21, 22, 23} I3 = {24, 25, 26, 27, 28, 29, 30, 31}

C(s, ⌊ x
4 ⌋) = 22; x ∈ I1 C(s, ⌊ x

4 ⌋) = 25; x ∈ I2 C(s, ⌊ x
8 ⌋) = 18; x ∈ I3

Note that cardinalities of Ii are powers of 2 or |I1| = |I2| = 4 and |I3| = 8. As the encoding
function C(s, ·) is constant in the interval Ii, it makes sense to use a shorthand C(s, Ii) instead of
C(s, ⌊ x

2k ⌋) for x ∈ Ii.

Assume that we know probabilities p(x) of states of x ∈ I, then the following conclu-
sion can be derived from Fact 1.

Corollary 1. Given an ANS instance defined by Algorithms 1–3. Then for each symbol s ∈ S,
state probabilities have to satisfy the following relations:

ps ∑
x∈Ii

p(x) = p(C(s, Ii)); i = 1, . . . , Ls. (7)

Recall that those state probabilities can be approximated by p(x) ≈ log2(e)/x. As
Equation (7) requires summing up probabilities of consecutive states, we need the following
fact.

Fact 2. Given an initial part of the harmonic series (1 + 1
2 + . . . + 1

r), then it can be approximated
as shown below

r

∑
i=1

1

i
= 1 +

1

2
+ . . . +

1

r
≈ ln(r) + γ, (8)

where the constant γ ≈ 0.577. It is easy to obtain an approximation of the series (1
r + . . . + 1

r+α),

which is ≈ ln(r + α)− ln(r− 1) = ln(r+α
r−1), where α ∈ N+.

Now, we are ready to find out a preferred state for our symbol spread. Let us take into
account Equation (7). Using the above established facts and our assumed approximation
p(x) ≈ log2(e)/x, the left-hand side of the equation becomes

ps ∑
x∈Ii

p(x) = ps log2(e) ∑
x∈Ii

1

x
= ps log2(e) ln

r + α− 1

r− 1
,

where r is the first state in Ii and (r + α− 1)—the last and α = 2k. As we have assumed that
the state C(s, Ii) ≈ log2(e)

1
y , where y points the preferred state that needs to be included

into Ls, we obtain

ps log2(e) ln
r + α− 1

r− 1
= log2(e)

1

y
.

This brings us to the following conclusion.

Entropy 2023, 25, 672 13 of 23

Corollary 2. Given ANS as defined above, then a preferred state y for Ii determined for a symbol s
is

y =

(

ps ln
r + α− 1

r− 1

)−1

, (9)

where Ii = [r, . . . , r + α− 1] and ⌊y⌉ an integer closest to y and it is added to Ls.

Algorithm 5 shows an algorithm for the calculation of symbol spread with preferred
states.

Algorithm 5: Symbol Spread Tuning

Input: ANS number of states L = 2R and symbol probability distribution {ps; s ∈ S}.
Output: symbol spread s determined by Ls for s ∈ S.
Steps: initialise Ls = ∅ for s ∈ S;
for s ∈ S do
• Compute Ls = L · ps;
• Split I into Ii; where |Ii| = ⌊log2

x
Ls
⌋, x ∈ Ii and

i = 1, . . . Ls;
for i = 1, . . . , Ls do

• find y =
(

ps ln r+α−1
r−1

)−1
,

where Ii = [r, . . . , r + α− 1];
• Ls := Ls ∪ ⌊y⌉;

• Remove collisions from Ls so Ls ∩Ls′ = ∅ for s 6= s′;
• Return s or equivalently Ls for s ∈ S;

Let us consider the following example.

Example 3. Take ANS from Section 3 with L = 16 states and three symbols S = {a, b, c} that
occur with probabilities 3/16, 5/16 and 8/16, respectively. For the symbol a, the set of states I splits
into La = 16pa = 3 subsets: I1 = {16, 17, 18, 19}, I2 = {20, 21, 22, 23} and I3 = {24, . . . , 31}.

Let us compute the preferred state y for I1. It is y =
(

ps ln r+α−1
r−1

)−1
≈ 22.56, where r = 16 and

r + α− 1 = 19. For I2, we obtain y ≈ 27.91. For I3, we obtain y ≈ 17.86. After rounding to the
closest integers, La = {18, 23, 28}. In similar way, we calculate Lb = {17, 20, 23, 26, 29} and
Lc = {16, 18, 20, 22, 24, 26, 28, 30}. Clearly, there are a few collisions, for example, the state 18
belongs to both La and Lc. They need to be removed. We accept Lc. The colliding states in other
sets are replaced by their closest neighbours, which are free. This obviously makes sense as neighbour
states share similar probabilities. The final symbol spread is as follows

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

c b c a c b c b c a c b c b c a

We can compute the average encoding length by computing equilibrium probabilities, which

for the above symbol spread, is κ = 3619
2448 ≈ 1.4783. It turns out that this is the best compression

ratio, as argued in Section 7. In contrast, the average lengths of symbol spreads in Example 1 are
1.4790 and 1.4789.

Algorithm 5 may produce many symbol spreads with slightly different compression
ratios. Preferred positions need to be rounded to the closest integers. Additionally, there
may be collisions in sets Ls (s ∈ S) that have to be removed. Intuitively, we are searching
for a symbol spread that is the best match for preferred positions. In other words, we need
to introduce an appropriate distance to measure the match.

Entropy 2023, 25, 672 14 of 23

Definition 1. Given ANS with a symbol spread Ls∈S and a collection of preferred positions Ls∈S

calculated according to Equation (9). Then the distance between them is computed as

d(Ls∈S,Ls∈S) = ∑
s∈S

∑
x∈Ls

|x− y|, (10)

where y is the preferred position that is taken by x.

Finding the best match for a calculated Ls∈S is equivalent to identification of a symbols
spread L∗s∈S such that

d(L∗s∈S,Ls∈S) = min
Ls∈S

d(Ls∈S,Ls∈S), (11)

where the symbol spread Ls∈S runs through all possibilities.
Algorithm 6 illustrates a simple and heuristic algorithm for finding L∗s∈S.

Algorithm 6: Finding Symbol Spread L∗s∈S

Input: ANS number of states L = 2R, symbol probability distribution {ps; s ∈ S} and Ls∈S
Output: symbol spread s determined by L∗s for s ∈ S

Steps:
• Create a table with three rows and L = 2R columns;
• Put all consecutive states (i.e., (L, L + 1, . . . , 2L− 1) in

increasing order in the first row;
• Insert all numbers from Ls∈S in increasing order in the second row together with their

symbol labels in the third row;
• Read out all states from the first row that correspond to appropriate symbol labels (in the

third row);
• Return s or equivalently L∗s for s ∈ S;

Example 4. Consider again the ANS from Section 3 with L = 16 states and three symbols S =
{a, b, c} that occur with probabilities 3/16, 5/16, and 8/16, respectively. We follow Algorithm 6
and obtain the following table:

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

y 16.7 16.9 17.8 17.9 19.9 19.9 21.9 22.5 23.1 23.9 25.5 25.9 27.9 27.9 28.7 29.9

s b c a c b c c a b c b c a c b c

After the calculation of equilibrium probabilities, we obtain the average encoding length, which
is κ = 230755

156048 ≈ 1.4787.

The following observations are relevant:

• The algorithm for tuning symbol spreads is very inexpensive and can be easily applied

for ANS with a large number of states (bigger than 210). It gives a good compression
ratio.

• Equation (9) gives a rational number that needs to be rounded up or down. Addi-
tionally, preferred states pointed by it are likely to collide. Algorithm 5 computes a
symbol spread, which follows the preferred positions.

• Equation (9) indicates that preferred states are likely to be uniformly distributed over
I.

• It seems that finding L∗s∈S such that d(L∗s∈S,Ls∈S) attains minimum does not guarantee
the best compression ratio. However, it results in an ANS instance with a “good”
compression ratio. This could be a starting point to continue searching for ANS with a
better compression ratio.

Entropy 2023, 25, 672 15 of 23

7. Optimisation of ANS

7.1. Case Study

Consider a toy instance of ANS with three symbols that occur with probabilities
{3/16, 5/16, 8/16} and 16 states (i.e., R = 4). We have implemented software in PARI/GP
(PARI is a free software developed by Henri Cohen. PARI stands for Pascal ARIthmetic
and GP—Great Programmable calculator.) that searches through all possible instances of

ANS symbol spreads (there are 16!
8!·5!·3! = 720, 720 such instances). For each spread, we have

calculated equilibrium probabilities for the corresponding Markov chain. This allows us
to compute the average length of a symbol (in bits/symbol). The results are shown in
Figure 1.

Min A B C D Max Fail

4%

12%

67%

9%
6%

0.1% 1%

Average lengths

P
er

ce
n

ta
g

e
o

f
sy

m
b

o
l

sp
re

ad
s

Figure 1. Distribution of average lengths of ANS encodings for the toy ANS. Note that H(S) ≈ 1.477

Legend: A = 〈Min, 1.48], B = 〈1.48, 1.49], C = 〈1.49, 1.5], D = 〈1.5, Max〉, Min = 3619
2448 ≈ 1.478 and Max = 97

64 ≈

1.515.

Unfortunately, there is a small fraction of ANS instances whose equilibrium probabili-
ties are impossible to establish as the corresponding system is linearly dependent (its rank
is 15). An example of symbol spread with the shortest average encoding length is:

s(x) =







a if x ∈ {16, 24, 25} = La

b if x ∈ {17, 20, 21, 26, 27} = Lb

c if x ∈ {18, 19, 22, 23, 28, 29, 30, 31} = Lc

In contrast, the following symbol spread function has the longest average encoding length:

s(x) =







a if x ∈ {24, 25, 26} = La

b if x ∈ {27, 28, 29, 30, 31} = Lb

c if x ∈ {16, 17, 18, 19, 20, 21, 22, 23} = Lc

Clearly, a careful designer of ANS is likely to use a pseudorandom number generator
to select symbol spreads. There is better than 1/2 probability that such an instance has
the average encoding length somewhere in the interval 〈1.48, 1.49]. On the other hand,
a careless designer is likely to fall into a trap and choose one of the worst symbol spreads.

7.2. Optimal ANS for Fixed ANS Parameters

The idea is to start from a random symbol spread. Then, we continue swapping
pairs of ANS states. After each swap, we calculate the coding redundancy of a new ANS
instance. If its redundancy is smaller than the old instance redundancy, then we keep the
change. Otherwise, we select a new pair of states for the next swap. Details are given in
Algorithm 7.

Entropy 2023, 25, 672 16 of 23

Algorithm 7: Search for Optimal ANS

Input: symbol probability distribution {ps; s ∈ S} and parameter R such that Ls = ps2R for
all s

Output: symbol spread s or encoding table E(s, x) of ANS with the smallest coding
redundancy

Steps:
• Initialise symbol spread s using PRBG;
• Determine the corresponding E(s, x) and calculate

its redundancy ∆H;
• Assume a required minimum redundancy threshold T;
while ∆H ≥ T do

for x = 2R, . . . , 2R+1 − 1 do
y← PRBG(I), i.e., random selection of state from I;
if s(x) 6= s(y) then
• Calculate equilibrium probabilities for ANS with

swapped states;
• Determine average encoding length and

∆Htemp;

if ∆Htemp < ∆H then
• Update s by swapping x and y;

• Return s and ∆H;

We have implemented the algorithm in the PARI/GP environment. Our experi-
ment is executed for the 16-state ANS and three symbols that occur with probabili-
ties {3/16, 5/16, 8/16}. As the algorithm is probabilistic, its behaviour varies depend-
ing on specific coin tosses that determine state swaps. Our starting symbol spread is
a spread with the longest average encoding length, i.e., {24, 25, 26}, {27, 28, 29, 30, 31},
{16, 17, 18, 19, 20, 21, 22, 23}). This is the worst case.

The algorithm continues to swap state pairs until the average length equals the mini-

mum 3619
2448 (the best compression ratio). We have run the algorithm 105 times. The results

are presented in Table 3. The main efficiency measure is the total number of swaps of ANS
state pairs that is required in order to achieve the best compression ratio. Note that each
state swap forces the algorithm to redesign ANS. As the algorithm uses PRBG, the number
of state swaps varies. The algorithm works very well and successfully achieves the best
compression ratio every time. In Table 3, we introduce “good swaps”. It means that any
good swap produces an ANS instance whose average encoding length gets smaller. This
also means that in the worst case, we need only 19 swaps to produce the optimal ANS.
Optimality here is understood as the minimum coding redundancy.

Table 3. Number of swaps when Searching for Optimal ANS Instances with 16 states and 3 symbols.

Average # Min # Max # Min # of Max # of
Good Swaps Good Swaps

≈ 24 4 223 4 19

The complexity of Algorithm 7 is O(θL3), where θ is the number of iterations of
the main loop of the algorithm. The most expensive part is the Gaussian elimination
needed to find equilibrium probabilities. It takes O(L3) steps. We assume that we need
θ swaps to obtain a required redundancy with high probability. In other words, the al-
gorithm becomes very expensive when the number of states L is bigger than 210. This is
unfortunate, however, the good news is that a system of linear equations defining equilib-
rium probabilities is sparse. Consider a simple geometric symbol probability distribution
{1/2, 1/4, . . . , 1/1024, 1/1024}. Assume that ANS has L = 210 states. A simple calculation
indicates that the matrix M in the relation M · X = B for the Markov equilibrium has ≈99%
zeros. It means that we can speed up the search for the optimal ANS in the following way:

Entropy 2023, 25, 672 17 of 23

• Use specialised algorithms for Gaussian elimination that targets sparse systems. There
are some mathematical packages (such as MatLab, for example) that include such
algorithms;

• Apply inversion of sparse matrices (such as the algorithm from [38], whose complexity

is O(L2.21)). First we solve M · X = B by computing M−1. This allows us to find X.
Now we swap two states that belong to different symbols. Now we need to solve
M̃ · X̃ = B, where M̃ is a system that describes equilibrium after the swap. We build
M̃−1. Now we translate M · X = B by first I ·M · X = B and then M̃M̃−1M · X = B,
which produces M̃ · X̃ = B, where X̃ = M̃−1M · X. In other words, the solution X̃ can
be obtained from X by multiplying it by M̃−1M.

Further efficiency improvements can be achieved by taking a closer look at swapping
operations. For the sake of argument, consider a swap of two states and their matrices M
and M̃ that describe their Markov chain probabilities before and after the swap, respectively.
There are essentially two distinct cases when the swap is:

• Simple, i.e., only two rows of M are affected by the swap. The matrix entries outside
the main diagonal are swapped, but entries on the main diagonal need to be handled
with care as they do not change if their values are −1. For instance, take ANS from
Table 1. Let us swap the states 25 and 26. The rows of M before swap are

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

25→ 0 0 0 0 3
16

3
16

3
16

3
16 0 −1 0 0 0 0 0 0

26→ 5
16

5
16 0 0 0 0 0 0 0 0 −1 0 0 0 0 0

The rows after the state swap are

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

25→ 5
16

5
16 0 0 0 0 0 0 0 −1 0 0 0 0 0 0

26→ 0 0 0 0 3
16

3
16

3
16

3
16 0 0 −1 0 0 0 0 0

The matrix M̃ after swap can be obtained by M̃ = M∆, where ∆ is a sparse matrix that
translates M into M̃. As argued above, the equilibrium solution is X̃ = ∆−1X, where
∆−1 = M̃−1M. We still need to calculate M̃−1; however, it is possible to recycle a part
of the computations performed while computing M−1. This is possible as M and M̃
share the same entries (except the two rows that correspond to the state swap),

• Complex, i.e., more than two rows need to be modified. This occurs when a swap
causes a cascade of swaps that are needed to restore the increasing order in their
respective Ls. For example, consider ANS from Table 1 and swap the states 22 and 26.

L1 = {18, 22, 25}
L2 = {19, 20, 23, 26, 28}



y22↔ 26

{18, 26, 25}
{19, 20, 23, 22, 28}
invalid ANS





y

25↔ 26
22↔ 23

{18, 25, 26}
{19, 20, 22, 23, 28}

To obtain a valid ANS instance, we need two extra swaps. The calculation of M̃−1 can
still be supported by the computations for M−1 but the matrices M and M̃ differ on
more than two rows.

Entropy 2023, 25, 672 18 of 23

7.3. Optimalisation with Quantisation

So far we have assumed that Ls = ps · L; s ∈ S or at least Ls/L is a very close
approximation of ps. However, this is not always true. In practice, there are two issues that
need to be dealt with.

• The first is the fact that ps · L may have two “good” approximations when αs < psL <

(αs + 1), where αs ∈ N+. So, we can choose Ls ∈ {αs, αs + 1}. This occurs more
frequently when the number L is relatively small.

• The second issue happens when there is a tail of symbols whose probabilities are small
enough so ps · L < 1. It means that symbols have to be assigned to single states Ls = 1.
This is equivalent to an artificial increase of symbol probabilities of the tail to 1/L.
Note that ∑s∈S ps = 1, which is equivalent to ∑s∈S Ls = L. Consequently, the number
of states in the symbol spread for other symbols has to be reduced.

The research question in hand (also called quantisation) is defined as follows. Given
that a symbol probability distribution S = {ps|s ∈ S}, we have to ask: How do we design
ANS so its compression is optimal (or close to it), where ANS is built for the symbol
probability distribution Q = {qs|s ∈ S}, where Q approximates S , where Ls = qs · L ∈ N+,
qs ≈ ps and n = |S|?

Let us consider the following algorithms.
• Exhaustive search through all possible quantised ANS, where an ANS instance is

determined by a selection of Ls ← {αs, αs + 1}, where s ∈ S. For each selection, we
run Algorithm 7. Finally, we choose the ANS instance with the best compression
ratio. Unfortunately, the complexity of the algorithm is exponential or more precisely,
O(2nθL3). A possible tail of t symbols reduces complexity as all t symbols are assigned
a single state and the next t low probability symbols are assigned αs states. Higher
Ls = αs + 1 are ignored in order to compensate states that have been taken by the tail
symbols. Note also that some of the selections for Ls must be rejected if ∑s∈S Ls 6= L.

• Best-fit quantised ANS. The idea is to start from symbols from the tail, where Ls has
to be 1. Symbols with high probabilities are assigned Ls = αs + 1, while symbols
with low probabilities Ls = αs. Symbols with mid-range probabilities are randomly
assigned Ls ∈ {αs, αs + 1}. The intuition behind the algorithm is the fact that selection
of higher Ls reduces the average length of encodings and vice versa. Now we can run
Algorithm 7 to find the optimal (or close to it) ANS.

To recap our discussion, we make the following remarks:

• Finding ANS with the optimal compression ratio is of prime concern to anyone who
would like to either maximise communication bandwidth or remove as much re-
dundancy as possible from bitstreams. We model the asymptotic behaviour of ANS
by Markov chains. The calculated equilibrium probabilities allow us to precisely
determine the average length of binary encodings and, consequently, the ANS com-
pression ratio.

• Search for the best ANS can be done in two steps. (1) We run Algorithm either 5 or 6
that tunes symbol spread using an approximation of state probabilities. The algorithm
is very efficient, and its complexity is O(L). Unfortunately, it does not guarantee
that the calculated ANS instance is optimal/best. (2) Next, we execute Algorithm 7.
Its initial symbol spread has been calculated in the previous step. The randomised
algorithm usually attains the best (or close to it) ANS in practice (see experiments in
Section 9).

• Algorithm 7 can be sped up by using a specialised sparse matrix inversion algorithm
together with reusing computations from previous inversions. This allows us to find a
close-to best ANS for the number L of states in the range [210, 212]. The range is the
most used in practice.

• The number of iterations θ contributes to the complexity of Algorithm 7. In general,
the bigger θ, the higher the probability that the algorithm produces the best ANS.
In fact, θ = αL is enough to obtain ANS with a close to the best compression ratio
with high probability, where α is a small integer (say 2 or 3) —see our experiments in
Section 9.

Entropy 2023, 25, 672 19 of 23

8. Cryptographic ANS

Duda and Niemiec [39] have proposed a randomised ANS, where its symbols spread
is chosen at random. To make it practical, the authors suggest replacing truly random coin
tosses with a pseudorandom number generator (PRNG), which is controlled by a relatively
short random seed/key. The two communicating parties can agree on a common secret key
K. Both sender and receiver use it to select their symbol spread using PRNG controlled by
K. The sender can build an appropriate encoding table, while the receiver—the matching
decoding table. Consequently, the parties can use compression as encryption. Although
such encryption does not provide a high degree of protection (especially against integrity
and statistics attacks—see [22,33]), it could be used effectively in low-security applications.
The price to pay is a complete lack of control over the compression ratio of ANS. This
weakness can be mitigated by applying our Algorithm 7.

Note that the symbol spread {Ls|ps ∈ S} is public but {Lbest
s |ps ∈ S} is secret as to

reconstruct it, an adversary needs to recover K and execute Algorithm 7. The cryptographic
ANS is illustrated in Table 4. Unlike the Duda–Niemiec ANS, it achieves a close to the best
compression ratio. However, the effective security level (the length of the cryptographic
key) is determined by the number of ANS instances produced by Algorithm 7. For instance,
the ANS from Figure 1 guarantees 15-bit security (or log2 30240 ≈ 15). For ANS with a
large number of states, it is difficult to determine a precise security level. However, this
may be acceptable for low-security applications.

Table 4. Cryptographic ANS.

Sender Receiver

Secret K Secret K
Public P = {ps|s ∈ S} −→ Public P = {ps|s ∈ S}
• Run Algorithm 6→ {Ls|s ∈ S} • Run Algorithm 6→ {Ls|s ∈ S}
• Run Algorithm 7 with PRNG(K) • Run Algorithm 7 with PRNG(K)
→ {Lbest

s |s ∈ S} → {Lbest
s |s ∈ S}

• Design encoding table for {Lbest
s |s ∈ S} • Build decoding table for {Lbest

s |s ∈ S}

9. Experiments

Algorithm 7 has been implemented using the Go language and has been executed on
a MacBook Pro with an M1 chip. The algorithm has been slightly modified so it finds both
the lower and upper bounds for ∆H. The lower bound points to ANS, which is close to the
best. In contrast, the upper bound shows ANS, whose coding redundancy ∆H is big (close
to the worst case). Note that a random selection of spreads produces ANS instances whose
∆H fall somewhere between the bounds. The following results have been obtained for 105

iterations of the FOR loop.

ANS States 128 256 512 1024

∆Hmin 1.5770 ×10−5 4.1869 ×10−6 1.0470 ×10−6 2.7868 ×10−7

∆Hmax 0.0346 0.0298 0.0348 0.0306

Spreads with ∆Hmin 22 68 138 156

Spreads with ∆Hmax 149 357 701 1044

Search Time for ∆Hmin 1 m 12 s 8 m 30 s 1 h 11 m 37 s 9 h 2 m 59 s

Search Time for ∆Hmax 1 m 23 s 8 m 13 s 1 h 9 m 58 s 8 h 47 m 5 s

We have increased the number of iterations of the FOR loop to n2, where n is the
number of states for n = {512, 1024}. The results are presented below.

Entropy 2023, 25, 672 20 of 23

n 512 1024

Iterations 262,144 1,048,576

Good Swaps 508 792

∆Hmin 1.0222607274 ×10−6 2.5842 ×10−7

∆Hmin after additional rounds 1.0222607271 ×10−6 2.5842 ×10−7

Additional Rounds 106 105

Better Spreads Found in Additional Rounds 8 0

Execution Time 872 m 6115 m

We see that due to the probabilistic nature of the Algorithm 7, even after a large number
of iterations, there is a non-zero chance of finding a spread with lower ∆H. In practise,
there are time restrictions imposed on the time needed for the execution of Algorithm 7.
The following results illustrate how much time is needed between two consecutive good
swaps that improve ∆H. The number of iterations of the FOR loop is 105.

ANS States 128 256 512 1024

Tunning Time 54 ms 235 ms 300 ms 374 ms

Optimisation Time 1 m 12 s 8 m 30 s 1h 11 m 37 9 h 2 m 59 s

Good Swaps 22 68 138 156

Time between Two Good Swaps 3 s 7 s 31 s 209 s

Average ∆H Gain per Good Swap 3 ×10−7 2.2 ×10−8 2.4 ×10−9 3.7 ×10−10

∆Hmin 1.5 ×10−5 4.1 ×10−6 1.04 ×10−6 2.78 ×10−7

Note that matrix inversion consititues the main computational overhead of Algorithm 7.
The experiments presented above have applied a standard Gaussian elimination (GE) for
matrix inversion, whose complexity is O(L3). Algorithm 7 can be sped up by (1) using a
more efficient algorithm for sparse matrix inversion (SMI) and (2) recycling computations
from previous matrix inversions. The table below gives the complexity of Algorithm 7 for
different matrix inversion algorithms and for the classical and quantum computers.

Classical Computer Quantum Computer

GE SMI [38] SMI [40] GE [41]

O(θL3) O(θL2.21) O(θL log2 L) O(θ(log2 L)3)

The experiments have confirmed that Algorithm 7 works well and is practical for
L < 128. However, for a larger L, it grows slower and quickly becomes impractical.
Optimisation of Algorithm 7 is beyond the scope of this work, and it is left for our possible
future investigations. Note that the algorithm becomes very fast when it uses quantum
matrix inversion.

We have taken the Calgary data corpus (see http://links.uwaterloo.ca/calgary.corpus.
html, accessed on 13 April 2023) and have compressed its files using ANS instances obtained
from Algorithm 7. Table 5 illustrates the results obtained.

 http://links.uwaterloo.ca/calgary.corpus.html
 http://links.uwaterloo.ca/calgary.corpus.html

Entropy 2023, 25, 672 21 of 23

Table 5. Compression results for Calgary corpus.

File Original Size Compressed Size Compressed Size
Name in bytes (Random Spread) (Optimised Spread)

bib 111,261 77,932 76,790
book1 768,771 458,920 440,678
book2 610,856 384,861 370,693

geo 102,400 69721 68,648
news 377,109 255,586 248,842
obj1 21,504 14,828 14,579
obj2 246,814 172,622 169,043

paper1 53,161 41,120 40,283
paper2 82,199 55,736 53,842
paper3 46,526 33,800 33,104
paper4 13,286 9948 9766
paper5 11,954 8954 8785
paper6 38,105 25,849 25,053

pic 513,216 120,041 115,319
progc 39,611 28,456 28,028
progl 71,646 46,669 44,905
progp 49,379 37,381 36,806
trans 93,695 74,192 73,107

The third column shows the sizes of files compressed using an instance of ANS with a
random spread. The fourth column gives sizes of the corpus files when compressed with
an instance ANS with optimised symbol spread. On average, we are getting a roughly 2.4%
improvement in compression rates.

Discussion

The main goal of compression is to reduce the redundancy of a file by encoding more
frequent symbols into shorter binary strings and less frequent symbols into longer ones.
Typically, for compression to work, it is necessary to describe the symbol statistics by its
symbol probabilities. In this case, a file can be treated as a sequence of independent and
identically distributed (i.i.d.) random variables, which correspond to the occurrence of
single symbols. Clearly, such single-symbol statistics do not reflect all existing probabilistic
characteristics of the file. Consequently, even the best (lossless) compression algorithm
is not able to squeeze the average length of a single symbol beyond the symbol alphabet
entropy. To achieve a better compression ratio, it is necessary to model file statistics by con-
sidering N-symbol alphabets, where N = 2, 3, . . . (see [42]). Clearly, the higher N, the better
approximation of real statistics of the file and, consequently, better the compression rate.
But the price to pay is a significant (exponential) increase in the compression complexity.
We would like to emphasise that given a fixed symbol alphabet, both AC and ANS allow
us to achieve a compression ratio close to the alphabet entropy. The main difference is
processing speed which allows ANS to compress files for better file statistics (for N-symbol
alphabets with higher N). Let us compare CPU implementations of AC and ANS. AC can
reach speed of ≈200 MB/s/core while ANS achieves a speed of ≈2000 MB/s/core. For
GPU implementations, ANS can be run 100 times faster than AC. This implies that, assum-
ing the same computing resources, ANS provides better compression ratios compared to
AC. This is due to the fact that ANS is faster and can apply more complex statistics for
N-symbol alphabets (a higher N).

10. Conclusions

The work addresses an important practical problem of compression quality of the ANS
algorithm. In the description of ANS, its symbol spread can be chosen at random. Each
symbol spread has its own characteristic probability distribution of ANS states. Knowing
the distribution, it is possible to compute the ANS compression ratio or, alternatively, its
coding redundancy ∆H.

Entropy 2023, 25, 672 22 of 23

We present two algorithms that allow a user to choose symbol spreads that minimise
∆H. Algorithm 5 determines an ANS instance (its symbol spread) whose state probabilities
follow the natural ANS state bias. It is fast even for L > 212, but unfortunately, it does not
provide the minimal ∆H. Algorithm 7 provides a solution. It is able to find minimal ∆H
with a probability that depends on the number of random coin tosses θ.

We have conducted an experiment for L = 16 that shows the behaviour of the average
length of ANS encodings. Further experiments have confirmed that matrix inversion
creates a bottleneck in Algorithm 7 and makes it impractical for a large L. An immediate
remedy is the application of specialised algorithms for sparse matrix inversion, together
with recycling computations from previous matrix inversions. Development of a fast
version of Algorithm 7 is left as a part of our future research.

The main research challenge is, however, how to construct ANS instances in such a way
that their minimum coding redundancy is guaranteed by design. It means that we have to
understand the interplay between symbol spreads and their equilibrium probabilities. As
ANS is also FSM, it can be visualised as a random graph whose structure is determined by
symbol spread. This brings us to an interesting link between ANS and random graphs [43].

Author Contributions: Conceptualisation and methodology J.P. and J.D.; software implementation
and validation M.P.; analysis and investigation S.C., A.M. and P.M.; original draft preparation and
review and editing all coauthors. All authors have read and agreed to the published version of
the manuscript.

Funding: Josef Pieprzyk, Marcin Pawłowski and Paweł Morawiecki have been supported by Polish
National Science Center (NCN) grant 2018/31/B/ST6/03003.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Draft of this paper is available at https://arxiv.org/pdf/2209.02228
.pdf, accessed on 13 April 2023.

Acknowledgments: We would like to thank the Reviewers for their critical comments, which have
significantly improved the contents and presentation of the work. We also thank Monika Pieprzyk
for a thorough proofreading of our paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shannon, C.E. A mathematical theory of communication. Bell Sys. Tech. J. 1948, 27, 623–656. [CrossRef]
2. Huffman, D. A Method for the Construction of Minimum-Redundancy Codes. Proc. IRE 1952, 40, 1098–1101. [CrossRef]
3. Ahmed, N.; Natarajan, T.; Rao, K. Discrete Cosine Transform. IEEE Trans. Comput. 1974, C-23, 90–93. [CrossRef]
4. Hudson, G.; Léger, A.; Niss, B.; Sebestyén, I.; Vaaben, J. JPEG-1 standard 25 years: Past, present, and future reasons for a success.

J. Electron. Imaging 2018, 27, 1. [CrossRef]
5. Britanak, V. On Properties, Relations, and Simplified Implementation of Filter Banks in the Dolby Digital (Plus) AC-3 Audio

Coding Standards. IEEE Trans. Audio Speech Lang. Process. 2011, 19, 1231–1241. [CrossRef]
6. Ehmer, R.H. Masking by Tones vs Noise Bands. J. Acoust. Soc. Am. 1959, 31, 1253–1256. [CrossRef]
7. Kochanek, J.; Lansky, J.; Uzel, P.; Zemlicka, M. The new statistical compression method: Multistream compression. In Proceedings

of the 2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT), Ostrava,
Czech Republic, 4–6 August 2008; pp. 320–325. [CrossRef]

8. Langdon, G.; Rissanen, J. A simple general binary source code (Corresp.). IEEE Trans. Inf. Theory 1982, 28, 800–803. [CrossRef]
9. Langdon, G.G. An Introduction to Arithmetic Coding. IBM J. Res. Dev. 1984, 28, 135–149. [CrossRef]
10. Rissanen, J. Generalized Kraft Inequality and Arithmetic Coding. IBM J. Res. Dev. 1976, 20, 198–203. [CrossRef]
11. Storer, J.A.; Szymanski, T.G. Data compression via textual substitution. J. ACM 1982, 29, 928–951. [CrossRef]
12. Welch. A Technique for High-Performance Data Compression. Computer 1984, 17, 8–19. [CrossRef]
13. Ziv, J.; Lempel, A. Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 1978, 24, 530–536.

[CrossRef]
14. Cleary, J.; Witten, I. Data Compression Using Adaptive Coding and Partial String Matching. IEEE Trans. Commun. 1984,

32, 396–402. [CrossRef]
15. Robinson, A.; Cherry, C. Results of a prototype television bandwidth compression scheme. Proc. IEEE 1967, 55, 356–364.

[CrossRef]
16. Duda, J. Asymmetric Numeral Systems. arXiv 2009, arXiv:0902.0271.

https://arxiv.org/pdf/2209.02228.pdf
https://arxiv.org/pdf/2209.02228.pdf
http://doi.org/10.1002/j.1538-7305.1948.tb00917.x
http://dx.doi.org/10.1109/JRPROC.1952.273898
http://dx.doi.org/10.1109/T-C.1974.223784
http://dx.doi.org/10.1117/1.JEI.27.4.040901
http://dx.doi.org/10.1109/TASL.2010.2087755
http://dx.doi.org/10.1121/1.1907853
http://dx.doi.org/10.1109/ICADIWT.2008.4664366
http://dx.doi.org/10.1109/TIT.1982.1056559
http://dx.doi.org/10.1147/rd.282.0135
http://dx.doi.org/10.1147/rd.203.0198
http://dx.doi.org/10.1145/322344.322346
http://dx.doi.org/10.1109/MC.1984.1659158
http://dx.doi.org/10.1109/TIT.1978.1055934
http://dx.doi.org/10.1109/TCOM.1984.1096090
http://dx.doi.org/10.1109/PROC.1967.5493

Entropy 2023, 25, 672 23 of 23

17. Grumbling, E.; Horowitz, M. (Eds.) Quantum Computing: Progress and Prospects; The National Academies Press: Washington, DC,
USA, 2019. [CrossRef]

18. Petz, D. Quantum Compression. In Theoretical and Mathematical Physics; Springer: Berlin/Heidelberg, Germany, 2008; pp. 83–90.
[CrossRef]

19. Zhang, Q.; Lai, H.; Pieprzyk, J.; Pan, L. An improved quantum network communication model based on compressed tensor
network states. Quantum Inf. Process. 2022, 21, 253. [CrossRef]

20. Rozema, L.A. Quantum Data Compression of a Qubit Ensemble. Phys. Rev. Lett. 2014, 113, 160504. [CrossRef]
21. Pivoluska, M.; Plesch, M. Implementation of quantum compression on IBM quantum computers. Sci. Rep. 2022, 12, 5841.

[CrossRef]
22. Camtepe, S.; Duda, J.; Mahboubi, A.; Morawiecki, P.; Nepal, S.; Pawłowski, M.; Pieprzyk, J. ANS-based Compression and

Encryption with 128-bit Security. Int. J. Inf. Secur. 2022, 21, 1051–1067. [CrossRef]
23. Dube, D.; Yokoo, H. Fast Construction of Almost Optimal Symbol Distributions for Asymmetric Numeral Systems. In Proceedings

of the 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019; IEEE: New York, NY, USA,
2019. [CrossRef]

24. Townsend, J.; Bird, T.; Barber, D. Practical Lossless Compression with Latent Variables Using Bits Back Coding 2019. Available
online: http://xxx.lanl.gov/abs/1901.04866 (accessed on 13 April 2023).

25. Lettrich, M. Fast and Efficient Entropy Compression of ALICE Data using ANS Coding. In EPJ Web of Conferences; EDP Sciences:
Les Ulis, France, 2020; Volume 245, p. 01001.

26. Ko, H.H. Enhanced Binary MQ Arithmetic Coder with Look-Up Table. Information 2021, 12, 143. [CrossRef]
27. Marpe, D.; Schwarz, H.; Wiegand, T. Context-based adaptive binary arithmetic coding in the H.264/AVC video compression

standard. IEEE Trans. Circuits Syst. Video Technol. 2003, 13, 620–636. [CrossRef]
28. Giesen, F. Interleaved Entropy Coders. 2014. Available online: http://xxx.lanl.gov/abs/1402.3392 (accessed on 13 April 2023).
29. Najmabadi, S.M.; Tran, T.H.; Eissa, S.; Tungal, H.S.; Simon, S. An architecture for asymmetric numeral systems entropy decoder-a

comparison with a canonical Huffman decoder. J. Signal Process. Syst. 2019, 91, 805–817. [CrossRef]
30. Collet, Y.; Kucherawy, M. Zstandard Compression and the ‘application/zstd’ Media Type. RFC 8878. 2021. Available online:

https://www.rfc-editor.org/info/rfc8878 (accessed on 13 April 2023).
31. Alakuijala, J.; Van Asseldonk, R.; Boukortt, S.; Bruse, M.; Coms, a, I.M.; Firsching, M.; Fischbacher, T.; Kliuchnikov, E.; Gomez, S.;

Obryk, R.; et al. JPEG XL next-generation image compression architecture and coding tools. In Proceedings of the Applications
of Digital Image Processing XLII, San Diego, CA, USA, 12–15 August 2019; Volume 11137, pp. 112–124.

32. Duda, J. Asymmetric numeral systems as close to capacity low state entropy coders. CoRR 2013. Available online: http:
//xxx.lanl.gov/abs/1311.2540 (accessed on 13 April 2023).

33. Camtepe, S.; Duda, J.; Mahboubi, A.; Morawiecki, P.; Nepal, S.; Pawłowski, M.; Pieprzyk, J. Compcrypt—Lightweight ANS-Based
Compression and Encryption. IEEE Trans. Inf. Forensics Secur. 2021, 16, 3859–3873. [CrossRef]

34. Brémaud, P. Markov Chains; Springer International Publishing: Berlin/Heidelberg, Germany, 2020. [CrossRef]
35. Seabrook, E.; Wiskott, L. A Tutorial on the Spectral Theory of Markov Chains 2022. Available online: http://xxx.lanl.gov/abs/

2207.02296 (accessed on 13 April 2023).
36. Haggstrom, O. Finite Markov Chains and Algorithmic Applications; London Mathematical Society: London, UK, 2002.
37. Duda, J. Encoding of Probability Distributions for Asymmetric Numeral Systems. CoRR 2021. Available online: http://xxx.lanl.

gov/abs/2106.06438 (accessed on 13 April 2023).
38. Casacuberta, S.; Kyng, R. Faster Sparse Matrix Inversion and Rank Computation in Finite Fields. arXiv 2021, arXiv:2106.09830v1.

Available online: http://xxx.lanl.gov/abs/2106.09830 (accessed on 13 April 2023).
39. Duda, J.; Niemiec, M. Lightweight compression with encryption based on Asymmetric Numeral Systems. arXiv 2016,

arXiv:1612.04662.
40. Hsieh, C.J.; Sustik, M.A.; Dhillon, I.S.; Ravikumar, P. Sparse Inverse Covariance Matrix Estimation Using Quadratic Approxima-

tion. 2013. Available online: https://arxiv.org/pdf/1306.3212.pdf (accessed on 13 April 2023).
41. Harrow, A.W.; Hassidim, A.; Lloyd, S. Quantum algorithm for solving linear systems of equations. Phys. Rev. Lett. 2009, 15,

150502. [CrossRef]
42. Pieprzyk, J.; Hardjono, T.; Seberry, J. Fundamentals of Computer Security; Springer: Berlin/Heidelberg, Germany, 2003. [CrossRef]
43. Bollobás, B. Random Graphs; Cambridge University Press: Cambridge, UK, 2001. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.17226/25196
http://dx.doi.org/10.1007/978-3-540-74636-2_6
http://dx.doi.org/10.1007/s11128-022-03609-3
http://dx.doi.org/10.1103/PhysRevLett.113.160504
http://dx.doi.org/10.1038/s41598-022-09881-8
http://dx.doi.org/10.1007/s10207-022-00597-4
http://dx.doi.org/10.1109/isit.2019.8849430
http://xxx.lanl.gov/abs/1901.04866
http://dx.doi.org/10.3390/info12040143
http://dx.doi.org/10.1109/TCSVT.2003.815173
http://xxx.lanl.gov/abs/1402.3392
http://dx.doi.org/10.1007/s11265-018-1421-4
https://www.rfc-editor.org/info/rfc8878
http://xxx.lanl.gov/abs/1311.2540
http://xxx.lanl.gov/abs/1311.2540
http://dx.doi.org/10.1109/TIFS.2021.3096026
http://dx.doi.org/10.1007/978-3-030-45982-6
http://xxx.lanl.gov/abs/2207.02296
http://xxx.lanl.gov/abs/2207.02296
http://xxx.lanl.gov/abs/2106.06438
http://xxx.lanl.gov/abs/2106.06438
http://xxx.lanl.gov/abs/2106.09830
https://arxiv.org/pdf/1306.3212.pdf
http://dx.doi.org/10.1103/PhysRevLett.103.150502
http://dx.doi.org/10.1007/978-3-662-07324-7
http://dx.doi.org/10.1017/cbo9780511814068

	Introduction
	Arithmetic Coding versus Asymmetric Numeral Systems
	Arithmetics: AC versus rANS
	FSM Representation: Quasi-AC, M Coders and tANS
	LIFO Handling and Statistical Modelling
	Industry Status

	Asymmetric Numeral Systems
	Optimality of ANS—Bounds and Limits
	State Probabilities and Markov Chains
	Tuning ANS Symbol Spreads
	Optimisation of ANS
	Case Study
	Optimal ANS for Fixed ANS Parameters
	Optimalisation with Quantisation

	Cryptographic ANS
	Experiments
	Conclusions
	References

