Eur. Phys. J. C (2018) 78:754
https://doi.org/10.1140/epjc/s10052-018-6235-9

THE EUROPEAN

) CrossMark
PHYSICAL JOURNAL C

Regular Article - Theoretical Physics

Spatially modulated vacua in a Lorentz-invariant scalar field

theory

Muneto Nitta'?, Shin Sasaki>, Ryo Yokokura>~*

1 Department of Physics, and Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521,

Japan

2 Department of Physics, Kitasato University, Sagamihara 252-0373, Japan

3 Department of Physics, Keio University, Yokohama 223-8522, Japan

Received: 24 April 2018 / Accepted: 10 September 2018
© The Author(s) 2018

Abstract Spatial modulation has been studied for a long
time in condensed matter, nuclear matter and quark matter,
where the manifest Lorentz invariance is lost due to the finite
density/temperature effects and so on. In this paper, spatially
modulated vacua at zero temperature and zero density are
studied in Lorentz invariant field theories. We first propose
an adaptation of the Nambu—Goldstone theorem to higher
derivative theories under the assumption of the absence of
ghosts: when a global symmetry is spontaneously broken
due to vacuum expectation values of space-time derivatives
of fields, a Nambu—Goldstone (NG) boson appears without
a canonical kinetic (quadratic derivative) term with a quar-
tic derivative term in the modulated direction while a Higgs
boson appears with a canonical kinetic term. We demonstrate
this in a simple model allowing (meta)stable modulated vac-
uum of a phase modulation (Fulde—Ferrell state), where an
NG mode associated with spontaneously broken translational
and U (1) symmetries appears.

1 Introduction

Spatially modulated ground states were theoretically pro-
posed in superconductors a half century ago [1-3], and such
states are now called Fulde—Ferrell-Larkin—Ovchinnikov
(FFLO) states. More precisely, Fulde—Ferrell (FF) and
Larkin—Ovchinnikov (LO) states denote modulations of a
phase and amplitude of a condensation, respectively. The LO
states were shown to be ground states in the presence of a
magnetic field inducing the spin imbalance for a Cooper pair
of a superconductor [4]. In the last couple of years, there
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have been several claims of its observation (see Ref. [5]
for a review). Recently, ultracold atomic Fermi gases have
renewed interest in FFLO states (see Refs. [6,7] for areview).
The spin polarized superfluid state was observed in Ref. [§]
and it was claimed that the FFLO state has been achieved in
this experiment. FFLO states in a ring were also proposed in
cold Fermi gases [9] and in superconductors [10].

FFLO states, called twisted kink crystals, were also stud-
ied in the chiral Gross—Neveu model in 141 dimensions [11—
13] (see [14] for application to a superconductor). Spatially
modulated chiral condensations, such as FF states (called
dual chiral density wave or chiral spiral) [15,16] and LO
states (called real kink crystal) [17,18], have been proposed
to appear in a certain region of the phase diagram of QCD in
3+1 dimensions (see Ref. [19] as a review). Although the
Cooper pair is usually refers to the particle—particle con-
densates, the chiral condensation is related to the particle—
antiparticle (or hole) pairing. They were also proposed in
diquark condensations exhibiting color superconductivity in
high density QCD (see [20,21] as areview) and were also dis-
cussed in the context of the AdS/CFT correspondence [22—
25].

These spatial modulations were originally proposed in
condensations of fermions forming Cooper pairs. In terms
of the Ginzburg-Landau effective theory, which is a scalar
field theory, these states are realized as ground states of the
theory due to the presence of a wrong sign of a gradient
term and positive higher derivative terms. In general, these
kinds of inhomogeneous states spontaneously break trans-
lational as well as rotational symmetries. Nambu—Goldstone
(NG) modes associated with these broken symmetries in such
backgrounds were studied in Refs. [26,27]. After all, inho-
mogeneous states in condensed matter, nuclear matter and
quark matter studied so far are all realized in theories where
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the Lorentz invariance is explicitly broken due to the finite
density/temperature effects and so on.

In this paper, we study spatially modulated vacua at zero
temperature and zero density (but not ground states in finite
density and/or temperature) in manifestly Lorentz invariant
field theories, with a particular attention to spontaneous sym-
metry breaking and NG bosons. From a viewpoint of low-
energy effective theories, field theories generically receive
higher derivative corrections.

We assume that there is no ghost in the theory implying the
absence of more than one derivative on one field which can
not be eliminated by partial integration. For example, the term
8% = 8,,0™ ¢ with space-time index m, generally causes the
so-called Ostrogradski instability [28]. This is a crucial dif-
ference with non-relativistic cases. Then, all higher derivative
terms come in a way that only a single space-time derivative
acting on one field, 3" ¢. Thus, the effective theory is in gen-
eral a function of 3" ¢ (complemented by a potential term).
In this set-up we study an adaptation of the NG theorem to
higher derivative theories , stating that when a global symme-
try is spontaneously broken due to vacuum expectation val-
ues of space-time derivatives of fields, an NG boson appears
without canonical kinetic (quadratic derivative) terms with
a quartic derivative term in the modulated direction, while a
Higgs boson appears with a non-zero canonical kinetic term.

After giving general discussion of the stability of general
higher derivative models, we give a simple model illustrating
this. Our model admits (meta)stable modulated vacuum of a
phase modulation (Fulde—Ferrell state), where an NG mode
associated with spontaneously broken translational and U (1)
symmetries appears.

2 Adaptation of the Nambu-Goldstone theorem to
higher derivative theories

In this section, we apply the NG theorem to the case that
global symmetries of a Lagrangian are spontaneously bro-
ken due to vacuum expectation values (VEVs) of space-time
derivatives of fields. Here, we consider the case that there
is no Ostrogradski instability [28] assuming that there is no
more than one space-time derivative on a field. We show
that an analogue of the NG boson appears without canonical
kinetic term with a quartic derivative term. In addition, we
will show that a Higgs boson, which is defined by a mode
that is orthogonal to the above mentioned NG mode, appears
with a non-zero canonical kinetic term in the vacuum.

In the following, we consider d-dimensional relativistic
field theories where the Lorentz invariant Lagrangian L is
given by a functional of 9,,¢,. Here m = 0,1,...,d — 1
is the space-time index and ¢, (a = 1, ..., N) are complex
scalar fields. The energy functional £ of the theories depends
only on the first time derivative of fields which we denote
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D) = 3y @a, D} = du@a. The index I = 1,...,dN labels
the fields and directions of the space-time derivatives. Vacua
|0) in the theories are defined such a way that they provide
extrema of the energy £ with respect to &y, CD‘;:

2 _% o (1)
I, fo!
In these extrema, we assume that the fields ®;, <1>J,f develop
VEVs:
(01D;]0) = vy, <0|¢I|0) =y. (2)
Here some of these VEVs are not zero and they need not to
be constants in general. Indeed, as we will see later, they are
spatially varying functions for modulated vacua. Since ®;
are in fact given by the space-time derivative of the fields
(therefore they are Lorentz vectors), the non-zero VEVs (2)
generically break the translational and rotational symmetries.
Hereafter, we assume that VEVs are spacelike vectors.!
Now we introduce the dynamical fields @ I = OmPa, cf;}r =
quﬂ as fluctuations around a vacuum determined by the
condition (1). We shift the fields around the VEVs, &; —
v; + @7, and the energy is expanded as

Ew+d, 0+ o

_ 1 ~. - 1)
:5(U,U)+§((D;,CD])MIJ(i!)+...’ 3)
J

where we have defined the following Hermitian matrix:

9%E a’E
ad T« At amT
adtad, | adiad
I 1 J
My = 5 v s v 4
P2E 2%
3<D13<I>/ v 3<DIBCI>'] v

Here the symbol x|, stands for the values evaluated in the
vacuum. We note that the matrix M determined by the second
derivatives of £ is just the curvature of the energy density and
itis in general a function of x! (i = 1,2, 3). Inorder that the
extrema defined by (1) become local minima of the energy,
M should be a positive semi-definite matrix for all the regions
inx.

These conditions of vacua do not guarantee that they are
global minima but meta-stable local minima are allowed
in general. From the expression (3), one observes that the
eigenvalues of M correspond to coefficients of the quadratic
kinetic terms of the dynamical fields ¢,, 952 . Since M is a
positive semi-definite matrix, there are no fluctuation modes

! The Higgs mechanism caused by non-zero VEVs of the time deriva-
tive of scalar fields is known as the ghost condensation [29]. Henceforth,
we never consider VEVs of timelike vectors.
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whose kinetic terms have the wrong sign (negative sign in
the energy functional). However we stress that there are pos-
sible zero eigenvalues for a general M. When M has zero
eigenvalues, the quadratic terms of the corresponding modes
vanish.

In order to see the meaning of the zero eigenvalues of
M, we elucidate the relation between the matrix M ;md the
spontaneous symmetry breaking. The fields @y, <I>; trans-
form according to symmetries of theories:

Q" @/l =i(T"®),, [iQ" ®)1=—i(T"®)]. (5)
Here Q4 are generators of the symmetry groups and the Her-
mitian matrices T4 are an irreducible representation of 0A.

In a vacuum |0), some of the fields ®; develop non-zero
VEVs and we have

0I[i Q%, @;1|0) = i (T*v),,
(OIi @, @}110) = —i (T"v)}. ©)

We now define the following vector,

A=y (TAU)I
(T45), = (—(TAvﬂ)' ™)

For generators that satisfy 749 = 0, the corresponding sym-
metry is preserved in the vacuum while for TA'Y # 0 the
symmetry is spontaneously broken. The energy functional £
is invariant under the following transformation,

D) — &y +ig(TAD), @ - o] —is (T4 D)),

®)
where g4 are infinitesimal real parameters. Then we have
o€ & +
——(T"®); — —(T" D)}, =0. ©)
0Dy D),

By differentiating the above relation with respect to ®;, <I>I
and evaluate the result in a vacuum, we find

M (TN3), =0. (10)

Therefore TA'3 are eigenvectors associated with the zero
eigenvalues of M. The relation (10) indicates that when some
of the fields @y, QD}L develop VEVs that spontaneously break
symmetries, then the canonical quadratic kinetic terms for the
modes that correspond to the zero eigenvalues of M vanish.
We call these Nambu—Goldstone (NG) modes. On the other
hand, the modes that are orthogonal to the NG modes appear
with quadratic kinetic terms in the energy functional. We
call these Higgs modes. We note that since the vector TA'Y

generically depends on x, there is a possibility that T4 (x)
vanishes at some specific points x! = xé in a general setup. At
these points, the broken symmetries are recovered locally and
one expects that a non-zero quadratic term associated with
the NG mode recovers. We do not exclude this possibility but
it is nevertheless not always the case.

Indeed, as we will show in an explicit example of the
spatially dependent VEV in the next section, the vector TA'Y
never vanishes at special points and the theorem discussed
in this section completely works well in all regions in space-
time.

3 A model for spatially modulated vacua

In order to understand the discussion in the previous sec-
tion concretely, we introduce a Lorentz invariant scalar field
model where, in addition to the canonical quadratic kinetic
terms, higher derivative corrections are involved. We begin
with the observation that the global stability of modulation
is guaranteed when the highest power of the derivative terms
|8,,¢| is odd and an appropriate sign of the terms are cho-
sen. We propose a scalar field model of the simplest exam-
ple where a spatially modulated state is allowed as a (meta-
)stable vacuum. We then apply the Nambu—Goldstone theo-
rem discussed in the previous section to the model and show
that there are modes where the quadratic kinetic terms vanish
(NG modes). We demonstrate that there are always associ-
ated modes with the non-zero quadratic kinetic terms (Higgs
modes).

3.1 Global stability of modulation

Let us consider a complex scalar field ¢. The general Lorentz
invariant Lagrangian containing finite powers of [d¢|> =
Impd™ @ is
2n ) 2|"

L=F0p|" +---=F|=loI"+Vol"| +---, (AD
where n € 7Z is the highest power of the derivative terms
and --- implies lower orders. The space-time index m is
contracted by 1,,, = diag.(—1, 1, 1, 1). The dot in ¢ stands

for the derivative of the field with respect to x* and V is
spatial derivatives. The canonical conjugate momentum is

oL - _
o= 55 = F(=1)"ngldg|*" 2 + - (12)

Then, the Hamiltonian associated with the Lagrangian (11)
reads

H=my¢+ 50— L
=F (=1)"@2n - D|dg|*" £ Vo[> - .. (13)

@ Springer
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Let us discuss the stability of a vacuum in the model.
First, by looking at the second term in (13), we see that the
energy is bounded from below only when one chooses the
upper sign in (11). Otherwise, the spatial gradient of the field
causes an instability as |Vp|?> — oo. Second, the first term
in (13) implies that the energy is bounded from below only
when the highest order n is odd. For even n, an instability in
the temporal direction grows |¢|?> — oco. Therefore, the sim-
plest Lagrangian is of the third order in |d¢|? containing six
derivatives. In the next subsection, we consider an example
of the third order Lagrangian allowing a modulated vacuum.

3.2 A model and vacua

We propose a four-dimensional Lorentz invariant complex
scalar field model whose Lagrangian is given by

L= —koupd"g+ (A — adnpd”p)(9,90"¢)(9,90"p).
(14)

Here k > 0,A > 0,0 > 0 are real constants.>? The
Lagrangian (14) contains the ordinary kinetic term of the
complex scalar field ¢ and the higher derivative correc-
tions. The Lagrangian (14) is invariant under a global U (1)
transformation ¢ — ¢/?¢ with a constant 6, in addition
to the Poincaré symmetry including the SO(3, 1) Lorentz
and translational symmetries. The Lagrangian can contain a
potential term of ¢ too. In this paper, for simplicity we do
not consider a potential term. In this case, the Lagrangian
possesses a shift symmetry

0 —> ¢+, (15)

where c is a constant.
The energy functional associated with the Lagrangian (14)
is calculated to be

E=mpp + ﬂ@(j) - L
= k(91 +109P) + {1 — a (1o + g )]
x {3191 = 2 @9)? - $* i) — @i9)*9;9)°
+ 20l Il - 2 @9)? — §2@0i0)* + 0197 0,9

(16)

where i, j = 1,2,3, my, mg are the canonical momenta
for ¢, ¢ and ¢ = ;T‘%,é = % The spatially modulated
vacua (ground states) are expected to appear at extrema of
the energy functional (16).

2 In a realistic setup, for example, such as Gross—Neveu models, low-
energy effective theory of high density QCD, these parameters are deter-
mined by the dynamics of the UV regime. See for example [17,30,31].

@ Springer

We now employ an ansatz ¢ = ¢(x!) for one-dimensional
spatial modulation along the x ' -direction: (0]d;¢[0) # 0. We
also assume static configurations. Then the energy functional
(16) becomes

& =aldipl® — Aldipl* + k|d1pl. (17)

The function £(x) is interpreted as a potential for x =
1819]% > 0. It is obvious that £(x)(x > 0) has a local min-
imum at x = 0 in which the vacuum energy is £(0) = 0
and the scalar field ¢ has a constant VEV. Whether £ (x) has
another minimum or not crucially depends on the parame-
ters k, A, «. Since £ (x) = 3ax? — 21x + k, if the condition
22 — 3ak > 0 is satisfied, £(x) has another vacuum. In this
case, the function £(x) has extrema at

A+ VA2 — 3k

3 (18)

X4+ =

Since k > 0, x = x_ corresponds to a local maximum while
x = x4 # 01is a minimum which is a candidate of a mod-
ulated vacuum. Note that A should be positive in order that
x4+ > 0. The condition & > 0 is necessary in order that the
potential is bounded from below. We find that the vacuum
energy is classified according to the discriminant condition
of the function @x? — Ax + k. We have three distinct types
of vacua. When the parameters k, A, « satisfy the condition
22 — 4ak < 0, then the function &£(x) becomes positive
definite. The local vacuum energy at x = x, is positive
E(x4) > 0. This is a meta-stable vacuum which decays to
the global minimum (true vacuum) x = 0 within a finite
time. See Fig. 1a for the potential profile.

When the parameters satisfy the condition A> — 4ok = 0,
the potential function £ (x) looks like Fig. 1b. In addition to
the global vacuum x = 0, we have a local vacuum x = x4
in which £(x;) = 0. They are actually global vacua and
are degenerated. Finally, when the condition 22 —dak >0
is satisfied, the function £(x) looks like Fig. 1c. Now the
vacuum x = ( becomes meta-stable and the vacuum at x =
x4 is energetically favoured. Then the true vacuum is located
at x = x4 in which £(x4) < 0.

In each vacuum we have |3;¢|> = x,.. The general solu-
tion that satisfies this relation is

X1 .
ol = «/_x+/ ds ') (19)
C

where ¢ is a constant and F(s) is a real function. We are
interested in a spatially modulated vacuum state. The most
conservative choice is a linear function F (s) = ps where p
is a constant. As we will see below, this vacuum preserves
the highest symmetry in the theory. The vacuum is then given
by
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251

20F 0.3F
0.2F

0.1F

3.0

ds 1b 13 Zb 23 Sb ﬁz d4 dG
() E(x4) >0 (@ =1,A = 3.8,k = 4)

Fig. 1 Schematic pictures of the energy function £(x), the potential
forx = |81(p|2‘ The vertical axis stands for the energy £(x) while the
horizontal axis for x. The local vacua for a positive, b zero and ¢ nega-

o) = ge™,  peR, @eC, 20)
where the constants p, ¢g satisfy p?|go|> = x4. This is
the ground state where the spatial modulation along the x!-
direction occurs. The period of the modulation is given by
27/ p. It is easy to confirm that the modulated vacuum (20)
satisfies the equation of motion as follows. The equation of

motion for ¢ in the model (14) is given by

N [ka% +ad" 9(3,0)2(3p9)°

=20, — 8" §)(9p9)*0" 5] = 0. 1)

For a configuration ¢ = ¢(x!), we have

kop + 01 [ adrplingl* = 20. - altrpP 19 0g| = 0.
22)

In the modulated vacuum (20), we have [91¢|?> = Xy =
const. Therefore the Eq. (22) becomes
@30) [3x? = 20 + k] =0. (23)
Since 305)@2r — 2Xx4+ + k = 0, we have shown that the mod-
ulated vacuum (20) satisfies the equation of motion.

We have a spatially modulated vacuum (20) along the
x!_direction in which (0]319|0) = v = ipggei?* £ 0.
It is obvious that the translational symmetry along the x'-
direction and the rotational symmetries in the (x!, x2) and
(x', x3) planes are spontaneously broken in the modulated
vacuum. Then the four-dimensional Poincaré symmetry is
broken down to that in three dimensions.

As a matter of fact, due to the U (1) symmetry ¢ — eiego,
the simultaneous operation of the translation x! — x! +a
and the U (1) transformation ¢ — e~"P%y is preserved in
the modulated vacuum (20). Here a is a constant. Mean-
while, the combination of the translation and the inverse

(b) E(z1) =0 (a=1,A=2k=1)

Oé 1.0 15 1}
©) £z ) <0 (a=1,A=3,k=1)

tive vacuum energies are shown. Examples of the parameters that satisfy
the conditions in the main body of the text are shown

rotation x! — x! 4+ a, ¢ — eTP% is broken. There-

fore the global symmetry including the translational oper-
ation along the x!-direction is broken in such a way that
P! x U(1) = [P! x U(1)]sim. Here P! represents transla-
tion along the x'-direction and “sim” means the simultane-
ous operation. As we have remarked above, this symmetry
breaking pattern is a consequence of the simplest choice of
the modulated vacuum (20). No other choices of F (s) results
inthis[P! xU (1)]sim symmetry. Note that the translation P!
and the rotations in the (x!, x2) and (x!, x3) planes are not
independent each other [32]. Therefore we expect that there
is one NG mode associated with the spontaneous symmetry
breaking P! x U(1) — [P! x U(1)]sim.> We will clarify
this issue in the followings subsections.

3.3 Linear analysis: Nambu—Goldstone and Higgs bosons

In this subsection, we show the stability analysis in our
model, but the analysis employed here is completely gen-
eral at the linear level for any model admitting local vacuum
exhibiting a spatial modulation. We now shift the field from
the modulated vacuum (20) and introduce the fluctuation ¢
as a dynamical field:
¢ — (p) +9¢, 24
where (p) = @pe'P* "is the modulating VEV. In the follow-
ing, we will show that there are no fluctuation modes that

cause instabilities of the vacuum (20). The quadratic terms
of the dynamical scalar field ¢ are extracted from the energy:

Equad. = (k + ax2)3;,¢0" 3'
. 1 -
+ (A — axp) pPee? ™ (9;¢)*
-7 _9%ipyl ~
+ (0 — axy) p*@ie HP (3,0)*

3 Applications of this P! x U (1) symmetry to the pion condensate can
be found, for example, in Refs. [33,34].

@ Springer
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+ (9ax? — 4rxy + k) 1§01 ¢
+ (0 = 3axy) pPegePy (3161
+ (0 = 3axy) pP@ge i (319)°
1

= -3 M. 25
3 7] (25)

Here the index m = 0, 2, 3 is contracted by §,;;. The vector
¢ and the matrix M are defined by

3G
- 3 M; 0
= 5 M: . 26
v 019 ( 0 M2> (20
e

Each block diagonal sector is found to be

k—}—ax_zi_

: 1
My = 200 — axy) pPggedPr
- ; 1 5
200 — axy) p>gie 2T

k—f—axi

90()@2r —4rxy + k

M 2(A — 3ozx+)p2g0862i1’xl
2= ; :
2(A — 3ax+)p2¢§e_2’pxl

9ax_2i_ —4rxy +k
27)

We have separated the quadratic terms to the SO(2, 1)
Lorentz invariant sector (transverse direction) and the direc-
tion of the modulation. Since M is an Hermitian matrix, it is
diagonalized by a unitary matrix:

Uy 0

= ) 28
U ( 0 U2> (28)
Here Uj, U, are 2 x 2 unitary matrices. The eigenvalues s1, s2
of M are found to be
s1 =4x (A —axy), 8§y = 30leL —2Ax4+ + k. (29)
It is easy to show that s; > 0 and s, = 0 by the definition of
x4. The eigenvalues #1, , of M, are calculated as
f=4x;Gaxy — 1), 1 =3wxt —2xy +k  (30)
Again we find #; > 0 and f, = 0. There are positive and zero
eigenvalues as anticipated. This implies that our assumption
¢ = o = 03¢ = 0 guarantees the minimization condition

of the energy. Therefore, the eigenvalues and eigenvectors of
M are given by

1
NI

s1>0 : e

coss

@ Springer

(@)
1| @
=0 : = — ,
. 2= ol | 0
0
0
t1>0: e3= ! 0
T el | -0 |
(@)
0
Hh=0:e —; 0 31
T Vel | @
(@)

The unitary matrices are

U= <<¢>> <¢>>> Uy ! (—<¢>> (w))
ool \—(@) (o) ) Ligol \ @) (o))
(32)

We are faced with the fact that there are modes whose
quadratic kinetic terms disappear in the transverse (s = 0)
and the modulation (t, = 0) sectors. In order to under-
stand the nature of the zero eigenvalues of M, we analyze
the broken generator of the symmetry in the vacuum. The
vacuum vector v is non-zero only in the modulation sector.
Namely we have (d;¢) = 0 and (91¢) = ip(p()e"l”‘1 = 0.
Therefore

0
0

. ipx!

ipgoe'?

. |
—ipgoe” "

<y
I

33)

The action of the translation P! and the U (1) transformation
generators Tp1, Ty (1) on the VEVs are given by

Tpiv = ippope™, Tpiv = —ipGope ™,

. inx! - .= —ipx!
Ty = ippoppoe’™ , Tyayv = —ipgope P* . (34)

The generator associated with the unbroken symmetry is
defined by Ty, = Tp1 — Ty (1). Indeed, we find that the action
of Typ on U gives the vanishing result Ty, v = 0. On the other
hand, the generator associated with the broken symmetry is
given by Ty, = Tp1 + Ty(1). Then we find
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0 0
oo 0 0
= = PR |
b Tyv ip(p + p)poe'”
—Tyv ip(p + p)goe™P*
0
0
= 2ip? x e4. 35
p () 4 (35)
(@)

This is exactly the eigenvector for the zero eigenvalue 1, = 0
in the modulation sector. We note that the other zero eigen-
value 5o = 0 corresponds to the flat direction in the SO (2, 1)
invariant sector which does not accompany with the sponta-
neous symmetry breaking.

By using the unitary matrix U, in (32), the matrix M
is diagonalized and we derive the Higgs and the NG modes
associated with t; > 0,7 = 0 as

i =—=— (~@05 + (005"
V2l ’
1 o "
ine =5 (@09 + (p)ng). (36)

These are the linear combinations of the fields that contain
the derivative along the x'-direction. It is natural to define
the modes (36) as the derivative of the Higgs and NG fields
d1H(x) and 91N (x). As we have clarified, the quadratic
term of the NG field N (x) vanishes in the energy functional
(Lagrangian) while the Higgs field H (x) appears without a
mass gap.

Although, the NG and the Higgs modes emerge as an
derivative modes in the modulation direction, we are inter-
ested in the modes that propagate in the transverse directions
to the modulation. In order to examine this, we perform the
linear transformation of the upper half part of ¢ and diago-
nalize the left upper half of M. Using the unitary matrix U,
in (32), the matrix M is diagonalized and we find that the
Lagrangian in the quadratic order of fields is rewritten as

~m

51000 oL

Ve 0500 |] g™
= —= ~ 2 0
ﬁquad_ > (@mgcﬂpm,OvﬁDHJPNG) 0040 on
00 0~ -t
2/ \¢nG

(37

Here and hereafter, the index m is contracted by n,;; =
diag.(—1, 1, 1), and we have defined

1

V2lg0l
B0 =5 — (~6)938 + (©)026") . (38)
T V20l

(@936 + ()93

Here ¢; . is the mode associated with s; > 0 and therefore it
has the quadratic canonical kinetic term. On the other hand,
@0 is the one for s = 0 whose quadratic kinetic term
vanishes. Note that they are distinguished from the Higgs
and the NG modes in the modulation direction.

Again we define the fields d,;, A, 9; B that correspond to
the modes (38). Then, the linear transformations (38) are
interpreted as the following field re-definition:*

1 .
A = N, + D' ’
0 =5 — (199 + 0)9")
B=—— ()i + 0)7"). (39)
V2lgol

Then, the NG and the Higgs modes in the modulation direc-
tions are represented in terms of A, B:

¢NG = 1A —ipB, ¢y =01B —ipA. (40)
We obtain the Lagrangian for the dynamical fields A, B in
the modulated vacuum at the quadratic order as

1 ) 1
Louad. = — Esla,hAamA — §t1|813 —ipA|*. (41)

One observes that the field A does not propagate in the modu-
lation direction while B does not propagate in the transverse
direction. Only the gradient of B in the modulation direction
contributes to the energy. This is a reflection of the fact that
the term 91 A is included in the NG mode ¢ng and it never
appears in the Lagrangian at the quadratic order. A similar
analysis has been done in [35] for the dispersion relation of
NG and Higgs modes in a plane-wave type ground state in a
Lorentz non-invariant theory.

We did not consider a potential term for ¢, and conse-
quently the system has the shift symmetry in Eq. (15). What
we have identified as a “Higgs boson” here is actually an
NG boson associated with the spontaneous breaking of the
shift symmetry. If we add a potential term in the original
Lagrangian, the Higgs boson obtains a mass. Therefore, the
gapless property is originated from the shift symmetry, but
what we have found here is the existence of the quadratic
kinetic term of the Higgs boson, in contrast to its absence for
the NG boson.

3.4 Higher order terms

Here, we study higher order expansion, and show that the
cubic order of the expansion of the Lagrangian contains no

4 Finding a field re-definition that realizes H (x), N (x) in terms of ¢ is
not straightforward since the VEV (¢) is not a constant in the modulated
vacuum. One finds that removing the derivative d,; by an integration in
(38) is trivial but in (36) it is not.

@ Springer
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term consisting of only the NG boson gZﬁ,G, while in the quar-
tic order there exists a term consisting of only the NG boson
‘ﬁﬁIG' In general, we cannot exclude a possibility of ‘Z’I%IG apri-
ori, since the cubic derivative terms (31<,Z))3 exist after trans-
lational symmetry along x ' -direction and the rotational sym-
metries in the (x!, x2) and (x!, x?) are broken. To see this,
we calculate the cubic derivative terms of fluctuation d¢ in
the Lagrangian (14) with the introduction of the fluctuation
¢ — (@) + @ in (24). The explicit calculation leads to the
cubic derivative terms of the Lagrangian L.p, as

Leub, = ip2h — 9ax4) ((9)d16" — ($)815)181 5]
+ipPa(ie)’ @16H° — (¢)°(019)°)
+ip2h — 3ox1) (9)(01¢) (3,6 1)* 42)
—ip2x = 3ax ) (@) (016 (0;:,9)°
— 2ipaxy ((9)01§" — (¢)919)10,¢1.

By using Eq. (36), we find

X ~ ~
Leun, =1,/ @A+ ouxy + dox ) Pudlg
X ~
+i /%(—2,\ + 10ax )@+ - (43)

where the ellipsis - - - means that the terms with d,;,¢. Thus,
we find that the pure cubic NG term (,ZJI%G vanishes.

Now we see that the NG mode appears with a quar-
tic derivative term. The quartic derivative terms in the
Lagrangian (14) Lquar. is similarly obtained as

Lauart, = (= 9ax ;) [01¢]* + 3ap? () (3167)%[91 6]
+3ap®($)(919)%101 61
+ (L= 3ax ) (316)%(0:67)?
+ (0= 3x ) (31612 (976)°
—3ap (@) 191917 (3;¢")?
= 3ap*(@)*|0191*(9;¢)
— daxy0;@1710181* + ap*(p)*19:¢1* (16 7)°
+ap®(@)*10: 617 (319)*
+ (= ax ) (0:0)%(3;:¢1)°
+ap*(9)?10:61* (3,61
+ap®(@)°10: @12 (3:9)°. (44)

The quartic derivative term containing purely NG mode ¢nG
is found by using (36) as

1 ~
Laquart. = Z()» — 60X )P+ (45)

@ Springer

where the ellipsis - - - expresses the terms other than (ﬁﬁG.
Therefore, we conclude that a term consisting of only the
NG mode appears with the quartic derivative term.

4 Conclusion and discussions

In this paper, we have studied the spatially modulated vacua
in a Lorentz invariant field theory where no finite den-
sity/temperature effects are included. The NG theorem, for
a global symmetry spontaneously broken due to vacuum
expectation values of space-time derivatives of fields, states
that there appears an NG boson without a canonical quadratic
kinetic term but with a quadratic derivative term in the mod-
ulated direction and a Higgs boson. We demonstrated this
in the simple model whose energy functional can be written
by the derivative terms of the scalar fields. The potential for
the derivative terms allows a local vacuum as the modulated
vacuum, where translational symmetry along one direction
which we choose x! and the rotational symmetries in the
(x1, x?), (x', x?) planes are spontaneously broken together
with the U (1) symmetry. A simultaneous transformation of
P! and U(1) is preserved in the modulated vacuum. This
modulated vacuum is completely consistent with the equation
of motion. The vacuum energy depends on the parameters. In
this paper, we have focused on the vacuum where the modula-
tion takes place only in the x !-direction. Since the transverse
directions x’ﬁ, (m = 0,2, 3) preserve the SO (2, 1) Lorentz
symmetry, there are no mixing terms between d1¢ and 9,;¢
in the Lagrangian in the quadratic order of fields. This results
in the complete block diagonal form of the matrix M in (26).
We have explicitly shown that the “mass eigenstates” in the
modulation and the transverse directions are different. There-
fore we are not able to perform the diagonalization in these
directions simultaneously. We have employed the linear com-
bination of the fields (39) and represented the NG and Higgs
modes in terms of A and B. The A-mode propagates in the
transverse directions while the B-mode only oscillates in the
modulation direction. Finally, we have demonstrated that a
term containing only NG modes appears in the quartic deriva-
tive order. The Higgs mode, which is defined as the orthogo-
nal mode to the NG mode in our discussion, is indeed an NG
mode associated with the spontaneously broken shift symme-
try. We note that this Higgs mode has its non-zero quadratic
kinetic term. This is a consequence of the application of the
NG theorem to higher derivative field theories.

Although we have illustrated the stability of the modulated
vacuum in our simplest model, we would like to emphasize
that the stability analysis employed in this paper is general at
the linear level for any model admitting local vacuum exhibit-
ing a spatial modulation.

Among general solutions in Eq. (19) which are energet-
ically degenerated, we have focused on the FF state, which
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has the highest unbroken symmetry. Which vacuum is chosen
among energetically degenerated vacua with different unbro-
ken symmetry is known as a vacuum alignment problem first
discussed in the context of technicolor models [36,37]. In
such the cases, quantum corrections pick up the vacuum with
the highest unbroken symmetry, and therefore we expect the
same happens in our case too. We note that the structure
of the vacuum modulation crucially depends on models we
consider. For example, inhomogeneous chiral condensates in
dense QCD appears to be a FFLO instead of a FF one.

We have studied the modulated vacuum in the Ginzburg—
Landau type effective theory in the Lorentz invariant frame-
work, without assuming any underlying microscopic the-
ory. However, there is an argument about a no-go theorem
for modulated vacua by fermion condensates in relativistic
QCD-like theories [38]. It is an interesting open question
whether our model can be obtained as the low-energy theory
of a fermion condensation in relativistic theories or not. Pos-
sible future directions are in order. Beyond the semiclassical
level in this paper, we need a more rigorous proof for the gen-
eralized NG theorem in full quantum level. The Higgs mecha-
nismina U (1)-gauged model, and spatial modulations along
two or more directions [39] as well as a temporal modulation
[40] are interesting directions. Applying our discussion to
more general higher derivative theories such as higher-order
Skyrme model [41] is also one of future directions. We also
would like to embed our model to supersymmetric theories
based on the formalism in Refs. [42—44], and supersymme-
try breaking in modulated vacua will be reported elsewhere
[45].
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