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Abstract

The development of a tagging algorithm to identify jets that are significantly dis-
placed from the luminous regions of LHC proton-proton (pp) collisions is presented.
Displaced jets can arise from the decay of a long-lived particle (LLP), which are pre-
dicted by several theoretical extensions to the standard model. The tagger is a mul-
ticlass classifier based on a deep neural network, which is parameterized according
to the proper decay length ct, of the LLP. A novel scheme is defined to reliably la-
bel jets from LLP decays for supervised learning. Samples of both simulated events
and pp collision data are used to train the neural network. Domain adaptation by
backward propagation is performed to improve the simulation modelling of the jet
class probability distributions observed in pp collision data. The tagger is applied
in a search for long-lived gluinos, a manifestation of split supersymmetric models.
The tagger provides a rejection factor of 10 000 for jets from standard model processes
while maintaining an LLP jet tagging efficiency of 30—80% for split supersymmetric
models with 1Tmm < ¢1y; < 10m. The expected coverage of the split supersymmetric
model parameter space is presented.
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1 Introduction

Machine-learned algorithms are routinely deployed to perform event reconstruction, particle
identification, event classification, and other tasks [1] when analysing data samples of proton-
proton (pp) collisions recorded by experiments at the CERN LHC. Machine learning techniques
have been widely adopted to classify a jet, a collimated spray of particles that originate from
the hadronization of a parton, according to the underlying flavour of the initial parton [2]. For
example, jets that originate from the hadronization of b quarks (b jets) exhibit characteristic
experimental signatures that can be exploited by dedicated algorithms in a procedure known
as b tagging. The b hadrons, with lifetimes of O(107!2s), typically travel distances of ap-
proximately 1-10 mm, depending on their momenta, before decaying. As a result, charged
particle tracks in jets can originate from one or more common vertices that may be displaced
with respect to the luminous region of pp collisions. Further, the impact parameter of each
track, defined as the spatial distance between the originating pp collision and the track at its
point of closest approach, can have a significant nonzero value. The ATLAS [3] and CMS [4]
Collaborations have developed numerous algorithms based on boosted decision trees or neu-
ral networks to identify b jets [5, 6] using the aforementioned and other high-level engineered
features. The latest b tagging algorithm developed by the CMS Collaboration is the DEEPJET
tagger [7, 8], which is a multiclass classifier that discriminates b jets from ¢ and light-flavour
jets with unprecedented performance. The algorithm is based on a deep neural network (DNN)
that exploits low-level information, such as the kinematical properties of the jet constituents,
as well as engineered features used in preceding b tagging algorithms [5, 6].

Various theoretical extensions to the standard model (SM) [9-14] predict the existence of long-
lived particles (LLPs) with a proper lifetime 7, that can be very different from those of known
SM particle states. Consequently, the production and decay of LLPs at the LHC could give rise
to atypical experimental signatures. These possibilities have led to the development of a broad
signature-based search programme at the LHC, based around LLP simplified models [15, 16]
and novel reconstruction techniques. A comprehensive review of LLP searches at the LHC can
be found in Ref. [17].

In this note, we present the novel application of a DNN to identify (i.e. tag) a jet originating
from the decay of an LLP (LLP jet). The charged particle tracks of an LLP jet may be signifi-
cantly displaced with respect to the luminous region of pp collisions within the CMS detector.
The DNN is trained and evaluated using a range of signal hypotheses comprising simplified
models of split supersymmetry (SUSY) [9, 10] with R-parity [18] conservation. These models
assume the production of gluino (g) pairs. The gluino is a long-lived state that decays to a
quark-antiquark (qq) pair and a weakly interacting and massive neutralino (x°), which is the
lightest SUSY particle and a dark matter candidate. Simplified models of split SUSY are widely
used to benchmark LLP searches in final states containing missing transverse momentum pss
and jets [19-29].

The LLP jet tagger is inspired by the DEEPJET approach, albeit with significant modifications.
The DNN extends the multiclass classification scheme of the DEEPJET algorithm to accommo-
date the LLP jet class. A procedure to reliably label LLP jets using truth information from
Monte Carlo (MC) event generators is defined. The experimental signature for an LLP jet de-
pends strongly on cty. Hence, a parameterized approach [30] is adopted by using c7y as an
external parameter to the DNN, which permits hypothesis testing using a single network for
models with values of ct; that span several orders of magnitude. Further, the jet momenta de-
pend strongly on the model parameters g and m 70/ particularly the mass difference mz; —m 70-

&
The DNN training is performed with simulated event samples drawn from the full mass pa-



rameter space of interest to ensure a broad generalization and optimal performance over a
range of jet momenta. The out-of-sample performance of the tagger is quantified for simplified
models of SUSY with gauge-mediated SUSY breaking (GMSB) [12] and weak R-parity violation
(RPV) [31]. Domain adaptation (DA) by backward propagation (of errors) [32] is incorporated
into the network architecture to achieve similar classification performance in simulation and
pp collision data, thus mitigating differences between the two domains, simulation and data,
which can arise from e.g. limited simulation performance or anomalous instrumental effects.

This note is organized as follows. Section 2 describes the CMS detector and event reconstruc-
tion algorithms. Sections 3 and 4 describe, respectively, the event samples and simulation soft-
ware packages used in this study. Section 5 describes the LLP jet tagger. Sections 6 and 7
demonstrate, respectively, the validation of the tagger using control samples of pp collision
data and its performance based on simulated samples. Section 8 presents the expected per-
formance of the tagger in a search for long-lived gluinos. Section 9 presents a novel, in situ
determination of a correction to the LLP jet tagger efficiency. Section 10 provides a summary
of this work.

2 The CMS detector and event reconstruction

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintilla-
tor hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward
calorimeters extend the pseudorapidity coverage provided by the barrel and endcap detectors.
Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside
the solenoid. At # = 0, the outer radial dimension of the barrel section of the tracker, ECAL,
HCAL, and muon subdetectors is 1.3, 1.8, 3.0, and 7.4 m, respectively. A more detailed de-
scription of the CMS detector, together with a definition of the coordinate system used and the
relevant kinematic variables, can be found in Ref. [4].

The candidate vertex with the largest value of summed physics-object p? is taken to be the
primary pp interaction vertex. The physics objects are the jets, clustered using the jet finding
algorithm [33, 34] with the tracks assigned to candidate vertices as inputs, and the associated
missing transverse momentum, taken as the negative vector sum of the py of those jets.

The particle-flow (PF) algorithm [35] aims to reconstruct and identify each particle in an event,
with an optimized combination of all subdetector information. In this process, the identifi-
cation of the particle type (photon, electron, muon, charged hadron, neutral hadron) plays an
important role in the determination of the particle direction and energy. Photons [36] are identi-
tied as ECAL energy clusters not linked to the extrapolation of any charged particle trajectory to
the ECAL. Electrons [37] are identified as a primary charged particle track and potentially many
ECAL energy clusters corresponding to the extrapolation of this track to the ECAL and to pos-
sible bremsstrahlung photons emitted along the way through the tracker material. Muons [38]
are identified as tracks in the central tracker consistent with either a track or several hits in the
muon system, and associated with calorimeter deposits compatible with the muon hypothesis.
Charged hadrons are identified as charged particle tracks neither identified as electrons, nor
as muons. Finally, neutral hadrons are identified as HCAL energy clusters not linked to any
charged hadron trajectory, or as a combined ECAL and HCAL energy excess with respect to
the expected charged hadron energy deposit.

Jets are clustered from PF candidates using the anti-kt algorithm [33, 34] with a distance pa-
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rameter of 0.4. Additional pp interactions within the same or nearby bunch crossings (pileup)
can contribute additional tracks and calorimetric energy depositions to the jet momentum. To
mitigate this effect, charged particles identified to be originating from pileup vertices are dis-
carded [39] and an offset correction is applied to correct for remaining contributions. In this
study, jets are required to satisfy pr > 30GeV and || < 2.4, and are subject to a set of loose
identification criteria [40] to reject anomalous activity from instrumental sources, such as de-
tector noise. These criteria ensure that each jet contains at least two particle candidates and at
least one charged particle track, the energy fraction attributed to charged- and neutral-hadron
particle candidates is nonzero, and the fraction of energy deposited in the ECAL attributed to
charged- and neutral-particle candidates is less than unity.

The most accurate estimator of FI® is computed as the negative vector sum of the transverse
momenta of all the PF candidates in an event, and its magnitude is denoted as p?iss [41]. The
pmiss js modified to account for corrections to the energy scale [42] of the reconstructed jets in
the event. Anomalous high-pTsS events can be due to a variety of reconstruction failures, de-
tector malfunctions or noncollision backgrounds. Such events are rejected by event filters that
are designed to identify more than 85-90% of the spurious high-p™i** events with a rejection

(mistagging) rate of less than 0.1% for genuine events [41].

Events of interest are selected using a two-tiered trigger system [43]. The first level, composed
of custom hardware processors, uses information from the calorimeters and muon detectors
whereas a version of the full event reconstruction software optimized for fast processing is
performed at the second level, which runs on a farm of processors.

3 Event selection and sample composition

The simplified models of split SUSY considered in this note would reveal themselves in events
characterized by the absence of photons and leptons, the presence of jets, and significant pIss
from the undetected neutralinos. Candidate signal events are required to satisfy a set of se-
lection requirements that define a signal-enriched region (SR). Conversely, event samples that
are enriched in the same background processes that populate the SR, while being depleted in
contributions from SUSY processes, are identified as control regions (CRs).

Two control regions are used to assess differences in the performance of the tagger when using
simulated events or pp collision data. The single muon (u+jets) CR is required to contain
exactly one muon satisfying pr > 26 GeV and || < 2.4. The dimuon (up+jets) CR is required
to contain a second muon that satisfies pr > 15GeV and || < 2.4. The muons are required to
be isolated from other activity in the event and satisfy tight identification criteria [38]. Events
containing additional loose muons (electrons) with pr > 10(15) GeV and |¢| < 2.4 are vetoed.
Both CRs must contain at least two jets satisfying pp > 30GeV and |57| < 2.4. Events in the
p+jets and pp+jets CRs are, respectively, required to satisfy p2iss > 150GeV and pr(pup) >
100 GeV, where the latter variable is the vectorial py sum of the dimuon system. The u+jets CR
is dominated by the associated production of jets and a W boson, single top quark production,
and the production and semileptonic decay of top quark-antiquark pairs (tt). The pp+jets
CR contains events from Drell-Yan (qq — Z°/7* — u*uT), tt, and Wt-channel single top
quark production. Events in both CRs are efficiently recorded with a trigger condition that
requires the presence of a single isolated muon that satisfies pr > 24 GeV and |7| < 2.4. The
data samples of pp collisions at a centre-of-mass energy of 13 TeV correspond to an integrated
luminosity of 35.9 fb ™.

Candidate signal events in the SR are required to satisfy the following set of selection require-



ments. Events are required to contain at least three jets, as defined in Section 2. Events are
vetoed if they contain at least one muon (electron), isolated from other activity in the event,
that satisfies pr > 10(15) GeV and || < 2.4. The mass scale of each event is estimated from

the scalar pr sum of the jets, Hr = Z]l.ets p’, which is required to be larger than 300 GeV. An

estimator for pIMs is given by the magnitude of the vector jiy sum of the jets, HIiss = [y 5i |,
which is also required to be larger than 300 GeV. Following these selections, the dominant
contribution to the SM background is multijet events produced via the strong interaction, a
manifestation of quantum chromodynamics (QCD). This contribution is reduced to a negligi-
ble level using the following criteria. Events with at least one jet that satisfies py > 50 GeV and
2.4 < || < 5 are vetoed. Events are required to satisfy HIsS/pmiss < 1.25, which mitigates
the rare circumstance in which several jets with pt below the aforementioned 30 GeV threshold
and collinear in ¢ lead to large values of HsS relative to pTiss, the latter of which is less sensi-
tive to jet thresholds. Events are also required to satisfy A¢}, > 0.2, which is defined by the
minimum azimuthal separation between each jet and the vector pr sum of all other jets in the
event [44]. Events in the SR can be efficiently recorded with a trigger condition that requires
the presence of a single jet, H¥ss > 120 GeV, and piss > 120 GeV.

The remaining background events in the SR are dominated by contributions from processes
that involve the production of high-pt neutrinos in the final state, such as the associated pro-
duction of jets and a Z° boson that decays to vv. A further significant background contribu-
tion arises from events that contain a W boson that undergoes a leptonic decay, W (—¢v)+jets,
where the charged lepton (¢ = e, u or 1) is outside the experimental acceptance or is not iden-
tified or is not isolated. The associated production of jets and a W boson is most relevant for
¢ty values of order O(10 ym). Single top quark and tt production, leading to a final state con-
taining one leptonically decaying W boson and at least one b jet, also provides a substantial
contribution. Residual contributions from rare SM processes, such as diboson production or
the associated production of tt and a vector or scalar boson, are not considered in this study.

4 Monte Carlo simulation

The DNN is trained to predict the jet class using supervised learning, which relies on truth
information from MC generator programs. Various simulated event samples are also used
during the evaluation of the DNN to benchmark the performance of the tagger.

Split SUSY predicts the unification of the gauge couplings at high energy [45-47] and a can-
didate dark matter particle, the neutralino. In addition to a (finely tuned) scalar Higgs boson,
only the fermionic superpartners may be kinematically accessible at the LHC. All other super-
partners are assumed to be ultraheavy. The gluino is only able to decay through the highly
virtual squark states. Hence, the gluino hadronizes and forms a bound state with SM particles
called an R-hadron. The R-hadron can travel a significant distance before the gluino undergoes
a three-body decay to qqx° according to its proper decay length cT.

The split SUSY simplified models are defined by three parameters: c7; and the masses of the
gluino mg and the neutralino 1159. The following model parameter space is considered by the
search: 600 < mg < 2400 GeV, Mg — Mo > 100GeV, and 10 ym < ¢ty < 10m. The lower and

upper bounds of the ¢t range are motivated by the O(10 ym) position resolution of the tracker
subdetector [48] and the physical dimensions of the CMS detector. The tagger performance is
also assessed using two benchmark split SUSY models that feature: an “uncompressed” mass
spectrum, with a large mass difference between the gluino and x°, (g, m z0) = (2000,0) GeV;

or a “compressed” spectrum that is nearly degenerate in mass, (1600,1400) GeV. The value of
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cTy for both models is defined in the text on a case-by-case basis.

Benchmark GMSB and RPV SUSY models are also considered for demonstrating the gener-
alization of the DNN. A GMSB-inspired model assumes a long-lived gluino, with a mass of
2500GeV and ¢ty = 1 mm or 1m, that decays to a gluon and a light gravitino of mass 1keV.
Again, all other SUSY particles are assumed to be ultraheavy and decoupled from the inter-
action. An RPV-inspired model assumes the production of top squark-antisquark pairs. The
decay of the long-lived top squark, with a mass of 1200 GeV and ¢ty = 1 mm or 1m, to ab quark
and a charged lepton is suppressed through a small R-parity violating Yukawa coupling.

Samples of simulated events are produced with several MC generator programs. For the
split SUSY simplified models, the associated production of gluino pairs and up to two addi-
tional partons are generated at leading-order (LO) accuracy with the MADGRAPH5_aMC@NLO
2.2.2 [49] program. The decay of the gluino is performed with the PYTHIA 8.205 [50] program.
The RHADRONS package within the PYTHIA 8.205 program, steered according to the default pa-
rameter settings, is used to describe the formation of R-hadrons through the hadronization of
gluinos [51-53]. A similar treatment is performed for the GMSB- and RPV-inspired benchmark
models.

The MADGRAPH5_aMC@NLO 2.2.2 event generator is used to produce samples of W (— /(v )+jets,
Z%(—vv)+ets, and Z° /* (— up) +jets events at next-to-leading-order (NLO) accuracy in QCD.
The samples of W(—/{v)+jets events are generated with up to two additional partons at the
matrix-element level and are merged using the FxFx scheme [54]. The POWHEG v2 [55-57]
event generator is used to simulate the production of top quark-antiquark pairs [58] and the
t-channel [59] and Wt-channel [60] production of single top quarks at NLO accuracy. Multijet
events are simulated at LO accuracy using PYTHIA 8.205.

Simulated samples are normalized to theoretical production cross sections that are calculated
with NLO and next-to-NLO precision [49, 59-63] for SM processes and with NLO plus next-to-
leading-logarithm (NLL) precision [64] for the production of gluino and top squark-antisquark
pairs.

The PYTHIA 8.205 program with the CUETP8M1 tune [65] is used to describe parton show-
ering and hadronization for all simulated samples except top quark-antiquark production,
which used the CUETP8M2T4 tune [66]. The NNPDF3.0 LO and NLO parton distribution
functions (PDFs) [67] are used with the LO and NLO event generators, as described above.
Minimum bias events are overlaid with the hard scattering event to simulate pileup interac-
tions. The resulting events undergo a full detector simulation using the GEANT [68] package.
The model-dependent interactions of R-hadrons with the detector material are not considered
by this study.

5 The LLP jet algorithm

In this section, the DNN architecture and technical implementation of the LLP jet tagger is
described, along with various novel applications of techniques related to machine learning.

5.1 Jet labelling

Truth information from MC generator programs is often used to label a jet according to its ini-
tiating parton for supervised learning. A standard procedure known as “ghost” labelling [39]
determines the jet flavour by clustering not only the reconstructed final-state particles into jets,
but also the generator-level b and ¢ hadrons. Only the directional information of the four-



momentum of the generator-level (ghost) hadron is retained to prevent any modification to
the four-momentum of the corresponding reconstructed jet. Jets containing at least one ghost
hadron are assigned the corresponding flavour label, with b hadrons preferentially selected
over ¢ hadrons. Similarly, labels are defined for jets originating from gluons (g) or light-flavour
(uds) quarks.

The LLP jet tagger also adopts the ghost labelling approach for jets originating from SM back-
ground processes. However, a complication arises when applying ghost labelling to the jets
originating from g decays. The two quarks produced in the g decay can interact with each
other, potentially leading to one or more jets that do not point in the same direction as the
quarks. Two examples of § — qqx} decays are shown in Fig. 1. For each example, the final-
state particles resulting from the hadronization of one of the quarks are sufficiently diffuse such
that they are clustered into multiple distinct jets. By definition, ghost tagging cannot account
for multiple jets originating from a single ghost particle, and it may even fail to associate the
ghost particle to any of the jets if the jets are sufficiently distanced from one other in 7—¢ space.
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Figure 1: Two examples of a § — qqx} decay using truth information from the MAD-
GRAPH5.aMC@NLO 2.2.2 [49] and PYTHIA 8.205 [50] programs. The positions of various parti-
cles in the 77—¢ plane are shown: the LLP (g) and its daughter particles (qqx?) are shown in the
lower and middle planes, respectively; the upper plane depicts the location of the stable final-
state particles after hadronization, with shaded ellipses overlaid to indicate the reconstructed
jets. Each quark and its decay is assigned a unique colour. The dotted lines indicate the links
between parent and daughter particles.

An alternative labelling scheme is defined for jets originating from gluino decays, which can be
extended to other LLP decays. All stable SM particles are grouped according to their simulated
vertex position, which can then be linked to one of the (quark) daughters from the LLP decay.
All stable SM particles, except neutrinos, are clustered into generator-level jets using the anti-
kt algorithm [33, 34] with a distance parameter of 0.4. Given that constituent particles in a jet
may originate from different vertices, the momentum of a given jet is shared between vertices
according to the vectorial momentum sum ) ; j; of the constituent particles i in a jet that share
the same vertex v. Per vertex, the jet-vertex shared momentum fraction f, with respect to vertex
v is then defined as

. 9.1 .7 vertices
fyz(zl’”l';f”) L, feelo), L fo=1 &)
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Each jet is then associated to the vertex v from which the majority of its momentum origi-
nates, i.e. 9 = argmax(f,). This criterion prevents the coincidental association of jets con-
taining very few or very soft particles from a gluino decay to a vertex for which the majority
of the constituent particles stem from initial-state radiation or the underlying event. A re-
constructed jet is associated with a generator-level jet if their axes are aligned within a cone
AR = /(Ap)? + (An)? = 04, and it adopts the same label. The LLP label is prioritized over
the other jet labels to prevent ambiguities. Jets from the split SUSY samples that are not labelled
as LLP by this scheme can still comprise a nonnegligible fraction of displaced particles and are
thus discarded to prevent class contamination. Non-LLP jets for the training of the DNN are
instead taken from simulated samples of SM backgrounds. An (artificial) 20% contamination
of the LLP jet class from pileup jets leads to no discernible effect on the tagger performance
given the statistical precision of the study.

5.2 Deep neural network architecture to predict the jet class

The architecture used to predict the jet class, inspired by the DEEPJET algorithm, is shown
in Fig. 2. The DNN considers approximately 600 input features, which can be grouped into
four categories: up to 25 charged (neutral) PF particle candidates, each described by 17 (6)
features; up to four secondary vertices (SVs), each described by 12 features; and 14 global
features associated with the jet.

Four sequential layers of one-dimensional convolutions with a kernel size of one are used, with
each layer comprising 64, 32, 16, 8 or 4 filters depending on the group of input features. The
convolutional layers provide feature compression for each particle or vertex. After each layer,
a leaky rectified linear (LeakyReLU) [69] activation function is used. Dropout [70] layers are
interleaved throughout the network with a 10% dropout rate to mitigate overfitting. After the
final convolutional layer, the compressed feature vectors are flattened and concatenated along
with the global jet features. The input parameter ct; shown in Fig. 2 is described in Section 5.3.

The resulting feature vector is fed into a multilayer perceptron, a series of dense (fully con-
nected) layers comprising 200, 100, or 50 neurons. The softmax activation function is used in
the last layer. Categorical cross entropy is used for the loss function to predict the jet class prob-
ability. The DNN provides the probabilities for the following jet classes: LLP jet, b or c jet, uds
(quark) jets, and gluon jets. The latter two classes are frequently combined when evaluating
the network performance to give a light-flavour (udsg) jet class.

5.3 Network parameterization according to ct,

The experimental signature for a jet produced in a gluino decay depends strongly on c1. In-
formation from all CMS detector systems is available if the gluino decay occurs promptly, in
the vicinity of the luminous region of the proton beams, while information can be limited if the
decay occurs in the outermost detector systems. Hence, cTj is introduced as an input param-
eter to the dense network, as indicated in Fig. 2. This parameterized approach [30] allows for
hypothesis testing with a single network for values of cT7, that span six orders of magnitude:
10pum < c1y < 10m. During the network evaluation, the ct, value is given by the model
hypothesis under test.

5.4 Domain adaptation by backward propagation

The simulated event samples are of limited accuracy and do not exhaustively reproduce all
features observed in the pp collision data. Hence, a classification algorithm may produce dif-
ferent identification efficiencies when evaluated on simulated samples and pp collision data
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Figure 2: An overview of the DNN architecture, which comprises convolutional and dense
layers; the number of filters and nodes, respectively, is indicated. Dropout layers and activation
functions are not shown. The input features are grouped by object type and (m x n) indicates
the maximum number of objects (1) and the number of features per object (1). The gradients
of the class (Lg,) and domain (Lgymain) losses with respect to the weights @, used during

backward propagation, are shown.

if the DNN training relies solely on simulation. In this study, unsupervised DA by backward
propagation [32] is employed to obtain a similar jet classification performance when applied to
jets in samples of simulated events or pp collision data. This approach reduces the importance
of individual or combinations of input features that exhibit differences in the two domains of

pp collision data and simulation.

The network is extended to predict also the jet domain, as indicated in Fig. 2. A network branch
is added after the first dense layer, the feature layer. A gradient reversal layer is inserted in the
domain branch directly after the feature layer. This special layer is only active during backward
propagation and reverses the gradients of the domain loss Lg,,in With respect to the network
weights @ in its preceding layers. At the end of the domain prediction branch, the sigmoid
activation function is used. Binary cross entropy is used for the loss function to predict the jet
domain probability. During DNN training, the combined loss L, + ALgomain 1S Mminimized,
where A is a hyperparameter that controls the magnitude of any penalty from the jet domain

loss.
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5.5 Deep neural network training

Supervised training of the DNN is performed to predict the jet class. The ADAM optimizer [71]
is used to minimize the loss function with respect to the network parameters. The DNN train-
ing relies on simulated events of gluino production from split SUSY models, and multijet and tt
production. Jets in these samples that have an uncorrected py greater than 20 GeV and satisfy
the loose requirements outlined in Section 3 are considered for the DNN training. Approxi-
mately 20 million jets are used in the DNN training. Event samples of split SUSY are utilised
over a wide range of (g, 1159) hypotheses to ensure adequate generalization of the DNN over
the model parameter space of interest. Models considered by the DNN training have ct, values
that span the range 10 yum < ¢ty < 10m. For the jet domain prediction, a sample of 1.2 mil-
lion jets are drawn from a sample of p+jets events and simulated W (—/¢v)+jets and tt events,
weighted according to their respective SM cross sections, that satisfy the p+jets CR require-
ments.

The training of the DNN comprises a few tens of epochs, each of which is batched into subsam-
ples of 10000 jets, containing approximately 2000 jets of each class: LLP, b, ¢, usd, and g. For
each batch, the jets from SM processes are drawn randomly (from a larger sample) to obtain the
same pr and # distributions as the LLP jet class. This resampling technique is done to ensure
an adequate generalization that is (largely) independent of kinematical features related to the
physics process. For each batch, the ct, values assigned to jets from SM background processes
are generated randomly according to the ¢ty distribution obtained from LLP jets.

The training of the domain branch uses batches of 10000 jets, drawn from samples of p+jets
data and simulated W (—/v)+jets and tt events in the relative quantities of 55%, 35%, and 10%,
respectively. All parts of the network are trained simultaneously by merging the class and
domain batches. Events in the domain batch are assigned the same c7, values as used by the
class batch. For the domain batch, only the six highest pr jets are used, and jets may be reused
multiple times per epoch.

The DNN is initially trained to predict only the jet class to determine the optimal scheduling of
the learning rate (), which decays from an initial value of 0.01 according to « = 0.01/(1 +«xn)
where 1 is the epoch number and « is the decay constant. The classifier performance is optimal
for ¥ = 0.1 and only weakly dependent on x. The DNN is then trained to predict both the jet
class and domain, and the A hyperparameter is increased according to A = A([2/ (1 + e~ %2") —
1] with Ay = 30, such that A increases from 0 to 0.9 after 15 epochs.

5.6 Workflow

The TENSORFLOW v1.6 [72] queue system is used to read and preprocess files for the DNN
training. The KERAS v2.1.5 [73] software package is used to implement the DNN architecture.
A schematic overview of the pipeline used to preprocess batches of jets for the class prediction
is given in Fig. 3, while a similar queue is also used for the domain prediction. At the begin-
ning of each epoch, a queue holding a randomized list of the input file names is initialized. File
names are dequeued asynchronously in multiple threads. For each thread, ROOT v6.18.00 [74]
trees contained in the files are read from disk to memory in batches using a TENSORFLOW op-
eration kernel, developed in the context of this note. The resulting batches are resampled to
achieve the same distributions in py and # for all jet classes and are enqueued asynchronously
into a second queue, which caches a list of tensors. The DNN training commences by dequeu-
ing a randomized batch of tensors and generating ct, values for all SM jets within the batch.
The advantages of this system lay in its flexibility to adapt to new input features or samples
on-the-fly. The (pr, 17) resampling and the generation of ct, values for the SM jets proceeds
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asynchronously in multiple threads, managed by TENSORFLOW, on the CPU while the net-
work is being trained. A demonstration of the workflow is currently under preparation and
will be released in the future.

Queue initialised | Read ROOT  Resample ! Queue of Generate
with file names i TTree in jets per i tensors CTo
! batches batch !
Dequeue i [ ] > l ] i Enqueue Dequeue
file name | [ ] — l ] ! batch tensor To
(async.) i i (async.) batch Keras
= i paey [N e il
i i -
=0 J
I 1
1 I

+---1 thread / opened file ----

:] TF queue :] Custom TF operation

Figure 3: A schematic of the input pipeline for training the DNN, which uses the TENSORFLOW
queue system with custom operation kernels for reading ROOT trees from disk, (pt, #7) resam-
pling for SM jets, and generating random ct, values for jets from SM backgrounds and data.

6 Validation with pp collision data

In the absence of DA, the LLP jet probability P(LLP|ct,) obtained from the simulation of the
relevant SM backgrounds and the CR data can differ significantly, with deviations of up to
50% in distributions of P(LLP|cT,), while a good agreement is observed for the distributions
of the other jet class probabilities. A similar event-level variable is P, (LLP|cTy), which is
defined as the maximum value of P(LLP|cT,) obtained from all selected jets in a given event. A
comparison of the P, (LLP|c1y) distributions obtained from pp collision data and simulated
events in both the y+jets and pp+jets CRs, using a DNN trained with and without DA, is shown
in Fig. 4. The use of DA in the network leads to a significant improvement in the level of
agreement in the binned counts of P, (LLP|cT,) for the two domains of data and simulation,
with only small residual differences remaining. This improvement is expected for the u+jets
CR, as the same events are used to train, evaluate, and optimize the domain branch of the DNN.
The ppu+jets CR, comprising a statistically independent event sample, validates the method.

An estimate of the uncertainty in P, ., (LLP|cT,) due to simulation mismodelling is determined
from jets in a statistically independent sample of up+jets events that satisfy pr(puu) < 100 GeV.
The magnitude of the uncertainty is assessed by weighting up or down the simulated events

by the factor w* = Hjiets (1 + (¢&;(LLP) — 1)), where &;(LLP) is the ratio of counts from data

and simulation in bin i of the P(LLP|ct,) distribution. The ratios of event counts binned ac-
cording to P, (LLP|cTy) from pp collision data and simulation, as well as the corresponding
uncertainty estimates, are shown in the lower panels of Fig. 4. The ratios are closer to unity,
with reduced uncertainties, following the application of DA. The level of agreement between
data and simulation is further quantified by the Jensen-Shannon divergence (JSD) [75], which
is bound to [0,1]. The JSD is reduced by an order of magnitude following the application of
DA. The quoted uncertainties in JSD reflect the finite size of the data and simulated samples.

As for the CRs, the application of DA leads to significantly reduced biases and uncertainties in
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Figure 4: Distributions of the maximum probability for the LLP jet class obtained from all
selected jets in a given event, P, . (LLP|cTy). The distributions from pp collision data (circular
marker) and simulated events (histograms) are compared in the p+jets (upper row) and pp+jets
(lower row) CRs, using a DNN trained without (left column) and with (right column) DA. All
probabilities are evaluated with ¢ty = 1 mm. The JSD is introduced in the text.

the modelling of P(LLP|c1) and related variables in the signal-depleted CRs. In a search, this
behaviour would translate into an improved treatment of the experimental systematic uncer-
tainties related to the estimation of SM backgrounds. However, only modest gains in sensitivity
to new high-mass particle states may be expected, as the dominant uncertainties arise from the
finite-size samples of pp collision data and simulated events.

7 Performance

The performance of the tagger is demonstrated using simulated event samples for split SUSY
benchmark models with an uncompressed mass spectrum, as defined in Section 4, and ¢t
values of 1mm and 1m. The two values of cTj highlight the roles of the tracker and calor-
imeter systems, respectively. Negligible SM background contributions are expected for the
1m scenario. An inclusive sample of tt events is used to provide both light-flavour (udsg)
jets, through initial state radiation and hadronic decays of the W boson, as well as b jets with
pr > 30GeV and |17| < 2.4.

The efficiency of the tagger to identify correctly the LLP jet class depends on the chosen work-
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ing point, defined by a threshold requirement on the jet class probability. The mistag rates for
the remaining jet classes also depend on the same working point. The receiver operating char-
acteristic (ROC) curves that provide the LLP jet tagging efficiency and the mistag rate for the
udsg jet class as a function of the working point are shown in Fig. 5. The uncertainties indi-
cated by shaded bands are determined from a threefold cross validation. Given a mistag rate
of 0.01%, equivalent to a background rejection factor of 10000, efficiencies of 40 and 70% are
obtained for ¢ty values of 1 mm and 1m, respectively.

Figure 5 also shows ROC curves when evaluating the DNN using simulated events from the
GMSB and RPV SUSY benchmark models, as defined in Section 4. The jets originate from
uds quarks (gluons) from the gluino decay in the case of split (GMSB) SUSY models, and b
hadrons from the top squark decay for RPV SUSY. A similar level of performance is observed
for these SUSY models, in which the LLP jets have a different underlying flavour. Further, the
ROC curves indicated by the thick and thin solid curves illustrate the tagger performance when
the DNN is trained with or without DA, respectively, for the split SUSY benchmark models.
Studies demonstrate a comparable performance for split SUSY models with and without DA
for the region c1y; < 10 mm; for larger values of cT, the performance is overestimated without
DA, as indicated by the c7y = 1 m scenario shown in Fig. 5, because the model is able to exploit
feature distributions obtained from simulation that are not representative of data.

CMS Simulation Preliminary 13 TeV CMS Simulation Preliminary 13 TeV
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Figure 5: ROC curves illustrating the tagger performance for the split (solid line), GMSB
(dashed), and RPV (dot-dashed) SUSY benchmark models, assuming ct, values of 1 mm (left)
and 1m (right). The thick and thin solid curves indicate the performance using the DNN
trained with and without DA, respectively. The jet sample is defined in the text.

The LLP jet tagging efficiency is shown in Fig. 6 as a function of the jet py, 77, and the number of
reconstructed secondary vertices within the jet (Nsy) for a working point that yields a mistag
rate of 0.01% for the udsg jet class obtained from simulated tt events. Efficiencies are highest
for high-pt, centrally produced jets with N5y = 0. The latter observation demonstrates the
complementary performance of the tagger with respect to a more standard approach of relying
on reconstructed secondary vertices to identify displaced jets. The RPV model has lower effi-
ciencies for pr 2 100 GeV or Ngy = 0 because of reduced discrimination between the (SM) b jet
class and the LLP jet class, when the jet is of b quark flavour as produced in the decay of the
long-lived top squark.

The performance of the DNN parameterization according to ct, is shown in Figure 7. The left
subfigure shows the LLP jet tagging efficiency, using a working point that yields a mistag rate
of 0.01% for the udsg jet class, as a function of the generated ct, value for both an uncompressed
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Figure 6: The LLP jet tagging efficiency as a function of the jet pr, 77, and Ngy using a working
point that yields a mistag rate of 0.01% for the udsg jet class, as obtained from an inclusive
sample of simulated tt events. The efficiency curves are shown separately for the split (circular
marker), GMSB (square), and RPV (triangle) SUSY benchmark models, assuming ct, values of
1m (upper row) and 1 mm (lower row).

and a compressed split SUSY model. Efficiencies in the range 40-80% (30-70%) are achieved
for uncompressed (compressed) scenarios with 1 mm < c7; < 10m. The compressed scenarios
are characterized by low-pr jets, resulting in lower efficiencies. The performance is further
tested using two uncompressed split SUSY models with ¢ty = 1mm and 1m. The LLP jet
tagging efficiency is obtained by evaluating the DNN for each value of ¢ty in the range 10 ym <
cTy < 10m. Again, the efficiency is determined using a working point that is tuned for each
evaluated cT, value to yield a mistag rate of 0.01% for the udsg jet class. The efficiency as
a function of the evaluated ct, value is shown in Fig. 7 (right). The maximum efficiency is
obtained when the evaluated value of ¢ty approximately matches the parameter value used
for the split SUSY model hypothesis. This behaviour may be used to characterize a potential
signal contribution in terms of the model parameter c7,. Finally, studies demonstrate that the
parameterised approach does not significantly impact performance with respect to the training
of multiple DNNSs, one per cT value.

8 Application to a search for LLPs

An application of the LLP jet tagger is demonstrated in a showcase search for long-lived gluinos
with 10pum < c1y < 10m. Expected limits on the theoretical production cross section for
gluino pairs are determined. Candidate events that satisfy the SR requirements defined in
Section 3 are categorised according to: the number of jets in the events, Nj; the number of
jets for which P(LLP|cT)) is above a predefined threshold, Ni,,; and Hy. Events are further
categorized according to Hr. Models with an uncompressed mass spectrum, m; — M0 2
200 GeV, are characterized by high values of H;r. Models with a compressed mass spectrum,
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Figure 7: The LLP jet tagging efficiency, using a working point that yields a mistag rate of 0.01%
for the udsg jet class obtained from an inclusive sample of simulated tt events, when (left) the
DNN is evaluated as a function of the model parameter value ct, for an uncompressed and
a compressed split SUSY model, and (right) the DNN is evaluated over a range of ct, values
for uncompressed split SUSY models generated with c7y = 1 mm and 1m; the dashed vertical
lines indicate equality for the evaluated and generated values of ¢t for each model. The fixed
model parameters are defined in the legends.

Mg — M0 S < 200 GeV, are characterized by lower values of Hy because of the limited kinematic

phase space available to the jets from the gluino decay and an increased reliance on associated
jet production from initial-state radiation. Events that satisfy N, < 2 are grouped into a single
category, which is used to constraint the normalization of simulated background events during
the statistical evaluation.

The tagger is evaluated using simulated samples of all relevant SM backgrounds, described in
Section 4. The negligible background contribution from multijet events in the SR is not consid-
ered in this exploratory study. The predefined threshold on P(LLP|c1y) is determined per ¢t
value such that the most sensitive event categories are nearly free of SM background contri-
butions while maintaining control over uncertainties due to the finite-size simulated samples.
The P(LLP|ct,) thresholds fall in the range 30-50% and yield an LLP jet tagging efficiency of
about 30-90% for cTy > 1 mm. Table 1 summarizes the a priori expected counts and uncertain-
ties for the contributions from SM backgrounds in the various event categories for cty = 1 mm.
The statistical uncertainty arising from the finite size of the simulated samples is the dominant
contribution to the quoted uncertainties. Additional systematic contributions are described be-
low. The expected event counts from an uncompressed and compressed split SUSY model are
also provided.

Several sources of systematic uncertainty in the SM background expectations are considered.
An uncertainty of 20% is assumed in the normalization of each dominant background process
(W (—£v)+ets, Z°(—vv)+ets, and single top squark and tt production), which is motivated
by theoretical uncertainties in the production cross sections and the experimental acceptance
for the final state leptons [76]. The jet energy is varied within its uncertainty and resolution [42]
and the resulting shifts are propagated to pss. The unclustered component of pis is varied
within its uncertainties. An uncertainty in the number of pileup interactions, by varying the
inelastic pp cross section within its uncertainty of 5% [77], is considered. The renormalization
and factorization scales of the aforementioned four dominant SM backgrounds are varied in-
dependently by factors of 0.5 and 2 per process [78]. An uncertainty of £2.5% in the integrated
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Table 1: A priori expected counts and uncertainties for SM backgrounds and split SUSY mod-
els, as determined from simulation, in categories defined by Hr and (Nje;, Ni,g). The uncom-
pressed and compressed split SUSY models are defined in Section 4. The value of ¢ty is as-
sumed to be Imm. The uncertainties include both statistical and systematic contributions.
Expected counts for events that satisfy Ny, < 2 are not shown.

Hp (GeV) 300-800 300-800 300-800 >800 >800 >800
ZO(—>1/U)+jets 40.7+39.2 65+£58 06+£04 33+28 16=£12 01401

W(—/lv)+jets 563+441 116+51 15+05 3.6+25 12+30 <01

tt 39.6+361 179+£157 19+11 21+£13 32+24 30+21
Single top 57£52 26+£22 03+£02 06+04 05£03 04403
Total SM 1424+69 385+£176 43+13 97+£40 65+41 35£25
Uncompressed < 0.1 <01 < 0.1 30+£29 38+£37 57+55

Compressed 54£5.0 42438 28+25 11+£09 25+22 45+41

luminosity is assumed [79].

A likelihood model is used to test for the presence of new-physics signals in the SR. The ob-
served event count in each event category is modelled as a Poisson-distributed variable around
the SM expectation and a potential signal contribution. The expected event counts from SM
backgrounds is given by simulated event samples. The uncertainties resulting from the finite
simulated samples are modelled using the Barlow-Beeston method [80]. The systematic uncer-
tainties in the SM background estimates are accommodated in the likelihood model as nuisance
parameters.

Hypothesis testing is performed using an Asimov data set to provide expected constraints on
the parameter space of simplified models of split SUSY. A modified frequentist approach is
used to determine the expected upper limits (ULs) at 95% confidence level (CL) on the theoret-
ical gluino-pair production cross section as a function of mg, 1159, and c7y. The signal strength
parameter, ry, expresses the UL relative to the production cross section. Alternatively, ex-
pected lower limits (95% CL) on mg can be determined as a function of ¢7;. The approach
is based on the profile likelihood ratio as the test statistic [81], the CL criterion [82, 83], and
the asymptotic formulae [84] to approximate the distributions of the test statistic under the
background-only and signal-plus-background hypotheses.

Figure 8 summarizes the expected lower limit on n5 (95% CL) as a function of ¢ for simplified
models of split SUSY that assume the production of gluino pairs. The model assumptions are
indicated by the legend in each panel. The left (right) subfigure presents the expected mass
exclusions for a model with an uncompressed (compressed) mass spectrum. A lower limit
on the gluino mass in excess of 2 TeV is obtained. The mass exclusions are compared to those
obtained from an inclusive search for SUSY [28] in final states containing jets and pss, over the
same range in ¢ty values. Significant gains in excluded values of m;, of up to approximately
500 GeV, are expected for cty 2 1mm. For the region ¢ty < 1mm, the tagger performance
degrades while the reference search is able to exploit the distinguishing kinematical features
of split SUSY events through a finer categorization of candidate signal events. For the region
cTy > 1m, the LLPs frequently decay outside the experimental acceptance, which leads to an
increased reliance on the presence of initial-state radiation.
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Figure 8: Expected lower limits (95% CL) on mg as a function of ¢y for split SUSY models
with an uncompressed (left) and a very compressed (right) mass spectrum. The shaded bands
indicate the total uncertainty from both statistical and systematic sources. The model assump-
tions are indicated by the legends. The results are compared to the expected limits obtained in
Ref. [28], indicated by a dashed line.

9 In situ corrections to the LLP jet tagging efficiency

Domain adaptation is used to minimize differences in the distributions of the jet class proba-
bility obtained from simulated events and pp collision data in the CRs. The LLP jet tagging
efficiency determined from simulated events of split SUSY models, €);c, may require the ap-
plication of corrections to account for sources of potential mismodelling. The corrections are
applied by reweighting simulated events as follows:

_ (N'ethta )
w— (151:6MC> Y SFMug @)
1-— EMC

where SF denotes the unknown scale factor correction and SFeyc € [0,1]. The (Niet, Niag)
categorization scheme allows the SF to be constrained in situ during the derivation of upper
limits on the gluino-pair production cross section. The SF is introduced as a free parameter to
the likelihood model.

Figure 9 shows the negative log-likelihood from a maximum likelihood fit to the Asimov data
as a function of both the SF and r /7y, where the signal strength parameter r expresses the
obtained UL relative to the gluino-pair production cross section, for two benchmark split SUSY
scenarios with an uncompressed and compressed mass spectrum, and ¢ty = 10 mm. The model
assumptions are indicated in the figure legends. The SF can be constrained to <40% (<70%) at
68% CL for r/ryp, = 1 for the uncompressed (compressed) model.

10 Summary

Many models of new physics beyond the standard model predict the production of long-lived
particles (LLPs) in proton-proton (pp) collisions at the LHC. Jets arising from the decay of
LLPs (LLP jets) can be appreciably displaced from the pp collisions. The development of a
novel tagger to identify LLP jets is presented. The tagger employs a deep neutral network
(DNN) using an architecture inspired by the DEEPJET algorithm. Simplified models of split
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Figure 9: The negative log-likelihood of a maximum likelihood fit to the Asimov data set as a
function of the expected gluino production cross section for a (left) uncompressed and (right)
compressed scenario. The black solid (dashed) line indicate the 68% (95%) CL, while the white
dashed lines indicate the SF constraints (68% and 95% CL) at r = ryj;. The product of the LLP
jet tagger efficiency and the SF is bound to [0, 1].

supersymmetry (SUSY), which yield neutralinos and LLP jets from the decay of long-lived
gluinos, are used to train the DNN and demonstrate its performance.

The application of various techniques related to the tagger are reported. A custom labelling
scheme for LLP jets based on truth information from Monte Carlo generator programs is de-
fined. The proper decay length c7, of the gluino is used as an external parameter to the DNN,
which allows hypothesis testing over several orders of magnitude in c7, with a single DNN.
The DNN was trained using both simulated and pp collision data using domain adaptation by
backward propagation. This approach significantly improves the agreement between simula-
tion and data, by an order of magnitude according to the Jensen-Shannon divergence, when
compared to training the DNN with simulation only. The method is validated using signal-
depleted control samples of pp collisions at a centre-of-mass energy of 13 TeV. The samples
were recorded by the CMS experiment and correspond to an integrated luminosity of 35.9 b1,
Training the DNN with pp collision data does not significantly degrade the tagger perfor-
mance. The tagger rejects 99.99% of light-flavour jets from SM processes, as measured in an
inclusive tt sample, while retaining approximately 30-80% of LLP jets for split SUSY models
with 1 mm < ¢ty < 10m and a gluino-neutralino mass difference of at least 200 GeV.

Finally, the potential performance of the tagger is demonstrated through its use in a search
for split SUSY in final states containing jets and significant transverse missing momentum.
Simulated events samples provide the expected contributions from SM background processes.
Candidate signal events were categorized according to the scalar sum of jet momenta, the num-
ber of jets, and the number of tagged LLP jets. Expected lower limits on the gluino mass (95%
CL) are determined with a binned likelihood fit as a function of c7 in the range from 10 ym to
10m. A procedure to constrain a correction to the LLP jet tagger efficiency in the likelihood fit
is introduced. Competitive limits are demonstrated: long-lived gluinos of mass 2 2 TeV and
proper decay length 1 mm < ¢1y < 1m are expected to be excluded by this search.
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