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ABSTRACT OF DISSERTATION

THE PION FORM FACTOR AND MOMENTUM AND ANGULAR
MOMENTUM FRACTIONS OF THE PROTON IN LATTICE QCD

Lattice Quantum Chromodynamics (QCD) provides a way to have a precise calcu-
lation and a new way of understanding the hadrons from first principles. From this
perspective, this dissertation focuses first on a precise calculation of the pion form
factor using overlap fermions on six ensembles of 2+1-flavor domain-wall configura-
tions generated by the RBC/UKQCD collaboration with pion masses varying from
137 to 339 MeV. Taking advantage of the fast Fourier transform, low-mode substi-
tution (LMS) and the multi-mass algorithm to access many combinations of source
and sink momenta, we have done a simulation with various valence quark masses and
with a range of space-like Q2 up to 1.0 GeV2. With a z-expansion fitting of our data,
we find the pion mean square charge radius to be 〈r2〉π = 0.433(9)(13)fm2, which
agrees well with the experimental result, and includes the systematic uncertainties
from chiral extrapolation, lattice spacing, and finite volume dependence. We also find
that 〈r2

π〉 depends on both the valence and sea quark masses strongly and predict the
pion form factor up to Q2 = 1.0 GeV2 which agrees with experiments very well. The
second topic is the lattice calculation of proton momentum and angular momentum
fractions. As confirmed from experiment and lattice QCD calculation, the total he-
licity contribution from quarks is about ∼ 30% of the proton spin. Determination of
the rest of the contributions from quarks and gluons to the proton spin is a challeng-
ing and important problem. On the lattice side, one way to approach this problem
is to use the nucleon matrix element of the traceless, symmetric energy-momentum
tensor (EMT) to determine the momentum and angular momentum distributions of
up, down, strange and glue constituents. Since the EMT of each parton species are
not separately conserved, we summarized their final angular momentum fractions by
considering mixing and non-perturbative renormalization at MS(µ = 2 GeV) and use
the momentum and angular momentum sum rules to normalize them. In order to
have a complete picture of these quantities, we have calculated both the connected
and disconnected insertions with an extrapolation to physical pion mass. We also use
various techniques to improve the results, such as LMS and new three-point function
contractions using fast Fourier transform for the connected insertions.

KEYWORDS: Lattice QCD, Hadron Structure
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Chapter 1 Introduction

Quarks and color degrees of freedom were introduced to study hadron structure
and the strong interaction around sixty years ago. Later on, Quantum Chromody-
namics (QCD), an SU(3) gauge theory, formulated with quarks and gluons as the
basic degrees of freedom to describe the hadronic interactions. Since the strong cou-
pling constant of QCD at large energy scales is small which is known as asymptotic
freedom, perturbation theory has been successfully predicting phenomena involving
large momentum transfers. Whereas, at small energy scales of the hadron world,
the coupling constant is of order unity and the physical properties of hadrons are
governed by nonpeturbative effects such as confinement. Due to this reason, it is still
challenging to quantify the hadron structure. On the other hand, with more than
three decades of developments, lattice QCD has been proven to be a reliable tool
to calculate the hadronic spectrum and matrix elements from first principles. More-
over, lattice QCD is also able to tackle problems like QCD at finite temperature,
confinement, chiral symmetry breaking and topology.

The discretized Euclidean space time of lattice QCD provides an ultraviolet cut-
off at π/a to regularize the theory and remove infinities, with a the lattice spacing.
And in the continuum limit a → 0, the renormalized physical quantities should be
finite which guaranties a well defined limit. The successful discretization of gauge
theories in Euclidean space time enables simulation of QCD on a computer using
Monte Carlo integration of the Euclidean path integral. Lattice QCD results have
had great achievements in controlling its statistical and systematic errors with recent
advancements of numberical analysis and computational technology. And these re-
sults have already served as basic inputs for a lot of phenomenological studies such
as quark masses, CKM matrix elements, low energy constants and form factors.

In this dissertation, we will focus on two topics in hadronic physics. The first
one is the calculation of the pion form factor using overlap fermions on six ensembles
of 2+1-flavor domain-wall configurations with pion masses varying from 137 to 339
MeV. We will report on the pion form factor up to Q2 = 1.0 GeV2 and the charge
radius of the pion 〈r2

π〉, both at the physical limit (physical pion mass, continuum
and infinite volume limit). Since the experimental determination of 〈r2

π〉 from πe
scattering is very precise and the pion is relatively simple to handle on the lattice, it
provides a stringent test for lattice QCD calculations to demonstrate complete control
over the statistical and systematic errors in estimates of the relevant pionic matrix
element in order to enhance confidence in their reliability to calculate other hadronic
matrix elements where lattice calculations can produce error estimates smaller than
those of experiments or make useful and timely predictions.

The quark model which successfully describes a lot of properties of hadrons pre-
dicted that all the proton spin is carried by its three valence quarks. Whereas, as
confirmed from experiment and lattice QCD calculations, the total helicity contribu-
tion from quarks is just about ∼ 30% of the proton spin of 1

2
~. Thus, determination

of the remaining contributions from quarks and gluons to the nucleon (i.e., proton or

1



neutron) spin is a challenging and important problem which is the second topic of this
dissertation. We will use overlap fermions on a 323 × 64 domain-wall lattice at near
the physical pion mass to calculate the nucleon matrix element of the traceless, sym-
metric energy-momentum tensor (EMT) in order to have a complete decomposition
of the angular momentum fractions of the nucleon. The final renormalized results are
reported in the last section.

Copyright c© Gen Wang, 2020.
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Chapter 2 QCD on the lattice

2.1 Path integrals on the lattice

In order to calculate Quantum Chromodynamics (QCD) on a space-time lattice, we
use a path integral representation analytically continued to imaginary times, t →
−ix4, in which x4 is a real number. The vacuum expectation of an operator O in the
continuum Euclidean space is

〈O〉 =

∫
D[ψ, ψ̄]ψDAO(ψ, ψ̄, A)exp−(SG[A]+SF [ψ,ψ̄,A])∫

D[ψ, ψ̄]DAexp−(SG[A]+SF [ψ,ψ̄,A])
, (2.1.1)

where SG[A] is the gauge action and SF [ψ, ψ̄, A] is the fermion action. The gauge
fields Aµ(x) are defined as

Aµ(x) =
8∑
i=1

Aiµ(x)Ti, (2.1.2)

where Aiµ(x) are real-valued fields, Ti, i = 1, . . . , 8 are a basis of traceless hermitian
3×3 matrices which are the generators of the SU(3) group satisfies the commutation
relations

[Ti, Tj] = ifijkTk, (2.1.3)

in which fijk are the structure constants. These generators are given by Ti = 1
2
λi

with the Gell-Mann matrices λi

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 -i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 -1 0
0 0 0

 ,

λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 -i
0 0 0
i 0 0

 , λ6 =

 0 0 0
0 0 1
0 1 0

 ,

λ7 =

 0 0 0
0 0 -i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 -2

 .

(2.1.4)

Using these matrices, we define the field strength tensor as Fµν(x) =
∑8

i=1 F
i
µν(x)Ti

with

F i
µν = ∂µA

i
ν − ∂νAiµ − fijkAjµAkν . (2.1.5)

Then the gauge action SG[A] can be evaluated as

SG(A) =
1

2g2
0

Tr

∫
d4xFµνFµν , (2.1.6)
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with g0 the bare coupling constant.
The fermion action, SF [ψ̄, ψ, A], is given by the expression

SF [ψ̄, ψ, A] =

∫
d4xψ̄(x)(γµDµ +m)ψ(x), (2.1.7)

where Dµ is the covariant derivative

Dµ = ∂µ − iAµ, (2.1.8)

which ensures local SU(3) symmetry defined as

Aµ(x)→ A′µ(x) = Ω(x)Aµ(x)Ω(x)† + i(∂µΩ(x))Ω(x)†

Dµ → D′µ(x) = ∂µ + iA′µ(x) = Ω(x)Dµ(x)Ω(x)†
(2.1.9)

with Ω(x) the SU(3) matrix which satisfies Ω(x)† = Ω(x)−1 and Det[Ω(x)] = 1.
The Euclidean γ matrices are hermitian, γ†µ = γµ, and satisfy the commutation

relations {γµ, γν} = 2δµν . This dissertation adopts the Euclidean Pauli-Sakurai γ
matrices convention as

γ1 =


0 0 0 -i
0 0 -i 0
0 i 0 0
i 0 0 0

 , γ2 =


0 0 0 -1
0 0 1 0
0 1 0 0
-1 0 0 0

 , γ3 =


0 0 -i 0
0 0 0 i
i 0 0 0
0 -i 0 0

 ,

γ4 =


1 0 0 0
0 1 0 0
0 0 -1 0
0 0 0 -1

 , γ5 =


0 0 -1 0
0 0 0 -1
-1 0 0 0
0 -1 0 0

 .

(2.1.10)

In order to numerically solve the system, which has an infinite number of degrees
of freedom in the continuum, we discretize the gauge and fermion fields on a cubic
lattice to reduce the degrees of freedom. This introduces a cut-off in momentum, i.e.,
the largest momentum is p = π

a
, where a is the lattice spacing. This will regulate the

field theory and allows for renormalization.

2.2 Gauge fields on the lattice

We replace gauge fields Aµ(x) with SU(3) matrices Uµ(n) (gauge links)

Uµ(n) ≡ eiaAµ(n+ µ̂
2

). (2.2.1)

Under a gauge transformation Ω(n), the gauge links transform as

Uµ(n)→ U ′µ(n) = Ω(n)Uµ(n)Ω(n+ µ̂)†, (2.2.2)

in which Uµ(n) connects site n and site n + µ̂ to preserve the local SU(3) transfor-
mation in Eq. (2.2.2), where µ̂ is a unit vector in the xµ direction, a is the lattice
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spacing between two nearest neighbouring sites and n is the integer label of position
x = an.

The gauge links in the reverse direction is U−µ(n + µ̂) = U †µ(n). The simplest
gauge invariant and nontrivial closed loop on the lattice is plaquette Uµν(n),

Uµν(n) = Tr
[
Uµ(n)Uν(n+ µ̂)Uµ(n+ ν̂)†Uν(n)†

]
. (2.2.3)

In order to connect Uµν(n) with the continuum theory, we perform a Taylor expansion
of Uµν(n) by using the Campbell-Hausdorff formula [19, 20]

exp(A)exp(B) = exp

(
A+B +

1

2
[A,B]

)
, (2.2.4)

to obtain

Uµν(n) =exp

(
iaAµ(n+

µ̂

2
) + iaAν(n+ µ̂+

ν̂

2
)− iaAµ(n+ ν̂ +

µ̂

2
)− iaAν(n+

ν̂

2
)

− a2

2
[Aµ(n+

µ̂

2
), Aν(n+ µ̂+

ν̂

2
)]− a2

2
[Aµ(n+ ν̂ +

µ̂

2
), Aν(n+

ν̂

2
)]

+
a2

2
[Aµ(n+

µ̂

2
), Aµ(n+ ν̂ +

µ̂

2
)] +

a2

2
[Aν(n+ µ̂+

ν̂

2
), Aν(n+

ν̂

2
)]

+
a2

2
[Aµ(n+

µ̂

2
), Aν(n+

ν̂

2
)] +

a2

2
[Aν(n+ µ̂+

ν̂

2
), Aµ(n+ ν̂ +

µ̂

2
)] +O(a3)

)
.

(2.2.5)

Expanding the gauge fields in the above formula around n+ µ̂+ν̂
2

using

Aµ(n+
µ̂

2
) = Aµ(n+

µ̂+ ν̂

2
)− 1

2
a∂νAµ(n+

µ̂+ ν̂

2
) +O(a2) (2.2.6)

in which ∂νAµ = ∂Aµ
∂xν

and defining n′ = n+ µ̂+ν̂
2

, Eq. (2.2.5) reduces to

Uµν(n) = exp[ia2(∂µAν(n
′)− ∂νAµ(n′) + i[Aµ(n′), Aν(n

′)]) +O(a3)]

= exp(ia2Fµν(n
′) +O(a3))

(2.2.7)

Thus the gauge action can be written with the real parts of the plaquette

1

2

(
Uµν(n) + U †µν(n)

)
, (2.2.8)

as

SG[U ] =
6

g2
0

∑
n

∑
µ<ν

Tr
1

3

[
1− 1

2

(
Uµν(n) + U †µν(n)

)]
=

a4

2g2
0

∑
n

∑
µν

Tr[Fµν(n+
µ̂+ ν̂

2
)2] + terms higher order in a,

(2.2.9)

which gives the continuum action up to discretization errors. The lattice calculations
are mostly presented in terms of couplings constant β = 6

g20
which is the only variable

in the gauge action part.
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2.3 Fermions on the lattice

A “naive” discretization of the fermion on the lattice with hermicity is

∂µψ(x)→ 1

2a
[ψ(n+ µ̂)− ψ(n− µ̂)], (2.3.1)

which leads to the fermion action

SF [ψ̄, ψ, U ]

= a4
∑
n

ψ̄(n)

(
4∑

µ=1

γµ
Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)

2a
+mψ(n)

)
= a4

∑
m,n

ψ̄(m)Dm,nψ(n),

(2.3.2)

where

Dm,n = mδm,n +
1

2a

4∑
µ=1

γµ [Uµ(m)δm,n−µ̂ − U−µ(m)δm,n+µ̂] . (2.3.3)

However, this “naive” discretization will give rise to 2d = 16 flavors rather than one
lattice quark flavor in the continuum. This is called the “fermion doubling problem”
as 15 unphysical poles arise at the boundaries of the Brillouin zone. In order to
remove the doublers, Wilson [21] proposed a possible solution by adding an extra
second derivative term which vanishes in the continuum limit as

−raD2
µψ(n) = −ra

4∑
µ=1

1

2a2
[Uµ(n)ψ(n+ µ̂)− 2ψ(n) + U−µ(n)ψ(n− µ̂)], (2.3.4)

in which r is the “Wilson coefficient”, which is normally set to 1. Then the Wilson
fermion action is

SWF = a4
∑
m,n

ψ̄(m)DW
m,nψ(n).

DW
m,n = (m+ r

4

a
)δm,n −

1

2a

4∑
µ=1

[(r − γµ)Uµ(m)δm,n−µ̂ + (r + γµ)U−µ(m)δm,n+µ̂].

(2.3.5)

Under a conventional rescaling of quark fields ψ → 1√
2κ
ψ with κ = 1

2(4r+ma)
, DW

m,n is

DW
m,n =

1

a
δm,n − κ

1

a

4∑
µ=1

[(r − γµ)Uµ(m)δm,n−µ̂ + (r + γµ)U−µ(m)δm,n+µ̂]. (2.3.6)

By analysing the Wilson Dirac operator in momentum space, it can be shown that
the unphysical poles have an extra contribution 2/a which becomes very heavy and
decouples from the theory in the limit a → 0. Whereas the additional term in
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Eq.(2.3.4) explicitly breaks the chiral symmetry of the theory at the zero mass limit.
A chiral rotation on the fermion fields is defined as

ψ → ψ′ = eiαγ5ψ, ψ̄ → ψ̄′ = ψ̄eiαγ5 . (2.3.7)

It is easy to show that the massless QCD Lagrangian L = ψ̄γµDµψ is invariant under
the chiral rotation because of the anti-commutation of γµ and γ5 as {γµ, γ5} = 0.
This is equivalent to having the massless Dirac operator D satisfy

Dγ5 + γ5D = 0. (2.3.8)

However, the additional term of Wilson fermion in Eq.(2.3.4) does not anti-commute
with γ5. In other words, the massless Wilson Dirac operator DW is not chiral since

DWγ5 + γ5DW = −2raD2
µγ5. (2.3.9)

In continuum theory, chiral symmetries are important in the spectrum and phe-
nomenology of the standard model. In order to have chiral symmetry on the lattice,
Ginsparg and Wilson [22] proposed a lattice version of Eq. (2.3.8) as

Dγ5 + γ5D = aDγ5D, (2.3.10)

with the associated chiral rotation at finite lattice spacing a as

ψ → ψ′ = eiαγ5(1−a
2
D)ψ, ψ̄ → ψ̄′ = ψ̄eiα(1−a

2
D)γ5 . (2.3.11)

A solution of the Ginsparg-Wilson equation [23] is the overlap operator defined as

Dov =
1

a
(1 + γ5sign(Hw(ρ))), Hw(ρ) ≡ γ5Dw(ρ), (2.3.12)

where sign(Hw) = Hw/
√
H2
w is the matrix sign function which can be approximated

through the Chebyshev polynomials [23], and Hw is the hermitian Wilson Dirac
operator with a negative mass parameter ρ = −( 1

2κ
− 4), in which κc < κ < 0.25

with κc the critical hopping parameter obtained by a linear extrapolation to the zero
pion mass. We use κ = 0.2 in our calculation which corresponds to ρ = 1.5 so that
there are no zero modes in Hw. Since Hw is hermitian, the matrix sign function is
well-defined through the spectral theorem. In order to show the overlap operator
Dov satisfies the Ginsparg-Wilson relation in Eq (2.3.10), we first prove the following
relation,

DovD†ov =
1

a2
(1 + γ5sign(Hw))(1 + sign(Hw)γ5)

=
1

a2
(1 + γ5sign(Hw) + sign(Hw)γ5 + 1)

=
1

a
(Dov +D†ov).

(2.3.13)

Also, we have

D†ov = 1 + sign(Hw(ρ))γ†5 = γ5Dovγ5. (2.3.14)
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Combining Eq. (2.3.13) and Eq. (2.3.14), we have

Dovγ5 + γ5Dov = (Dov +D†ov)γ5 = a(DovD†ov)γ5 = aDovγ5Dov, (2.3.15)

which is Eq (2.3.10). The associated massive overlap Dirac operator is defined as

Dm =
1

a
[ρDov(ρ) +m

(
1− aDov(ρ)

2

)
]

=
1

a
[ρ+

m

2
+
(
ρ− ma

2

)
γ5sign(γ5Dw(ρ))].

(2.3.16)

2.4 Numerical simulations

The discretized gluon and fermion measure is a product on each of the lattice points
as

DU →
∏
n,µ

dUµ(n), D[ψ, ψ̄]→
∏
n

dψ(n)
∏
m

dψ̄(m). (2.4.1)

With a rescaling of fermions and quark mass as

ψ → 1

a3/2
ψ, ψ̄ → 1

a3/2
ψ̄, m→ 1

a
m, (2.4.2)

we can absorb all the lattice spacing a factors in the action. Along with the fermion
and gluon actions on the lattice, we can re-write Eq. (2.1.1) as

〈O〉 =

∫ ∏
n dψ(n)

∏
m dψ̄(m)

∏
k,µ dUµ(k)O(ψ̄, ψ, U)e−SG[U ]−SF [ψ̄,ψ,U ]∫ ∏

n dψ(n)
∏

m dψ̄(m)
∏

k,µ dUµ(k)e−SG[U ]−SF [ψ̄,ψ,U ]
. (2.4.3)

By using Grassmann algebra of the fermion fields, we can integrate out the fermion
degrees of freedom to have

〈O〉 =

∫ ∏
k,µ dUµ(k)(

∏
f Det[Df ])O(U)e−SG[U ]∫ ∏

k,µ dUµ(k)(
∏

f Det[Df ])e−SG[U ]
, (2.4.4)

in which f is the flavor of quarks we consider in our simulation such as up, down
and strange quark, and Det[Df ] is the determinant of the fermion action matrix. The
γ5-hermiticity of the Dirac operator D gives us

Det[Df ] = Det[γ5Dfγ5] = Det[D†f ] = Det[Df ]∗, (2.4.5)

thus Det[Df ] is real. For an even number of mass-degenerate quarks, the fermion
determinant is raised to an even power and the combined weight factor is nonnegative.
For a fermion which obeys the Ginsparg-Wilson equation, the eigenvalues of massless
Dirac operator come in complex conjugate pairs [22]; thus the determinant is real and
non-negative even with odd powers of the fermion determinant and the determinant
is positive if one introduces a mass term as in Eq. 2.3.16. And we know e−SG[U ] is
positive as SG[U ] is shown to be real in Eq. 2.2.9. Thus we can evaluate Eq. (2.4.3)
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by treating the positive value
∏

f Det[Df ]e−SG[U ] (which is only a function of gauge
links) as a Boltzmann factor to have

〈O〉 =
∑
iεG

1

N
O(Ui), (2.4.6)

in which G is an ensemble of gauge configurations generated with Monte Carlo meth-
ods with the distribution probability

∏
f Det[Df ]e−SG[U ], and N is the number of

gauge configurations.
The remaining problem of calculating the operator O(U) in Eq. (2.4.4) from op-

erator O(ψ̄, ψ, U) in Eq. (2.4.3) requires an evaluation of quark propagator in each
of the background gauge configurations as

D−1(y, x) = 〈ψ(y)ψ̄(x)〉 = 〈D−1(y, x;U)〉 , (2.4.7)

in which x and y are any space-time positions on the lattice. Such a propagator
satisfies γ5-hermiticity as

D−1 = 〈D−1〉 = 〈(γ5D†γ5)−1〉 = γ5D†−1γ5. (2.4.8)

It is practically impossible to get this propagator for all combinations of x and y.
Instead, we will calculate a propagator from a single point source at x0 with S(x) =
δx,x0 which satisfies ∑

y

D(x, y)D−1(y, x0) = S(x) = δx,x0 . (2.4.9)

This will need a linear matrix solver to numerically calculate the inverse of D. For
the general cases such as extended sources, we will need a propagator D−1(y, S) from
a source vector S which has different complex values at different lattice positions and
satisfies ∑

y

D(x, y)D−1(y, S) = S(x). (2.4.10)

Defining the complex numbers at different lattice positions w as f(w), with S = f(w),
then ∑

y

D(x, y)(
∑
w

f(w)D−1(y, w)) =
∑
w

f(w)δx,w = S(x). (2.4.11)

Thus, the general propagator is a sum of point source propagators from single point
w as

D−1(y, S) =
∑
w

f(w)D−1(y, w). (2.4.12)

It is worth noting that we only need one inversion of the Dirac operator to reach this
general propagator.
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To accommodate the chiral transformation in Eq. (2.3.10), it is usually convenient
to use the chirally regulated field ψ̂ = (1 − 1

2
Dov)ψ in lieu of ψ in the interpolation

field and the currents [24, 25, 26, 27, 28]. This turns out to be equivalent to leaving
unchanged the unmodified interpolation field and currents and adopting instead the
effective propagator which also serves to filter out the unphysical eigenmode at λ = 2ρ
which can be calculated as

D−1
eff ≡

(
1− Dov

2

)
D−1
m =

1

Dc +m
, (2.4.13)

where Dc = ρDov
1−Dov/2 and is non-local. This effective propagator has the same form as

that in the continuum. Dc can be proven to be chiral as

Dcγ5 + γ5Dc = 0. (2.4.14)

In order to solve Eq. (2.4.12) for the effective massive propagator in Eq. (2.4.13),
we generate the eigenvectors vi for the massless overlap Dirac operator Dov operator
and the corresponding eigenvalues λi to some cutoff λn which starts from the lowest
eigenvalue to the cutoff λn [29]. Notice that since Dov satisfies Eq. (2.3.14), the
eigenvectors will come in pairs as vi and γ5vi with eigenvalues λi and λ∗i respectively
as

Dovvi = λivi,Dovγ5vi = λ∗i γ5vi. (2.4.15)

By using this eigensystem, we first separate the source vector S into high-mode and
low-mode parts defined as

SL =
n∑
i

[
vi(v

†
iS) + γ5vi(γ5v

†
iS)
]

(1− 1

2
δλi,0), SH = S − SL, (2.4.16)

where the factor δλi,0 takes care of the zero modes are either left-handed or right-
handed vector. We define the corresponding high-mode propagator PH and low-mode
propagator PL as

D(m, ρ)PH = SH , D(m, ρ)PL = SL, (2.4.17)

with the total propagator P = PH + PL. The low-mode propagator can be con-
structed using eigenvectors vi as

PL =
n∑
i

[
1− λi

2

ρλi +m(1− λi
2

)
vi(v

†
iS

L) +
1− λ∗i

2

ρλ∗i +m(1− λ∗i
2

)
γ5vi(γ5v

†
iS

L)

]
× (1− 1

2
δλi,0).

(2.4.18)

Then we can use conjugate gradient solver (CGNE) [30, 31] for D(m)D(m)† as a
multi-mass inverter to get the high-mode propagator PH at different quark masses
in one stroke with the multi-shift algorithm [32, 33].

Copyright c© Gen Wang, 2020.
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Chapter 3 Correlation functions

3.1 Two-point correlation functions

Hadron spectroscopy is categorized by the combination of quantum numbers such
as spin, parity, flavor content, etc. By using an operator with the same quantum
numbers as the hadron studied, Lattice QCD is able to reproduce the hadron masses
measured by experiment. In this section, we will focus on the two-point correlation
functions of a meson (charged pion) and a baryon (nucleon). The first step of these
calculations is the identification of hadron interpolators Ô, Ô† which correspond to
the annihilation and creation of the particle states.

Pion two-point functions

A hadron interpolator is constructed with gauge-invariant color singlets made from
quarks and gluons, such as the local meson interpolators,

OM(x) ≡ ψ̄f1(x)Γψf2(x), (3.1.1)

contracted from an anti-quark with flavor f1 and a quark with flavor f2, where f1 6= f2,
Γ matrix is a multiplication of Dirac gamma matrices which are chosen so that OM(x)
has the same symmetry as the desired particle state, and x = na is the discrete
position on the lattice. The corresponding interpolator ŌM , which generates the
meson state from the vacuum is the conjugate of the interpolator (3.1.1), satisfies

(ψ̄f1Γψf2)† = −ψf2†Γ†ψ̄f1† = −ψ̄f2γ4Γ†γ4ψ
f1 = ±ψ̄f2Γψf1 . (3.1.2)

The first minus sign comes from the interchange of the fermion fields and the last step
reflects the interchange of gamma matrices as γ4Γ†γ4 = ±Γ. Thus up to a possible
overall sign, ŌM is

ŌM = ψ̄f2Γψf1 . (3.1.3)

Combining these two interpolators we can have two-point correlation functions

〈OM(y)ŌM(x)〉 (3.1.4)

to be calculated with propagators as (summation convention is used for all duplicated
indices below),

〈OM(y)ŌM(x)〉 = 〈ψ̄f1(y)Γψf2(y)ψ̄f2(x)Γψf1(x)〉
= 〈ψ̄f1(y)c1α1

Γα1β1ψ
f2(y)c1β1ψ̄

f2(x)c2α2
Γα2β2ψ

f1(x)c2β2〉
= −Γα1β1Γα2β2 〈ψf2(y)c1β1ψ̄

f2(x)c2α2
ψf1(x)β2,c2ψ̄

f1(y)α1,c1〉
= −Γα1β1Γα2β2D

−1
f2

(y|x)c1c2β1α2
D−1
f1

(x|y)c2c1β2α1

= −Tr[ΓD−1
f2

(y|x)ΓD−1
f1

(x|y)],

(3.1.5)
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in which we denote the color indices with c1, c2 ∈ {1, 2, 3} as superscripts, the Dirac in-
dices with α1, α2, β1, β2 ∈ {1, 2, 3, 4} as subscripts, the trace Tr is over color and spin,
D−1
f2

(y|x) is the propagator from position x to y with quark flavor f2 and D−1
f1

(x|y)
is the propagator from position y to x with quark flavor f1. For the case of the pion,
ψf1 and ψf2 correspond to up quark u and down quark d. The u and d quarks differ
only by the value of the mass parameter within QCD and the small mass difference
between them is often ignored in current lattice QCD simulations with the u and d
quark Dirac operators are equivalent, Du = Dd, i.e., we have exact isospin symmetry.
We can also utilize γ5-hermiticity of the propagator to relate the two propagators in
Eq. (3.1.5) as

γ5D
−1γ5 = D−1† → (γ5)αα′D

−1(x|y)cdα′β′(γ5)β′β = D−1(y|x)dcβα
∗
. (3.1.6)

Thus for the case of charged pion with interpolator Oπ+ = d̄γ5u and O†π+ = Ōπ+ =
ūγ5d the correlation function Cπ+(y, x) from position x to position y is

Cπ+(y, x) ≡ 〈Oπ+(y)O†π+(x)〉 = Tr[γ5D
−1(y|x)γ5D

−1(x|y)]

= Tr[γ5D
−1(y|x)γ5γ5D

−1(y|x)
∗
γ5] =

∑
αβ,cd

|D−1(y|x)cdαβ|2. (3.1.7)

The hadron states with definite momentum ~p can be obtained with a Fourier
transformation on the correlation function at position y = (~y, t) (assuming position
x = (~0, 0)) as

Cπ+(~p, t, 0) =
∑
~y∈Λ3

e−i~y·~p 〈Oπ+(~y, t)O†π+(~0, 0)〉 , (3.1.8)

in which Λ3 = {~n = (n1, n2, n3)|ni ∈ [0, Li−1]} is the spatial volume, Li is the spatial
length in ith direction, and pi = 2πni

Lia
is the lattice momenta. In order to interpret

this correlation function, we introduce the normalization of states as

〈n, ~p |n′, ~p ′〉 = (La)3
2En

p

2m
δn,n′δ~p,~p′

I = |0〉〈0|+
∑
n

∑
~p

2m

(La)32En
p

|n, ~p〉〈n, ~p|
(3.1.9)

in which n and n′ are the labels of a hadron ground state, such as pion or nucleon,
and its excited states which vanishes at large t and T with T the total number of time
slices of the lattice, 〈n, ~p| is the hadron with momentum ~p, |n′, ~p′〉 is the hadron with
~p′, En

p is the energy of the nth hadron state at momentum ~p, and m is the ground
state energy at zero momentum which is the mass of the hadron. Also we can express
Oπ+(x) with

Oπ+(x) = e+ip̂xOπ+(0)e−ip̂x = eĤte−i~̂p·~xOπ+(0)e−Ĥtei~̂p·~x, (3.1.10)

due to translational invariance, in which Ĥ is the Hamiltonian of the system and ~̂p
is the momentum operator. Oπ+(0) and O†π+(0) could annihilate and create a π+(~p)
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state from the vacuum, respectively, as

〈0| Oπ+(0) |π+(~p)〉 = Zp, 〈π+(~p)| O†π+(0) |0〉 = Z∗p ,

〈π−(~p)| Oπ+(0) |0〉 = Z∗p , 〈0| O†π+(0) |π−(~p)〉 = Zp,
(3.1.11)

in which Zp is the overlap matrix element at momentum ~p. The second matrix

element comes from O†π+(0) = Oπ−(0) under isospin symmetry. Insert the complete
set of normalized energy eigenstates of Eq. (3.1.9) into Eq. (3.1.8) and use Eq. (3.1.10)
and Eq. (3.1.11) to get

Cπ+(~p, t, 0) =
∑
x

e−i~p·~x 〈Oπ+(x, t)O†π+(0, 0)〉

=
∑
x

e−i~p·~x
∑
n′, ~p2

2m

(La)32En′
p2

∑
n, ~p1

2m

(La)32En
p1

〈n′, p2| e−ĤTOπ+(x, t) |n, p1〉〈n, p1| O†π+(0, 0) |n′, p2〉 ,

(3.1.12)

under periodic boundary conditions. Let us first look at the last line of the equation,

〈n′, p2|e−ĤTOπ+(x, t) |n, p1〉 〈n, p1| O†π+(0, 0) |n′, p2〉
= 〈n′, p2| e−Ĥ(T−t)e−i~̂q·~xOπ+(0)e−Ĥtei~̂q·~x |n, p1〉 〈n, p1| O†π+(0) |n′, p2〉

t�1−→e−En
′

p2
(T−t)e−i~p2·~x 〈n′, p2| Oπ+(0) |0〉 〈0| O†π+(0) |n′, p2〉

+ e−E
n
p1
tei~p1·~x 〈0| Oπ+(0) |n, p1〉 〈n, p1| O†π+(0) |0〉

=|Zp2|2e−i~p2·~xe−E
n′
p2

(T−t) + |Zp1|2ei~p1·~xe−E
n
p1
t.

(3.1.13)

Thus we have

Cπ+(~p, t, 0)
t�1−→

∑
x

e−i~p·~x
∑
n′, ~p2

2m

(La)32En′
p2

1

(La)3
|Zp2|2e−i~p2·~xe−E

n′
p2

(T−t)

+
∑
x

e−i~p·~x
∑
n, ~p1

2m

(La)32En
p1

1

(La)3
|Zp1|2ei~p1·~xe−E

n
p1
t

=
∑
n′, ~p2

2m

(La)32En′
p2

δ~p,−~p2|Zp2|2e−E
n′
p2

(T−t)

+
∑
n, ~p1

2m

(La)32En
p1

δ~p,~p1|Zp1|2e−E
n
p1
t.

(3.1.14)

Combining the results, we have

Cπ+(~p, t, 0)
t�1−→ |Zp|

2(2m)

(La)32Ep
(e−Ept + e−Ep(T−t))(1 +O(e−t∆E)), (3.1.15)

in which O(e−t∆E) represent the contributions from excited states and |Zp|2 is the
spectral weight. From the free fermion lattice propagator in momentum space, one
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can identify the pole at momentum ~p and find the lattice dispersion relation (c = 1
in our units) [34],

cosh(aEp) = cosh(am) +
3∑

k=1

(1− cos(apk)), (3.1.16)

which at vanishing a approaches the continuum relation Ep =
√
m2 + ~p2.

Proton two-point functions

A typical nucleon (i.e., proton or neutron) interpolator with a given spinor index α
constructed from three quarks is [35]

ON(x)α ≡ εabcu(x)aα(u(x)bβC̃βγd(x)cγ), (3.1.17)

in which C ≡ γ2γ4 is the charge conjugation operator with C̃ = Cγ5 and εabc is the
three dimension Levi-Civita symbol with εabc = 1 if (a, b, c) is an even permutation
of (1, 2, 3), −1 if it is an odd permuation, and 0 if any index is repeated. The
corresponding creation operator is

ŌN(x)α ≡ −εabc(ū(x)cγ C̃γβd̄(x)bβ)ū(x)aγ. (3.1.18)

With these two interpolators, the nucleon correlation function contraction is

〈ON(y)γŌN(x)γ′〉 = 〈εabcεa′b′c′
(
u(x)γ,c(u(x)Ta C̃d(x)b)

)(
(ū(x)Ta′ C̃d̄(x)Tb′)u(x)γ′,c′

)
〉

= εabcεa′b′c′ C̃α′β′ C̃αβD−1
d (y|x)b

′b
β′β×(

D−1
u (y|x)a

′a
α′αD

−1
u (y|x)c

′c
γ′γ −D−1

u (y|x)a
′c
α′γD

−1
u (y|x)c

′a
γ′α

)
,

= εabcεa′b′c′Tr
[
C̃D−1

d (y|x)b
′b(D−1

u (y|x)a
′aC̃)T

]
D−1
u (y|x)c

′c
γ′γ

− εabcεa′b′c′
[
(D−1

u (y|x)a
′c)T C̃D−1

d (y|x)b
′b(D−1

u (y|x)c
′aC̃)T

]
γγ′

= εabcεa′b′c′Tr
[
D−1
d (y|x)b

′bD−1
u (y|x)a

′a
]
D−1
u (y|x)c

′c
γ′γ

+ εabcεa′b′c′
[
D−1
u (y|x)c

′cD−1
d (y|x)b

′bD−1
u (y|x)a

′a
]
γ′γ

(3.1.19)

in which (· · · )T is transpose over Dirac index, Tr[· · · ] is over Dirac index only, the
free index γ or γ′ corresponds to the free Dirac index of initial or final nucleon,
respectively, and define the Dirac space the quantity Q ≡ (C̃QC̃−1)T for an arbitrary
matrix Q. We have used the commutation relations of γ matricies {γµ, γν} = 2δµν
and exchange of color index a ←→ c for the last step. With a Fourier transform at
position y and fixed x = 0, the nucleon correlation function with momentum ~p is

GNN,γ,γ′(~p, t) =
∑
y

e−~p·~x 〈ON(y)γŌN(0)γ′〉 . (3.1.20)
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In order to expand this equation with the energy states of the nucleon, we first
consider the equation of motion of the nucleon, which is a spin-1

2
particle, as{

(/p− im)u(p, s) = 0
ū(p, s)(/p− im) = 0

(3.1.21)

The solution of equation under current γ matrix convention in Eq. (2.1.10) is,

u(p, s) =

√
Ep +m

m

(
I
~σ·~p

Ep+m

)
χs

ū(p, s) =

√
Ep +m

m
χ†s

(
I

(−1) ~σ·~p
Ep+m

)
,

(3.1.22)

in which χ1 ≡ χ′2 ≡
(

1
0

)
and χ2 ≡ χ′1 ≡

(
0
1

)
, and ~σ is the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 -i
i 0

)
, σ3 =

(
1 0
0 -1

)
. (3.1.23)

The spinors u and ū satisfy the normalization conditions ū(p, s)u(p, s′) = δs,s′ and∑
s u(p, s)ū(p, s) =

−i/p+m
2m

. Then we have

〈0| ON(x) |NP (~p, s,+)〉 = λ+u(~p, s,+)e−ipx

〈NP (~p, s,+)| ŌN(x) |0〉 = λ∗+ū(~p, s,+)e+ipx
(3.1.24)

in which + denotes positive parity state (i.e., the proton), and λ is the coupling
strength. In the same way, we can write down the coupling to the negative parity
state (i.e., S11) as

〈0| ON(x) |NP (~p, s,−)〉 = λ−(γ5)u(~p, s,−)e−ipx

〈NP (~p, s,−)| ŌN(x) |0〉 = λ∗−ū(~p, s,+)(−γ5)e+ipx.
(3.1.25)

With an insertion of complete set of states into Eq. (3.1.20), we have

GNN,γ,γ′(~p, t) =
∑
n,s

mn

(La)3En
p

e−E
n
p t 〈0| ON(0)γ |n~ps〉〈n~ps| ŌN(0)γ′ |0〉 . (3.1.26)

Using Eq. (3.1.24) and Eq. (3.1.25), we can split the sum into even parity part and
odd parity part of states |(n,+), s〉 and 〈(n,−), s|, respectively. Let us consider the
even parity part first as∑

(n,+),s

e−E
n,+
p t mn,+

(La)3En,+
p

〈0| ON(0)γ |(n,+)~ps〉〈(n,+)~ps| ŌN(0)γ′ |0〉

=
mn,+

(La)3En,+
p

[∑
n,s

e−E
n,+
p tλ+u(~p, s,+)λ∗+ū(~p, s,+)

]
γγ′

=
mn,+

(La)3En,+
p

[
λ+λ

∗
+e
−En,+p t

−i/p+mn,+

2mn,+

]
γγ′
.

(3.1.27)
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Repeating the same steps for the odd parity part, we have

GNN(~p, t) =
∑
n+

|λn,+|2e−E
n,+
p t mn,+

(La)3En,+

−i/p+mn,+

2mn,+

−
∑
n−

|λn,−|2e−E
n,−
p t mn,−

(La)3En,−

i/p+mn,−

2mn,−
,

(3.1.28)

in which En,+ and En,− correspond to the energy of even parity states and odd parity
states at momentum ~p respectively. In order to project to definite parity, we use
parity projection operator Γ± which is defined as

Γ± =
1

2

(
1± m∓

E∓p
γ4

)
. (3.1.29)

Consider the Γ+ projection and only the ground state contribution to Eq. (3.1.28) as

Tr[Γ+GNN(~p, t)] =|λ+|2e−E
+
p t

m+

(La)3E+

Tr
[

1
2

(
1 + m−

E−p
γ4

)
(−i/p+m+)

]
2m+

− |λ−|2e−E
−
p t

m−
(La)3E−p

Tr
[

1
2

(
1 + m−

E−p
γ4

)
(i/p+m−)

]
2m−

,

(3.1.30)

in which we have ignored label the n = 0 for the mass m0,± and energy E0,±
p . By

taking the trace of γ matrices, we have

Tr[Γ+GNN(~p, t)] =4|λ+|2e−E
+
p t

1
2
(m+ + m−

E−p
E+
p )

2(La)3E+
p

− 4|λ−|2e−E
−
p t

1
2
(m− − m−

E−p
E−p )

2(La)3E−p

= (+)
|λ+|2
(La)3

(
m+

E+
p

+
m−
E−p

)e−E
+
p t.

(3.1.31)

With the same steps, we have the Γ− projection as

Tr[Γ+GNN(~p, t)] =4|λ+|2e−E
+
p t

1
2
(m+ − m+

E+
p
E+
p )

2(La)3E+
p

− 4|λ−|2e−E
−
p t

1
2
(m− + m+

E+
p
E−p )

2(La)3E−p

= (−)
|λ−|2
(La)3

(
m−
E−p

+
m+

E+
p

)e−E
−
p t.

(3.1.32)

It can be seen from positive parity projection Eq. (3.1.31) and negative parity pro-
jection Eq. (3.1.32) that Γ± will completely project out the positive parity states and
negative parity states, respectively. Whereas, Γ± depend on the mass m± and energy
E± which is unknown for specific lattice simulation except for the zero momentum
case. Thus, in practice we will always use P± which is defined as

P± ≡
1

2
(1± γ4), (3.1.33)
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and satisfies P 2
± = P±. With P+ we have

Tr[P+GNN(~p, t)] =
∑
n+

λn,+λ
∗
n,+

(La)3
e−En,+t

mn,+

En,+

En,+ +mn,+

mn,+

+
∑
n−

λn,−λ
∗
n,−

(La)3
e−En,−t

mn,−

En,−

En,− −mn,−

mn,−
.

(3.1.34)

Thus at zero momentum, only even parity contributes at large t. Nucleon with non-
zero momentum will still have some contaminations from the negative parity states.
This contamination is exponentially suppressed in the long time range as the negative
parity state has higher mass and energy than the positive parity counterpart. Thus,
if we ignore the negative parity part, we will have the main contribution as

Tr[P+GNN(~p, t)]
t�1−−→ E0,+

p +m0,+

m0,+

|λ0,+|2
(La)3

e−m0,+t × (1 +O(e−t∆E)). (3.1.35)

From this correlation function, we can define the nucleon effective mass as

Eeff = ln
Tr[P+GNN(~p, t)]

Tr[P+GNN(~p, t+ 1)]
.
t�1−−→ E0,+

p (3.1.36)

3.2 Extended sources

In order to have better signals for correlation functions, we need to optimize the
interpolation fields. Although any operator with the correct quantum numbers will
project onto the physical state, the overlap can be improved significantly by consid-
ering the more realistic spatial wave functions. One way of doing so is using extended
sources or so-called smeared fermions such as

ψ1(~x, t)aα ≡
∑
~y

S1(~x, ~y)a,bα,βψ(~y, t)bβ

ψ̄2(~x, t)aα ≡
∑
~y

S2(~x, ~y)a,bα,βψ̄(~y, t)bβ,
(3.2.1)

in which S1 and S2 are the smearing functions which can be different. They satisfy
the relationships S†1S1 = I and S†2S2 = I to keep gauge invariance. The propagator
with these two smearing functions is

D−1
S (y, x)

ba

βα ≡ 〈ψ1(y)bβψ̄2(x)
a

α〉
= 〈(

∑
~z1

S1(~y, z1)b,c1β,γ1
ψ(~z1, yt)

c1
γ1

)(
∑
~z2

S2(~x, ~z2)a,c2α,γ2
ψ̄(~z2, xt)

c2
γ2

)〉

=
∑
~z1,~z2

D−1({~z1, yt}, {~z2, xt})c1,c2γ1γ2
S2(~x, ~z2)a,c2α,γ2

S1(~y, z1)b,c1β,γ1

(3.2.2)
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Figure 3.1: Example plot of the nucleon effective masses at zero momentum with
several smearing sizes as a function of time. The “Smear” label in the plot gives

the smearing size 〈r2〉1/2. These calculations used overlap fermions on a 2 + 1 flavor
RBC/UKQCD domain wall 243×64 ensemble with a = 0.111 fm and mπ = 339 MeV.

in which x = {~x, xt} and y = {~y, yt}. From the computational side, we will construct
the propagator from a smeared source S2 to a point-like sink propagator first as

D−1
S2

({~z1, yt}, {~x, xt}) ≡
∑
~z2

D−1({~z1, yt}, {~z2, xt})c1,c2γ1γ2
S2(~x, ~z2)a,c2α,γ2

(3.2.3)

Then we can apply the sum at the sink point using smearing function S1 as

D−1
S (y, x)

ba

βα =
∑
~z1

S1(~y, ~z1)b,c1β,γ1
D−1
S2

({~z1, yt}, {~x, xt})c1,c2γ1γ2 (3.2.4)

A gauge covariant source with a shape similar to a Gaussian is obtained by Jacobi
smearing [36, 37] as

S(x′, x) =

(
1− 3w

2n

)n [
1 +

w2

4n− 6w2

3∑
i=1

(
Ui(x

′, t)δx′,x−î + U †i (x′ − î, t)δx′,x+î

)]n
(3.2.5)

in which w is the input width parameter for a Gaussian distribution and n is the
number of smearing steps. The actual smearing size is related to w and n as discribed
in [38]. Such smearing is known to have better overlap with the ground state in both
pion and nucleon two-point correlation functions. Figure 3.1 shows the result of
the nucleon effective mass defined in Eq. (3.1.36) with various smearing sizes. It
can be seen that a relatively large smearing size such as w = 8.0, n = 100 with

〈r2〉1/2 = 0.63 fm will give better plateau at very early time slices compared to all
other cases.
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3.3 Grid source and momenta

In order to have good signals for baryon correlation functions, we have developed
the grid source with Z3 noises along with the low-mode substitution (LMS) method
to construct the correlation functions [39, 29, 40, 1]. Z3 noise grid is used so that
the three quarks of the baryon from the same spatial location of the grid points will
automatically contribute to the correlation function, whereas contributions from three
quarks at different spatial locations will cancel by Z3 noise. Low mode means the low
lying overlap eigenvectors up to highest eigenvalue λc of the overlap Dirac operator
Dov which is defined in Sec. 2.4. For two-point functions and three-point functions
with finite source momenta, we have developed the use of mixed momenta [40, 1] to
accommodate Z3 noise grid source and momenta. This section proposes a new way
to use the mixed momenta to have better signals for the correlation functions with
momenta.

Mixed momenta

As discussed in Sec. 2.4, we separate the propagator P into its high-mode and low-
mode parts PL and PH based on the overlap eigensystem as in Eq. (2.4.17). In
order to discuss correlation functions in momentum space, we define the point source
propagator from position (~w, 0) to sink position x as P~w(x) with x = (~x, t) (we fix
the initial time slice to be 0 in the following discussion) and the nucleon correlation
function G(x,~0) constructed with this propagator is

G(x,~0) ≡ 〈Tr[ΓeON(x)ŌN(0)]〉 = 〈C(P~0(x), P~0(x), P~0(x))〉 , (3.3.1)

in which Γe ≡ P+ = 1+γ4
2

is the non-polarized projector of the nucleon, 〈· · ·〉 de-
notes the gauge averaging, and C(P~0(x), P~0(x), P~0(x)) is the nucleon contraction in
Eq. (3.1.19) with polarization projection Γe as

C(P~0(x), P~0(x), P~0(x)) ≡ Tr
[
Γe 〈ON(x)γŌN(0)γ′〉

]
= εabcεa′b′c′Tr

[
C̃D−1

d (x|0)b
′b(D−1

u (x|0)a
′aC̃)T

]
Tr
[
ΓeD

−1
u (x|0)c

′c
]

− εabcεa′b′c′Tr
[
Γe(D

−1
u (x|0)a

′c)T C̃D−1
d (x|0)b

′b(D−1
u (x|0)c

′aC̃)T
]
.

(3.3.2)

The correlation function G(x,~0) in momentum space is

G(p,~0) ≡
∑
~x

e−i~p·~xC2pt(x,~0) = 〈
∑
x

e−i~p·~xC(P~0(x), P~0(x), P~0(x))〉 . (3.3.3)

The correlation functions G(p, ~w) with propagators P (x, ~w) starting from position
~w is

G(p, ~w) = 〈
∑
~x

e−i~p·~xC(P~w(x), P~w(x), P~w(x))〉

= 〈
∑
~x

e−i~p·(~x+~w)C(P~w(~x+ ~w, t), P~w(~x+ ~w, t), P~w(~x+ ~w, t))〉 ,
(3.3.4)
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in which we made a shift of summation variable ~x→ ~x+ ~w in the second line. With
the translation invariance of the correlation function,

〈C(P~w(~x+ ~w, t), P~w(~x+ ~w, t), P~w(~x+ ~w, t))〉
= 〈C(P~0(~x, t), P~0(~x, t), P~0(~x, t))〉 , (3.3.5)

we have

G(p, ~w) = e−i~p·~w
∑
x

e−i~p·~x 〈C(P~0(x), P~0(x), P~0(x))〉 ,

= e−i~p·~w
∑
~x

e−i~p·~xG(x,~0)

= e−i~p·~wG(p,~0),

(3.3.6)

which differs from G(p,~0) by a phase factor e−i~p·~w.
Before the discussion of LMS, we define the random Z3 grid source used in LMS

as

Sgrid ≡
n∑
i

ηiS(~wi), ~wi ∈ (x0 +mx∆x, y0 +my∆y, z0 +mz∆z) (3.3.7)

where ηi is a Z3 noise on each of the grid points ~w0 = (x0, y0, z0) is the starting
point of the grid, ∆x,y,z = L/2 or L/3 or L/4 · · · is the offset in the spatial direction
respectively, mx,y,z ∈ (0, 1, · · · , Ls/∆x,y,z) is the number of offset in each direction for

each grid points, and n = L3
s

∆x∆y∆z
is the number of grid points of the grid source. As

the Dirac operator is a linear operator, the random Z3 grid source propagator can be
written as

PSgrid(x) =
n∑
i

ηiP
L
~wi

(x) + PH
Sgrid

(x), (3.3.8)

in which PL
~wi

(x) is the low-mode part of the point source propagator P~wi(x) starting
from position ~wi which can be computed with the eigenvectors at each grid point, and
PH(x, Sgrid) is computed within one inversion with grid source Sgrid using Eq. (2.4.17)
and

PH
Sgrid

(x) =
∑
i

ηiP
H
~wi

(x, ~wi), (3.3.9)

with PH
~wi

(x) the high-mode part of the point source propagator P~wi(x) which we
defined for the purpose of this derivation. With these propagators, the nucleon cor-
relation function with LMS is

GLMS(p, Sgrid) =
〈〈∑

x

e−i~x·~p

(
n∑
i

[
C(ηiP

L
~wi

+ PH
Sgrid

, ηiP
L
~wi

+ PH
Sgrid

, ηiP
L
~wi

+ PH
Sgrid

)
]

−(n− 1)C(PH
Sgrid

, PH
Sgrid

, PH
Sgrid

)
)〉

Z3

〉
.

(3.3.10)
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in which 〈· · · 〉Z3 denotes the noise averaging. We would like to see how this can be
written as a sum of G(p) to understand the result. Expanding the terms on the right
side using Eq. (3.3.9), the term with all high-mode propagators is〈〈

C(PH
Sgrid

, PH
Sgrid

, PH
Sgrid

)
〉
Z3

〉
=
〈〈∑

i,j,k

ηiηjηkC(PH
~wi
, PH

~wj
, PH

~wk
)
〉
Z3

〉
. (3.3.11)

As ηi is Z3 noise, we have 〈ηiηjηk〉Z3
= δi,jδj,k and ηiηiηi = 1 which leads to (for each

gauge configuration, we use different Z3 noises)〈〈
C(PH

Sgrid
, PH

Sgrid
, PH

Sgrid
)
〉
Z3

〉
=
〈∑

i

C(PH
~wi
, PH

~wi
, PH

~wi
)
〉
. (3.3.12)

We have written this term as a direct summation of the high-mode contributions from
each of the grid points ~wi. The other term can also be expanded to be〈
C(ηiP

L
~wi

+ PH
Sgrid

, ηiP
L
~wi

+ PH
Sgrid

, ηiP
L
~wi

+ PH
Sgrid

)
〉

=
〈
C(PL

~wi
, PL

~wi
, PL

~wi
)
〉

+
〈
ηiηi(C(PH

Sgrid
, PL

~wi
, PL

~wi
) + C(PL

~wi
, PH

Sgrid
, PL

~wi
) + C(PL

~wi
, PL

~wi
, PH

Sgrid
))
〉

+
〈
ηi(C(PH

Sgrid
, PH

Sgrid
, PL

~wi
) + C(PH

Sgrid
, PL

~wi
, PH

Sgrid
) + C(PL

~wi
, PH

Sgrid
, PH

Sgrid
))
〉

+
〈
C(PH

Sgrid
, PH

Sgrid
, PH

Sgrid
)
〉
.

(3.3.13)

with 〈· · · 〉 here for both gauge averaging and noise averaging. A term like〈
ηiηiC(PH

Sgrid
, PL

~wi
, PL

~wi
)
〉

can be expanded further as〈
ηiηiC(PH

Sgrid
, PL

~wi
, PL

~wi
)
〉

=
〈
ηiηiC(

∑
j

ηjP
H
j , P

L
~wi
, PL

~wi
)
〉

=
〈∑

j

ηiηiηjC(PH
~wj
, PL

~wi
, PL

~wi
)
〉

=
〈
C(PH

~wi
, PL

~wi
, PL

~wi
)
〉
,

(3.3.14)

which leads to contributions only from grid point ~wi. Applying a similar procedure
to reduce other terms gives〈
C(ηiP

L
~wi

+ PH
Sgrid

, ηiP
L
~wi

+ PH
Sgrid

, ηiP
L
~wi

+ PH
Sgrid

)〉 = 〈C(PL
~wi
, PL

~wi
, PL

~wi
)
〉

+
〈

(C(PH
~wi
, PL

~wi
, PL

~wi
) + C(PL

~wi
, PH

~wi
, PL

~wi
) + C(PL

~wi
, PL

~wi
, PH

~wi
))
〉

+
〈

(C(PH
~wi
, PH

~wi
, PL

~wi
) + C(PH

~wi
, PL

~wi
, PH

Sgrid
) + C(PL

~wi
, PH

~wi
, PH

~wi
))
〉

+
〈
C(PH

Sgrid
, PH

Sgrid
, PH

Sgrid
)
〉
.

=
〈
C(PL

~wi
+ PH

~wi
, PL

~wi
+ PH

~wi
, PL

~wi
+ PH

~wi
)− C(PH

~wi
, PH

~wi
, PH

~wi
) +

n∑
j

C(PH
~wj
, PH

~wj
, PH

~wj
)
〉
,

(3.3.15)
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in which the first term is the same as G(x, ~wi). Combining Eq. (3.3.10), Eq. (3.3.12)
and Eq. (3.3.15), we have

GLMS(p) =
〈∑

x

e−i~x·~p

(
n∑
i

[C(PL
~wi

+ PH
~wi
, PL

~wi
+ PH

~wi
, PL

~wi
+ PH

~wi
)]

+
n∑
i

[
−C(PH

~wi
, PH

~wi
, PH

~wi
) +

n∑
j

C(PH
~wj
, PH

~wj
, PH

~wj
)

]

−(n− 1)
n∑
j

C(PH
~wj
, PH

~wj
, PH

~wj
)

)〉
=
∑
x

e−i~x·~p
n∑
i

G(x, ~wi) =
n∑
i

e−i ~wi·~p
∑
x

e−i~x·~pG(x,~0)

=(
n∑
i

e−i ~wi·~p)G(p,~0).

(3.3.16)

At this point, it is easy to see that GLMS(p) is a sum of contributions of G(p,~0) from
each grid point ~wi with a relative phase factor e−i ~wi·~p. With the definition of ~wi and
defining ∆ ≡ ∆x = ∆y = ∆z,

n∑
i

e−i ~wi·~p =
∑

mx,my ,mz

e−i(x0+mx∆)pxe−i(y0+my∆)pye−i(z0+mz∆)pz

= e−i(x0px+y0py+z0pz)
∑
mx

e−i(mx∆)px
∑
my

e−i(my∆)py
∑
mz

e−i(mz∆)pz ,

(3.3.17)

where ∆ = L/ns in which ns is the number of sources in each spatial direction and
integers mx,y,z ∈ (0, 1, · · · , L/∆). The sum

∑
mx
e−i(mx∆)px will not be zero only if

px = 2π
L
k ns with k some integer. For example, for the special case with ns = 2 and

px ∈ 2π
L
{0, 1, 2}, we have

∑
mx
e−i(mx∆)px to be∑

mx

e−i(mx∆) 2π
L

(0) = e−i0∗π∗0 + e−i1∗π∗0 = 2∑
mx

e−i(mx∆) 2π
L

(1) = e−i0∗π∗1 + e−i1∗π∗1 = 0∑
mx

e−i(mx∆) 2π
L

(2) = e−i0∗π∗2 + e−i1∗π∗2 = 2.

(3.3.18)

By repeating this pattern, such a phase factor
∑n

i e
−i ~wi·~p will not be zero only if

(kx, ky, kz mod ns = 0) with ~p = 2π
L

(kx, ky, kz). In other words, kx, ky, and kz need
to be multiples of ns so that the corresponding phase factors are non-zero.
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In order to get the other missing momenta, we define another mixed grid source
with additional phase factors θi,mix as

Sgrid,mix =
n∑
i

ηiθi,mixS(~wi)

θi,mix ≡ (ei ~wi·~p1 + ei ~wi·~p2 + ei ~wi·~p3)

p1 ≡
2π

L
(1, 0, 0), p2 ≡

2π

L
(0, 1, 0), p3 ≡

2π

L
(0, 0, 1),

(3.3.19)

with the corresponding high-mode propagator

PH
mix ≡ PH

mix(x, Sgrid,mix) =
∑
i

ηiθi,mixP
H
~wi
, (3.3.20)

and define the mixed low-mode propagator

PL
~wi,mix

≡ PL
mix(x, ~wi) = θi,mixP

L
~wi

(x). (3.3.21)

By replacing one of the propagators of GLMS(p) in Eq. (3.3.10) with these mixed
propagators, we obtain

GLMS(p)(1) =
〈∑

x

e−i~x·~p

(
n∑
i

[C(ηiP
L
~wi

+ PH
Sgrid

, ηiP
L
~wi

+ PH
Sgrid

, ηiP
L
~wi,mix

+ PH
mix)]

−(n− 1)C(PH
Sgrid

, PH
Sgrid

, PH
mix)

)〉
,

(3.3.22)

in which GLMS(p)(1) means only one of the propagators is replaced with these mixed
propagators. Take a close look at the last term,〈

C(PH
Sgrid

, PH
Sgrid

, PH
mix)

〉
=
〈∑
i,j,k

〈ηiηjηk〉θk,mixC(PH
~wi
, PH

~wj
, PH

~wk
)
〉
,

=
〈∑

i

θi,mixC(PH
~wi
, PH

~wi
, PH

~wi
)
〉
.

(3.3.23)

As usual, we used 〈ηiηjηk〉Z3
= δi,jδj,k. Eq. (3.3.23) differs from Eq. (3.3.12) by a

phase factor θi,mix. Repeating the same derivation for the other terms in CLMS(p)(1),
we have

GLMS(p)(1) = (
n∑
i

e−i ~wi·~pθi,mix)G(p,~0) (3.3.24)

We can also replace two or three propagators in GLMS(p) with the mixed propagator
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as

GLMS(p)(2) =
〈∑

x

e−i~x·~p

(
n∑
i

[C(ηiP
L
~wi

+ PH
Sgrid

, ηiP
L
~wi,mix

+ PH
mix, ηiP

L
~wi,mix

+ PH
mix)]

−(n− 1)C(PH
Sgrid

, PH
mix, P

H
mix)

)〉
= (

n∑
i

e−i ~wi·~pθ2
i,mix)G(p,~0)

GLMS(p)(3) =
〈∑

x

e−i~x·~p

(
n∑
i

[C(ηiP
L
~wi,mix

+ PH
mix, ηiP

L
~wi,mix

+ PH
mix, ηiP

L
~wi,mix

+ PH
mix)]

−(n− 1)C(PH
mix, P

H
mix, P

H
mix)

) 〉
= (

n∑
i

e−i ~wi·~pθ3
i,mix)G(p,~0),

(3.3.25)

Define the phase factors before G(p,~0) as

f
(0)
i = e−i ~wi·~p,

f
(1)
i = e−i ~wi·~pθi,mix,

f
(2)
i = e−i ~wi·~pθ2

i,mix,

f
(3)
i = e−i ~wi·~pθ3

i,mix,

(3.3.26)

which correspond to GLMS(p)(0) ≡ GLMS(p), GLMS(p)(1), GLMS(p)(2), GLMS(p)(3)

with

GLMS(p)(a) = (
n∑
i

f
(a)
i )G(p,~0), a ∈ (0, 1, 2, 3). (3.3.27)

In order to calculate the variance of GLMS(p)(a), we start from a simple function

X ≡
∑
i

gixi, (3.3.28)

with xi an uncorrelated random variable with central value x and variance σ(x) and∑
i gi = 1. Then the mean value of X is,

X =
∑
i

gixi = (
∑
i

gi)x = x. (3.3.29)
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The variance of X is

σ(X) = 〈(X −X)2〉 = 〈(
∑
i

gixi − x)2〉

= 〈(
∑
i

gi(xi − x))2〉 = 〈(
∑
i

g2
i (xi − x)2)〉+ 2

∑
i 6=j

gigj 〈(xi − x)(xj − x)〉

=
∑
i

g2
i σ(x) + 2

∑
i 6=j

gigj 〈xixj − xix− xjx+ x2〉

=
∑
i

g2
i σ(x) + 2

∑
i 6=j

gigj(x
2 − 2x2 + x2)

=
∑
i

g2
i σ(x).

(3.3.30)

Assuming G(p,~0) from different grid points ~wi have the same signals to noise ratios
and ignoring errors coming from taking 〈ηiηjηk〉 = δi,jδj,k in Eq. (3.3.16), the theoret-
ical ratio R of the variances of G(p,~0) and GLMS(p)(a) under simple error propagator
with only one inversion will be

R(p)(a) =
σ(G(p,~0))

σ(GLMS(p)(a))
=

(
∑n

i f
(a)
i )2∑n

i (f
(a)
i )2

. (3.3.31)

Since the average values of G(p,~0) and GLMS(p)(a) are the same, the ratio of signal
to noise ratios G(p,~0) and GLMS(p)(a) is

√
(R(p)(a)). For the case of ~p = 2π

L
(0, 0, 0),

f
(0)
i = 1, and so R(p)(a) = n. The variance improvement using a grid source is

proportional to the number of grid points n which is the case we desire.
In order to have a feeling of other cases of f

(a)
i , we take an example of Lx = Ly =

Lz = 32, ∆x = ∆y = ∆z = 32
2

= 16, mx,y,z ∈ {0, 1} and ~w0 = (0, 0, 0). Table. 3.1 lists

the f
(a)
i and R(p)(a) for momentum ~p = 2π

L
(0, 0, 0) and ~p = 2π

L
(0, 0, 2). It can be seen

that the fi’s for the two momenta at different cases are the same as expected. For all
the cases, R(p)(0) = 8, R(p)(1) = 0, R(p)(2) = 3.4 and R(p)(3) = 0. This means that

we should use case G
(0)
LMS(p) to obtain better signals for these two momenta and case

G
(1)
LMS(p) and G

(2)
LMS(p)(p) will have no signal for these momenta. With the observation

of patterns, for the case with ~p = 2π
L

(kx, ky, kz), kx,y,z to be modulo (2), the best case

is G
(0)
LMS(p) with theoretical improvement of a factor of 8 which corresponds to all

f
(0)
i = 1.
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Table 3.1: List of f
(a)
i and R(p)(a) for momenta ~p = 2π

L
(0, 0, 0) and ~p = 2π

L
(0, 0, 2).

~p Case f0 f1 f2 f3 f4 f5 f6 f7 R(p)
2π
L

(0, 0, 0) (0) 1 1 1 1 1 1 1 1 8
2π
L

(0, 0, 0) (1) 3 1 -1 1 1 -1 -1 -3 0
2π
L

(0, 0, 0) (2) 9 1 1 1 1 1 1 9 3.4
2π
L

(0, 0, 0) (3) 27 1 1 -1 1 -1 -1 -27 0
2π
L

(0, 0, 2) (0) 1 1 1 1 1 1 1 1 8
2π
L

(0, 0, 2) (1) 3 1 -1 1 1 -1 -1 -3 0
2π
L

(0, 0, 2) (2) 9 1 1 1 1 1 1 9 3.4
2π
L

(0, 0, 2) (3) 27 1 1 -1 1 -1 -1 -27 0

Picking only the best cases for the chosen momenta, we can have the ratios listed
in Table. 3.2. It can been seen that we have reached the theoretical improvement of
8 only for ~p = 2π

L
(0, 0, 0) and for some momenta the improvements from using grid

source are much smaller, though still worthwhile.

Table 3.2: List of f
(a)
i and R(p)(a) for momenta ~p = 2π

L
(0, 0, 0), ~p = 2π

L
(0, 0, 1),

~p = 2π
L

(0, 1, 1) and ~p = 2π
L

(1, 1, 1).

~p Case f0 f1 f2 f3 f4 f5 f6 f7 R(p)
2π
L

(0, 0, 0) (0) 1 1 1 1 1 1 1 1 8
2π
L

(0, 0, 1) (1) 3 -1 1 1 1 1 -1 3 2.6
2π
L

(0, 1, 1) (2) 9 -1 -1 1 1 -1 -1 9 1.5
2π
L

(1, 1, 1) (3) 27 -1 -1 -1 -1 -1 -1 27 1.6

Repeating these tests with a different starting point ~w0 = (0, 0, 4) of the noise grid
source defined in Eq. (3.3.7), the R(p)(a)’s in Table. 3.2 change to R(2π

L
(0, 0, 0))(0) = 8,

R(2π
L

(0, 0, 1))(1) = 4, R(2π
L

(0, 1, 1))(2) = 2.2 and R(2π
L

(1, 1, 1))(3) = 2.3. Since R(p)(a)

can vary by a factor of 2 for cases (1), (2) and (3), it would be better if we could
have other ways to deal with LMS with momenta so that fi will all be 1 for all sites
so that we can have theoretical improvement approaching the number of grid points
n. This will be achieved in next section.

New way of using mixed momenta

Taking a close look at Eq. (3.3.10), we can try to add additional phases ei ~wi·~p for the
contractions of each grid point as

GLMS(p)new,try =
n∑
i

ei ~wi·~p
∑
x

e−i~x·~p
〈

[C(ηiP
L
~wi

+ PH
Sgrid

, ηiP
L
~wi

+ PH
Sgrid

, ηiP
L
~wi

+ PH
Sgrid

)]

− C(PH
Sgrid

, PH
Sgrid

, PH
Sgrid

)
〉 (3.3.32)
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Expand the contributions from each of the grid point of GLMS(p)new,try to have,

GLMS(p)new,try =
n∑
i

ei ~wi·~p
∑
x

e−i~x·~p〈[
C(PL

~wi
+ PH

~wi
, PL

~wi
+ PH

~wi
, PL

~wi
+ PH

~wi
)− C(PH

~wi
, PH

~wi
, PH

~wi
)
XXXXXXXXXXXX

+
n∑
j

C(PH
~wj
, PH

~wj
, PH

~wj
)
]

XXXXXXXXXXXX

−
n∑
j

C(PH
~wi
, PH

~wi
, PH

~wi
)
〉

=
n∑
i

ei ~wi·~p
∑
x

e−i~x·~p
〈
C(P~wi , P~wi , P~wi)− C(PH

~wi
, PH

~wi
, PH

~wi
)
〉

(3.3.33)

With Eq. (3.3.4) we can have

GLMS(p)new,try =
n∑
i

ei ~wi·~pG(p, ~wi)−
n∑
i

ei ~wi·~p
∑
x

e−i~x·~p
〈
C(PH

~wi
, PH

~wi
, PH

~wi
)
〉

=
n∑
i

ei ~wi·~pe−i ~wi·~pG(p,~0)−
n∑
i

ei ~wi·~p
∑
x

e−i~x·~p
〈
C(PH

~wi
, PH

~wi
, PH

~wi
)
〉

=
n∑
i

G(p,~0)−
n∑
i

ei ~wi·~p
∑
x

e−i~x·~p
〈
C(PH

~wi
, PH

~wi
, PH

~wi
)
〉

(3.3.34)

Thus we can have GLMS(p)new,try to be nG(p,~0) with even contributions from each
of the grid points (with all fi = 1) for all momenta if the last term can be evaluated.
Note that the last term is only a function of the high-mode part of the propagator
and we will see later that the contribution from this term to the correlation function
is very small at large time slices.

Let us first define G(H,H,H)(p) to be the last term as

G(H,H,H)(p) =
n∑
i

ei ~wi·~p
∑
x

e−i~x·~p
〈
C(PH

~wi
, PH

~wi
, PH

~wi
)
〉
. (3.3.35)

Also define the “high mode part” of the point source correlation functions as

GH(p) ≡
∑
x

e−i~x·~pGH(x,~0) ≡
∑
x

e−i~x·~p〈C(PH(x,~0), PH(x,~0), PH(x,~0))〉(3.3.36)

Assume translation invariance of GH(x,~0) as

GH(x,~0) = GH((~x+ ~w, t), ~w)

= 〈C(PH
~w (~x+ ~w, t), PH

~w (~x+ ~w, t), PH
~w (~x+ ~w, t))〉

(3.3.37)

Then we can re-write G(H,H,H)(p) with the change of ~x→ ~x+ ~wi as

G(H,H,H)(p) =
n∑
i

ei ~wi·~p
∑
x

e−i(~x+~wi)·~p

〈
C(PH

~wi
(~x+ ~wi, t), P

H
~wi

(~x+ ~wi, t), P
H
~wi

(~x+ ~wi, t))
〉 (3.3.38)
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Use translation invariance in Eq. (3.3.37), we have

G(H,H,H)(p) =
n∑
i

ei ~wi·~p
∑
x

e−i(~x+~wi)·~pGH((~x+ ~w, t), ~w)

=
n∑
i

∑
x

e−i(~x)·~pGH(x,~0)

=
n∑
i

GH(p,~0) = nGH(p,~0).

(3.3.39)

Thus we can find a way to estimate GH(p,~0) to get G(H,H,H)(p). One way of doing
so is using the high mode part of the mixed momenta propagator in Eq. (3.3.20) and
defining the following contractions for high-mode propagators with mixed propagator
inspired from Sec. 3.3 as

G(p)H,(0) = 〈
∑
x

e−i~x·~p
(
C(PH , PH , PH)

)
〉 = (

n∑
i

e−i ~wi·~p)GH(p,~0)

G(p)H,(1) = 〈
∑
x

e−i~x·~p
(
C(PH , PH , PH

mix)
)
〉 = (

n∑
i

e−i ~wi·~pθi,mix)G
H(p,~0)

G(p)H,(2) = 〈
∑
x

e−i~x·~p
(
C(PH , PH

mix, P
H
mix)

)
〉 = (

n∑
i

e−i ~wi·~pθ2
i,mix)G

H(p,~0)

G(p)H,(3) = 〈
∑
x

e−i~x·~p
(
C(PH

mix, P
H
mix, P

H
mix)

)
〉 = (

n∑
i

e−i ~wi·~pθ3
i,mix)G

H(p,~0),

(3.3.40)

in which G(p)H,(a) = (
∑n

i f
(a)
i )GH(p,~0) with f

(a)
i having the same definition as in

Eq. (3.3.26). We can choose case G(p)H,(a) to be an estimator of GH(p,~0) so that

G(H,H,H)(p) = nGH(p,~0) depending on the desired momentum p. Even f
(a)
i is not

equal to 1 which will have influence on the signal of G(H,H,H)(p), this should not affect
the final signal of the nucleon correlation functions. This can be seen from Fig 3.2 and
Fig 3.3 that CH(p) is a very small part of the total correlation function. In the figure,
we defined GL,H(p,~0) = G(p,~0)−GL(p,~0)−GH(p,~0) in which GL(p,~0) is constructed
from low-mode propagators. From this plot, it can be seen that at around 1.0 fm
most of the contributions and errors come from the low-mode GL(p,~0). And the pure
high mode GH(p,~0) contribution is under 1% after 0.75 fm. The test is on a 323× 64
domain wall lattice (32ID) with lattice spacing 0.143 fm.

Another issue for the new contractions is that we have two sources in time. The
method in Ref.[40, 1] proposed a combination of the two time slices as

Si,j ≡ S(~wi, 0) + S(~wj, 32), (3.3.41)

in which ~wi and ~wj are the spacial positions on time slices 0 and 32, respectively, —
they are chosen so that the distance between ~wj and ~wi is as large as possible to reduce
the influence between them — and then constructing a low-mode propagator for this
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Figure 3.2: Example plots of the high-mode and low-mode contributions to proton
smeared to the smeared correlation functions at momentum 2π

L
(0, 0, 0) with pion

mass 174 MeV. The plot on the left is of the correlation functions GL(p,~0) and the
contributions from GL(p,~0), GH(p,~0) and the crossing term GL,H(p,~0) = G(p,~0) −
GL(p,~0) − GH(p,~0). The plot on the right shows the relative proportions of these
three terms which add up to 1.
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Figure 3.3: Example plot of the ratio of the variance of these three terms
shown in Fig. 3.2 to the variance of total correlation function G(p,~0). The ratio
σ(G(p)H)/σ(G(p)) is almost zero as the contribution from pure high mode to the
nucleon correlation function is very small.
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combined source Si,j. For the new method, since there is an additional phase ei ~wi·~p

factor for each of the grid points, so the current implementation using the grouping
of sources is

Si,i ≡ S(~wi, 0) + S(~wi, 32), (3.3.42)

in which the spacial positions on time slice 0 and 32 are the same to avoid complexity
from the additional phase factor. The results of the new method to get momenta
with low-mode substitution are shown in Fig 3.4. It can be seen that it gives consis-
tent results with the previous method and has better signals at momenta 2π

L
(0, 1, 1)

and 2π
L

(1, 1, 1). And the new method requires only one fourth of the contraction
time compared with the original method which requires contraction of CLMS(p)(a) in
Eq. (3.3.10), Eq. (3.3.22) and Eq. (3.3.25) with a ∈ {0, 1, 2, 3}.

In summary the new methods states

GLMS(p)new =
n∑
i

ei ~wi·~p
∑
x

e−i~x·~p
〈

[C(ηiP
L
~wi

+ PH
Sgrid

, ηiP
L
~wi

+ PH
Sgrid

, ηiP
L
~wi

+ PH
Sgrid

)]

− C(PH
Sgrid

, PH
Sgrid

, PH
Sgrid

)
〉

+G(H,H,H)(p)

(3.3.43)

with G(H,H,H)(p) = nGH(p,~0) calculated with Eq. (3.3.40) under the assumption of
translation invariance in Eq. (3.3.37).

There may be several other possibilities to estimate G(H,H,H)(p) all of which need
an additional inversion as the above method (inversion for the mixed momenta prop-
agator):

• The first one is to have an additional inversion of the high-mode propagator
with Z4 noises βi with source and high-mode propagator as

SZ4
grid ≡

n∑
i

βiS(~wi)

PH(x, SZ4
grid) =

n∑
i

βiP
H
~wi

(x).

(3.3.44)

Defining PH
Z4

= PH(x, SZ4
grid), by using 〈βiβjβkβm〉 = δi,jδj,kδk,m and βiβiβiβi =

1, we have

〈
n∑
i

ei ~wi·~p
∑
x

e−i~x·~pβiC(PH
Z4
, PH

Z4
, PH

Z4
)〉

= 〈
n∑
i

ei ~wi·~p
∑
x

e−i~x·~pβi

n∑
j,k,m

βjβkβmC(PH
~wj
, PH

~wk
, PH

~wm)〉

= 〈
n∑
i

ei ~wi·~p
∑
x

e−i~x·~pC(PH
~wj
, PH

~wk
, PH

~wm)〉

= G(H,H,H)(p),

(3.3.45)

30



0 2 4 6 8 10 12 14 16
time (fm)

106

107

108

109

1010

1011

Pr
ot

on
 C

or
re

la
tio

n 
fu

nc
tio

ns

Momentum 2L (0, 0, 0)
New, S/N:22.48
Pre, S/N:24.91
Ava T, S/N:156.71

0 2 4 6 8 10 12 14 16
time (fm)

106

107

108

109

1010

1011

Pr
ot

on
 C

or
re

la
tio

n 
fu

nc
tio

ns

Momentum 2L (0, 0, 1)
New, S/N:24.04
Pre, S/N:21.57
Ava T, S/N:128.3

0 2 4 6 8 10 12 14 16
time (fm)

104

105

106

107

108

109

1010

1011

Pr
ot

on
 C

or
re

la
tio

n 
fu

nc
tio

ns

Momentum 2L (0, 1, 1)
New, S/N:23.59
Pre, S/N:18.04
Ava T, S/N:103.17

0 2 4 6 8 10 12 14 16
time (fm)

106

107

108

109

1010

1011

Pr
ot

on
 C

or
re

la
tio

n 
fu

nc
tio

ns
Momentum 2L (1, 1, 1)

New, S/N:21.84
Pre, S/N:16.12
Ava T, S/N:92.13

Figure 3.4: The four plots are used to compare the previous method and new method
to get momenta with low-mode substitution for proton smeared to smeared correla-
tion functions. The blue points correspond to the new method (New) to deal with
momenta measured on 50 configurations. The red points correspond to the previous
method (Pre) to deal with momenta measured on 50 configurations and green points
(Ava) use the same method with 16 different initial time sources averaged on 200 con-
figurations. The four plots correspond to the cases of momenta 2π

L
(0, 0, 0), 2π

L
(0, 0, 1),

2π
L

(0, 1, 1) ,2π
L

(1, 1, 1) averaged over equivalent directions. S/N in the plot labels the
signal to noise ratio at t = 8.
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which gives G(H,H,H)(p) without the assumption of translation invariance in
Eq. (3.3.37).

• Another possibility is that we can use two Z3 noise grid sources with the same
grid points ~wi but different noises ηαi and ηβi as

Sαgrid ≡
n∑
i

ηαi S(~wi), S
β
grid ≡

n∑
i

ηβi S(~wi)

PH(x, Sαgrid) =
n∑
i

ηαi P
H
~wi

(x), PH(x, Sβgrid) =
n∑
i

ηβi P
H
~wi

(x).

(3.3.46)

From these two high-mode propagators, we can construct C(H,H,H)(p) in a
similar procedure as the Z4 noise case as (defining PH,α = PH(x, Sαgrid) and

PH,β = PH(x, Sβgrid))

〈
n∑
i

ei ~wi·~p
∑
x

e−i~x·~pηαi η
β
i

2
C(PH,α, PH,α, PH,β)〉

= 〈
n∑
i

ei ~wi·~p
∑
x

e−i~x·~pηαi η
β
i

2
n∑

j,k,m

ηαj η
α
k η

β
mC(PH

~wj
, PH

~wk
, PH

~wm)〉

= 〈
n∑
i

ei ~wi·~p
∑
x

e−i~x·~pC(PH
~wj
, PH

~wk
, PH

~wm)〉

= G(H,H,H)(p),

(3.3.47)

which also gives G(H,H,H)(p) without the assumption of translation invariance
in Eq. (3.3.37). As Sαgrid and Sβgrid have no additional phases other than the Z3

noise, we can construct GLMS(p)new,α and GLMS(p)new,β along with the above
estimation of G(H,H,H)(p). Averaging these two correlation functions may give
us better signals around 0.5 ∼ 1.0 fm. We may also try to have several dif-
ferent spatial grids on one configuration; we can estimate G(H,H,H)(p) on each
configuration once and use it for all other different spatial grids which will save
around half the inversion time and storage of propagators. These cases need to
be tested further in realistic calculations.

3.4 Three-point functions

Pion three-point functions

On the lattice we approach the charge, matter and spin of hadron by calculating
matrix elements 〈h| O |h′〉. A simple case is the electromagnetic form factor of the
pion which is defined by

〈π+(pf )|Vµ |π+(pi)〉 = (pf + pi)µfππ(Q2), (3.4.1)
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in which pi and pf are the momenta of the initial and final pion, Q2 = (pf − pi)2 is
the space-like momentum transfer, and Vµ is the local vector current

Vµ = 2
3
ūγµu− 1

3
d̄γµd, (3.4.2)

in which 2
3

and −1
3

are the charges of the up and down quarks. On the lattice we
calculate the three-point function in momentum space as

C3pt(τ, tf , ~pi, ~pf ) =
∑
~xf ,~z

e−i~pf ·~xf ei~q·~z 〈Tr[Oπ+(xf )Vµ(z)O†π+(G)]〉 (3.4.3)

where Oπ+(~x, t) = d̄(~x, t)γ5u(~x, t) is the interpolating field of the pion, G is the
smeared Z3-noise grid source [39] at time slice 0, z ≡ {τ, ~z} is the current position, 0
is the position where the pion is created, xf ≡ {tf , ~xf} is the position where the pion
is annihilated, ~pi and ~pf is the initial and final momentum of the pion, respectively,
and ~q = ~pf − ~pi is the momentum transfer. With the usage of Wick contraction, we
can calculate C3pt(τ, tf , ~pi, ~pf ) for Vµ current as

C3pt(τ, tf , ~pi, ~pf ) =
∑
~xf ,~z

e−i~pf ·~xf ei~q·~z×

〈
Tr
[
− 2

3
γ5D

−1
u (xf |z)γµD

−1
u (z|G)γ5D

−1
d (G|xf )

+
1

3
γ5D

−1
d (G|z)γµD

−1
d (z|xf )γ5D

−1
u (xf |G|)

]
+ Tr

[
γ5D

−1
u (xf |G)γ5D

−1
d (G|xf )

]
×
(

2

3
Tr
[
γµD

−1
u (z|z)

]
− 1

3
Tr
[
γµD

−1
d (z|z)

])〉
,

(3.4.4)

where D−1
f (y|x) is the quark propagator from x to y for quark flavor f , and ~q = ~pf−~pi

is the momentum transfer. The first two terms which include propagator D−1
u (xf |z)

or D−1
d (z|xf ) are so-called connected insertions (CI). The last two terms including

propagator D−1
u (z|z) or D−1

d (z|z) are called disconnected insersions (DI) which are
proven to vanish [41] in the ensemble average because of charge conjugation symmetry.
Let us consider the CI terms associated with the current ūγµu separately as

γ5D
−1
u (xf |z)γµD

−1
u (z|G)γ5D

−1
d (G|xf )

= −(γ5D
−1
d (G|z)γµD

−1
d (z|xf )γ5D

−1
u (xf |G))†,

(3.4.5)

where we have used the γ5 hermiticity of the propagator discussed in Eq. (2.4.5), the
“−” sign comes from γ5γ

†
µγ5 = −γµ. As we are working with exact isospin symmetry,

we have D−1
u (y|x) = D−1

d (y|x). And C3pt(τ, tf , ~pi, ~pf ) will have signals only for the
real part (C3pt = C∗3pt under charge conjugation [41]), we can sum up the two terms
from CI parts to have

C3pt(τ, tf , ~pi, ~pf ) =
∑
~xf ,~z

e−i~pf ·~xf ei~q·~z×

〈Tr
[
γ5D

−1(G|z)γµD
−1(z|xf )γ5D

−1(xf |G)
]
〉 ,

(3.4.6)
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in which D−1
f (y|x) denotes the light (u or d) quark propagator from x to y. In

practice, D−1(G|z) in Eq. (3.4.6) is calculated with γ5 hermiticity, i.e., D−1(G|z) =
γ5D

−1(z|G)†γ5, and D−1(z|xf ) is usually obtained in the sequential source method
with γ5D

−1(xf |G) as the source [42, 43]. The calculation of the sequential propagators
would need to be repeated for different ~pf and different quark mass m, thus the
cost would be very high when dozens of momenta and multiple quark masses are
calculated. Instead, we use the stochastic sandwich method [40, 1], but without
low mode substitution (LMS) for D−1(xf |G) since it is not efficient for pseudoscalar
mesons [29]. However, the separation of sink position xf and current position z in
splitting the low and high modes for the propagator D−1(z|xf ) between the current
and sink can facilitate FFT along with LMS which is still useful here. As shown
in Fig. 3.5, D−1(z|xf ) can be split into the exact low mode part based on the low
lying overlap eigenvalues λi and eigenvectors vi of the ith eigenmode of Dc, plus the
noise-source estimate D−1

H,noi of the high-mode part,

D−1(z|xf ) = D−1
L (z|xf ) +D−1

H (z|xf ),

D−1
L (z|xf ) =

∑
λi≤λc

1

λi +m
vi(z)v†i (xf ),

D−1
H (z|xf ) =

1

nf

nf∑
j=1

D−1
H,noi(z, ηj)η

†
j(xf ),

(3.4.7)

where λc is the highest eigenvalue in LMS and is much larger than the quark mass m
with the typical number of eigenmodes nv ∼ 400 on 24I and 32I, and nv ∼ 1800 on
32ID, 32IDh, 24IDc and 48I; and D−1

H,noi(z, ηj) is the noise-estimated propagator for
the high modes with the low-mode deflated Z3 noise ηj(xf ) [40, 1]. We generate nf
sets of D−1

H,noi and each inversion includes 2nt sink time slices at i T
nt
t′ and T − i T

nt
t′

with i = {1 · · ·nt} to increase statistics.
Thus C3pt can be decomposed into factorized forms within the sums of the eigen-

modes for the low modes and the nf number of noises ηj for the high modes,

C3pt(τ, tf , ~pi, ~pf ) =
〈 ∑
λi≤λc

Tr[
1

λi +m
GL
i (~q, τ)FL

i (~pf , tf )]

+

nf∑
j=1

1

nf
Tr[GH

j (~q, τ)FH
j (~pf , tf )]

〉
,

(3.4.8)

where

GL
i (~q, τ) =

∑
~z

ei~q·~zγ5D
−1(G|z)γµvi(z), (3.4.9)

FL
i (~pf , tf ) =

∑
~xf

e−i~pf ·~xfv†i (xf )γ5D
−1(xf |G), (3.4.10)

GH
j (~q, τ) =

∑
~z

ei~q·~zγ5D
−1(G|z)γµD

−1
H,noi(z, ηj), (3.4.11)

FH
j (~pf , tf ) =

∑
~xf

e−i~pf ·~xfη†j(xf )γ5D
−1(xf |G), (3.4.12)
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which are calculated by using FFTs on the spatial points ~z and ~xf for each GL
i , FL

i , GH
j

and FH
j to obtain any ~q and ~pf with the computational complexity O(V logV ) with V

the lattice spatial volume. Compared with the stochastic sandwich method for a fixed
~pf which also includes the summation over the spatial points ~z and ~xf, eigenvectors
vi and noises ηj, the additional cost factor of using FFTs namely O(logV ), is only
of order ∼ 7 for our largest 48I lattice. The cost factor for the traditional stochastic
sandwich method is proportional to order ∼ 100 if we would like to have more than
seven different sink momenta ~pf and average over different directions. This allows us
to calculate any combination of ~q and ~pf without much additional cost compared to
the traditional stochastic sandwich method.

S L+ S Hd

(0) (xf)

V (z)

u

Figure 3.5: Illustration of the pion three-point function with the stochastic sandwich
method. LMS is applied for the propagator between the current at z and the sink at
xf with FFT, but not for the propagators from the source at 0.

The source smearing of this FFT contraction is implemented by replacing the
source propagator D−1(z|0) with the smeared propagator D−1(z|GS)

D−1(z|GS)
c1,a

γ1γ2
≡
∑
~z2

D−1({~z1, yt}, {G(~z2), 0})c1,c2γ1γ2
S(~x, ~z2)a,c2α,γ2

(3.4.13)

with S is the smearing function defined in Sec. 3.2. Sink smearing is applied on all the
sink spatial points xf of noise ηj(xf ) and eigenvectors v†i (xf ) which need to be done
carefully for each of the propagators. First, we replace propagator D−1(xf |G) with
D−1(xf |GS) which is the propagator with source smearing. Then the sink smeared
propagator D−1

S (xf |GS) is

D−1
S (xf |GS)

ba

βα =
∑
~z1

S†( ~xf , ~z1)b,c1β,γ1
D−1({~z1, tf}|GS)

c1,c2
γ1γ2

, (3.4.14)

which completes the source smearing of G at time position 0 and sink smearing at
position xf . The sink smearing of each eigenvector v†i (xf ) at the sink time can be
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done before the construction of three-point functions as

v†S,i(xf )
a

α
=
∑
~z1

S†( ~xf , ~z1)a,c1α,γ1
v†i ({~z1, tf})

c1

γ1 (3.4.15)

and these smeared eigenvectors can be reused for different valence masses and op-
erators. From the sink-smearing noise vector η†(xf ), which is used as the source of
propagator D−1

H,noi(z, ηj), we can construct a structure similar to the propagator as

Sη(xf )
a,a′

α,α′ ≡ η†(xf )δa,a′δα,α′ (3.4.16)

with a and a′ the color indices, and α and α′ the Dirac indices. S(xf ) is diagonal in
the color and Dirac indices. Then we can implement the smearing at position xf for
Sη(xf ) as

SS,η(xf )
ba
βα

=
∑
~z1

S†( ~xf , ~z1)b,c1β,γ1
Sη({~z1, tf})c1,c2γ1γ2

. (3.4.17)

Nucleon three-point functions

Such a FFT contraction method can also be applied to the CI part of nucleon three-
point functions

C3pt(Γν , µ, τ, tf , ~pi, ~pf ) =
∑
~xf ,~z

e−i~pf ·~xf ei~q·~zTr
[
Γν 〈ON(xf )〉Vµ(z)ŌN(0)

]
(3.4.18)

which shares the same variables as in Eq. (3.4.3) and Eq. (3.1.20). Γν is the parity
projection operator with Γ0 ≡ 1

2
(1 + γ0) and Γi = Γ0iγ5γi, and Vµ is the local vector

current
Vµ =

∑
f

efV
f
µ =

∑
f

ef q̄fγµqf , (3.4.19)

in which qf is the quark field of flavor f and ef is the associated charge. In order to
evaluate Eq. (3.4.18) on the lattice, we start from rewriting two-point functions in
Eq. (3.1.19) in momentum space with projection of Γν as

C2pt(µ, ~p) =
∑
y

e−i~p·~y 〈Tr
[
ΓνON(y)γŌN(0)γ′

]
〉

=
∑
y

e−i~p·~yεabcεa′b′c′
(

Tr
[
D−1
d (y|0)b

′bD−1
u (y|0)a

′a
]

Tr
[
ΓνD

−1
u (y|0)c

′c
]

+ Tr
[
ΓνD

−1
u (y|0)c

′cD−1
d (y|0)b

′bD−1
u (y|0)a

′a
] )

=
∑
y

e−i~p·~yεabcεa′b′c′
(

Tr
[
D−1
d (y|0)b

′bD−1
u (y|0)a

′a
]

Tr
[
ΓνD

−1
u (y|0)c

′c
]

+ Tr
[
D−1
u (y|0)a

′aΓνD
−1
u (y|0)c

′cD−1
d (y|0)b

′b
] )
.

(3.4.20)
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We can try to single our down quark propagator D−1
d (y|0) as

C2pt(µ, ~p) =
∑
y

e−i~p·~y(Md
ν )bb

′

ββ′(y|0)D−1
d (y|0)b

′b
β′β

=
∑
y

e−i~p·~yTr
[
Md

ν (y|0)D−1
d (y|0)

]
,

(3.4.21)

with Md being

(Md
ν )bb

′

ββ′(y|x) = εabcεa′b′c′
( [
D−1
u (y|x)a

′a
]
ββ′

Tr
[
ΓνD

−1
u (y|x)c

′c
]

+ Tr
[
D−1
u (y|0)a

′aΓνD
−1
u (y|x)c

′c
]
ββ′

)
,

(3.4.22)

in which we have exchanged color index b and b′ to have a consistent trace Tr over
color and spin in Eq. (3.4.21). Similarly, we can single out up quark propagator
D−1
u (y|0) as

C2pt(µ, ~p) =
∑
y

e−i~p·~yTr
[
Mu

1,ν(y|0)D−1
u (y|0) +Mu

2,ν(y|0)D−1
u (y|0)

]
=
∑
y

e−i~p·~yTr
[
Mu

3,ν(y|0)D−1
u (y|0) +Mu

4,ν(y|0)D−1
u (y|0)

]
,

(3.4.23)

with Mu
1,ν , M

u
2,ν , M

u
3,ν and Mu

4,ν defined as

(Mu
1,ν)

aa′

αα′(y|x) = εabcεa′b′c′
[
D−1
d (y|0)b

′b
]
αα′

Tr
[
ΓνD

−1
u (y|0)c

′c
]
,

(Mu
2,ν)

aa′

αα′(y|x) = εabcεa′b′c′
[
ΓνD

−1
u (y|0)c

′cD−1
d (y|0)b

′b
]
αα′

,

(Mu
3,ν)

cc′

αα′(y|x) = εabcεa′b′c′Tr
[
D−1
d (y|0)b

′bD−1
u (y|0)a

′a
]

[Γν ]αα′ ,

(Mu
4,ν)

cc′

αα′(y|x) = εabcεa′b′c′
[
D−1
d (y|0)b

′bD−1
u (y|0)a

′aΓν

]
αα′

,

Then the evaluation of the CI part of Eq. (3.4.18) for the down quark part is

Cd
CI,3pt(Γν , µ, τ, tf , ~pi, ~pf ) =

∑
~xf ,~z

e−i~pf ·~xf ei~q·~zTr
[
Γν 〈ON(xf )〉V d

µ (z)ŌN(0)
]

= ed
∑
~xf ,~z

e−i~pf ·~xf ei~q·~zTr
[
Md

ν (xf |0)D−1
d (xf |z)γµD

−1
d (z|0)

]
.

(3.4.24)

We can also write the CI part of the up quark contribution Cu
CI,3pt as

Cu
CI,3pt(Γν , µ, τ, tf , ~pi, ~pf ) = eu

∑
~xf ,~z

e−i~pf ·~xf ei~q·~z×

Tr
[
Mu

ν (xf |0)D−1
u (xf |z)γµD

−1
u (z|0)

]
,

(3.4.25)

in which we have defined Mu
ν to be

Mu
ν = Mu

1,ν +Mu
2,ν +Mu

3,ν +Mu
4,ν . (3.4.26)
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With Eq. (3.4.7) we are able to evaluate D−1(xf |z), and also we can implement FFT

contractions similar to Eq. (3.4.8) and Eq. (3.4.9) to get C
u/d
CI,3pt(Γν , µ, τ, tf , ~pi, ~pf ) as

C
u/d
CI,3pt =〈

∑
λi≤λc

Tr[
1

λi +m
GL
i (µ, ~q, τ)F

L,u/d
i (ν, ~pf , tf )]

+

nf∑
j=1

1

nf
Tr[GH

j (µ, ~q, τ)(F
H,u/d
j (ν, ~pf , tf )]〉,

(3.4.27)

where

GL
i (µ, ~q, τ) =

∑
~z

ei~q·~zv†i (z)γµD
−1(z|0),

F
L,u/d
i (ν, ~pf , tf ) =

∑
~xf

e−i~pf ·~xfMu/d
ν (xf |0)vi(xf ),

GH
j (µ, ~q, τ) =

∑
~z

ei~q·~zγ5(D−1
H,noi(z, ηj))

†γ5γµD
−1(z|0),

F
H,u/d
j (ν, ~pf , tf ) =

∑
~xf

e−i~pf ·~xfMu/d
ν (xf |0)η(xf ),

(3.4.28)

in which we have defined D−1(z|0) = D−1
u (z|0) = D−1

d (z|0) to be the light quark
propagator, and used D−1(xf |z) = γ5(D−1(z|xf ))†γ5 for the high-mode propagator
D−1
H,noi(z, ηj). In the same way as was done for the pion, we can also implement

source and sink smearing for the nucleon with the method described in Sec. 3.4. It
is also straightforward to implement LMS as described in Sec. (3.3). Comparing the
contractions in Eq. (3.4.20) and contractions with LMS in Eq. (3.3.43), LMS of the
source simply says to replace propagator in Eq. (3.4.20)

D−1 → ηiP
L
~wi

+ PH
Sgrid

(3.4.29)

with the propagator from grid position ~wi and repeat the calculation of the three-point
function for all grid points. Also we need make the replacement

D−1 → PH
Sgrid

(3.4.30)

for the pure high mode part G(H,H,H)(p) in Eq. (3.3.43) and repeat the calculation
of the three-point function. This summarizes the contractions of the CI part of the
nucleon three-point functions which leads to gains similar to those in the pion case.

Copyright c© Gen Wang, 2020.
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Chapter 4 Pion form factor

4.1 Introduction

The electric form factor fππ(Q2), Q2 ≡ −(p′ − p)2 ≥ 0, is defined from the pionic
matrix element and its slope at Q2 = 0 gives the mean square charge radius

〈πi(p′)|V j
µ (0)|πk(p)〉 = iεijk(pµ + p′µ)fππ(Q2), (4.1.1)

〈r2
π〉 ≡ −6

dfππ(Q2)

dQ2
|Q2=0, (4.1.2)

where V j
µ = ψ̄ 1

2
τ jγµψ is the isovector vector current, τ i are the Pauli matrices in flavor

space, and |πi〉 are the pion triplet states. 〈r2
π〉 has been determined precisely based

on the existing πe scattering data [44, 3, 45] and e+e− → π+π− data [46, 47] averaged
by the Particle Data Group (PDG) [18] as 〈r2

π〉 = 0.434(5) fm2. Phenomenologically,
fππ(Q2) is fitted quite well over the range 0 < Q2/m2

ρ < 0.4 with the single monopole
form (1 + Q2/Λ2)−1, with Λ ∼ mρ. This gives credence to the idea of vector dom-
inance [48, 49]. In chiral perturbation theory, 〈r2

π〉 has been calculated with SU(2)
Chiral Perturbation Theory [50] at NNLO and also at NLO with SU(3) formula [51],
which entails the uncertainties of the low energy constants.

Since lattice QCD is an ab initio calculation and the experimental determination
of 〈r2

π〉 from the πe scattering is very precise, it provides a stringent test for lattice
QCD calculations to demonstrate complete control over the statistical and systematic
errors in estimates of the relevant pionic matrix element. Over the years, the pion
form factor has been calculated with quenched approximation [52, 41], and for the
Nf = 2 [9, 10, 11, 12, 13], Nf = 2 + 1 [53, 54, 55, 14, 15, 16] and Nf = 2 + 1 + 1 [17]
cases.

In this section, we use valence overlap fermions to calculate the pion form fac-
tor on six ensembles of domain-wall fermion configurations with different sea pion
masses, including two at the physical pion mass, four lattice spacings and different
volumes to control the systematic errors. Due to the multi-mass algorithm available
for overlap fermions, we can effectively calculate several valence quark masses on each
ensemble [29, 56, 57, 58] and also O(100) combinations of the initial and final pion
momenta with little overhead with the usage of the fast Fourier transform (FFT)
algorithm [59] in the three-point function contraction. This allows us to study both
the sea and the valence quark mass dependence of 〈r2

π〉 in terms of partially quenched
chiral perturbation theory, besides giving an accurate result at the physical pion mass.

4.2 Numerical details

We use overlap fermions on six ensembles of HYP smeared 2+1-flavor domain-wall
fermion configurations with Iwasaki gauge action (labeled with I) [60, 61] and Iwasaki
plus the Dislocation Suppressing Determinant Ratio (DSDR) gauge action (labeled
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Table 4.1: The ensembles and their respective lattice size L3 × T , lattice spacing a,
pion mass mπ and number of configurations ncfg.

Lattice L3 × T a (fm) La (fm) mπ(MeV) mπL ncfg

24IDc 243 × 64 0.195 4.66 141 3.33 231
32ID 323 × 64 0.143 4.58 172 3.99 199

32IDh 323 × 64 0.143 4.58 250 5.80 100
48I 483 × 96 0.114 5.48 139 3.86 81
24I 243 × 64 0.111 2.65 340 4.56 202
32I 323 × 64 0.083 2.65 302 4.05 309

with ID) [62] as listed in Table 4.1. The effective quark propagator of the massive
overlap fermions is the inverse of the operator (Dc + m) [25, 28], where Dc is chiral,
i.e., {Dc, γ5} = 0 [26]. And it can be expressed in terms of the overlap Dirac operator
Dov as Dc = ρDov/(1 −Dov/2), with ρ = −(1/(2κ) − 4) and κ = 0.2. A multi-mass
inverter is used to calculate the propagators with 2 to 6 valence pion masses varying
from the unitary point to ∼ 390 MeV. On 24I, 32I and 24IDc (c stands for the coarse
lattice spacing), Gaussian smearing [63] is applied with root mean square (RMS)
radius 0.49 fm, 0.49 fm and 0.53 fm, respectively, for both source and sink. On 48I,
32ID and 32IDh (h for heavier pion mass), box-smearing [64, 65] with box half size
0.57 fm, 1.0 fm and 1.0 fm, respectively, is applied as an economical substitute for
Gaussian smearing.

To extract pionic matrix elements, the three-point function (3pt) C3pt(τ, tf, ~pi, ~pf)
is computed

C3pt =
∑
~xf,~z

e−i~pf·~xfei~q·~z 〈T[χπ+(xf)V
3

4 (z)χ†π+(G)]〉 (4.2.1)

where χπ+(~x, t) = d̄(~x, t)γ5u(~x, t) is the interpolating field of the pion with u and d the
up and down quark spinors, S(y|x) is the quark propagator from x to y, z ≡ {τ, ~z},
xf ≡ {tf, ~xf}, ~pi and ~pf is the initial and final momentum of the pion, respectively,
~q = ~pf− ~pi is the momentum transfer, and G is the smeared Z3-noise grid source [39].
The disconnected insertions in Eq.(4.2.1) vanish in the ensemble average [41]. The
connected insertions of C3pt(τ, tf, ~pi, ~pf) are computed with the method described in
Sec. 3.4 using FFT.

4.3 Analysis and results

The source-sink separations tf used in this work with different ensembles are collected
in Table 4.2. The largest tf is ∼ 2.0 fm on the coarsest lattice 24IDc and the smallest
one is ∼ 0.7 fm on the finest lattice 32I. There are two momentum setups used in this
work: the special |~pi| = |~pf| case and the general |~pi| 6= |~pf| one. We will talk about
the fit procedures in this section.
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Table 4.2: The lattice setup of this calculation. The ni sets of smeared noise-grid
sources with {ns, ns, ns, nt} points in {x, y, z, t} directions, respectively, are placed
on the lattice to improve the statistics, and nf sets of SHnoi at 2nt sink time slices at
i T
nt
tf and T − i T

nt
tf with i = {1 · · ·nt}. On a given configuration, the total number of

the propagators we generated is ni + nf and nmeas = nin
3
snt which is the number of

measurements of 3pt.

Lattice ni nt ns tf/a nf nmeasncfg

24IDc 4 2 3 6, 7, 8, 9, 10 4, 4, 6, 4, 4 49896
32ID 6 2 2 9, 10, 11 4, 5, 12 19104

32IDh 6 2 2 9, 10, 11 4, 5, 12 9600
48I 5 3 4 8, 10, 12 4, 8, 12 77760
24I 8 1 2 10, 11, 12 3, 5, 5 12928
32I 8 1 2 8, 12, 15 4, 8, 12 19776

Three-point functions fitting

With the usage of Wick contractions and gauge invariance, the three-point function
(3pt) with two sources, one at each of the time slices 0 and T/2, has contributions
from the three diagrams shown in Fig. 4.1. (We assume T/2 > tf > τ > 0.) The
diagram 4.1.(1) contributes

C3pt,(1)(τ, tf, ~pi, ~pf) =
Z~piZ~pf(Ei + Ef)

EiEfZV
fππ(Q2)(e−Eiτ−Ef(tf−τ))

+ C1e
−Eiτ−E1

f (tf−τ) + C2e
−E1

i τ−Ef(tf−τ) + C3e
−E1

i τ−E
1
f (tf−τ),

(4.3.1)

where Z~p is the spectral weight and E and E1 is the ground state and first-excited
state energy, respectively. Z~pi , Z~pf , Ei, Ef, E

1
i and E1

f are constrained by the joint
fit with the corresponding two-point function (2pt). ZV is the finite normalization
constant for the local vector current which is determined from the forward matrix
element as ZV ≡ 2E

〈π(p)|V4|π(p)〉 . C1, C2 and C3 are free parameters for the excited-state

contaminations. The diagram 4.1.(2) contributes

C3pt,(2)(τ, tf, ~pi, ~pf) =
Z~piZ~pf(Ei + Ef)

EiEfZV
fππ(Q2)(e−Ei(T/2+τ)−Ef(tf−τ)), (4.3.2)

in which we have ignored the excited-state contaminations from the source at T/2
since such terms are suppressed by e−E

1
i T/2 which is of order ∼ 10−8 with E1

i ≈
1.3 GeV estimated with the experimental value of the first excited-state of the pion.
Since we have put two sources at t = 0 and t = T/2 for most ensembles to increase
statistics, we need a term with C4 and Eh to account for the case that the current
insertion is outside of the time window between the source and the sink. This is
shown in the diagram 4.1.(3) and contributes as

C3pt,(3)(τ, tf, ~pi, ~pf) = C4e
−Ei(T/2−tf)−Eh(tf−τ), (4.3.3)

in which this term corresponds to the creation of a hadron state with operator V4 =
q̄γ4q at time slice τ with momentum q as 〈h(q)|V4 |0〉, an annihilation of a pion
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state at time slice T/2 with momentum pi as 〈0|χ†π+ |π−(pi)〉 and an unknown matrix
element 〈π−(pi)|χπ+ |h(q)〉. The excited-state contaminations from E1

i are ignored for
the same reason as in the previous discussion and the excited-state contaminations
from E1

h are ignored under current statistics.

(1) (2)

(3)

0 tf 0T/2 tf

0 tf T/2

Figure 4.1: Diagrams of pion three-point functions with sources at time slices 0 and
T/2.

In order to test the functional form of C3pt,(3)(τ, tf, ~pi, ~pf), we construct 3pt with
one source at time slice T/2 = 32 and sink time tf at 20, 21, 22 with ~pi = {0, 0, 0}
and ~pf = {0, 0, 2π

L
}. Then we can evaluate the effective mass Eeff

h and Eeff
i from

C3pt,(3)(τ, tf, ~pi, ~pf) with

Eeff
h (τ, tf) = ln

(
C3pt,(3)(τ + 1, tf, ~pi, ~pf)

C3pt,(3)(τ, tf, ~pi, ~pf)

)
,

Eeff
i (τ, tf) = ln

(
C3pt,(3)(τ + 1, tf, ~pi, ~pf)

C3pt,(3)(τ, tf − 1, ~pi, ~pf)

)
,

(4.3.4)

in which Eeff
i is evaluated by a simultaneous change of τ and tf to single out Ei from

the exponential e−Ei(T/2−tf)−Eh(tf−τ). And they should equal to Eh =
√
m2
h + (~pf − ~pi)2

and Eπ =
√
m2
π + ~p2

i = mπ in the tf � τ limit, as confirmed in Fig. 4.2 and the fit
results in Fig. 4.4.

Thus the final functional form is C3pt = C3pt,(1) + C3pt,(2) + C3pt,(3) as

C3pt(τ, tf, ~pi, ~pf) =
Z~piZ~pf(Ei + Ef)

EiEfZV
fππ(Q2)× (e−Eiτ−Ef(tf−τ) + e−Ei(T/2+τ)−Ef(tf−τ))

+ C1e
−Eiτ−E1

f (tf−τ) + C2e
−E1

i τ−Ef(tf−τ) + C3e
−E1

i τ−E
1
f (tf−τ) + C4e

−Ei(T/2−tf)−Eh(tf−τ).

(4.3.5)

The associated 2pt is fitted with

C2pt(t, ~p) =
Z2
~p

E
(e−Et + e−E(T−t) + e−E(T/2−t) + e−E(T/2+t))

+ A1(e−E
1t + e−E

1(T/2−t)),

(4.3.6)
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Figure 4.2: The plot on the left is of C3pt,(3) on 24I with mπ = 347 MeV, one source
at time slice T/2, ~pi = {0, 0, 0} and ~pf = {0, 0, 2π

L
}. The correlation function is a

rising exponential which confirms that Eh > 0 in Eq. (4.3.3). The plots in the middle
and right panels show the corresponding effective masses Eeff

h and Eeff
i obtained with

Eq. (4.3.4), respectively.

with A1 being a free parameter for the excited-state contributions and the exponential
terms with T/2 account for contributions from the source at T/2. An example of fitted
energies is shown in Fig. 4.3. It can be seen that the first excited-state energy E1 is
close to the experimental value 1.3 GeV and it has been used to constrain the one in
3pt by the joint fit of 2pt and 3pt to extract fππ(Q2).

1.2

1.4

1.6

1.8

2.0 E1

 3  4  5  6  7  8  9 10 11 12
tini

0.1735

0.1736

0.1737

0.1738

0.1739

0.1740 EE
(G

eV
)

Figure 4.3: Pion energies as a function of tini with [tini, 15] the fit-range of the 2pt
on 32ID with pion mass 173.7 MeV at zero momentum. The contributions from the
first excited state are ignored for tini ≥ 6 under current statistics.

In order to test the fitting function of 3pt in Eq. (4.3.5), a comparison of the
fitting of the one-source result with the source at t = 0 and that of the two-source
result with sources at t = 0 and 32 in the same inversion is shown in Fig. 4.4. For
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Figure 4.4: Joint fitting results on 24I with mπ = 347 MeV, ~pi = {0, 0, 0} and
~pf = {0, 0, 2π

L
}. The plot on the left corresponds to the case of one source at time

slice 0. The gray band is for the fitted value of the ground state form factor fππ(Q2)
which is close to the data points due to small excited-state contaminations. The plot
on the right corresponds to the case of a source at each of the time slices 0 and T/2.
The gray band is far away from the rising data points due to the additional C4 term
with fitted Eh = 807(82) MeV which is consistent with the result of Fig. 4.2.

illustrative purpose, the data points are shown with ratio R2,

R2(τ, tf, ~pi, ~pf) =
C3pt(τ, tf, ~pi, ~pf)

Z~piZ~pf (Ei+Ef)

4EiEfZV
(e−Eiτ−Ef(tf−τ) + e−Ei(T/2+τ)−Ef(tf−τ))

= fππ(Q2) + excited-state terms + C4 term,

(4.3.7)

in which Z~p and E are determined from the fitting of 2pt and ZV from 3pt at zero
momentum transfer. It can be seen that the two results agree with each other within
uncertainty which again confirms our fitting formula.

Thus for the general momentum setup |~pi| 6= |~pf| we can proceed further to fit
C3pt(τ, tf, ~pi, ~pf) together with C3pt(τ, tf, ~pf, ~pi) which corresponds to the exchange of
initial and final momentum. Fig. 4.5 shows example plots on 24IDc and 32ID. The
data points are fitted well with Eq. (4.3.5) and the fit results are shown in bands
with χ2/d.o.f. ∼ 1. The data points for C3pt(τ, tf, ~p,~0) are lower and closer to the
gray band since the C4 term has a negative contribution with a suppression factor
e−E(~p)T/2 compared to the case of C3pt(τ, tf,~0, ~p) in which the C4 term has a positive

and large contribution with only a suppression factor e−E(~0)T/2.
For the special |~pi| = |~pf| case, one can simply calculate the ratio of 3pts, and

obtain the pion form factor by the following parametrization of the ratio R1,

R1(τ, tf, ~pi, ~pf) = C3pt(τ, tf, ~pi, ~pf)/C3pt(τ, tf, ~pi, ~pi)

= fππ(Q2) +B1(e−∆Eτ + e−∆E(tf−τ)) +B2e
−∆Etf ,

(4.3.8)
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Figure 4.5: Examples of the ratios on 24IDc and 32ID with various values of source-
sink separation tf and current position τ . The plots show the general |~pi| 6= |~pf| case
with square points ~pi = −~q, ~pf = 0 and dot points pi = 0, ~pf = ~q. The data points
agree well with the bands predicted from the fit, and the gray band is for the ground
state form factor fππ(Q2).

where the terms with B1 and B2 are the contributions from the excited-state contam-
ination, and ∆E = E1(~pi) − E(~pi) is the energy difference between the pion energy
E(~pi) and that of the first excited state E1(~pi). These energies are also constrained
by the joint fit with the corresponding 2pt. Since the excited-state contaminations
of the forward matrix element in the denominator are known to be small and the
contribution from C4 term in Eq. (4.3.5) is suppressed by e−E(~pi)T/2 with ~pi 6= ~0 for
both the denominator and numerator, we have dropped them in the parametrization
of the ratio and our fits can describe the data with χ2/d.o.f. ∼ 1. Fig. 4.6 shows a
sample plot for 32ID with the unitary pion mass of 174 MeV at Q2 = 0.146 GeV2.
In view of the fact that the data points are symmetric about τ = tf/2, within uncer-
tainty, it reassures that the sink smearing implemented under the FFT contraction
has the same overlap with the pion state as that of the source smearing.

z-Expansion fit and chiral extrapolation of pion radius

To obtain fππ(Q2), we have done a model-independent z-expansion [66] fit using the
following equation with kmax ≥ 3.

fππ(Q2) =
kmax∑
k=0

akz
k

z(t, tcut, t0) =

√
tcut − t−

√
tcut − t0√

tcut − t+
√
tcut − t0

,

(4.3.9)

where t = −Q2, and fππ(0) = 1 after normalization which leads to the constraint a0 =
1−∑kmax

k=1 akz
k(t = 0, tcut, t0); tcut = 4m2

π,mix corresponds to the two-pion production
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Figure 4.6: Example of the ratios for the special |~pi| = |~pf| case on 32ID with various
values of source-sink separation tf and current position τ . The data points agree well
with the bands predicted from the fit, and the gray band is for the fitted value of
ground state form factor fππ(Q2).

threshold with m2
π,mix = (m2

π,v +m2
π,sea)/2+∆

I/D
mix a

2, the partially-quenched pion mass
with mixed-action effect included [67], mπ,v the valence pion mass and mπ,sea the sea
pion mass; ∆I

mix = 0.041(6) GeV4 and ∆ID
mix = 0.0105(5) GeV4; and t0 is chosen to be

its “optimal” value topt
0 (Q2

max) = tcut(1−
√

1 +Q2
max/tcut) to minimize the maximum

value of |z|, with Q2
max the maximum Q2 under consideration.

In order to minimize the model dependence of the z-expansion fitting, we need
to take kmax to be large enough such that the fit results are independent of the
precise value of kmax. One way of achieving this is putting a Gaussian bound on
the z-expansion ak with central value 0. The choice of the Gaussian bound can be
investigated using the Vector Meson Dominance (VMD) model with rho meson mass
mρ = 775 MeV,

fππ(Q2) =
1

1 +Q2/m2
ρ

. (4.3.10)

A non-linear least squares fit of this analytical function with z-expansion fitting at
kmax = 10 gives |ak/a0|max < 1.03, in which we used tcut = 4m2

π,phys, t
opt
0 (Q2

max) =

tcut(1−
√

1 +Q2
max/tcut) and Q2

max = 1.0 GeV2. Also by investigating the z-expansion
fits with kmax = 3 without priors of our data, we find |ak/a0|max < 3.0. Thus we
propose the use of conservative choice of Gaussian bound [66] with |ak/a0|max = 5 for
the pion form factor. The z-expansion fitted pion form factors up to Q2 ∼ 1.0 GeV2

for the six lattices with the same valence and sea pion mass are shown in Fig. 4.7
with χ2/d.o.f. ∼ [0.4, 0.9].
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Figure 4.7: z-expansion fitting of the pion form factors on six gauge ensembles at
their unitary pion mass with kmax = 3 and |ak/a0|max = 5. The left panel is for the
ensembles using Iwasaki gauge action and the Iwasaki+DSDR cases are shown in the
right panel.

Another way to reach higher kmax and control the model dependence of fittings is
using the fact that at theQ2 →∞ limit fππ(Q2) falls as 1/Q2 up to logarithms [68, 69].
Thus we have Qkfππ(Q2)→ 0 for k = 0, 1 and follow the same argument in [66], which
implies

dn

dzn
fππ

∣∣∣∣
z=1

= 0, n ∈ {0, 1}, (4.3.11)

with z = 1 corresponding to the Q2 →∞ limit. These equations will lead to the two
sum rules for pion form factors as

∞∑
k=0

ak = 0,
∞∑
k=1

kak = 0. (4.3.12)

With z-expansion fitting using Eq. (5.3.27), the charge radius of pion can be
obtained through the definition in Eq. (4.1.2). The 〈r2

π〉 on different lattices with
different valence pion masses are plotted in Fig. 4.9. We see that there is a strong
dependence on the valence pion masses from the data points on each of the ensembles.
Also, from the comparison of 32ID and 32IDh, we see that the data points line up
as a function of m2

π,mix which evinces a strong dependence on the sea pion mass.
The following fitting form as a function of m2

π,mix is used which includes an essential
divergent log term from the SU(3) NLO ChPT [51, 70],

〈r2
π〉 = 〈r2

π〉phys + b1ln
m2
π,mix

m2
π,phys

+ b
I/ID
2 a2 +

b3e
−mπ,mixL

(mπ,mixL)3/2
,

(4.3.13)

where the b1 term reflects the pion mass dependence, mπ,phys = 139.57 MeV is the

physical pion mass, L is the spatial size of the lattice, the b
I/ID
2 terms reflect the
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Figure 4.8: Comparison of extrapolated 〈r2
π〉 with z-expansion fits with different kmax.

The first and second sets are the fits with priors |ak/a0|max = 5 and |ak/a0|max = 10,
respectively. The third and fourth sets are the similar fits constrained with the sum
rules in Eq. (4.3.12).

lattice spacing dependence for the two sets of ensembles with different gauge actions
(Iwasaki and Iwasaki plus DSDR), and the b3 term accounts for the finite volume
effect [71, 72, 13]. Since the kaon mass only varies a little in the current pion mass
range, we do not include the kaon log term in the fitting.

The estimates of the extrapolated charge radius of the pion using Eq. (4.3.13) with
different z-expansion fits are shown in Fig. 4.8. Since bI2 and b3 have no statistical
significance, we use only three free parameters 〈r2

π〉phys, b1 and bID2 in these fits. All

the fits have χ2/d.o.f. ∼ 0.6 which is a good enough with d.o.f. = 23 and the central
values and error values varying a little for different fits. Thus we take the result shown
in black 〈r2

π〉 = 0.4332(86) fm2 which corresponds to kmax = 3 and |ak/a0|max = 5 as
our fit result. The systematic uncertainties considered are listed as follows:

• The maximum difference between the result shown in black in Fig. 4.8 with
the other fitted cases is treated as the systematic uncertainty from z-expansion
fitting.

• The systematic uncertainty from the excited-state contaminations is estimated
by changing the fit-ranges of 2pt and 3pt on 32ID with pion mass 174 MeV at
the smallest momentum transfer which results in fππ(Q2 = 0.051 GeV2) =
0.9158(14)(13); the second error corresponds to the systematic uncertainty
from excited-state contaminations. This case is chosen because of its good
signal/noise ratio which has the most control of the final result at close to the
physical pion mass and the smallest momentum transfer is chosen due to its
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largest influence on the radius. In order to estimate the systematic uncertainty
of the radius from the form factor at only one small momentum transfer, we
solve the VMD model in Eq. (4.3.10),

1

1 + (0.051 GeV2)/mρ

= 0.9158(14)(13) (4.3.14)

with mρ as a free parameter. The predicted radius is

〈r2
π〉 = 6.0/mρ = 0.4190(74)(68) fm2.

The second error 0.0068 fm2, which propagates from the systematic uncertainty
of the form factor, is treated as the systematic uncertainty from the change of
fit ranges for the extrapolated charge radius.

• We added a linear dependence term between the charge radius of the pion
and the pion mass squared as b4M

2
π to Eq. (4.3.13) proposed by SU(2) NNLO

ChPT [50] and repeated the fit with four free parameters 〈r2
π〉phys, b1, bID2 and

b4. The coefficient b4 is consistent with zero and the prediction changed by
0.0032 fm2 which is treated as the chiral extrapolation systematic uncertainty.

Another source of the chiral extrapolation systematic uncertainty is the lack of
a kaon log term in Eq. (4.3.13). On 24I, the valence pion masses ranging from
256 MeV to 391 MeV give a range of kaon mass from 514 MeV to 554 MeV. Thus
we estimate the maximum kaon mass for the pion mass range in consideration
to be MK,max = 554 MeV. With the usage of SU(3) NLO ChPT [51], the

systematic uncertainty from the kaon log term can be given by 1
32π2F 2

0
ln
M2
K,max

M2
K,p

=

0.0026 fm2, in which F0 = 93.3 MeV and MK,p = 493 MeV is the physical kaon
mass.

• We repeated the fitting with four free parameters 〈r2
π〉phys, b1, bID2 and bI2 which

includes the discretization error from the Iwasaki gauge action and the pre-
diction changed by 0.0025 fm2. With this fitting, we get a difference between
the fitting predictions in the continuum limit with those from the smallest lat-
tice spacing (32I) to be 0.0018 fm2. We combined these two as the systematic
uncertainty of finite lattice spacing.

• With similar systematic analysis for finite volume effects with four free param-
eters 〈r2

π〉phys, b1, bID2 and b3, the prediction changed by 0.0058 fm2 and the
difference between the fitting predictions in the infinite volume limit with those
from the largest mπL = 5.8 (32IDh) in our simulation is negligible.

Thus, the final result of the mean square charge radius of the pion at the physical
pion mass in the physical limit reads

〈r2
π〉 = 0.4332(86)stat(72)z-exp(68)fit-range(41)χ(31)a(58)V fm2

= 0.4332(86)(125) fm2,
(4.3.15)
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with statistical error (stat) and systematic uncertainty from z-expansion fitting (z-exp),
fit-range dependence (fit-range), chiral extrapolation (χ), finite lattice spacing (a),
and finite volume (V). The total uncertainties at heavier pion masses are estimated
from the scale of the total/statistical ratio at the physical pion mass.

The results of the fitting are shown in Fig. 4.9. One can see that our prediction
of 〈r2

π〉 = 0.433(9)(13) fm2 at the physical point is in very good agreement with
the experimental result (the black dot). The discretization errors across the Iwasaki
gauge ensembles are small while those across the Iwasaki plus DSDR gauge ensembles
are obvious; this is consistent with what was found in the previous work with the
DWF valence quark on similar RBC ensembles [16].
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Figure 4.9: Pion radius squared 〈r2
π〉 as a function of m2

π,mix. Data points with
different colors correspond to the results on the six ensembles with different sea pion
masses. The colored bands show our prediction based on the global fit of 〈r2

π〉 with
χ2/d.o.f. = 0.65; the inner gray band shows our prediction for the unitary case of
equal pion mass in the valence and the sea in the continuum and infinite volume limits
and the outer lighter gray band includes the systematic uncertainties from excited-
state contaminations, z-expansion fitting, chiral extrapolation, lattice spacing and
finite volume dependence.

Chiral extrapolation of the pion form factor

In order to make a prediction of the form factor at the continuum and infinite volume
limits, we fit the inverse of the fππ(Q2) data on different lattices with different valence
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pion masses, as inspired from the NLO SU(2) ChPT expansion [50, 51],

1

fππ(Q2)
= 1 +

Q2

6(4πFπ)2

[
l̄6 − ln

m2
π,mix

m2
π,phys

− 1 +R(s)

]
+Q2m2

π,mix(c1 + c2Q
2)

+ c
I/ID
3 a2Q2 + c

I/ID
4 a2Q4 +

Q2

(mπ,mixL)3/2
(c5 + c6

Q2

m2
π,mix

)e−MπL,

(4.3.16)

in which Fπ and l̄6 are free parameters for fitting, c1 and c2 correspond to possible
NNLO effects, c

I/ID
3 and c

I/ID
4 reflect the lattice spacing dependence terms, c5 and c6

correspond to the finite volume effect, and

R(s) =
2

3
+

(
1 +

4

s

)√1 +
4

s
ln

√
1 + 4

s
− 1√

1 + 4
s

+ 1
+ 2

 .
Since the inverse of fππ(Q2) is mainly dominated by the NLO contributions consid-
ering the vector dominace of the pion form factor, fitting the inverse helps avoid the
need of too many low-energy constants from NNLO corrections [13].
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Figure 4.10: Pion form factor fππ(Q2) on six gauge ensembles at their unitary pion
mass with the bands from the chiral extrapolation fitting. The inner gray error band
shows the fitting result and statistical error extrapolated to the physical limit and the
outer ligher gray band corresponds to the inclusion of the systematic uncertainties
from excited-state contaminations, NNLO corrections, chiral extrapolation, lattice
spacing and finite volume dependence.

The fitting result of the chiral extrapolation of the pion form factor is shown
in Fig. 4.10. We have made a cut of the Q2 ranges used on each ensembles with
Q2/m2

π,mix < 13, so that the current formula can fully describe our data without
the need of higher order terms of the ChPT expansion. The following systematic
uncertainties are included in the analysis:
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• With a variation of the fit-ranges of 2pt and 3pt on 32I with pion mass 312 MeV
we got the form factor at large momentum transfer fππ(Q2 = 0.865 GeV2) =
0.4347(87)(98). Along with previous analysis on 32ID at small momentum
transfer fππ(Q2 = 0.051 GeV2) = 0.9158(14)(13), we estimate the systematic
uncertainty from the excited-state contaminations to be equal to the statistical
uncertainty of the fitted pion form factors for all Q2 < 1.0 GeV2.

• Since the c1 and c2 terms are just an estimation of the possible NNLO effects, we
estimate the NNLO systematic uncertainty by setting c1 and c2 in Eq. (4.3.16) to
be zero and treat the changes as systematic uncertainty from NNLO corrections.

• The systematic uncertainty from the lack of a kaon log term proposed by SU(3)
NLO ChPT is calculated with

Q2

12(4πF0)2

[
ln
M2

K,max

m2
K,p

]
, (4.3.17)

which is the difference between using MK,max and mK,p in the ChPT formula.
This is treated as the systematic uncertainty from chiral extrapolation.

• We use the difference between the fitting predictions in the continuum limit
with those from the smallest lattice spacing (32I) as systematic uncertainty of
finite lattice spacing.

• The systematic uncertainty from finite volume effects is estimated by the dif-
ference between the fitting predictions in the infinite volume limit with those
from the largest mπL = 5.8 (32IDh).

The mean square charge radius of the pion from this fitting is 〈r2
π〉 = 0.433(9) fm2,

which is consistent with the above analysis, with χ2/d.o.f. = 1.0. Our extrapolated
result at the physical pion mass and continuum and infinite volume limits for the curve
fππ(Q2) including the systematic uncertainties from excited-state contaminations,
NNLO corrections, chiral extrapolation, lattice spacing and finite volume dependence,
is shown and compared with experiments in Fig. 4.11; it goes through basically all
the experimental data points up to Q2 = 1.0 GeV2.

4.4 Summary

We have presented a calculation of the pion form factor using overlap fermions with a
range of valence pion masses on six RBC/UKQCD domain-wall ensembles including
two which have the physical pion mass. The lattice results for 〈r2

π〉 in the continuum
and infinite volume limits are compiled in Fig. 4.12 together with that of experi-
ment. Our globally fitted pion mean square charge radius from the lattice data on
six ensembles is 〈r2

π〉 = 0.433(9)(13) fm2, which includes systematic errors from chiral
extrapolation, finite lattice spacing and others; it agrees with experimental value of
〈r2
π〉 = 0.434(5) fm2 within one sigma.
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Figure 4.11: Comparison of the pion form factor fππ(Q2) at physical pion mass with
the CERN experiment at Q2 < 0.25 GeV2 [3] and the Jlab and DESY experimental
data at larger Q2 [4, 5, 6, 7, 8]. The inner gray band is the statistical error and the
outer band includes the systematic uncertainties.
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Figure 4.12: Summary of the pion radius results at the physical point. The lat-
tice QCD results with different sea flavors are collected in different blocks, while all
the results are consistent with each other within uncertainties. Numbers are from
(QCDSF/UKQCD) [9], (ETM) [10], (JLQCD/TWQCD) [11], (Brandt et al.) [12],
(ETM) [13], (JLQCD) [14, 15], (Feng et al.) [16], (HPQCD) [17], and (PDG) [18].
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We find that 〈r2
π〉 has a strong dependence on both the valence and sea pion

masses. More precisely, it depends majorly on the mass of the pion with one valence
quark and one sea quark. We also give the extrapolated form factor fππ(Q2), and the
result agrees well with the experimental data points (up to Q2 = 1.0 GeV2).

Thus this work shows that the hadron form factor and the corresponding radius
can be studied accurately and efficiently by combining LMS with the multi-mass
algorithm of overlap fermions and FFT on the stochastic sandwich method, which
provides the possibility to investigate the form factor of nucleon and its pion mass
dependence with relatively small overhead on multiple quark masses and momentum
transfers.

Copyright c© Gen Wang, 2020.
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Chapter 5 Proton momentum and angular momentum fractions

5.1 Introduction

A quantitative understanding of the proton spin in terms of its fundamental quark
and gluon constituents is an important and challenging question of hadron physics. It
is expected that its spin arises from the intrinsic spin and orbital angular momentum
of its constituents. Recent experiments using polarized deep inelastic lepton-nucleon
scattering (DIS) processes show that the total helicity contribution from the quarks
is just about 25-30% [73, 74, 75, 76, 77, 78] of the proton spin. The gluon helicity
measured from polarized proton-proton collisions from the Relativistic Heavy Ion
Collider (RHIC) [79, 80, 81] at BNL provide constraints on

∫ 0.2

0.05
∆g(x)dx = 0.06+0.11

−0.15

with a sizeable uncertainty.
On the other hand, Lattice QCD provides the ab initio non-perturbative frame-

work to calculate the spin and momentum distributions of quarks and gluons con-
stituents inside proton from the QCD action directly. The intrinsic spin carried
by each quark flavor was first studied by χQCD [82] with followup calculations by
χQCD [1], Extended Twisted Mass Collaboration (ETMC) [83, 84] and PNDME [85]
which have provided results consistent with experiment at comparable uncertainties
with ∆u = 0.777(25)(30), ∆d = −0.438(18)(30) and ∆s = −0.053(8) averaged by
Flavour Lattice Averaging Group (FLAG) [86]. It is worth noting that the current
predication of ∆s from Lattice QCD is more precise than the phenomenological deter-
minations. Gluon spin is determined in Ref. [58] to be 0.251(47)(16) at the physical
pion mass in the MS scheme at µ2 = 10 GeV2. Overlap fermions have been used
in this calculation on 2 + 1-flavor domain-wall fermion configurations with four lat-
tice spacings and four volumes including an ensemble with physical quark mass. In
order to address the angular mometnum fractions, a first attempt to fully decom-
pose the proton spin was carried out by the χQCD collaboration in 2013 [87] in
the quenched approximation and a lot of progress has been reached with dynamical
fermions [88, 84, 89, 90, 91] including one with complete non-perturbative renormal-
ization and normalization [92].

In this dissertation, we use the nucleon matrix element of the traceless, sym-
metric energy-momentum tensor (EMT) to determine the momentum and angular
momentum fractions of up, down, strange and glue constituents inside the nucleon.
Overlap fermions are used on 2 + 1-flavor domain-wall fermion configurations with
mπ = 174 MeV which is close to the physical pion mass. With a multi-mass inverter,
we are able to simulate on several valence pion masses and extrapolate our results
to the physical pion mass. Since the EMT of each parton species are not separately
conserved, we summarize the final momentum and angular momentum fractions by
considering mixing and non-perturbative renormalization at MS(µ = 2 GeV) and use
the momentum and angular momentum conservations to normalize them.
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Figure 5.1: Left: Diagram for elastic lepton-hadron scattering with the hadron state
remaining the same. Right: Diagram for deep inelastic scattering with the hadron
blown apart into other particles.

5.2 Deep inelastic scattering

On the experimental side, deep inelastic scattering processes are the main tool to
resolve individual quarks and gluons inside hadrons. Deep means the wavelength of
initial lepton is much shorter than the size of the target hadron in this process. The
process is called elastic when the incident and resultant particles remain the same
as shown in the left diagram of Fig. 5.1. On the other hand, if the target hadron is
blown apart to many resultant particles, the process is called inelastic as shown in
the right diagram of Fig. 5.1. In the inclusive DIS, the energy and direction of the
initial and final lepton are measured in the detector and the final hadronic states are
not measured. If one or two hadronic states are measured, it is called semi-inclusive
DIS. If all final hadronic states are measured, it is called exclusive scattering.

Kinematics

The basic DIS process can be denoted as

l(k) +H(p)→ l(k′) +X(p′x) (5.2.1)

and the kinematic variables for DIS are

• p = (MH ,~0): The 4-momentum of the fixed hadron target with MH the rest
mass of the incoming hadron.

56



• Q2 = −q2 = (k′ − k)2 = 4EE ′sin2( θ
2
): The momentum transfer of the virtual

photon γ∗ with θ the angle between the incoming and outgoing leptons, k =
(E,~k) and k′ = (E ′, ~k′).

• ν = E − E ′ = p · q/MH : The energy loss of the lepton which is the energy of
the virtual photon γ∗.

• y = ν/E: The fractional energy loss of the lepton.

• xB = Q2

2p·q = Q2

2MHν
: The Bjorken scaling variable.

The information of DIS is collected in the structure functions and at leading
order with Q2 →∞, the hadron structure functions depend only on the fixed scaling
variable x proposed by Bjorken [93, 94] and depend on the dimensional parameter
Q2 logarithmically. Since the total mass of the final hadron state MX must be the
same or larger than the hadron mass MH , we have,

M2
X = (p+ q)2 = M2 + 2p · q + q2 ≥M2 ⇒ xB =

Q2

2p · q ≤ 1. (5.2.2)

We also have that both Q2 = −q2 and p · q are positive so that

0 ≤ xB ≤ 1. (5.2.3)

DIS Cross Section

The cross section for the unpolarized DIS in the laboratory frame is given by

d2σ

dΩdE ′
=

e4

16π2Q4
(
E ′

MNE
)Lµν(p, q)W

µν(p, q) (5.2.4)

in which e is the electron charge, Lµν is the leptonic tensor which can be determined
from perturbative QED, and W µν is the hadronic tensor. Lµν can be written as

Lµν =
∑

final states

〈k′| Jµl |k, sl〉 〈k, sl| Jνl |k′〉 , (5.2.5)

with Jl the leptonic current, sl the final lepton polarization vector and the sum is over
all possible leptonic final states. At leading order and neglecting the lepton mass,
Lµν is

Lµν = p′µpν + p′νpµ − gµνp′ · p. (5.2.6)

With the optical theorem, the hadronic tensor can be expressed as the imaginary
part of the forward scattering amplitude in deeply virtual Compton scattering as

Wµν =
1

2π
ImTµν , (5.2.7)
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with

Tµν = i
∑
s′,s

∫
d4xeiq·z 〈p, s′| T [Jµ(z), Jν(0)] |p, s〉 , (5.2.8)

in which T [· · · ] is the time-ordered product and s the polarization of the hadron.
Thus we have

Wµν(p, q) =
∑
s′,s

1

4π

∫
d4zeiq·z 〈p, s′| Jµ(z), Jν(0) |p, s〉 , (5.2.9)

which is the spin independent part of the hadronic tensor for unpolarized scatter-
ing. With the usage of current conservation, parity conservation and time reversal
invariance, we can write the hadronic tensor for a spin-1/2 target as

W µν(p, q) = −F1(x,Q2)(gµν− q
µqν

q2
)+

F2(x,Q2)

p · q (pµ− p · q
q2

qµ)(pν− p · q
q2

qν). (5.2.10)

In the Bjorken limit, Q2 → ∞ and ν → ∞, the structure functions F1 and F2

depend only on x and the Bjorken scaling functions are related by the Callan-Gross
relation [95],

F2(x) =
∑
q

e2
q x q(x) = 2xF1(x), (5.2.11)

where eq is the electric charge of the quark with different flavor, and q(x) is the
probability of finding a parton with a longitudinal momentum x, which is called
parton distribution function (PDF). It is a sum of the corresponding quark and anti-
quark distributions as

q(x) = (q↑ + q↓)(x) + (q̄↑ + q̄↓)(x). (5.2.12)

Operator Product Expansion

The structure functions can be related to the matrix elements of local operators
between hadronic states with the operator product expansion (OPE) [96]. At the
short-distance limit z2 → 0, the current product in Eq. (5.2.9) can be expanded with
a series of local operators,

limz2→0Ji(z)Jj(0) =
∑
k

cijk(z, µ)Ok(0, µ) (5.2.13)

where cijk(z) are the Wilson coefficients which depend on the separation z and energy
scale µ but are independent of the matrix elements, and Ok(0) are a tower of local
operators Oµ1,··· ,µnn which are traceless and symmetric in the indices µi. We group
these operators with t = d − n which is called twist of the operators with d the
dimension and n the spin of the operator. The leading contributions of the expansion
have t = 2 which are written in terms of quark fields ψ(d = 3/2, n = 1/2, t = 1),
gluon fields Fµν(d = 2, n = 1, t = 1) and covariant derivatives D(d = 1, n = 1, t = 0).
Adding derivatives D(t = 0) to the operator will not change the twist. For example,
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the general forms of traceless twist-two operators for quarks in Minkowski space are
written as

O{µ1···µn}q = in−1ψ̄(f)γ{µ1
←→D µ

2 · · ·
←→D µn}ψf

′
,

O[µ1{ν]···µn}
σq = inψ̄(f)σ[µ1{ν]←→D µ

2 · · ·
←→D µn}ψf

′
,

(5.2.14)

with ψ(f) the quark field with flavor f ,
←→D µ = 1/2(

−→D µ −
←−D µ) the symmetrized co-

variant derivative and σµν = i/2[γµ, γν ]. Notation {µ1 · · ·µ2} means symmetrization
of µi’s and [µ1µ2] means anti-symmetrization of µ1 and µ2.

5.3 Lattice operators and nucleon form factors

In order to evaluate angular momentum fractions of nucleon on the lattice, we follow
Ref. [97, 87] to use the traceless, symmetric QCD energy-momentum tensor (EMT) as
the current operator. The ith component of angular momentum operator for quarks
and glue can be written with EMT as

Jq,gi =
1

2
εijk
∫
d3x

(
T {0k}q,gxj − T {0j}q,gxk

)
, (5.3.1)

where T {0j}q,g are the gauge-invariant and conserved EMT operators for quark and
gluon parts, respectively. Also, the linear momentum operators are

P q,g
i =

∫
d3xT {0i}q,g. (5.3.2)

The nucleon matrix element of EMT can be decomposed into three generalized form
factors (GFFs) based on their associated spinor structures as

〈p′, s′| T {µν}q,g |p, s〉 =
1

2
ū(p′, s′)

[
T1(q2)(γµp̄ν + γν p̄µ)

+
1

2m
T2(q2) (iqα(p̄µσνα + p̄νσµα)) +

1

m
T3(q2)qµqν

]q,g
u(p, s)

(5.3.3)

where |p, s〉 is the nucleon initial state with momentum p and spin s, 〈p′, s′| is the
nucleon final state with momentum p′ and spin s, ū and u are the initial and final
nucleon spinors, q = p′ − p is the momentum transfer, p̄ = (p′ + p)/2 is the the total
momentum, and T1, T2 and T3 are the three generalized form factors.

With the insertions of Eq.( 5.3.3) into Eq.( 5.3.1) and Eq.( 5.3.2) in the q2 → 0
limit, we obtain

Jq,g =
1

2
[T1(0) + T2(0)]q,g , 〈x〉q,g = T1(0)q,g (5.3.4)

in which Jq,g is the the total angular momentum fraction for quarks and glue, respec-
tively and 〈x〉q,g is the second moment of the momentum distribution.
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In this dissertation, we will focus on the calculation of T4i which is adequate to
give the T1(0) and T2(0) form factors. Following from the conservation of EMT, the
momentum and angular momentum are conserved with sum rules

〈x〉q + 〈x〉g = T1(0)q + T1(0)g = 1,

Jq + Jg =
1

2
{[T1(0)q + T2(0)q] + [T1(0) + T2(0)]g} =

1

2
.

(5.3.5)

One implication of these two sum rules is that the sum of T2(0)’s for the quarks and
gluons is zero, that is,

T2(0)q + T2(0)g = 0, (5.3.6)

which has been derived in [98, 99].

Quark and gluon operators

The EMT matrix elements of Eq.( 5.3.3) in Euclidean space-time with current Pauli-
Sakurai γ matrices convention is

〈p′, s′| T q,g(E)
4i |p, s〉 =

1

2
ū(E)(p′, s′)

[
T1(−q2)(γ4p̄i + γip̄4)

− 1

2m
T2(−q2) (qα(p̄4σiα + p̄iσ4α))− i

m
T3(−q2)q4qi

]q,g
u(E)(p, s),

(5.3.7)

in which µ, ν ∈ {1, 2, 3, 4} is the Euclidean space-time index and the normalization
conditions of ū(E) and u(E) are

ū(E)(p, s)uE(p, s) = 1,
∑
s

uE(p, s)ū(E)(p, s) =
/p+m

2m
. (5.3.8)

The associated Euclidean gluon EMT is

T g(E)
4i = (+i)

[
−1

2

3∑
k=1

2Trcolor[G4kGki +GikGk4]

]
, (5.3.9)

in which Gµν is the Euclidean field-strength tensor

G(E)
µν (x) =

1

8

(
Pµν(x)− P †µν(x)

)
, (5.3.10)

with Pµν being the “cloverleaf”

Pµν = Uµ(x)Uν(x+ µ)U †µ(x+ ν)U †ν(x)

+ Uν(x)U †µ(x− µ+ ν)U †ν(x− µ)Uµ(x− µ)

+ U †µ(x− µ)U †ν(x− µ− ν)Uµ(x− µ− ν)Uν(x− ν)

+ U †ν(x− ν)Uµ(x− ν)Uν(x− ν + µ)U †µ(x)

(5.3.11)
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which is built from the HYP-smeared gauge links. The difference between the bare
matrix elements and the HYP-smeared matrix elements will be compensated by the
non-perturbative renormalization procedure [90].

The Euclidean quark EMT is

T q(E)
4i = (−1)

i

4

∑
f

ψ̄f

[
γ4

−→
D i + γi

−→
D 4 − γ4

←−
D i − γi

←−
D 4

]
ψf , (5.3.12)

In order to discretize T q(E)
4i , we use the following left and right gauge covariant deriva-

tives on the lattice,

−→
Dµψ(x) =

1

2a

[
Uµ(x)ψ(x+ aµ)− U †µ(x− aµ)ψ(x− aµ)

]
,

ψ̄(x)
←−
Dµ =

1

2a

[
ψ̄(x+ aµ)U †µ(x)− ψ̄(x− aµ)U †µ(x− aµ)

]
,

(5.3.13)

each ψ being a quark field operator on the lattice and each U a gauge link. Thus the
quark EMT operator for flavor f is

T q4i(x) =
−i
8a

[
ψ̄f (x)γ4Ui(x)ψf (x+ ai)− ψ̄f (x)γ4U

†
i (x− ai)ψf (x− ai)

+ ψ̄f (x− ai)γ4Ui(x− ai)ψf (x)− ψ̄f (x+ ai)γ4U
†
i (x)ψf (x)

+ ψ̄f (x)γiU4(x)ψf (x+ a4)− ψ̄f (x)γiU
†
4(x− a4)ψf (x− a4)

+ ψ̄f (x− a4)γiU4(x− a4)ψf (x)− ψ̄f (x+ a4)γiU
†
4(x)ψf (x)

]
.

(5.3.14)

Three-point correlation functions

The EMT matrix element can be extracted from the three-point function (3pt) along
with the associated two-point function (2pt) as

GNN
αβ (~p, t) =

∑
~x

e−i~p·~x 〈0|T [χα(~x, t)χ̄β(~0, 0)] |0〉 , (5.3.15)

with χ(x) = ON(x) and χ̄(x) = ŌN(x) the nucleon interpolation fields defined in
Eq. (3.1.17) and Eq. (3.1.18), respectively. In the t � 1 limit, the unpolarized
nucleon two-point function C2pt(~p, t) is

C2pt(~p, t) ≡ Tr[Γ0G
NN(~p, t)]

t�1−−→ Z2
p

(La)3

Ep +m

Ep
e−Ep(t−t0) + Ae−E

1
p(t−t0), (5.3.16)

in which Γ0 = P+ = 1+γ4
2

is the unpolarized projection for the nucleon, Zp is the
spectral weight, m is the nucleon rest mass, Ep and E1

p are the ground state energy
and first excited-state energy, respectively, and A is an unknown parameter associated
with the excited-state contaminations. The 3pt of EMT is

G
NT q,g4i N

αβ (t′, t, ~p ′, ~p) =
∑
~x′,~z

e−i~p
′·(~x′−~z)ei~p·~z×

〈0|T [χα(~x′, t′)T q,g4i (~z, t)χ̄β(~0, 0)] |0〉 ,
(5.3.17)
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in which z = {~z, t} is the current position, x′ = {~x′, t′} is the sink position, ~p ′ is the
momentum of the final nucleon, and ~p is the momentum of the initial nucleon. With
the unpolarized/polarized projection for the nucleon, we define C3pt as

C3pt(µ, 4, i; t
′, t, ~p′, ~p) ≡ Tr[ΓµG

NT q,g4i N(t′, t, ~p ′, ~p)], (5.3.18)

with µ ∈ {0, 1, 2, 3}, Γ0 the unpolarized projection for nucleon, and Γ1, Γ2 and Γ3

the polarized projection in the x, y, z direction, respectively, as

Γm =


1+γ4

2
σ23, for m = 1

1+γ4
2
σ31, for m = 2

1+γ4
2
σ12, for m = 3

, (5.3.19)

where σij = 1
2i

[γi, γj]. With an insertion of a complete set of energy eigenstates in
Eq. (5.3.16), we get

C3pt(µ, 4, i; t
′, t, ~p′, ~p)

t′�1−−−−→
t′−t�1

Zp′Zp
4Ep′Ep

e−Ep(t′−t)e−Ep′ t×[
a1T1(Q2) + a2T2(Q2) + a3T3(Q2)

]
,

(5.3.20)

where the ais are known coefficients which depend on the momentum and energy
of the nucleon which we calculate using ‘python’ script, and Q2 = (p′ − p)2 is the
momentum transfer squared. In order to extract T1(Q2), T2(Q2) and T3(Q2), we take
the ratios of 3pt and 2pt functions,

R(µ, 4, i; t′, t, ~p′, ~p) ≡ C3pt(µ, 4, i; t, t
′, ~p′, ~p)

C2pt(~p′, t′)
×
√
C2pt(~p, t′ − t)C2pt(~p′, t)C2pt(~p′, t′)

C2pt(~p′, t′ − t)C2pt(~p, t)C2pt(~p, t′)

t′�1−−−−→
t′−t�1

a1T1(Q2) + a2T2(Q2) + a3T3(Q2)

4
√
Ep′(Ep′ +m)Ep(Ep +m)

.

(5.3.21)

In this dissertation, we focus on the evaluation of the T1 and [T1 +T2] form factors
by choosing specific momentum and polarization projection settings. We set the
initial and final momentum of the nucleon to be the same to approach T1 form factor,

R(Γi, 4, j; t
′, t, ~p, ~p)→ εi,j,kpkT1(0), (5.3.22)

with i, j ∈ {1, 2, 3}, The following settings are used to calculate [T1 +T2] form factor,

R(Γi, 4, j; t
′, t, ~p,~0)→ εi,j,kpk[T1 + T2](Q2),

R(Γi, 4, j; t
′, t,~0, ~p)→ εi,j,kpk[T1 + T2](Q2),

R(Γi, 4, j; t
′, t, ~p,−~p)→ εi,j,kpk[T1 + T2](Q2),

(5.3.23)

in which the first two momentum settings have either initial/final momentum to be
~0, while the third corresponds to the case where the initial and final momentum of
the nucleon are in opposite directions which will result in larger momentum transfers.
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0 t′

T4i(t)

(a) 0 tf

T4i(t)

(b)

Figure 5.2: Illustration of the nucleon three-point functions with (a) connected inser-
tions (CI) and (b) disconnected insertions (DI).

With the usage of Wick contractions, the evaluation of 3pt in Eq. (5.3.17) on the
lattice gives two topologically distinct contributions: connected insertions (CI) and
disconnected insertions (DI), which are shown in Fig. 5.2. In the case of CI, the
quark/anti-quark from current T4i is contracted with the quark/anti-quark from the
source/sink nucleon interpolating fields. Whereas, in the case of DI, the quark/anti-
quark from current T4i is contracted with itself at current position z to form a loop.

The evaluation of CI cases can be done with the method described in Sec. 3.4.
This method allows the usage of FFT to get any combinations of ~p ′ and ~p so that
we can average over different directions to increase statistics. For the DI case, the
gauge-averaged three-point function can be written as

C3pt(µ, 4, i; t
′, t, ~p ′, ~p)DI =

∑
~z,~x′

e−i~p
′·~x′ei~q·~z × 〈0|

[
χα(~x′, t′)χ̄β(~0, 0)

]
× [T4i(~z, t)] |0〉

= 〈Tr[ΓµG
NN(~p, t;U)]× L[t, ~q;U ]〉 − 〈Tr[ΓµG

NN(~p, t;U)]〉 × 〈L[4, i, t, ~q;U ]〉 ,
(5.3.24)

in which 〈· · ·〉 denotes the gauge average and GNN(~p, t;U) is the computation of
nucleon propagator under gauge field U and L[4, i, t, ~q;U ] is the current loop of
quark/gluon. We have subtracted the uncorrelated part of the loop and the nucleon
propagator. The quark loop L = Lf [4, i, t, ~q;U ] is constructed from the propagator
of quark flavor f as

Lf [4, i, t, ~q;U ] =
i

8a

∑
~z

ei~q·~z

Tr
{
D−1
f (z + ai, z;U)γ4Ui(z)−D−1

f (z − ai, z;U)γ4U
†
i (z − ai)

+D−1
f (z, z − ai;U)γ4Ui(z − ai)−D−1

f (z, z + ai;U)γ4U
†
i (z)

+D−1
f (z + a4, z;U)γiU4(z)−D−1

f (z − a4, z;U)γiU
†
4(z − a4)

+ D−1
f (z, z − a4;U)γiU4(z − a4)−D−1

f (z, z + a4;U)γiU
†
4(z)

}
,

(5.3.25)

in which the trace Tr is the trace over color and spin, and D−1
f (z + ai, z;U) is the

quark propagator from point z to point z + ai under gauge field U with flavor f . In
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the case of the gluon three-point function, only DI contributes as in Eq. (5.3.24) with
the current loop L = Lg[4, i, t, ~q;U ] as

Lg[4, i, t, ~q;U ] = (+i)
∑
~z

ei~q·~z×[
−1

2

3∑
k=1

2Trcolor[G4k(z)Gki(z) +Gik(z)Gk4(z)]

]
,

(5.3.26)

with the field-strength tensor Gµν defined in Eq. (5.3.10).

z-Expansion fit

In order to fit the [T1+T2](Q2) form factor and extrapolate it to Q2 = 0, we have done
a model-independent z-expansion [66] fit using the following equation with kmax ≥ 2,

T (Q2) =
kmax∑
k=0

akz
k

z(t, tcut, t0) =

√
tcut − t−

√
tcut − t0√

tcut − t+
√
tcut − t0

,

(5.3.27)

where T (Q2) represent a nucleon form factor such as T1, T2, T3 and their linear
combinations such as [T1 + T2]; t = −Q2; tcut = 4m2

π corresponds to the two-pion
production threshold with mπ = 172 MeV chosen to be the sea pion mass; and t0 is
chosen to be its “optimal” value topt

0 (Q2
max) = tcut(1 −

√
1 +Q2

max/tcut) to minimize
the maximum value of |z|, with Q2

max the maximum Q2 under consideration.
In order to remove the model dependence of the z-expansion fitting, we need

to take kmax to be large enough such that the fit results are independent of the
precise value of kmax. One way of achieving this is putting a Gaussian bound on
the z-expansion parameter ak with central value 0. We adopt the Gaussian bound
proposed in [66] with |ak/a0|max < 5.0.

Another way to reach higher kmax and control the model dependence of fittings
is using the fact that at the Q2 → ∞ limit nucleon form factors fall as 1/Q4 up to
logarithms [100]. Thus we have QkT (Q2) → 0 for k = 0, 1, 2, 3 and following the
same argument in [66], this implies

dn

dzn
T

∣∣∣∣
z=1

= 0, n ∈ {0, 1, 2, 3}, (5.3.28)

with z = 1 corresponding to the Q2 → ∞ limit. These equations lead to the sum
rules for nucleon form factors as

∞∑
k=0

ak = 0,
∞∑
k=1

kak = 0,

∞∑
k=2

k(k − 1)ak = 0 and
∞∑
k=3

k(k − 1)(k − 2)ak = 0.

(5.3.29)

In practice, instead of ∞, the summation of k will have an upper limit kmax chosen
to be large enough to minimize model dependence.
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5.4 Operator mixing and renormalization

Although the total form factors T1, T2 and T3, with T (Q2) ≡∑a=u,d,··· ,g T
a(Q2), are

renormalization and scale invariant, the quark and gluon pieces are not separately
conserved. We renormalize our results at MS(µ = 2 GeV) with a nonperturba-
tive renormalization procedure. As lattice breaks down rotational symmetry to the
hypercubic group H(4), the EMT operators subduce into two traceless, symmetric

irreducible representations of H(4) which are labelled with τ
(3)
1 and τ

(6)
1 [101, 102].

They do not mix with same or lower-dimension operators. In Euclidean space, a basis
of operators in the three-dimensional τ

(3)
1 representation is [89]

T τ
(3)
1

1 =
1

2
(T11 + T22 − T33 + T44),

T τ
(3)
1

2 =
1√
2

(T33 + T44), T τ
(3)
1

3 =
1√
2

(T11 − T22).
(5.4.1)

A basis of the six-dimensional τ
(6)
1 representation is

T τ
(6)
1

i=1,··· ,6 =
(−i)δν4√

2
(Tµν + Tµν), 1 ≤ µ ≤ ν ≤ 4. (5.4.2)

Since we only consider the operator T4i in this dissertation, a purely multiplicative
renormalization procedure is involved for the T1, T2 and T3 form factors and also their
linear combinations such as T1(Q2) + T2(Q2) as

T u,d(CI)
R

= ZMS
QQ(µ)T u,d(CI),

T u,d,s(DI)
R

= ZMS
QQ(µ)T u,d,s(DI) + δZMS

QQ(µ)
∑

q=u,d,s

[T q(CI) + T q(DI)]

+ ZMS
QG(µ)T g(DI),

T g(DI)R = ZMS
GQ(µ)

∑
q=u,d,s

[T q(CI) + T q(DI)] + ZMS
GG T

g(DI),

(5.4.3)

in which T q/g(CI) and T q/g(DI) are the CI and DI bare form factors under the lattice

regularization, respectively. In order to calculate the renormalization constants ZMS

at MS scale µ, we follow the nonperturbative renormalization procedure described
in [56]. First, we carry out the RI/MOM nonperturbative renormalization at scale
µ2
R = p2 for several p2 with several quark masses at different momentum and then

extrapolate the results to the massless limit. Then, we match from RI/MOM to
MS using the matching coefficients from perturbative calculations. The matching
coefficients from MS scheme at scale µ to RI/MOM scheme at scale µR are(
ZMS
QQ(µ) +NfδZ

MS
QQ(µ) NfZ

MS
QG(µ)

ZMS
GQ(µ) ZMS

GG(µ)

)
=

{[(
ZQQ(µR) +NfδZQQ NfZQG(µR)

ZGQ(µR) ZGG(µR)

)
(
RQQ( µ

µR
) +O(Nfα

2
s) NfRQG( µ

µR
)

RGQ( µ
µR

) RGG( µ
µR

)

)]∣∣∣∣
a2µ2R→0

}−1

≡
(
CQQ CQG
CGQ CGG

)−1

,

(5.4.4)
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with

CQQ = [(ZQQRQQ) +Nf (δZQQRQQ + ZQGRGQ)] (µR,
µ

µR
)

∣∣∣∣
a2µ2R→0

,

CQG = [Nf ((ZQQ +NfδRQQ)RQG + ZQGRGG)] (µR,
µ

µR
)

∣∣∣∣
a2µ2R→0

,

CGQ = [ZGQRQQ + ZGGRGQ] (µR,
µ

µR
)

∣∣∣∣
a2µ2R→0

,

CGG = [NfZGQRQG + ZGGRGG] (µR,
µ

µR
)

∣∣∣∣
a2µ2R→0

,

(5.4.5)

and ZMS
QQ(µ) =

[
(ZQQRQQ) (µR,

µ
µR

)|a2µ2R→0

]−1

. The matching coefficient Rs are the

perturbative matching coefficients from the RI scheme at scale µR to the MS scheme
at scale µ as

RQQ(
µ

µR
) = 1 +

g2

16π2
CF [

8

3
log(µ2/µ2

R) +
31

9
] +O(α2

s), (5.4.6)

with
∑

a(T
a)2
bb = (N2

c − 1)/(2Nc) = CF the quadratic Casimir invariant of SU(Nc),
with Nc = 3. This matching coefficients have been obtained at 3-loop level [103] and
others at 1-loop level [104] as

RQG = − g2

16π2
[
2

3
log(µ2/µ2

R) +
4

9
] +O(α2

s),

RGQ = −g
2CF

16π2
[
8

3
log(µ2/µ2

R) +
22

9
] +O(α2

s),

RGG = 1 +
g2Nf

16π2
[
2

3
log(µ2/µ2

R) +
10

9
]− g2Nc

16π2

5

12
+O(α2

s).

(5.4.7)

The RI/MOM renormalization constants Zs for the quark external legs are de-
fined [103] as

ZQQ(µR) =
V Tr[Γqµν S̄−1

q (p)〈∑w γ5S
†
q(p,w)γ5

1
2

(γµ
←→
D ν+γν

←→
D µ)Sq(p,w)〉S̄−1

q (p)]
[−iΓqµν( 1

2
(γµp̃ν+γν p̃µ)− 1

4
/̃p)]Zq

∣∣∣∣
p2=µ2R

, (5.4.8)

δZQQ(µR) =
V Tr[ΓqµµS̄−1

q (p)〈T qµνSq(p)〉S̄−1
q (p)]

[−iΓqµν( 1
2

(γµp̃µ+γµp̃ν)− 1
4
/̃p)]Zq

∣∣∣∣
p2=µ2R

, (5.4.9)

ZGQ(µR) =
V Tr[Γqµν S̄−1

q (p)〈T gµνSq(p)〉S̄−1
q (p)]

[−iΓqµν( 1
2

(γµp̃ν+γν p̃µ)− 1
4
/̃p)]Zq

∣∣∣∣
p2=µ2R

, (5.4.10)

in which index µ is not summed while results from different µ are averaged, V is the
lattice volume, p is the momentum of the external quark or gluon state, p̃µ = sin(pµ)
is the lattice momentum, S̄q(p) = 〈Sq(p)〉 = 〈∑x e

ipxSq(p, x)〉 is the quark propagator
in momentum space with Sq(p, x) =

∑
y e
−ipyψ(x)ψ̄(y), Zq is the quark normalization
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constant defined from the axial-vector vertex correction and Ward identity [105] and
the quark vertex operator is

Γqµν = iγµp̃ν + iγν p̃µ − i
p̃µp̃ν
p̃2

/̃p, (5.4.11)

as suggested by Ref. [106]. Inspired by Ref. [104, 90], the gluon external legs are
defined as

ZQG(µR) = ξ−1Zb(µR, T
q
)− (ξ−1 − 1)Za(µR, T

q
),

ZGG(µR) = ξ−1Zb(µR, T
g
)− (ξ−1 − 1)Za(µR, T

g
),

(5.4.12)

with ξ ≡
∑
µ p

4
µ

(
∑
µ p

2
µ)2

. Za is

Za(µR, T ) =
p2〈(kµTµνqν)Tr[Aρ(p)Aτ (−p)Γρτ ]〉

2k2q2〈Tr[Aρ(p)Aτ (−p)Γρτ ]〉
, (5.4.13)

which is calculated under the conditions p2 = µ2
R, k + q = p, k · q = 0 and Γρτ =

δρτ − kρkτ
k2
− qρqτ

q2
with the repeated indices summed here. And Zb is

Zb(µR, T ) =
〈(pµT µνpν − lµT µνlν)Tr[Aρ(p)Aτ (−p)Γ̃ρτ ]〉

2p2〈Tr[Aρ(p)Aτ (−p)Γ̃ρτ ]〉
, (5.4.14)

which is calculated under the conditions p2 = µ2
R, l2 = p2, l · p = 0 and Γ̃ρτ =

δρτ − pρpτ
p2
− lρlτ

l2
with the repeated indices also summed here.

Table 5.1: The non-perturbative renormalization constants of τ 3
1 representation on

32ID lattice.

Lattice ZQQ δZQQ ZQG ZGQ ZGG
32ID 1.25(0)(2) 0.018(2)(2) 0.017(17) 0.57(3)(6) 1.29(5)(9)

Ref. [56] has done a complete calculation of the non-perturbative renormalization
constants on the 32ID lattice of the τ 3

1 representation which are shown in Table. 5.1.
The non-perturbative renormalization constants of the τ 6

1 representation are also cal-
culated which are consistent with those values of the τ 3

1 representation under current
statistics. Thus we use the values in Table. 5.1 to renormalise the results in this
dissertation.

As we are using local current operators, we need to normalize the momentum
and angular momentum fractions with the two sum rules in Eq. (5.3.5). A way of
normalizing the momentum and angular momentum fractions is proposed in Ref. [87],
in which the normalization constants for quarks and glue ZL

q and ZL
g separately are

defined as

ZL
q 〈x〉q,L + ZL

g 〈x〉g,L = 1,

ZL
q J

q,L + ZL
g J

g,L =
1

2
,

(5.4.15)
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and the normalized quantities are

〈x〉q = ZL
q 〈x〉q,L , 〈x〉g = ZL

g 〈x〉g,L ,
Jq = ZL

q J
q,L, Jg = ZL

g J
g,L.

(5.4.16)

By solving Eq. (5.4.15) we get ZL
q and ZL

g as

ZL
q =

−2Jg,L + 〈x〉g,L

2Jq,L 〈x〉g,L − 2Jg,L 〈x〉q,L
=

−T g2
T q2T

g
1 − T g2 T q1

,

ZL
g =

2Jq,L − 〈x〉q,L

2Jq,L 〈x〉g,L − 2Jg,L 〈x〉q,L
=

T q2
T q2T

g
1 − T g2 T q1

,

(5.4.17)

in which T q,g1 and T q,g2 are the nucleon form factor from the local current after renor-
malization. Whereas, the T2 form factors, which are required in the numerator of the
normalization, have almost no signal under our current statistics. Given the current
situation, we assume A ≡ ZL

q = ZL
g and calculate A from the momentum sum rule as

A 〈x〉q,L + A 〈x〉g,L = 1. (5.4.18)

Then we will test this normalization constant A on the angular momentum fractions
sum rule as

AJq,L + AJg,L = C 1
2
, (5.4.19)

to check whether C is close to 1 within uncertainty.

Numerical details

We use overlap fermions on a 323 × 64 ensemble (32ID) of HYP smeared 2+1-flavor
domain-wall fermion configuration with Iwasaki plus the Dislocation Suppressing De-
terminant Ratio (DSDR) gauge action (labeled with ID) [62] at a = 0.143 fm and
mπ = 172 MeV. The effective quark propagator of the massive overlap fermions is
the inverse of the operator (Dc + m) [25, 28], where Dc is chiral, i.e., {Dc, γ5} = 0
[26]. And it can be expressed in terms of the overlap Dirac operator Dov as Dc =
ρDov/(1−Dov/2), with ρ = −(1/(2κ)−4) and κ = 0.2. A multi-mass inverter is used
to calculate the propagators on 200 gauge configurations with 6 valence pion masses,
173.76(17), 232.61(17), 261.34(17), 287.11(17), 325.47(17) and 391.11(17) MeV. Box-
smearing [64, 65] with box half size 1.0 fm is applied to have better overlap with the
nucleon ground state.

On each of configuration, three source propagators D−1(y|G) are computed with G
the smeared Z3-noise grid source [39] with {2, 2, 2, 2} points in {x, y, z, t} directions,
respectively.

For the CI, we use the stochastic sandwich method [40, 1] to calculate the three-
point function with low mode substitution (LMS) on source grid-source to improve
signals of the nucleon. The separation of sink position x′ and current position z in
splitting the low and high modes for the propagator D−1(z|x′) between the current
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and sink can facilitate FFT along with LMS as described in Sec. 3.4. We generate
nf sets of high-mode propagator D−1

H,noi(z, ηj) defined in Eq. (3.4.7). Four source-
sink separations t′ = 7, 8, 9, 10 (a) = 1.0, 1.14, 1.29, 1.43 (fm) are used to control the
excited-state contaminations with nf = 2, 3, 4, 5, respectively.

We also use smeared Z3-noise grids to calculate the nucleon two-point functions
with the spatial center of each grid chosen randomly and repeat the calculation with
16 different source time positions on each configuration to have good statistics.

The Quark loop Lq[4, i, t, ~q;U ] is calculated based on the point source propagators
D−1(y|z) with y = z±ax, ay or az. The low-mode part of this propagator is calculated
exactly using the low-lying eigenvectors of the overlap Dirac operator. The high-mode
part of is estimated with 8 sets of a 4-4-4-2 space-time Z4-noise of grid with even-odd
dilution [107]. Each set has different spatial center and additional time shift. The
valence quark masses used in construction of quark loops vary from light quark masses
to the strange quark region. The bare valence strange quark mass msa = 0.08500 is
determined from the global-fit value ms = 101(3)(6) MeV at 2 GeV in MS scheme
calculated in [108] and the nonperturbative mass renormalization constant [105] is
Zm = 0.87642(77). The Gluon operator Lq[4, i, t, ~q;U ] is constructed on all the current
positions z to have full statistics.

The total number of propagators we generated is 3 + 14 + 16 + 8 = 41 on each of
the 200 configurations.

5.5 Results and analysis

Three-point function fit

The formula we use to fit the quark/gluon ratio R is

R(µ, 4, i; t, t′, ~p′, ~p) =A+B1e
−∆Ep′ (t

′−τ)

+B2e
−∆Ep(τ) +B3e

−∆Ep(τ)−∆Ep′ (t
′−τ),

(5.5.1)

where A is the ground state matrix element, the terms with B1, B3 and B2 are the
contributions from the excited-state contamination, and ∆Ep = E1

p−Ep is the energy
difference between the nucleon ground-state energy Ep and that of the first excited-
state E1

p . In order to stabilize the fit, we use the ∆Ep from the fitting of the two-point
function as a prior for the three-point function fit with ∆Ep ∼ [300, 800] MeV.

Connected insertions

We first present the fitting of CI of up and down quarks. Fig. 5.3 shows a sample
fitting plot of the T1 form factor on 32ID with the unitary pion mass of 174 MeV
at ~q = 2π

L
[0, 0, 1]. We have used the energy difference ∆E from 2pt to constrain our

fits of Eq. (5.5.1) for all CI. A similar fitting is shown in Fig. 5.4 for [T1 + T2] form
factor at Q2 = 0.0718 GeV2. We have used source sink separation t′ = 7, 8, 9, 10 for
both fits and 6 points are dropped (3 points close to the source t = 0 and 3 points
close to the sink t′) for each separation. All the fits for the CI 3pt to 2pt ratios have
χ2/d.o.f. ∼ 1.0.
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Figure 5.3: The ratio R of the CI three-point to two-point function for up (left panel)
and down quark (right panel) with valence pion mass 174 MeV at ~q = 2π

L
[0, 0, 1]. The

data points correspond to different source-sink separation t′ and current position τ .
The bands are the fitting predictions with the gray band the ground state T1 form
factor.
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Figure 5.4: The ratio R of the CI three-point to two-point function for up (left panel)
and down quark (right panel) with valence pion mass 174 MeV at Q2 = 0.0718 GeV2.
The data points correspond to different source-sink separation t′ and current position
τ . In each plot, the bands are the fitting predictions with the gray band the ground
state [T1 + T2] form factor.
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We repeat this procedure for all of the other p, the CI T1 form factor for the up
and down quarks at different pnum. The results are shown in Fig. 5.5 with pnum being
the label of the lattice discrete momentum ordered according to |~p|2. As shown in
Eq. (5.3.22), the calculation of the T1 form factor using operator T4i can only be done
at ~p 6= ~0. This is why we don’t have pnum = 0 in Fig. 5.5 for the CI up and down
quark, and also for the following similar plots for DI up/down quark, strange quark
and glue. It can be seen that the results for T1(Q2 = 0) from different p are consistent
with each other within uncertainty. Thus we use a simple constant fit of the data
points to give the final predictions.
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Figure 5.5: CI plots of the T1 form factor for up (left panel) and down (right panel)
quarks with pnum the label of the lattice discrete momentum ordered according to ~p2.
In each plot, the band corresponds to a constant fit of the data points.

The fitting of the CI [T1 + T2] form factor for up and down quarks is shown in
Fig. 5.6. As shown in Eq. (5.3.23), calculation of the [T1 + T2] form factor using
operator T4i can only be done at ~p 6= ~0. Thus, we use the z-expansion defined in
Eq. (5.3.27) to fit the data points and extrapolate to Q2 = 0 to get [T1 +T2](Q2 = 0)
for the CI up and down quarks, and also for the following similar plots for DI up/down
quark, strange quark and glue.

Quark disconnected insertions

The fittings of DI 3pt to 2pt ratios R for the T1 form factor of up/down and strange
quarks are shown in Fig. 5.7. We treat up and down quark DI contributions to be
the same since we have exact isospin symmetry in the current simulation. We have
also used the energy difference ∆E from 2pt to constrain our fits of Eq. (5.5.1) for
all DI. The source sink separations t′ = 4, 5, 6, 7, 8, 9, 10 are used for both fits and
4 points are dropped (2 points close to the source t = 0 and 2 points close to the
sink t′) for each separation. We have chosen the fit which starts from source sink
separation t′ = 4 instead of t′ = 7 in the CI cases under current statistics. A similar
fit is shown in Fig. 5.8 for the [T1 +T2] form factor at Q2 = 0.0718 GeV2. All the fits
have χ2/d.o.f. ∼ 1.0.
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Figure 5.6: CI plots of the [T1 + T2] form factor for up (left panel) and down (right
panel) quarks as a function of Q2. In each plot, the band corresponds to the z-
expansion fit with kmax = 7 and sum rules in Eq. (5.3.29).
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Figure 5.7: The ratio R of the DI three-point to two-point function for up/down
(left panel) and strange quark (right panel) with valence pion mass 174 MeV at
~q = 2π

L
[0, 0, 1]. The data points correspond to different source-sink separation t′ and

current position τ . In each plot, the bands are the fitting predictions with the gray
band the ground state T1 form factor.
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Figure 5.8: The ratio R of the DI three-point to two-point function for up/down
(left panel) and strange quark (right panel) with valence pion mass 174 MeV at
Q2 = 0.0718 GeV2. The data points correspond to different source-sink separation t′

and current position τ . In each plot, the bands are the fitting predictions with the
gray band the ground state [T1 + T2] form factor.

We repeat this procedure for all of the other p, the DI T1 form factor for up/down
and strange quarks at different pnum. The results are shown in Fig. 5.5 with pnum

being the label of lattice discrete momentum ordered according to |~p|2. It can be
seen that the results for T1(Q2 = 0) from different p are consistent with each other
within uncertainty. Thus we also use a simple constant fit of the data points to give
the final predictions.
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Figure 5.9: DI plots of T1 form factor for up/down (left panel) and strange (right
panel) quarks with pnum the label of lattice discrete momentum ordered according to
~p2. In each plot, the band corresponds to a constant fit of the data points.

The fitting of the DI [T1 + T2] form factor for up/down and strange quarks is
shown in Fig. 5.6. We used the z-expansion defined in Eq. (5.3.27) to fit the data
points at kmax = 2 without sum rules in Eq. (5.3.29) under current statistics. With
such a fit, we can extrapolate to get [T1 + T2](0) for up/down and strange quarks.
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Figure 5.10: DI plots of [T1 + T2] form factor for up/down (left panel) and strange
(right panel) quarks as a function of Q2. In each plot, the band corresponds to the
z-expansion fit with kmax = 2.

Glue disconnected insertions

The fittings of DI 3pt to 2pt ratios R for the T1 and [T1 + T2] form factors for the
glue are shown in Fig. 5.7. Since the glue form factors have almost no signal at pion
mass 174 MeV, we have chosen to show the plots at pion mass 391 MeV. We have
also used the energy difference ∆E from 2pt to constrain our fits of Eq. (5.5.1) for all
DI. We have used source sink separations t′ = 4, 5, 6, 7, 8, 9 for both fits and dropped
4 points (2 points close to the source t = 0 and 2 points close to the sink t′) for each
separation.
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Figure 5.11: The ratio R of the DI three-point to two-point function of glue T1 (left
panel) and [T1 + T2] (right panel) form factor with valence pion mass 391 MeV at
Q2 = 0.0722 GeV2. The data points correspond to different source-sink separation t′

and current position τ . In each plot, the bands are the fitting predictions with the
gray band the ground state form factors.

After repeating this procedure for all other p, the DI T1 and [T1 + T2] form factor
for the glue are shown in Fig. 5.10. We use a simple constant fit of the T1 form factor
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Figure 5.12: DI plots of the T1 (left panel) and [T1 +T2] (right panel) form factors for
the glue. The band in the left panel corresponds to a constant fit of the data points.
The band in the right panel corresponds to the z-expansion fit with kmax = 2.

data points to give the final predictions. z-expansion fitting of the DI [T1 + T2] glue
form factor at kmax = 2 without sum rules under current statistics is also shown in
Fig. 5.10. With such a fit, we can extrapolate to get [T1 + T2](0) for up/down and
strange quarks.

Final results
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Figure 5.13: Plots of the T1(Q2 = 0) (left panel) and [T1 + T2](Q2 = 0) (right
panel) form factors at different valence pion masses without renormalization and
normalization. Different colors correspond to up quark CI, down quark CI, up/down
quark DI, strange quark DI and glue DI.

Repeating the analysis for different valence pion masses, we gather the results
of T1(Q2 = 0) and [T1 + T2](Q2 = 0) form factors at different valence pion masses
without renormalization and normalization in Fig. 5.13. We see clear signals for up
quark CI and down quark CI.
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Figure 5.14: Plot of the T2(Q2 = 0) form factor at different valence pion masses after
renormalization without normalization. Different colors correspond to up quark CI
and DI, down quark CI and DI and glue DI.

Since the normalization condition Eq. (5.4.15) is proportional to the T2 form
factor, we have shown the T2 form factor after renormalization in Fig. 5.14. It can
been seen that T q2 and T g2 have almost no signals under current statistics and so
likewise for the normalization constants ZL

q and ZL
g . Thus we use the normalization

constant A defined in Eq. (5.4.18) to normalize the T1 form factor and test it on the
[T1 + T2] form factor with Eq. (5.4.19).
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Figure 5.15: Plots of momentum fractions 〈x〉 (left panel) and angular momentum
fractions J (right panel) at different valence pion masses after renormalization without
normalization. Different colors correspond to up quark CI and DI, down quark CI and
DI, strange DI and glue DI. The band is a linear fit of the data points to extrapolate
to the physical pion mass.
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The extrapolated results to the physical point with a simple linear fit under cur-
rent statistics are shown in Fig. 5.15. The results at the physical pion mass are
gathered in Table. 5.2 after renormalization without normalization. Thus we have
the normalization constant A = 0.81(11) for the T1 form factor and test A on the
[T1 +T2] form factor to get C = 1.08(25) which is consistent with 1 within error. This
justifies using the normalization constant A for the T1 form factor on the [T1 + T2]
form factor with current statistics.

Table 5.2: Renormalized values of T1, [T1 + T2] and T2 form factors extrapolated to
the physical pion mass without normalization. Sumq in the table is the sum of all
the quark CI and DI contributions. Sum in the table is the sum of all the quark and
glue contributions.

u(CI) d(CI) u/d(DI) s(DI) glue Sumq Sum

T1 0.347(16) 0.1298(91) 0.078(14) 0.050(16) 0.54(15) 0.683(46) 1.23(17)

[T1 + T2] 0.488(42) 0.012(22) 0.100(29) 0.080(27) 0.54(20) 0.78(10) 1.32(25)

T2 0.141(44) -0.118(24) 0.022(32) 0.030(30) -0.0003(2479) 0.10(11) 0.10(31)

The final renormalized and normalized momentum fractions 〈x〉 and angular mo-
mentum fractions 2J are listed in Table. 5.3. We have also listed the quark spin g0

A

from Ref. [1] at MS(µ = 2 GeV). The orbital angular momentum fractions 2L are cal-
culated with 2L = 2J − g0

A. Our predictions of the momentum fractions 〈x〉R (listed
in Table. 5.4) are consistent with the phenomenological global fits at MS(µ = 2 GeV)
such as CT14 [2] values (also listed in the same table) which are also consistent with
other global fits results [109, 110, 111, 112, 113].

Table 5.3: Renormalized and normalized values of momentum fractions 〈x〉 and an-
gular momentum fractions 2J at MS(µ = 2 GeV). The quark spin g0

A is from Ref. [1]
at MS(µ = 2 GeV). The orbital angular momentum fractions 2L are calculated with
2L = 2J − g0

A. Sum in the table is the sum of all the contributions.

u(CI) d(CI) [u+ d](CI) u/d(DI) s(DI) glue Sum

〈x〉 0.283(39) 0.106(16) 0.388(54) 0.0638(89) 0.041(11) 0.443(61) 1.0

2J 0.397(62) 0.010(18) 0.407(67) 0.082(26) 0.065(24) 0.44(17) 1.08(25)

g0
A 0.917(34) -0.337(20) 0.580(39) -0.070(12) -0.035(9) – 0.405(44)

2L -0.520(71) 0.347(27) -0.173(77) 0.152(29) 0.100(25) – 0.23(13)

Table 5.4: Renormalized and normalized values of momentum fractions 〈x〉 at MS(µ =
2 GeV) compares with the CT14 [2] values. And the angular momentum fractions
2J at MS(µ = 2 GeV).

u d [u− d] s glue

〈x〉 0.346(42) 0.170(20) 0.177(26) 0.041(11) 0.443(61)

〈x〉CT14 0.348(5) 0.190(5) 0.158(6) 0.035(9) 0.416(9)

2J 0.479(76) 0.091(34) 0.387(63) 0.065(24) 0.44(17)
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5.6 Conclusion and future work

In summary, we have carried out a complete calculation of proton momentum and
angular momentum fractions at several overlap valence pion masses on a 323 × 64
domain wall lattice with overlap fermions. The energy-momentum tensor three-point
function calculations include both the connected insertion (CI) for up and down
quarks and disconnected insertion (DI) for up/down quark, strange quark and glue.
We have used complex Z3 grid sources to increase signals of the nucleon correlation
functions and Z4 noise to estimate the quark loops. We have also used FFT on CI
three-point functions along with low mode substitution (LMS) on both the source
and sink nucleon. With the non-perturbative renormalization and normalization us-
ing momentum and angular momentum sum rules, we find the momentum fractions
and angular momentum fractions listed in Table. 5.3 at MS(µ = 2 GeV). We have
seen clear signals for up and down quark CI, whereas the up/down quark, strange
quark and glue DI need improvement through cluster-decomposition error reduction
(CDER) [114, 90]. With such an improvement, we will have clear signals for the
T2 form factor which should be able to stabilize normalizations. Finally, this work
should be extended to include other lattices with different volume and lattice spacing
to control systematic errors from finite volume and lattice spacing.
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Chapter 6 Summary and outlook

As an ab initio calculation, Lattice Quantum Chromodynamics (QCD) provides the
possibility to study hadron structures from first principles and make predictions of
the less-known quantities. From this perspective, this dissertation first focuses on a
precise calculation of the pion form factor using overlap fermions on six ensembles of
2+1-flavor domain-wall configurations with pion masses varying from 137 to 339 MeV.
Taking advantage of the fast Fourier transform (FFT) and other techniques to access
many combinations of source and sink momenta, we find the pion mean square charge
radius to be 〈r2

π〉 = 0.433(9)(13) fm2, which agrees well with the experimental result,
which includes the systematic uncertainties from chiral extrapolation, lattice spacing
and finite volume dependence. We also find that 〈r2

π〉 depends on both the valence
and sea quark masses strongly and predict the pion form factor up to Q2 = 1.0 GeV2

which agrees with experiments very well.
Then we use the nucleon matrix element of the traceless, symmetric energy-

momentum tensor (EMT) to calculate the momentum and angular momentum frac-
tions of up, down, strange quarks and glue inside the nucleon. Since the EMT of
each parton species are not separately conserved, we summarized their final angular
momentum fractions by considering mixing and non-perturbative renormalization at
MS(µ = 2 GeV) and use the momentum and angular momentum sum rules to nor-
malize them. In order to improve the signals for the nucleon correlation functions
with source momenta, we developed new contractions for the grid sources to have
better statistics. Moreover, we have also developed the usage of FFT on CI three-
point functions along with low-mode substitution (LMS) on both the source and sink
nucleon. With these improvements, we report the renormalized momentum fractions
for the quarks and glue to be 0.557(61) and 0.443(61), respectively, and the renor-
malized total angular momentum fractions for quarks and glue to be 0.320(60) and
0.220(85), respectively (the sum is to be compared to 1/2).

However, there are still much more which could be done. As the largest systematic
uncertainties come from excited-state fitting, larger separations at good statistics are
needed to improve the predictions of the pion form factor calculation. Also, the
signal to noise ratio at near physical pion masses is much larger than the fitted
band, so increasing statistics here would give more reliable results. Besides more
precise predictions under Q2 = 1 GeV2, we could also move our scope to Q2 ∼
10 GeV2 which is of great interest for experiments and theories. This could be done
by using momentum smearing on the source side along with all the techniques used
in this dissertation to have precise predictions from low momentum transfer to the
perturbative region.

Due to the lack of cluster-decomposition error reduction (CDER) for disconnected
insertions, the current calculation of proton momentum and angular momentum frac-
tions may suffer from large systematic errors from excited-state contaminations and
a normalization issue which need to be solved in future calculations. Also, the cur-
rent non-perturbative renormalization procedure has large systematic uncertainties
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which need to be improved for a more precise calculation. Then we can proceed to
the calculations on more ensembles with different pion masses, lattice spacings and
volumes to have a reliable extrapolation to the physical limit.

Copyright c© Gen Wang, 2020.
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