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ABSTRACT OF DISSERTATION

THE PION FORM FACTOR AND MOMENTUM AND ANGULAR
MOMENTUM FRACTIONS OF THE PROTON IN LATTICE QCD

Lattice Quantum Chromodynamics (QCD) provides a way to have a precise calcu-
lation and a new way of understanding the hadrons from first principles. From this
perspective, this dissertation focuses first on a precise calculation of the pion form
factor using overlap fermions on six ensembles of 241-flavor domain-wall configura-
tions generated by the RBC/UKQCD collaboration with pion masses varying from
137 to 339 MeV. Taking advantage of the fast Fourier transform, low-mode substi-
tution (LMS) and the multi-mass algorithm to access many combinations of source
and sink momenta, we have done a simulation with various valence quark masses and
with a range of space-like Q2 up to 1.0 GeV2. With a z-expansion fitting of our data,
we find the pion mean square charge radius to be (r?) = 0.433(9)(13)fm?, which
agrees well with the experimental result, and includes the systematic uncertainties
from chiral extrapolation, lattice spacing, and finite volume dependence. We also find
that (r?) depends on both the valence and sea quark masses strongly and predict the
pion form factor up to Q? = 1.0 GeV? which agrees with experiments very well. The
second topic is the lattice calculation of proton momentum and angular momentum
fractions. As confirmed from experiment and lattice QCD calculation, the total he-
licity contribution from quarks is about ~ 30% of the proton spin. Determination of
the rest of the contributions from quarks and gluons to the proton spin is a challeng-
ing and important problem. On the lattice side, one way to approach this problem
is to use the nucleon matrix element of the traceless, symmetric energy-momentum
tensor (EMT) to determine the momentum and angular momentum distributions of
up, down, strange and glue constituents. Since the EMT of each parton species are
not separately conserved, we summarized their final angular momentum fractions by
considering mixing and non-perturbative renormalization at MS(u = 2 GeV) and use
the momentum and angular momentum sum rules to normalize them. In order to
have a complete picture of these quantities, we have calculated both the connected
and disconnected insertions with an extrapolation to physical pion mass. We also use
various techniques to improve the results, such as LMS and new three-point function
contractions using fast Fourier transform for the connected insertions.

KEYWORDS: Lattice QCD, Hadron Structure
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Chapter 1 Introduction

Quarks and color degrees of freedom were introduced to study hadron structure
and the strong interaction around sixty years ago. Later on, Quantum Chromody-
namics (QCD), an SU(3) gauge theory, formulated with quarks and gluons as the
basic degrees of freedom to describe the hadronic interactions. Since the strong cou-
pling constant of QCD at large energy scales is small which is known as asymptotic
freedom, perturbation theory has been successfully predicting phenomena involving
large momentum transfers. Whereas, at small energy scales of the hadron world,
the coupling constant is of order unity and the physical properties of hadrons are
governed by nonpeturbative effects such as confinement. Due to this reason, it is still
challenging to quantify the hadron structure. On the other hand, with more than
three decades of developments, lattice QCD has been proven to be a reliable tool
to calculate the hadronic spectrum and matrix elements from first principles. More-
over, lattice QCD is also able to tackle problems like QCD at finite temperature,
confinement, chiral symmetry breaking and topology.

The discretized Euclidean space time of lattice QCD provides an ultraviolet cut-
off at m/a to regularize the theory and remove infinities, with a the lattice spacing.
And in the continuum limit ¢ — 0, the renormalized physical quantities should be
finite which guaranties a well defined limit. The successful discretization of gauge
theories in Euclidean space time enables simulation of QCD on a computer using
Monte Carlo integration of the Euclidean path integral. Lattice QCD results have
had great achievements in controlling its statistical and systematic errors with recent
advancements of numberical analysis and computational technology. And these re-
sults have already served as basic inputs for a lot of phenomenological studies such
as quark masses, CKM matrix elements, low energy constants and form factors.

In this dissertation, we will focus on two topics in hadronic physics. The first
one is the calculation of the pion form factor using overlap fermions on six ensembles
of 2+1-flavor domain-wall configurations with pion masses varying from 137 to 339
MeV. We will report on the pion form factor up to Q% = 1.0 GeV? and the charge
radius of the pion (r2), both at the physical limit (physical pion mass, continuum
and infinite volume limit). Since the experimental determination of (r?) from e
scattering is very precise and the pion is relatively simple to handle on the lattice, it
provides a stringent test for lattice QCD calculations to demonstrate complete control
over the statistical and systematic errors in estimates of the relevant pionic matrix
element in order to enhance confidence in their reliability to calculate other hadronic
matrix elements where lattice calculations can produce error estimates smaller than
those of experiments or make useful and timely predictions.

The quark model which successfully describes a lot of properties of hadrons pre-
dicted that all the proton spin is carried by its three valence quarks. Whereas, as
confirmed from experiment and lattice QCD calculations, the total helicity contribu-
tion from quarks is just about ~ 30% of the proton spin of %h. Thus, determination
of the remaining contributions from quarks and gluons to the nucleon (i.e., proton or



neutron) spin is a challenging and important problem which is the second topic of this
dissertation. We will use overlap fermions on a 323 x 64 domain-wall lattice at near
the physical pion mass to calculate the nucleon matrix element of the traceless, sym-
metric energy-momentum tensor (EMT) in order to have a complete decomposition
of the angular momentum fractions of the nucleon. The final renormalized results are
reported in the last section.

Copyright© Gen Wang, 2020.



Chapter 2 QCD on the lattice

2.1 Path integrals on the lattice

In order to calculate Quantum Chromodynamics (QCD) on a space-time lattice, we
use a path integral representation analytically continued to imaginary times, t —
—1ixy, in which x4 is a real number. The vacuum expectation of an operator O in the
continuum Euclidean space is

[ D, P DAO, 1, A)exp(SelAl+Srlev.A)

(©) [ D[y, Y] D Aexp~(SclAI+Srl.9,4]) ’

(2.1.1)

where Sg[A] is the gauge action and Sg[1), 1), A] is the fermion action. The gauge
fields A, (z) are defined as

A(x) = Z A (2)T;, (2.1.2)

where AL(x) are real-valued fields, T;, ¢« = 1,...,8 are a basis of traceless hermitian
3 x 3 matrices which are the generators of the SU(3) group satisfies the commutation
relations

[T, T3] = ifiseTh, (2.1.3)

in which f;;; are the structure constants. These generators are given by T; = %)\i
with the Gell-Mann matrices \;

01 0 0 4 0 1 0 0
M= 100 |, 0%=(i00]| . x=[0-10],

00 0 00 0 00 0

00 1 0 0 - 00 0
M=]000 ], x%=[000]xx=[001], (2.1.4)

1 0 0 i 0 0 01 0

00 0 (100
M=]00 4 |, x=—]01 0

0 i 0 V3l 0 =2

Using these matrices, we define the field strength tensor as Fy,(v) = S5 | F v (2)T;
with

F., = 0,Al, — 0,Al, — [, Al A} (2.1.5)
Then the gauge action Si[A] can be evaluated as
1
Sc(A) = —Tr / d'zF,,F,, (2.1.6)
294



with go the bare coupling constant.
The fermion action, Sp[i), ¢, A], is given by the expression

Selih v, 4] = [ d'wd(a) (D, + m)ila), 2.1.7
where D,, is the covariant derivative
D, = 0, —iA,, (2.1.8)
which ensures local SU(3) symmetry defined as

Au(z) — A, (z)
D, — D, (x)

Q2) A (2)22)! + i(8,0(2))a)!
T

o (2.1.9)
Op + 1A, () = Qx) D, (2)(x)

with Q(x) the SU(3) matrix which satisfies Q(z)" = Q(2)~! and Det[Q(z)] = 1.

The Euclidean + matrices are hermitian, vl = 7,, and satisfy the commutation
relations {v,,7,} = 20,,. This dissertation adopts the Euclidean Pauli-Sakurai
matrices convention as

00 0 - 00 0 -1 0 0 -i 0
00 < 0 0 01 0 00 0 i

M=l o i 00| o100 |"™ |iooo0l
i 00 0 10 0 0 0 i 0 0

(2.1.10)

10 0 0 0 0 -1 0

o1 o0 o0 0o 0o 0 -1

“=L o o0 -1 0 |71 0 0 o0
00 0 -1 0 -1 0 0

In order to numerically solve the system, which has an infinite number of degrees
of freedom in the continuum, we discretize the gauge and fermion fields on a cubic
lattice to reduce the degrees of freedom. This introduces a cut-off in momentum, i.e.,
the largest momentum is p = %, where a is the lattice spacing. This will regulate the
field theory and allows for renormalization.

2.2 Gauge fields on the lattice
We replace gauge fields A, (z) with SU(3) matrices U,(n) (gauge links)
U,(n) = el*Antnts), (2.2.1)
Under a gauge transformation 2(n), the gauge links transform as
Uu(n) = Uy (n) = Qn)U,(n)Q(n + i)t (2.2.2)

in which U,(n) connects site n and site n + fi to preserve the local SU(3) transfor-
mation in Eq. (2.2.2)), where i is a unit vector in the z, direction, a is the lattice



spacing between two nearest neighbouring sites and n is the integer label of position
x = an.

The gauge links in the reverse direction is U_,(n + 1) = U, J(n) The simplest
gauge invariant and nontrivial closed loop on the lattice is plaquette U, (n),

U(n) = Tt [Uu(n)Uy(n + 1)U, (n + 0)1U, (n)'] . (2.2.3)

In order to connect U, (n) with the continuum theory, we perform a Taylor expansion
of Uy, (n) by using the Campbell-Hausdorft formula [19] 20]

exp(A)exp(B) = exp <A + B+ [A B]) (2.2.4)
to obtain
U, (n) =exp (z’aAu(n + =) +idA,(n+ o+ =) —iaA,(n+ 0+ g) —iaA,(n+ g)

2 A~ A A~ A
S By A D) - S By A D)
A+ B Ao+ B St D), A+ Dy -

g (it h BT 2”"’“‘2’””2

a? fi ) a’ v i 3
S+ B A4 D+ ST+ i ), Al o+ )+ 0
Expanding the gauge fields in the above formula around n + ”—J“’ using
1 [+ U 1 L+
At By = 4,0+ 0 Can A, Y v o) (220

in which 0,4, = gﬁ:‘ and defining n’ = n + ﬂ;rﬂ, Eq. (2.2.5) reduces to

Uy () = explic® (@, A, () — , A, () +i[A,(w), A, (1)) + O(a®)]

2.2.7
= exp(ia*F,,(n') + O(a?)) ( )
Thus the gauge action can be written with the real parts of the plaquette
1
3 (Uw(n) + U}, (n)), (2.2.8)
as
Sel ZZTr—[l—— () + U, (n)
"o (2.2.9)

V)2] + terms higher order in a,

= ;—ggZZTr[F
n o uv

which gives the continuum action up to discretization errors. The lattice calculations
are mostly presented in terms of couplings constant § = g% which is the only variable
0

in the gauge action part.



2.3 Fermions on the lattice

A “naive” discretization of the fermion on the lattice with hermicity is

Opp(x) = —[(n+ 1) = ¢(n — A, (2.3.1)

2a

which leads to the fermion action

Sel, 4, U]

A - ! U.(n)Y(n+ ) — U_,(n)v(n — [
~ot i (Z” () + )~ U)o u)+m¢(n)) .
=a Zw mnw )

where
1 4
Do = M 35 3 U)o = Uyl 233

However, this “naive” discretization will give rise to 2¢ = 16 flavors rather than one
lattice quark flavor in the continuum. This is called the “fermion doubling problem”
as 15 unphysical poles arise at the boundaries of the Brillouin zone. In order to
remove the doublers, Wilson [21] proposed a possible solution by adding an extra
second derivative term which vanishes in the continuum limit as

—raDi(n) = —mz 53 Un(mv(n+ 1) = 20(n) + U_p(n)eo(n — )], (234)

in which r is the “Wilson coefficient”, which is normally set to 1. Then the Wilson
fermion action is

Sy =a')y_ d(m)Dy p(n).

4 = (2.3.5)
DY, =(m+ r=)omn = 5 > 1 = %) U (m)0mm—p + (1 + %) U= ()6 i)
pn=1
Under a conventional rescaling of quark fields ¢ — \/%w with k = —2( ) DW
4
Dy = — K Z r = ) U ()b + (r + ) U (m)0mnial. (2.3.6)
p=1

By analysing the Wilson Dirac operator in momentum space, it can be shown that
the unphysical poles have an extra contribution 2/a which becomes very heavy and
decouples from the theory in the limit a — 0. Whereas the additional term in



Eq.(2.3.4]) explicitly breaks the chiral symmetry of the theory at the zero mass limit.
A chiral rotation on the fermion fields is defined as

W — Y = Y ah — P = e, (2.3.7)

It is easy to show that the massless QCD Lagrangian £ = ?Efy,ﬂ?uw is invariant under
the chiral rotation because of the anti-commutation of v, and v as {7,,7} = 0.
This is equivalent to having the massless Dirac operator D satisfy

D5 + 75D = 0. (2.3.8)

However, the additional term of Wilson fermion in Eq.(2.3.4) does not anti-commute
with 5. In other words, the massless Wilson Dirac operator D" is not chiral since

D"r5 4+ D" = —2raD’s. (2.3.9)

In continuum theory, chiral symmetries are important in the spectrum and phe-
nomenology of the standard model. In order to have chiral symmetry on the lattice,
Ginsparg and Wilson [22] proposed a lattice version of Eq. (2.3.8)) as

Dvs + v5D = aD~sD, (2.3.10)
with the associated chiral rotation at finite lattice spacing a as
W — ) = PITEPY ) 5 f = gD, (2.3.11)

A solution of the Ginsparg-Wilson equation [23] is the overlap operator defined as

Doy = %(1 + yssign(Hu (p))), Hu(p) = 15Du(p), (2.3.12)

where sign(H,,) = H,/+/H2 is the matrix sign function which can be approximated
through the Chebyshev polynomials [23], and H, is the hermitian Wilson Dirac
operator with a negative mass parameter p = —(2—1,4 —4), in which k. < K < 0.25
with k. the critical hopping parameter obtained by a linear extrapolation to the zero
pion mass. We use k = 0.2 in our calculation which corresponds to p = 1.5 so that
there are no zero modes in H,. Since H, is hermitian, the matrix sign function is
well-defined through the spectral theorem. In order to show the overlap operator
D, satisfies the Ginsparg-Wilson relation in Eq , we first prove the following

relation,
DD}, = (1 +yssign(H))(1 + sign(H, )
= %(1 + vssign(Hy) + sign(Hy)vs + 1) (2.3.13)
= %(Dw +D},).
Also, we have

Dlv =1+ Slgn(Hw<p))7g = 75D0v75' (2314)



Combining Eq. (2.3.13]) and Eq. (2.3.14)), we have
Dmes + 752)01) = (Dov + DZy)VE) = a<DovDZy)75 = a,Dov75Dov7 (2315)
which is Eq (2.3.10]). The associated massive overlap Dirac operator is defined as

aDozv (p) ) ]

Dy = =[pDoy(p) +m <1 -

(2.3.16)

1
a
1
a

[p+ % + (,0 - %) Yssign(v5 D (p))]-

2.4 Numerical simulations

The discretized gluon and fermion measure is a product on each of the lattice points
as

DU — [[dU.(n), D[, ] — Hdw qu/z (2.4.1)

,H

With a rescaling of fermions and quark mass as

1 - 1 - 1

we can absorb all the lattice spacing a factors in the action. Along with the fermion
and gluon actions on the lattice, we can re-write Eq. (2.1.1]) as

JTL, de(n) T, do(m) 1, , dUL(K)O (), 4, U)e= S lI=Sr bl
JTL, d(n) [T, déo(m) [1,.,, dU,(k)e=Scll=5rlos.U] :

By using Grassmann algebra of the fermion fields, we can integrate out the fermion
degrees of freedom to have

J T, AU (k)(TT; Det[Ds)O(U)e~5clV]
J 11y, dU.(k)(T1, Det[Dy])e=SclUl

in which f is the flavor of quarks we consider in our simulation such as up, down
and strange quark, and Det[Dy] is the determinant of the fermion action matrix. The
vs-hermiticity of the Dirac operator D gives us

(0) =

(2.4.3)

(0) = (2.4.4)

Det[Dy] = Det[y5D;75] = Det[D}] = Det[D;]*, (2.4.5)

thus Det[Dy] is real. For an even number of mass-degenerate quarks, the fermion
determinant is raised to an even power and the combined weight factor is nonnegative.
For a fermion which obeys the Ginsparg-Wilson equation, the eigenvalues of massless
Dirac operator come in complex conjugate pairs [22]; thus the determinant is real and
non-negative even with odd powers of the fermion determinant and the determinant
is positive if one introduces a mass term as in Eq. And we know e~%¢lUl s
positive as S¢[U] is shown to be real in Eq. . Thus we can evaluate Eq.



by treating the positive value [] Det [Ds]e=%¢lUT (which is only a function of gauge
links) as a Boltzmann factor to have

©) =% %(’)(Ui), (2.4.6)

ieG

in which G is an ensemble of gauge configurations generated with Monte Carlo meth-
ods with the distribution probability [], Det[Dy]e%¢lUl and N is the number of
gauge configurations.

The remaining problem of calculating the operator O(U) in Eq. from op-
erator O(¢,,U) in Eq. requires an evaluation of quark propagator in each
of the background gauge configurations as

DNy, ) = (¥(y)d(x)) = (D7 (y, x; U)), (2.4.7)

in which x and y are any space-time positions on the lattice. Such a propagator
satisfies vy5-hermiticity as

D' = (D) = ((35D'5) ") = %D 55, (2.4.8)

It is practically impossible to get this propagator for all combinations of x and .
Instead, we will calculate a propagator from a single point source at z with S(z) =
0.2, Which satisfies

> " D(2,4)D " (y, 70) = S(2) = durzo- (2.4.9)

This will need a linear matrix solver to numerically calculate the inverse of D. For
the general cases such as extended sources, we will need a propagator D~1(y, S) from
a source vector S which has different complex values at different lattice positions and
satisfies

> D(x,y)D (. 5) = S(x). (2.4.10)

Defining the complex numbers at different lattice positions w as f(w), with S = f(w),
then

> D(@,y)O_ fw)Dyw) =D f(w)dsw = S(z). (2.4.11)

Thus, the general propagator is a sum of point source propagators from single point
w as

D (y.S) =D f(w)D ' (yw). (2.4.12)

It is worth noting that we only need one inversion of the Dirac operator to reach this
general propagator.



To accommodate the chiral transformation in Eq. , it is usually convenient
to use the chirally regulated field L/AJ =(1- %Dov)@b in lieu of ¢ in the interpolation
field and the currents [24, 25, 26], 27, 28]. This turns out to be equivalent to leaving
unchanged the unmodified interpolation field and currents and adopting instead the
effective propagator which also serves to filter out the unphysical eigenmode at A = 2p
which can be calculated as

D 1
D= (1--2|D,' = 2.4.13
eff ( 2 ) m Dc + m’ ( )
where D, = 5 _”g:: 7 and is non-local. This effective propagator has the same form as
that in the continuum. D, can be proven to be chiral as
Dc 5 + ’75DC = 0. (2414)

In order to solve Eq. (2.4.12)) for the effective massive propagator in Eq. (2.4.13)),

we generate the eigenvectors v; for the massless overlap Dirac operator D,, operator
and the corresponding eigenvalues \; to some cutoff A\, which starts from the lowest
eigenvalue to the cutoff A, [29]. Notice that since D,, satisfies Eq. (2.3.14)), the
eigenvectors will come in pairs as v; and 5v; with eigenvalues A\; and A} respectively
as

Dm,vi = /\ﬂ)i, Dm,’}/g,’l]i == )\,7’757)2 (2415)

By using this eigensystem, we first separate the source vector S into high-mode and
low-mode parts defined as

g 1
Sh=3" [vi(ij) + 505 (3501 S) | (1 — 55&70), SH — g st (2.4.16)
where the factor 0y, takes care of the zero modes are either left-handed or right-
handed vector. We define the corresponding high-mode propagator P and low-mode
propagator Pl as

D(m, p)P" = S D(m,p)P* = S*, (2.4.17)

with the total propagator P = PHY + PL. The low-mode propagator can be con-
structed using eigenvectors v; as

n 1— Ai 1— ﬁ
Pt = 2 vy (vl S*) + 2 Y503 (50] ST)
Ay P * AL ! ¢
; pAi +m(l — 5) pA; +m(l — ) (2.4.18)
1
1—=0x0).
(1= 50x0)

Then we can use conjugate gradient solver (CGNE) [30, B1] for D(m)D(m)" as a
multi-mass inverter to get the high-mode propagator P at different quark masses
in one stroke with the multi-shift algorithm [32] 33].

Copyright© Gen Wang, 2020.
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Chapter 3 Correlation functions

3.1 Two-point correlation functions

Hadron spectroscopy is categorized by the combination of quantum numbers such
as spin, parity, flavor content, etc. By using an operator with the same quantum
numbers as the hadron studied, Lattice QCD is able to reproduce the hadron masses
measured by experiment. In this section, we will focus on the two-point correlation
functions of a meson (charged pion) and a baryon (nucleon). The first step of these
calculations is the identification of hadron interpolators @, Ot which correspond to
the annihilation and creation of the particle states.

Pion two-point functions

A hadron interpolator is constructed with gauge-invariant color singlets made from
quarks and gluons, such as the local meson interpolators,

Ou(x) = zﬁfl(x)waQ(x), (3.1.1)

contracted from an anti-quark with flavor f; and a quark with flavor fy, where f; # fo,
I matrix is a multiplication of Dirac gamma matrices which are chosen so that Oy (x)
has the same symmetry as the desired particle state, and x = na is the discrete
position on the lattice. The corresponding interpolator O,;, which generates the
meson state from the vacuum is the conjugate of the interpolator , satisfies

(&leprQ)T = —p2ITTpNT = —pfom T apt = pl2Topl (3.1.2)

The first minus sign comes from the interchange of the fermion fields and the last step
reflects the interchange of gamma matrices as Iy, = £I. Thus up to a possible
overall sign, Oy, is

Oy = 2Ty, (3.1.3)
Combining these two interpolators we can have two-point correlation functions

(OM(Z/)@M<$)> (3.1.4)

to be calculated with propagators as (summation convention is used for all duplicated
indices below),

(Om(y)Ou (@) = (WM (y) Ty ()" ()" (2))
= (0" (1)e Tarn ¥ ()5 0" (2)& Panp ™ (2)5)
= —TaysTass (V7 ()5 0" (@) 20" (0) 000" Warer)  (3.1.5)
= —Tas s Dy, (Wl2)Ga, Dy (2ly) 5,

= —Te[L D} (y|x)T D} (2]y)),

11



in which we denote the color indices with ¢y, c3 € {1, 2, 3} as superscripts, the Dirac in-
dices with aq, ag, f1, B2 € {1,2, 3,4} as subscripts, the trace Tr is over color and spin,
D]721 (y|z) is the propagator from position x to y with quark flavor fy and DJ?11 (x]y)
is the propagator from position y to x with quark flavor f;. For the case of the pion,
Y7 and 72 correspond to up quark u and down quark d. The v and d quarks differ
only by the value of the mass parameter within QCD and the small mass difference
between them is often ignored in current lattice QCD simulations with the v and d
quark Dirac operators are equivalent, D, = Dy, i.e., we have exact isospin symmetry.
We can also utilize vs-hermiticity of the propagator to relate the two propagators in

Eq. (3.1.5) as
’Y5D_1”Y5 =D~ (’Ys)aa/D_l(3?|y)ggflﬁ'(’75)6’ﬁ = D_l(y‘if)%fx*- (3.1.6)

Thus for the case of charged pion with interpolator O+ = dvysu and OL = O, =
uysd the correlation function C+(y, x) from position x to position y is

Crt(y,2) = (Or+ (y) 0L, (2)) = TrhsD‘l(ylaf)%D‘l(ny)]

= Te[ys D~ (ylx)vs7sD (ylz) 5] = D 1D~ (yla)i (3.1.7)
af3,ed

The hadron states with definite momentum p can be obtained with a Fourier

transformation on the correlation function at position y = (¥,t) (assuming position
=(0,0)) as

Cot (5, 1,0) = Y e 77 (0 (3,1) O, (0, 0)) , (3.1.8)

SE

in which A3 = {7 = (n1, na, n3)|n; € [0, L; — 1]} is the spatial volume, L; is the spatial
length in ¢th direction, and p; = 2”,’: is the lattice momenta. In order to interpret
this correlation function, we introduce the normalization of states as

2E™
(n,pn’,p’) = (La)3—p5n nOp.5

3.1.9
00+ 5 (g e )

in which n and n’ are the labels of a hadron ground state, such as pion or nucleon,
and its excited states which vanishes at large ¢ and T" with T" the total number of time
slices of the lattice, (n, p] is the hadron with momentum p, |n’ p') is the hadron with
P, B is the energy of the n'™ hadron state at momentum 5, and m is the ground
state energy at zero momentum which is the mass of the hadron. Also we can express

O+ (.1') with
Ot (z) = P70, (0)e " = e PO (0)e T, (3.1.10)

due to translational invariance, in which H is the Hamiltonian of the system and ﬁ
is the momentum operator. O,+(0) and OL(O) could annihilate and create a 71 (p)

12



state from the vacuum, respectively, as

(01 O (0) |74 (R)) = 2, (7™ (H)| OL.(0) |0) = Z;,
(7™ ()] Ox+(0)[0) = Z;, (0] OL,(0) |7~ (7)) = Z,,

in which Z, is the overlap matrix element at momentum p. The second matrix

(3.1.11)

element comes from OL(O) = O,-(0) under isospin symmetry. Insert the complete
set of normalized energy eigenstates of Eq. (3.1.9)) into Eq. (3.1.8)) and use Eq. (3.1.10))

and Eq. (3.1.11)) to get

Crt (B,0) :Ze—fﬁﬂo +(z, t)OL(o,o»

i 2m
_Z > (La) 32En Z(La)?’ZE" (3.1.12)

n',p2 n,pi

<n/>P2’ 67 7rJr (.CU, t) ‘naplxnapl’ Oﬂ+ (07 0) ‘n/’P2> )

under periodic boundary conditions. Let us first look at the last line of the equation,

<n',pzye*HT0ﬂ+(x t) [, p1) (n, 1| OF,(0,0) [n’, pa)
= (0, po € 1T0TETO_(0)e~ 1T n, py) (n, pr| OL, (0) |, pa)
e F T2 () o] O (0)]0) (0] O (0) [, pa) (3.1.13)
+ e PP T (0] Or (0) [, 1) (n, pi| OF(0) ]0)

L T
—Ep, (T-1) + |Zp1|262p1x Eplt.

| |2 —ipa2-T e

e

Thus we have

t>>1 —ip-Z 1 —ify @ — B (T—
Crt (P1,0) Z g Z La 32En L ) ‘szy% P2 o= Hp, (1)

ip-T 2m 1 2 _ip1-& —E7 t
+Ze g Z LCL)32E" (L ) |Zp1| ePfemn

(3.1.14)
—Z 32En/ Op,—pa | Zp |267Ep2(T7t)
n',p2
+Z 32En Ppl’ ‘2€—E;}1t'
n,pi
Combining the results, we have
Zyl?(2m) , _ —E(T— _
Cor (i t,0) 23 NBECM) p | omrn) (g 4 ot 3.1.15
R T N U (R Ca R CRED)

in which O(e *2#) represent the contributions from excited states and |Z,|* is the
spectral weight. From the free fermion lattice propagator in momentum space, one

13



can identify the pole at momentum p’ and find the lattice dispersion relation (¢ = 1
in our units) [34],

3
cosh(aE,) = cosh(am) + Z(l — cos(apx)), (3.1.16)
k=1
which at vanishing a approaches the continuum relation E, = \/m? + p2.

Proton two-point functions

A typical nucleon (i.e., proton or neutron) interpolator with a given spinor index «
constructed from three quarks is [35]

On(2),, = eaper()? (u(2)4Csd(x)S), (3.1.17)

in which C = 7,7, is the charge conjugation operator with C = Cvs and €gpe is the
three dimension Levi-Civita symbol with €, = 1 if (a,b,¢) is an even permutation
of (1,2,3), —1 if it is an odd permuation, and 0 if any index is repeated. The
corresponding creation operator is

On (), = —€ae((x)SC,pd(x)%)a(x)C. (3.1.18)

With these two interpolators, the nucleon correlation function contraction is

(On(),On(w)y) = (eapecare (u(a)s (ul@)ECa(2)) ) (((@)ECAw)EYul)qr e ))
= €abe€arreCorprCap Dy (y|2) s %
(D2 o) Dy (o)<, = D (yle)s D wla)ss )
= CabeCa’trer 1T [CNDJI(?JW)I)%(DJI(y|$)a/aCN)T] DJI(?AZ‘)@/@ (3.1.19)

— €abcCalblc! _(D;1(y|x)alc)T5Dc?1(y|$)b/b(D;1(y|w)C,a5)T} ,

Y
= eabcea’b’C/Tr |:Dc?1(y|x)blbD;1(y|x)a/ai| Du_l(y|x)?}’ll(’:*/

+ €abc€a’t/ ! qul(y|$)c,ch?1(y|$>b/bD;1(y|x)a/a:|

"y

in which (---)7 is transpose over Dirac index, Tr[---] is over Dirac index only, the
free index 7 or 7' corresponds to the free Dirac index of initial or final nucleon,
respectively, and define the Dirac space the quantity Q = (CQC™1)T for an arbitrary
matrix Q. We have used the commutation relations of v matricies Vet = 20
and exchange of color index a <— ¢ for the last step. With a Fourier transform at
position y and fixed x = 0, the nucleon correlation function with momentum p is

GuNam (1) = ) 77 (On (), On(0)) - (3.1.20)

Y
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In order to expand this equation with the energy states of the nucleon, we first
consider the equation of motion of the nucleon, which is a Spin—% particle, as

(p — im)u(p,s) =0
{fzp, s)(p —]Zm) =0 (3.1.21)

The solution of equation under current v matrix convention in Eq. (2.1.10)) is,

E, +m I
u(p, s) =1/ —=* (E-ﬁ )xs

m Ep+m
_ [Ep,+m . ( I >
u(p,s) =/ —x. &5 |
(p ) m X (_1)Ep-fm

in which xy; = x5 = ( (1) ) and xo = x| = ( ? ), and & is the Pauli matrices

0 1 0 -i 1 0
01—<1 o>’“2_<i 5),03_(0 _1>. (3.1.23)

The spinors u and @ satisfy the normalization conditions u(p, s)u(p,s’) = Js+ and

Yo ulpss)u(p,s) = % Then we have

(3.1.22)

(0| O (@) [Np(F. 5,4)) = AyulB, s, +)e

. ; 3.1.24
<Np(ﬁ, S, +)| ON(-T) |0> = )\j_’a(ﬁ: s, ‘I’)G—pr ( )

in which + denotes positive parity state (i.e., the proton), and A is the coupling
strength. In the same way, we can write down the coupling to the negative parity
state (i.e., S11) as

(0] On (@) INp (55, -)) = A-(15)u(B. 5, —)e ™"

= h . o (3.1.25)
(Np(, s, =) On(2) [0) = A a(p, s, +)(—7s)e ™"
With an insertion of complete set of states into Eq. (3.1.20)), we have
- mp _En - S A
NNy (Bi1) =) Tar B EZt (0] On (0) [nps)nps| On(0)4 [0) . (3.1.26)

n,s

Using Eq. (3.1.24) and Eq. (3.1.25), we can split the sum into even parity part and
odd parity part of states |(n,+), s) and ((n, —), s|, respectively. Let us consider the

even parity part first as

ST e BT (0] O (0), |(n, +)F)(n, )| O (0) [0)

S (La)3Ey™*
My + —ET — * ==
= (La) B Ze B O u(p, s, )N a(p) s, +) (3.1.27)
L 1,S 'Y’Y/
n [ ., _Z “I— mn
- m—+n+ AN +th} _
(LQ)BEP’ L 2mn,+ vy
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Repeating the same steps for the odd parity part, we have

Gnn(p,t) |An, +\2 Eprt ’
Z (

La)SEn,_,_ 2mn7+
(3.1.28)

S PP BT e W M
. ’ (La)*E,_ 2m,

in which F,, ; and £, _ correspond to the energy of even parity states and odd parity
states at momentum p’ respectively. In order to project to definite parity, we use
parity projection operator 'y which is defined as

1
I 1+ — 3.1.29
+=5 ( EJF”M) ( )

Consider the I'; projection and only the ground state contribution to Eq. (3.1.28) as

me T3 (1422 (g my)]

Te[Dy Gn (5, 1)] =| Ay |2e 5

(La)3E+ 2m+ (3 1 30>
1 m- ; o
_ P‘ ‘2€—E;t m- I [2 (1 + Ep 74) (Zp i mi):|
- (La)*E; 2m_ ’

in which we have ignored label the n = 0 for the mass mg 1 and energy Eg’i. By
taking the trace of v matrices, we have

s(my + Z=EF) im_ - 2=E)
2 E, 2 FE. p
Te[T G (B, )] =4\ [2e 5 — A\t 2
2(La)3 B 2(La)3E>
_ (+) ‘>\+|2 (m+ + —) —Eft ! <3'1.31>
- (Lap Ef  Ey '

With the same steps, we have the I'_ projection as

Tr[[ Gun (P, 1)) =4[A4 Pe T — A Pe 2 ia
AL B Q(La) EP (3.1.32)

A_]? mo my

=i, P

It can be seen from positive parity projection Eq. and negative parity pro-
jection Eq. that I'y will completely project out the positive parity states and
negative parity states, respectively. Whereas, I';. depend on the mass m. and energy
E+ which is unknown for specific lattice simulation except for the zero momentum
case. Thus, in practice we will always use P, which is defined as

P =—(1+), (3.1.33)

1
2
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and satisfies P{ = P.. With P, we have

. An )‘n 7 Myt Bpyr +my,
Tr[PL G N (D t)] :Z (Ea) — e tE j: J;n n 8

N

N Z A A - My By —my,
La E, _ Mp—

(3.1.34)

Thus at zero momentum, only even parity contributes at large t. Nucleon with non-
zero momentum will still have some contaminations from the negative parity states.
This contamination is exponentially suppressed in the long time range as the negative
parity state has higher mass and energy than the positive parity counterpart. Thus,
if we ignore the negative parity part, we will have the main contribution as

E%F +mo s |\ o |?
TP, Gan (1)) 2 Do 0 Dol o (g 4 opeoey). (3.13)

Mo+ (La)

From this correlation function, we can define the nucleon effective mass as

Te[P Gaun(Pi)] o1, 70+
p

E.rp=1In — .
I[P Gan (Bt + 1)

(3.1.36)

3.2 Extended sources

In order to have better signals for correlation functions, we need to optimize the
interpolation fields. Although any operator with the correct quantum numbers will
project onto the physical state, the overlap can be improved significantly by consid-
ering the more realistic spatial wave functions. One way of doing so is using extended
sources or so-called smeared fermions such as

fod a __ - —a,b —
1(‘T’ t)oz = Z S (‘T? y)a,ﬁ¢(yv t)%
7
a - xab 7/
t)a = Z SQ(x7 y)a,6¢(y7 t)%:
7
in which S; and S are the smearing functions which can be different. They satisfy

the relationships S}LSl =7 and S;SQ = T to keep gauge invariance. The propagator
with these two smearing functions is

Ds'(y, )ba = (Y1ly )%1&2(1‘)%
= Q5102059 G W 5@ BN 2))

- 3D o S

21,72

(3.2.1)
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Figure 3.1: Example plot of the nucleon effective masses at zero momentum with
several smearing sizes as a function of time. The “Smear” label in the plot gives

the smearing size <r2>1/ ?. These calculations used overlap fermions on a 2 + 1 flavor
RBC/UKQCD domain wall 243 x 64 ensemble with a = 0.111 fm and m, = 339 MeV.

in which x = {Z, z;} and y = {¢, v }. From the computational side, we will construct
the propagator from a smeared source Sy to a point-like sink propagator first as

D;;({Zh yt}: {fv xt}) = Z D_l({'gl) yt}: {227 xt}>§11”$2282(f7 52)?1’,(5)/22 (323)
2o

Then we can apply the sum at the sink point using smearing function S; as

_ ba — S by _ . R c1,C2
Dsl<y75’?)ga = Z S (7, 21)5,7117521({217%}7 {7, 2.}) (3.2.4)
Z1

Y1772

A gauge covariant source with a shape similar to a Gaussian is obtained by Jacobi
smearing [36] B7] as

, 3w\" w? 3 , b !
S(SE ,JJ) = (1 — %) [1 + m Zz_l: (UZ($ ,t)ém,”,r_; + Uz (LE — th)(sa:’,x—&-i)]
(32.5)

in which w is the input width parameter for a Gaussian distribution and n is the
number of smearing steps. The actual smearing size is related to w and n as discribed
in [38]. Such smearing is known to have better overlap with the ground state in both
pion and nucleon two-point correlation functions. Figure |3.1| shows the result of
the nucleon effective mass defined in Eq. with various smearing sizes. It
can be seen that a relatively large smearing size such as w = 8.0,n = 100 with
<7“2>1/2 = 0.63 fm will give better plateau at very early time slices compared to all
other cases.
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3.3 Grid source and momenta

In order to have good signals for baryon correlation functions, we have developed
the grid source with Z3 noises along with the low-mode substitution (LMS) method
to construct the correlation functions [39, 29, 40| I]. Z3 noise grid is used so that
the three quarks of the baryon from the same spatial location of the grid points will
automatically contribute to the correlation function, whereas contributions from three
quarks at different spatial locations will cancel by Z3 noise. Low mode means the low
lying overlap eigenvectors up to highest eigenvalue \. of the overlap Dirac operator
D,, which is defined in Sec. 2.4, For two-point functions and three-point functions
with finite source momenta, we have developed the use of mixed momenta [40] 1] to
accommodate Z3 noise grid source and momenta. This section proposes a new way
to use the mixed momenta to have better signals for the correlation functions with
momenta.

Mixed momenta

As discussed in Sec. 2.4 we separate the propagator P into its high-mode and low-
mode parts PY and P based on the overlap eigensystem as in Eq. .
order to discuss correlation functions in momentum space, we define the point source
propagator from position (@, 0) to sink position x as Pg(x) with x = (Z,t) (we fix
the initial time slice to be 0 in the following discussion) and the nucleon correlation
function G(z,0) constructed with this propagator is

G(z,0) = (Tt[.On(2)On(0)]) = (C(Fy(2), Py(x), Fy(x))). (3.3.1)

in which I', = P, = 1+—274 is the non-polarized projector of the nucleon, (---) de-
notes the gauge averaging, and C(Fg(x), P5(x), P5(x)) is the nucleon contraction in
Eq. (3.1.19) with polarization projection I', as

C(P5(z), Py(z), P3(x)) = Tr [T (On(x),On(0))]
— caeane Tt [CD; (2]0)"(D; (]0)C)" | Tt [TeDM(2l0)]  (33.2)

— eanccare/ T [To(D; (]0)) €D (@]0)(D; (x]0) 0]
The correlation function G(z, 6) in momentum space is

Ze B0, (2 Z@—wc (Fy(), F(x), P5())) - (3.3.3)

The correlation functions G(p, @) with propagators P(x, @) starting from position
W is

= (3 PEC(Ps@). Pao), Pale)
_ <Z e~ ED) o

z

=
en
+
&
=
o
+
kS
=
=l
+
&
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in which we made a shift of summation variable £ — £ + 0 in the second line. With
the translation invariance of the correlation function,

(C(Pg(& + w,t), Pg(Z + 0, t), Pg(Z +1,1)))
= (C(P5(%,t), P5(%, 1), P5(%,1))), (3.3.5)
we have
G(p, W) =e ’f"”ﬂz —zﬁf<C'(P0(x)7 Py(x), P5(x))),
= Ty G (,0) (3.3.6)

which differs from G(p, ) by a phase factor e~ 7%
Before the discussion of LMS, we define the random Z3 grid source used in LMS
as

Sgrid = Z 7715(@), U_jz € (xO + mxAma Yo + myAy> 20 + mzAz) (337>

where 7; is a Z3 noise on each of the grid points Wy = (o, o, 20) is the starting
point of the grid, A, , .= L/2 or L/3 or L/4--- is the offset in the spatial direction
respectively, my, . € (0,1,---, Ly/A,, .) is the number of offset in each direction for

A i & s the number of grid points of the grid source. As
the Dirac operator is a linear operator, the random Zj3 grid source propagator can be
written as

each grid points, and n =

qmd Z 772PL + Pngd (:B) (338)

in which P} (z) is the low-mode part of the point source propagator Pg,(z) starting
from position w; which can be computed with the eigenvectors at each grid point, and
PH(x,Syia) is computed within one inversion with grid source Sy,.;q using Eq. (2.4.17))
and

H
grzd Z,rhp x wz (339)

with Pzg () the high-mode part of the point source propagator Pg (x) which we
defined for the purpose of this derivation. With these propagators, the nucleon cor-
relation function with LMS is

GLMS(p’ ng'd) :<< Z eiif.ﬁ (Z [C(nlpé; + P‘gﬂd’ Thpéjl + P‘Sl‘i'rid’ ,r]ZPé; + P‘S{jmd)‘L )
x 3.10

i

_(n - ]‘)C(Psgrzd’ P‘SZT“N ngﬂd)) >Zd>
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in which (---)z, denotes the noise averaging. We would like to see how this can be
written as a sum of G(p) to understand the result. Expanding the terms on the right
side using Eq. (3.3.9), the term with all high-mode propagators is

H H H H H H
(Ot P20, ) = (SR 20), ) sy
1,7,k

As n; is Z3 noise, we have <77z‘77j77k>23 = 0; ;0,5 and 7;1;m; = 1 which leads to (for each
gauge configuration, we use different Z3 noises)

<<C(P§j”,d, Pl P“%”d>>z3> = <Z C(PF, Py, P5)>- (3.3.12)

We have written this term as a direct summation of the high-mode contributions from
each of the grid points w;. The other term can also be expanded to be

+<
+<
+<

mm<c(P£rm’ Pé:i’ Pi%z) + C(P’éﬂ Pgrid’ P’é/z) + O(Piéz’ Pi%i’ Pgrm)>>
(

3.13)
771(0 P‘gnd’ Pgm'd’ Pu%) + C(P‘Sgrid7 P“];;" Péirid) + C(P“E”’ Péi’““’ P‘g”d))3>
C(Pé{jm-d’ Pé{imd’ Pgnd) >

with (---) here for both gauge averaging and noise averaging. A term like

<77i77ic(P§;ida Péi, P£)>
can be expanded further as
J

- <anmj0(P£, pPL, Pél.)> = <C(p§§, pug)i’Pug)», (3.3.14)
J

which leads to contributions only from grid point w;. Applying a similar procedure
to reduce other terms gives

+ ((C(PH, PE, PE) + C(PL, PE, PE) + C(PL, PE, P))
+ ((C(PE, P, PE) + C(PE PE,PE )+ C(PE, PE,P))

+{cpl, PL P ).

rid’ Sgricl ’ Sg'rid

(3.3.15)
— (C(PE + PP + PLPL + PY) — C(PL.PL.PE) + S C(PL. PLPE)).
K3 K3 K3 K3 K3 K3 2 K3 K3 - J J J
J
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in which the first term is the same as G(x, w;). Combining Eq. (3.3.10)), Eq. (3.3.12)
and Eq. (3.3.15)), we have

Grus(p) =< D e (Z[C(Pgi + PY pL 4 pH pL 1 pI)

2
—(n—1) Xn: C(Pg,. P, P§§)> > (3.3.16)
j
- Z e_if‘ﬁi Gz, ;) = i 6_“‘71"’72 e~ PG(x, 0)

n

—(3_ e )G p,0).

)

i

H pH pH H pH pH
—C(Pwiapwiapwi)+ZC(PU7J->PU7J-7P@J-)
J

At this point, it is easy to see that G1ys(p) is a sum of contributions of G(p,0) from
each grid point 1; with a relative phase factor e, With the definition of w; and

defining A=A, = A, =A,,

n

§ efizﬂi-ﬁ — E : efi(x0+mzA)pzefi(y0+myA)pyefi(ZOerzA)pz
7 Mo, My, Mz (3317)
— e~ i(zopa+tyopy+20p2) § :e_i(m:cA)Px § e~ imyA)py § 6—%’(mzA)pz7
Mg my my

where A = L/ng in which n is the number of sources in each spatial direction and
integers mygy,. € (0,1,---,L/A). The sum Y, e m=2P+ will not be zero only if
Dy = %’T kns with k some integer. For example, for the special case with ngy = 2 and
pe € 22{0,1,2}, we have ), e (=8P t0 be

E e i(maA) T (0) e 10%70 +e ilemx0 2

My

Ze_i(mmA)%n(l) _ e—iO*ﬂ*l + e—il*ﬂ*l =0 (3318)

My
§ :6 i(maA) T (2) e 10472 +e ilems2 9
Mo

By repeating this pattern, such a phase factor ) e~ will not be zero only if
(ky, ky, k., mod n, = 0) with p’' = 2f”(kx,ky,kzz). In other words, k,, k,, and k, need
to be multiples of n, so that the corresponding phase factors are non-zero.
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In order to get the other missing momenta, we define another mixed grid source
with additional phase factors 0; ,,;, as

Sgrid,miz = Z nzez,mms<u_jz>

O mic = (€"0P1 4 T2 | (i) (3.3.19)
2 27 27
=—(1 =—(0,1 =-10,0,1
P1 I ( 707 0)7 D2 I (07 70)7 P3 I (07 ) )7

with the corresponding high-mode propagator
Prte = Potio (@, Sqridmic) = ) 1i6i,mia P (3.3.20)

and define the mixed low-mode propagator

pPL = pL

Ws,mix mix

By replacing one of the propagators of Grys(p) in Eq. (3.3.10) with these mixed
propagators, we obtain

n

GLMS(p)(l) = < Z eiifiﬁ (Z[C(UZP'L%Z + Pé_im‘d’ 77sz§1 + PSZT,L-du nlp'é“mzx + Pnl”_{(l?)));) 22)

~(n-1)C(PE P L PE) ),

in which G7y75(p)™") means only one of the propagators is replaced with these mixed
propagators. Take a close look at the last term,

(C(PE PP = (37 i) OemicC (P, P PI)),

Lk (3.3.23)

= (3" tricC(PE, PE, PHY).

As usual, we used (minne) 5, = 6i 0k Eq. (3.3.23) differs from Eq. (3.3.12) by a
phase factor 0; ;. Repeating the same derivation for the other terms in Crg (p)(l),
we have

n

Grus(p)) = (Z "G, mia) G (p, 0) (3.3.24)

%

We can also replace two or three propagators in Gpys(p) with the mixed propagator
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as

GLMS(p)(Q) = < Z e_if.ﬁ (Z[C(T/ZPHI?; + ngnda ,'7Zf)ul;1 mix + szm? 772P£ AT + Pn}{m)]

7

~(n=1)C(PL, PE, P )

' . (3.3.25)
GLMS(P)(g) = < Z eiif.ﬁ (Z[C(nlpzﬁ miz + PnI:Lszv nZP'Lf ,mix + Pnljzz? U@sz AT + PT{;I’LJS)]

i

= Z € Zwl pelsmzx (p7 6)’

Define the phase factors before G(p, 6) as

fi(O) = e P,
fz(l) = e_w_jl 92 maix s
o (3.3.26)
fz =e e pezz,mim7
f(3) e~ iWiPp3 ,

which correspond to Gras(p)'” = Grus(p), Grus(p)Y, Grus(p)®, Grus(p)®
with

Gras(p Z FNG(p,0), a € (0,1,2,3). (3.3.27)

In order to calculate the variance of Gyrs(p)®, we start from a simple function

X=) g (3.3.28)

with z; an uncorrelated random variable with central value T and variance o(z) and
>;9i = 1. Then the mean value of X is,

X = Z GiTi = (Z ;)T = T. (3.3.29)
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The variance of X is

o(X) = ((X - X)*) = ((Z gizi —T)%)
= <(Z gi(z; = 7))*) = <(Z g; (@i =) +2)  gi9; (@ — T)(w; — 7))

i#]
=Y gio(x) +2)  gig; (wiw; — T — 2T+ 7T7) (3.3.30)
i i#]

= Z g’o(z) + 2 Z 9ig;(T* — 27° +7%)
i i#]
-3 ot

Assuming G(p, ) from different grid points w; have the same signals to noise ratios
and ignoring errors coming from takmg (ninjnk) = 5@]‘5] r in Eq. m the theoret-
ical ratio R of the variances of G(p, 0) and G (p)® under simple error propagator
with only one inversion will be

o o(G(p,0)) (0 f19)2
R(p)():a(GLMi(p)“)) :W (3.3.31)

)

Since the average values of G(p,0) and Gpys(p)® are the same, the ratio of signal
to noise ratios G(p, 0) and Grus(p)@ is v/(R(p)@). For the case of 7 = 22(0,0,0),
fi(o) = 1, and so R(p)® = n. The variance improvement using a grid source is
proportional to the number of grid points n which is the case we desire.

In order to have a feeling of other cases of fi(a), we take an example of L, = L, =
L,=32, A, =A,=A, =2 =16, my,,. € {0,1} and @ = (0,0,0). Table. lists
the fi(a) and R(p)'® for momentum 5’ = 22(0,0,0) and 5= 22(0,0,2). It can be seen
that the f;’s for the two momenta at different cases are the same as expected. For all
the cases, R(p)® = 8, R(p)M =0, R(p)® = 3.4 and R(p)® = 0. This means that
we should use case Gy ])\43 (p) to obtain better signals for these two momenta and case
G(Ll]@s( ) and G\ Lirs(p) (P) Will have no signal for these momenta. With the observation
of patterns, for the case with p'= 2%(]{395, ky,k.), kzy.» to be modulo (2), the best case

is G(L%S(p) with theoretical improvement of a factor of 8 which corresponds to all

fi(O) =1
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Table 3.1: List of fz-(a) and R(p)@ for momenta p' = 2T’T(O, 0,0) and p'= 2T’T(O, 0,2).

P Case | fo | fi|fo | fa | fa| S5 | fo | fr | R(p)

20,000 (0) |1 |11 ]1]1]1]1]1 8

22(0,0,0) | (1) 1|11 ]1]-1]-1]-3] 0

20,00 2 |91 [1]1]1]1]1]9 | 34

20,000 3) |27 1|1 |-1]1]|-1]-1]-27] 0

20,0,2)] (0) |1 1|11 ]1]1]1]1 8

20,0,2)| 1) | 3|1 ][-1]1]1]-1]-1]-3] 0

20,02 @ |91 ]1]1]1]1]1] 9] 34

20,0,2) 3) |27 1|1 |-1]1|-1]-1]-27] 0

Picking only the best cases for the chosen momenta, we can have the ratios listed
in Table. [3.2] It can been seen that we have reached the theoretical improvement of
8 only for p' = 2T”(O, 0,0) and for some momenta the improvements from using grid
source are much smaller, though still worthwhile.

Table 3.2: List of fa and R(p)® for momenta p = 2f((),(),O), P = 2f(O,O,l),
p=2(0,1,1) and p= 2%(1,1,1).

P Case | fo | fi | fa| fs | fa| S5 | fo | fr | R(p)
20,000 (0 1111|111 ][1] 8
Zo,0) 1) | 3[-1[1]1]1]1][-1][3] 26
ZO,,) [ 2 |9 [-1]-1[1]1[-1][-1]9] 15
Z(L,1L,1) | (3) |27|-1]-1]-1]-1]-1]-1]27] 16

Repeating these tests With a different starting point wy = (0,0, 4) of the noise grid

source defined in Eq. , the R(p)®’s in Table. Change to R(2 (0,0,0))© =8,
R(%(0,0,1))M = 4, R( (0,1,1))< ) = 2.2 and R(%(1,1,1))® = 2.3. Since R(p)®
can vary by a factor of 2 for cases (1), (2) and (3), it Would be better if we could
have other ways to deal with LMS with momenta so that f; will all be 1 for all sites
so that we can have theoretical improvement approaching the number of grid points
n. This will be achieved in next section.

New way of using mixed momenta

Taking a close look at Eq. (3.3.10), we can try to add additional phases e*”7 for the
contractions of each grid point as

GLMS newt'ry Z szpz m?p< nzPL +PS d7nzPL +PS d?”zPL +PSQZZ§);) 32>

Syl PH_)>

qmd7 ngd’ ngd
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Expand the contributions from each of the grid point of Gpr5(p)"““*™¥ to have,

GLMS new try E :ezwz - E efzxp

n

([C(PE + P, P + PE, Pk + P) — C(PY, PY, PH)+ S CtPILPE. PL)|
. 7 (3.3.33)

- PLPE.P))

J
_ Zeiwi'ﬁZe_if'ﬁ<C(Pwi,P@»P@-) — C(Pg,Pg,P£)>

With Eq. (3.3.4) we can have

n

GLMS(p)new,try _ Z i, pG p’ wz Z ;P Z —iZ p< P{; Plg7 P£)>
_Z zwzpe szpG p7 Z szpz Zfﬁ< P%,P£7P£)> (3334)
—ZGP, Zelwzpzepr< Pq)Pg,P£)>

Thus we can have Gus(p)"™¥ to be nG(p,0) with even contributions from each
of the grid points (with all f; = 1) for all momenta if the last term can be evaluated.
Note that the last term is only a function of the high-mode part of the propagator
and we will see later that the contribution from this term to the correlation function

is very small at large time slices.
Let us first define GHHH)(p) to be the last term as

UL, Zemlpze-m% pE{,Pg,Pg)>. (3.3.35)

Also define the “high mode part” of the point source correlation functions as

Ze EPGH (1, 0) Zeﬂfﬁ C(PH(x,0), P"(x,0), P (x,0)))(3.3.36)

Assume translation invariance of G (z,0) as

GH(z,0) = GH (& + 0, t), W)

3.3.37
= (C(PY(Z+w,t), PY(Z+ @, 1), P (Z +0,1))) ( )
Then we can re-write GHH:H)(p) with the change of ¥ — & + 1; as
H H, H Z ezwI -p Z 671(:(3+wI
(3.3.38)

<O(Pg_(f+ i), PE(7 + @, 1), P +,,1)))
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Use translation invariance in Eq. (3.3.37)), we have

GUMEI) (p) = N7 0PN o~ B TGH (7 4, 1), @)

=> ) e @PGH (2,0) (3.3.39)
=Y G"(p,0) = nG"(p,0).

Thus we can find a way to estimate G (p, 0) to get GULILH) (p ). One way of doing
so is using the high mode part of the mixed momenta propagator in Eq. and
defining the following contractions for high-mode propagators with mixed propagator
inspired from Sec. as

- Zeﬂ” (P, P, PM)) = (3 _ e "G (p,0)

- Ze‘”” C(P, P, Pi))) = (€™ Pbimia) G (1,0)

) (3.3.40)
Gp)™® = (3 e (C(PY, Py Prin))) = () e 78; )G (p, 0)
Gp)™® = (3 e TP (C(Pl,, Pl Pria))) = (O e ™767,,.,)G" (p,0),
in which G(p)®@ = (3" ff*)YGH (p, 0) With £ having the same definition as in

Eq. (3.3.26). We can choose case G(p)™(® to be an estimator of G (p, ) so that

GUHIL) (p) = nGH (p,0) depending on the desired momentum p. Even f is not
equal to 1 which will have influence on the signal of GUH:1)(p), this should not affect
the final signal of the nucleon correlation functions. This can be seen from Fig|3.2/and
Fig 3.3} . 3[that C*H(p) is a very small part of the total correlation function. In the figure,
we defined G (p, 0) = G(p,0) — G*(p,0) — G¥ (p,0) in which G¥(p, 0) is constructed
from low-mode propagators. From this plot, it can be seen that at around 1.0 fm
most of the contributions and errors come from the low-mode G (p, 6) And the pure
high mode G* (p, 0) contribution is under 1% after 0.75 fm. The test is on a 323 x 64
domain wall lattice (32ID) with lattice spacing 0.143 fm.

Another issue for the new contractions is that we have two sources in time. The
method in Ref.[40, 1] proposed a combination of the two time slices as

in which @; and ; are the spacial positions on time slices 0 and 32, respectively, —
they are chosen so that the distance between w; and j; is as large as possible to reduce
the influence between them — and then constructing a low-mode propagator for this
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Proton Correlation functions
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Figure 3.2: Example plots of the high-mode and low-mode contributions to proton
smeared to the smeared correlation functions at momentum 2f“(O,O,O) with pion
mass 174 MeV. The plot on the left is of the correlation functions G*(p, 6) and the
contributions from G*(p,0), G¥(p,0) and the crossing term G (p,0) = G(p,0) —
GZ(p,0) — GH(p,0). The plot on the right shows the relative proportions of these

three terms which add up to 1.

Figure 3.3:
shown in Fig. to the variance of total correlation function G(p,0).
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Example plot of the ratio of the variance of these three terms

The ratio

a(G(p)")/o(G(p)) is almost zero as the contribution from pure high mode to the
nucleon correlation function is very small.
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combined source S; ;. For the new method, since there is an additional phase e P
factor for each of the grid points, so the current implementation using the grouping
of sources is

in which the spacial positions on time slice 0 and 32 are the same to avoid complexity
from the additional phase factor. The results of the new method to get momenta
with low-mode substitution are shown in Fig[3.4l It can be seen that it gives consis-
tent results with the previous method and has better signals at momenta 27”(0, 1,1)
and 2f”(l, 1,1). And the new method requires only one fourth of the contraction
time compared with the original method which requires contraction of Cp, Mg(p)(“) in

Eq. (3.3.10), Eq. (3.3.22) and Eq. (3.3.25) with a € {0, 1,2, 3}.

In summary the new methods states

Grus(p)"” Zelwzp Z efmp< Uzpéi + Pszﬂd,mPu% + PH id? 77sz + Psqzld)] )
3.3.43

—O(PY P PR )Y+ GURIID ()

grid ’ Sg'rid ?

with G (p) = nGH (p,0) calculated with Eq. (3.3.40) under the assumption of
translation invariance in Eq. .

There may be several other possibilities to estimate GU-H:) (p) all of which need
an additional inversion as the above method (inversion for the mixed momenta prop-
agator):

e The first one is to have an additional inversion of the high-mode propagator
with Z, noises 3; with source and high-mode propagator as

Sorid = Z BiS(
(2, S24,) = Z ;P

Deﬁning PH = PH(.% SngAlzd) by llSiIlg <ﬂlﬁjﬁkﬁm> = 5i,j§j,k5k,m and ﬁlﬂzﬁzﬁl =
1, we have

(3.3.44)

Ze“‘”Ze*“% (P4, P, P))

Zezwzpze—w‘pﬁz Z ﬁ]ﬁk’ﬁm PH PuliaPH ))

7,k,m

- <Z &N e FPC(PY Y P )

_ G(H,H,H)(

(3.3.45)

),
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Figure 3.4: The four plots are used to compare the previous method and new method
to get momenta with low-mode substitution for proton smeared to smeared correla-
tion functions. The blue points correspond to the new method (New) to deal with
momenta measured on 50 configurations. The red points correspond to the previous
method (Pre) to deal with momenta measured on 50 configurations and green points
(Ava) use the same method with 16 different initial time sources averaged on 200 con-
figurations. The four plots correspond to the cases of momenta 2%(0,0,0), 2£(0,0, 1),
2TTF(O, 1,1) ,27”(1, 1,1) averaged over equivalent directions. S/N in the plot labels the
signal to noise ratio at ¢t = 8.
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GHHH(

which gives p) without the assumption of translation invariance in

Eq. (3.3.37).

e Another possibility is that we can use two Z3 noise grid sources with the same
grid points w; but different noises n{* and nf as

;m'd = ZT] gmd = Z nzﬁs(u_jl)

: (3.3.46)
md ZUQPH PH I S md Znﬁ‘PH

From these two high-mode propagators, we can construct CUHH)(p) in a
similar procedure as the Z, noise case as (defining P** = P"(z,S%,.,;) and

PH’B - PH(:E ngd))
Zezwlpze zz]onZ 7]7, (PH’a’PH’a,PH’ﬁ»

Zezwzpze lmpnz 777, Zn]nknmc PH PuI){k?PH )> (3347)
J,km L.

= <Z "N " e FC(PH L PE L PH )

= GUHD ),
which also gives GUHH.H) (p) without the assumption of translation invariance

in Eq. (3.3.37). As S, and ngd have no additional phases other than the Z3

noise, we can construct Grars(p)™® and Gras(p)"“? along with the above
estimation of GUHH)(p). Averaging these two correlation functions may give
us better signals around 0.5 ~ 1.0 fm. We may also try to have several dif-
ferent spatial grids on one configuration; we can estimate G#-%:#)(p) on each
configuration once and use it for all other different spatial grids which will save
around half the inversion time and storage of propagators. These cases need to
be tested further in realistic calculations.

3.4 Three-point functions

Pion three-point functions

On the lattice we approach the charge, matter and spin of hadron by calculating
matrix elements (h| O |h'). A simple case is the electromagnetic form factor of the
pion which is defined by

(T ()| Vi 7 (92)) = (07 + Pi)uFren (@), (3.4.1)
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in which p; and p; are the momenta of the initial and final pion, Q* = (p; — p;)?
the space-like momentum transfer, and V), is the local vector current

V, = 2uy,u— 5dyd, (3.4.2)

in which % and —% are the charges of the up and down quarks. On the lattice we
calculate the three-point function in momentum space as

Cope (7,7, 71, Pp) = D _ €T MO (27)Vu(2) O () (3.4.3)

Zyp,Z

where O+ (%,t) = d(Z,t)ysu(¥,t) is the interpolating field of the pion, G is the
smeared Zz-noise grid source [39] at time slice 0, z = {7, 27} is the current position, 0
is the position where the pion is created, z; = {ts, Z¢} is the position where the pion
is annihilated, p; and p; is the initial and final momentum of the pion, respectively,
and ¢ = py — p; is the momentum transfer. With the usage of Wick contraction, we
can calculate Csp (7,15, iy, py) for V,, current as

Copt (T, ty, 71 y) = Y e P57l

, .z

Tr| — = 5D; T " 5D T

( [1 21505 (@127 D; (21G)s Dy (G ) "
+ 575D5(G12)9D; (2l 1)1 D3 1G]

+ Tr [75D;1(xf|g)75Dd_1(g|xfﬂ X (gTr [VMD;1(2|Z)} — %Tr [7“D;1(z|z)]> >,

where D Y(y|z) is the quark propagator from x to y for quark flavor f, and ¢ = ﬁf — D
is the momentum transfer. The first two terms which include propagator D, !(x|2)
or D;'(z|zy) are so-called connected insertions (CI). The last two terms mcludmg
propagator D;Y(z|z) or D;'(z]2) are called disconnected insersions (DI) which are
proven to vanish [41] in the ensemble average because of charge conjugation symmetry.
Let us consider the CI terms associated with the current @y,u separately as

75D_1($f|2)w u (ZIQ)%D H(Glzy)
~(35D31(G12)7. D7 (2|2 )95 Dy (a419)),

where we have used the 75 hermiticity of the propagator discussed in Eq. , the
“—" sign comes from 75%%5 = —7,. As we are working with exact isospin symmetry,
we have D (y|z) = D' (y|x). And Csu(7,ts, Pi, pr) will have signals only for the
real part (Csp, = O3, under charge conjugation [41]), we can sum up the two terms
from CI parts to have

CSpt<Ta ly, Dis ﬁf) = Z e~ Wiy a7
i (3.4.6)
(Trfs D (G1)7D ™ (s D 7 (2419

(3.4.5)
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in which D;l(y|x) denotes the light (u or d) quark propagator from z to y. In
practice, D™(G|z) in Eq. is calculated with 75 hermiticity, i.e., D7'(G|z) =
5 D71 (2|G) s, and D7!(z|z;) is usually obtained in the sequential source method
with 5D~ (z4|G) as the source [42,43]. The calculation of the sequential propagators
would need to be repeated for different p; and different quark mass m, thus the
cost would be very high when dozens of momenta and multiple quark masses are
calculated. Instead, we use the stochastic sandwich method [40, 1], but without
low mode substitution (LMS) for D~!(x|G) since it is not efficient for pseudoscalar
mesons [29]. However, the separation of sink position x; and current position z in
splitting the low and high modes for the propagator D~!(z|x;) between the current
and sink can facilitate FFT along with LMS which is still useful here. As shown
in Fig. D~ Y(z|z;) can be split into the exact low mode part based on the low
lying overlap eigenvalues \; and eigenvectors v; of the ith eigenmode of D., plus the
noise-source estimate Dg,}noi of the high-mode part,

Dfl( |zr) = Dy (2 \xf)+D*1( |zy),
(zlzy) = (2)0] (),

i </\C Ait+ m' (3.4.7)
|‘rf ZDHnm Z, My nj(xf>

where . is the highest eigenvalue in LMS and is much larger than the quark mass m
with the typical number of eigenmodes n, ~ 400 on 241 and 32I, and n, ~ 1800 on
321D, 32IDh, 24IDc and 48I; and D;}noi(z,nj) is the noise-estimated propagator for
the high modes with the low-mode deflated Z3 noise n;(z) [40, [I]. We generate ny
sets of DHlno1 and each inversion includes 2n; sink time slices at i-- t’ and T — 1 Tt’
with i = {1---n,} to increase statistics.

Thus Csp,, can be decomposed into factorized forms within the sums of the eigen-
modes for the low modes and the n¢ number of noises 7; for the high modes,

Com(r 11, 7177) = (3 Tl GH@ ) FH 1)

>\i§>\c
o (3.4.8)
+ 30 NG @DE Gt
j=1
where
GHG ) = ) T D (Gl2)yuwi(2), (3.4.9)
FH@pyits) = Y e P ol(@p)ysD 7 (ay]G), (3.4.10)
Ty
GG T) = D €T D NG 1uD bz m)), (3.4.11)
F(ppty) = ) e P Timl(as)ys D (24]G). (3.4.12)
i
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which are calculated by using FFTs on the spatial points z and 7 for each GF, F, Gf
and F jH to obtain any ¢'and py with the computational complexity O(V1ogV') with V
the lattice spatial volume. Compared with the stochastic sandwich method for a fixed
py which also includes the summation over the spatial points Z and Z, eigenvectors
v; and noises 7;, the additional cost factor of using FFTs namely O(logV'), is only
of order ~ 7 for our largest 481 lattice. The cost factor for the traditional stochastic
sandwich method is proportional to order ~ 100 if we would like to have more than
seven different sink momenta p; and average over different directions. This allows us
to calculate any combination of ¢ and py without much additional cost compared to
the traditional stochastic sandwich method.

Vy ()
$Z

7(0) 7(xr)

Figure 3.5: Illustration of the pion three-point function with the stochastic sandwich
method. LMS is applied for the propagator between the current at z and the sink at
xy with FF'T, but not for the propagators from the source at 0.

The source smearing of this FFT contraction is implemented by replacing the
source propagator D~'(z]0) with the smeared propagator D~1(z|Gg)

D™ (2|Gs)" = ZD ({2 0}, {G(2), 012 S(&, 2)5, (3.4.13)

with S is the smearing function defined in Sec.[3.2] Sink smearing is applied on all the
sink spatial points z; of noise 7;(x;) and eigenvectors v] (z;) which need to be done
carefully for each of the propagators. First, we replace propagator D~'(z;|G) with
D~ !(x4|Gs) which is the propagator with source smearing. Then the sink smeared
propagator Dg'(z¢|Gs) is

bc1 — bvd C1,C
D5 (241Gs) 5, ZS Do DT {EL tHGs) (3.4.14)

which completes the source smearing of G at time position 0 and sink smearing at
position xy. The sink smearing of each eigenvector vj(x 7) at the sink time can be
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done before the construction of three-point functions as
7 a c T
Usz l’f Z S'(; e ({71, tf}) (3.4.15)

and these smeared eigenvectors can be reused for different valence masses and op-
erators. From the sink-smearing noise vector n(z;), which is used as the source of
propagator D;I}ngi(z, nj), we can construct a structure similar to the propagator as

/

Su(@p)aer =0 (21) 00,0000 (3.4.16)

with a and o’ the color indices, and a and ' the Dirac indices. S(xy) is diagonal in
the color and Dirac indices. Then we can implement the smearing at position x¢ for

Sy(xy) as

T bc1 — c1,c
SSn(wf ZS 671 ({Zl’tf}>'ylwz2' (3.4.17)

Nucleon three-point functions

Such a FFT contraction method can also be applied to the CI part of nucleon three-
point functions

Capt (Lo o, 7 by, i Fy) = €D 7Ty [T, (On(w4)) Vi(2)On(0)] - (3.4.18)

> =
Zf,Z

which shares the same variables as in Eq. (3.4.3) and Eq. (3.1.20)). ', is the parity
projection operator with I'y = %(1 + ) and I'; = Lyivysy;, and V, is the local vector

current
V=D eVl =) ety (3.4.19)
f f

in which gy is the quark field of flavor f and ey is the associated charge. In order to
evaluate Eq. (3.4.18]) on the lattice, we start from rewriting two-point functions in
Eq. (3.1.19) in momentum space with projection of I';, as

C2pt e, ﬁ) :Zeiiﬁg Tr [F ON( ) @N( ) ’D
= 3 ety o (T |22 (610D, (510 | Tr 1D, (510)°]

+ T |1, D, (410)7* Dy (110) D, (y]0)* | ) (3.4.20)

= Z 6_Z‘ﬁgeabc‘fa/b’c’ (TI‘ |:Dc?1(y|0)b,bDu_1(y|0)a/ai| Tr [FVDzjl(yK))CIC]
)

+ T | D, (l0) T, Dy (wl0) Dy (410)""] ).
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We can try to single our down quark propagator D;l(y|0) as

Cth(ﬂ p) = Ze Zpy Md)%’}a/(ylo) (?J|0)5/
Yy

- (3.4.21)
=S eI My 10) Dy (410)]
y
with M? being
Md % _ Dfl aa T F D
(M) 55 (y7) = €apcartye - (ylx) s T (y|x)
(3.4.22)

+ T (D) T D )] ).

in which we have exchanged color index b and b’ to have a consistent trace Tr over
color and spin in Eq. (3.4.21). Similarly, we can single out up quark propagator
Dy (y0) as

Cope(i,9) = Y e P7Tr [MY,(y[0) D, (y]0) + M3, (4]0) D, (y]0)]

=D ¢ I [My,(y[0) D, (y]0) + My, (y]0) D, (]0)] .

Y

with MY, My, My, and My, defined as

(3.4.23)

(M}, ot (91) = eameaver [ D@10 T [0, (510)°]

(M3, et (91) = eanceaver 007 (yI0) DT wl0)""]
(M, Yoo () = €amcarweTr | D (w10)"* D7 (10)] 0] o
(M, )iz wle) = eaneaver | Dz (010)" DI G10)""T,) .

Then the evaluation of the CI part of Eq. for the down quark part is

Cél,?,pt(rw T, tf,ﬁi, ﬁf) = Z eiiﬁf.ff ei(TETr [FV <ON($f)> Vud(z)@N(())]

I
Zy,Z

=eq Y e P H T Ty [M2(4]0) D7 (2 4]2)7, D7 (210)] -

I
Ty, 2

(3.4.24)

We can also write the CI part of the up quark contribution C¢; 3 as

Clyap (Do s Tyt iy ) = €0 Y € 75707
Fp,7 (3.4.25)

Tr [M;) (240) D, (2412)7,. D, (210)]
in which we have defined M}! to be

MY = M}, + Mg, + Mg, + M. (3.4.26)
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With Eq. (3.4.7) we are able to evaluate D~*(z¢|z), and also we can implement FFT
contractions similar to Eq. (3.4.8) and Eq. (3.4.9) to get Cg{ipt(l“,,, W, T, tr, Di, Dy) as

u/d
C{ 3pt Z TI'

— L,u d —
— G (@) E M (v )]
Ai<Ae

o (3.4.27)
+ 3 TG (u, @) (] 0,y 1),

where

GHp.q.m) = eT](2)y,D7(2]0),

-

z

iz B (3.4.28)
Zeqz Hnoz Z nj>)T757uD <Z|O),

FjH’u/ (v, Py, ty) :Ze_lpf'fof/d(If|0)77($f)7

Ty

in which we have defined D~!(2]0) = D;'(2]|0) = D;'(2|0) to be the light quark
propagator, and used D~!(x|2) = v5(D 7 (z|zs))vs for the high-mode propagator
DHanZ(z,nj). In the same way as was done for the pion, we can also implement
source and sink smearing for the nucleon with the method described in Sec. [3.4] Tt
is also straightforward to implement LMS as described in Sec. . Comparing the
contractions in Eq. and contractions with LMS in Eq. (3.3.43]), LMS of the
source simply says to replace propagator in Eq.

D' = Pk + P (3.4.29)

grid

with the propagator from grid position w; and repeat the calculation of the three-point
function for all grid points. Also we need make the replacement

D' — pl (3.4.30)
for the pure high mode part GUH:H)(p) in Eq. (3.3.43) and repeat the calculation

of the three-point function. This summarizes the contractions of the CI part of the
nucleon three-point functions which leads to gains similar to those in the pion case.

Copyright© Gen Wang, 2020.
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Chapter 4 Pion form factor

4.1 Introduction

The electric form factor fr(Q?), Q* = —(p' — p)? > 0, is defined from the pionic
matrix element and its slope at Q? = 0 gives the mean square charge radius

(' )V 0)7* (p)) = ie" (py + 1)) fn (Q7), (4.1.1)

d - 2
02 = -6z,

(4.1.2)
where V/f = "(Z%Tj 7, is the isovector vector current, 7" are the Pauli matrices in flavor
space, and |7?) are the pion triplet states. (r?) has been determined precisely based
on the existing me scattering data [44] 3, 45] and ete™ — 77~ data [40, 47] averaged
by the Particle Data Group (PDG) [I8] as (r2) = 0.434(5) fm®. Phenomenologically,
frr(Q?) is fitted quite well over the range 0 < @*/m? < 0.4 with the single monopole
form (1 + Q*/A%)~', with A ~ m,. This gives credence to the idea of vector dom-
inance [48, 49]. In chiral perturbation theory, (r2) has been calculated with SU(2)
Chiral Perturbation Theory [50] at NNLO and also at NLO with SU(3) formula [51],
which entails the uncertainties of the low energy constants.

Since lattice QCD is an ab initio calculation and the experimental determination
of (r2) from the me scattering is very precise, it provides a stringent test for lattice
QCD calculations to demonstrate complete control over the statistical and systematic
errors in estimates of the relevant pionic matrix element. Over the years, the pion
form factor has been calculated with quenched approximation [52), 4], and for the
Ny =2 [9, 10, 1T, 12, 13], Ny = 2+ 1 [53] 4] 55 [14) 15, [16] and Ny =2+ 1+ 1 [17]
cases.

In this section, we use valence overlap fermions to calculate the pion form fac-
tor on six ensembles of domain-wall fermion configurations with different sea pion
masses, including two at the physical pion mass, four lattice spacings and different
volumes to control the systematic errors. Due to the multi-mass algorithm available
for overlap fermions, we can effectively calculate several valence quark masses on each
ensemble [29, 56), 57, 58] and also O(100) combinations of the initial and final pion
momenta with little overhead with the usage of the fast Fourier transform (FFT)
algorithm [59] in the three-point function contraction. This allows us to study both
the sea and the valence quark mass dependence of (r2) in terms of partially quenched
chiral perturbation theory, besides giving an accurate result at the physical pion mass.

4.2 Numerical details

We use overlap fermions on six ensembles of HYP smeared 2+1-flavor domain-wall
fermion configurations with Iwasaki gauge action (labeled with I) [60, [61] and Iwasaki
plus the Dislocation Suppressing Determinant Ratio (DSDR) gauge action (labeled
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Table 4.1: The ensembles and their respective lattice size L? x T', lattice spacing a,
pion mass m, and number of configurations ne,.

Lattice | L* x T | a (fm) | La (fm) | mr(MeV) | mzL | neg
241Dc | 243 x 64 | 0.195 4.66 141 3.33 | 231
32ID | 323 x 64 | 0.143 4.58 172 3.99 | 199
32IDh | 32% x 64 | 0.143 4.58 250 5.80 | 100
481 483 x 96 | 0.114 5.48 139 3.86 | 81
241 243 x 64 | 0.111 2.65 340 4.56 | 202
321 323 x 64 | 0.083 2.65 302 4.05 | 309

with ID) [62] as listed in Table [4.1] The effective quark propagator of the massive
overlap fermions is the inverse of the operator (D, + m) [25], 28], where D, is chiral,
i.e., {D.,v5} = 0 [20]. And it can be expressed in terms of the overlap Dirac operator
Dy as D. = pD,, /(1 — D,,/2), with p = —(1/(2k) — 4) and £ = 0.2. A multi-mass
inverter is used to calculate the propagators with 2 to 6 valence pion masses varying
from the unitary point to ~ 390 MeV. On 241, 321 and 24IDc (c stands for the coarse
lattice spacing), Gaussian smearing [63] is applied with root mean square (RMS)
radius 0.49 fm, 0.49 fm and 0.53 fm, respectively, for both source and sink. On 481,
32ID and 32IDh (h for heavier pion mass), box-smearing [64, [65] with box half size
0.57 fm, 1.0 fm and 1.0 fm, respectively, is applied as an economical substitute for
Gaussian smearing.

To extract pionic matrix elements, the three-point function (3pt) Csu (7, te, pi, Pt)
is computed

Cspt = Z e P!t (T y v (xf)WS(Z)XL+(g)]> (4.2.1)
Tf,z

where xr+ (%, 1) = d(&,t)y5u(F, t) is the interpolating field of the pion with u and d the
up and down quark spinors, S(y|x) is the quark propagator from z to y, z = {7, Z},
xr = {t¢, Z¢}, pi and pr is the initial and final momentum of the pion, respectively,
¢ = pr — pi is the momentum transfer, and G is the smeared Z3-noise grid source [39)].
The disconnected insertions in Eq.(4.2.1)) vanish in the ensemble average [41]. The
connected insertions of Cyu (T, t, i, pr) are computed with the method described in
Sec. [3.4] using FFT.

4.3 Analysis and results

The source-sink separations t; used in this work with different ensembles are collected
in Table 4.2l The largest ¢ is ~ 2.0 fm on the coarsest lattice 24IDc and the smallest
one is ~ 0.7 fm on the finest lattice 321. There are two momentum setups used in this
work: the special |pi| = |p| case and the general |pi| # |pt| one. We will talk about
the fit procedures in this section.
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Table 4.2: The lattice setup of this calculation. The n; sets of smeared noise-grid
sources with {n,, ng,ns, n;} points in {x,y, z,t} directions, respectively, are placed
on the lattice to improve the statistics, and n¢ sets of SZ. at 2n, sink time slices at

noi
inlttf and T — z'nlttf with i = {1---n;}. On a given configuration, the total number of
the propagators we generated is n; + ng and Nyeas = ning’nt which is the number of
measurements of 3pt.

Lattice | n; | ng | ng te/a ng NmeasTe fg
24IDc | 4 | 2 | 3 |6,7,8,9,10 | 4,4,6,4,4 49896
321D 6 | 2| 2 9,10,11 4,5,12 19104
32IDh | 6 | 2 | 2 9,10,11 4,5,12 9600
48T |53 | 4| 810,12 | 48,12 | 77760
241 8| 1| 2 10,11,12 3,9,9 12928
320 |8 | 1|2 | 812,15 | 4,8 12 19776

Three-point functions fitting

With the usage of Wick contractions and gauge invariance, the three-point function
(3pt) with two sources, one at each of the time slices 0 and 7'/2, has contributions
from the three diagrams shown in Fig. f.1] (We assume T/2 > ¢y > 7 > 0.) The
diagram [£.1](1) contributes

ZEZﬁf<E1 + Ef) f <Q2)(6—E1’T—Ef(tf—’r))
EEZy, " (4.3.1)
+ ClefEinEfl(tffT) + C«QGfEileEf(tffT) + CgefEileEfl(tffﬂ')’

CSpt,(l) (7—7 tf: ]717 ﬁf) -

where Z; is the spectral weight and £ and E' is the ground state and first-excited
state energy, respectively. Zj, Zs, Fi, Fr, E! and E} are constrained by the joint
fit with the corresponding two-point function (2pt). Zy is the finite normalization
constant for the local vector current which is determined from the forward matrix
element as 2y, = W. C1,Cy and Cy are free parameters for the excited-state
contaminations. The diagram [£.1](2) contributes

Z5 25 (B + Ey)
E.E:Zy

in which we have ignored the excited-state contaminations from the source at 7'/2
since such terms are suppressed by e #i7/2 which is of order ~ 1078 with E! ~
1.3 GeV estimated with the experimental value of the first excited-state of the pion.
Since we have put two sources at ¢ = 0 and ¢t = 7'/2 for most ensembles to increase
statistics, we need a term with C; and Ej to account for the case that the current
insertion is outside of the time window between the source and the sink. This is
shown in the diagram [4.1}(3) and contributes as

O3Pt7(3) (T7 tf:pivﬁ) = 046_E1(T/2_tf)_Eh(tf_T)a (433)

—

C3pt,(2) (TJ tf7 25;7 pf) =

fﬂ-ﬂl(QQ)<€7Ej(T/2+T)7Ef(tf7T)>7 (4.3.2>

in which this term corresponds to the creation of a hadron state with operator V, =
771 at time slice 7 with momentum ¢ as (h(g)| V4|0), an annihilation of a pion
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state at time slice 7'/2 with momentum p; as (0| XL |7~ (pi)) and an unknown matrix
element (7~ (p;)| X+ |R(q)). The excited-state contaminations from E} are ignored for
the same reason as in the previous discussion and the excited-state contaminations
from E} are ignored under current statistics.

T

Figure 4.1: Diagrams of pion three-point functions with sources at time slices 0 and
T)/2.

In order to test the functional form of Cspy (3)(7, t¢, Pi, Pr), we construct 3pt with
one source at time slice 7/2 = 32 and sink time ¢; at 20,21,22 with p; = {0,0,0}
and pr = {0,0,25}. Then we can evaluate the effective mass EfT and Eff from
Cspi,(3) (T, te, D, Pr) with

C + ]‘7t ? _'i) Dt
Ef(r,tr) = In ( p() (7 + L, 8, m))

C3pt,(3) (Tv tfaﬁ7]3})
C3pt,(3) (T + ]-7 tf:ﬁaﬁ))
C3pt,(3) (T7 tf - 1713;7]5}) ’

(4.3.4)

ES(rt) — In (

in which EY 1 is evaluated by a simultaneous change of 7 and ¢ to single out E; from
the exponential e~ Fi(T/2=t)=Eu(ti=7) - And they should equal to Ej, = \/m? + (P — ;)2
and E; = \/m2 + p? = m, in the ¢; > 7 limit, as confirmed in Fig. and the fit
results in Fig. (4.4}

Thus the final functional form is Csy = Cspe 1) + Cpt,2) + Cpe,3) as

> =y _ Zeln(Eit B
C3Pt<7-7tf7piypf) S pf( f)

N fmr(Q2> « (e—EiT—Ef(tf—T) + e—Ei(T/2+T)—Ef(tf—T)) (43.5)
+ Cle—EiT—Efl(tf—T) + C2€—Ei17'—Ef(tf—T) + Cge_EilT_Efl (te—T1) + C4€—E1(T/2—tf)—Eh(tf—T)'

The associated 2pt is fitted with

2

—

Z
C'gpt(t,ﬁ) = _P(e—Et + e~ B(T-1) + e~ E(T/2-1) + e‘E(T/2+t))

E (4.3.6)
_|_A1(6—E1t+6—E1(T/2—t))’
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Figure 4.2: The plot on the left is of Csp 3y on 241 with m, = 347 MeV, one source
at time slice T/2, p; = {0,0,0} and p; = {0,0,2°}. The correlation function is a
rising exponential which confirms that £, > 0 in Eq. . The plots in the middle
and right panels show the corresponding effective masses EfT and E¢T obtained with

Eq. (4.3.4)), respectively.

with A; being a free parameter for the excited-state contributions and the exponential
terms with 7'/2 account for contributions from the source at 7'/2. An example of fitted
energies is shown in Fig. [4.3] It can be seen that the first excited-state energy E! is
close to the experimental value 1.3 GeV and it has been used to constrain the one in
3pt by the joint fit of 2pt and 3pt to extract fr(Q?).

201 § El
1.8
1.6
1.4 1 I

1.2 I

T 0.1740 1 X E

GeV)

E

0.1739 4
0.1738 A
0.1737 A
0.1736 A
0.1735 A

tini

Figure 4.3: Pion energies as a function of t,; with [t;,;, 15] the fit-range of the 2pt
on 32ID with pion mass 173.7 MeV at zero momentum. The contributions from the
first excited state are ignored for ¢;,; > 6 under current statistics.

In order to test the fitting function of 3pt in Eq. (4.3.5), a comparison of the
fitting of the one-source result with the source at ¢ = 0 and that of the two-source
result with sources at ¢ = 0 and 32 in the same inversion is shown in Fig. 4.4l For
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f(Q2 = 0.166 GeV?), One Source fn(Q2 = 0.166 GeV?), Two Sources
0.870 0.870

I 0.8179(31) I 0.8173(40)
t t=10 t t=10 *
0.860 A * tr=11 0.860 A * tr=11
Y tr=12 Y t=12
0.850 4 0.850 4
o 0.840 1 o 0.840 1

0.830 1 0.830 1

0.820 1 0.820 1

0.810

0.810

T—tf2 T—ti/2

Figure 4.4: Joint fitting results on 241 with m, = 347 MeV, p; = {0,0,0} and
pr = {0,0, 27”} The plot on the left corresponds to the case of one source at time
slice 0. The gray band is for the fitted value of the ground state form factor f,,(Q?)
which is close to the data points due to small excited-state contaminations. The plot
on the right corresponds to the case of a source at each of the time slices 0 and 7'/2.
The gray band is far away from the rising data points due to the additional C; term
with fitted Ej,, = 807(82) MeV which is consistent with the result of Fig. 4.2

illustrative purpose, the data points are shown with ratio R,

O?)pt (T7 tf: 23;7 25%)
(e~ Bir—Ei(t—7) 4 o= Bi(T/247)=Ei(t;—7)) (4.3.7)

RQ(Ta Ly, ]5)17]3}) = 7. Z,(Ei+Ex)
iE,EiZy
= f»r(Q?) + excited-state terms + C, term,

in which Z; and E are determined from the fitting of 2pt and Zy from 3pt at zero
momentum transfer. It can be seen that the two results agree with each other within
uncertainty which again confirms our fitting formula.

Thus for the general momentum setup |pi| # |pf| we can proceed further to fit
Capt (T, te, i, Pr) together with Cspy (7, te, pf, pi) which corresponds to the exchange of
initial and final momentum. Fig. shows example plots on 24IDc and 32ID. The
data points are fitted well with Eq. and the fit results are shown in bands
with x?/d.o.f. ~ 1. The data points for Csy (T, t, P, 6) are lower and closer to the
gray band since the 4 term has a negative contribution with a suppression factor
e E@T/2 compared to the case of Capt (T, t1, 0, p) in which the C} term has a positive
and large contribution with only a suppression factor e~ % O)1/2,

For the special |pi| = |pi| case, one can simply calculate the ratio of 3pts, and

obtain the pion form factor by the following parametrization of the ratio Ry,

Rl(Tv tfaﬁi?ﬁ) = C3pt(7-> tf?@?ﬁ)f)/c?)pt(Ta tf?ﬁ?ﬁ)

4.3.8
= fﬂ_ﬂ(QQ) + Bl(e*AET _i_efAE(tf*T)) _i_BQefAEtf, ( )
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Figure 4.5: Examples of the ratios on 24IDc and 321D with various values of source-
sink separation ¢; and current position 7. The plots show the general |pi| # |pi| case
with square points p; = —¢,pr = 0 and dot points p; = 0,pr = ¢. The data points
agree well with the bands predicted from the fit, and the gray band is for the ground
state form factor f,.(Q?).

where the terms with B; and Bs are the contributions from the excited-state contam-
ination, and AF = E'(p;) — E(p}) is the energy difference between the pion energy
E(p:) and that of the first excited state E'(p}). These energies are also constrained
by the joint fit with the corresponding 2pt. Since the excited-state contaminations
of the forward matrix element in the denominator are known to be small and the
contribution from Cj term in Eq. is suppressed by e FP@IT/2 with p; # 0 for
both the denominator and numerator, we have dropped them in the parametrization
of the ratio and our fits can describe the data with x?/d.o.f. ~ 1. Fig. shows a
sample plot for 321D with the unitary pion mass of 174 MeV at Q? = 0.146 GeV?.
In view of the fact that the data points are symmetric about 7 = t¢/2, within uncer-
tainty, it reassures that the sink smearing implemented under the FFT contraction
has the same overlap with the pion state as that of the source smearing.

z-Expansion fit and chiral extrapolation of pion radius

To obtain fr(Q?), we have done a model-independent z-expansion [66] fit using the
following equation with k.. > 3.

kmax

fWW(QZ) = Z ak‘zk
k=0

(4.3.9)
tcu —t— tcu —1
At fe o) = L View o
\/tcut —t+ \/tcut - tO
where t = —Q?, and f,,(0) = 1 after normalization which leads to the constraint ag =
1— er:f‘ apz*(t = 0,teus, to); teut = 4m72r7miX corresponds to the two-pion production
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Figure 4.6: Example of the ratios for the special |pi| = [p| case on 32ID with various
values of source-sink separation ¢; and current position 7. The data points agree well
with the bands predicted from the fit, and the gray band is for the fitted value of
ground state form factor fr(Q?).

threshold with m2 ;. = (m2 +m2_.,)/ 2+ AP 42 the partially-quenched pion mass
with mixed-action effect included [67], m, , the valence pion mass and M s, the sea
pion mass; AL, = 0.041(6) GeV* and AP = 0.0105(5) GeV*; and t, is chosen to be
its “optimal” value t0”"(Q?,.) = tew(1 — /1 + Q2. /teut) to minimize the maximum
value of |z|, with Q2. the maximum Q? under consideration.

In order to minimize the model dependence of the z-expansion fitting, we need
to take k. to be large enough such that the fit results are independent of the
precise value of kp.. One way of achieving this is putting a Gaussian bound on
the z-expansion a; with central value 0. The choice of the Gaussian bound can be
investigated using the Vector Meson Dominance (VMD) model with rho meson mass

m, = 775 MeV,

ferl @) = —— (4.3.10)

1+ Q2 m,%'
A non-linear least squares fit of this analytical function with z-expansion fitting at

kmax = 10 gives |ay/do|max < 1.03, in which we used to = 4m2 o tP(Q2,,) =

teus(1—+/1 4+ Q2 /tewt) and Q2. = 1.0 GeV?. Also by investigating the z-expansion
fits with kna.x = 3 without priors of our data, we find |ax/ag|max < 3.0. Thus we
propose the use of conservative choice of Gaussian bound [66] with |ax/ag|max = 5 for
the pion form factor. The z-expansion fitted pion form factors up to Q* ~ 1.0 GeV?

for the six lattices with the same valence and sea pion mass are shown in Fig. [4.7]
with x%/d.o.f. ~ [0.4,0.9].
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Figure 4.7: z-expansion fitting of the pion form factors on six gauge ensembles at
their unitary pion mass with k. = 3 and |ag/ag|max = 5. The left panel is for the
ensembles using [wasaki gauge action and the Iwasaki+DSDR cases are shown in the
right panel.

Another way to reach higher k., and control the model dependence of fittings is
using the fact that at the Q% — oo limit f,(Q?) falls as 1/Q? up to logarithms [68,[69].
Thus we have QF f,-(Q?) — 0 for k = 0, 1 and follow the same argument in [66], which
implies

ar
dzm

fex| =0, ne{0,1}, (4.3.11)

z=1

with z = 1 corresponding to the Q? — oo limit. These equations will lead to the two
sum rules for pion form factors as

k=0 k=1

With z-expansion fitting using Eq. (5.3.27)), the charge radius of pion can be
obtained through the definition in Eq. (4.1.2). The (r2) on different lattices with
different valence pion masses are plotted in Fig. £.9] We see that there is a strong
dependence on the valence pion masses from the data points on each of the ensembles.
Also, from the comparison of 32ID and 32IDh, we see that the data points line up
as a function of m2 ;. which evinces a strong dependence on the sea pion mass.
The following fitting form as a function of mfrvmix is used which includes an essential
divergent log term from the SU(3) NLO ChPT [511 [70],

2N .2 mgr,mix I/ID 9 bse
(r3) <7’7r>phys + bllnmi,phys + by Ta®+ (mmmiXL>3/2,

_mﬂ',mixL

(4.3.13)

where the b; term reflects the pion mass dependence, m, ,nys = 139.57 MeV is the
physical pion mass, L is the spatial size of the lattice, the bé/ ™D terms reflect the
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Figure 4.8: Comparison of extrapolated (r2) with z-expansion fits with different £yax-
The first and second sets are the fits with priors |ax/ag|max = 5 and |ag/ag|max = 10,
respectively. The third and fourth sets are the similar fits constrained with the sum

rules in Eq. (4.3.12).

lattice spacing dependence for the two sets of ensembles with different gauge actions
(Iwasaki and Iwasaki plus DSDR), and the b3 term accounts for the finite volume
effect [71], [72], 13]. Since the kaon mass only varies a little in the current pion mass
range, we do not include the kaon log term in the fitting.

The estimates of the extrapolated charge radius of the pion using Eq. with
different z-expansion fits are shown in Fig. Since b} and b3 have no statistical
significance, we use only three free parameters <T72r>phys, by and biP in these fits. All
the fits have x2/d.o.f. ~ 0.6 which is a good enough with d.o.f. = 23 and the central
values and error values varying a little for different fits. Thus we take the result shown
in black (r2) = 0.4332(86) fm® which corresponds to kmax = 3 and |ax/ao|max = 5 as
our fit result. The systematic uncertainties considered are listed as follows:

e The maximum difference between the result shown in black in Fig. with
the other fitted cases is treated as the systematic uncertainty from z-expansion
fitting.

e The systematic uncertainty from the excited-state contaminations is estimated
by changing the fit-ranges of 2pt and 3pt on 32ID with pion mass 174 MeV at
the smallest momentum transfer which results in fr,(Q* = 0.051 GeV?) =
0.9158(14)(13); the second error corresponds to the systematic uncertainty
from excited-state contaminations. This case is chosen because of its good
signal /noise ratio which has the most control of the final result at close to the
physical pion mass and the smallest momentum transfer is chosen due to its
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largest influence on the radius. In order to estimate the systematic uncertainty
of the radius from the form factor at only one small momentum transfer, we

solve the VMD model in Eq. (4.3.10)),

1
1+ (0.051 GeV?)/m,

= 0.9158(14)(13) (4.3.14)

with m, as a free parameter. The predicted radius is
(r?) = 6.0/m, = 0.4190(74)(68) fm?>.

The second error 0.0068 fm?, which propagates from the systematic uncertainty
of the form factor, is treated as the systematic uncertainty from the change of
fit ranges for the extrapolated charge radius.

e We added a linear dependence term between the charge radius of the pion
and the pion mass squared as byM? to Eq. proposed by SU(2) NNLO
ChPT [50] and repeated the fit with four free parameters <r72r>phys, by, biP and
by. The coefficient by is consistent with zero and the prediction changed by
0.0032 fm? which is treated as the chiral extrapolation systematic uncertainty.

Another source of the chiral extrapolation systematic uncertainty is the lack of
a kaon log term in Eq. . On 241, the valence pion masses ranging from
256 MeV to 391 MeV give a range of kaon mass from 514 MeV to 554 MeV. Thus
we estimate the maximum kaon mass for the pion mass range in consideration
to be Mg max = 554 MeV. With the usage of SU(3) NLO ChPT [51], the

systematic uncertainty from the kaon log term can be given by mln T =
0 K,p
0.0026 fm?, in which F, = 93.3 MeV and My, = 493 MeV is the physical kaon

mass.

o We repeated the fitting with four free parameters (r7) ;. b1, b3” and by which
includes the discretization error from the Iwasaki gauge action and the pre-
diction changed by 0.0025 fm?. With this fitting, we get a difference between
the fitting predictions in the continuum limit with those from the smallest lat-
tice spacing (321) to be 0.0018 fm®. We combined these two as the systematic
uncertainty of finite lattice spacing.

e With similar systematic analysis for finite volume effects with four free param-
eters <T72r>phys, by, biP and b, the prediction changed by 0.0058 fm? and the
difference between the fitting predictions in the infinite volume limit with those

from the largest m,L = 5.8 (32IDh) in our simulation is negligible.

Thus, the final result of the mean square charge radius of the pion at the physical
pion mass in the physical limit reads

(r2) = 0.4332(86)stat (72) 2-cxp (68) fit-range (41) (31)a(58)y fm?

. (4.3.15)
— 0.4332(86)(125) fm?,

49



with statistical error (stat) and systematic uncertainty from z-expansion fitting (z-exp),
fit-range dependence (fit-range), chiral extrapolation (x), finite lattice spacing (a),
and finite volume (V). The total uncertainties at heavier pion masses are estimated
from the scale of the total/statistical ratio at the physical pion mass.

The results of the fitting are shown in Fig. 1.9, One can see that our prediction
of (r2) = 0.433(9)(13) fm?® at the physical point is in very good agreement with
the experimental result (the black dot). The discretization errors across the Iwasaki
gauge ensembles are small while those across the Iwasaki plus DSDR gauge ensembles
are obvious; this is consistent with what was found in the previous work with the
DWF valence quark on similar RBC ensembles [16].
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Figure 4.9: Pion radius squared (rZ) as a function of m2 ;. Data points with
different colors correspond to the results on the six ensembles with different sea pion
masses. The colored bands show our prediction based on the global fit of (r2) with
x%/d.o.f. = 0.65; the inner gray band shows our prediction for the unitary case of
equal pion mass in the valence and the sea in the continuum and infinite volume limits
and the outer lighter gray band includes the systematic uncertainties from excited-
state contaminations, z-expansion fitting, chiral extrapolation, lattice spacing and
finite volume dependence.

Chiral extrapolation of the pion form factor

In order to make a prediction of the form factor at the continuum and infinite volume
limits, we fit the inverse of the f,(Q?) data on different lattices with different valence
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pion masses, as inspired from the NLO SU(2) ChPT expansion [50, [51],

1 Q2 2 9 2
T S +Q mﬂ',mix(cl + Q%)
frr(Q?) 6(4m Fr)? (4.3.16)

2 2
+ cé/mazQ2 + Ci/IDagQA‘ + —(m Q AL (c5 + CGm? Je Mt

6 — In — S
m721',phys

T,mix

in which F, and [ are free parameters for fitting, ¢; and ¢, correspond to possible
NNLO effects, cé/ P and ci/ P reflect the lattice spacing dependence terms, ¢; and cg
correspond to the finite volume effect, and

R(s)zg ( > \/:m\/j_l

Since the inverse of f..(Q?) is mainly dominated by the NLO contributions consid-
ering the vector dominace of the pion form factor, fitting the inverse helps avoid the
need of too many low-energy constants from NNLO corrections [13].
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Figure 4.10: Pion form factor f,.(Q?) on six gauge ensembles at their unitary pion
mass with the bands from the chiral extrapolation fitting. The inner gray error band
shows the fitting result and statistical error extrapolated to the physical limit and the
outer ligher gray band corresponds to the inclusion of the systematic uncertainties
from excited-state contaminations, NNLO corrections, chiral extrapolation, lattice
spacing and finite volume dependence.

The fitting result of the chiral extrapolation of the pion form factor is shown
in Fig. [4.10l We have made a cut of the Q? ranges used on each ensembles with
Q?/m2 i < 13, so that the current formula can fully describe our data without
the need of higher order terms of the ChPT expansion. The following systematic
uncertainties are included in the analysis:

51



e With a variation of the fit-ranges of 2pt and 3pt on 321 with pion mass 312 MeV
we got the form factor at large momentum transfer f.(Q? = 0.865 GeV?) =
0.4347(87)(98). Along with previous analysis on 32ID at small momentum
transfer fr-(Q? = 0.051 GeV?) = 0.9158(14)(13), we estimate the systematic
uncertainty from the excited-state contaminations to be equal to the statistical
uncertainty of the fitted pion form factors for all Q% < 1.0 GeV?Z.

e Since the ¢; and ¢y terms are just an estimation of the possible NNLO effects, we
estimate the NNLO systematic uncertainty by setting ¢; and ¢, in Eq. (4.3.16)) to
be zero and treat the changes as systematic uncertainty from NNLO corrections.

e The systematic uncertainty from the lack of a kaon log term proposed by SU (3)
NLO ChPT is calculated with

(4.3.17)

which is the difference between using Mg max and mg, in the ChPT formula.
This is treated as the systematic uncertainty from chiral extrapolation.

e We use the difference between the fitting predictions in the continuum limit
with those from the smallest lattice spacing (321) as systematic uncertainty of
finite lattice spacing.

e The systematic uncertainty from finite volume effects is estimated by the dif-
ference between the fitting predictions in the infinite volume limit with those
from the largest m,L = 5.8 (32IDh).

The mean square charge radius of the pion from this fitting is (r2) = 0.433(9) fm?,
which is consistent with the above analysis, with x?/d.o.f. = 1.0. Our extrapolated
result at the physical pion mass and continuum and infinite volume limits for the curve
[rr(Q?) including the systematic uncertainties from excited-state contaminations,
NNLO corrections, chiral extrapolation, lattice spacing and finite volume dependence,
is shown and compared with experiments in Fig. [£.11} it goes through basically all
the experimental data points up to Q% = 1.0 GeVZ.

4.4 Summary

We have presented a calculation of the pion form factor using overlap fermions with a
range of valence pion masses on six RBC/UKQCD domain-wall ensembles including
two which have the physical pion mass. The lattice results for (r2) in the continuum
and infinite volume limits are compiled in Fig. together with that of experi-
ment. Our globally fitted pion mean square charge radius from the lattice data on
six ensembles is (r2) = 0.433(9)(13) fm?, which includes systematic errors from chiral
extrapolation, finite lattice spacing and others; it agrees with experimental value of
(r2) = 0.434(5) fm* within one sigma.
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Figure 4.11: Comparison of the pion form factor f.(Q?) at physical pion mass with
the CERN experiment at Q2 < 0.25 GeV* [3] and the Jlab and DESY experimental
data at larger Q% [4, B, 6, [7, 8]. The inner gray band is the statistical error and the
outer band includes the systematic uncertainties.
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Figure 4.12: Summary of the pion radius results at the physical point.
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We find that (r2) has a strong dependence on both the valence and sea pion
masses. More precisely, it depends majorly on the mass of the pion with one valence
quark and one sea quark. We also give the extrapolated form factor f.(Q?), and the
result agrees well with the experimental data points (up to Q% = 1.0 GeV?).

Thus this work shows that the hadron form factor and the corresponding radius
can be studied accurately and efficiently by combining LMS with the multi-mass
algorithm of overlap fermions and FFT on the stochastic sandwich method, which
provides the possibility to investigate the form factor of nucleon and its pion mass
dependence with relatively small overhead on multiple quark masses and momentum
transfers.

Copyright© Gen Wang, 2020.
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Chapter 5 Proton momentum and angular momentum fractions

5.1 Introduction

A quantitative understanding of the proton spin in terms of its fundamental quark
and gluon constituents is an important and challenging question of hadron physics. It
is expected that its spin arises from the intrinsic spin and orbital angular momentum
of its constituents. Recent experiments using polarized deep inelastic lepton-nucleon
scattering (DIS) processes show that the total helicity contribution from the quarks
is just about 25-30% [73] [74] [75] [76], [77, [7§] of the proton spin. The gluon helicity
measured from polarized proton-proton collisions from the Relativistic Heavy Ion
Collider (RHIC) [79, 80), 81] at BNL provide constraints on f0%25 Ag(z)dr = 0.067) 1
with a sizeable uncertainty.

On the other hand, Lattice QCD provides the ab initio non-perturbative frame-
work to calculate the spin and momentum distributions of quarks and gluons con-
stituents inside proton from the QCD action directly. The intrinsic spin carried
by each quark flavor was first studied by xQCD [82] with followup calculations by
xQCD [1], Extended Twisted Mass Collaboration (ETMC) [83, 84] and PNDME [85]
which have provided results consistent with experiment at comparable uncertainties
with Au = 0.777(25)(30), Ad = —0.438(18)(30) and As = —0.053(8) averaged by
Flavour Lattice Averaging Group (FLAG) [86]. It is worth noting that the current
predication of As from Lattice QCD is more precise than the phenomenological deter-
minations. Gluon spin is determined in Ref. [58] to be 0.251(47)(16) at the physical
pion mass in the MS scheme at p?> = 10 GeV? Overlap fermions have been used
in this calculation on 2 + 1-flavor domain-wall fermion configurations with four lat-
tice spacings and four volumes including an ensemble with physical quark mass. In
order to address the angular mometnum fractions, a first attempt to fully decom-
pose the proton spin was carried out by the yQCD collaboration in 2013 [87] in
the quenched approximation and a lot of progress has been reached with dynamical
fermions [88], [84], 89 0, O1] including one with complete non-perturbative renormal-
ization and normalization [92].

In this dissertation, we use the nucleon matrix element of the traceless, sym-
metric energy-momentum tensor (EMT) to determine the momentum and angular
momentum fractions of up, down, strange and glue constituents inside the nucleon.
Overlap fermions are used on 2 + 1-flavor domain-wall fermion configurations with
m, = 174 MeV which is close to the physical pion mass. With a multi-mass inverter,
we are able to simulate on several valence pion masses and extrapolate our results
to the physical pion mass. Since the EMT of each parton species are not separately
conserved, we summarize the final momentum and angular momentum fractions by
considering mixing and non-perturbative renormalization at MS(u = 2 GeV) and use
the momentum and angular momentum conservations to normalize them.
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H(p) X(p7%)

Figure 5.1: Left: Diagram for elastic lepton-hadron scattering with the hadron state
remaining the same. Right: Diagram for deep inelastic scattering with the hadron
blown apart into other particles.

5.2 Deep inelastic scattering

On the experimental side, deep inelastic scattering processes are the main tool to
resolve individual quarks and gluons inside hadrons. Deep means the wavelength of
initial lepton is much shorter than the size of the target hadron in this process. The
process is called elastic when the incident and resultant particles remain the same
as shown in the left diagram of Fig. On the other hand, if the target hadron is
blown apart to many resultant particles, the process is called inelastic as shown in
the right diagram of Fig. [5.1} In the inclusive DIS, the energy and direction of the
initial and final lepton are measured in the detector and the final hadronic states are
not measured. If one or two hadronic states are measured, it is called semi-inclusive
DIS. If all final hadronic states are measured, it is called exclusive scattering.

Kinematics
The basic DIS process can be denoted as

l(k)+ H(p) — LK)+ X (p)) (5.2.1)
and the kinematic variables for DIS are

e p = (My,0): The 4-momentum of the fixed hadron target with My the rest
mass of the incoming hadron.
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e Q* = —¢* = (K — k)? = AEE'sin*(4): The momentum transfer of the virtual
photon 7" with 6 the angle between the incoming and outgoing leptons, k =
(E,k) and k' = (E', k).

e v=FE—F =p-q/My: The energy loss of the lepton which is the energy of
the virtual photon ~v*.

e y =v/E: The fractional energy loss of the lepton.

Q? Q?
T 2pq 2Mpgv

e 1 : The Bjorken scaling variable.

The information of DIS is collected in the structure functions and at leading
order with Q? — oo, the hadron structure functions depend only on the fixed scaling
variable = proposed by Bjorken [93, [04] and depend on the dimensional parameter
Q)? logarithmically. Since the total mass of the final hadron state Mx must be the
same or larger than the hadron mass My, we have,

My=@p+aq*=M+2p-q+q¢ =M =azp= <1 (5.2.2)

2p-q
We also have that both Q% = —¢? and p - ¢ are positive so that

0<ap<l. (5.2.3)

DIS Cross Section

The cross section for the unpolarized DIS in the laboratory frame is given by

o e ( E'
dQdE  16m2Q4 My E

)Ly (P, )W (p, q) (5.2.4)

in which e is the electron charge, L,, is the leptonic tensor which can be determined
from perturbative QED, and W#" is the hadronic tensor. L,, can be written as

L= Y KT ki) (ksil Iy ) (5.2.5)

final states

with J; the leptonic current, s; the final lepton polarization vector and the sum is over
all possible leptonic final states. At leading order and neglecting the lepton mass,
L, is
Ly = P,pv + 0oy — Gt - p- (5.2.6)
With the optical theorem, the hadronic tensor can be expressed as the imaginary
part of the forward scattering amplitude in deeply virtual Compton scattering as

1
Wiy = 51T, (5.2.7)
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with

T =03 [ e (o | T O ), (528)
in which 77---] is the time-ordered product and s the polarization of the hadron.

Thus we have
Wow(p: Z /d42€’“ (p, 8| Ju(2), J,(0) Ip, 5) , (5.2.9)

which is the spin independent part of the hadronic tensor for unpolarized scatter-
ing. With the usage of current conservation, parity conservation and time reversal
invariance, we can write the hadronic tensor for a spin-1/2 target as

WAV
qq)_|_

W (p,q) = —Fi(z,Q*)(g" —
(p,q) 1 (2, Q%)( Z e d .

B(r,Q%) (P — p 2qq )(p” Z%q”). (5.2.10)

2
In the Bjorken limit, Q* — oo and v — oo, the structure functions F; and F,
depend only on x and the Bjorken scaling functions are related by the Callan-Gross
relation [95],

= cuqle) =2z Fi(), (5.2.11)

where e, is the electric charge of the quark with different flavor, and ¢(z) is the
probability of finding a parton with a longitudinal momentum z, which is called
parton distribution function (PDF). It is a sum of the corresponding quark and anti-
quark distributions as

q(z) = (¢r + @) (@) + (@& + q)(2)- (5.2.12)

Operator Product Expansion

The structure functions can be related to the matrix elements of local operators
between hadronic states with the operator product expansion (OPE) [96]. At the
short-distance limit 22 — 0, the current product in Eq. can be expanded with
a series of local operators,

hnlzzﬁog]( ) chk Z, Ok<0 u) (5213)

where ¢;;;(z) are the Wilson coefficients which depend on the separation z and energy
scale p but are independent of the matrix elements, and O (0) are a tower of local
operators Q¥ #n which are traceless and symmetric in the indices p;. We group
these operators with ¢t = d — n which is called twist of the operators with d the
dimension and n the spin of the operator. The leading contributions of the expansion
have ¢t = 2 which are written in terms of quark fields ¢¥(d = 3/2,n = 1/2,t = 1),
gluon fields F, (d = 2,n = 1,¢t = 1) and covariant derivatives D(d = 1,n =1,t =0).
Adding derivatives D(t = 0) to the operator will not change the twist. For example,
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the general forms of traceless twist-two operators for quarks in Minkowski space are
written as

Ofpr-=iun} — =11l Do Dbyt
(5.2.14)
O[‘lfll{”}"'un} — Z‘n&(f)g[ul{ﬂ%g o (ﬁﬂn}¢f”

<=2
with 1) the quark field with flavor f, D, = 1/2(Bu — %N) the symmetrized co-
variant derivative and o = i/2[y,,7,]. Notation {p - - p12} means symmetrization
of p;’s and [p 2] means anti-symmetrization of p; and ps.

5.3 Lattice operators and nucleon form factors

In order to evaluate angular momentum fractions of nucleon on the lattice, we follow
Ref. [O7, [87] to use the traceless, symmetric QCD energy-momentum tensor (EMT) as
the current operator. The ith component of angular momentum operator for quarks
and glue can be written with EMT as

Jo9 = %eijk / dPx (TG0 — T0bag,ky (5.3.1)

where 71399 are the gauge-invariant and conserved EMT operators for quark and
gluon parts, respectively. Also, the linear momentum operators are

oo [ i 532

(2

The nucleon matrix element of EMT can be decomposed into three generalized form
factors (GFF's) based on their associated spinor structures as

1 — — V=
(p/,s'| TW399 |p, s) :§U(p/,8’) [Tl(qz)(v“p +~"p")
L L, (633)
+%T2(q ) (iga (P0”® + p¥o"*)) + ETL%(q )a'q” | u(p,s)

where |p, s) is the nucleon initial state with momentum p and spin s, (p/,s'| is the
nucleon final state with momentum p’ and spin s, @ and u are the initial and final
nucleon spinors, ¢ = p’ — p is the momentum transfer, p = (p’ + p)/2 is the the total
momentum, and 77, T5 and T3 are the three generalized form factors.

With the insertions of Eq.([5.3.3) into Eq.([5.3.1)) and Eq.([5.3.2) in the ¢* — 0

limit, we obtain
1
J = 3 [T1(0) + T5(0)]*7, ()" = T1(0)** (5.3.4)

in which J%9 is the the total angular momentum fraction for quarks and glue, respec-
tively and (z)?? is the second moment of the momentum distribution.
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In this dissertation, we will focus on the calculation of 74 which is adequate to
give the T1(0) and 75(0) form factors. Following from the conservation of EMT, the
momentum and angular momentum are conserved with sum rules

(@) + () = T1(0)* + T1(0)? = 1,

1 (5.3.5)
T4 79 = AN(0) + Ta(0)] + [T1(0) + To(0)]) =

N | —

One implication of these two sum rules is that the sum of 75(0)’s for the quarks and
gluons is zero, that is,

T5(0)? + T5(0)? = 0, (5.3.6)
which has been derived in [98] [99].

Quark and gluon operators

The EMT matrix elements of Eq.([5.3.3) in Euclidean space-time with current Pauli-
Sakurai v matrices convention is

1 _ _
<p,7 3/| 43’9(]3) |p7 3> = éu(E) (p’, 5/) [Tl(_QQ)(74pi + %p4)
1 ; ) w0 (5.3.7)
— %Tz( ) (9o (Pa0ia + Di0sa)) — ETs(—q )44 ( )(p, s),

in which p,v € {1,2,3,4} is the Euclidean space-time index and the normalization
conditions of @) and u'®) are

+m
" (p, s)u =1, Zu p,s)u? (p, s) = 3/’)2 : (5.3.8)
The associated Euclidean gluon EMT is
13
T = (+i) 3 D 2T GuGri + GiGral | | (5.3.9)
k=1
in which G, is the Euclidean field-strength tensor
1
G (2) = < (Pu(w) = Bl,(x). (5.3.10)

with P, being the “cloverleaf”

#V—U( U (z + p)Ul(x + v)Uf ()

U (@)Ul (x — p+ v)Uf(z — ) U,z — o)

+UT( — Uz — p—)U, (v — p— v)U,(z — v)
(z

+ Ul V)U:( —v)U,(x — u—i—,u)Ug(a:)

(5.3.11)
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which is built from the HYP-smeared gauge links. The difference between the bare
matrix elements and the HYP-smeared matrix elements will be compensated by the
non-perturbative renormalization procedure [90].

The Euclidean quark EMT is

TUE) - (—1)% > iy [yﬁi + 704~ D, - %54] by, (5.3.12)
!

(E)

In order to discretize T}, we use the following left and right gauge covariant deriva-

tives on the lattice,

Bub(e) = 5o Wbl + 0,) = Ul — a)le — 0],
i o i (5.3.13)
U(@) Dy = 5 [0+ a)Uj() = bz = a,)U)(x = a,)]

each 1 being a quark field operator on the lattice and each U a gauge link. Thus the
quark EMT operator for flavor f is

(@) = o D@ U@ + @) = Gyl (@ — a)s(e - )
+ (= a)yaUi( — )by (x) — p(z + ai) U} (2) vy (x) (5.3.14)
+ g (@) Us(@) s (@ + an) — Yp(2)3UL (@ — an) vy (z — as)
+ s (@ — an)yilUs(x — a)v(x) — Op(x + an) Ul () ()]

Three-point correlation functions

The EMT matrix element can be extracted from the three-point function (3pt) along
with the associated two-point function (2pt) as

Gog (D.t) = Z e~ 70| Txa(Z. £)X5(0,0)] [0), (5.3.15)

T

with x(z) = On(z) and x(z) = Oy(z) the nucleon interpolation fields defined in

Eq. (3.1.17) and Eq. (3.1.18), respectively. In the ¢ > 1 limit, the unpolarized
nucleon two-point function Copy (P, 1) is

7z} E,+ .
Clope (P £) = Tr[DoGYY (1)) =5 (ch)?» T T e=Enlt=to) 4 Ae=Fr(t—t) (5.3.16)
p

in which I'y = P, = H% is the unpolarized projection for the nucleon, Z, is the
spectral weight, m is the nucleon rest mass, F, and E; are the ground state energy
and first excited-state energy, respectively, and A is an unknown parameter associated
with the excited-state contaminations. The 3pt of EMT is

A A s

NTLIN - i (T —F) iP3
Gaﬁ‘“ (t',t,p’,p)—— e P ) et
@z (5.3.17)

(O T[xa (@', ) T2 (Z,)%5(0, 0)] |0) ,



in which z = {2t} is the current position, 2/ = {#,t'} is the sink position, p” is the
momentum of the final nucleon, and p'is the momentum of the initial nucleon. With
the unpolarized/polarized projection for the nucleon, we define Cjpy as

Cpi(pt, 4,35 1,7, ) = Te[D,GNTEN (4, 57, 7)), (5.3.18)

with p € {0,1,2,3}, 'y the unpolarized projection for nucleon, and I'y, T'y and T'3
the polarized projection in the x,y, z direction, respectively, as

1?4 093, form =1
L, ={ E2oy, form =2, (5.3.19)

1?40 9, form =3

where 0;; = £[y;,7;]. With an insertion of a complete set of energy eigenstates in

Eq. (5.3.16)), we get
t>1  ZyZp —Ep(t'~t) ,~ Bt

C 4 ._t/ t — \ P X
3pt(ll"L’ 77/7 ) 7p7]3> tl—t>>1 4Ep/Ep6 (5.3.20)

(a1 Ty (Q%) + asTa(Q%) + asT5(Q%)]

where the a;s are known coefficients which depend on the momentum and energy
of the nucleon which we calculate using ‘python’ script, and Q* = (p’ — p)? is the
momentum transfer squared. In order to extract T1(Q?), To(Q?) and T3(Q?), we take
the ratios of 3pt and 2pt functions,

R(p, 4 it P) = C3pt(:uv4al,t t', 0, ]7) Cth P, t’ Cgpt(p t)CQPt(ﬁ’t,)
yE b by L Py Cth(p t, Oth p t’ —t Cth(ﬁt>02pt(_:(t5,)3 21)

1 . alTl(Q )+ a2T2 QZ + a3T3 Q2
t—t>1 4\/Ep/ Ey+m)E,(E, +m) .

In this dissertation, we focus on the evaluation of the T} and [T} 4 T3] form factors
by choosing specific momentum and polarization projection settings. We set the
initial and final momentum of the nucleon to be the same to approach T} form factor,

R(F1747j7t,7t7]5:m — ei,j,kkal(O); (5322)
with 4, j € {1, 2,3}, The following settings are used to calculate [T} + T3] form factor,
R(I';, 4, 7; t't,p, 6) — €i,j,kpk[T1 + Tz}(Q2),

R(Flv 47 ]7 tla t, 67]33 — €;,5,kDk [Tl + T2} <Q2>, (5323)
R(Fla 4a j) tlv t?ﬁ _ﬁ) — Ei,j,kpk: [Tl + TQ} (QQ)a

in which the first two momentum settings have either initial/final momentum to be
0, while the third corresponds to the case where the initial and final momentum of
the nucleon are in opposite directions which will result in larger momentum transfers.
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Figure 5.2: Illustration of the nucleon three-point functions with (a) connected inser-
tions (CI) and (b) disconnected insertions (DI).

With the usage of Wick contractions, the evaluation of 3pt in Eq. on the
lattice gives two topologically distinct contributions: connected insertions (CI) and
disconnected insertions (DI), which are shown in Fig. [5.2] In the case of CI, the
quark/anti-quark from current 7y, is contracted with the quark/anti-quark from the
source/sink nucleon interpolating fields. Whereas, in the case of DI, the quark/anti-
quark from current 7Ty; is contracted with itself at current position z to form a loop.

The evaluation of CI cases can be done with the method described in Sec. [3.4l
This method allows the usage of FFT to get any combinations of p” and p’ so that
we can average over different directions to increase statistics. For the DI case, the
gauge-averaged three-point function can be written as

Cpe(p, 4,88 1,57 P)pr = » e 7T (0] | xa (@, 1) X5 (0, 0)] x [Ti(Z,1)]0)
2, (5.3.24)
= (Te[[.GY (. t; U)] x L[t, ¢ U]) — (Te[D. G (5t U)]) x (L[4,4,t, ¢ U))
in which (---) denotes the gauge average and GV (p,t;U) is the computation of
nucleon propagator under gauge field U and L[4,4,t,q; U] is the current loop of
quark/gluon. We have subtracted the uncorrelated part of the loop and the nucleon

propagator. The quark loop L = L/[4,i,t,¢ U] is constructed from the propagator
of quark flavor f as

L, it, U = o 3 e7*
a fod

Tr {D;l(z + ai, z; U)yaUi(z) — D;l(z — a;, 2z U)uUl (2 — a;)
—i—DJ?l(z, z—a; U)vUi(z — a;) — D;l(z, 2+ a; U)nUl (2)
—l—DJTl(z + ayg, 2, U)Usg(2) — D;l(z — ay, U)’yiUI(z — ay)

+ D;l(z, z—ag; U)viUs(z — ay) — D;l(z, z + ay; U)%-Ul(z)} :

(5.3.25)

in which the trace Tr is the trace over color and spin, and D;l(z + a;, z;U) is the
quark propagator from point z to point z + a; under gauge field U with flavor f. In
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the case of the gluon three-point function, only DI contributes as in Eq. ([5.3.24]) with
the current loop L = L9[4,4,t,q; U] as

LA, it U] = (+1) Y e

. (5.3.26)
-5 Z 2Tr " [Gui(2)Gri(2) + Gin(2)Gra(2)] |

with the field-strength tensor G, defined in Eq. (/5.3.10)).

z-Expansion fit

In order to fit the [T1 +T3](Q?) form factor and extrapolate it to @* = 0, we have done
a model-independent z-expansion [66] fit using the following equation with kyax > 2,

kmax
T(Q* = Z a2

k=0 (5.3.27)
. \/tcut —t— \/tcut - tO

\/tcut —1 + \/tcut - tO’
where T'(Q?) represent a nucleon form factor such as Ty, Ty, T3 and their linear
combinations such as [T} + Ty]; t = —Q?; tes = 4m?2 corresponds to the two-pion
production threshold with m, = 172 MeV chosen to be the sea pion mass; and ty is
chosen to be its “optimal” value t0”"(Q? . ) = tewt(1 — /1 + Q2. /teut) to minimize
the maximum value of |z|, with Q2 the maximum @Q? under consideration.

In order to remove the model dependence of the z-expansion fitting, we need
to take k. to be large enough such that the fit results are independent of the
precise value of k... One way of achieving this is putting a Gaussian bound on
the z-expansion parameter a; with central value 0. We adopt the Gaussian bound
proposed in [66] with |ay/ao|max < 5.0.

Another way to reach higher k.. and control the model dependence of fittings
is using the fact that at the Q% — oo limit nucleon form factors fall as 1/Q* up to
logarithms [100]. Thus we have Q*T(Q?*) — 0 for k = 0,1,2,3 and following the
same argument in [66], this implies

dn
dzm

with 2 = 1 corresponding to the Q% — oo limit. These equations lead to the sum
rules for nucleon form factors as

iak = O,ik&k = 0,
k=0 k=1

i k(k —1)ay =0 and ik(/{ —1)(k —2)a; = 0.

Z(ta tcuta tO)

=0, ne{0,1,2,3}, (5.3.28)

z=1

(5.3.29)

In practice, instead of oo, the summation of k& will have an upper limit k., chosen
to be large enough to minimize model dependence.
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5.4 Operator mixing and renormalization

Although the total form factors Ty, Ty and Ty, with T(Q*) = 3,_, 4. ,T*(Q?), are
renormalization and scale invariant, the quark and gluon pieces are not separately
conserved. We renormalize our results at MS(u = 2 GeV) with a nonperturba-
tive renormalization procedure. As lattice breaks down rotational symmetry to the
hypercubic group H(4), the EMT operators subduce into two traceless, symmetric
irreducible representations of H(4) which are labelled with 71(3) and 71(6) [101], 102].
They do not mix with same or lower-dimension operators. In Euclidean space, a basis

of operators in the three-dimensional 7'1(3) representation is [89]

1
T = 5(711+752—7§3+7Z4),

717_(3) 1 (T 7 ) TT(3) 1 (7’ - ) (5.4.1)
1 e + , 1 = — — .
2 /o 33+ Jaa), /3 NG 11— J22
A basis of the six-dimensional 7'1(6) representation is
(6) <_Z')<5u4
- (7;1/ + 77“/)’ I<pu<v<4 (5'4'2)

i=1,-,6 \/5

Since we only consider the operator 7T in this dissertation, a purely multiplicative
renormalization procedure is involved for the 17, T5 and T3 form factors and also their
linear combinations such as T1(Q?) + T»2(Q?) as

T4(CD)" = Z55 ()T (C1),
T (D) = Z858 () T(DI) + 6 Z5g (1) Y [T(CT) + T*(DI)]

q:u7d7s

- (5.4.3)
+ Zye ()T (DI),
T9(DD" = Z85(1) > [T(CI) + T(DI)] + Ziy T9(DI),

q=u,d,s

in which 79/9(CI) and 79/9(DI) are the CI and DI bare form factors under the lattice
regularization, respectively. In order to calculate the renormalization constants ZMS
at MS scale u, we follow the nonperturbative renormalization procedure described
in [56]. First, we carry out the RI/MOM nonperturbative renormalization at scale
p% = p* for several p* with several quark masses at different momentum and then
extrapolate the results to the massless limit. Then, we match from RI/MOM to
MS using the matching coefficients from perturbative calculations. The matching

coefficients from MS scheme at scale u to RI/MOM scheme at scale g are

Z86(1) + NS 285 (1) NyZya(n) :{KZQQ(/LRHNJCMQQ NfZQG(uR))
Z&6 (1) Z&e (1) Z6q(kr) Zaa(br)

(RQQ(,%R) + O(Nya3) NfRQG(MLR))]
Rag () Rec ()
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with

]
Coq = [(ZgqRqq) + Ny (0ZgqReq + ZgaRaq)| (kr, —)

MR GQM%—H)
L
Caoc = [Ny ((Zgq + Ny6Rqq)Rqc + ZgaRaa)l (1R, —) :
HR a?p%—0

(5.4.5)

Caq = [ZaqRqq + ZaaRaql (1w, :—R)

)
a?p%—0

CGG = [NfZGQRQG + ZGGRGG] (:uRu ,uﬁR)

’
a?p?—0

and Z%TS(/J) = [(ZgoRoq) (ir, HiR)|a2“%_>0] . The matching coeflicient Rs are the

perturbative matching coefficients from the RI scheme at scale yp to the MS scheme
at scale u as

2

1% g 8 2/, 9 31 2
R —) =1+ —log(p + =+ « 5.4.6

with > (T*)3, = (N? — 1)/(2N.) = C the quadratic Casimir invariant of SU(N,),
with V. = 3. This matching coefficients have been obtained at 3-loop level [103] and
others at 1-loop level [104] as

2

9 ey 4 2 2
RQG - 1672 [310g(/1“ /IU’R) + 9} + O(as)7
2
_ TR 22 4 22 2 5.4.7
RGQ - 1672 [SIOg(M /:U’R) + 9 ] + O(as>7 ( o )
2 2
g°Ny 2 9, 9 10 g°N. b 9
1 2 g e .

The RI/MOM renormalization constants Zs for the quark external legs are de-
fined [103] as

VT[T, 57 () (S0, 7554 (paw)ys 3 (0 D vty D ) Sg (p.w)) 57 (9)]
= A.
Zaq(kr) [ (S (vt 10B0)— 9 Za 0 048
P =UR
VTe[T%,S5 " () (T Sa(0)) Sq ()]
57 — bea Ll k 5.4.9
QQ(/’LR> I:—Z'FZV(%(’Ypﬁu""yuﬁl/)_iﬁ)}zq 2,2 ' ( )
PP=n%
VI [Th,Sq " (0) (T Sa(p)) Sq ' (v)]
7 — g il 4 4.1
GQ (NR) [—ZTZV(%(Wﬁv‘f’%ﬁu)—iﬁ)]zq o ) (5 O)

in which index p is not summed while results from different 1 are averaged, V' is the
lattice volume, p is the momentum of the external quark or gluon state, p, = sin(p,,)
is the lattice momentum, S,(p) = (S,(p)) = (3=, €*S,(p, )} is the quark propagator
in momentum space with Sy(p,z) = >_, e~ P (x)(y), Z, is the quark normalization
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constant defined from the axial-vector vertex correction and Ward identity [105] and
the quark vertex operator is

Duby
I, = 17Dy + 0Py — gg P, (5.4.11)

as suggested by Ref. [106]. Inspired by Ref. [104, O0], the gluon external legs are
defined as

Zaa(pr) = € Zy(ur, T") = (€71 = 1) Za(pg, T,

Zec(in) = € Zo(um T) — (€71 = V) Za(pn, T, (5.4.12)
with £ = & 7, is
Zoun. T) = 2Tt T Ap () A (—p)Tr]) (5.4.13)

223 (Tr[Ap(p) A (—p)Tpe])

which is calculated under the conditions p* = p%, k+¢=p, k-¢q=0and I, =

kpyk
5p7_ _ 227 _ qPQT

with the repeated indices summed here. And Zj, is

m\ __ <(pMTMVpV - ZMT;WZV)TI[Aﬂ(p)AT(_p)pr]>
Polyen ) = AP AT

which is calculated under the conditions p* = p%, 1> = p%, 1-p = 0 and T, =

Ll
dpr — B ;123 — “3= with the repeated indices also summed here.

(5.4.14)

Table 5.1: The non-perturbative renormalization constants of 77 representation on
321D lattice.

Lattice ZQQ (5ZQQ ZQG ZgQ ZGG
32ID | 1.25(0)(2) | 0.018(2)(2) | 0.017(17) | 0.57(3)(6) | 1.29(5)(9)

Ref. [56] has done a complete calculation of the non-perturbative renormalization
constants on the 321D lattice of the 73 representation which are shown in Table. |5.1]
The non-perturbative renormalization constants of the 70 representation are also cal-
culated which are consistent with those values of the 7j representation under current
statistics. Thus we use the values in Table. [5.1] to renormalise the results in this
dissertation.

As we are using local current operators, we need to normalize the momentum
and angular momentum fractions with the two sum rules in Eq. . A way of
normalizing the momentum and angular momentum fractions is proposed in Ref. [87],
in which the normalization constants for quarks and glue ZqL and ZgL separately are

defined as
L L L
Z ()" + Z, ()"

=1,
ZLyut 4 gLt % (5.4.15)
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and the normalized quantities are

(2)" = Z; (@), (0)! = Z; ()",

J1 = ZLJ%L J9 = ZLJQ’L (5416)
q ) g .
By solving Eq. ((5.4.15)) we get ZqL and ZgL as
ZE = ~2J9% 4 ()" B —Ty
T el ()t ek (o)t T T - T (5.4.17)
I 2 J9L <x>q,L Ty 4.

9T 9 e (1)0F Z 9ol ()L T TITY — TYTY

in which 7YY and T3 are the nucleon form factor from the local current after renor-
malization. Whereas, the T5 form factors, which are required in the numerator of the
normalization, have almost no signal under our current statistics. Given the current
situation, we assume A = Z qL =7 gL and calculate A from the momentum sum rule as

Alz)" + A(x)* = 1. (5.4.18)

Then we will test this normalization constant A on the angular momentum fractions
sum rule as

AJot+AJE =4 (5.4.19)

to check whether C' is close to 1 within uncertainty.

Numerical details

We use overlap fermions on a 323 X 64 ensemble (32ID) of HYP smeared 2+1-flavor
domain-wall fermion configuration with Iwasaki plus the Dislocation Suppressing De-
terminant Ratio (DSDR) gauge action (labeled with ID) [62] at @ = 0.143 fm and
m, = 172 MeV. The effective quark propagator of the massive overlap fermions is
the inverse of the operator (D. + m) [25, 28], where D. is chiral, i.e., {D., 75} = 0
[26]. And it can be expressed in terms of the overlap Dirac operator D,, as D, =
pDoy/(1—D,,/2), with p = —(1/(2k) —4) and k = 0.2. A multi-mass inverter is used
to calculate the propagators on 200 gauge configurations with 6 valence pion masses,
173.76(17), 232.61(17), 261.34(17), 287.11(17), 325.47(17) and 391.11(17) MeV. Box-
smearing [64) [65] with box half size 1.0 fm is applied to have better overlap with the
nucleon ground state.

On each of configuration, three source propagators D! (y|G) are computed with G
the smeared Zs-noise grid source [39] with {2,2,2,2} points in {z,vy, 2z,t} directions,
respectively.

For the CI, we use the stochastic sandwich method [40, [I] to calculate the three-
point function with low mode substitution (LMS) on source grid-source to improve
signals of the nucleon. The separation of sink position 2’ and current position z in
splitting the low and high modes for the propagator D~!(z|z") between the current
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and sink can facilitate FFT along with LMS as described in Sec. [3.4, We generate
ny sets of high-mode propagator D;I}noi(z,nj) defined in Eq. . Four source-
sink separations ¢’ = 7,8,9,10 (a) = 1.0,1.14,1.29,1.43 (fm) are used to control the
excited-state contaminations with ny = 2, 3,4, 5, respectively.

We also use smeared Zs-noise grids to calculate the nucleon two-point functions
with the spatial center of each grid chosen randomly and repeat the calculation with
16 different source time positions on each configuration to have good statistics.

The Quark loop L[4, 1,t,q; U] is calculated based on the point source propagators
D~!(y|z) with y = z%ay, a, or a,. The low-mode part of this propagator is calculated
exactly using the low-lying eigenvectors of the overlap Dirac operator. The high-mode
part of is estimated with 8 sets of a 4-4-4-2 space-time Z4-noise of grid with even-odd
dilution [107]. Each set has different spatial center and additional time shift. The
valence quark masses used in construction of quark loops vary from light quark masses
to the strange quark region. The bare valence strange quark mass msa = 0.08500 is
determined from the global-fit value m, = 101(3)(6) MeV at 2 GeV in MS scheme
calculated in [I08] and the nonperturbative mass renormalization constant [105] is
Zm = 0.87642(77). The Gluon operator L[4, 1,t,7; U] is constructed on all the current
positions z to have full statistics.

The total number of propagators we generated is 3 + 14 + 16 + 8 = 41 on each of
the 200 configurations.

5.5 Results and analysis

Three-point function fit

The formula we use to fit the quark/gluon ratio R is

R(p,4,i:t,t',p, p) =A + Bie A8 ('=7)

+ BQG_AEP(T) + BSG_AEP(T)_AEpl(t/_T), (551>
where A is the ground state matrix element, the terms with By, B3y and By are the
contributions from the excited-state contamination, and AE, = E; — E, is the energy
difference between the nucleon ground-state energy £, and that of the first excited-
state E;. In order to stabilize the fit, we use the AE, from the fitting of the two-point
function as a prior for the three-point function fit with AE, ~ [300,800] MeV.

Connected insertions

We first present the fitting of CI of up and down quarks. Fig. shows a sample
fitting plot of the T form factor on 32ID with the unitary pion mass of 174 MeV
at ¢ = 27“[0, 0,1]. We have used the energy difference AFE from 2pt to constrain our
fits of Eq. for all CI. A similar fitting is shown in Fig. for [Ty + T3] form
factor at Q% = 0.0718 GeV?. We have used source sink separation ¢’ = 7, 8,9, 10 for
both fits and 6 points are dropped (3 points close to the source t = 0 and 3 points
close to the sink t') for each separation. All the fits for the CI 3pt to 2pt ratios have
x%/d.o.f. ~ 1.0.

69



T¥(Q2=0,5=2"[0,0,1])

0.380
0.360
0.340
o 0320
0.300
0.280

0.260

t
"
”
"

=7
=8
=9
=10

0.240 0.070 4

3 2 2 0 1 2 3
T—t'/2

T{(Q%=0,5 =21[0,0, 1)

0.140

0.130 1

0.120 1

0.110

0.100 4

0.090 1

0.080 1

(2 N BN 2

1 =2 © oo

T—-t'/2

Figure 5.3: The ratio R of the CI three-point to two-point function for up (left panel)
and down quark (right panel) with valence pion mass 174 MeV at ¢ = 27(0,0,1]. The
data points correspond to different source-sink separation ¢’ and current position 7.
gray band the ground state T form

The bands are the fitting predictions with the
factor.
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The data points correspond to different source-sink separation ¢" and current position
7. In each plot, the bands are the fitting predictions with the gray band the ground

state [T7 + T»] form factor.
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We repeat this procedure for all of the other p, the CI T} form factor for the up
and down quarks at different pyum. The results are shown in Fig. [5.5 with ppum, being
the label of the lattice discrete momentum ordered according to [p]?. As shown in
Eq. (5.3.22)), the calculation of the T} form factor using operator 7Ty; can only be done
at p # 0. This is why we don’t have p,., = 0 in Fig. for the CI up and down
quark, and also for the following similar plots for DI up/down quark, strange quark
and glue. Tt can be seen that the results for T1(Q? = 0) from different p are consistent
with each other within uncertainty. Thus we use a simple constant fit of the data
points to give the final predictions.

T Y T d
0.500 e 0.500 el

0.400 0.400

°* % ]

0.200 0.200

0.100 0.100 1

0.000 0.000

0 2 4 pn6um 8 10 12 0 2 4 pn6um 8 10 12
Figure 5.5: CI plots of the T} form factor for up (left panel) and down (right panel)
quarks with pnum the label of the lattice discrete momentum ordered according to p2.
In each plot, the band corresponds to a constant fit of the data points.

The fitting of the CI [T} + T3] form factor for up and down quarks is shown in
Fig. . As shown in Eq. (5.3.23)), calculation of the [T} 4+ T3] form factor using
operator Ty; can only be done at p’ # 0. Thus, we use the z-expansion defined in
Eq. to fit the data points and extrapolate to Q% = 0 to get [T} + T5](Q* = 0)
for the CI up and down quarks, and also for the following similar plots for DI up/down
quark, strange quark and glue.

Quark disconnected insertions

The fittings of DI 3pt to 2pt ratios R for the 77 form factor of up/down and strange
quarks are shown in Fig. 5.7 We treat up and down quark DI contributions to be
the same since we have exact isospin symmetry in the current simulation. We have
also used the energy difference AE from 2pt to constrain our fits of Eq. for
all DI. The source sink separations t' = 4,5,6,7,8,9,10 are used for both fits and
4 points are dropped (2 points close to the source ¢ = 0 and 2 points close to the
sink ¢') for each separation. We have chosen the fit which starts from source sink
separation t' = 4 instead of ¢’ = 7 in the CI cases under current statistics. A similar
fit is shown in Fig. [5.8| for the [T} + T5] form factor at Q2 = 0.0718 GeV?. All the fits
have x%/d.o.f. ~ 1.0.
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Figure 5.6: CI plots of the [T} 4+ T»] form factor for up (left panel) and down (right
panel) quarks as a function of Q2. In each plot, the band corresponds to the z-
expansion fit with k., = 7 and sum rules in Eq. ([5.3.29)).
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72



[T1+ T21¥9(Q2? = 0.0718 GeV?) [T+ T21°(Q% =0.0718 GeV?)

0.2001
0.100 1
0.1001
|
v . R
v n ., 0.000 1 vV = o
0.000 1 v v
o o
-0.100
o0100{ ¢ t=4 ¢ =4
W =5 m =5
i ‘e
v t'=6 -0.200 VY t'=6
-0.200 4 =7 v=7
t'=8 =8
r=9 -0.300 r=9
-0.300 : : : : . .
-2 -1 0 1 2 -2 -1 0 1 2
T—t/2 T—t/2

Figure 5.8: The ratio R of the DI three-point to two-point function for up/down
(left panel) and strange quark (right panel) with valence pion mass 174 MeV at
(Q? = 0.0718 GeV?. The data points correspond to different source-sink separation ¢’
and current position 7. In each plot, the bands are the fitting predictions with the
gray band the ground state [T7 + T3] form factor.

We repeat this procedure for all of the other p, the DI 77 form factor for up/down
and strange quarks at different pyum. The results are shown in Fig. 5.5 with puum
being the label of lattice discrete momentum ordered according to |p]®. It can be
seen that the results for T3(Q* = 0) from different p are consistent with each other
within uncertainty. Thus we also use a simple constant fit of the data points to give
the final predictions.
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Figure 5.9: DI plots of 77 form factor for up/down (left panel) and strange (right
panel) quarks with p,., the label of lattice discrete momentum ordered according to
p2. In each plot, the band corresponds to a constant fit of the data points.

The fitting of the DI [T} + T3] form factor for up/down and strange quarks is
shown in Fig. . We used the z-expansion defined in Eq. to fit the data
points at kna.x = 2 without sum rules in Eq. under current statistics. With
such a fit, we can extrapolate to get [T} + T3](0) for up/down and strange quarks.
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Figure 5.10: DI plots of [T} 4+ T»] form factor for up/down (left panel) and strange
(right panel) quarks as a function of Q2. In each plot, the band corresponds to the
z-expansion fit with k., = 2.

Glue disconnected insertions

The fittings of DI 3pt to 2pt ratios R for the T} and [T} + T3] form factors for the
glue are shown in Fig. Since the glue form factors have almost no signal at pion
mass 174 MeV, we have chosen to show the plots at pion mass 391 MeV. We have
also used the energy difference AE from 2pt to constrain our fits of Eq. for all
DI. We have used source sink separations t' = 4,5,6,7,8,9 for both fits and dropped
4 points (2 points close to the source t = 0 and 2 points close to the sink ') for each
separation.
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Figure 5.11: The ratio R of the DI three-point to two-point function of glue 77 (left
panel) and [T} + 1] (right panel) form factor with valence pion mass 391 MeV at
Q% = 0.0722 GeV?. The data points correspond to different source-sink separation ¢’

and current position 7. In each plot, the bands are the fitting predictions with the
gray band the ground state form factors.

After repeating this procedure for all other p, the DI T} and [T} + T3] form factor
for the glue are shown in Fig. [5.10, We use a simple constant fit of the 77 form factor
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Figure 5.12: DI plots of the 7} (left panel) and [T} + T3] (right panel) form factors for
the glue. The band in the left panel corresponds to a constant fit of the data points.
The band in the right panel corresponds to the z-expansion fit with k.. = 2.

data points to give the final predictions. z-expansion fitting of the DI [T7 4+ T5] glue
form factor at k.« = 2 without sum rules under current statistics is also shown in
Fig. With such a fit, we can extrapolate to get [T1 + T5](0) for up/down and
strange quarks.

Final results
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Figure 5.13: Plots of the T1(Q* = 0) (left panel) and [T} + T3](Q* = 0) (right
panel) form factors at different valence pion masses without renormalization and
normalization. Different colors correspond to up quark CI, down quark CI, up/down
quark DI, strange quark DI and glue DI.

Repeating the analysis for different valence pion masses, we gather the results
of T1(Q?* = 0) and [T} + T5](Q? = 0) form factors at different valence pion masses
without renormalization and normalization in Fig. [5.13] We see clear signals for up
quark CI and down quark CI.
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Figure 5.14: Plot of the T5(Q? = 0) form factor at different valence pion masses after
renormalization without normalization. Different colors correspond to up quark CI
and DI, down quark CI and DI and glue DI.

Since the normalization condition Eq. is proportional to the T3 form
factor, we have shown the T form factor after renormalization in Fig. [5.14l It can
been seen that Ty and T3 have almost no signals under current statistics and so
likewise for the normalization constants ZqL and ZgL . Thus we use the normalization
constant A defined in Eq. (5.4.18) to normalize the T3 form factor and test it on the
[Ty + T] form factor with Eq. (5.4.19).
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Figure 5.15: Plots of momentum fractions (x) (left panel) and angular momentum
fractions J (right panel) at different valence pion masses after renormalization without
normalization. Different colors correspond to up quark CI and DI, down quark CI and
DI, strange DI and glue DI. The band is a linear fit of the data points to extrapolate
to the physical pion mass.
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The extrapolated results to the physical point with a simple linear fit under cur-
rent statistics are shown in Fig. [5.15] The results at the physical pion mass are
gathered in Table. after renormalization without normalization. Thus we have
the normalization constant A = 0.81(11) for the 7} form factor and test A on the
[T + T3] form factor to get C' = 1.08(25) which is consistent with 1 within error. This
justifies using the normalization constant A for the T form factor on the [T} + T3]
form factor with current statistics.

Table 5.2: Renormalized values of T}, [T7 + T3] and T» form factors extrapolated to
the physical pion mass without normalization. Sum, in the table is the sum of all
the quark CI and DI contributions. Sum in the table is the sum of all the quark and
glue contributions.

u(CI) d(CI) |wu/d(DI)| s(DI) glue Sum, Sum
Ti |0.347(16)]0.1298(91)[0.078(14)[0.050(16)] 0.54(15) |0.683(46)[1.23(17)

[Ty + 12][0.488(42)] 0.012(22) [0.100(29)[0.080(27)] 0.54(20) | 0.78(10) |1.32(25)
T, [0.141(44)]-0.118(24)]0.022(32)[0.030(30)-0.0003(2479)| 0.10(11) [0.10(31)

The final renormalized and normalized momentum fractions (z) and angular mo-
mentum fractions 2.J are listed in Table. . We have also listed the quark spin ¢4
from Ref. [T] at MS(u = 2 GeV). The orbital angular momentum fractions 2L are cal-
culated with 2L = 2J — ¢%. Our predictions of the momentum fractions (x)® (listed
in Table. are consistent with the phenomenological global fits at MS(u = 2 GeV)
such as CT14 [2] values (also listed in the same table) which are also consistent with
other global fits results [109] 110, 111}, 1T2], T13].

Table 5.3: Renormalized and normalized values of momentum fractions (z) and an-
gular momentum fractions 2J at MS(u = 2 GeV). The quark spin ¢ is from Ref. [I]
at MS(p = 2 GeV). The orbital angular momentum fractions 2L are calculated with
2L = 2J — ¢%. Sum in the table is the sum of all the contributions.

u(CI) d(CI) |[u+d|(CI)| w/d(DI) s(DI) glue Sum
() 0.283(39) | 0.106(16) | 0.383(54) | 0.0638(89) | 0.041(11)|0.443(61)| 1.0
9.7 0.397(62) | 0.010(18) | 0.407(67) | 0.082(26) |0.065(24)| 0.44(17) | 1.08(25)
g [ 0.917(34) |-0.337(20) | 0.580(39) |-0.070(12) |-0.035(9) | - | 0.405(44)
9L |-0.520(71)| 0.347(27) | -0.173(77) | 0.152(29) [0.100(25)|  — | 0.23(13)

6
8

Table 5.4: Renormalized and normalized values of momentum fractions (x) at MS(u =

2 GeV) compares with the CT14 [2] values. And the angular momentum fractions
2J at MS(pu =2 GeV).

u d [u — d] s glue
(r) |0.346(42)[0.170(20) ] 0.177(26) [ 0.041(11) [ 0.443(61)

(@) cr1a | 0-348(5) | 0.190(5) | 0.158(6) | 0.035(9) | 0.416(9)
97 [0.479(76) |0.091(34) | 0.387(63) | 0.065(24) | 0.44(17)
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5.6 Conclusion and future work

In summary, we have carried out a complete calculation of proton momentum and
angular momentum fractions at several overlap valence pion masses on a 323 x 64
domain wall lattice with overlap fermions. The energy-momentum tensor three-point
function calculations include both the connected insertion (CI) for up and down
quarks and disconnected insertion (DI) for up/down quark, strange quark and glue.
We have used complex Z3 grid sources to increase signals of the nucleon correlation
functions and Z, noise to estimate the quark loops. We have also used FFT on CI
three-point functions along with low mode substitution (LMS) on both the source
and sink nucleon. With the non-perturbative renormalization and normalization us-
ing momentum and angular momentum sum rules, we find the momentum fractions
and angular momentum fractions listed in Table. at MS(u = 2 GeV). We have
seen clear signals for up and down quark CI, whereas the up/down quark, strange
quark and glue DI need improvement through cluster-decomposition error reduction
(CDER) [114], ©0]. With such an improvement, we will have clear signals for the
T, form factor which should be able to stabilize normalizations. Finally, this work
should be extended to include other lattices with different volume and lattice spacing
to control systematic errors from finite volume and lattice spacing.

Copyright© Gen Wang, 2020.
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Chapter 6 Summary and outlook

As an ab initio calculation, Lattice Quantum Chromodynamics (QCD) provides the
possibility to study hadron structures from first principles and make predictions of
the less-known quantities. From this perspective, this dissertation first focuses on a
precise calculation of the pion form factor using overlap fermions on six ensembles of
2+1-flavor domain-wall configurations with pion masses varying from 137 to 339 MeV.
Taking advantage of the fast Fourier transform (FFT) and other techniques to access
many combinations of source and sink momenta, we find the pion mean square charge
radius to be (r2) = 0.433(9)(13) fm*, which agrees well with the experimental result,
which includes the systematic uncertainties from chiral extrapolation, lattice spacing
and finite volume dependence. We also find that (r2) depends on both the valence
and sea quark masses strongly and predict the pion form factor up to Q% = 1.0 GeV?
which agrees with experiments very well.

Then we use the nucleon matrix element of the traceless, symmetric energy-
momentum tensor (EMT) to calculate the momentum and angular momentum frac-
tions of up, down, strange quarks and glue inside the nucleon. Since the EMT of
each parton species are not separately conserved, we summarized their final angular
momentum fractions by considering mixing and non-perturbative renormalization at
MS(u = 2 GeV) and use the momentum and angular momentum sum rules to nor-
malize them. In order to improve the signals for the nucleon correlation functions
with source momenta, we developed new contractions for the grid sources to have
better statistics. Moreover, we have also developed the usage of FFT on CI three-
point functions along with low-mode substitution (LMS) on both the source and sink
nucleon. With these improvements, we report the renormalized momentum fractions
for the quarks and glue to be 0.557(61) and 0.443(61), respectively, and the renor-
malized total angular momentum fractions for quarks and glue to be 0.320(60) and
0.220(85), respectively (the sum is to be compared to 1/2).

However, there are still much more which could be done. As the largest systematic
uncertainties come from excited-state fitting, larger separations at good statistics are
needed to improve the predictions of the pion form factor calculation. Also, the
signal to noise ratio at near physical pion masses is much larger than the fitted
band, so increasing statistics here would give more reliable results. Besides more
precise predictions under Q? = 1 GeV?, we could also move our scope to Q> ~
10 GeV? which is of great interest for experiments and theories. This could be done
by using momentum smearing on the source side along with all the techniques used
in this dissertation to have precise predictions from low momentum transfer to the
perturbative region.

Due to the lack of cluster-decomposition error reduction (CDER) for disconnected
insertions, the current calculation of proton momentum and angular momentum frac-
tions may suffer from large systematic errors from excited-state contaminations and
a normalization issue which need to be solved in future calculations. Also, the cur-
rent non-perturbative renormalization procedure has large systematic uncertainties
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which need to be improved for a more precise calculation. Then we can proceed to
the calculations on more ensembles with different pion masses, lattice spacings and
volumes to have a reliable extrapolation to the physical limit.

Copyright© Gen Wang, 2020.
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