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Abstract
In the framework of Euclidean field theory we show that an infrared safe slightly modi-
fied version of Zimmermann’s subtraction scheme generates the perturbative solutions to the
Wilson-Polchinski renormalization group equations.



1 Introduction

On the occasion of Wolfhart Zimmermann’s 80th birthday I think that a short look at the
present status of Quantum Field Theory is certainly timely. I would like in particular to give
an example of the persisting fundamental role of many Zimmermann’s contributions in the
development of Quantum Field Theory.

No doubt quantum field theory is one of the major achievements of twenty’s century physics
[1]. Even if no interacting four dimensional model has yet been solved, an axiomatic framework
leading to a well defined scattering theory is now clearly defined and different constructive ap-
proaches have been set up for a class of models. Lehmann-Symanzik-Zimmermann construction
of scattering amplitudes has been and remains a basic step in the construction of a complete
theory. Among the constructive methods the most important are loop ordered perturbative
renormalization [2] and Wilson’s renormalization group (R.G.) [3]. I think that a short com-
parison of the use of these methods in the framework of perturbation theory is timely.

Loop ordered perturbative renormalization is the natural development of QED and has
produced exceptionally successful phenomenological analyses in the framework of the Standard
Model of Electro-Weak and Strong Interactions. Forgetting the problems related to infra-red
divergences the construction of scattering amplitudes and operator matrix elements is based
on the Feynman expansion with suitable subtraction prescriptions of the ultra-violet diver-
gences. A systematic solution to the ultra-violet problem first described by Bogoliubov and
Pasiuk, has found, after Hepp corrections [4], a clear and handy form in Zimmermann’s scheme
subsequently extended in collaboration with Lowenstein to the massless case [2], and by Bre-
itenlhoner and Maison to dimensional regularization [5]. The availabilty of this approach has
led to many achievements such as a rigorous renormalized construction of gauge theories, sys-
tematic construction of renormalized operators, a clear and rigorous study of short distance
physics.

Wilson’s renormalization group was introduced as an alternative approach to Quantum Field
Theory based on a systematic analysis of the scale transformation properties of Green func-
tions. The natural framework is Euclidean field theory which can be related to a corresponding
Minkowskian theory on the basis of Osterwalder-Schrader axioms [1]. The main goal consists
in the construction of the Feynman-Kac functional integral. The most relevant application is
the construction of gauge theories regularized on a lattice. The main purpose was and still is
a non-perturbative construction of QCD and, in particular, the proof of confinement. On a
lattice a scale transformation corresponds to the repeated replacement of the local fields with
their averages over lattice cells. One studies the behavior of Feynman-Kac integral under these
repeated substitutions. In the case of a theory built over a continuous manifold the analysis of
scale transformation on the Feynman-Kac functional measure leads to a differential evolution
equation for the measure.

In principle these evolution equations apply to the exact functional measure and do not rely
on any Feynman graph expansion, however, until now, direct application of Wilson’s approach
to the construction of field theories beyond perturbation theory have been limited to special,
however important, classes of models among which the most successful have been those involving
only fermionic, and hence nilpotent, field variables. The construction of the Gross-Neveu model



is the best known example[6]. In the general case one has to deal with an infinite sequence of
equations that, in the case of bosonic variables, have no natural truncation. In some situation
it is possible to justify the assumption of a measure remaining local after scale transformations
[7]; this opens a further way toward non-perturbative results. However quite often the infinite
sequence of evolution equations is truncated in a completely arbitrary way, often mimicking
results that traditionally were obtained from naively simplified and truncated versions of the
Schwinger-Dyson equations. The exact renormalized version of the Schwinger-Dyson equations
has been studied in the early sixties by Symanzik and by Wu; the case of a scalar theory in four
dimensions has been discussed by Johnson [8]. The analogy of this technique with Wilson’s
method should be better understood.

The application of the evolution equations to the construction of renormalized perturbation
theory described by Polchinski in his thesis attracted new attention on Wilson’s construction[9][10].
The essential reason for this interest lies in the major simplicity of the approach which is not
directly based on a diagrammatic expansion. That is: the perturbative expansion of the func-
tional measure leads to a series of terms each of which corresponds to a set of diagrams. Thus,
even in a perturbative approach, the evolution equations deal with sets of diagrams, instead
of dealing with single diagrams as the subtraction method does. Furthermore the differential
nature of the evolution equations overcomes the problem of overlapping divergences. This, as
shown by Hepp [4], is the most difficult part of the Bogoliubov’s renormalization project. In
the renormalization group approach the overlapping divergences are disentangled by the cut-off
derivative appearing in the evolution equation. This is just a pedagogical advantage, since one
does not need anymore to have recourse to forests, however one should not underestimate a
pedagogical advantage in a moment in which field theory is loosing part of the original interest
being often presented as a special limit of a more general string "theory”. On the other hand
one should not consider Wilson-Polchinski method as an alternative computational method of
renormalized amplitudes. Indeed the purpose of the short note is to prove that the pertubative
solution to the evolution equations leads to a Zimmermann subtracted Euclidean field theory.

Taking into account the limits of this note we shall try to give a general idea of the reasons
for this equivalence avoiding the formal aspects of a rigorous proof [11].

2 The Renormalization Group evolution equations

With the aim described in the introduction we shall limit our discussion to the most simple
situation considering an FEuclidean scalar field theory in 4 dimensions.

Wilson’s functional measure corresponds to an Effective Interaction which, when expanded
into Feynman diagrams, is identified with the functional generator of connected amputated
amplitudes built with the bare interaction and a doubly cut-off propagator, that is, with a
propagator carrying an ultra-violet cut-off Ay and an infra-red one A.

Wilson’s equations describe the evolution of the measure with respect to A. The crucial
part of the analysis consists in the proof that the Effective Interaction has a regular Ay — oo,
fixed A, limit. The final goal should be the study of the infra-red limit, i.e. A — 0, which leads
back to the renormalized (Schwinger) functions. However, fixing our mind on the ultra-violet
problem, we limit our discussion to a pre-infra-red situation in which the infra-red cut-off A



does not vanish. In this situation, if we restrict our discussion to perturbation theory, the role
of the mass turns out to be of limited interest. On the other hand, inserting a mass into the
propagator in perturbation theory, the A — 0 limit becomes trivial. ! Thus we do not pay
particular attention to the A — 0 limit and hence to the difference between Wilson’s Effective
Interaction and the generator of connected Green functions. This difference becomes relevant
whenever there are infrared problems that we do not want to face.

Therefore we introduce the ultra-violet-infra-red cut-off Fourier transformed propagator:
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Even if the best known version of the renormalization group evolution equation describes the
A dependence of the Effective Interaction, for renormalization purposes it is convenient to
consider the evolution equation of the Legendre transform of the Effective Interaction which is
identified with the functional generator of the one-particle irreducible (1-P.I. ) diagrams built
with the bare interaction and the above propagator [12][11]. We call this new functional 1-P.1I.
Effective Action and we label it with Vj 4,.

The evolution equation of the 1-P.I. Effective Action can be easily deduced noticing that the
A-derivative of each term of its expansion in Feynman diagrams only acts on propagators. If one
selects and cuts a line into an one-particle irreducible diagram, what remains is an amputated
connected diagram consisting of a chain of 1-P.I. parts linked by single lines. Therefore the
evolution equation can be represented as in the following figure:
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where double lines correspond to the propagator S and the crossed double one to S while
circles correspond to the 1-P.I. parts generated by Vj 5,. The same equation in functional form
appears as:
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'If however one tries to have a look beyond perturbation theory one immediately encounters well known
naturalness problems concerning the masses of scalars.



In the right-hand side of this equation 5’, S and 82V p,/0¢? are multiplied as matrices and the
traces of products are taken.
We translate this equation into a system of ordinary differential equations expanding:
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and introducing an analogous expansion for R a,[¢]- Notlce that the coefficients R, (p1, -, pn, A, Ao)
of the field expansion of Ry 5,[¢] are sums of series of terms corresponding to increasing numbers

of 1-P.I. parts. Indeed this is apparent from Fig.(3). However, if we consider loop expanded
quantities, the contribution of loop order v to R, (p1, -, pn, A, Ag) appears as a finite sum of
terms built with the contribution of lower loop order of the coefficients V,,, with n’ < n + 2.
Thus, if V5 vanishes at zero loop order, one never encounters infinite series?.

Next step consists in translating this infinite system of differential equations into a cor-
responding system of integral equations accounting for the initial conditions of the evolution
equation. In order to do this we need consistent bounds on the coefficients V,, and R,,. Using
Eq.(4) it is not difficult to show [11] that, if up to loop order v and uniformly in Ay, one has
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a completely analogous bound holds true for sup, ]8}; R,(p1, P, Ay Ao)|. Then the system of
integral equations:
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and, for n + k > 4,
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solves the evolution equations generating higher loop order terms in V,, satisfying analogous
bounds. Now these bounds turn our to involve polynomials in log(A/AR).

Furthermore both V,, and R,, have regular Ay — oo limits.

In this way one proves that the evolution equations produce a formally loop expanded 1-
P.I. Wilson’s Effective Action Vg[¢, A, Ag] which is defined as limy, . Vi a,[¢] and whose field
expansion coefficients satisfy the system of integral equations:
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2A mass term at zero loop order should be inserted into the propagator Eq. (1).
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and, for n +k > 4,

A
35 VR,n(ph"apmAaAR) = /Oo d;\
where Rp,(p1, -, Pns Ay Ag) = limpy oo Rn(p1, -, Dns A, Ag). It is apparent that the renormal-
ized 1-P.I. Effective Action satisfies a differential evolution equation which is straightforwardly
obtained from Fig.(3) and Eq.(4) replacing V) a, with Vz and the propagator in Eq.(1) with:
(1 —exp(p?/A?))/p*.

Now we can specify the purpose of this note as follows: we want to show that the contribution
of every single diagram to the solutions to the integral equations (5) and (6) and hence to the
renormalized version of Fig.(3) and Eq.(4) corresponds to a suitably subtracted version of the
Feynman amplitude associated with the diagram.

Notice that our set of integral equations ((5) and (6)) can be extended to the 1-P.I. Effective
Action in the presence of local composite operators. Formally to every operator one couples an
independent external field, whose dimension is obviously related to that of the operator. The
evolution equations for the coefficients of the field-external-field expansion of the 1-P.1. Effective
Action can be translated into integral equations accounting for initial conditions strictly anal-
ogous to Eq.s(5) and (6). It turns out [11] that the resulting renormalized composite operators
directly correspond the Zimmermann’s Ns[P(¢)] renowned operators.
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3 Comparison with Zimmermann’s subtraction approach

Here we come to the main goal of this note showing that in the Ay — oo limit an alternative
construction of the iterative, loop expanded, solutions to the R.G. integral equations is given
by an Euclidean variant of Zimmermann’s (Lowenstein-Zimmermann) subtraction method. It
is worth noticing that in many important instances the evolution equations are constrained
by invariance conditions for the measure. The most frequently met are the Slavnov-Taylor-
Ward identities. These conditions constrain the choice of the initial parameters. There are
situation in which the constraints have no solution and hence one finds anomalies, the typical
case is that of naive scale invariance. The analysis of invariance conditions is a crucial step of
renormalization theory, we do not discuss it here since it is shown in the existing literature that
this analysis follows the same lines in Wilson-Polchinski and subtraction approaches [11][10].

In our simplified example the unsubtracted, and hence possibly divergent, Feynman integral
corresponding to the diagram I' contributing to the Schwinger function S™ with an even
number, n, of external legs and m loops, has the form:
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where k = kq, ...., k,, is a basis of internal momenta of the diagram and p = py, ...., p,_1 a basis
of external momenta. Ir(p, k) is built with the propagator:

(p) = Ize ™ (7)
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and vertices
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The subtraction procedure consists in replacing Ir(p, k) with the renowned forest formula:
R SF Z H tdS IF p k) (9)
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where:
o Jr is the set of all forests of '
e S, defines the momentum routing in the sub-diagram ~

° tfi takes the p) Taylor expansion of L,(p, k) up to degree d., the superficial divergence
of 7,

. tﬁiy replaces A with Ay in the propagators

Notice the analogy with Lowenstein-Zimmermann’s [2] infrared subtraction scheme where an
auxiliary parameter s is introduced, analogous to our A, and the ultra-violet subtraction is
made at s = 0, in our example at A = Az. We do not perform any infra-red subtraction that
we should apply if we were interested in the A — 0 mass-less limit.

Let us call V4 [¢] the functional generator of the subtracted 1-P.I. Feynman amplitudes. The
coefficient function V,(p, A) of its field expansion appears as loop ordered formal series whose
term of order v is the sum of all the n-legs, v-loops, subtracted 1-P.I. diagrams. We have to
show that these coefficient functions satisfy the system of integral evolution equations (5) and
(6).

The basic point that we have to show is that the A-derivative commutes with the subtraction
operator as a consequence of the A-independence of the subtraction point. We start our analysis
studying the A-derivative of a subtracted graph.

In order to do this let us take the A-derivative of a generic subtracted Feynman integral
corresponding to a 1-P.I. diagram and hence contributing to V5. Due to the absolute conver-
gence of the momentum integral we are allowed to commute this derivative with the internal
momentum integration and hence we come to the k-momentum integral of 0y Rr(p, k). As al-
ready done we notice that an un-subtracted Feynman integrand depends on A only through the
propagators S and that the sub-diagram subtraction terms generated by the Taylor operators
tﬁw are A-independent since they are computed at A = Agr. Thus, in order to compute the
A-derivative, we have single out in Eq.(9) the contributions of the propagators of un-subtracted
sub-diagrams.

For a generic 1-P.1. diagram I" we define:

where
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and F7. is the set of forests non containing I' as an element. In other words, computing Rr (p, k)
we exclude the subtraction of the whole diagram. The reason for this definition lies in the
equation:

OARr(p, k) = OpRr(p, k) (12)

which means that, computing the A-derivative, one restricts the sum over the forests in Eq.(9)
to Fl.

Now some more diagrammatic analysis is needed. For every forest F' in F{., we say that
~ € F'is a maximal element of F' if it is not contained into other elements of F. Then we call
F, mazimal sub-forest of F, the set of maximal elements of F. Finally we label by . the set
of maximal sub-forests in Fp.. Notice that F}. coincides with the set of forests made of mutually
disjoint sub diagrams of T'.

A generic maximal sub-forest can be graphically represented as in the following figure:
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It is clear that any forest F' in J7. is equal to the union of forests Fy contained in 7y and
including it as an element, for every 7, element of the maximal sub-forest F', that is:

F = Userlslser, - (13)

Therefore we can write Eq.(11) in the form:

Rrp.k) =S > 1 X TI(-tS)Ir(pk) . (14)
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Given a maximal sub-forest F' of I' we define the reduced diagram I'/(@cr7) which is built
with the lines and vertices of I' not belonging to any element of F' and of a further set of
vertices corresponding to the elements 4 of F shrunk to point vertices. The reduced diagram
I'/(@5cF7) is relevant to our discussion since the corresponding integrand identifies the part
of Ir(p.k) which is not concerned by the subtraction operation corresponding to the forest F.
Indeed one can write:
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This expression is identical to that associated with a diagram coinciding with the reduced

diagram in which the vertices corresponding to the elements 4 in F' carry factors equal to

(—t?&y)]%;,(p, k). These factors, i.e. the brackets above, are, of course, A-independent. There-
fore, inserting Eq.(15) into Eq.(12) one has:
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where I'/ (1 @5 7) means the reduced diagram I'/(@scr ) deprived of the line [ and we have
used the fact that the A-dependence comes from the propagators.

Now we interchange the summation over the forests with that over the lines of I" upon
which the A-derivative acts. This is possible since every line [ contributes to the above sum in
correspondence with the forests F' in F|. whose elements do not contain it. If we extend the
idea of forest to diagrams, such as I'/l which are connected but not necessarily 1-P.I., the set
of forests we are speaking of is Fr; which, of course, is contained in Fy. Thus we get:

A28Aer(p,/€)=Sr Z g(ﬁl+kl Z H tS IF/l (p, k), (16)
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Let us now consider the possibility of I'/l not being 1-P.I.. The diagram I'/l is however con-
nected and it decomposes according to its skeleton structure into lines linking 1-P.I. parts. In
the present situation, in which the diagram is obtained from a 1-P.I. diagram cutting the line [,
I'/l is either 1-P.I. or consists in a chain 1-P.I. sub-diagrams linked by lines. Therefore It/ (p, k)
factorizes into a product of line and 1-P.I. factors, one of the end points of the line [ being at-
tached to the first 1-P.I. sub-diagram of the chain, the other one to the last. Labelling these
sub-diagrams by «; , i = 0,..,n(I',l), where n(I',[) is a non-negative integer, we can write:

n(T,0) )
-[F/l(p7 k) = Iao(p7 k) H S(ﬁz+kl>>laz(p7 k) . (17)
i=1
If '/l is 1-P.1., the product above reduces to one.
Now a forest F'in I'/l appears as the union of, possibly trivial, forests in the above mentioned
chain of 1-P.I. sub-diagrams, therefore the sum over the forests in Fr, decomposes into the
product of the sums over the forests in each sub-diagram «; and hence we have:
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Now we consider how the A-derivative of a diagram must be subtracted in order to have absolute
convergent internal momentum integrals. The basic remark is that the A-derivative only acts
on lines giving (Eq.(2)) —exp((p; + k1)2/A?)/A%. Therefore we see that § introduces a cut-off
in the corresponding line momentum (k;) and the needed subtraction formula must be limited
to the forests in Fr/;. Hence one gets back Eq.(16) and the commutativity of subtraction and
A-derivative is proven.

Summing over all diagrams one also sums over all the possible values of n(I", ) and it clearly
appears that the structure of the rightmost term of Eq.(18) coincides with that of the right-
hand side of the evolution equation of the Effective Action Vx[¢] and, of course, with that of
its coefficient functions. Indeed one finds a sum over the chains of n 1-P.I. amplitudes linked
by propagators S and closed by S.

It remains to verify the correct counting of diagrams. In other words until now we have
shown that, computing the A-derivative of every 1-P.I. subtracted diagram, one gets a com-
bination of subtracted diagrams with the structure appearing in Fig.(3). What remains is a
purely combinatorial problem, that is to verify that computing the A-derivative of V,, that
is summing all diagrams together, one gets an expression in which all the expected diagrams
appear with the expected combinatorial factor. This is just the consequence of the discussed
commutativity of subtraction and A-derivative. Indeed the fact that before subtraction all the
expected diagrams appear with the right factors is proven by a straightforward application of
the functional method. At the formal level, disregarding divergences, the functional generator
of Feynman diagrams Z is perfectly well defined, the generator of connected diagrams is In Z
and that of 1-P.I. diagrams is the Legendre transform of In Z. Now it is easy to show [11] that
Eq.(4) is satisfied by the formal graph expansion under the hypothesis that the derivative only
acts on lines. This guarantees the correct counting of diagrams and completes our proof.

In order to give a significant example let us consider the three line, two leg, diagram shown
in Fig.(19):

1
AmB (19)
\3/

This diagram seems to violate what just claimed, indeed it contains three indistinguishable
internal lines, and hence its A-derivative gives three identical contributions in which S is linked
to a single diagram with two identical lines. On the contrary, in a diagrammatic expansion of
Fig.(3) and Eq.(4) this diagram should appear only once. This is however a wrong argument
since it forgets the combinatorial factors of the diagrams. A diagram with N sets of n;, 1 =
1,..., N, indistinguishable lines carries a combinatorial factor equal to 1/([TY., n,;!) that is 1/6
in the example. Combining the three identical contributions from the three lines together we
get the resulting contribution to the evolution equation with weight 1/2 which is exactly the
combinatorial factor of the corresponding diagram with two identical lines.

In conclusion we have shown that, applying a slightly modified subtraction method to the
Feynman diagrams built with the propagator S given in Eq.(7), and possibly with its spinor, or



gauge field variants, yields to a diagrammatic construction of V,[¢| solving the R.G. evolution
equation (4).

However we want also to show that the field expansion coefficients of V,[¢] satisfy Eqs.(5)
and (6) with the initial conditions at A = Ag appearing in Eq.(5), and furthermore that the
limit A — oo of 8}; Vi for n 4+ k > 4 vanishes.

It is apparent that V, o and V4 satisfy Eqs.(5). Indeed V, 5 is the sum of two leg proper
diagrams which, with the exception of the trivial diagrams generated by the first two vertices
in Eq.(8), are superficially divergent and hence subtracted to zero at p = 0 and A = Ag with
their first derivative in p?. Furthermore V, 4 is the sum of four leg proper diagrams which, with
the exception of the trivial diagram generated by the third vertex in Eq.(8), are superficially
divergent and hence subtracted to zero at p = 0 and A = Ag.

Concerning the derivatives of the coefficients 8{; Van for n + k > 4, they only receive
contributions from superficially convergent diagrams which are easily seen to vanish in the
A — oo limit using the inequality:

(1 —exp(—p?/A?))/p* < 2/(p* + A?), (20)

and pure scale arguments.

Therefore we conclude that the construction of the Effective Action Va[¢] by the above
defined subtraction method leads to a solution of Wilson-Polchinski evolution equation satis-
fying the boundary conditions characterizing Wilson’s construction, thus it leads to the same
functional:

VA[gﬁ] = VR[¢,A, AR] .

4 Conclusions

In conclusion, comparing the Wilson-Polchinski renormalization group and the BPHZ subtrac-
tion approach one sees that in both cases one is dealing with an infinity of quantities related
by an infinity of equations and hence the chosen ordering is a crucial step of the construction
procedure.

The subtraction approach deals with one diagram at a time and the physical amplitudes
appear as formal expansions into subtracted diagrams which must be ordered in some way. The
loop ordering is the typical choice.

The R.G. integral equations (5) and (6) for the coefficient functions of the field expanded
1-P.I. effective action are not strictly related to diagrams, hence a wider class of recursive
construction is in principle open. However the right-hand sides of the evolution equations
appear as the sum of series which are infinite due to the presence of chains of two-point insertions
which in principle can be summed. This is particularly critical in the scalar field case due to
the quadratic divergence of the mass terms.

The set of evolution equations for the coefficient functions is infinite and open, in the sense
that it does not contain any closed finite sub-set, that is, any finite sub-set of equations involving
a finite number of coefficient functions. Indeed the evolution equation of the coefficient Vg,
involves Vg ,12. Thus, in order to build a solution, one must truncate in some way the sequence
of the Vg, evolution equations.
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We have limited our study to the loop ordered perturbative expansion in which the sequence
of evolution equations appears closed at any order. This has allowed us to study the details
of the resulting amplitudes proving that their expansion into diagrams coincides with that
generated by the subtraction method with a suitable, however natural, choice of the subtraction
prescriptions.

With the aim of simplifying our presentation we have also limited our discussion to the
simplest scalar model disregarding invariance properties and possible infra-red singularities,
thus, in a sense, remaining far apart from the physical applications.

Our hope is that the present discussion could further clarify the relations among different
construction techniques of Quantum Field Theory confirming the central role of Zimmermann’s
work.
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