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Abstract. Scalar-Gauss-Bonnet (sGB) gravity with a coupling between the scalar field
and the Ricci scalar displays interesting properties, including black hole stability, agree-
ment with the binary pulsar constraints, and compatibility with general relativity as a
cosmological late-time attractor. Previous studies have shown that spherical collapse in
this framework is well-posed over a wide parameter range. Here, we extend this anal-
ysis to examine 3 + 1 evolution for static and rotating black holes, confirming that the
evolution remains hyperbolic if the weak coupling condition is not strongly violated. Hy-
perbolicity loss is linked to the gravitational sector of the physical modes, rather than the
gauge choice. Our results also indicate that stationary, near-extremal scalarized black
holes may exist in the Ricci-coupled sGB theory for a large enough region of the param-
eter space with the scalar field sourced by the spacetime curvature instead of the black
hole spin.
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1 Introduction

The rapid development of gravitational wave detectors promises that, in the coming decades, we will
have the observational data required for precise gravity tests [1, 2, 3, 4, 5, 6, 7, 8]. Accurate theoretical
gravitational waveforms, for both general relativity (GR) and its modifications, are crucial for interpreting
these events. While GR waveform accuracy is steadily improving, simulations beyond GR remain under
development due to two primary challenges: field equations become more complex when the GR action is
modified, and well-posedness, proved in certain 3+ 1 GR formulations [9, 10, 11, 12], does not necessarily
apply to modified gravity [13, 14].

Scalar-Gauss-Bonnet (sGB) gravity emerged in the last two decades as an interesting and viable
effective field theory model that can be very useful for examining the possible deviations from GR. One
of the important properties of this theory is that black holes can support scalar hair [15, 16, 17, 18, 19],
including spontaneously scalarized solutions [20, 21, 22]. Even though hyperbolicity loss is seen even in
linear perturbations [23, 24], spherical symmetry allows for a hyperbolic evolution under weak coupling
[25, 26]. The full 3 + 1 field equations pose additional challenges, though, as the standard harmonic
gauge is not well-posed [13]. A significant breakthrough showed that a modified harmonic gauge leads
to well-posed 3 + 1 equations for weak coupling [27, 28], enabling the development of 3 + 1 numerical
relativity codes [29, 30] and modified puncture gauges [31, 32].

An interesting extension of the classical sGB action is to introduce a coupling of the scalar field to the
Ricci scalar [33]. This extension enables hyperbolic evolution in spherically symmetric scalar field collapse
[34] and offers other important features like black hole stability and evasion of binary pulsar constraints
for a certain parameter range [35]. Additionally, it addresses challenges in cosmology, allowing GR to be
a cosmological late-time attractor [36]. However, early-time issues persist [37], requiring the addition of
further operators to cure them [38]. In the present paper, we explore the well-posedness of Ricci-coupled
sGB gravity in the 3 4+ 1 formulation using the modified gauge proposed in [27, 28] within the puncture
gauge approach [31, 32].

We follow the conventions in Wald’s book [39]. Greek letters u, v, ... denote spacetime indices and
they run from 0 to 3; Latin letters 4, j, ... denote indices on the spatial hypersurfaces and they run from
1to3. Weset G=c=1.

2 Theoretical background
We consider a scalar-Gauss-Bonnet theory with a Ricci coupling having the following action

/d4x\/?g(R+X — B(p)R+ @RéB), (1)
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5= Tor

where R is the Ricci scalar, ’RéB is the Gauss-Bonnet invariant R%B =R? —4R,, R*Y + R, 0o R*P7, @ is
the scalar field with a kinetic term X = —%VHQDVMQD being coupled to both the Ricci scalar and the Gauss-

Bonnet invariant. The coupling function A(¢) has dimensions of [length]? and B(¢) is dimensionless. Its
equations of motion yield
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with Q,, = V.V, A(p).

For the numerical solution of the above field equations we use the modified CCZ4 formalism introduced
by [28, 27, 31, 32]. More detail on that, including the explicit form of the evolution equations for the
3 + 1 formalism can be found in [40].

The coupling functions A(p) and B(p) we will work with are the following

Ae) = Aap¢?, (4)
Ble) = Bricc®’- (5)
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This choice is motivated by the fact that it allows the so-called spontaneous scalarization [41, 20, 21,
22]. Therefore, the weak field limit coincides with Einstein’s gravity while for strong enough spacetime
curvature a Kerr black hole destabilizes, giving rise to a black hole with scalar hair. A pure ¢? term in
(4) will lead to scalarized but unstable black hole solutions. For large enough Sgicc, though, the resulting
black hole solutions are linearly stable [33] similar to the introduction of higher order in ¢ terms in the
A(y) coupling [20, 42, 43].

2.1 Effective metric

The equations of motion remain hyperbolic if their principal part is diagonalizable with real eigenvalues
and a complete, linearly independent set of bounded eigenvectors that vary smoothly. The gauge sector
eigenvalues lie on the null cones of the auxiliary metrics (which are introduced in the modified harmonic
gauge [28, 27]), while the physical sector is governed by a degree-6 characteristic polynomial, which
factorizes into quadratic and quartic polynomials [44]. The quadratic polynomial, defined by an “effective
metric,” corresponds to ”purely gravitational” polarizations, whereas the quartic one generally involves
both gravitational and scalar field polarizations.

Although the quartic polynomial represents the “fastest” degrees of freedom [44], hyperbolicity loss
does not necessarily occur there, and it is challenging to analyze hyperbolicity in that sector. Thus, we
focus on “purely gravitational” polarizations, which align with observed simulation breakdowns in our
previous findings [45]. Nevertheless, non-hyperbolic behavior may also arise from the quartic polynomial
eigenvalues.

In the Ricci-coupled sGB theory, the effective metric yields

ger = 9" (1 = Blp)) — ", (6)
and its determinant, normalized to the GR value, can be expressed as
det(g%) 2 i y hy
Wg‘f’) = (M) det {i [(’Y T(1=B(p) —Q7)(1 + ot — B(w)) — %QL( 5])
~(1- Blenett 22 + oot | (7)
where Q7 = ylAJOM, QL = —n, AL and Q= n,n, Q" In the results shown later, we will

consider the normalized determinant

5 det(gy)

Ger = (1 +QH — B()) det(gi)

(8)

which has no divergences when hyperbolicity is lost. It is also normalized to unity when no scalar field
is present.

2.2 Weak coupling condition

sGB can be viewed as an effective field theory (EFT) that arises as a low energy limit of a more fun-
damental theory. In order for our theory to be justified and valid as an EFT, though, one has to make
sure that we are not beyond the threshold where the EFT breaks down and the higher derivative terms
become relevant. This is ensured as long as, throughout its evolution, the theory is in the weak coupling
regime. This yields the following Weak Coupling Condition (WCC), [32, 45]:

VIN(@I/L < 1. (9)

Here L is the inverse of the shortest physical length scale characterizing the system, defined as
L7t = max{|Ryy |2, 19,0, 1V, V0] /2, [REp |V} (10)

3 Results

8.1 Numerical set-up and hyperbolicity loss treatment

The work [34] demonstrated that 1+ 1 non-linear evolution in Ricci-coupled sGB theory remains hyper-
bolic across a wide parameter space. Extending this analysis to 3 + 1 evolution presents an important
and natural, although complicated, next step and it is the focus of the present paper. Another important



SOTHNODYML-2024 IOP Publishing
Journal of Physics: Conference Series 3002 (2025) 012001 doi:10.1088/1742-6596/3002/1/012001

103 ——MR-HR 1 103
---- D4(LR-MR

104
I

/\< ---- D4(LR-MR)

y 10° |
10° E
10—7 L L L

100 150 200 250
t/M

Figure 1: The difference between the scalar field and Hamiltonian constraint evolution performed for three
different resolutions for Agg/M? = 6, vap = 0, and Bricc = 10. The three resolutions are chosen to have
96 (low resolution), 128 (medium resolution), and 160 (high resolution) points at the coarser level in each
spatial direction, with 6 refinement levels, and a domain size of 256 M. The difference between low and
medium resolution (red dashed line) is multiplied by the fourth-order convergence factor Dy = Ziii%%;

(left panel) The average value of the scalar field at the apparent horizon. (right panel) The average value
of the Hamiltonian constraint at the horizon.

difference with respect to [34] is that they investigate scalar cloud collapse, while we evolve an unstable
Kerr black hole which scalarizes during the evolution.

By employing a modified puncture gauge for sGB gravity [27, 28, 31, 32], we hypothesize that hyper-
bolicity loss, at least for the simulations performed, is tied to the physical modes of the purely gravitational
sector, rather than the mixed scalar-gravitational sector, in a similar way to sGB gravity [44]. This is
indicated by the determinant of the effective metric (8), which turns negative shortly before the simula-
tion fails, suggesting that the mode speeds may either diverge or become degenerate [44, 45]. Below we
argue, though, that hyperbolicity is preserved when the weak coupling condition is satisfied and in the
limiting case — even slightly violated [45]. For that purpose we employ a newly developed modification
of GRFolres [46] (based on GRChombo [47, 48, 49]), that was implemented taking into account the Ricci
scalar coupling in eqs. (2). More details about the code can be found in [40]. The chosen resolution is
128 points in each spatial direction with 6 refinement levels and a domain size of 256 M .

Our initial data is an unstable Kerr black hole (with respect to scalar field perturbations). On top of it
we superimpose a Gaussian scalar field pulse with a marginal amplitude located at roughly 20M outside
the black hole horizon. Triggered by the scalar field pulse, scalar hair starts developing around the black
hole. More specifically, the scalar field grows exponentially either until it reaches equilibrium or a loss of
hyperbolicity occurs. Such loss of hyperbolicity typically arises first within the black hole horizon and
can later extend beyond it [50, 51, 52]. As long as this non-hyperbolic region remains confined within
the horizon, it remains causally disconnected from the rest of spacetime and it can be still accepted
as a viable black hole solution. However, from a numerical perspective, any elliptic region within the
computational domain leads to unavoidable numerical instabilities and thus a code crash. Consequently,
to pinpoint the boundary between hyperbolic and non-hyperbolic solutions outside the apparent horizon,
it is advantageous to turn off the Gauss-Bonnet coupling inside the black hole and slowly turn it on as
the horizon is approached. Since this “change” of the field equations happens only inside the horizon, it
does not affect the black hole dynamics outside the horizon. The procedure and its viability are described
in detail in [31, 32, 40].

As evidence for the validity of the developed numerical relativity code, a convergence test is presented
in Fig. 1, where the time evolution of the scalar field at the black hole horizon and the Hamiltonian
constrain are displayed for three different resolutions. We observe that the convergence matches well to
a fourth-order as expected.
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Figure 2: The mean value of the scalar field at the apparent horizon () ,j; as a function of the normalized
black hole mass M/+/Agp for sequences of black holes with ygg = 0 and two different values of the Ricci
coupling constant fricc = 2 and Pricc = 8. The squares are the end states of the 3 4+ 1 simulations of
black hole scalarization while the lines depict the full sequence of solutions obtained through solving the
static field equations. The sequences of red and black squares are terminated at the last model for which
we were able to perform hyperbolic evolution, since black hole evolutions with lower M/+/Agp develop
hyperbolicity loss during the scalar field growth.

0.0

8.2 Hyperbolicity of black hole non-linear evolution in Ricci-coupled sGB theory

We first present results for the evolution of non-rotating black hole sequences with increasing mass. Two
values of the Ricci coupling constant, Bricc, are chosen and they both ensure that the resulting static
black holes are linearly stable. The mass and scalar field at the black hole horizon, shown in Fig. 3,
represent the end states of the numerical simulations after the black hole scalarization has settled to
a quasi-stationary solution. The red and black squares correspond to the two values of Srijcc. Only
hyperbolic evolutions are shown, as for the rest of the simulations (with a higher scalar charge and lower
mass) hyperbolicity is lost early in scalar field development [45]. As Fig. 3 illustrates, higher scalar fields
at the horizon (before hyperbolicity loss) are achievable with the smaller value Bgric.c = 2. Conversely,
increasing fricc broadens the range of M/+/Agp for stable evolution, consistent with spherical symmetry
findings [34].

For comparison, Fig. 3 also includes solid and dashed lines representing static field equation solutions
employing a modification of the 1D code developed in [20]. These lines depict all regular, asymptotically
flat, and linearly stable black hole solutions, irrespective of hyperbolicity. The lines originate from
(p)ag = 0 at the GR bifurcation point and end at smaller M/y/Agg. The close agreement between
lines and points confirms the accuracy of the GRFolres extension. The static solutions span a wider
range of M/v/Agp than the models from non-linear evolution, as black holes with larger (¢),; cannot
form dynamically through hyperbolic evolution. Similar to pure sGB gravity [45], only small scalar field
solutions are hyperbolic.

Note that hyperbolicity depends on both the final black hole state and the path to this configuration.
In Fig. 3, we start from GR initial data that, due to coupling function and parameters choice, leads to
scalar field growth as the black hole is unstable under scalar field perturbations. Starting from constraint-
satisfying scalarized black hole initial data would likely prevent the rapid scalar field growth, possibly
preserving hyperbolicity over a broader parameter range.

To understand hyperbolicity loss, let us examine a single black hole’s evolution. Fig. 6 shows snapshots
of the scalar field evolution (top panel) and the normalized determinant of the effective metric, Geg eq.
(8) (lower panel). The first snapshot shows the scalar field as it begins to develop, and the last one
captures the step just before the code crashes. In the Geg plots, black areas indicate negative values,
signaling hyperbolicity loss. Inside the black hole horizon (marked by a dashed white line), the Gauss-
Bonnet coupling is turned off, with A(¢) = 0 and S(p) = 0 near the singularity, as detailed above. That
is why it is satisfied that Geg = 1 there. The coupling is completely reactivated within the horizon,
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Figure 3: Time evolution of a non-rotating black hole with A\gg/M? = 4, ygB = 0, BRricc = 2. Several
coordinate times during the scalarization are plotted, capturing the evolution just before the code breaks
down due to a loss of hyperbolicity. Note that the time frames are not equally spaced to better demon-
strate the development of a negative Geg region. In each figure, both z —y and x — z slices are depicted.
The apparent horizon is plotted as a white dashed line. (top) Time evolution of the scalar field. (bottom)
Time evolution of the normalized determinant of the effective metric G defined by eq. (8). Negative
values of Geg are depicted in black.
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Figure 4: The left figures depict the scalar field evolution for both hyperbolic and non-hyperbolic black
hole evolutions. The time derivative of the scalar field is presented in the right figures. Stars indicate the
moment of the evolution when hyperbolicity is lost, which typically happens when the scalar field starts

growing during spontaneous scalarization.
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Figure 5: The evolution of the weak coupling condition defined by eq. (9) for the same models as in Fig

4.

preventing deviations from the true solution outside the black hole [31, 32].
The primary observation is the formation of a Geg < 0 (black) region just before the code halts,

strongly indicating that the code failure is due to hyperbolicity loss in the gravitational sector governed
by the effective metric (8). Like pure sGB gravity, this most probably cannot be resolved by gauge

changes.

In Figs. 4 and 5 we plot the time evolution of the scalar field, its time derivative and the weak coupling
condition defined by (9) for models with fixed M/+/Agp. The simulations are performed for non-rotating
black holes where [ric. varies. The range of Sricc is chosen on the threshold of hyperbolicity loss. A
star at the end of some lines marks hyperbolicity loss while for the rest we observe a saturation of the
scalar field to a constant. Interestingly, even though the non-hyperbolic model can reach a larger scalar
field before the code breaks down, its time derivative is actually smaller. This is another evidence that
the loss of hyperbolicity is strongly affected by the gradients of the metric potentials and the scalar field

and, therefore, it is affected by the initial data choice.
The weak coupling condition in Fig. 5 has an oscillatory behavior at early times, which is an artifact
of the changes in the scalar field gradient before it settles to an equilibrium value. Clearly, one can go

slightly beyond the weak coupling condition while still maintaining hyperbolicity since the weak coupling
condition reaches the order of unity before hyperbolicity is lost.
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Figure 6: The scalar field on the pole for models with increasing angular momentum ag/M, having
M/\/)\G = 0.457 YGB = 0 and BRicc = 8.

3.3  Rotating black holes with Ricci scalar coupling

A key question is whether hyperbolicity is preserved for the models in the previous section when rotation
is included. To explore this, we selected as initial data a black hole model near hyperbolicity loss in Fig.
2 and evolved it with gradually increasing black hole angular momentum. The scalar field evolution at
the horizon, presented in Fig. 6, indicates stable (thus hyperbolic) evolution even for high rotation rates.
We could have a stable, well-behaved evolution as high as ag/M = 0.9. If one gets closer to the extremal
limit then stable evolution requires fine-tuning of the auxiliary simulation parameters associated to the
gauge and the CCZ4 numerical dampings [31, 32].

4 Conclusions

In this paper, we investigated the 3 + 1 non-linear evolution of static and rotating black holes in scalar-
Gauss-Bonnet (sGB) gravity, incorporating an additional coupling between the scalar field and the Ricci
scalar. To achieve this, we developed a modified version of the GRFolres code, based on GRChombo, to
enable a self-consistent coupled evolution of the field equations.

Our results show that, in line with mathematical analysis, the modified gauge developed in sGB
gravity [27, 28, 31] leads to hyperbolic evolution with the addition of a Ricci coupling, as long as the
weak coupling condition is met. Interestingly, well-posedness is numerically maintained even slightly
above the threshold where the weak coupling condition is violated for both static and rotating black
holes. As a notable outcome, we found that rotating black holes with a scalar field sourced by the
spacetime curvature can exist at high angular momenta, close to the extremal limit. This contrasts with
prior studies [53] in sGB gravity, where the domain for black hole existence narrowed significantly near
the extremal limit due to regularity condition violations at the horizon. Our results suggest that with
an appropriate choice of coupling between the scalar field and the Gauss-Bonnet invariant, similar near-
extremal scalarized black holes with a non-negligible scalar field may also exist in pure sGB gravity. A
systematic study of stationary solutions in this context is ongoing.

It is also interesting to compare the thresholds of hyperbolicity loss in Ricci-coupled sGB theory and
in sGB gravity with a more sophisticated coupling function that includes both quadratic and quartic
scalar field terms. This alternative coupling also stabilizes the scalarized solution, even without a Ricci
coupling. Based on previous studies [40], we can confirm that while these theories are distinct, the
thresholds for hyperbolicity loss in terms of scalar field strength and weak coupling condition violations
are similar. Therefore, it will be interesting to explore how future observations, such as gravitational
waves from black hole mergers, could potentially distinguish between these two cases.
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