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Among the objectives for large-scale quantum computation is the quantum interconnect: a device that uses photons
to interface qubits that otherwise could not interact. However, the current approaches require photons indistinguish-
able in frequency—a major challenge for systems experiencing different local environments or of different physical
compositions altogether. Here, we develop an entirely new platform that actually exploits such frequency mismatch
for processing quantum information. Labeled “spectral linear optical quantum computation” (spectral LOQC), our
protocol offers favorable linear scaling of optical resources and enjoys an unprecedented degree of parallelism, as an
arbitrary N-qubit quantum gate may be performed in parallel on multiple N-qubit sets in the same linear optical
device. Not only does spectral LOQC offer new potential for optical interconnects, but it also brings the ubiquitous
technology of high-speed fiber optics to bear on photonic quantum information, making wavelength-configurable and
robust optical quantum systems within reach.
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1. INTRODUCTION

The basic building block of the long-sought quantum computer is
the quantum bit, or qubit, a two-dimensional quantum system
that can be controlled, read, and entangled with other qubits [1].
In light of the myriad qubit platforms currently in contention [2],
it is likely that the ultimate quantum computer will combine
several technologies as a hybrid system in which dissimilar and
physically separated qubits are joined via universal quantum in-
terconnects—a network dubbed the “quantum internet” [3,4].
In chis vision, quantum information must be transmitted over
appreciable distances, a task for which photons prove uniquely
capable. Photonic qubits operate equally well at cryogenic and
room temperatures, suffer from virtually no decoherence, and are
readily manipulated with optical components. Add to these the
fact that they travel at the speed of light, and photons provide
unrivaled performance in interfacing separate quantum systems.
The ideal photonic interconnect should also be capable of full-
fledged quantum information processing in the optical domain,
facilitating complex operations between heterogeneous material
qubits that—whether because of thermal, spectral, or spatial in-
compatibility—cannot interact directly. However, the advantages
that make photons such sound quantum information carriers
come at a cost: forcing two single photons to interact, as required
for multiqubit operations, is notoriously difficult with standard
optical nonlinearities. In 2001, Knill, Laflamme, and Milburn
(KLM) [5] revolutionized photonic quantum computing by
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showing that such nonlinearities can actually be realized through
detection, deriving a universal quantum computing architecture
based on phase shifters, beam splitters, and photon counters—
so-called “linear optical quantum computation” (LOQC). Yet,
the spatial encoding of conventional LOQC proves entirely
ill-suited for interconnecting heterogeneous qubits: not only is it
unavailable in a single-mode optical fiber, the most robust and
efficient medium for long-distance optical transmission, but
the use of a single frequency (or at least a single spectral mode)
precludes direct coupling into and out of materials possessing
distinct resonances.

In this paper, we propose and theoretically develop a photonic
computing platform that addresses both problems. Instead of
viewing frequency mismatch as an obstacle to optical intercon-
nects, we deem it an opportunity and capitalize on it for encoding
quantum information. Termed “spectral LOQC,” our protocol
consists of photonic qubits that occupy two discrete spectral
modes and are operated on by Fourier-transform pulse shapers
and electro-optic phase modulators, standard components in
classical telecommunications with purely electrical control param-
eters. Since each qubit shares a common spatial mode, stability
against environmental fluctuations is assured, and all photons can
be transmitted over long distances in well-established fiber-
optic networks. This signifies a major departure from spatial/
polarization-mode LOQC, where stabilizing relative phase be-
tween separate spatial modes is crucial and requires a nontrivial
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amount of work. And unlike previous time-frequency computing
proposals [6,7], which rely on ultrafast pulsed modes, our use of
narrowband modes reduces speed requirements in both manipu-
lation and detection and can interface directly with disparate
atomic levels. Our approach thereby offers new opportunities for
both interfacing matter qubits and strengthening time-frequency
quantum information in general.

2. PROTOCOL COMPONENTS

Due to their large Hilbert spaces and compatibility with classical
telecommunications, the time and frequency characteristics of sin-
gle photons have garnered increasing interest as resources in quan-
tum information processing: chronocyclic protocols for quantum
cryptography have exploded in recent years, with advances in both
theory [8—10] and experiment [11-13]. However, it is one thing to
transmit and measure spectro-temporal modes, as required in
quantum key distribution; it is an entirely different matter to
mix and manipulate these modes at the single-photon level, man-
datory for quantum computation. Clever protocols appear possible,
though: quantum pulse gates have been proposed for chronocyclic
operations [7], and a complete time-mode-based LOQC proposal
makes use of polarization rotation and delay to mix optical time
bins located in a single spatial mode [6]. Yet, because of the ultrafast
nature of the modes involved in either example, sophisticated non-
linear optical control is required, either by specification [7] or by
necessity, due to the difficulty in realizing sufficiently long
polarization-induced delays [6].

To remove such restrictions, here we consider monochromatic
frequency bins [14], such as those in classical dense wavelength-
division multiplexing. Spectral modes offer additional benefits ab-
sent in temporal modes, such as straightforward high-resolution
measurement, reduced constraints on detector jitter, and the pros-
pect for temporally simultaneous processing of multiple modes.
For example, time-to-frequency conversion has been used to ex-
tract temporal information too fast for direct detection [15,16],
highlighting a practical advantage of working in frequency space
instead of time. But while spectral quantum modes have been
considered in the context of continuous-variable cluster-state
quantum computing [17-19]—an alternative approach to the
standard circuit model—no true spectral LOQC protocol has
been formalized.

The Hilbert space in which we work consists of a countably
infinite set of modes with frequency w,, with 7 any integer.
Spatial and polarization degrees of freedom are assumed constant
over all frequencies and are neglected. The fixed spacing between
modes is Aw = @, | - ,, so that a single dual-rail qubit span-
ning modes p and g assume the form

ly) = al0), + fI1); = al1,0,) + 5[0,1,), 0]

where |a]? + |8]> = 1. Here, the subscript L denotes the logical
state, whereas |NV,) = (N!)‘l/z(fz;)Nmp) corresponds to the
physical Fock state with N quanta occupying mode p. As in
the original KLM proposal, the modes p and g need not be
adjacent on the grid but can be chosen for convenience in real-
izing a particular operation. Figure 1(a) provides a visualization of
this spectral encoding; in this case, a single photon at frequency
w, represents |0);, whereas a photon at @, signifies |1);. The
computational operations we implement are best represented
by their action on the positive-frequency electric-field operator
[20,21], expressed before a given operation as
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Fig. 1. Building blocks for spectral LOQC. (a) Dual-rail qubit encod-
ing. A single photon corresponds to [0); or |1); depending on which
one of two modes it occupies. (b) Fourier-transform pulse shaper.
This applies arbitrary phases to each spectral mode, physically, by sepa-
rating and recombining frequency components (left), and conceptually,
as a multimode element operating on all rails individually (right).
(c) Electro-optic phase modulator. This device (left) applies an arbitrary
temporal phase periodic at the inverse mode spacing. In rail form, the
modulator acts as mode mixer that can move photons across frequency
states (right). The labels Ay and A; mark the zero and one modes for a
representative qubit.
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where we have neglected unimportant scaling factors and used the
symbol 2, (4,) to denote mode 7’s annihilation operator before
(after) the optical transformation.

Motivated by feasibility, we build our computational opera-
tions on components common in telecommunication networks.
In general, all computing operations can be decomposed into
phase shifts and cross-modal couplings. For the former, a Fourier-
transform pulse shaper can be used [22,23], a simplified sche-
matic of which is presented in Fig. 1(b). This device separates
frequency modes of the input with, e.g., a diffraction grating,
prism, or arrayed waveguide grating. Then, the phase of each
mode is manipulated by adjusting the voltage on separate pixels
of a spatial light modulator (or any other phase-control element).
Recombining the spectrum then leaves an arbitrary output field.
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From the perspective of optical quantum computing, the ideal
pulse shaper applies an arbitrary phase to each spectral mode
in question—essentially, it can implement any diagonal unitary
matrix in the frequency mode space. Explicitly, a pulse shaper
transforms the electric field in Eq. (2) as
ER @) =" dbaeion, (@)
n=-00

so that on a mode-by mode basis,

b, = e, (5)
Pulse shaping has been applied to single and entangled photons
[24-29], including works directly in the telecom band [30-34].

For the second operation, mode mixing, we make use of
the electro-optic phase modulator (EOM) [35]. Based on the
electro-optic effect, a voltage applied across an EOM modifies
the refractive index of the material and hence the phase accrued
by an optical field traveling through it. If this voltage itself
oscillates at a particular frequency (typically in the range DC-
100 GHz), it generates equispaced sidebands, an effect exploited
to realize tunable optical frequency combs [36,37]. Figure 1(c)
provides a schematic of such a device. By controlling the voltage
pattern ¢(z) applied to the device, assumed to be periodic with
frequency equal to the mode spacing, it is possible to modify the
coupling between frequency slots. Mathematically speaking, if the
phase modulation operation is expressed as the Fourier series
0 = 3,0, then the electric field transforms as

[so] (s o]
Egjt)(t) — eirp(r)Ei(:)(t) — Z Z Cj?zlnf_i(”)”+kAa))t, (6)

b=—00 n=-00

from which the modal transformation is found to be
o0

b, = Z Cntpo (7)

fk=-c0

which is unitary on the countably infinite set of spectral modes
(Zpct ycut = 6,,). A functional block representation of the
EOM follows in Fig. 1(c) (right), where each rail denotes a
separate frequency mode. In this example, the single-qubit
amplitudes in modes A, and A, interfere analogously to a spatial
interferometer. As with the pulse shaper, experiments over the last
decade [38-44] have confirmed that nonclassical single-photon
states do respond to electro-optic modulation, as expected from
this theory.

However, because the coupling is effected on all modes
globally, rather than in pairs, the nature of this mixing is markedly
different than that of the beam splitters used to argue scalability in
spatial LOQC [45]. Nevertheless, a sequence of alternating pulse
shapers and EOM:s is sufficient to reproduce any matrix transfor-
mation. As demonstrated by a recent constructive proof [46], any
N x N complex matrix can be factored exactly as the product of no
more than 2V - 1 circulant and diagonal matrices—or equiva-
lently, of 2V - 1 diagonal matrices spaced by discrete Fourier
transform (DFT) matrices. As described in the following section,
such a decomposition is precisely that provided by EOMs and
pulse shapers when discretized for numerical simulation. This
situation implies that the number of components needed to imple-
ment an arbitrary unitary transformation on /N spectral modes
scales like O(2V). In contrast, the scaling of optical components
for spatial- or polarization-encoded LOQC is quadratic [O(N?)].
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Such an improvement in our protocol can be understood intui-
tively through complexity arguments [47]. In general, a mode
transformation between N input and N output modes requires
O(NN?) free parameters. Also, whereas the transformations of spa-
tial beam splitters and phase shifters are fixed by only one or two
numbers, those provided by pulse shapers and EOM:s offer O(V)
independent real parameters. Thus, one can view the linear scaling
as a consequence of the fact that the building blocks of spectral
LOQC operate on all modes simultaneously, rather than fixed
subsets.

Finally, it is important to note that spectral mode mixing could
alternately be accomplished through interactions mediated by a
classical field in a nonlinear medium, as in a recent experiment
exploiting Bragg scattering to transform a single spectral qubit like
ours [48]. However, EOMs are simpler and more scalable, for
they require only a single electrical control, produce no noise pho-
tons from powerful optical fields, and are linear in the sense that
their characteristics are independent of the number of optical
photons passing through them [49]. Similar considerations apply
also to acousto-optic modulators, which are mathematically
equivalent to two-mode beam splitters [50], but because of their
noncollinear interaction geometry, such modulators do not sup-
port single-spatial-mode operation. Accordingly, of these options,
only EOMs satisfy both linearity and spatial purity, and so we
classify our computing protocol built on pulse shapers and

EOM:s as truly a form of LOQC.

3. DERIVING THE UNIVERSAL GATE SET

In the spirit of spatial KLM computing, we assume in our
protocol ancillary single photons and perfect photon-number-
resolving detectors; such additional resources are required to non-
destructively mark completion of a two-qubit gate. We also
allow for vacuum modes that can be populated during the gate
operation, later showing that the number of such modes can be
restricted in a practical gate. Pulse shapers and EOMs are modeled
as matrices acting on our spectral mode space, truncated to M
modes; if M is sufficiently large, this well approximates the
transformation on the interior computational modes. Specifically,
each pulse shaper acts as a diagonal matrix D consisting of
complex-exponential elements, and each EOM acts as a unitary
diagonal matrix D in time, transformed to frequency by the DFT
matrix F, whose elements are defined via F,, = M~/227ink/M
Thus, the spectral transformation realized by an EOM is given by
FDF', where the M phases in D represent samples in a single
temporal period—an approximation that holds when the number
of samples is sufficient to model the phase smoothly.

We apply pulse shapers and modulators in an alternating se-
quence and focus on how they transform an input state in the
computational subspace of the Hilbert space H}, for # photons
in N modes of interest. A series of R pulse shapers and R EOMs
produces the following M x M unitary mode transformation
acting on the NV computational and M - N ancilla modes’ anni-
hilation operators:

V = FDyF'Dy--- FD,FTD,FD,F'D,. 8)
With this mode transformation in hand, our procedure for ana-
lyzing gate performance follows that of [51]; see Supplement 1 for
details. From the mode operator, we derive the equivalent state

transformation W, represented in the Fock basis and projected
onto the detection of any ancillas. Then, we compare it to the
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target state transformation 7 via the fidelity , defined according
to the Hilbert—Schmidt inner product,

B Tr(WI T)Te(TTW)
C Te(WIW)TH(TTT)

This is equal to unity when W is proportional to 7". The success
probability P is then defined as

_ Tr(WTW)
CTHTTT)

which is independent of the input state as F — 1. So, after speci-
fying the mode positions of all qubits, ancillas, and detectors and
choosing the number of elements for a given operation, we run a
numerical optimization routine searching for the 2RM phases
that maximize the success probability P while preserving fidelity
F=1

Our primary order of business is to derive a universal gate set
[1]. For our purposes, the family comprising the single-qubit
phase and Hadamard (H) operations and the two-qubit con-
trolled-Z (CZ) gate proves most convenient. In the single-qubit
case, spectral LOQC delivers the phase gate directly: a single line-
by-line pulse shaper can effect arbitrary phase shifts between spec-
tral modes, ideally with no loss. Yet, the Hadamard operation is
more difficult. In the logical qubit space (]0);,[1);), it is
defined by the matrix

H:%[i _11}. (11)

The nature of electro-optic phase modulation [Eq. (7)] makes a
lossless mixer such as / impossible with a single EOM; however,
we do find it attainable with zwo. Figure 2(a) shows the block
form of our Hadamard gate acting on adjacent spectral rails,
utilizing two pulse shapers and two EOMs. The dots above and
below the latter three devices indicate potential coupling to modes
beyond those in the figure. The numerical solution we obtain
(plotted in Supplement 1) possesses F = 1 and P = 1, so the
gate is entirely deterministic; the qubit exits in the same modes
it entered, with no need for heralding detectors. The second two
rows in Table 1 summarize performance of these single-qubit
gates, listing the physical resources (number of pulse shapers,
number of EOMs, and number of ancilla photons) as well as
the key performance metrics (fidelity, probability of success,
and approximate number of spectral modes required).

To complete the universality proof, we construct a two-qubit
CZ gate, alternatively called controlled-phase (CPHASE) or con-
trolled-sign (CS). Not only are the properties of the CZ gate well
studied in LOQC, providing a benchmark for clear comparison,
but the CZ gate is also symmetric in both photons—an aid in our
design procedure. In the logical basis of spectral qubits A and B,

©)

(10)

Table 1. Summary of Universal Gate Set for Spectral
LoQC

Shapers- Fidelity Prob. Eff. #

Gate EOMs-Ancillas F) P) modes
Phase 1-0-0 1.0000 1.0000 2
H 2-2-0 1.0000 1.0000 8
CZ 2-2-2 1.0000 0.0207 48
3-3-2 0.9999 0.0672 24
4-4-2 0.9999 0.0735 18
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(10408) 7, [041) 1, 11408) 1, |1415) ), the matrix representing
this operation is

1 0 0 0
01 0 O
0 0 0 -1

The most efficient nondestructive CZ gate in KLM computing
known to date, making use of two ancillary photons, was intro-
duced by Knill in 2002: it succeeds with probability P = 2/27 =~
0.0741 [52]. Although better implementations are not excluded
theoretically, extensive numerical searches indicate that this is in-
deed the optimal gate with nonentangled ancillas [51]. Since the
specific form of our linear optical operation [Eq. (8)] is subsumed
within the general search space considered in [51], we anticipate
being able to do no better than P = 7.41%. The goal, then, is to
come as close as possible to this limit with minimal resources.
A schematic of our proposed CZ gate is provided in Fig. 2(b).
The logical |0); and |1); modes for each photon are separated by
two auxiliary spectral modes, one of which is loaded with an an-
cilla photon (triangle). The photons then propagate through a
series of R pulse-shaper/modulator pairs, followed by detection
in the ancilla modes; the specific coincidence pattern in Fig. 2(b)
(zero photons in the top detector, one photon in the middle, one
photon on the bottom) signifies successful gate operation.
Because of its probabilistic nature, we do need to look for photons
in the adjacent vacuum modes, but only to ensure that no pho-
tons have escaped the computational space. Thus, we can employ
a single spectral “bucket” detector [top detector of Fig. 2(b)],
which checks whether any photon leaks into the initially unoc-
cupied modes. The practical number of modes to which this
detector must respond is determined by how strongly coupled
they are to the six input modes loaded with photons. To express
it another way, the detection pattern in Fig. 2(b) guarantees that
two photons exit in the four computational modes, and the
spectro-temporal modulation patterns then must ensure that
when this happens, the two have undergone a CZ operation.
Starting with R = 2, we constrain the fidelity to F > 0.9999
(comfortably within the fault-tolerant limit for LOQC under any
definition [53]) and numerically determine the phases required to
maximize the success probability P. The results for our optimi-
zation as R is increased are presented in the last three rows of
Table 1. At R = 4, the success probability is within 1% of the
KLM limit, indicating optimal performance. Even at R = 3, the
success probability surpasses the slightly less optimal gate from
the original KLM proposal, which had P = 1/16 = 0.0625
[5]. (Supplement 1 plots the specific EOM and pulse shaper
phases for each solution.) With the parameters for a two-qubit
spectral CZ gate now established, the universal gate set is com-
plete. While our spectral version does require additional vacuum
modes (quantified in the next section), the success probabilities
and ancilla photon requirements match the best known in general
linear optics; this represents the main finding of our paper.

4. PRACTICAL CONSIDERATIONS

One of the potential advantages of spectral LOQC is its amenabil-
ity to massive parallelization; that is, a gate can be applied to
spectrally distinct qubits simultaneously, all within the same
spatial mode and propagating through the same components.
However, the fact that both single- and two-qubit operations
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Fig.2. Schematics of spectral LOQC gates. Each rail represents a distinct frequency mode, in increasing value from top to bottom. The logical zero and
one modes for the first qubit are labeled 4, and A;; those for the second qubit are By and B;. The labels PS and EOM denote pulse shaper and electro-
optic phase modulator, respectively. (a) Hadamard gate. With two pulse shapers and two EOM, this operation succeeds with probability 1, requiring no
ancillas. (b) CZ gate. Two ancilla photons are loaded in the modes adjacent to A; and By, and all photons propagate through a series of R pulse shaper/
EOM pairs. The spectrally resolved detection pattern shown here then heralds successful completion of the gate.

couple to adjacent modes implies that guard bands between
qubits may be required, limiting how densely such qubits can
be packed. In order to address this issue explicitly, here we quan-
tify the bandwidth needed to maintain high-performance opera-
tion. The procedure is to introduce bandpass filtering in each of
our pulse shapers, incrementally increasing the bandwidth until
F and P reach their asymptotically optimum values. We do not
allow any photon to stray from the specified band at any point in
the circuit. Thus, the smallest bandwidth at which the perfor-
mance reaches its optimal value gives a conservative estimate for
the required gate band.

The passbands required for success probabilidies >90% of
their asymptotic values are listed in the last column of Table 1.
Since the phase gate preserves the photon number in each mode,
nothing beyond the logical basis is required. Such is not the case
for the Hadamard gate, whose full results are summarized in
Fig. 3(a). As the gate passband is increased in multiples of two
modes, the fidelity reaches 99% for a passband of six (two vacuum
modes on either size of the qubit), while the success probability
attains 90% of its asymptotic value for an eight-mode band.
Thus, the optical passband need only be about eight times the
logical mode spacing in order to reach good performance. Our
simulations on the CZ gate follow the same approach, but
now we look at all three possible configurations from Table 1
(R = 2,3,4). The results displayed in Fig. 3(b) reveal a fascinat-
ing dependence on the number of elements. Not only does a
larger value of R attain a greater asymptotic success probability
(R = 4 just reaches the linear limit marked by a black line in
the bottom plot), but it also does so more efficiently in terms
of the effective number of modes. The case R = 4 needs only
18 optical modes to attain 90% of its asymptotic success prob-
ability, compared to 24 and 48 for R = 3 and R = 2, respectively.
This scaling proves especially interesting because one might
initially conjecture that more EOMs would actually utilize larger
bandwidths, for each successive element couples the input to
more modes. Instead, the observed performance hints at the

positive correlation between success probability and keeping pho-
tons “close” to the computational modes; with more parameters
available in the optimization, larger values of R can realize better
performance all around. We therefore suspect that this tradeoff
might prove more general in chronocyclic manipulations: fewer
devices require more ancilla modes to maintain comparable
performances.

Looking toward the ultimate implementation of this new pro-
tocol, we now outline the performance requirements and current
practical capabilities. Figure 4 sketches a possible realization of
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Fig. 3. Bandwidth scaling. These plots show the performance of the
spectral Hadamard and CZ gates as a function of optical bandwidth, in
terms of fidelity F and success probability P. (a) Hadamard gate: fidelity
(top) and success probability (bottom). (b) CZ gate: fidelity (top) and
success probability (bottom). All three configurations from Table 1
are tested: R = 2 (green), R = 3 (red), and R = 4 (blue). The black line
in the bottom plot marks the value 0.0741—the best linear optical CZ
gate known to date.
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Fig.4. Outline of potential spectral LOQC experiment. The setup contains three basic systems, concerned with generating auxiliary photonic resources
(Ancilla Preparation), manipulating the frequency modes with pulse shapers and EOMs (Linear Network), and detecting ancillas to determine successful

operation (Ancilla Detection).

spectral LOQC, where we assume computational photons as in-
put from some other source, as would be the case in a photonic
interconnect. The required ancillas are generated by spontaneous
four-wave mixing in a resonator [54,55], followed by frequency-
resolved detection (“Ancilla Preparation”). By choosing the spec-
tral bins appropriately, ancillas in the desired frequency modes
can be heralded. The photons are then combined via spectral mul-
tiplexers into the circuit itself (“Linear Network”), which consists
of pulse shapers with voltage-controlled phases and EOM:s driven
by a high-speed arbitrary waveform generator. Upon exiting
the computational circuit, the auxiliary modes are separated and
detected (“Ancilla Detection”); if the desired coincidence pattern
is attained, the operation succeeds and the output consists of
transformed spectral qubits.

In order to analyze how such a circuit could perform, we focus
on the elements unique to spectral LOQC (the “Linear Network”
in Fig. 4), since photon preparation and detection are common to
all versions of KLM quantum computing. The challenges these
devices pose fall into three basic categories. (i) Spectral resolution:
each pulse shaper must be able to separate frequency modes and
apply arbitrary phases with minimal crosstalk. (i) Microwave
bandwidth: the electronic waveform generators—and the EOMs
driven by them—must be able to reproduce the required phase
modulation patterns. (iii) Loss: although phase modulation is
theoretically unitary, realistic components can apply significant
attenuation, particularly in waveguide coupling or diffractive
elements. Perhaps predictably, these three pragmatic concerns
often are at odds with each other. Widely spaced frequency modes
would ease the spectral resolution requirements but tighten
demands on modulation bandwidth, and pulse shapers with
extremely high resolutions often inflict large optical losses.

First, let us consider the possibilities with available discrete
components. For example, commercial fiber-pigtailed pulse
shapers offer 10-GHz resolution and support roughly 500 sepa-
rate channels across the optical telecommunication band around

1550 nm [56]. If we thus take 10 GHz as the mode spacing, we
require an arbitrary microwave signal generator with ~50-GHz
bandwidth (Nyquist sampling rate of ~100 GSa/s) for the H
and R = 4 CZ solutions in Table 1 [57]; a recent product comes
very close, offering 92 GSa/s [58]. Finally, lithium niobate phase
modulators with speeds exceeding 100 GHz are readily available
[59], indicating that the spectro-temporal phase control required
for our computing protocol is realizable with current technology.
Such a finding is extremely important, for it justifies the reason-
ableness of spectral LOQC with purely electrical controls.
Moreover, with 500 distinct channels, the effective bandwidth
of our R = 4 CZ gate (18 modes) implies that one could pack
approximately 28 CZ gates in parallel without increasing the
number of devices.

Unfortunately, the linear insertion loss of these discrete optical
devices is relatively high, on the order of a few dB per element.
But since a primary source of loss in fiber-pigtailed components
is in coupling from and into the optical fiber mode, better per-
formance could be possible with on-chip elements whose spatial
modes are precisely matched. As an added benefit, the compact-
ness would promote practicality by making the entire platform
much more scalable. Research in both on-chip pulse shaping and
electro-optic modulation has exploded in recent years, motivated
primarily by classical optical communication. For example,
microring filter banks [60—62] and arrayed waveguide gratings
(AWGs) [63-66] have enabled on-chip line-by-line pulse shaping
of optical fields. AWGs in particular seem well suited for our
application; with as many as 512 channels demonstrated in one
example [67] and mode spacings down to 5 GHz in another [68],
the bandwidth and spectral resolution are competitive with high-
performance bulk dispersers. While the total loss of pulse shapers
based on AWGs has been high (>10 dB is common [63,65,66]),
clever AWG designs in other contexts have been able to reach
insertion losses as low as ~0.5 dB [69], so there is promise for
driving down losses in such spectral shapers.
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The integration of high-speed EOMs with AWGs has
witnessed monumental progress as well, specifically in commer-
cial wavelength-multiplexed transceivers [70,71]. Coupled with
the independent research in chip-scale resonator-based photon
sources [54,55,72—74] and superconducting detectors [75,76],
a fully integrated platform for spectral LOQC seems feasible
in the future. The design requirements for on-chip chronocylic
shaping do differ for quantum systems compared to classical ones;
for example, whereas classical telecommunication designs can mo-
bilize amplifiers to counteract loss, a quantum network cannot,
making throughput a relatively higher priority than in the classical
systems realized up to this point. For this reason, our quantum
protocol suggests slightly different emphases in design, providing
optimism for improved performance when devices are tailored to
this application.

5. CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we have proposed and numerically derived a
universal linear-optical quantum computing platform based on
dual-rail frequency encoding. Our approach requires no optical
nonlinearities, is compatible with classical wavelength-division-
multiplexed networks, and utilizes no spatial interferometers. The
necessary spectral and temporal manipulations appear possible
with current technology. Moreover, one can exploit the pro-
grammability of each pulse shaper and EOM to transform a given
physical arrangement into any one of several quantum circuits by
modifying the electrical controls, offering interesting practical
avenues toward reconfigurable quantum networks.

From a more conceptual angle, our design space of phase
manipulation in Fourier dual bases offers new directions for
quantum optical circuit synthesis. Rather than building quantum
computations by combining one- and two-qubit gates, one can
view the full quantum circuit as a sequence of chronocyclic
phases. Accordingly, we anticipate significant resource reduction
since each design is optimized for its specific computation, analo-
gous to previous findings in LOQC for the case of photonic
cluster-state production [77-79]. Furthermore, although here
we have specialized to time-frequency spaces, these design tools
apply equally well to diffractive systems with lenses and masks,
which are likewise based on successive Fourier transformations
and phase manipulations—indicating pathways to take these
ideas full-circle back to the spatial domain.

Yet the greatest impact of this computing protocol likely rests
in the specific application of the quantum interconnect. Spectral
qubits interface directly with frequency-disparate systems, can be
transmitted long distances in optical fibers, and are controllable
with telecommunication technology. In many ways, their advan-
tages bear analogy to those of classical optical frequency combs
[80]: just as an optical clock connects ultraprecise microwave
frequencies (via the comb spacing) to optical wavelengths (via
the absolute frequency), spectral LOQC can serve as the bridge
between the microwave regime of material qubits and photons in
the optical regime, which are so adept at information transmis-
sion. Thus, it is our hope that quantum information processing
with frequency-encoded photons will fill in yet one more piece of
the puzzle that is practical quantum computing.
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