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Introduction

This year we celebrate the World Year of Physics [1], marking the 100th anniversary of
Einstein’s ‘miraculous year’ 1905. In that year Einstein published his three remarkable
papers which laid the groundwork for much of modern theoretical physics.

Einstein did his work in a period1 when physics was facing what may be called
a crisis. In the decade before 1905 many phenomena had been observed for which
the physics canon (which consisted of classical mechanics, electromagnetism, atomic
theory and statistical mechanics) did not have satisfactory explanations. Let us recall
a few well-known examples. The classical equipartition theorem of statistical me-
chanics turned out to be inconsistent with results from spectroscopic measurements
on diatomic gases, a problem which was only solved with the advent of quantum
mechanics. The famous ether drift experiment of Michelson and Morley falsified the
mechanical/hydrodynamical ether theory which physicists at that time considered to
be a candidate for a ‘theory of everything’.

This period also witnessed the discovery of a variety of rays in electric discharge
experiments with vacuum tubes – see table 3.1 of [2] for a list – and the discovery
of radioactivity. These were also phenomena for which the classical atomic theory
had no explanation. Perhaps the most important of these discoveries was that of the
electron by J. J. Thomson in 1897, an event which marks the birth of particle physics.

Although Einstein was certainly not the only person to contribute to the solution of
the puzzles raised in the years before 1905, his work was arguably the most important.
His explanation of the photoelectric effect marks the discovery of quantum theory and
fueled the development which eventually led to the formulation of quantum mechanics
in the 1920s. His work on the theory of Brownian motion was the definite confirmation
of the atomic theory.

And there was the work for which Einstein is best known: the invention of the
theory of relativity. Einstein realized that the classical distinction between space and
time as reflected in the Galilean principle of relativity is incompatible with Maxwell’s
equations of electromagnetism. Instead of abandoning the principle of covariance,
which states that all inertial observers are equivalent, Einstein replaced Galilean

1See [2] for a history of twentieth-century physics.



2 Introduction

relativity with his own special relativity, in which space and time are treated on more
or less the same footing as elements of spacetime. Again, this work marks only the
beginning of a development which altered the way in which physicists understand
spacetime and gravity, and which culminated in Einstein’s publication of the theory
of general relativity in 1915.

In the century that followed Einstein’s miracle year, physics has made an almost
unbelievable amount of progress and reached a degree of maturity that is unrivaled
by any other field of science2. Twentieth century physics has provided answers to
elementary questions as: why is the sky dark at night? Why is gravity always attrac-
tive? Why do metals conduct electricity and heat so well? Where does the sun get
its energy from? The list goes on3. In experiments, physicists have probed distances
as small as 10−18 m – a thousandth of the size of the hydrogen atom’s nucleus –,
and as big as 1026 m – the size of the observable universe. Many of the phenomena
encountered in this phenomenal range of energy scales have a satisfactory explanation
in terms of current physical theories. However, there are still many open questions in
physics.

A lot of these questions are associated with situations in which the underlying
physical theory is well established, but too difficult to handle in practice because of
computational complications. Some associated buzzwords are nonlinearity (strong
sensitivity to small variations in initial conditions), complexity (large number of de-
grees of freedom with no simple collective behavior) and nonperturbativity (absence
of a small parameter in terms of which a meaningful approximation scheme can be
set up). Although it is sometimes possible in these cases to capture at least some
of the physics – which is often very interesting – in effective theories, most of these
problems require a head-on approach. With the advent of powerful computers in the
past decades, this has become more and more feasible.

But there are also physical phenomena that are not explained or expected to be
explained by the currently established theories at all. It is not too surprising that
such phenomena are associated with the extremely long or short distance scales we
mentioned above. The theories that describe physics at these extreme length scales
are the domain of theoretical high-energy physics. In the following we will discuss
present theories and see where they fail. We will see that some of these issues have
to do with situations in which quantum gravity effects are expected to be important.

A complete theory of quantum gravity has yet to be constructed, but at the
moment there are two competing candidates – loop quantum gravity and string theory
– that give at least a partial (but very different!) formulation of such a theory. This
thesis will deal with a topic in string theory. At the end of this introduction we will
therefore give a brief overview of this field, focusing on the aspects that are needed

2Note that we use a broad definition of physics, including for example a relatively small subject
as quantum chemistry but also the entire field of astronomy.

3The reader is invited to make up his/her own list, it’s fun!
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to explain the title of this thesis.

The Standard Model: its achievements and its shortcomings

At the length scales that are probed by contemporary particle accelerators, the
strength of the gravitational interaction is many orders of magnitude smaller than
that of the other interactions. General relativity can thus be ignored at these scales
and spacetime can be treated as flat. However, a description of the physics at these
energies does require special relativity in addition to quantum mechanics. It turns
out that this requirement implies that we have to treat particles as manifestations of
quantum fields.

The study of the general structure of quantum field theories has taught us why
there exists antimatter and why particles with integer and half-integer spin obey Bose
and Fermi statistics, respectively. The particles with Bose statistics (the bosons)
exhibit the kind of collective behavior that we associate with force fields, whereas
the particles with Fermi statistics (the fermions) obey the Pauli exclusion principle
and can form stable lumps of matter. Another remarkable consequence of quantum
field theory is that the strength of the interactions between particles depends on the
energy scale at which we investigate these particles. This is called renormalization
group flow and we talk about running coupling constants.

The physics that we see at 10−18 m is governed by a renormalizable quantum field
theory called the Standard Model which was constructed in the 1970s. The Standard
Model describes three of the four ‘fundamental’ forces of the universe. These are
the electromagnetic, weak and strong interactions. The electromagnetic interaction is
long ranged, whereas the other two are short ranged and only manifest themselves on
subatomic scales. These forces are mediated by spin 1 particles, the gauge bosons4.
For the electromagnetic interaction this is the photon, for the weak interactions we
have the W and Z bosons, and for the strong force these are the gluons. The Standard
Model contains three ‘generations’ of spin 1

2 fermions. Each of these generations
consists of two quarks, an electron, a neutrino and their antiparticles and are identical
as far as the three gauge interactions are concerned. All these particles are involved in
the weak interactions, but only the quarks feel the strong interaction. The quarks and
the electron are electrically charged and interact with the photon, but the neutrino
is neutral. The generations differ only in their interactions with the Higgs boson, a
massive scalar field. These interactions are quite important since they determine the
mass of the fermions. The Higgs boson also gives a mass to the W and Z bosons,
which explains why the weak force is short-ranged. The strong force is short-ranged
for a completely different reason. As we lower the energy scale at which we study the
strong interactions, the coupling constant increases and at a certain scale becomes

4The name derives from the fact that they have a field theoretical description in terms of Yang-
Mills gauge theories, i.e. theories with local symmetries.
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so large that we can no longer trust our analytical calculations which are based on
a perturbative expansion in powers of the coupling constant. Experiments however
indicate that at larger distances the quarks and gluons become confined into nucleons
and pions, and numerical calculations seem to confirm these results.

The Standard Model agrees with experiment. For one, all the particles in the
model have by now been observed, with the exception of the Higgs boson. Theoretical
considerations give an upper bound of roughly 1TeV/c2 for the mass of the Higgs.
The Higgs should therefore be observed in the next generation of accelerators. The
interactions between the particles have of course also been studied and found to agree
with the renormalizable interactions of the model. These measurements are however
of only a limited accuracy, and it has not been ruled out that the leading order
nonrenormalizable corrections to the Standard Model Lagrangian lie ‘just around
the corner’. This is fortunate since, as we have mentioned, there are various other
theoretical and observational reasons to expect physics ‘beyond the Standard Model’
to appear already in the next generation of accelerators. To build up the tension, we
first discuss the theoretical reasons – which are already quite convincing – and save
the most devastating blow that has been dealt to the Standard Model since it was
conceived in the 1970s for later, after we have discussed general relativity.

Some obvious questions that immediately come to mind are: why three generations
and not more or less? Why do only quarks feel the strong force? Why is the weak
interaction parity asymmetric? Why only three forces and where do they come from?
In addition, the Standard Model contains 25 dimensionless parameters – see e.g. [3]
for a list. Though the values of these parameters can and have been obtained in
experiments, it would be nice to actually calculate them in an underlying theory.
Intriguingly, the Standard Model itself hints at a possible answer to at least some of
these questions.

It turns out that the three running coupling constants that are associated with the
Standard Model semisimple SU(3)×SU(2)×U(1) gauge group become approximately
equal at the tremendously high energy of roughly 1015 GeV. This suggests that at this
energy the three forces become unified in a single ‘grand unified theory’ (GUT) based
on a simple gauge group. As we will see below, recent cosmological observations also
indicate that something drastic happens at the so-called GUT scale.

This raises an immediate issue. If it is true that the interactions and parameters of
the Standard Model have their origin at the GUT scale, and are naturally expected to
be of the same size at this scale, why then is the Higgs mass so small (∼ 102 GeV/c2)
at accelerator energies? One would expect it to be larger by 13 orders of magnitude (!)
because the mass of a scalar field is a relevant operator. This is known as the hierarchy
problem. One of the ways in which this problem can be avoided is if the mass of
the Higgs is protected from quantum corrections by a symmetry. The most viable
candidate is supersymmetry.

Supersymmetry differs from conventional internal and spacetime symmetries in
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that it mixes bosonic with fermionic fields. We will see in this thesis that it plays
an important role in string theory, of which it is a necessary ingredient. But here we
note that there are convincing reasons to expect to see supersymmetry already at low
energies (102-103 GeV). In addition to solving the hierarchy problem, it predicts the
existence of a whole new range of particles, since in supersymmetric extensions of the
Standard Model (SSM), every particle has to be accompanied by its superpartner.
Furthermore, in SSM’s the gauge coupling constants can become exactly equal at the
GUT scale, which typically lies at roughly 1016 GeV in these models.

The GUT scale lies tantalizingly close to another important scale in nature, the
Planck scale, which is the scale at which quantum gravity effects become important:

EPlanck =

(
~c5

8πG

)1/2

∼ 1018 GeV, ℓPlanck =

(
8πG~

c3

)1/2

∼ 10−34 m.

This suggests that unification and quantum gravity are in fact closely related to each
other. We will indeed see that in string theory the gravitational and gauge interactions
are treated on the same footing. But before we turn to string theory, we first need to
discuss general relativity and the impact of recent cosmological observations on our
understanding of the universe.

General relativity: classical and quantum

At astronomical length scales, we do not see the forces of the Standard Model. The
weak and strong interactions are short-ranged and the electromagnetic interactions
cancel out since astronomical objects are electrically neutral. Gravity is therefore the
dominant force, despite its relative weakness, since it is always attractive. We already
mentioned that gravity is described by general relativity.

Just as the Standard Model, general relativity (GR) is a field theory. However, GR
differs from other field theories in that it does not describe fields that live on a fixed
background spacetime, but it in fact describes spacetime itself as a dynamical entity,
the metric field5. In GR gravity manifests itself through the curvature of spacetime,
which is in turn caused by the presence of mass and energy.

The experimental successes of GR are as impressive as those of the Standard
Model. For instance, GR explains the bending of light by massive objects like our sun,
and the orbits of systems of binary pulsars. GR predicts the existence of black holes,
objects that are so massive that they are hidden behind an event horizon, a surface
from which even light cannot escape (at least classically). Nowadays astronomers

5This is a deliberate oversimplification. In fact, spacetime does enter in GR as an independent
mathematical construct, but it turns out that the local symmetries of GR, which go under the name
of diffeomorphisms or general covariance, tell us that this background spacetime is not a gauge
invariant quantity. What then actually are the observables of GR is a delicate question, one we do
not want to into in any detail. See e.g. [4] for an interesting discussion.



6 Introduction

seem to agree that black holes are indeed present throughout the universe, in all
kinds of sizes [5,6]. GR also plays a pivotal role in contemporary cosmology, where it
explains for instance the observed cosmological redshift of the light of distant galaxies
as a consequence of the expansion of the universe. But GR is present in everyday life
as well: the Global Positioning System would not work properly if the effects of the
gravitational redshift had not been taken into account [7].

In the above example, GR is used as a classical field theory. There is however
nothing wrong with treating it quantum mechanically as long as the vacuum expec-
tation value of the metric field is that of flat spacetime. The perturbations of the
metric field around this flat background are then described by a quantum field theory
of a spin 2 particle, known as the graviton. Just as the Coulomb interaction of two
charges follows from the exchange of photons in QED, Newton’s law follows from the
exchange of gravitons by (not too heavy) massive objects6. Since Newton’s constant
G is dimensionful, the usual effective field theory lore leads us to suspect that the
perturbative description of gravity breaks down just below or at the Planck scale. A
fundamental theory of quantum gravity should then take over.

It is important to realize that there are extreme situations where the perturbative
description of gravity breaks down. In fact, there are powerful theorems7 in classical
GR which predict that spacetime singularities – i.e. points at which the gravitational
field blows up – occur generically in nature, e.g. in black holes but also in cosmology8:
if we trace back the time-evolution of current cosmological models, they break down
at an initial singularity. In order to understand the physics that goes on at the length
scales of these singularities, we certainly need a theory of quantum gravity.

But quantum gravity may even be relevant at length scales that are considerably
larger than those associated with the singularities. Indeed, the high energy degrees
of freedom that reside near9 the singularities may sneak in to our low-energy effective
description of nature by lowering their energy via the gravitational redshift (in the case
of the Hawking radiation of black holes) and the cosmological redshift (in the early
universe). It is thus not clear whether the effective field theory description of particle
physics remains valid in the presence of strong gravitational fields. This important
issue is the subject of much debate at the moment. See [11] for an introduction.

Recent cosmological observations

Even more reasons to doubt the validity of effective field theories in the presence of
gravitational fields are provided by recent cosmological observations. Since we do not

6It is amusing to note that one also calculate quantum corrections to Newton’s potential [8],
taking the analogy with QED – the Lamb shift – even further.

7See [9] for an introduction and references.
8See [10] for a nice primer on cosmology.
9We use the word ‘near’ for both space- and timelike separations.
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want to dive deeper into this subject than we really need to, we refer the reader to
the excellent review [12], where these results are explained in more detail.

The current observational evidence – in particular the detailed measurements of
the power spectrum of the cosmic microwave background – provide strong evidence
for the claim that the universe underwent a period of accelerated expansion called
inflation shortly after its conception. Though the mechanism that drives inflation is
still unknown (there are many different proposals), inflation solves several important
problems of the conventional Big Bang model (the horizon problem, the flatness
problem and the problem of structure formation). It took place when the universe
had a temperature of 1015-1016 GeV (in natural units), which corresponds to the GUT
scale! This is the first real experimental indication that there may be truth behind
the hypothesized unification of the gauge interactions.

But there is more. Cosmologists now know the total present-day energy density
of the universe. This energy density arises from three sources: baryonic matter (B),
cold dark matter (DM) and dark energy (Λ), which contribute with the following
fractions:

ΩB = 0.04, ΩDM = 0.26, ΩΛ = 0.70.

Now for the punchline: none of these numbers is understood in terms of Standard
Model physics!

Baryonic matter may be described well by the Standard Model at accelerator
energies, but it is still mysterious why there is a net amount of baryons in the universe
to begin with. It is known that the Standard Model does not provide an answer to
this question. But most of the matter in the universe comes in the form of cold (i.e.
nonrelativistic) dark matter. Every known particle in the Standard Model has been
ruled out as a candidate for this type of matter. It may very well turn out that at
least a large part of the dark matter is comprised of the additional particles that are
introduced in supersymmetric extensions of the Standard Model.

The dark energy is associated with the energy density of the vacuum, ρvac, which
is unobservable in theories without gravity, but contributes to Einstein’s general rel-
ativity in the form of the cosmological constant Λ. Nowadays, ρvac is thought to be
very small, but nonzero nonetheless, ρvac ∼ (10−3 ev)4. In quantum field theories,
the vacuum energy density is proportional to the fourth power of cut-off of the the-
ory. If we treat general relativity as an effective field theory with a cut-off which
lies at the Planck scale, we get a theoretical prediction of ρvac ∼ (1018 GeV)4! This
is the ‘mother of all discrepancies’ as Zee [13] calls it, and goes under the name of
the cosmological constant problem. Clearly, there is something crucial missing in our
understanding of the vacuum10.

10In theories with global supersymmetry, the vacuum energy is guaranteed to be zero. This
lowers the expected value of Λ to the scale which is associated with the spontaneous breaking of
supersymmetry, i.e. ρvac ∼ (103 GeV)4. This is still much too large.
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String theory: perturbation theory and beyond

A century after Einstein’s miracle year, physics again faces serious questions. Answers
to these questions seem to require a revision of the way in which physicists describe
nature at its smallest scales. What is needed is a theory of quantum gravity which is
valid at energies beyond the Planck scale. String theory is just that.

In the first two chapters of this thesis we will review string theory in quite some
detail, so will keep our discussion here short.

String theory is at the outset a perturbative theory of quantum gravity. Point parti-
cles arise as vibrations of little strings which propagate in flat spacetime. Remarkably,
the graviton and nonabelian gauge fields are necessarily part of the spectrum. String
theory thus naturally unifies the gravitational interaction with Yang-Mills theory. It
turns out that the perturbative interactions of the strings are finite. There is no need
for the introduction of an ultraviolet cut-off in the theory and the theory is consis-
tent up to arbitrarily high energy scales and thus truly fundamental. String theory
is necessarily supersymmetric and requires the existence of six additional spacelike
dimensions beyond the ones we observe today.

There are actually five different consistent perturbative superstring theories. Dur-
ing the 1990s, it gradually became understood that these five theories actually arise
as different limits in the parameter space of a single underlying theory, which has
been named M-theory. The form that this theory will eventually take still remains
shrouded in mystery.

It was realized that other extended objects than strings alone – known as p-
branes, where p stands for their dimensionality – will play a fundamental role in the
formulation of M-theory. p-branes are higher-dimensional generalizations of black
holes and are generically associated with nonperturbative effects.

An important class of p-branes are the Dirichlet p-branes. These are special, since
they do have a simple microscopic description in terms of string perturbation theory,
where they arise as hyperplanes on which strings can end. At low energies, the strings
manifest themselves as a gauge theory that lives on the D-brane.

Systems of multiple D-branes show quite remarkable behavior. They perceive
spacetime in a way that is entirely different from what we are used to: according
to D-branes, spacetime is noncommutative. Although this behavior is far from being
understood completely, it provides important hints about the way in which spacetime
and geometry will have to be described in M-theory.

In this thesis we will study the behavior of single and multiple D-branes from
the point of view of their effective description in terms of supersymmetric gauge
theories. We will see how the nonrenormalizable corrections to the leading order
super-Yang-Mills actions provide interesting information about the ‘stringy’ aspects
of D-brane physics. We will then explicitly construct some of these corrections, using
the constraints of supersymmetry and information from perturbative string theory.



Chapter 1

Strings and D-branes

This long introductory chapter is aimed at an audience of non-specialists and will
hopefully provide a sufficient amount of background material in order to justify the
higher pace of the later chapters.

Reviews and books on string theory often start with a discussion of the bosonic
string. This allows one to explain some of the basic concepts without the need to
worry about the additional technical complications that one encounters when dealing
with the more interesting superstrings. The present chapter will be no exception. A
brief review of M-theory will be postponed to the next chapter.

We start with the free string and discuss the appearance of the critical dimension
and gravity. We will be quite explicit. Our discussion of string interactions starts with
a review of the concepts involved in interacting field theories. In this way we hope
to explain the limitations of string perturbation theory and the usefulness of effective
field theory techniques for the study of strings. Finally, we move on to D-branes and
their effective field theory description, with an emphasis on T-duality.

The literature on string theory is vast. The following books [14–19] provide good
introductions to the subject and contain extensive lists of references. In particular,
the reader will find thorough discussions on string perturbation theory in these books
which should supplement the brief review we provide here.

1.1 The free bosonic string

Our discussion starts with the classical theory of a relativistic string. A string is a one-
dimensional object which sweeps out a two-dimensional surface (called the world-sheet
Σ) as it moves through spacetime. Spacetime is considered to be flat d-dimensional
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Minkowksi space1 M with metric ηµν = diag(−1,+1, . . . ,+1). The embedding of
the world-sheet in spacetime ı : Σ → M is given by the functions2 Xµ(τ, σ), where
σα = (σ1, σ2) = (τ, σ) are dimensionless coordinates with which we parametrize the
world-sheet. τ and σ are respectively time- and spacelike w.r.t. the induced metric
h, which is given by:

hαβ = (ı∗η)αβ = ∂αX
µ∂βX

νηµν . (1.1.1)

The coordinates take the values −∞ < τ <∞ and 0 ≤ σ ≤ ℓ, where ℓ is a parameter
which we will discuss later. The classical dynamics of the free string is governed by
a generalization of Fermat’s principle of least time: the area of the world-sheet is
minimal. This leads us to the action of Nambu and Goto:

SNG[X] = − 1

2πα′

∫

Σ

d2σ
√
−dethαβ . (1.1.2)

The constant α′ is known as the Regge slope parameter or simply as ‘alpha-primed’.
It has a mass dimension3 of −2 and is related to the string’s tension T by T = 1/2πα′.
For later convenience, we introduce yet another parameter called the string length by
ℓs ≡

√
α′.

The action (1.1.2) can be interpreted as defining a two-dimensional relativistic
field theory for d scalar fields Xµ. From this point of view, we refer to spacetime as
the target space. The appearance of the square root in the action makes this theory
difficult to analyze. Fortunately, there is an alternative formulation which gives an
action that is quadratic in the Xµ. First we introduce an auxiliary symmetric tensor
field γαβ(τ, σ), which can be viewed as an intrinsic metric on the world-sheet. We
claim that the following action is (at least classically) equivalent to (1.1.2):

SP[γ,X] = − 1

4πα′

∫

Σ

d2σ
√−γ γαβ∂αXµ∂βX

µ. (1.1.3)

This expression is known as the Howe-Tucker-Polyakov action, but we will simply
refer to it as the Polyakov action. We obtain the following energy-momentum tensor

1We do not allow for spacetime metrics with more than one time dimension. Such spacetimes
have closed timelike curves and give problems with causality already on the classical level.

2In general, we denote coordinates in spacetime by xµ, but use capital letters Xµ when we refer
to the embedding functions of extended objects such as strings.

3In principle string theory does not contain any fundamental dimensionful parameters. Indeed,
we see that the factor 1/2πα′ can be removed by redefining the Xµ’s. Nevertheless, in practice it is
very convenient to be able to work with a system of units. We can manage this by keeping α′ explicit
and measure quantities in terms of powers of 1/

√
α′. To make contact with the way dimensions are

usually defined in physics we note that the Hamiltonian for the free string is proportional to 1/
√
α′.

Measuring units of mass is therefore equivalent to counting powers of 1/
√
α′. We could go on and

introduce the well-known constants ~ and c, thereby defining units of length and time. This would
allow us to make contact with the way the fundamental constants of nature are usually expressed.
However, we will not do this and keep working in natural units, in which [length] = [time] = [mass]−1.
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from this action:

Tαβ := − 2√−γ
δS

δγαβ
=

1

2πα′

{
∂αXµ∂βX

µ − 1

2
γαβγ

γδ∂γXµ∂δX
µ

}
. (1.1.4)

The equation of motion for γαβ is simply Tαβ = 0, which is algebraic in γαβ . The
Nambu-Goto action is recovered from (1.1.3) by eliminating γαβ by means of its
equation of motion.

The Polyakov action has the following local symmetries:

• General coordinate transformations or diffeomorphisms on the world-sheet:

σα → σα − ξα(σ). (1.1.5)

The presence of these symmetries is expected on physical grounds: physics
should not depend on the way we choose to parametrize the world-sheet. The
fields transform as

δXµ(σ) = LξX
µ = ξα∂αX

µ, (1.1.6a)

δγαβ(σ) = (Lξγ)αβ = ξγ∂γγαβ + ∂αξ
γγγβ + ∂βξ

γγαγ . (1.1.6b)

As usual, general covariance leads to the conservation of the energy-momentum
tensor: ∇αT

αβ = 0 when the equations of motion of the matter fields are
satisfied.

• Local Weyl rescalings of the metric:

δXµ(σ) = 0,

δγαβ(σ) = Λ(σ)γαβ(σ).
(1.1.7)

As a consequence, the trace of the energy-momentum tensor vanishes identically:
γαβTαβ ≡ 0.

We fix these symmetries by imposing the conformal gauge:

γαβ ≡ ηαβ = diag (−1,+1), (1.1.8)

The Polyakov action reduces to:

S = − 1

4πα′

∫

Σ

d2σ ηαβ∂αXµ∂βX
µ (1.1.9)

In the conformal gauge we have a free two-dimensional field theory for d scalars. Note
however that X0 appears in the action with the wrong sign. The equation of motion
for the Xµ is simply the two-dimensional wave equation:

�Xµ(τ, σ) =

(
∂2

∂σ2
− ∂2

∂τ2

)
Xµ(τ, σ) = 0, (1.1.10)
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with the general solution

Xµ(τ, σ) = Xµ
R(τ − σ) +Xµ

L(τ + σ). (1.1.11)

The subscripts R and L stand for right- and left-moving respectively. This needs to
be supplemented with suitable boundary conditions in order that

δXi∂σX
i
∣∣∣
ℓ

σ=0
= 0. (1.1.12)

We will discuss the different boundary conditions below. The equation for the energy-
momentum tensor, Tαβ = 0, has now become a constraint that needs to be imposed
on solutions of the equations of motion for Xµ. The constraints can be expressed as:

(∂τX
µ ± ∂σX

µ)2 = 0. (1.1.13)

1.1.1 The light-cone gauge

Actually, there are some symmetries that are not completely fixed by our gauge choice
(1.1.8). They are given by

τ 7→ τ ′ = f(τ + σ) + g(τ − σ), (1.1.14a)

σ 7→ σ′ = f(τ + σ)− g(τ − σ), (1.1.14b)

where f and g are arbitrary functions. We can use these symmetries to remove
the unphysical scalar X0 from (1.1.9). First we introduce light-cone coordinates on
spacetime:

x± =
1√
2
(x0 ± xd−1). (1.1.15)

In these coordinates we have the following inner product of coordinates and momenta

x · p = ηµνx
µpν = −x+p− − x−p+ + xipi, (1.1.16)

with i = 1, . . . , d − 2. Light-cone time is conventionally defined to be x+. Hence
p− is the light-cone Hamiltonian in the target space. We then impose the light-cone
gauge4:

X+ = x+
0 +

2πα′

ℓ
p+τ. (1.1.17)

4The gauge choice X+ ∼ τ essentially states that we can trade time evolution on the world-
sheet for light-cone time evolution in the target space. To motivate the choice of the constant λ in

X+ = λτ , we note that the spacetime momentum carried by the string is pµ = T
R ℓ
0 dσ ∂τXµ, where

T is the tension. In particular 2πα′p+ =
R ℓ
0 dσX+ = λ ℓ.



1.1 The free bosonic string 13

The parameter x+
0 sets the origin of time. This gauge can always be reached from a

general X+(τ, σ) = X+
R (τ − σ) +X+

L (τ + σ) by taking

2πα′p+/ℓ× f(τ + σ) = X+
L (τ + σ)− aLx

+
0 , (1.1.18a)

2πα′p+/ℓ× g(τ − σ) = X+
R (τ − σ)− aRx

+
0 , (1.1.18b)

in (1.1.14a), where aL and aR satisfy aL + aR = 1 but are otherwise arbitrary real
numbers. From (1.1.14b) we have also that

σ′ ∼ X+
L −X+

R − (aL − aR)x+
0 . (1.1.19)

Thus the light-cone gauge also fixes the spatial coordinate σ, but only up to an
arbitrary constant shift σ → σ + a.

With the light-cone gauge choice, we can easily solve the constraints (1.1.13) by
expressing X− in terms of X+ and Xi. We will not need an explicit expression,
though. Indeed, the Polyakov Lagrangian reduces to

L = −p+∂τx
− − 1

4πα′

∫ ℓ

0

dσ ∂αX
i∂αXi, (1.1.20)

where we defined

x−(τ) :=
1

ℓ

∫ ℓ

0

dσX−(τ, σ), (1.1.21)

which is in accordance with (1.1.16), since we conclude from (1.1.20) that p+ is the
canonical momentum conjugate to x−. We see that only the spatially constant part
of X− is dynamical. The Hamiltonian for our two-dimensional theory is given by

H =

∫ ℓ

0

dσH =
1

4πα′

∫ ℓ

0

dσ
{

(∂τX
i)2 + (∂σX

i)2
}
. (1.1.22)

So we end up with a Hamiltonian for d− 2 free massless scalar fields Xi, which still
satisfy the wave equation:

�Xi(τ, σ) = 0. (1.1.23)

Let us first discuss the relation between H and p− before proceeding. The light-cone
Hamiltonian p− generates x+ translations whereas the world-sheet Hamiltonian H
generates τ translations. But x+ and τ are related by (1.1.17), hence:

p− =
ℓ

2πα′p+
H. (1.1.24)

We will use this equation to find the mass of the string.
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We now discuss the possible boundary conditions that we can impose in order that

δXi∂σX
i
∣∣∣
ℓ

σ=0
= 0. (1.1.25)

First of all there are closed strings. They have no endpoints; hence there is a periodic
boundary condition:

Xi(τ, σ) = Xi(τ, σ + ℓ), ∀ i. (1.1.26)

The shift symmetry σ → σ + a is unaffected by this condition. Its consequences will
be discussed below when we quantize the closed string.

On the other hand there are open strings, which do have endpoints. Boundary con-
ditions can be imposed on these endpoints in two ways. The strings can either move
freely or have their endpoints confined to hyperplanes. The first case corresponds to
imposing Neumann boundary conditions on all directions at both endpoints:

∂σX
i(τ, 0) = ∂σX

i(τ, ℓ) = 0, ∀ i. (1.1.27)

In the second case we impose a Dirichlet condition on some direction(s) at one (or
both) of the endpoints:

δXi(τ, 0 or ℓ) = 0 ⇒ Xi(τ, 0 or ℓ) = constant, for some i. (1.1.28)

The hyperplanes on which open strings can end are called D-branes (where the ‘D’
stands for Dirichlet and ‘brane’ generalizes the concept of a membrane).

D-branes are an important class of extended objects in string theory and have
played a crucial role in understanding the nonperturbative structure of string theory.
Extended objects are in general called p-branes, where p stands for the number of
spatial directions in the world-volume of these objects. So, for example, a particle is
a 0-brane and a string a 1-brane. An open string that has both endpoints confined
to the same Dp-brane satisfies Neumann boundary conditions in the p+ 1 directions
tangent to the Dp-brane (including time) and Dirichlet conditions in the d − p − 2
direction transverse to the brane5. We will discuss D-branes in more detail later in
this chapter.

Note that the different open string boundary conditions explicitly break the shift
symmetry σ → σ + a.

5Note that in the light-cone gauge there are only d− 2 directions Xi on which we can impose a
Dirichlet boundary condition. So we can discuss Dp-branes for p = 1, . . . , d− 1. There also exists a
D0-brane, the D-particle. This is a perfectly well-defined object within string theory, but in order
to describe it we need a covariant gauge in which all the spatial Xµ’s are kept. It is also possible
to impose a Dirichlet condition on the time direction X0 (thereby obtaining a spacelike D-brane or
S-brane) or even on all directions in which case one obtains the D-instanton, which plays a similar
role in string theory as the ordinary Yang-Mills instanton in gauge theories. We will not discuss
these extended objects any further, though.
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1.1.2 The open string spectrum

We now consider the open string with Neumann boundary conditions in all directions.
The equations of motion and boundary conditions are solved by the following mode
expansion:

Xi(τ, σ) = xi
0 +

2πα′

ℓ
piτ + i

√
2α′

∑

n∈Z\{0}

1

n
αi

n e−inπτ/ℓ cos
nπσ

ℓ
. (1.1.29)

We see that the left- and right-moving degrees of freedom have been related to each
other by the Neumann condition. The σ-independent part describes the motion of
the center of mass of the string. pi is the momentum of the center of mass in the
i-direction:

pi =
1

2πα′

∫ ℓ

0

dσ ∂τX
i. (1.1.30)

The σ-dependent part describes the ‘wiggling’ of the string. Since the Xi are real, we
have αi

−n = (αi
n)∗. The Hamiltonian becomes:

H =
πα′

ℓ
pipi +

π

2ℓ

∑

n6=0

αi
−nα

i
n. (1.1.31)

We arrive at the classical mass formula by using p2 = −2p+p− + pipi = −M2 and
p+p− = ℓH/2πα′:

M2 =
1

2α′

∑

n6=0

αi
−nα

i
n. (1.1.32)

Let us turn to quantum mechanics. The canonical variables (x−, p+) and (Xi,Πj =
∂τX

j/2πα′) are hermitian operators on a Hilbert space and satisfy the following equal
time commutation relations:

[x−, p+] = −i, (1.1.33a)

[Xi(τ, σ),Πj(τ, σ′)] = iδijδ(σ − σ′). (1.1.33b)

Some algebra leads to

[xi
0, p

j ] = iδij , (1.1.34a)

[αi
m, α

j
n] = mδijδm+n, (1.1.34b)

where δm+n := δm,−n. Now αi
−n = (αi

n)†, hence the αi
n with n > 0 are lowering

operators and the αi
−n raising operators (with an unconventional normalization).

The mass-shell condition becomes:

M2 =
1

α′

{ ∞∑

n=1

αi
−nα

i
n − a

}
=

1

α′
(N − a), (1.1.35)
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where we normal ordered the sum over the oscillators. The level operator N adds up
the occupation numbers for the separate oscillators αi

−n, weighted by the oscillators’
level n. The constant a corresponds to a zero-point energy and diverges, as is usual
in quantum field theories:

a = −1

2

∞∑

n=1

[αi
n, α

i
−n] = −d− 2

2

∞∑

n=1

n. (1.1.36)

We can get a finite answer for the zero-point energy by means of a suitable regular-
ization procedure. Zeta-function regularization [20–22] turns out to be particularly
convenient.

We introduce a complex parameter s, which will play the role of a cut-off, and
replace the divergent sum (1.1.36) by:

∞∑

n=1

n →
∞∑

n=1

1

ns
, (1.1.37)

For Re s > 0 this sum is actually a representation of the Riemann zeta-function ζ(s).
It has a unique analytic continuation to negative values of s. In particular ζ(−1) =
−1/12. The zeta-function regularization method boils down to simply making the
replacement 1 + 2 + 3 + . . . → ζ(−1) = −1/12. Hence

a =
d− 2

24
. (1.1.38)

We see that the zero-point energy does not vanish. This is a Casimir energy associated
with the finite size of the string world-sheet.

The ground state |0, k〉 is the unique state with light-cone momentum k = (k+, ki)
that satisfies αi

n|0, k〉 = 0 for all positive n. It has N = 0 and M2 = −a/α′. It is a
tachyon if d > 2. We can act on the ground state with raising operators to construct
the complete spectrum of the open string.

There are d − 2 states at level N = 1, with mass M2 = (1 − a)/α′. They are
given by αi

−1|0, k〉 and comprise a vector of SO(d − 2). Now we note something
peculiar. According to Wigner’s analysis of the irreducible representations of the
Poincaré group, massless particle states should fall into multiplets of SO(d − 2),
whereas massive states fall into multiplets of SO(d − 1). We see that for general
values of a, the bosonic string does not have a Lorentz invariant spectrum.

This indicates that we need to take a = 1 and hence that d = 26. So the bosonic
string is Lorentz invariant only in 26 spacetime dimensions6!

6This is only one of many ways of deriving the existence of a ‘critical’ dimension for the bosonic
string. For instance, Polchinski [15] discusses seven different methods, with varying degrees of rigor.
The trick with Riemann’s ζ-function discussed in the text is probably the fastest way of arriving at
the desired result. It may look like voodoo, but can be put on a firm basis and is equivalent to other
regularization methods.



1.1 The free bosonic string 17

For a complete and rigorous proof of this remarkable result we refer to the litera-
ture. Let us however take a quick peek at level N = 2 to see how Lorentz invariance
should come about for the massive excitations. We have the (d − 1)(d − 2)/2 states
αi
−1α

j
−1|0, k〉 with i ≤ j (the oscillators are bosonic), which provide us only with a

(reducible) representation of SO(d− 2), whereas we expect these states to represent
a massive particle since M2 = (2 − a)/α′. Fortunately, due to the particular way in
which N is defined there are also the d−2 states αi

−2|0, k〉. These states together have
just the right number of degrees of freedom to describe the (d+1)(d−2)/2 dimensional
rank-2 symmetric traceless tensor of SO(d− 1). So things work out nicely.

In the critical dimension the ground state |0, k〉 is a tachyon with M2 = −1/α′. It
can be represented by a scalar field To. The first excited state can be represented by a
massless vector field Aµ, with the usual U(1) gauge invariance Aµ → Aµ + ∂µΛ. This
gauge invariance is actually also present in string theory. We did not encounter it
though, because it is fixed from the start by the light-cone gauge. It does show up in
covariant gauges. It is actually possible to extend the abelian U(1) gauge invariance
to a nonabelian U(n) invariance as we will discuss later. Besides the tachyon and the
gauge field the open string spectrum contains an infinite tower of massive states of
arbitrarily high spin.

The presence of the tachyon indicates that the bosonic string theory is unstable.
For this reason (and others) we will eventually need to discard the bosonic string
theory. It will turn out that the tachyon is absent in superstring theory and that in
addition fermions are automatically incorporated in the spectrum.

1.1.3 The closed string spectrum

In the case of the closed string, the right- and left-moving degrees of freedom are
not related to each other through the boundary conditions. They are not completely
independent though, as we will see in a minute. We have:

Xi(τ, σ) = Xi
R(τ − σ) +Xi

L(τ + σ), (1.1.39)

with

Xi
R(τ − σ) =

1

2
xi

0 +
πα′

ℓ
pi(τ − σ) + i

√
α′

2

∑

n∈Z\{0}

1

n
αi

ne−2πin(τ−σ)/ℓ, (1.1.40a)

Xi
L(τ + σ) =

1

2
xi

0 +
πα′

ℓ
pi(τ + σ) + i

√
α′

2

∑

n∈Z\{0}

1

n
α̃i

ne−2πin(τ+σ)/ℓ. (1.1.40b)

In contrast with the open string, there are now two independent sets of oscillators
with αi

−n = (αi
n)∗ and α̃i

−n = (α̃i
n)∗. The canonical quantization procedure leads to
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the same commutation relations for the center of mass coordinates and momenta as
for the open string. For the oscillators we obtain:

[αi
m, α

j
n] = mδijδm+n, [α̃i

m, α̃
j
n] = mδijδm+n, [αi

m, α̃
j
n] = 0. (1.1.41)

The mass-shell condition reads :

M2 =
2

α′
(N + Ñ − a− ã), (1.1.42)

where a = ã = (d− 2)/24 as before and

N =

∞∑

n=1

αi
−nα

i
n, Ñ =

∞∑

n=1

α̃i
−nα̃

i
n. (1.1.43)

We mentioned before that the shift symmetry σ → σ+ b is preserved by the periodic
boundary conditions. We still need to deal with it. Classically, the generator S of the
shift symmetries is given by:

S = −
∫ ℓ

0

dσΠi∂σX
i =

π

ℓ

∑

n6=0

(
αi
−nα

i
n − α̃i

−nα̃
i
n

)
. (1.1.44)

Indeed, using the Poisson bracket {Xi(τ, σ),Πj(τ, σ′)}PB = δijδ(σ − σ′), one readily
verifies that δXi = −b ∂σX

i ≡ −b {S,Xi}PB. In the quantum theory we need to
restrict the spectrum to states that are annihilated by S, since the shifts are gauge
transformations. We therefore require that

S|N, Ñ, k〉 =
2π

ℓ
(N − Ñ − a+ ã)|N, Ñ, k〉 ≡ 0, (1.1.45)

where we had to normal order the oscillators as before. Since a = ã, we need to
impose the level-matching condition N = Ñ , i.e. the number of left-movers is equal
to the number of right-movers.

The already-mentioned ground state is |0, 0, k〉 with N = Ñ = 0 and αi
n|0, 0, k〉 =

α̃i
n|0, 0, k〉 = 0 for n > 0. It is a scalar with mass M2 = −4a/α′.

The first excited state has N = Ñ = 1 and M2 = 4(1− a)/α′ and consists of the
(d − 2)2 states αi

−1α̃
j
−1|0, 0, k〉. These states carry a reducible representation ζij of

SO(d− 2), which decomposes into a symmetric traceless 2-tensor, an antisymmetric
2-tensor and a scalar:

ζij =
1

2

(
ζij + ζji − 2

d− 2
δij tr ζ

)
+

1

2

(
ζij − ζji

)
+

1

d− 2
δij tr ζ. (1.1.46)

We again conclude that we need to take a = 1 and d = 26 in order to get a Lorentz
invariant theory. We obtain the same value for the critical dimension as with the
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open string. This is just as well, since we will see below that open string interactions
necessarily give rise to closed strings.

So, apart from the infinite tower of massive fields, the closed string spectrum
contains a scalar tachyon Tc with mass M2 = −4/α′ and three massless fields, of
which the scalar Φ called the dilaton. The other two massless states are realized
by fields of spin > 0, which therefore have an associated gauge invariance. The
antisymmetric 2-tensor of SO(d− 2) can be obtained from a 2-form field Bµν (often
called the Kalb-Ramond field) with gauge transformation

Bµν → Bµν + ∂µΛν − ∂νΛµ. (1.1.47)

It contains (d−2)(d−3)/2 = 276 on-shell degrees of freedom. The symmetric traceless
tensor is obtained from a symmetric field hµν which transforms as

hµν → hµν + ∂µξν + ∂νξµ, (1.1.48)

and contains d(d− 3)/2 = 299 on-shell degrees of freedom. This field is the graviton
and is of course what got this whole business started in the first place.

1.1.4 World-sheet twists

Before we turn to string interactions we need to discuss one more thing. The La-
grangian (1.1.20) has an important discrete Z2 symmetry known as the world-sheet
parity transformation σ 7→ ℓ− σ. It is realized by the twist operator Ω:

ΩXi(τ, σ)Ω−1 = Xi(τ, ℓ− σ). (1.1.49)

Ω acts on the open string oscillators as:

Ωαi
−nΩ−1 = (−)nαi

−n. (1.1.50)

We assume that Ω|0, k〉 = +|0, k〉 (this is actually necessary in order that Ω be con-
served in interactions) and see that Ω acts on the open string spectrum as Ω|N, k〉 =
(−)N |N, k〉. In particular, To → To and Aµ → −Aµ.

For the closed string Ω acts differently:

Ωαi
−nΩ−1 = α̃i

−n, (1.1.51a)

Ωα̃i
−nΩ−1 = αi

−n. (1.1.51b)

Now Ω|N, Ñ, k〉 = |Ñ ,N, k〉, again assuming that Ω|0, 0, k〉 = +|0, 0, k〉. In particular
Tc → Tc, Φ→ Φ and hµν → hµν , but Bµν → −Bµν .

The existence of the parity symmetry Ω allows us to construct new unoriented
string theories from the oriented theories that we discussed up to now. This simple
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procedure is called twisting and consists of truncating the spectrum to states that are
even under Ω. This is consistent, since Ω is multiplicatively conserved in interactions.
Unfortunately, this procedure does not get rid of the tachyons. We are left with a
theory with either only closed strings, with massless fields Φ and hµν , or with a theory
that also contains open strings. It turns out that the yet-to-be-discussed U(n) gauge
invariance of the vector Aµ has to be replaced with the smaller SO(n) or USp(n).

1.2 String interactions

So far we have only described the behavior of a single open or closed string moving in
flat spacetime. We continue our treatment of the bosonic string with a discussion of
its interactions. We will only scratch the surface of this subject. First however, we will
review some general properties of interacting field theory. Not only will this allow us
to draw some useful analogies between field and string theories, but it actually turns
out that some properties of string theories are (at present) only understood from the
point of view of their low energy effective field theoretic approximation.

1.2.1 The S-matrix in field theory

In relativistic quantum theories, one typically studies scattering processes of particles.
One is interested in experimentally measurable quantities such as scattering cross-
sections and decay widths. These quantities can be obtained from a mathematical
construct called the scattering or S-matrix. It contains all the information on the
scattering process that is independent of the particular experimental setup7.

The S-matrix for a relativistic quantum theory is defined as follows. We assume
that we know the particle spectrum of the theory under consideration and that there
are no long-range interactions between these particles8 (this implies in particular
that the theory is local). We can thus treat incoming (t → −∞) and outgoing
(t → ∞) particles as free – with the exception of self-interactions which give rise
to mass and wavefunction renormalizations. A generic scattering process involves
m incoming particles with momenta ki and n outgoing particles with momenta pj

(we suppress additional quantum numbers for notational convenience). With the

7In this section we limit ourselves to field theories that are defined on Minkowski spacetime and
consider inertial observers only. In this case there is a well-defined – i.e. observer independent –
notion of particles and there exist asymptotic states and hence an S-matrix. For the important
and interesting topic of field theories on general spaces the reader will have to look elsewhere (see
e.g. [21]).

8In principle, this excludes theories with massless bosons (such as QED) since these give rise to
Coulomb-like long-range interactions. The strategy in these cases is to ignore this issue at first and
simply proceed with the calculations. The S-matrix will then suffer from infrared divergences that
can be dealt with by standard methods. There is also the possibility that additional (metastable)
bound states appear in the spectrum. These require special care.
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incoming particles we associate asymptotic states: an in-state, which is obtained by
taking tensor products of the free particle states |m, in〉 = |k1〉 ⊗ . . . ⊗ |km〉, and
similarly an out-state |n, out〉 = |p1〉 ⊗ . . .⊗ |pn〉. The Hilbert spaces of in- and out-
states are isomorphic. This isomorphism is given by the S-matrix, S : Hout → Hin,
i.e. |n, in〉 = S|n, out〉. The matrix elements of the S-matrix are given by:

Snm ≡ 〈n, out|m, in〉 = 〈n, out|S|m, out〉. (1.2.1)

In processes for which the out-states are identical to the in-states no actual scattering
takes place. The S-matrix is then simply the identity operator. The interesting part
of the S-matrix is called the transfer or T -matrix and is defined as follows:

S = 1 + iT, (1.2.2)

It is well known that in quantum field theories, the particle spectrum and the T -
matrix can be obtained from a study of the n-particle connected Green’s functions
G(n)(k1, . . . , kn). Indeed, the particle spectrum is obtained from the poles of the
2-point function (this follows from the Källén-Lehmann spectral representation of
the propagator), whereas the T -matrix for an n-particle process is related to the
G(n) by means of the LSZ reduction formula. The Green’s functions can in turn be
obtained from the partition function Z[J ] (we consider a theory with a bunch of fields,
collectively denoted by φ, and a generic action S[φ]):

Z[J ] =

∫
[dφ] exp

{
iS[φ] + i(J, φ)

}
(1.2.3a)

= Z[0]

∞∑

k=0

ik

k!

∫
ddx1 · · · ddxk 〈φ(x1) · · ·φ(xk)〉J(x1) · · · J(xk). (1.2.3b)

The Green’s functions G(n)(k1, . . . , kn) in momentum space are obtained from

G(n)(x1, . . . , xn) ≡ 〈0|Tφ(x1) · · ·φ(xn)|0〉 ≡ 〈φ(x1) · · ·φ(xk)〉 (1.2.4)

by a Fourier transformation.

Perturbation theory

In general, it is impossible to do the integral (1.2.3a) exactly. Hence one resorts
to perturbation theory. This works as follows. We split the action in a Gaussian
part (describing a free field theory) and a part describing the interaction between the
particles. By locality, these interactions are given by a series of local operators Oi(φ)
(i.e. products of the fields and derivatives):

S[φ] = Sfree[φ] +
∑

i

∫
ddx giOi(φ). (1.2.5)
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If the coupling constants are small, gi ≪ 1, we can make a series expansion of the
exponential. For example, the vacuum-to-vacuum amplitude is given by:

Z[0] =

∞∑

k=0

ik

k!

∑

i

gk
i

〈(∫
ddxOi(φ)

)k〉

free

. (1.2.6)

The correlation functions on the RHS of (1.2.6) are calculated in the free theory.
Similarly, we obtain the Green’s functions by expanding Z[J ] for nonzero J and
subsequently performing suitable functional differentiations. From the poles of the
two point functions, one finds that the particle spectrum is that of the free field theory
Sfree, but with renormalized masses.

Solitons

There is however more to quantum field theory than its perturbative expansion. First
of all, it might happen9 that the coupling constants gi are not small. Not only
is the perturbation series then useless, but even the spectrum of the theory might
be completely different from that of Sfree. This is the case in QCD, for example.
Second, even if gi ≪ 1, the perturbation series in general does not converge, but is
at best an asymptotic series, in which every next order in the series provides a better
approximation to the S-matrix, but for smaller and smaller values of the coupling
constants. This is an indication that there are physical effects that are not captured
by the perturbation series10.

These so-called nonperturbative effects are typically related to the occurrence of
nontrivial but localized solutions φcl to the classical field equations. These solutions
owe their existence to the nonlinearities of the field equations. In quantum mechanics,
they can be treated in perturbation theory by semiclassical methods. One expands
the fields around the classical solution:

φ = φcl + δφ, (1.2.7)

and quantizes the perturbations δφ under the assumption that the coupling constants
are small. Note that ordinary perturbation theory can be interpreted as a semiclassical
expansion around φcl = 0.

These particle-like solutions come in two kinds. There are finite-energy solutions to
the Minkowskian field equations, known as solitons. They are interpreted as additional

9We will see below that the size of the coupling constants gi actually depends on the energy scale
at which we investigate a given theory.

10The occurrence of a diverging perturbation series should not be confused with the problem of ul-
traviolet divergences. These can occur at every order in perturbation theory and signify a breakdown
of the field theory at high energies. In these cases we interpret the field theory under consideration
as an effective description of some (possibly unknown) underlying theory. The divergences are dealt
with by regularizing the field theory by means of an ultraviolet cut-off and subsequently renormal-
izing the S-matrix. We will come back to the use of effective field theories in a minute.



1.2 String interactions 23

particles of the theory and should be included in the spectrum of asymptotic states11.
Typically, solitons carry a conserved charge which prevents them from decaying into
ordinary particles. The mass of a soliton is inversely proportional to the coupling
constant and in principle renormalized by quantum corrections: m ∼ 1/g2(1+O(g)).
This means that at weak coupling, solitons are very massive and essentially behave as
static classical potentials in which the particles scatter. At strong coupling however,
one expects the solitons to become very light.

S-duality

Sometimes it happens that not only do the solitons become light as the coupling
increases, but also (some of) the ordinary particles become very heavy. A remarkable
phenomenon may then occur. There may exist a different weakly coupled field theory
that describes exactly the same physics. The particles of this dual theory are the
solitons of the theory we started with, whereas the particles of the original theory
may appear as solitons or bound states of the dual theory12. This phenomenon – the
existence of two different theories describing the same physics – is known in general
as duality. The theories are said to be dual to each other. In the present case we
talk about S-duality which exchanges the weak- and strong-coupling regimes of two
theories. It is not surprising that S-duality only occurs in rare cases.

To actually prove an S-duality, one needs to solve a quantum field theory exactly,
which is in general impossible. The best one can do is to check that certain necessary
conditions for S-duality are indeed satisfied. For example, one of these conditions
is that the quantum numbers of the particles (solitons) of the original theory need
to match those of the solitons (particles) of the dual theory. This simple check is
already difficult to perform in practice because of an important technical obstacle.
The masses and charges of the particles and solitons were derived in perturbation
theory and we are not allowed to simply extrapolate these results to large values of
the coupling. Fortunately however, there are supersymmetric models for which there
are powerful nonrenormalization theorems that constrain the quantum corrections

11When quantizing a theory around the soliton background, one typically obtains a ground state
with an energy larger than the vacuum energy, which is interpreted as the quantum mechanical
version of the classical soliton. In addition, one obtains an infinite tower of excited states. These
are interpreted as excited states of the soliton itself, and as states of arbitrary numbers of ordinary
particles (i.e. those obtained from Sfree) scattering off the soliton [23]. As an analogy, one can think
of photons (the particles) scattering off an atom (the soliton). The atom itself has different energy
levels (corresponding to the electron orbitals) that can be excited by the absorption of a photon.

12A famous example of such behavior exists in 1 + 1 dimensions: the sine-Gordon theory vs.
the massive Thirring model [24]. The sine-Gordon theory consists of a single scalar field with a
specific self-interaction. Besides the scalar particle, its spectrum contains a soliton. The Thirring
model contains a single Dirac fermion field with self-interactions. Remarkably, it turns out that
the fermion particle behaves in the same way as the soliton of the sine-Gordon theory, whereas the
sine-Gordon particle behaves in the same way as a fermion-antifermion bound state of the Thirring
model.
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to the masses and charges of certain classes of solitons (the BPS states, see the
following chapter). In these theories (and they include the superstring theories) we
are allowed to extrapolate the results from perturbation theory to arbitrary values
of the coupling and one indeed finds solid evidence for S-duality. Famous examples
are the Montonen-Olive electric/magnetic duality [25] of the N = 4 [26, 27] and
N = 2 [28,29] supersymmetric Yang-Mills theories in 3 + 1 dimensions.

Instantons

We mentioned that there are two kinds of particle-like solutions of classical field
equations. Apart from solitons, there also exist instantons. These are obtained as
finite-action solutions of the Euclidean field equations13 and play an important role
in the understanding of the vacuum structure of quantum field theories. Instantons
correspond to tunneling processes and give nonperturbative corrections to scattering
processes, i.e. contributions ∼ e−1/g2

.

1.2.2 String perturbation theory

After this digression into field theory, let us pick up the thread and return to strings.
As in field theory, we would like to compute the S-matrix. Now a serious problem
immediately presents itself. We do not have a string theoretical analog of the field
theoretical action S[φ] of the previous section14. Of course there is the action (1.1.2),
but it describes only a single string.

Let us, for the sake of argument, imagine that we do have such an action. As in
field theory, we would have a hard time identifying the physical degrees of freedom
of this action. So we would resort to perturbation theory: we would find the particle
spectrum and possibly bound states and solitons in a regime of the theory in which
spacetime is flat and the coupling constants are small. We would then move on to
calculate S-matrix elements.

13Recall that there is always an implicit Feynman iǫ-prescription in (1.2.3a), giving a small positive
imaginary part to the time coordinate t. We can Wick rotate the time integral to the imaginary axis,
which comes down to making the replacement t→ −iτ with τ real. The analytic continuation of the
fields is defined according to the tensor transformation law. For example, for a gauge field Aµ this
goes as At → iAτ and Ax → Ax, where t denotes the timelike direction and x a spacelike direction.
The result is a field theory on Euclidean spacetime, with an action defined by SE ≡ −iSM. One
can calculate amplitudes in this formalism and at the end of the day analytically continue back to
Minkowski signature.

14It should be mentioned that there does exist a string field theory (see [30] for a recent review).
Through its use one can obtain nontrivial results beyond the perturbation series. It has for instance
been applied successfully to the theory of tachyon condensation. Nevertheless, there are a number
of important properties of string theories that are not covered by string field theory. It is fair to
say that – at least until now – the effective action approach has proved to be a more useful tool for
studying the nonperturbative structure of string theories.
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Fortunately it turns out that we can carry out a part of this program without
knowing the underlying action. Indeed, we already know what the particle spectrum
looks like in this case. It is given by the excitations of open and closed strings, to
which we devoted the first part of this chapter. Moreover, there exists a recipe,
called string perturbation theory, that allows one to write down a perturbation series
for the S-matrix involving these excited states. Not only is this S-matrix physically
meaningful (i.e. unitary), it is even believed to be finite in the ultraviolet to every
order in perturbation theory15. Since the spectrum of the closed string includes the
graviton we argue that string theory gives a finite theory of perturbative quantum
gravity.

The perturbation series (1.2.6) in field theory has a well-known graphical represen-
tation in terms of Feynman graphs: the world-lines of the particles are represented by
lines, whereas the interactions are represented by vertices. Graphically, the expansion
in powers of gi is equivalent to an expansion in the number of loops in the Feynman
diagrams (since to every vertex we associate a factor gi). A similar representation
exists for strings. However, since strings are two-dimensional objects, the different
contributions to the S-matrix are not represented by graphs, but by compact punc-
tured surfaces. Each puncture corresponds to a certain incoming or outgoing asymp-
totic free string state. What kind of surfaces we allow depends on the string theory
in question. For oriented closed strings these are closed surfaces. For unoriented
closed strings, closed surfaces with crosscaps are also allowed. For oriented closed
and open strings we allow surfaces with boundaries16. The incoming/outgoing open
string states are represented by punctures on the boundaries. Finally, for unoriented
open and closed strings we allow for boundaries and crosscaps.

As in field theory, we can organize the series in terms of the topology of the
diagrams. We introduce a coupling constant λ (more on this later), and associate
a factor of e−λχ with each diagram17. Furthermore, with each string state i with
momentum18 kµ we associate a vertex operator Vi(k), which is constructed from the
operators of the two-dimensional field theory living on the world-sheet.

Up to this point our discussion of string perturbation theory has been completely

15The finiteness has been proved through all orders in perturbation theory in [31], but only in the
light-cone gauge. In the case of the covariantly quantized superstring, finiteness has been proved
for the one-loop amplitudes in the eighties (see e.g. [14, 15]) and, more recently, for the two-loop
amplitudes (see [32] for a review). Though a complete proof is still lacking, there seems to be no
reason to assume that the methods of [32] would not apply to higher orders in perturbation theory.

16A detailed investigation of the unitarity of the S-matrix reveals that a theory with open strings
necessarily includes closed strings, whereas the opposite does not hold. Indeed, two open strings can
join at their endpoints to form a closed string.

17χ is the Euler number of the surface under consideration. It depends only on the topology and
is given by χ = 2− 2g− b− c, where g, b and c are the number of handles, boundaries and crosscaps
of the surface, respectively.

18We employ the convention that for incoming states the momenta are positive, kµ = (E,~k),

whereas for outgoing states they are negative kµ = −(E,~k).



26 Strings and D-branes

general. In the following, we will limit ourselves to the bosonic string. The case
of the superstrings is conceptually not very different, but is technically a lot more
complicated.

In bosonic string theory the vertex operators are constructed using the Xµ fields
of (1.1.3). We have for example

Vtachyon(k) ∼
∫

∂Σ

ds eik·X , (1.2.8)

for an open string tachyon – note that the integral runs over a boundary of the world-
sheet – and

Vgraviton(k) ∼ 1

ℓ2s

∫

Σ

d2σ ζµν

√−γ γαβ∂αX
µ∂βX

ν eik·X , (1.2.9)

for a graviton with polarization ζµν . Actually, these expressions have to be normal
ordered, but let us not worry about the details here. The relative normalization of the
different vertex operators can be fixed by unitarity whereas the overall normalization
is a convention. An n-particle T -matrix element is then given by the Polyakov path
integral

iTi1···in
(k1, . . . , kn) =

∑

topologies

e−λχ

∫
[dγ dX]

Vgauge
Vi1(k1) · · ·Vin

(kn) e−SP [γ,X], (1.2.10)

where SP [γ,X] is the ‘Euclideanized’ version19 of (1.1.3).
In the path integral we sum over all physically distinct geometries of the world-

sheets and their embeddings in spacetime20. Hence we need to divide out the volume
Vgauge of the diffeomorphism and Weyl gauge group. This is achieved by going to the
conformal gauge, which is always possible locally as we have seen. However, there are
complications due to the nontrivial topologies of the world-sheets. First of all, it turns
out that it is impossible to bring the metric γαβ to the form (1.1.8) globally21 when
χ ≥ 0. However, we are mainly interested in the tree-level diagrams – the sphere and
disk topologies – and there this issue does not arise. More important for us is that

19We have Wick rotated the time direction of the world-sheet. The advantage of this is that we can
use results from Riemannian geometry, such as the Gauss-Bonnet theorem. The Euclidean version of
the path integral has been shown to be completely equivalent to treatments in Minkowski signature,
see e.g. [14,15].

20One also needs to integrate over the possible positions of the punctures on the world-sheet. This
is the reason for the integrals in the definition of the vertex operators (1.2.8) and (1.2.9).

21It turns out that γαβ can be fixed up to a certain finite number of parameters, the moduli. The
path integral over γαβ thus reduces to an integral over the moduli space. An important issue is then
to find a measure on moduli space. This is relatively straightforward for the bosonic case, but in the
case of the RNS superstring – where one considers supersurfaces – this is much more difficult. The
one-loop case has been dealt with a long time ago and is treated in the textbooks, but the general
case was only solved recently by d’Hoker and Phong (see again [32] for a review).
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Figure 1.2.1. The six cyclically inequivalent orderings of the vertex operators on the
boundary of the open string disk amplitude.

at tree-level22 there are gauge symmetries that are not fixed by the conformal gauge
choice. We encountered these before when we discussed the quantization of the free
string. There we used them to go to the light-cone gauge. Now we can use them to
fix the position of some of the punctures. For the sphere topology, we can fix three of
the closed string vertex operators at arbitrary positions on the world-sheet. For the
disk topology, we can fix the positions of three of the open string vertex operators
on the boundary. However, it turns out that we can not fix the cyclic ordering of
the vertices. So we still need to sum over the cyclically inequivalent orderings of the
vertices.

Let us illustrate the above by treating an example of a string theory scattering
process. We will focus on the ordering of the vertices and refer to chapter 6 of [15]
for calculational details. We consider elastic scattering of two open string tachyons.
The incoming tachyons have momenta k1, k2 and the outgoing tachyons k3 and k4.
We define the conventional Mandelstam variables:

s = −(k1 + k2)
2, t = −(k1 + k3)

2, u = −(k1 + k4)
2. (1.2.11)

They satisfy the relation

s+ t+ u =
∑

i

m2
i = − 4

α′
. (1.2.12)

At tree level, this scattering process is associated with a disk diagram with four vertex
operators on the boundary. Let us parametrize the boundary by an angular variable

22At one-loop (χ = 0) there are also residual gauge symmetries. They act on the moduli. This
modular invariance is responsible for the finiteness of the one-loop amplitudes.
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θ ∈ [0, 2π). We fix the position of three vertex operators: #1 at θ1, #2 at θ2 and
#3 at θ3, with θ1 < θ2 < θ3. The integral over the position θ4 of #4 splits in three
pieces, θ3 < θ4 < θ1, θ1 < θ4 < θ2, and θ2 < θ4 < θ3. In addition, there are
three contributions from interchanging #2 and #3. So we get a total of six cyclically
inequivalent orderings of four open string vertex operators on the disk. It turns out
that these six integrals give results that are equal up to an interchange of vertex
operators. They are proportional to I(s, t) with:

I(s, t) =
Γ(−1− α′s)Γ(−1− α′t)

Γ(−2− α′s− α′t)
, (1.2.13)

an expression known as the Veneziano amplitude. The complete amplitude is

iT (4)(k1, . . . , k4) = 2i e−λ (2π)26δ(26)(k1+. . .+k4)
(
I(s, t)+I(t, u)+I(u, s)

)
. (1.2.14)

The first term comes from the ordering 1243 and 1342, the second from 1423 and
1324, the third from 1234 and 1432, see figure 1.2.1.

1.2.3 Low-energy approximation

Now that we have seen that it is possible to do perturbation theory of strings on flat
spacetime, we would like to know more about the nonperturbative structure of string
theories. In particular, we want to know what kind of solitons a given string theory
contains. As explained above, this implies that we need solutions to the classical
equations of motion of the strings. We do not know these equations, but we do know
what these equations look like at low energies. They are field equations.

Because strings are extended objects, their interactions are intrinsically nonlocal.
This nonlocality manifests itself in the infinite tower of massive string excitations,
a phenomenon that does not occur in local field theories. At energies below ℓ−1

s

however, the massive modes of the strings are never produced in scattering processes,
though they do appear as virtual particles and give rise to interactions between the
massless modes. These interactions are short-ranged – i.e. distances smaller than ℓs –
and are therefore effectively local at low energies. And thus, according to Weinberg’s
conjecture23, string theories reduce to field theories at energies below the string scale
ℓ−1
s .

So instead of studying nonperturbative effects directly in string theory, we can
use the low-energy effective field theory. Of course, because of the presence of the
tachyon, it is not completely clear how we should interpret phrases like “low-energy
limit” in the case of the bosonic string. We will simply ignore this issue and continue
with our discussion of the bosonic string as if the tachyon did not exist at all. After
all, it will not bother us in the case of the superstring, which is our real interest.

23Weinberg’s conjecture states [33,34] that any Poincaré invariant quantum theory of particles with
local interactions can be modeled by a quantum field theory. No counterexamples to this conjecture
are known.
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High energy Low energy

1. GSW model (leptons, W±, Z) Fermi theory (leptons)
2. QCD (quarks, gluons) Chiral perturbation theory (mesons,

hadrons)
3. MSSM (superpartners) Standard model
4. Technicolor (composite Higgs) Standard model
5. General relativity on R

1,3 × S1 General relativity with U(1) gauge
field and scalar field on R

1,3

6. Superstring theories Supergravity theories

Table 1.2.1. Some examples of effective field theories in high-energy physics. Cases 1 and
2 are realized in nature, whereas the others exist only in the theoretician’s notebook – at
least for now. Case 2 illustrates that the low-energy degrees of freedom may be completely
different from those appearing in the underlying field theory. Case 3 and 4 illustrate that
different theories can have the same low-energy limit. Case 5 is the famous scenario of Kaluza
and Klein: space may be more than three-dimensional. Case 6 is the outcome of the first
“superstring revolution” of the 1980’s.

Wilsonian effective actions

Let us review some of the ideas behind the use of effective field theories. See [33] for
a nice nontechnical review and e.g. [13,35,36] for elementary treatments. The typical
situation is as follows: we are given a relativistic quantum theory with a characteristic
energy scale Λ and are interested in the dynamics of this theory at energies below this
scale. We then try to write down an effective theory that captures this dynamics.

For convenience, we analytically continue to Euclidean space, since then the con-
dition |k| < Λ, where |k|2 = kµk

µ, always implies small momenta and energies. We
denote the momentum space components of the fields collectively by φ(k) and consider
the following split into low- and high-frequency modes:

φ(k) = φL(k) + φH(k), (1.2.15)

where – using the Heaviside step function θ –

φL(k) = φ(k) θ(Λ− |k|), φH(k) = φ(k) θ(|k| − Λ), (1.2.16)

If we interpret the bosonic string as a field theory with an infinite number of massive
fields, the φH(k) would include all these massive fields but also the high-frequency
modes of the massless fields. We perform the path integral over the high-frequency
modes ∫

[dφL(k) dφH(k)] e−S[φL,φH] ≡
∫

[dφL(k)] e−Seff,Λ[φL], (1.2.17)
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where the effective action is defined as

e−Seff,Λ[φL] ≡
∫

[dφH(k)] e−S[φL,φH]. (1.2.18)

By locality, we can expand the effective action in a series of local operators Oi(φ) as
in (1.2.5):

Seff,Λ[φ] = Sfree[φ] +
∑

i

∫
ddxΛd−∆i λi(Λ)Oi(φ), (1.2.19)

where ∆i is the dimension of Oi(φ) in units of mass, and we defined dimensionless
coupling constants λi(Λ) ≡ Λ∆i−d gi(Λ).

Since the effective field theory is defined with a cut-off Λ, it gives results that
are finite24. This does not remove the need for renormalization, of course, since we
still need to relate the bare parameters in the effective Lagrangian to quantities that
we actually measure in experiments. Note that the Lagrangian contains an infinite
number of nonrenormalizable operators. Before the 1970’s it was thought that the
appearance of such terms spells disaster for any field theory. For example, it was
widely believed that a perturbative quantization of general relativity is impossible.
Since the work of Wilson (and many others, see [37] for an early review) these issues
have been better understood, as we will see in a minute25.

For a process at energy E we expect on dimensional grounds that
∫

ddxOi ∼
E∆i−d. From this estimate we obtain the classical scaling behavior of the λi’s as we
lower the energy26:

λi(E) = λi(Λ)

(
E

Λ

)∆i−d

. (1.2.20)

We can recast this in the following form

E
dλi

dE
= (∆i − d)λi(E) + βi(λj), (1.2.21)

where we added the renormalization group beta-functions βi(λj). They contain the
quantum corrections to the classical scaling behavior, due to the effects of low-energy
modes running in loops; the high energy modes were already taken into account in
(1.2.18).

Now for the punchline: the effects of operators Oi for which ∆i − d > 0 become
smaller and smaller as we lower the energy at which we investigate our system. These

24Except for the usual infrared divergences, which are harmless.
25Though the modern point of view on nonrenormalizable field theories has been around for over

thirty years, it for some reason only made its way into a textbook at the advanced undergraduate
level in 1995 [36].

26This is renormalization: the interchange of “bare” variables in the Lagrangian with variables
that are natural for the energy scale under consideration.
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∆i − d low-energy behavior RG terminology traditional term.

< 0 increasing relevant superrenormalizable
= 0 constant marginal renormalizable
> 0 decreasing irrelevant nonrenormalizable

Table 1.2.2. The low-energy behavior of an operator Oi is – in perturbation theory –
dominated by its classical scaling, which is governed by the dimension ∆i of the operator.

operators are called irrelevant. Operators for which ∆i − d < 0 are called relevant.
Their effects become larger at low energies. The operators that do not scale classically
are called marginal. Generically, they do scale as a result of the quantum corrections,
but only with the logarithm log(E/Λ) of the ratio of energy scales and not a power.

At low energies, the physics of a perturbative quantum field theory is dominated by
a finite number of operators (the relevant and marginal ones), or, in their absence, by
the leading order irrelevant operators. Not only does this explain why the quantum
field theories that are used in “low energy” particle physics are renormalizable, it
also solves the traditional problems with nonrenormalizable interactions [38]. As is
well known from renormalization theory, once we include a single nonrenormalizable
operator in a theory, we need to include them all27. But now that we take the idea of
a physical ultraviolet cut-off seriously, we see that we only need take into account a
finite number of these interactions for the determination of physical quantities up to
a given accuracy. The vast majority of these operators are suppressed by sufficiently
high powers of E/Λ to render them unobservable.

Thus ‘nonrenormalizable’ theories like general relativity are predictive as long as
we use them only at energies well below the cut-off28. In fact, they even predict where
this cut-off lies. Consider for example two-graviton scattering in four dimensions.
Since Newton’s constant GN has mass dimension −2 we find the following dependence
of the amplitude M on the center of mass energy E:

M(E) = GN +G2
NE

2 +G3
NE

4 + . . . = GN(1 +GNE
2 +G2

NE
4 + . . .). (1.2.22)

At energies E ∼ 1/
√
GN ≡MPlanck the second term in this series becomes of the same

size as the first: perturbation theory breaks down and the theory is cut off at the
Planck mass MPlanck. If a theory has more than one type of interactions, we deduce
in this way the existence of a high-energy cut-off Λi for each of these interactions.
Since the effective description breaks down already at the smallest of these Λi, we can
rightfully call that particular Λi the cut-off Λ.

27This follows from the usual power counting for Feynman diagrams. As we go to ever higher
orders in perturbation theory, we need to include ever more counterterms in the Lagrangian.

28The effective action approach has been used to calculate for example quantum corrections to
Newton’s law [8, 39]. We refer to [40] for a more complete list of references and to [11, 41, 42] for
lectures on this topic.
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In contrast, the relevant operators indicate a breakdown of the perturbative treat-
ment of a theory at low energies, at a scale E0 say29. As discussed above, one then
expects new degrees of freedom that are associated with non-perturbative effects
(solitons, bound states) to play the dominant role. Unless there are powerful non-
renormalization theorems at work, we can no longer make any reliable calculations in
the theory. The best one can hope for is that one can identify these new degrees of
freedom (either by analyzing the original theory or by means of experimental input)
and that they are weakly coupled, so that it is possible to write down a new effective
theory valid at energies below E0.

A last remark about the marginal operators. It useful to divide these further in
three classes: the marginally relevant, marginally irrelevant and exactly marginal op-
erators, which respectively increase or decrease in size due to quantum corrections,
or stay exactly constant when one lowers the energy. The above discussion on the
(ir)relevant operators also applies to the marginally (ir)relevant case, with the under-
standing that the scaling is now proportional to log(E/Λ).

Obtaining the effective action

It is often impractical or even impossible to do the integral in (1.2.18) explicitly. One
relies rather on indirect methods. The most straightforward procedure is a matching
calculation, which follows the following recipe:

1. Identify the low-energy degrees of freedom of the theory under consideration.

2. Identify the symmetries of the low-energy degrees of freedom30.

3. Write down the most general Lagrangian with the fields of step 1 and the sym-
metries of step 2. This Lagrangian has the form of equation (1.2.5).

4. Calculate amplitudes in both the underlying theory and the effective theory
and Taylor expand these amplitudes in powers of E/Λ. Compare the results to
determine the coupling constants of (1.2.5).

29An exception are mass terms, since they can be treated exactly. Their presence leads to yet
another issue that goes under the name of the hierarchy problem. When a mass term is not protected
by a nonrenormalization theorem, it blows up at low energies. The result is that the associated field
is integrated out, unless the original value m(Λ) at the cut-off is fine-tuned to an unnaturally small
value. Symmetries that can give rise to suitable nonrenormalization theorems are gauge invariance
for spin ≥ 1, chirality for fields of spin 1

2
and supersymmetry or the Goldstone mechanism for

spin 0. We already mentioned in the introduction to this thesis that the hierarchy problem of the
Higgs particle in the Standard Model is one of the major motivations for the introduction of low-
energy supersymmetry. For a more detailed account of these and other arguments for low-energy
supersymmetry see the following reviews [34,43,44].

30Some of these symmetries can be recognized immediately from the low-energy spectrum. For
example, if the spectrum contains a massless spin 1 particle, the effective action needs to be gauge
invariant. Similarly, a massless spin 2 particle implies general covariance and a massless spin 3

2
particle local supersymmetry.
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Obviously this method is particularly useful when the underlying theory is weakly
coupled. The low energy degrees of freedom are then easy to recognize and amplitudes
easy to calculate. This is for example the case for perturbative string theory, where
the role of the cut-off is played by 1/ℓs. In chapters 3 and 4 we apply this method to
the tree-level sector of the open superstring and discuss step 3 and 4 of the procedure
in some detail. In this chapter however (section 1.2.4), we will discuss a different
approach to the construction of effective actions in string theory.

Quantum effective actions

The Wilsonian effective action (WEA) is not the only “effective action” that occurs
in quantum field theory. There also exists an object called the quantum effective
action (QEA), which is in principle very different from the Wilsonian action, but can
resemble it in certain special cases31. This often leads to confusion. It is for this
reason that we devote the remainder of this section to a discussion of the QEA. The
QEA is treated in any good modern book on quantum field theory. A particularly
clear discussion can be found in [34]. A discussion on the relations between the QEA
and WEA from a somewhat different viewpoint can be found in [45].

Let us consider again a generic field theory with fields φ and an action S[φ].
The quantum effective action Γ[φ] is by definition the generating functional of the
amputated one-particle irreducible diagrams (1PI) of this theory.

Γ[φ] ≡
∑

n

1

n!

∫
ddx1 · · · ddxn Γ(n)(x1, . . . , xn)φ(x1) · · ·φ(xn). (1.2.23)

Γ can therefore be viewed as a classical field theory that encodes all the quantum
information of the underlying field theory. The interaction vertices obtained from
(1.2.23) are the 1PI diagrams of S[φ]; Γ reproduces thus already at tree-level all the
amplitudes of S[φ].

It is also possible to write down a QEA for only a subset ϕ of the fields φ, i.e.
we simply only consider 1PI diagrams with ϕ’s as external lines. This is for instance
useful when studying anomalies, where one is only interested in the behavior of a
certain restricted set of Feynman diagrams. The anomaly then manifests itself as the
non-invariance of the QEA under a symmetry transformation of the fields ϕ.

Or we could restrict ourselves to the 1PI diagrams of the light fields only, like
the massless sector of a perturbative string theory. The QEA for these fields is a
horrible nonlocal object that is not known explicitly (for instance, not all amplitudes
have been calculated in string theory). To make the situation more tractable, we can
consider the low-energy expansion of these 1PI diagrams in powers of ℓsE. We then

31Some field theory texts define yet a third type of effective action when discussing gauge theo-
ries. This action is simply defined as the ordinary gauge invariant action plus gauge fixing terms.
Fortunately, this action is (almost) never confused with the WEA and QEA.
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talk about the low-energy QEA for the massless fields, an object that takes a form
similar to (1.2.5). Note that this object is not equal to the Wilsonian action! Indeed,
the QEA incorporates the effects of loops of all fields (and is hence infrared divergent
due to the massless particle loops), whereas the WEA only contains the effects of
loops involving massive particles (the so-called threshold corrections).

When we stick to the tree-level or classical approximation however, we do not
see the effects of loops. Therefore the tree-approximation of the Wilsonian effective
action is equal to the low-energy approximation of the tree-level quantum effective
action for the massless modes. This is quite a mouthful, so in practice one simply
talks about the effective action32.

Note that at leading order in the quantum corrections, Γ[φ] is given by just S[φ].
We can thus simply read off the elementary vertices of S by functional differentiation,
which sometimes provides a more efficient means of obtaining the Feynman rules
than by expanding the partition function Z as in (1.2.6). We can not obtain the
propagators in this way, though.

1.2.4 Strings on curved backgrounds

Up to now we only discussed strings in flat spacetime. What about strings in curved
spaces? A possible starting point is the Polyakov action (1.1.3) with the replacement
ηµν → gµν(X). We can think of this as a string moving in a coherent background of
gravitons. But the graviton is itself an excited state of the string, so we can generalize
this by also turning on backgrounds for the other massless fields. The resulting action
has the form of non-linear σ-model:

Sσ-model = S[g,B] + S[A] + S[Φ], (1.2.24a)

It is obtained by writing down the most general 2-dimensional action with at most
two world-sheet derivatives and the right symmetries (i.e. general covariance on the
world-sheet and in the target space, gauge invariance and local Weyl invariance). The
graviton and the 2-form contribute as follows:

S[g,B] = − 1

4πα′

∫

Σ

d2σ
√−γ

(
γαβgµν(X)− εαβBµν(X)

)
∂αX

µ∂βX
ν . (1.2.24b)

The integral is over the entire world-sheet Σ, which reflects the fact that closed string
vertex operators are inserted in the bulk of Σ. The open string gauge field Aµ couples
to the boundary ∂Σ, hence:

S[A] = −
∫

∂Σ

ı∗A(1) =

∫ ∞

−∞

ds
[
Aµ∂sX

µ
∣∣
σ=ℓ
−Aµ∂sX

µ
∣∣
σ=0

]
. (1.2.24c)

32This sloppy use of terminology is probably the main cause of the confusion that sometimes arises.
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This expression should be familiar: it describes the coupling of a point particle to an
electromagnetic field. Thus the endpoints of open strings carry a charge under the
gauge field Aµ. Similarly, from (1.2.24b) we see that the strings are charged w.r.t.
the 2-form B(2). Finally, we have the coupling to the dilaton:

S[Φ] = − 1

4π

∫

Σ

d2σ
√−γ R[γ] Φ(X)− 1

2π

∫

∂Σ

dsK[γ] Φ(X), (1.2.24d)

where R[γ] is the 2-dimensional curvature scalar. The boundary term involves the
extrinsic curvature K[γ] [46, 47] and is added to cancel the total derivative that is
obtained by varying R[γ]. The various signs and factors in the above equations are
conventional. This fixes the normalization of the massless fields in terms of the nor-
malization of the associated vertex operators. The fields have the following dimensions
in units of mass: [Gµν ] = [Bµν ] = [Φ] = 0 and [Aµ] = +1.

The invariance of (1.2.24) under the gauge transformations of the 2-form B is
somewhat subtle. (1.2.24b) transforms as

−2πα′ δS[g,B] = δ

∫

Σ

ı∗B(2) =

∫

Σ

ı∗dΛ(1) =

∫

Σ

dı∗Λ(1) =

∫

∂Σ

ı∗Λ(1).

This is canceled by assigning a Λ(1) transformation to A. The invariance under the
gauge transformation Λ(0) of A follows since “boundaries do not have boundaries”,
i.e. ∂∂Σ = ∅. We thus have:

δB(2) = dΛ(1), δA(1) = dΛ(0) − 1

2πα′
Λ(1). (1.2.25)

We define for later use the following gauge invariant expression (where F = dA):

F ≡ B + 2πα′F. (1.2.26)

The Euclidean version of (1.2.24) appears in the Polyakov path integral (1.2.10). By
using the Gauss-Bonnet theorem (see e.g. [48])

χ =
1

4π

∫

Σ

d2σ
√
γ R+

1

2π

∫

∂Σ

dsK (1.2.27)

we see that if the dilaton background has a constant value Φ0, the path integral is
weighted by a factor

e−λχe−SE[Φ0] = e−(λ+Φ0)χ. (1.2.28)

Thus it is actually the combination λ + Φ0 which plays the role of a coupling “con-
stant”. We put λ to zero by redefining the dilaton with a constant shift. Every
string diagram now appears with a factor g−χ

s , where the string coupling constant gs

is determined by the vev of the dilaton:

gs ≡ eΦ0 . (1.2.29)
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Since the background fields depend on the scalars Xµ, the σ-model (1.2.24) defines an
interacting 2-dimensional quantum field theory which we can no longer expect to solve
exactly, except in certain special cases. Let us focus on closed strings and investigate
the first term in (1.2.24b). As in our previous discussion on solitons we first pick a
vev Xµ

0 for Xµ(τ, σ) and subsequently quantize small fluctuations xµ around this vev,
Xµ(τ, σ) = Xµ

0 + xµ(τ, σ). We expand gµν(X) in powers of xµ. This is facilitated by
using the target space diffeomorphisms to introduce Riemann normal coordinates:

gµν(X) = ηµν −
1

3
Rµρνσ(X0)x

ρxσ +O(x3). (1.2.30)

The leading order term gives just the free field theory discussed earlier in this chap-
ter. The corrections can be treated perturbatively. This is a valid approximation as
long as ℓs/ℓc ≪ 1, where ℓc = 1/

√
R is the radius of curvature of the target space.

In this regime we can also use the low energy Wilsonian effective field theory with
confidence33. The Wilsonian effective action can be obtained from the σ-model as
follows. The symmetries of the free field theory action (1.1.3) are crucial in obtaining
a consistent quantization of the string since they are responsible for the decoupling of
unphysical degrees of freedom (we removed these by imposing the light-cone gauge).
However, we are now dealing with an interacting field theory in which, as we have
seen, the coupling constants are generically not invariant under changes of scale.
Thus the Weyl symmetry is ruined unless the renormalization group β-functions for
the couplings gµν , Bµν and Φ vanish. We interpret these β-functions as classical field
equations. At leading order in α′ and gs they are obtained by varying the following
target space action (in d = 26):

S =
1

2κ2
0

∫
e−2Φ

(
R ∗1 + 4∗dΦ ∧ dΦ− 1

2
∗H ∧H +O(α′)

)
, (1.2.31)

whereH = dB. The constant κ0 is arbitrary: fixing it fixes the absolute normalization
of the vertex operators. The overall power of e−2Φ comes from the fact that this is
a closed string tree-level (χ = 2) result. This action is written in the so-called string
frame: the metric gS

µν in (1.2.31) is the one that appears in (1.2.24b). It is related to

the Einstein frame metric gE
µν as follows (keeping d explicit):

gE
µν = e−

4
d−2 φgS

µν , (1.2.32)

where we defined a shifted dilaton φ ≡ Φ−Φ0 such that its vev 〈φ〉 = 0 vanishes. In
the Einstein frame the action (1.2.31) has the canonical Einstein-Hilbert term:

S =
1

2κ2

∫ (
R ∗1− 4

d− 2
∗dφ ∧ dφ− 1

2
e−φ ∗H ∧H

)
. (1.2.33)

33Actually the requirement that ℓs/ℓc ≪ 1 is already implicit in (1.2.24), since we considered only
background vevs for the massless fields.
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Here κ ≡ κ0gs is related to the 26-dimensional Newton’s constant34 as κ2 = 8πGN.
Now that we know the low-energy effective field theory of the closed string, we can

look for classical solutions and see whether there are any solitons. We will quickly
review how this works for the ten-dimensional supergravities in the next chapter. By
incorporating the α′-corrections to the effective action one can obtain information
about the “stringy” corrections to these classical solutions. That is, we can study the
short-distance structure of a theory by means of effective field theory methods. In
particular, the field equations of theories like electromagnetism and general relativ-
ity have physically interesting classical solutions that are singular at some point in
spacetime (e.g. charged point particles and black holes). Such singularities simply
indicate that the theory breaks down at such points; one expects that stringy effects
take over and that the singularities are “smoothened out”.

Although we will not investigate explicit α′-corrections to soliton solutions in this
thesis, we will devote a considerable amount of time to the starting point of such
an analysis: the determination of the α′-corrections to the effective action of open
superstrings (and hence D-branes, see below) in chapters 3 and 4. For α′-corrections
to the closed string effective action we refer to [49–51].

1.3 D-branes & T-duality

Usually, the soliton solutions of the effective field theory correspond to nonperturba-
tive effects in string theory. These solitons can therefore not be described with the
methods of perturbative string theory as developed in the previous sections. There is
an important exception however: the D-branes. In the effective field theory regime,
they arise as a certain class of p-brane solutions of the type II supergravities. They
turn out to be the same objects as the hyperplanes that support open strings with
Dirichlet boundary conditions. We will review the evidence for this remarkable fact
in the following chapter.

In the remainder of this chapter we will treat D-branes in bosonic string theory.
As before, we do this in the understanding that – if we ignore the tachyon – the
results still hold in the case of the superstrings. There are some important aspects
of supersymmetric D-branes that do not have a bosonic counterpart though, and we
will mention these in the next chapter.

We will first look at a configuration with open strings ending on a single D-
brane. We then move on to the simplest compactification scenario, i.e. one periodic
dimension, and T-duality. Matters become considerably more complicated when we
discuss configurations with multiple D-branes.

34Newton’s constant is defined so that Einstein’s equations read Rµν − 1
2
gµνR = 8πGN Tµν .

Newton’s law for the gravitational potential of a mass M in d dimensions then becomes Φ(r) =
−γM/Rd−3, where γ = 8πGN/(d − 2) volSd−2. Here volSd−1 = 2πd/2/Γ(d/2) is the volume of a
(d− 1)-sphere.
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This section serves as the motivation and as background material for the work
that we review in chapters 3 and 4.

1.3.1 Single D-brane

We consider a single Dp-brane, and align our coordinate axes such that the brane’s
world-volume is parallel to the 0, 1, . . . , p directions and transverse to the other d−p−1
directions. It is located at position xa = x̄a, a = p+1, . . . , d−1. We single out the pth
direction to define light-cone coordinates x± = (x0 ± xp) and denote the remaining
directions by xi, i = 1, . . . , p− 1.

The quantization of an open string with both endpoints on the D-brane is similar
to the quantization of the freely moving string. The only thing that changes are the
boundary conditions in the a-directions:

Xa(τ, 0) = Xa(τ, ℓ) = x̄a, (1.3.1)

which give rise to the mode expansion

Xa(τ, σ) = x̄a +
√

2α′
∑

n6=0

1

n
αa

ne−inπτ/ℓ sin
nπσ

ℓ
. (1.3.2)

The sum still runs over the integers n and the oscillators satisfy αa
−n = (αa

n)†. In
contrast to the xi

0, however, the x̄a’s are not dynamical variables and should not be
quantized. The directions along the brane (with Neumann boundary conditions) are
treated exactly as before.

After some work, we obtain:

[αa
m, α

b
n] = mδabδm+n. (1.3.3)

This is the same relation as that for the i-oscillators (1.1.34b), hence the normal
ordering constant is unchanged:

a =
1

2

∞∑

n=1

[αi
n, α

i
−n] +

1

2

∞∑

n=1

[αa
n, α

a
−n] = [(p− 1) + (d− p− 1)]× 1

2

∞∑

n=1

n, (1.3.4)

i.e. a = −(d−2)/24. Since the string does not move in the a-directions, its momentum
is zero in those directions, pa = 0. Hence we still haveM2 = 2p+p−−pipi, even though
i runs only from 1 to p− 1 instead of d− 2, and thus:

M2 =
1

α′
(N‖ +N⊥ − a), (1.3.5)

where

N‖ =

∞∑

n=1

αi
−nα

i
n, N⊥ =

∞∑

n=1

αa
−nα

a
n. (1.3.6)
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The ground state of the string is given by |0, k〉, where k = (k+, ki). It is annihilated
by all the lowering operators, αi

n|0, k〉 = αa
n|0, k〉 = 0 for all positive n, and has

N‖ = N⊥ = 0, and mass M2 = −a/α′. Again, this is a tachyon since we will
presently see that a = 1.

Instead of a single level N = 1 with M2 = (1 − a)/a′, we now have two different
possibilities for creating states with this mass, namely those with (N‖, N⊥) = (1, 0) or
N‖, N⊥) = (0, 1). We thus act with the i-oscillators to obtain states αi

−1|0, k〉, which
comprise a vector of SO(p− 1), and with the a-oscillators to obtain states αa

−1|0, k〉,
which comprise a vector of SO(d− p− 1).

Because of the presence of the Dp-brane, the SO(1, d−1) Lorentz invariance of the
vacuum is broken to SO(1, p)×SO(d− p− 1). As far as the center of mass motion of
the open string is concerned, the SO(1, p) factor is simply the Lorentz group, whereas
the SO(d − p − 1) factor is an internal symmetry group. We therefore expect that
massless particles fall into multiplets of SO(p− 1)× SO(d− p− 1) whereas massive
particles are associated with SO(p)× SO(d− p− 1).

So, just as before, we conclude that we need to take a = 1 and hence d = 26. The
presence of D-branes does not change the critical dimension. This is a good thing,
since the open strings can interact to produce closed strings, which are free to move
anywhere in the bulk and necessarily live in 26 dimensions.

The lowest lying states of the open string on a Dp-brane are thus a scalar tachyon
To with M2 = −1/a′, a massless U(1) vector field Aα, with α = 0, . . . , p and a
(d− p− 1)-plet of massless scalars Φa.

These fields live on the world-volume of the Dp-brane. To actually prove this,
one would need to study the interactions of these open string states with the closed
strings in the bulk and show that these are indeed localized in the vicinity of the brane.
A simple physical explanation is the following: since the open string endpoints are
fixed at the brane, the string needs to be stretched in order to interact with closed
strings that are located at a large distance from the brane. Because of the string’s
tension, such interactions will be highly suppressed at energies well below 1/α′. We
can equivalently view the D-brane as an object with a thickness of roughly a string
length ℓs.

Not only does there live a Maxwell-like gauge theory on the Dp-brane’s world-
volume, it turns out that the brane itself is a dynamical object in its own right. Indeed,
the Dirichlet boundary conditions cause momentum to flow from the open strings
into the D-brane. The D-brane thus possesses a non-zero energy density. It therefore
couples to the graviton and is dynamical. Note the nice interplay between stringy
arguments (boundary conditions) and field theoretic arguments (general covariance).
The scalar fields Φa describe small fluctuations of the Dp-brane, transverse to its
world-volume.

We are interested in the low-energy effective description of these fields. This will be
a (p+1)-dimensional field theory, which also includes couplings to the massless closed
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string fields in the bulk via their pull-backs to the world-volume. Not surprisingly, this
action is not known completely, since it involves an infinite series with arbitrarily high
powers of the fields, their field strengths and curvatures, and derivatives. However,
in the case that the fields are slowly varying, it turns out to be possible to resum
the complete α′-expansion. One obtains the effective action in an elegant closed
form, known as the Dirac-Born-Infeld action [52, 53]. Stated more precisely, if we
parametrize the world-volume Σ of the brane with coordinates σα = (σ0, . . . , σp) and
neglect all terms involving more than two world-volume derivatives ∂α or one or more
spacetime derivatives ∂µ, the tree-level effective action for a Dp-brane is:

SDBI[A,X] = −Tp

∫
dp+1σ e−Φ

√
−det (Gαβ +Bαβ + 2πα′Fαβ), (1.3.7)

where the (string frame) metric and two-form are pulled back:

Gαβ ≡ (ı∗g)αβ = gµν∂αX
µ∂βX

ν , Bαβ ≡ (ı∗B)αβ = Bµν∂αX
µ∂βX

ν . (1.3.8)

The scalars Xµ describe the embedding of the brane in spacetime. The dependence on
the dilaton follows because this is an open string tree-level result. Note the appearance
of Fαβ as defined in (1.2.26). Tp is the tension of the Dp-brane as measured with the
string frame metric. To determine it explicitly, one needs to compare a string theory
amplitude with its effective field theory counterpart. See section 8.7 of [15] for an
explicit calculation. The result is

τp =

√
π

16κ
(2πℓs)

11−p, (1.3.9)

where we defined the physical value (i.e. Einstein frame) of the tension τp ≡ Tpe
−Φ0 ,

where Φ0 is the vev of the dilaton. The value of κ depends on the arbitrary overall
normalization of the string vertex operators, for which we will introduce a conve-
nient convention in the next chapter that will simplify the expression (1.3.9). The
dependence on ℓs follows from dimensional analysis. Also, the ratio τp/τp−1 does not
depend on p. This is actually required by T-duality as we will see below. Note that al-
though in the limit that gs → 0 the D-brane becomes infinitely massive (τp →∞), the
gravitational interaction of the brane vanishes, since this is governed by κ2τp ∼ gs.
Thus the expression (1.3.9) is consistent with the description of D-branes as rigid
hyperplanes in perturbative string theory.

The embedding fields Xµ are not all physical. We can use the world-volume
diffeomorphisms δσα = ξα to go to the static gauge, where we recover the scalar fields
Φa:

Xα = σα, Xa = Φa. (1.3.10)

In flat spacetime – gµν = ηµν , Bµν = 0, Φ = Φ0 – we get Gαβ = ηαβ + ∂αΦa∂βΦa

and thus obtain

SDBI = −τp
∫

dp+1σ
√
−det (ηαβ + ∂αΦa∂βΦa + 2πα′Fαβ). (1.3.11)
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In chapter 3 we will discuss derivative corrections to this action.

1.3.2 Compactification and T-duality

String theory predicts the existence of extra spatial dimensions beyond those we have
observed up to today. If we are to obtain realistic physics from string theory, we have
to find ways to effectively reduce the number of dimensions. One way to proceed
is by compactification, i.e. one considers strings living on spacetimes with compact
spatial directions. These backgrounds have to satisfy the field equations of (1.2.31).
In the following we will consider the simplest scenario – the circle reduction. We refer
the reader to [54] for a recent review of the (huge) field of string phenomenology and
entry points into the literature.

That compactification works follows from an elementary property of quantum
theories on compact spaces: the momenta along the compact directions are quantized.
Consider a one-dimensional quantum system on a circle of radius R. The position
eigenstates |x〉 and |x + 2πR〉 represent the same physics, thus in particular 〈x|p〉 =
〈x + 2πR|p〉, with |p〉 a (bosonic) momentum eigenstate. Since 〈x|p〉 ∼ eipx, p is
quantized: p = k/R, with k integer. At energies below 1/R only the state with k = 0
can be excited and the compactified dimension will be invisible. Above 1/R we see
the infinite tower of Kaluza-Klein states. Note that the wave function 〈x|p〉 for the
k = 0 state is independent of x.

The discussion in this section will be limited to flat spacetime. The inclusion of
gravity reveals additional interesting features that we will discuss in later chapters.

Let us consider the closed bosonic string in flat spacetime, but this time take
spacetime to have the nontrivial topology R

d−1×S1, i.e. x25 is periodically identified
x ∼= x+2πR, where R is the radius of the circle S1. This solves the field equations of
(1.2.31) trivially since the circle is flat. What distinguishes strings from field theory
in this case is the fact that closed strings can wind around the compact direction. As
we will see shortly, this has far-reaching consequences.

First, we need to modify the boundary conditions in order to account for the
winding:

Xi(τ, σ + ℓ) = Xi(τ, σ), (1.3.12a)

X25(τ, σ + ℓ) = X25(τ, σ) + 2πRw, (1.3.12b)

where i now runs from 1 to d − 1. The integer w is the winding number. It can be
viewed as a charge for the closed string and is conserved in interactions.
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The mode expansion for the 25-direction is modified to:

X25
R (τ − σ) =

1

2
x25

0 +
πα′

ℓ

(
k

R
− wR

α′

)
(τ − σ) + oscillators, (1.3.13a)

X25
L (τ + σ) =

1

2
x25

0 +
πα′

ℓ

(
k

R
+
wR

α′

)
(τ + σ) + oscillators. (1.3.13b)

The part involving the oscillators is unchanged from (1.1.40).
The ground state |0, 0, p, (k,w)〉 has N = Ñ = 0 and is labeled by the center of

mass momentum p = (p+, pi) along the non-compact directions, and by the Kaluza-
Klein and winding charges (k,w). The mass-shell condition becomes

M2 =
k2

R2
+
w2R2

α′2
+

2

α′
(N + Ñ − 2), (1.3.14)

where M is the mass according to a 25-dimensional observer O. The level-matching
condition needs to be modified as well. Classically, the shift symmetry generator S is
modified to

S =
π

ℓ

∑

n6=0

(
αi
−nα

i
n − α̃i

−nα̃
i
n

)
− 2πkw

ℓ
. (1.3.15)

Quantum mechanically, the action of S on the spectrum becomes

S|N, Ñ, p, (k,w)〉 =
2π

ℓ
(N − Ñ − kw − a+ ã)|N, Ñ, p, (k,w)〉. (1.3.16)

So the various integers are constrained by N − Ñ − kw = 0.
Equations (1.3.14) and (1.3.16) are invariant under the following substitution:

R→ α′

R
, k ↔ w. (1.3.17)

Hence the spectrum of a closed bosonic string theory on a circle of radius R is identical
to that of a theory on a circle of radius α′/R; the Kaluza-Klein modes change places
with the winding modes. This known as target space or T-duality. Though we have
shown it only for free closed strings, it is also true at the interacting level [15].

We see that it does not really make sense to talk about radii smaller than the
self-dual radius35 ℓs. In particular, the limit of a vanishing circle R → 0 is the same
as the decompactification limit R→∞!

35For generic radii the massless states are those with N = Ñ = 0 and k = w = 0, but for special
values of R additional massless states appear in the spectrum. At the self-dual radius R = ℓs we
have massless vector states with N = 1, Ñ = 0, k = −w = ±1 and N = 0, Ñ = 1 and k = w = ±1.
There are also massless scalar states for N = Ñ = 0, with either k = 0 at radii R = 2ℓs/w or w = 0
at R = kℓs/2. Since these latter states are tachyonic for R < 2ℓs/w and R > 2k/ℓs, respectively,
we do not expect them to occur at all in the case of the superstring and indeed they do not. The
vector states at the self-dual radius however do and in principle need to be included in the low-energy
effective action. In the following however we will always implicitly assume that R ≫ ℓs so that we
can safely ignore them.
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The above holds for a flat background. T-duality acts nontrivially on nonzero
background vevs for Gµν , Bµν and Φ – the Buscher rules [55, 56]. In the following
we only need the transformation of the dilaton, which we obtain by means of the
following argument. Let us call the closed string theories with radius R and α′/R
theories A and B, respectively. Since they look identical to our observer O, they
must yield in particular the same gravitational coupling constant (in Einstein frame).
Thus36

2πR

2κ2
A

=
2πα′/R

2κ2
B

. (1.3.18)

Therefore the string coupling constant – or, equivalently, the dilaton – transforms
under T-duality as

gB
s = gA

s

ℓs
R
. (1.3.19)

What happens to open strings under T-duality? They are distinguished from
closed strings only by their boundary conditions. Consider the free open string of
section 1.1.2, but now with a compactified 25-direction. This can equivalently be
viewed as an open string ending on single D25-brane that is wrapped around the circle
once. The T-duality transformation k ↔ w of (1.3.17) acts on (1.3.13) as X25

L → X25
L

and X25
R → −X25

R , i.e. if the original theory is described by X25 = X25
L + X25

R ,
the T-dual theory is described by X ′25 = X25

L − X25
R . It is not difficult to see that

a Neumann boundary condition on X25 becomes a Dirichlet boundary condition on
X ′25 under T-duality:

∂σX
25 = 0 → ∂τX

′25 = 0. (1.3.20)

Hence the T-duality transforms the wrapped D25-brane into a unwrapped D24-brane.
In general we can say that a T-duality transformation involving a world-volume direc-
tion transforms a Dp-brane into a D(p − 1)-brane, whereas T-dualizing a transverse
direction transforms it into a D(p+ 1)-brane. Free open strings can not wind around
the compact direction, so in the D25-brane case we have only KK-modes. In the
D24-brane case, the open strings are not free to move in the 25-direction, hence there
are no KK-modes. But in this case there is winding. We can calculate the number
of times that the string winds around the dual circle

X ′25(ℓ)−X ′25(0) =

∫ ℓ

0

dσ ∂σX
′25 =

∫ ℓ

0

dσ ∂τX
25 = 2πα′p25 = 2πα′ k

R
= 2πkR′,

so T-duality exchanges k ↔ w also for open strings.
What about the gauge fields Aµ and scalars Φa living on the Dp-brane world-

volume? Suppose we T-dualize in a world-volume direction i. We will show below

36This result is obtained by dimensional reduction of the Einstein-Hilbert action. See B.1.2 for
details. A similar result holds for the reduction of Yang-Mills theories on flat space as we will see in
a minute.
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that only the gauge field component in the i-direction is affected:

Ai → −
1

2πα′
Φi. (1.3.21)

If we T-dualize in a transverse direction, the above equation needs to be read back-
wards.

We will now show that the form of the DBI-action (1.3.7) is consistent with
(1.3.21). Take a Dp-brane on flat space and wrap the p-direction around a circle
of radius R (we use the static gauge). Suppose our observer O performs experiments
at energies < 1/R and thus only sees the k = 0 KK-mode. Keeping only the k = 0
mode is equivalent to dimensional reduction: take the (p+ 1)-dimensional Dp-brane
action and split the fields into components along the p-direction and the other di-
rections. Then take the fields to be independent of the p-direction and thus obtain
an effective p-dimensional action. Denote the (p + 1)-dimensional fields and indices
with hats, i.e. Âµ̂ = (Aµ, Ap). Since T-duality in the p-direction does not involve the
scalar fields Φa (a = p + 1, . . . , 25), we will simply omit them in the following. The
dimensional reduction of (1.3.11) then proceeds as follows

S = −τp
∫

dp+1σ

√
−det (η̂µ̂ν̂ + 2πα′F̂µ̂ν̂)

= −τp
∫

dp+1σ

√
−det

(
ηµν + 2πα′Fµν 2πα′∂µAp

−2πα′∂νAp 1

)

= −2πRτp

∫
dpσ

√
−det (ηµν + (2πα′)2∂µAp∂νAp + 2πα′Fµν).

O cannot distinguish between this wrapped Dp-brane and an unwrapped D(p − 1)-
brane in the T-dual theory, hence the above action should be identical to (1.3.11) for
a D(p − 1)-brane after substituting the T-duality rule Ap → −Φp/2πα′. This is the
case since the tensions are related by

τp−1 = 2πRτp, (1.3.22)

as follows from (1.3.9) and (1.3.19). For a discussion of T-duality and the DBI-action
for curved backgrounds see [57].

1.3.3 Multiple D-branes

Configurations with multiple D-branes have some additional intriguing features. In
this section we consider a setting with two parallel Dp-branes. This set-up is unstable
in bosonic string theory, since the D-branes attract each other gravitationally. We
will see however, that in type II superstring theory there is also a repulsive electric
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[[11]]

[[22]]

[[12]]

[[21]]

[[11]]

[[22]]

[[12]]

[[21]]

Figure 1.3.1. Two parallel D-branes. The [[11]] and [[22]] strings always contain a U(1)
gauge boson in their spectrum. The [[12]] and [[21]] strings give rise to additional gauge
bosons when the D-branes coincide, thus enlarging the gauge group from U(1)2 to U(2).

interaction between the branes, resulting in configurations with parallel Dp-branes
that are stable (at least perturbatively).

We label the two Dp-branes by 1 and 2. The have their world-volume directions
in common, i.e. x0, . . . , xp, but are located at different positions in the transversal
directions, at respectively x̄a

1 and x̄a
2 , say. In addition to open strings that have both

of their endpoints confined to the same D-brane, we now also have strings that start
on one brane and end on the other. For now, we discuss oriented strings, for which
the σ = 0 and σ = ℓ endpoints are inequivalent. We then have four kinds of open
strings that are distinguished by the location of their endpoints. We give these strings
labels [[ij]], i, j = 1, 2, where i (equiv. j) denotes the brane on which the σ = 0 (equiv.
σ = ℓ) endpoint is located.

We can view these labels as nondynamical degrees of freedom or charges that live
on the endpoints of the open strings. They are called Chan-Paton indices or charges.

The quantization of the [[11]] and [[22]] strings is identical to that of the previous
section. The [[12]] and [[21]] strings give rise to intriguing new results. Let us consider
the [[12]] string, for which:

Xa(τ, 0) = x̄a
1 , Xa(τ, ℓ) = x̄a

2 . (1.3.23)

These boundary conditions give rise to the following mode expansion:

Xa(τ, σ) = x̄a
1 + (x̄a

2 − x̄a
1)
σ

ℓ
+
√

2α′
∑

n6=0

1

n
αa

ne−inπτ/ℓ sin
nπσ

ℓ
, (1.3.24)
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leading to the mass formula

M2 =

(
x̄a

2 − x̄a
1

2πα′

)2

+
1

α′
(N‖ +N⊥ − 1). (1.3.25)

The same equation is valid for the [[21]] string. The first term is easy to interpret
physically. It is the energy that is needed to create a classical static string of length
|x̄2 − x̄1| from the vacuum (remember that the tension of the string is given by
T = 1/2πα′).

For generic distances |x̄2 − x̄1| between the two branes, all the states in the spec-
trum of the [[12]] and [[21]] string are massive. The only massless states are then two
copies of the vector/scalar system that we discussed already in the previous section.
This gives a gauge group U(1) × U(1). The effective action consists simply of two
copies of the action (1.3.7), one for each brane.

However, if the two branes are put very close together, i.e. |x̄2 − x̄1| → 0, the
states for which either N‖ = 1 or N⊥ = 1 become massless. So we get two extra
massless vector and two massless scalar fields, respectively. These additional massless
degrees of freedom need to be included in the low-energy effective theory. The extra
gauge fields together with the U(1) × U(1) gauge fields combine into a single gauge
field for U(2). The same holds for the scalar fields: we get a single scalar that is
valued in the adjoint of U(2). This is straightforwardly generalized to the case of n
parallel Dp-branes. We get a U(n) Yang-Mills theory coupled to adjoint scalars [58].

Our earlier discussion on vertex operators and string amplitudes requires a few
modifications in the presence of D-branes. A general open string state |N, k;α〉 is a
superposition of the states |N, k; ij〉 that correspond to the [[ij]] strings:

|N, k;α〉 =

N∑

i,j

λα
ij |N, k; ij〉. (1.3.26)

The n × n matrices λα
ij are antihermitian and normalized as Trλαλβ = −δαβ . Each

vertex operator carries a factor λα
ij . Oriented open strings can interact only by joining

a σ = 0 with a σ = ℓ endpoint and in addition these endpoints need to be confined to
the same brane. As a result, every open string amplitude contains traces of products
of the λ-matrices. Consider for example again the case of 4-tachyon scattering. The
vertex operator for tachyon #1 now has a factor of λα1 , that of #2 a factor of λα2 ,
etc. We already saw that the scattering amplitude gets contributions from the six
cyclically inequivalent orderings of the vertex operators. The 1234 ordering now gets
an additional Trλα1λα2λα3λα4 , the 1243 ordering Trλα1λα2λα4λα3 , etc. The result
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is that the tachyon amplitude is modified to:

iT (4)(k1, α1; . . . ; k4, α4) = i g−1
s (2π)26δ(26)(k1 + . . .+ k4) (1.3.27)

×
[(

Trλα1λα2λα4λα3 + Trλα1λα3λα4λα2
)
I(s, t)

+
(
Trλα1λα3λα2λα4 + Trλα1λα4λα2λα3

)
I(t, u)

+
(
Trλα1λα2λα3λα4 + Trλα1λα4λα3λα2

)
I(u, s)

]
.

Adding a boundary to a Riemann surface now not only introduces an extra power of
gs, but also another trace of λ-matrices. As a result, the coupling strength for open
strings is effectively gsn instead of gs.

The effective field theory for a stack of n D-branes is less well understood than
that of a single D-brane. One reason is technical in nature: there is no longer an
unambiguous notion of slowly varying fields. This is because we are dealing with
a Yang-Mills theory and need to use covariant instead of ordinary derivatives. Let
us see what happens when one imposes DµFνρ = 0. Acting on this with another
derivative, taking the commutator and using that

[Dµ,Dν ]Fρσ = [Fµν , Fρσ], (1.3.28)

we see that necessarily [Fµν , Fρσ] = 0, i.e. the field strengths are abelian.
The appearance of adjoint scalars Φa is intriguing. For a single D-brane, these

scalars described the embedding of the brane in spacetime. Apparently, stacks of D-
branes perceive spacetime in an unconventional way, since the embedding coordinates
no longer commute, [Φa,Φb] 6= 0. This non-commutative geometry has interesting
consequences for the physics of D-branes though it is probably fair to say that many
aspects have yet to be understood. A thorough discussion of these topics is beyond
the scope of this thesis. See [59] for a review.

The leading order contribution to the effective action for a stack of n D-branes
can be obtained by T-duality. We start with a stack of n spacetime filling D25-
branes in flat space. The massless spectrum consists of a gauge field Âµ̂, there are
no embedding scalars. The leading order in α′ contribution to the effective action is
uniquely determined by gauge invariance. It is U(n) Yang-Mills theory37:

S =
(2πα′)2τ25

4

∫
d26σTr F̂µ̂ν̂ F̂

µ̂ν̂ . (1.3.29)

We wrap the 25-branes around a torus T 25−p. The low-energy effective action for a
(p+1)-dimensional observer O is obtained by dimensional reduction. We write Âµ̂ =

37We work with matrix-valued fields Aµ = Aα
µλ

α and Φa = Φaαλα, where (λα)† = −λα and

Trλαλβ = −δαβ as before. In particular, fields transforming in the adjoint of U(1) are imaginary.
This differs from the convention used in the previous sections, where the gauge field and scalar where
taken to be real. Hence the appearance of extra factors of i in the equations of this section.
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(Aµ, Aa), and take the fields to be independent of the a-directions. F̂µ̂ν̂ decomposes
as follows:

F̂µν = ∂µAν − ∂νAµ + [Aµ, Aν ] ≡ Fµν , (1.3.30a)

F̂µa = ∂µAa + [Aµ, Aa] ≡ DµAa, (1.3.30b)

F̂ab = [Aa, Ab], (1.3.30c)

and plug this back into (1.3.29). The action for a stack of Dp-branes is obtained by
applying the T-duality rules to the a-directions:

S =
(2πα′)2τp

4

∫
dp+1σTr

(
FµνF

µν +
2

(2πα′)2
DµΦaDµΦa

+
1

(2πα′)4
[Φa,Φb][Φa,Φb]

)
. (1.3.31)

There is a potential for the scalars Φa, which is minimized when the scalars commute,
[Φa,Φb]. We can then diagonalize the Φ’s by a gauge transformation:

Φa = idiag (xa
1 , . . . , x

a
n). (1.3.32)

With this solution to the equations of motion of (1.3.31) we obtain a configuration of
N parallel Dp-branes located at positions xa

i .
The above illustrates a general strategy. To obtain the effective action for a stack of

Dp-branes, we first calculate α′-corrections to the effective action for open strings with
Neumann b.c.’s in all directions and non-trivial Chan-Paton factors. We subsequently
obtain the effective action for general p by the requirements of T-duality. With this
strategy in mind we will study α′-corrections to both the abelian and nonabelian
D9-brane effective actions in chapters 3 and 4.

We finish this chapter with a proof of relation (1.3.21). We consider again the
system of two parallel Dp-branes, but now with a compactified transverse direction X
of radius R. We ignore the other target space directions in the following. The branes
are located at x̄1 and x̄2, respectively. The mode expansion of a [[12]] string winding
w times around the circle is:

X(τ, σ) = x̄1 + (x̄2 − x̄1 + 2πRw)
σ

ℓ
+ oscillators (1.3.33)

=
πα′

ℓ

(
x̄2 − x̄1

2πα′
+
wR

α′

)
(τ + σ)− πα′

ℓ

(
x̄2 − x̄1

2πα′
+
wR

α′

)
(τ − σ) + osc.

We apply the T-duality rules – the right-moving sector gets a sign, R → α′/R and
w ↔ k:

X ′(τ, σ) =
2πα′

ℓ

(
x̄2 − x̄1

2πα′
+
k

R

)
τ + oscillators (1.3.34)
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The second term is quantized and thus corresponds to the canonical momentum
associated with the center of mass movement of the open string along the dual circle.
Because of the presence of the first term, the physical momentum of the CoM is
no longer equal to its canonical momentum. This is familiar from electrodynamics:
charged fields also show this behavior.

In the present case the endpoints of the open string are charged w.r.t. the back-
ground U(2) gauge field that lives on the stack of the two D(p+1)-branes in the dual
picture. The background field turns out to be a constant U(1)× U(1) Wilson line38:

A = idiag (A11, A22) = − i

2πα′
diag (x̄1, x̄2) (1.3.35)

with A11 and A22 constant fields39 on respectively brane #1 and #2. Indeed, the
action for the [[12]]-string in this background reads (in the conformal gauge):

S = − 1

4πα′

∫
d2σ

[
− (∂τX

′)2 + (∂σX
′)2
]

+

∫
dτ
[
A22 ∂τX

′
∣∣
σ=ℓ
−A11 ∂τX

′
∣∣
σ=0

]
,

(1.3.36)

since the σ = 0 endpoint ends on brane #1 and the σ = ℓ endpoint on brane #2. We
read off the canonical momentum:

pcan =

∫ ℓ

0

dσ
∂L
∂Ẋ

=
ℓ

2πα′
pphys +A22 −A11 ≡

k

R
, (1.3.37)

where we used X = pphysτ + oscillators. Solving for pphys, we recover (1.3.34) with
the choice (1.3.35). Hence (1.3.21) gives the correct relation between the gauge fields
Aµ and scalars Φa under T-duality.

1.3.4 Branes with fluxes

We will now investigate T-duality of Dp-branes that carry a nonzero electro-magnetic
field Fµν on their world-volume (µ = 0, . . . p). As in the previous sections, we consider

38A Wilson line is a vev for the gauge field with vanishing curvature, i.e. dA = 0. Locally, A is
exact and can be gauged away, A = dχ. However, in topologically nontrivial situations this χ may
not exist globally. Consider a circle of radius R and take A constant. We can gauge A away locally
with χ = −Ax. This χ does not exist everywhere on the circle, since it is not periodic. In general,
if

H

A 6= 0 there is no χ such that we can gauge away A. If there were we would have
I

A =

I

dχ =

Z

∂S1
χ = 0,

since the boundary of a circle is empty, ∂S1 = ∅, which is a contradiction. The following conclusion
is valid in general: along any 1-cycle we can turn on a vev for the 1-form A which does not give rise
to a flux (since the 1-cycle is not a boundary) and which cannot be gauged away (since the 1-cycle
does not have a boundary).

39The gauge field appearing in the non-linear σ-model (1.2.24) is real. Hence the factor of i.
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a flat closed string background. The boundary conditions in the directions transverse
are still the Dirichlet conditions (1.3.1), but from (1.2.24) we find that the boundary
conditions for the directions along the brane need to modified as follows:

∂σX
µ − 2πα′Fµ

ν∂τX
ν = 0, at σ = 0, ℓ. (1.3.38)

Instead of analyzing these b.c.’s in general, we will present a few simple examples
that capture the important features.

The first example is that of a Dp-brane that carries an electric field Ei = F 0i but
no magnetic field. In this case the Born-Infeld action reduces to

SDBI = −τp
∫

dp+1σ
√

1− (2πα′)2‖E‖2. (1.3.39)

We conclude that there is an upper limit to the magnitude of the electric field. We
have E ≡ 2πα′‖E‖ ≤ 1. Now we rotate the brane such that the electric field points in
the pth direction and wrap this pth direction once around a circle. (1.3.38) reduces
to Neumann b.c.’s in all direction except x0 and xp:

∂σX
0 − E ∂τX

p = 0, ∂σX
p − E ∂τX

0 = 0. (1.3.40)

We perform a T-duality transformation on the xp direction which replaces ∂τX
p ↔

∂σX
′p and get

∂σ(X0 − EX ′p) = 0, ∂τ (X ′p − EX0) = 0. (1.3.41)

These are the boundary conditions for a D(p−1)-brane that is boosted with a velocity
E along the dual circle. The condition that E ≤ 1 thus translates under T-duality
into the statement that nothing travels faster than the speed of light. Another way of
seeing the above is to pick the gauge Ap = F0px

0 and apply the T-duality rule (1.3.21).
The position of the D(p− 1)-brane on the dual circle becomes x′p = −2πα′Ap = Ex0.

It is not surprising that when electric fields correspond to boosts after T-duality,
magnetic fields correspond to rotations. Consider for example a D2-brane wrapped
once around a 2-torus with periods L1 and L2. We turn on a magnetic field F12 and
get the boundary conditions

∂σX
1 − B ∂τX

2 = 0, ∂σX
2 + B ∂τX

1 = 0, (1.3.42)

where we defined B ≡ 2πα′F12. What is interesting here is that we have a mixing of
Neumann and Dirichlet boundary conditions. In particular, when B → ∞ the string
coordinates X1 and X2 become Dirichlet. It is as if the D2-brane is filled with an
infinite number of D0-branes, one for each value of (x1, x2). We will make this idea
more precise in a minute.

After a T-duality transformation of the x2-direction we get

∂σ(X1 − BX ′2) = 0, ∂τ (X ′2 − BX1) = 0. (1.3.43)
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D0-branes

T-dual

T-dual

deform

x2

x2

x′2

x′2

x1

Figure 1.3.2. A D2-brane with three units of magnetic flux wrapped once around a torus
with coordinates (x1, x2) is dual to a D1-brane that is wrapped 3 times around the dual torus
(x1, x′2). This configuration can be deformed into one in which a single D1-brane wraps the
x1 direction and a stack of three D1-branes wraps the x′2 direction, which is in turn T-
dual to a wrapped D2-brane with three D0-branes. The tori are depicted as rectangles with
opposite faces identified.

These are the boundary conditions for a D1-brane that has been rotated by an angle
θ = arctanB w.r.t. the x1-axis. This D1-brane winds around the x′2-axis as we look
at increasing values of x1. Since the x1 direction is periodic, the D1-brane needs to
come back onto itself at x1 = L1. It can thus wind only an integer number n of times
around the x′2 direction – see figure 1.3.2. We have therefore that tan θ = nL′

2/L1 or

B = tan θ = 2πα′ 2πn

L1L2
, with n ∈ Z, (1.3.44)

i.e. the flux Φ ≡ F12L1L2 through the original torus is quantized in units of 2πn.
The wrapped D1-brane has an energy

Ewrapped = τD1

√
L2

1 + (nL′
2)

2. (1.3.45)

As shown in figure 1.3.2, we can continuously deform the D1-brane that wraps n times
around the torus to a configuration with a stack of n D1-branes wrapped once around
the x′2 direction and a single D1-brane wrapped once around the x1 direction. This
costs some energy, since

Eunwrapped = τD1(L1 + nL′
2) ≥ Ewrapped. (1.3.46)
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If we T-dualize x′2 in the latter configuration, we recover our original torus, but with
n D0-branes and a D2-brane without flux. This configuration has a higher energy
than that of a D2-brane with n units of flux. So it is clear that we should interpret
the latter case as a bound state of a D2-brane and n D0-branes.

The flux quantization can also be understood from the D2-brane’s point of view.
If we parallel transport the wave-function of a particle with a unit charge along a
path P, it will pick up a phase φ

eiφ = exp i

∫

P

A. (1.3.47)

This phase depends on the path taken. In particular, the phase factor that is obtained
from the path P1 : (0, 0) → (L1, 0) → (L1, L2) is in principle different from that of
the path P2 : (0, 0) → (0, L2) → (L1, L2). But on the torus T 2 these paths are the
same and should therefore yield the same phase factor. We thus insist that

exp i

∫

P1−P2

A = exp i

∫

T 2

F = eiΦ ≡ 1.

The flux Φ is thus quantized, Φ = 2πn. This is essentially a consequence of the fact
that it is impossible to find a globally well-defined (i.e. continuous) gauge potential A
on the torus. Indeed, if there had been a continuous potential, the gauge fields along
the paths P1 and P2 would have been equal and hence also the phases. To show that
it is indeed impossible to find a globally defined A, suppose the converse. We would
then have ∫

T 2

F =

∫

T 2

dA =

∫

∂T 2

A = 0, since ∂T 2 = ∅,

where the use of Stokes’ theorem is allowed since A is continuous. This is however in
contradiction with a non-zero Φ, proving our statement.

The above construction can be generalized. For example, consider a D4-brane
wrapped around a 4-torus T 4 with a constant magnetic field F = F12dx

1 ∧ dx2 +
F34dx

3 ∧ dx4. By T-dualizing in the 2- and 4-directions we can argue that the flux is
quantized as F12L1L2 = 2πm, F34L3L4 = 2πn and that we have a bound state of a
D4-brane, D2-branes and D0-branes. The number of D2-branes is given by the first
Chern class:

c1 =
1

2π

∑

2-cycles

∫
F = m+ n, (1.3.48)

where the sum runs over the 2-cycles of T 4, and the number of D0-branes by the
second Chern class:

c2 =
1

8π2

∑

4-cycles

∫
F ∧ F = mn. (1.3.49)
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This should suffice to illustrate the general pattern. The number of D(p− 2n)-brane
charges immersed in the world-volume of a wrapped Dp-brane is given by the nth
Chern-Class:

cn =
1

(2π)kk!

∑

2n-cycles

∫
F ∧ . . . ∧ F︸ ︷︷ ︸

n×

. (1.3.50)

1.3.5 Unoriented theories and T-duality

For our discussion of D-branes in superstring theories, we need to understand how
T-duality works for the unoriented string.

Closed strings

Recall that the unoriented strings are obtained by restricting the spectrum to states
with Ω = +1. We will first investigate the closed strings to see the effect of this
‘modding out’ in the T-dual version of the theory. Writing X ′ = TXT−1, we find the
dual version Ω′ as follows:

T (ΩXΩ−1)T−1 = (TΩT−1)(TXT−1)(TΩT−1)−1 ≡ Ω′X ′Ω−1. (1.3.51)

So if we dualize over the 25-direction only, we have

Ω′X ′i(τ, σ)Ω′−1 = X ′i(τ, ℓ− σ), (1.3.52a)

Ω′X ′25(τ, σ)Ω′−1 = −X ′25(τ, ℓ− σ). (1.3.52b)

Thus in the dual version, the world-sheet parity transformation is accompanied by
a spacetime parity transformation in the 25′-direction. The points x′25 = 0 and
x′25 = πR′ on this compact direction are special: they are fixed under the action of
Ω′.

If we now restrict ourselves to states that are invariant under Ω′ the resulting
physics is quite remarkable. It is as if the fixed points x′25 = 0, πR′ act as some sort
of mirror. The physics in the region πR′ < x′25 < 2πR′ is completely determined by
that of the region 0 ≤ x′25 ≤ πR′ by reflection and reversing the orientation of the
strings. Note that the physics in the ‘fundamental’ region 0 ≤ x′25 ≤ πR′ is that of
an oriented string theory.

The T-dual image of the unoriented theory on a circle of circumference 2πR is
thus an oriented theory on an interval S1/Z2 of length πR′. The restriction to Ω′

states is known as an orientifold projection and the ‘mirror planes’ at the ends of
the interval are called orientifold planes or O-planes. In the present example, these
planes are 25-dimensional, i.e. O24-planes.

It is straightforward to generalize this construction to Op-planes for lower values of
p – for T-duality over k directions we have 2k O(25−k)-planes situated on the vertices
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of a k-dimensional hypercube. Moreover, we can reinterpret the original construction
of unoriented strings as adding a spacetime-filling O25-plane to the theory of closed
strings.

Open strings

First we investigate the effect of the Ω-projection on the open string theory with U(n)
Chan-Paton factors following section 6.5 of [15].

World-sheet parity Ω exchanges the endpoints of an open string and thus reverses
the order of the Chan-Paton indices, Ω|N, k; ij〉 = (−)N |N, k; ji〉. We can combine
the action of Ω with a U(n) rotation γ of the Chan-Paton indices as follows:

Ωγ λ
α
ij |N, k; ij〉 = (−)N (γλαγ−1)ij |N, k; ji〉. (1.3.53)

For a general U(n) rotation γ, Ωγ does not define a multiplicatively conserved Z2

quantum number, but for certain subgroups of U(n) it does. Indeed, Ω2
γ acts on the

λ matrix as
λα → (γ−1T γ)λα(γ−1T γ)−1. (1.3.54)

Since the λα form an irreducible set we have by Schur’s lemma that Ω2
γ = 1 if40

γT = ±γ. (1.3.55)

So there are two choices of a conserved Ωγ by which we can mod out the open string
spectrum. By changing the basis λα → UλαU−1, under which γ → U−1T γU−1, we
can in both cases bring γ into a standard form.

In the case that γ is symmetric, we take for n even

γ = δn ≡
(

0 In/2

In/2 0

)
, (1.3.56)

with In/2 the n/2 × n/2 identity matrix. For n odd we add an additional 1 to the
diagonal. The result of the Ωγ projection is then to keep the states with λT = δλδ
for N even and λT = −δλδ for N odd. This means in particular that the massless
gauge fields (N = 1) are the gauge bosons for the group SO(n)41.

In the case that γ is antisymmetric, n must be even since γ is invertible. We take

γ = iεn ≡ i
(

0 In/2

−In/2 0

)
. (1.3.57)

40Schur’s lemma tells us that γ−T γ = cI, i.e. γ = cγT . Taking the transpose of this relation and
plugging the result back in yields γ = c2γ, i.e. c2 = 1.

41Usually, one takes the line element of SO(2n) to be the unit matrix I2n. Our choice for γ
corresponds to a different embedding of SO(2n) in U(2n) and can be reached from the usual case

by a U(2n) rotation: δ2n = U−1T I2nU−1, with U = 1√
2

„

1 i
1 −i

«

.
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Modding out the spectrum, we keep the states with λT = −ελε for N even and those
with λT = +ελε for N odd. This means that the gauge bosons are those of USp(n).

We restrict ourselves to the case with 2n D25-branes for simplicity. We split the
Chan-Paton indices into two groups (i, ̄), with i, ̄ = 1, . . . , n such that

λα =

(
λα

ij λα
i̄

λα
ı̄j λα

ı̄̄

)
(1.3.58)

We then have λα
ij = −λα

̄ı̄ for both SO(2n) and USp(2n). For SO(2n) in addition
λα

i̄ = −λα
jı̄ and λα

ı̄j = −λα
̄i, whereas for USp(2n) λα

i̄ = +λα
jı̄ and λα

ı̄j = +λα
̄i.

With these conventions it is straightforward to investigate the effects of a T-
duality transformation along the 25-direction in the presence of a non-trivial Wilson
line A25 = Aα

25λ
α. We take

A25 = − i

2πα′
diag (x̄1, . . . , x̄n,−x̄1, . . . ,−x̄n), (1.3.59)

which breaks the gauge invariance from SO(2n) or USp(2n) to U(1)n. In the T-dual
picture there are n D24-branes on the interval 0 ≤ X ′25 ≤ πR′ – the branes labeled
by i – and n at their image points under the orientifold identification – those labeled
by ı̄. The n branes carry U(1) gauge fields. When r branes become coincident, the
gauge symmetry is enlarged to U(r) according to the mechanism of section 1.3.3.
However, if these branes lie at one of the orientifold planes, the strings that stretch
between them and the mirror branes also become massless. This gives the additional
states that are needed to fill out42 the adjoint multiplets of SO(2r) or USp(2r). The
maximal SO(2n) or USp(2n) is restored if all D24-branes are located at the same
orientifold plane.

Before closing this chapter we would like to point out that we can view the original
unoriented SO(2n) and USp(2n) open string theories as systems with n coincident
D25-branes and a single O25-plane. Compactification over a k-torus and a subsequent
T-duality transformation leaves us with a k-dimensional hypercube with 2k O(25−k)-
planes and n parallel D(25− k)-branes.

42The additional states correspond to the matrices λα
i̄ and λα

ı̄j in (1.3.58). For the SO(2n) string

there are thus 2×r(r−1)/2 additional states, which give a we get a total of r(2r−1) when combined
with the r2 states we already had. This is just the right amount of states to fill up the adjoint of
SO(2r). Similarly, we get r(2r + 1) states in the case of USp(2n).





Chapter 2

Superstrings

In the previous chapter we saw that the bosonic string theory has a few obvious
drawbacks. First of all the theory is unstable because of the presence of a tachyon
in the spectrum. Second, the theory does not contain fermionic states, which rules
out the bosonic string as a theory of nature. Third, the theory necessarily lives in a
26-dimensional spacetime.

The first two problems are solved by the superstring theories. We have seen in
the previous chapter that, although it is not difficult to formulate a classical theory
of bosonic strings, the laws of quantum mechanics act as a mathematical straitjacket.
The requirement of unitarity not only led to the existence of a critical dimension,
but also severely constrained the dynamics. Now it turns out that any attempt to
introduce fermions in bosonic string theory requires supersymmetry1. Furthermore,
there are only five distinct ways in which a superstring theory can be constructed on
a flat background. All require a critical dimension d = 10.

There are two different, but physically equivalent, approaches to superstring the-
ory: the Ramond-Neveu-Schwarz (RNS) and the Green-Schwarz (GS) superstrings.
In both cases one starts from the bosonic string’s Polyakov action S[Xµ, γαβ ] (1.1.3).
One then adds additional fields to the theory in order to obtain a supersymmetric
system.

In the RNS approach supersymmetry is first achieved “on the world-sheet” by in-
troducing fermionic partners to the bosonic fields. We add a spinor ψµ for each scalar
Xµ and a gravitino χα for the metric γαβ . The result is a complicated interacting
theory with a number of local symmetries: diffeomorphisms, local supersymmetry
and super-Weyl invariance. As in the previous chapter, these symmetries can be fixed
by going to the so-called superconformal gauge, in which the metric and gravitino
are absent. The main advantage of the RNS approach lies in the fact that the su-

1See appendix A.2 for a condensed review of four-dimensional supersymmetry.
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perconformal gauge gives rise to a free theory on the world-sheet without breaking
the target space Lorentz invariance. In addition, the resulting theory possesses a
large group of residual symmetries that preserve the conformal gauge. One can fix
these symmetries by imposing the light-cone gauge condition at the price of breaking
target space Lorentz invariance. This approach suffices if one wants to derive basic
results like the spectrum of the superstring and the tree-level amplitudes – we will
therefore proceed in this fashion in the next section. For calculations beyond the
tree-level approximation however, it is much more convenient to quantize covariantly
and deal with the symmetries later. There are also some disadvantages to the RNS
approach. First of all, as we will see below, spacetime supersymmetry is not manifest
and actually requires a truncation – the GSO projection – of the spectrum that one
obtains from a straightforward quantization of the theory. Moreover, it turns out to
be extremely complicated to describe strings on backgrounds of the Ramond-Ramond
fields (more on these below). This is because of technical complications involving their
vertex operators.

The Green-Schwarz (GS) formulation starts from an already spacetime globally
supersymmetric action. The main disadvantage of this approach is that covariant
quantization is more subtle in this case. Until recently, it was not known how to
obtain a free field theory on the world-sheet without resorting to the light-cone gauge.
This problem has however now been solved (see [60,61] for reviews) and progress has
been made in extending these methods beyond tree-level [62,63], reproducing in part
the results reviewed in [32] which were based on the RNS formalism.

We will use the RNS formalism in the following, since this is the method that we
used in our paper [b].

A few remarks on spacetime supersymmetry are in order. It turns out that the
maximum number of supercharges that a theory can possess is 32 (in any dimension).
In ten dimensions we call this N = 2 supersymmetry, since the charges can be rep-
resented by two Majorana-Weyl fermions. The minimum amount of supersymmetry
is N = 1 in ten dimensions, i.e. 16 supercharges. Both the N = 2 and N = 1 case
arise in superstring theory. This works roughly as follows. Remember from chapter 1
that the degrees of freedom in the two-dimensional world-sheet theory for the closed
string split into independent left- and right-movers XL(τ + σ) and XR(τ − σ). In the
RNS formulation we can add both left- and right-moving fermions to the theory. This
yields N = 2 supersymmetry. It turns out that we can perform the GSO projection
in two ways, one giving rise to two spacetime supercharges of opposite chirality (the
type IIA superstring), the other giving two charges of the same chirality (the type IIB
string). The presence of open strings breaks the supersymmetry to N = 1, since the
Neumann or Dirichlet boundary conditions relate the left- and right-moving sectors.
The result is the type I superstring. Alternatively, we can decide to add fermions
only to the left-moving sector, but then it turns out that we need to modify the right-
moving bosons in a particular way to guarantee the consistency of the procedure. The
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result are the N = 1 supersymmetric heterotic string theories.

In the following we will develop the type I and II string theories in the RNS
approach. Details on the heterotic string are left to the literature. We then give the
effective supergravity theories that describe these theories at low energies. After this,
we move on to supersymmetric branes in general and D-branes in particular. Finally,
we come to the famous dualities that relate all these different string theories to each
other and briefly discuss the role that branes play in this story.

2.1 The RNS superstring

The action for the RNS superstring in the superconformal gauge is:

SRNS = − 1

4πα′

∫
d2σ

[
∂αX

µ∂αXµ + ψ̄µρ
α∂αψ

µ
]
. (2.1.1)

We denote the two-dimensional Dirac matrices by ρα. The spinors ψµ are Majorana,
ψ̄µ = ψµTC where we use C− ≡ C. See appendix A for an extensive review of the
properties of Dirac matrices and spinors. The action (2.1.1) is invariant under the
following rigid supersymmetry transformations:

δ(ǫ)Xµ = ǭψµ, (2.1.2a)

δ(ǫ)ψµ = ραǫ ∂αX
µ, (2.1.2b)

with ǫ a constant Majorana spinor. We verify that these are indeed supersymmetries
by calculating the commutator of two of such transformations:

[δ(ǫ1), δ(ǫ2)]X
µ = −2 ǭ1ρ

αǫ2 ∂αX
µ, (2.1.3a)

[δ(ǫ1), δ(ǫ2)]ψ
µ = −2 ǭ1ρ

αǫ2 ∂αψ
µ + ǭ1ρ

αǫ2 ρα/∂ψ
µ. (2.1.3b)

As in our review of the Wess-Zumino model in appendix A.2, we obtain a closed
algebra if the fermions satisfy their equations of motion /∂ψµ = 0.

In two dimensions, a Majorana spinor can be decomposed into two Majorana-Weyl
spinors, ψµ = P+ψ

µ + P−ψ
µ. It is convenient to work with an explicit basis for the

ρ-matrices. We use:

ρ0 =

(
0 1
−1 0

)
, ρ1 =

(
0 1
1 0

)
, ψµ =

(
ψµ
−

ψµ
+

)
. (2.1.4)

The spinors ψ− and ψ+ are real Grassmann numbers. Note that ρ∗ψ± = ∓ψ±.

For the bosonic string, the conformal gauge did not fix all the local diffeomorphisms
and Weyl rescalings. In the present case there are also residual symmetries. To
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analyze these, it is convenient to work with light-cone coordinates on the world-sheet
σ± ≡ τ ± σ. The action becomes2:

S =
1

2πα′

∫
dσ+dσ−

[
∂+X

µ∂−Xµ +
i

2
ψ−∂+ψ− +

i

2
ψ+∂−ψ+

]
. (2.1.5)

It is not difficult to check that (2.1.5) is invariant under

δXµ = ξ+∂+X
µ + ξ−∂−X

µ, (2.1.6a)

δψµ
± = ξ+∂+ψ

µ
± + ξ−∂−ψ

µ
± +

1

2
∂±ξ

±ψµ
±, (2.1.6b)

with ∂+ξ
− = ∂−ξ

+ = 0. These are the residual diffeomorphisms that we also en-
countered in (1.1.14). The extra terms in the variation of the fermions have their
origin in the local Weyl and local Lorentz transformations of the underlying two-
dimensional supergravity theory. In addition, there are now also residual ‘quasi-local’
supersymmetry transformations:

δXµ = iǫ+ψ
µ
− − iǫ−ψµ

+, (2.1.7a)

δψµ
± = ±2∂±X

µ ǫ∓, (2.1.7b)

with ∂+ǫ
+ = ∂−ǫ

− = 0.
As before, we use the residual translational symmetries to impose the light-cone

gauge condition (1.1.17) on X+. We fix the residual supersymmetries by imposing3

ψ+(τ, σ) = 0. (2.1.8)

In this gauge, the ψ− drop out of the action entirely and we are left with the following
Lagrangian:

L = −p+∂τx
−− 1

4πα′

∫ ℓ

0

dσ ∂αX
i∂αXi+

i

2πα′

∫ ℓ

0

dσ
[
ψi
−∂+ψ

i
−+ψi

+∂−ψ
i
+

]
. (2.1.9)

Boundary conditions

From (2.1.5) we derive the following equations of motion for the fermions:

∂+ψ
i
− = 0, ∂−ψ

i
+ = 0, (2.1.10)

i.e. ψi
− and ψi

+ contain only right- and left-moving degrees, respectively. These
equations need to be supplemented with suitable boundary conditions in order that

(
ψi
−δψ−i − ψi

+δψ+i

)∣∣ℓ
σ=0

= 0. (2.1.11)

2We define ∂± ≡ 1
2
(∂τ ± ∂σ) such that ∂±σ± = 1 and ∂±σ∓ = 0. We have for the metric

η+− = η−+ = − 1
2

and η+− = η−+ = −2 and for the integration measure dσ+dσ− = 2dτdσ.
3We define ψ± = (ψ0 ± ψd−1)/

√
2 as in (1.1.15).



2.1 The RNS superstring 61

This is equivalent to δ(ψi
+)2|ℓσ=0 = δ(ψi

−)2|ℓσ=0. We want to obtain a Lorentz invari-
ant spectrum. We therefore choose our boundary conditions such that they do not
break the SO(d− 2) symmetry which is what remains from the target-space Lorentz
symmetries in the light-cone gauge.

For open strings the boundary conditions relate the right- and left-movers at the
endpoints. There are two possibilities that are known as the Neveu-Schwarz (NS) and
Ramond (R) boundary conditions:

• Neveu-Schwarz: ψi
+(τ, 0) = ςψi

−(τ, 0), ψi
+(τ, ℓ) = −ςψi

−(τ, ℓ), (2.1.12a)

• Ramond: ψi
+(τ, 0) = ςψi

−(τ, 0), ψi
+(τ, ℓ) = +ςψi

−(τ, ℓ). (2.1.12b)

The overall sign ς = ±1 depends on whether we consider Neumann or Dirichlet
boundary conditions on the bosonic side. Since the boundary conditions relate left-
and right-moving degrees of freedom, the presence of a boundary breaks some of
the world-sheet supersymmetry. The σ = 0 boundary condition transforms under
supersymmetry as

δ[ψi
+(τ, 0)− ςψi

−(τ, 0)] = (ǫ− + ςǫ+)∂τX
i + (ǫ− − ςǫ+)∂σX

i. (2.1.13)

For the Neumann b.c. there is a preserved supersymmetry with ǫ+ = −ςǫ−, whereas
the Dirichlet b.c. preserves ǫ+ = ςǫ−. We take ς = +1 for the Neumann b.c. and
ς = −1 for the Dirichlet b.c. in order that the σ = 0 boundary preserves the world-
sheet supersymmetry with ǫ+ = −ǫ−.

The σ = ℓ boundary preserves supersymmetries with ǫ+ = +ǫ− in the NS case
and ǫ+ = −ǫ− in the R case. Open superstrings with NS boundary conditions will
therefore not have a world-sheet supersymmetric spectrum, whereas the Ramond su-
perstrings do. We will see that a spacetime supersymmetric spectrum can be achieved
only if we include both NS and R strings and mod out the spectrum by a certain dis-
crete symmetry.

For closed strings we can impose NS or R boundary conditions on the left- and
right-movers independently:

• Neveu-Schwarz: ψi
±(τ, σ) = −ψi

±(τ, σ + ℓ), (2.1.14a)

• Ramond: ψi
±(τ, σ) = +ψi

±(τ, σ + ℓ). (2.1.14b)

There are therefore four kinds of closed strings: NS-NS, NS-R, R-NS and R-R. The
R-R b.c.’s preserve all world-sheet supersymmetries, the NS-R and R-NS b.c.’s only
half of them and the NS-NS break all. A spacetime supersymmetric spectrum can be
achieved only if we include states from all the four types of closed strings.

Dirac quantization

The quantization of the fermions ψi
± is somewhat subtle, since these are constrained

fields – they are Majorana. We will use Dirac’s method of quantization. We will not
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discuss the why of this method in any detail, but rather focus on the how. We refer
to [34,64–66] for reviews of this method and to [16] for an application to the problem
at hand.

We derive the following canonical momentum densities4:

πi
±(τ, σ) ≡ ∂L

∂ ∂τψi
±

= − i

4πα′
ψi
±(τ, σ). (2.1.15)

There is thus a primary constraint

Φi
± ≡ πi

± +
i

4πα′
ψi
± ≈ 0. (2.1.16)

The above equation defines a surface in phase space. We will now show that this
constraint does not lead to any secondary constraints. First we calculate the Hamil-
tonian5 (A = +,−):

Hcan ≡
∫ ℓ

0

dσ
(
ψ̇i

Aπ
i
A

)
− L ≈ − i

4πα′

∫ ℓ

0

dσ
[
ψi
−∂σψ

i
− − ψi

+∂σψ
i
+

]
. (2.1.17)

The ≈ means “equal on the constraint surface”. Following Dirac, we extend the
definition of the Hamiltonian off the primary constraint surface as follows:

H∗ ≡ Hcan +

∫ ℓ

0

dσ ui
A(τ, σ)Φi

A(τ, σ), (2.1.18)

4We always take derivatives w.r.t. Grassmann variables from the left, i.e. δf(θ) = δθ ∂f
∂θ

for a
function f of a Grassmann variable θ.

5For a system with Grassman Lagrangian L(θα, θ̇α) we define the canonical momenta by πα =
∂L/∂θ̇α and the Hamiltonian by H(θα, πα) ≡ θ̇απα −L. Hamilton’s equations read θ̇α = −∂H/∂πα

and π̇α = −∂H/∂θα. The Poisson bracket is defined such that dF/dt = {F,H}PB + ∂F/∂t for any
function F [65, 66]. For functions of the phase-space variables θα and πα we have

{F,G}PB ≡ (−)εF

“ ∂F

∂θα

∂G

∂πα
+

∂F

∂πα

∂G

∂θα

”

,

where εF is 0 if F is bosonic and 1 if F is Grassmann. The ‘fundamental’ Poisson brackets thus
read:

{θα, θβ}PB = {πα, πβ}PB = 0, {θα, πβ}PB = −δαβ .

In Dirac’s approach, expressions involving the Poisson bracket of functions that do not depend on the
phase space variables are manipulated by appealing to the algebraic properties of the bracket [64–66]:

{F,G}PB = −(−)εF εG{G,F}PB,

{F,GH}PB = {F,G}PBH + (−)εF εGG{F,H}PB,

{{F,G}, H}PB + (−)εF (εG+εH ){{G,H}, F}PB + (−)εH(εF +εG){{H,F}, G}PB = 0.
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where the ui
A(τ, σ) are as of yet arbitrary functions. Clearly H∗ ≈ Hcan.

Using the fundamental Poisson brackets

{ψi
A(τ, σ), ψj

B(τ, σ′)}PB = {πi
A(τ, σ), πj

B(τ, σ′)}PB = 0, (2.1.19a)

{ψi
A(τ, σ), πj

B(τ, σ′)}PB = −δijδABδ(σ − σ′), (2.1.19b)

we get {Φi
A(τ, σ),Hcan}PB = 0 and thus

{Φi
A(τ, σ),H∗}PB ≈ −

i

2πα′
ui

A(τ, σ).

This must vanish, since we demand that the constraints are constant in time. We
achieve this by solving for the functions ui

A, i.e. ui
A = 0 and thus H∗ = Hcan. There

are therefore no secondary constraints. Note that putting Φi
A ≈ 0 is inconsistent with

the Poisson brackets: we can only impose the constraints after we have worked out
all the Poisson brackets.

Our constraints are second class since they do not generate a closed algebra under
the Poisson bracket:

{Φi
A(τ, σ),Φj

B(τ, σ′)}PB = − i

2πα′
δijδABδ(σ − σ′) /≈ 0, (2.1.20)

with A,B = ±.
In our cookbook treatment of Dirac’s method, the next step in the recipe is the

following: in the presence of second class constraints, one needs to replace the Poisson
bracket with a new Dirac bracket. It turns out that putting Φi

A = 0 is consistent
with the Dirac bracket.

In our case, the Dirac bracket is

{f, g}DB ≡ {f, g}PB − 2πiα′

∫ ℓ

0

dσ {f,Φi
A(τ, σ)}PB{Φi

A(τ, σ), g}PB, (2.1.21)

and we obtain

{ψi
A(τ, σ), ψj

B(τ, σ′)}DB = −2πiα′ δijδABδ(σ − σ′). (2.1.22)

We finally quantize by replacing the Dirac bracket by (anti)commutators {·, ·}DB →
[·, ·]±/i and impose

{ψi
A(τ, σ), ψj

B(τ, σ′)} = 2πα′ δijδABδ(σ − σ′). (2.1.23)

This differs an all-important factor 2 from the anticommutation relation for a Dirac
spinor.
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2.1.1 The open superstring

After having obtained the anticommutation relations (2.1.23), the rest of the quanti-
zation procedure is a straightforward exercise along the lines of chapter 1.

In the case of the open string with Neumann boundary conditions in all directions,
the fermions have the following mode expansions:

Neveu-Schwarz: ψi
±(τ, σ) =

√
πα′

ℓ

∑

r∈Z+
1
2

bir e−iπr(τ±σ)/ℓ, (2.1.24a)

Ramond: ψi
±(τ, σ) =

√
πα′

ℓ

∑

n∈Z

di
n e−iπn(τ±σ)/ℓ. (2.1.24b)

Here (bir)
∗ = bi−r and (di

n)∗ = di
−n. As in the previous chapter, we obtain the classical

mass formulas:

Neveu-Schwarz: M2 =
1

2α′

∑

n∈Z\{0}

αi
−nα

i
n +

1

2α′

∑

r∈Z+
1
2

rbi−rb
i
r, (2.1.25a)

Ramond: M2 =
1

2α′

∑

n∈Z\{0}

αi
−nα

i
n +

1

2α′

∑

n∈Z

ndi
−nd

i
n. (2.1.25b)

Note that in the Ramond case the n = 0 mode drops out.
We impose (2.1.23) and find the following anticommutation relations for the

Neveu-Schwarz oscillators:
{bir, bjs} = δijδr+s, (2.1.26)

where (bir)
† = bi−r, and for the Ramond oscillators:

{di
m, d

j
n} = δijδm+n, (2.1.27)

where now (di
n)† = di

−n. These relations of course need to be supplemented with the
commutators (1.1.34).

The quantum mechanical mass formulas are obtained after normal ordering:

• Neveu-Schwarz:

M2 =
1

α′
(NNS − aNS), with NNS =

∞∑

n=1

αi
−nα

i
n +

∞∑

r=1/2

rbi−rb
i
r, (2.1.28a)

• Ramond:

M2 =
1

α′
(NR − aR), with NR =

∞∑

n=1

αi
−nα

i
n +

∞∑

n=1

ndi
−nb

i
n. (2.1.28b)
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We calculate the normal ordering constants as follows:

aNS = −1

2

∞∑

n=1

[αi
n, α

i
−n] +

1

2

∞∑

r=1/2

r{bir, bi−r} = −d− 2

2

[
∞∑

n=1

n−
∞∑

r=1/2

r

]
. (2.1.29)

We need a slight generalization of the ζ-function procedure to regularize the second
sum. The Hurwitz zeta function ζ(s, c) has the following representation for Re s > 0

ζ(s, c) =

∞∑

n=0

1

(n+ c)s
. (2.1.30)

It has a unique analytic continuation to negative values of s. In particular

ζ(−1, c) = − 1

12
(6c2 − 6c+ 1). (2.1.31)

We thus replace 1/2 + 3/2 + 5/2 + . . .→ ζ(−1, 1/2) = 1/24 and obtain:

aNS =
d− 2

16
, and similarly aR = 0. (2.1.32)

Spectrum: Neveu-Schwarz sector

The ground state |0, k〉NS has light-cone momentum k = (k+, ki) and is annihilated
by all the lowering operators, i.e. αi

n|0, k〉NS = bir|0, k〉NS = 0 for all positive n and r.
It has NNS = 0 and M2 = −aNS/α

′ and is tachyonic if d > 2. The ground state is
unique, since all raising and lowering operators change the value of M2. It is thus a
spacetime scalar and therefore a boson.

Acting on |0, k〉NS with a raising operator αi
−n raises NNS by n, whereas acting

with bi−r raises NNS by r. We thus have states with NNS = 0, 1
2 , 1, 1

1
2 , 2, 2

1
2 , . . .. Since

the raising operators carry spacetime vector indices and the ground state is bosonic,
all excited states in the NS sector are spacetime bosons.

The lowest excited states are thus at level NNS = 1/2. They are given by
bi−1/2|0, k〉NS and comprise a vector of SO(d− 2). As for the bosonic string, Lorentz

invariance requires that these states are massless, hence aNS = 1/2. The open RNS
superstring thus requires d = 10.

Spectrum: Ramond sector

The Ramond sector differs from the previous cases in that the zero mode operators
di
0 commute with the mass operator M2. As a consequence, the Ramond ground

state is already degenerate. To account for this degeneracy we introduce an extra
label α and denote the ground states by |α; 0, k〉R. These states are massless and
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α′M2 NS states # d.o.f. ΓNS R states # d.o.f. ΓR

−1/2 |0〉 1 −1

0
bi−1/2|0〉 8 +1 |+〉 8 +1

|−〉 8 −1

+1/2
αi
−1|0〉 8 −1

bi−1/2b
j
−1/2|0〉 28 −1

+1

bi−3/2|0〉 8 +1 di
−1|+〉 64 −1

αi
−1b

j
−1/2|0〉 64 +1 αi

−1|+〉 64 +1

bi−1/2b
j
−1/2b

k
−1/2|0〉 56 +1 di

−1|−〉 64 +1

αi
−1|−〉 64 −1

Table 2.1.1. The lowest lying states of the oriented open superstring in the Neveu-Schwarz
and Ramond sectors. We list the number of degrees of the various states and their Γ eigen-
values. States with Γ = +1 survive the GSO projection. We used a simplified notation in
which |0〉 ≡ |0, k〉NS and |±〉 ≡ |α,±; 0, k〉R.

satisfy αi
n|α; 0, k〉R = di

n|α; 0, k〉R = 0 for all positive n. In addition, they carry a
representation of the zero mode algebra

{di
0, d

j
0} = δij . (2.1.33)

Up to a factor 2, this is just the SO(d− 2) real Clifford algebra. Thus

di
0|α; 0, k〉R =

1√
2
(Γi)β

α |β; 0, k〉R, (2.1.34)

where the Γi are the Dirac matrices. The Ramond ground state is thus a spacetime
spinor and therefore a fermion. Taking d = 10, we need to consider the irreps of the
SO(8) Clifford algebra, which are carried by Majorana spinors. The Ramond ground
state thus has 16 on-shell degrees of freedom.

Acting on this state with αi
−n and di

−n raises NR by n. We thus have states with
NR = 0, 1, 2, 3, 4, . . .. Since the raising operators carry only vector indices, all the
states in the Ramond sector are spacetime fermions.

The GSO projection

It turns out that an interacting theory of open superstrings is only consistent at the
one-loop level if we include states from both the NS and the R sector. Moreover, we
cannot include all the states in the spectrum, but have to restrict ourselves to those
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states that are invariant under the action of a certain multiplicatively conserved Z2

quantum number Γ. This projection of the spectrum to Γ-invariant states is known
as the Gliozzi-Scherk-Olive (GSO) projection.

For the NS sector Γ is defined as:

ΓNS = −(−)FNS , with FNS =

∞∑

r=1/2

bi−rb
i
r. (2.1.35)

The operator FNS counts the number of fermionic generators that were used to
construct the state on which the operator acts. States with an even number of b-
excitations therefore have ΓNS = −1 and those with an odd number have ΓNS = +1.

In the Ramond sector we can define a conserved Γ in two ways, differing up to a
sign:

ΓR = ±Γ∗(−)FR , with FR =

∞∑

n=1

di
−nd

i
n. (2.1.36)

Here Γ∗ = Γ1Γ2 · · ·Γ8 = 24 d1
0d

2
0 · · · d8

0 is the SO(8) chirality matrix. Since Γ∗

commutes with all the di
n of nonzero n, its eigenvalue on any state is determined by

the chirality of the Ramond ground state. Indeed, from appendix A we know that
Majorana-Weyl spinors exist for the SO(8) Clifford algebra. We thus decompose the
Ramond ground state in a direct sum of its positive and negative chirality parts:

|α; 0, k〉R = |α,+; 0, k〉R ⊕ |α,−; 0, k〉R. (2.1.37)

If we take the + sign in (2.1.36), states with an even number of d-excitations have
ΓR = ±1 if Γ∗ = ±1, whereas states with an odd number of d-excitations have
ΓR = ±1 if Γ∗ = ∓1.

The GSO projection comes down to restricting the spectrum to states with Γ =
+1. We promised in chapter 1 that the tachyon would be absent in the case of the
superstring and now we see it is. Moreover, the spectrum is actually N = 1 spacetime
supersymmetric. We leave a proof of this statement to the references. At the massless
level we have a vector Aµ and a chiral spinor χ. Together these fields make up the
d = 10, N = 1 vector multiplet.

One last remark: the spectrum after the GSO projection is physically the same
regardless of the sign we take in (2.1.36) – it differs only in the overall chirality of the
fermions. This will be different in the case of the closed superstrings, to which we
turn now.
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2.1.2 The closed superstring

The mode expansion for the right-moving fermions ψi
−(τ − σ) is:

Neveu-Schwarz: ψi
−(τ, σ) =

√
2πα′

ℓ

∑

r∈Z+
1
2

bir e−2πir(τ−σ)/ℓ, (2.1.38a)

Ramond: ψi
−(τ, σ) =

√
2πα′

ℓ

∑

n∈Z

di
n e−2πin(τ−σ)/ℓ. (2.1.38b)

For the left-moving fermions ψi
+(τ + σ) there are similar relations, with bir → b̃ir and

di
n → d̃i

n.
The level matching condition is obtained in the same way as in chapter 1. The

shifts σ → σ + b are generated by

S = −
∫ ℓ

0

dσ

[
Πi∂σX

i +
i

4πα′

(
ψi
−∂σψ

i
− + ψi

+∂σψ
i
+

)]
. (2.1.39)

In checking this, Dirac brackets need to be used when appropriate. Quantum me-
chanically, this operator depends on the particular sector of the closed string under
consideration, since the normal ordering constants differ.

The condition that d = 10 follows from an investigation of the massless modes of
the NS-NS sector in the same way as the condition for the closed bosonic string. In
the end we obtain the following mass formulas and level-matching conditions:

NS⊗NS : M2 =
2

α′

(
NNS + ÑNS − 1

)
, NNS − ÑNS = 0, (2.1.40a)

NS⊗ R : M2 =
2

α′

(
NNS + ÑR −

1

2

)
, NNS − ÑR −

1

2
= 0, (2.1.40b)

R⊗NS : M2 =
2

α′

(
NR + ÑNS −

1

2

)
, NR − ÑNS +

1

2
= 0, (2.1.40c)

R⊗ R : M2 =
2

α′

(
NR + ÑR

)
, NR − ÑR = 0. (2.1.40d)

The number operators NNS and NR are as in (2.1.28). We thus have NNS, ÑNS =
0, 1

2 , 1,
3
2 , 2, . . . and NR, ÑR = 0, 1, 2, 3, 4, . . ..

The GSO projection: type IIA and IIB

As for the open superstring, a theory of closed superstrings requires the presence of
states from the spectra of all the four different sectors. And also in this case we need
a GSO projection: we keep only states that have (Γ, Γ̃) = (+1,+1).
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α′M2 sector states # d.o.f. (Γ, Γ̃)IIA (Γ, Γ̃)IIB

−2 NS-NS |0〉⊗ |0̃〉 1 (−,−) (−,−)

0 NS-NS bi−1/2|0〉⊗ b̃
j
−1/2|0̃〉 64 (+,+) (+,+)

0 NS-R
bi−1/2|0〉⊗ |+̃〉 64 (+,+) (+,+)

bi−1/2|0〉⊗ |−̃〉 64 (+,−) (+,−)

0 R-NS
|+〉⊗ b̃i−1/2|0̃〉 64 (−,+) (+,+)

|−〉⊗ b̃i−1/2|0̃〉 64 (+,+) (−,+)

0 R-R

|+〉⊗ |+̃〉 64 (−,+) (+,+)

|+〉⊗ |−̃〉 64 (−,−) (+,−)

|−〉⊗ |+̃〉 64 (+,+) (−,+)

|−〉⊗ |−̃〉 64 (+,−) (−,−)

Table 2.1.2. The lowest lying states in the spectrum of the oriented closed superstring. We
list the number of degrees of freedom of the various states and their Γ and Γ̃ eigenvalues, for
the type IIA and IIB projectors. States with (Γ, Γ̃) = (+, +) survive the GSO projection.

The main difference with the open string lies in the fact that there are now two
physically inequivalent choices of the signs of ΓR and Γ̃R in (2.1.36)6 – two, because

only the relative sign matters. We fix Γ̃R ≡ Γ̃∗(−)F̃R by convention and thus still
have to choose the sign in

ΓR = ±Γ∗(−)FR , (2.1.41)

The two choices give rise to two different consistent closed superstring theories with
N = 2 spacetime supersymmetry. If we take a − sign in (2.1.41) we obtain the type
IIA superstring, whereas for the + sign we have the type IIB superstring. Clearly,
the fermionic spectrum of the type IIA theory is non-chiral, whereas that of the type
IIB string is chiral.

Massless spectrum

The states in the NS-NS and R-R sectors are bosons, whereas those in the NS-R and
R-NS sector are fermions.

The NS-NS sector is the same in the type IIA and type IIB theories. We are
particularly interested in the massless fields: the metric gµν , a 2-form Bµν and the
dilaton Φ, with 35, 28 and 1 degrees of freedom, respectively. These are the same

6Γ̃R is of course obtained by simply replacing di
n with d̃i

n everywhere in (2.1.36).
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massless fields as for the closed bosonic string. It can be shown that these fields also
behave in the same way, either by a calculation of their scattering amplitudes or by
the background field methods of section 1.2.4. In particular, the expectation value of
the dilaton again determines the string coupling constant and the strings are charged
w.r.t. the 2-form Bµν .

The NS-R sector is also the same in both type II theories. These states form a
reducible vector-spinor representation ϕi

α of SO(8), where Γ∗ϕ
i = +ϕi. Indeed, the

states Γiφi transform irreducibly under SO(8). These 8 degrees of freedom can be
represented by a right-handed (negative chirality) Majorana spinor field λ− which is
often referred to as a dilatino. The remaining 56 degrees of freedom ϕ̄i

α with Γiϕ̄i = 0
can be represented by a left-handed (positive chirality) Majorana gravitino field7 ψ+

µ .
The R-NS sector for the IIB string is a copy of its NS-R sector: we have a dilatino

λ− and a gravitino ψ+
µ . For the IIA string we have the same fields, but with a different

chirality: a spinor λ+ and a gravitino ψ−
µ .

The massless modes in the R-R sector are obtained from the tensor product ψαχβ

of two SO(8) Majorana spinors, where ψ and χ correspond to the right- and left-
moving Ramond ground state, respectively. We need to decompose this tensor product
into irreps of SO(8). To achieve this we first raise the spinor index8 on χ and then
use the Fierz decomposition of (A.1.45):

ψαχ
β = − 1

24

8∑

k=0

1

k!
χ̄Γi1···ikψ (Γi1···ik

)α
β . (2.1.42)

Now we apply the GSO projection, after which χ becomes a Weyl spinor of positive
chirality, and thus

χ̄Γi1···ikψ = χ̄Γ∗Γ
i1···ikψ = (−)k χ̄Γi1···ikΓ∗ψ = ±(−)k χ̄Γi1···ikψ,

where we have a − sign for type IIA and a + for IIB. So for IIA only the terms with
k even are nonvanishing, whereas for IIB we have k odd. Moreover, from (A.1.19) we
have

Γi1···ik =
1

(8− k)!ε
i1···i8 Γ∗Γ

i8···ik+1 . (2.1.43)

We can thus relate the terms in (2.1.42) with a high value of k to those with a low
value 8− k.

The massless degrees of freedom in the R-R sector are thus antisymmetric tensors
of SO(8). We write χ̄Γi1···ik

ψ = ci1···ik
. The type IIA theory has ci and cijk, with

8 and 56 degrees of freedom, respectively. The type IIB theory has c, cij and c+ijkl,

7Remember that the graviton contains d(d − 3)/2 degrees of freedom, a massless n-form
`d−2

n

´

and a gravitino (d− 3)δ, where δ is the dimension of a minimal spinor in d dimensions.
8As explained in appendix A.1 it makes no physical difference which C matrix we use for this in

the case of SO(8). For definiteness we will use C+. We have C+Γ∗ = Γ∗C+.
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with cijkl = εijklmnrsc
mnrs/4!. These contain respectively 1, 28 and 35 degrees of

freedom. The c(k) can be represented by antisymmetric tensor fields C
(k)
µ1···µk

of the
same rank. It turns out that the self-duality condition on C+

µνρσ has to be imposed
on its field-strength.

Ramond-Ramond charges

We have seen in the previous chapter that the bosonic string is electrically charged
w.r.t. the 2-form Kalb-Ramond field Bµν . Since the massless NS-NS fields behave in
the same way as the massless fields of the closed bosonic string, we conclude that the
IIA and IIB string are electrically charged w.r.t. the NS-NS 2-form B(2).

In contrast, in turns out that there are no states in the perturbative string spec-
trum that carry a charge w.r.t. the R-R forms C(p). This is not so easy to show in
our light-cone gauge quantization, but if we had employed a covariant quantization
procedure we would have seen that the states we constructed above actually describe
the field strengths G(p+1) instead of the R-R fields C(p) themselves. The same holds
for the vertex operators, hence string amplitudes involving an R-R field always vanish
at zero momentum9, indicating that the strings are not charged.

The absence of R-R charges in the perturbative string spectrum is somewhat of a
riddle, since their presence is required by the S-duality of the type IIB string theory
as we will see in section 2.4. This riddle was solved by Polchinski in 1995 [67]; he
showed that D-branes are in fact the carriers of R-R charges.

IIA and IIB are T-dual

Consider for instance a compactified 9-direction. As for the bosonic degrees of free-
dom, T-duality acts as a parity operation on the right-moving fermions,

Tψ9
−T

−1 = −ψ9
−, Tψ9

+T
−1 = ψ9

+. (2.1.44)

We have in particular Td9
0T

−1 = −d9
0 and T d̃9T−1 = d̃9

0. Hence T-duality inter-
changes the chirality Γ∗ of the right-moving Ramond ground state, but leaves the
chirality Γ̃∗ of the left-movers invariant. It follows that a T-duality transformation
brings us from type IIA to IIB theory and vice versa.

2.1.3 Type I theory

As we know, a theory with interacting open strings necessarily includes closed strings
as well. This coupling is not as straightforward in the case of the superstring as it

9Amplitudes involving a field strength G always have a factor of momentum – simply look at the
Fourier transform G̃µ1...µp+1 = (p+ 1)k[µ1

C̃µ2...µp+1]. The construction of R-R vertex operators is

quite nontrivial. We refer to [15] for details.
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was for the bosonic string, since one can not couple an N = 1 supersymmetric theory
to one with N = 2 supersymmetry. We therefore need to bring down the number
of supersymmetries in the closed string sector without ruining the consistency of the
theory.

There is only one way in which this can be achieved and that is by modding out
the spectrum with the world-sheet parity operator Ω. Ω acts on the closed string
oscillators as

Ωbi−rΩ
−1 = b̃i−r, Ωb̃i−rΩ

−1 = −bi−r, (2.1.45a)

Ωdi
−nΩ−1 = d̃i

−n, Ωd̃i
−nΩ−1 = −di

−n, (2.1.45b)

where the − signs where introduced so that the product of a left- and right-moving
fermionic oscillator is Ω-invariant. We see that Ω is not a symmetry of the IIA string,
since it acts on the GSO projectors as ΩΓRΩ−1 = −Γ̃R and ΩΓ̃RΩ−1 = −ΓR.

The type IIB string on the other hand is left-right invariant. Keeping only Ω-
invariant states, we have the following remaining massless fields. In the NS-NS sector
there are the graviton gµν and the dilaton Φ whereas in the R-R sector the 2-form
Cµν survives10. Since Ω relates the NS-R to the R-NS sector, only a single gravitino
ψ+

µ and dilatino λ− remain. So we obtain an unoriented closed string theory that
indeed has only N = 1 supersymmetry.

The type I string theory is obtained by coupling the Ω-truncated type IIB string
to unoriented open strings with SO(32) Chan-Paton factors, since it turns out that
SO(32) is the only gauge group for which the theory is free of anomalies. We will
briefly come back to this point below.

2.1.4 Superstring effective actions

We now present the low-energy effective actions of the type II and type I superstring
theories that we discussed above. In addition, we give the effective actions for the
heterotic strings and the 11-dimensional supergravity theory. The connection of these
theories to the type I and II strings will be briefly pointed out later in this chapter.

10The Ramond ground state is fermionic, so we get an additional minus sign when interchanging
the left- and right-movers: Ω(|+〉 ⊗ |+̃〉) = −|+̃〉 ⊗ |+〉. Of the matrices Γ(k)C−1 with k = 0, 2, 4
only the one with k = 2 is antisymmetric. Thus only Cµν survives the Ω-projection.
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Type IIA theory

The leading order contribution to the effective action is determined by the (1, 1)
supersymmetry11. The bosonic contributions are in string frame [71,72]:

2κ2
0 LIIA = e−2Φ

(
R ∗1 + 4 ∗dΦ ∧ dΦ− 1

2
∗H(3) ∧H(3)

)

− 1

2
∗G(2) ∧G(2) − 1

2
∗G(4) ∧G(4) − 1

2
B(2) ∧ dC(3) ∧ dC(3),

(2.1.46)

where used the following field strengths:

H(3) = dB(2), G(2) = dC(1), G(4) = dC(3) −H(3) ∧ C(1). (2.1.47)

The type IIA theory is parity symmetric and hence anomaly-free.

Type IIB theory

The effective action is uniquely determined by (2, 0) supersymmetry. The bosonic
contributions are in string frame [73,74]:

2κ2
0 LIIB = e−2Φ

(
R ∗1 + 4 ∗dΦ ∧ dΦ− 1

2
∗H(3) ∧H(3)

)
− 1

2
∗G(1) ∧G(1)

− 1

2
∗G(3) ∧G(3) − 1

4
∗G(5) ∧G(5) +

1

2
C(4) ∧ dC(2) ∧H(3).

(2.1.48)

We used the following field strengths:

H(3) = dB(2), G(1) = dC(0), G(3) = dC(2) −H(3) ∧ C(0). (2.1.49)

The field strength of the 4-form

G(5) = dC(4) − 1

2
C(2) ∧H(3) +

1

2
B(2) ∧ dC(2), (2.1.50)

satisfies the following self-duality condition:

G(5) ≡ ∗G(5), (2.1.51)

which has to be imposed as a constraint12 at the level of the equations of motion [76].

11(1, 1) supersymmetry allows for a more general massive IIA supergravity [68], which plays an
important role in the theory of D8-branes [67, 69, 70]. This theory does not possess a Minkowski
vacuum however.

12A Lorentz covariant action for self-dual p-forms which does not require the additional constraint
(2.1.51) can only be constructed at the expense of introducing auxiliary fields. See e.g. [75].
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The terms involving the R-R field strengths G(n) in (2.1.46) and (2.1.48) do not
have a factor of e−2Φ, even though they follow from closed string tree-level amplitudes.
This convention was chosen in order to have the Bianchi identities for the R-R field
strengths as simple as possible.

The chiral fields of the type IIB theory – the ψ+
µ ’s, λ−’s and C+

µνρσ – give rise
to gravitational, chiral and mixed anomalies. Remarkably, these anomalies exactly
cancel against each other.

Type I theory

Since the Ω-projection of the type IIB string removes C, C+
µνρσ and one pair of the

(ψ+
µ , λ

−), the careful balance between the anomalies is upset and the consistency of
the theory ruined. It turns out that in order to regain a consistent theory we have to
add unoriented open strings with SO(32) Chan-Paton factors to the theory.

At the massless level, the addition of open strings comes down to coupling the
sugra to a d = 10, N = 1 non-abelian vector multiplet (Aµ, χ

+) [77,78]. The fermion
χ+ is Weyl and gives rise to an additional chiral anomaly.

At this stage we seem to be in a lot of trouble, but it turns out that all the
anomalies cancel exactly for the gauge groups SO(32) and E8 × E8. Of these, only
SO(32) can be obtained by means of Chan-Paton factors.

The low-energy effective Lagrangian of the type I string theory is:

2κ2
0 LI = e−2Φ

(
R ∗1 + 4 ∗dΦ ∧ dΦ

)
− 1

2
∗G(3) ∧G(3) +

κ2
0

g2
0

e−Φ Tr ∗F ∧ F. (2.1.52)

Supersymmetry demands that the field strength of the two-form be modified as fol-
lows13:

G(3) = dC(2) − κ2
0

g2
0

ω(3), (2.1.53)

where ω(3) is the Chern-Simons 3-form

ω(3) = Tr
(
A ∧ dA+

2

3
A ∧A ∧A

)
. (2.1.54)

The heterotic theories

We mentioned already that the heterotic theories contain only closed strings. It turns
out that the modification to the right-moving sector that we alluded to above gives
rise to non-abelian gauge fields. In this case, both SO(32) and E8×E8 can be realized.

13We omit the gravitational Chern-Simons term, which is of higher order in α′.
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The massless fields are similar to those of the type I theory, but the couplings are
different. The action reads:

2κ2
0 Lhet = e−2Φ

(
R ∗1 + 4 ∗dΦ ∧ dΦ− 1

2
∗H(3) ∧H(3) +

κ2
0

g2
0

Tr ∗F ∧ F
)
. (2.1.55)

Note the overall power of the dilaton: this action is a closed string tree-level result.

A few remarks about our conventions in equations (2.1.52) and (2.1.55) are in
order. The Yang-Mills 1-forms A = Aµdxµ are matrix-valued fields Aµ = Aα

µTα,
where the antihermitian matrices Tα represent the Lie algebra so(32) or e8⊕ e8. They
are normalized by TrTαTβ = −δαβ . The Yang-Mills field strength is defined by
F = dA+A ∧A.

On dimensional grounds κ2
0/g

2
0 ∼ α′. We will not need the precise value of this

ratio. It depends on whether we are considering the type I, heterotic SO(32) or
E8×E8 string and on the conventions – the normalization of the Aµ vertex operator
and the representation Tα. See [15] for details.

Eleven-dimensional supergravity

The maximum number of dimensions in which one can construct a supergravity the-
ory14 turns out to be d = 11. This theory is unique. The fields are the metric gµν , a
3-form Cµνρ and a Majorana gravitino ψµ. The bosonic part of the Lagrangian is [80]:

2κ2
11L = R ∗1− 1

2
∗H(4) ∧H(4) − 1

6
C(3) ∧H(4) ∧H(4), (2.1.56)

where H(4) = dC(3).

2.2 Extended objects in supergravity

We will now consider some aspects of a specific class of supersymmetric solitons in
supergravity theories: the p-branes. They are higher-dimensional versions of the
well-known 4-dimensional Reissner-Nordström black holes. The p-branes have several
properties in common: they carry charges w.r.t. a p-form gauge field and they preserve
a certain fraction of the supersymmetries of the underlying supergravity theory. We
will first review the RN black holes in some detail, since they already show most of
these properties.

14This is for Minkowski signature spacetimes. If we allow for more than one timelike direction,
the maximum number of dimensions turns out to be 12. See e.g. [79].
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2.2.1 Reissner-Nordström black holes and BPS states

The RN black holes are electrically charged solutions of the Einstein-Maxwell theory:

2κ2 L = R ∗1− 1

2
∗F ∧ F. (2.2.1)

The solution reads in spherical coordinates (t, r, θ, φ):

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 + r2dΩ2, (2.2.2a)

A = −2Q

r
dt, i.e. F = −2Q

r2
dt ∧ dr. (2.2.2b)

Here dΩ2 = dθ2 + sin2 θ dφ2 is the metric on the round 2-sphere. The parameters
Q and M are related to the electric charge q and the mass m of the black hole,
respectively. Indeed, the charge q is proportional to the integrated flux of the electric
field at spatial infinity:

q =
1

2κ2

∫

S2

∗F =
4πQ

κ2
. (2.2.3)

The mass m of the black hole can be read off from the behavior of the metric as
r →∞:

gtt ≈ −1− 2Φ(r) = −1 +
2κ2

(d− 2) volSd−2

m

rd−3
⇒ m =

8πM

κ2
. (2.2.4)

Consider two such black holes. They attract each other due to the gravitational
interaction and repel or attract each other due to the electric force. The force is given
by15:

~F = (Q1Q2 −M1M2)
1

r2
r̂. (2.2.5)

If both black holes satisfy M = ±|Q|, the net force is zero and we have a stable
configuration.

15To obtain this result, consider the equation of motion for a point particle of mass m1 and charge
q1 in the background field (2.2.2) of the second black hole:

d2xµ

dτ2
+ Γµ

νρ

dxν

dτ

dxρ

dτ
= − q1

m1
Fµ

ν
dxν

dτ
,

and take the weak-field and low-velocity approximation. One obtains:

M1
d2xi

dt2
= (Q1Q2 −M1M2)

xi

r3
.
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The case M = ±|Q| is known as an extremal RN black hole and is interesting for
a number of reasons. First of all, if M > |Q| the solution (2.2.2) has two horizons at

r± = M ±
√
M2 −Q2. (2.2.6)

If M < |Q| there are no horizons. This occurrence of a naked singularity is believed
to be unphysical16. We thus have the bound M ≥ |Q|, which is saturated in the
extremal case. Furthermore, when M = |Q| the two horizons coincide. Shifting the
radial coordinate as r → r −M we rewrite (2.2.2) in isotropic coordinates:

ds2 = −
(

1 +
M

r

)−2

dt2 +

(
1 +

M

r

)2

(dr2 + r2dΩ2)

= −H−2(r) dt2 +H2(r) dxadxa,

F = 2dt ∧ dH−1, H(r) = 1 +
M

r
.

(2.2.7)

H(r) is a harmonic function in the three-dimensional space transverse to the black
hole. In this form the R× SO(3) isometry of the solution is manifest. Note that the
isotropic coordinates cover only the region outside the horizon17.

Instead of a black hole with an electric charge Qe, we could also have considered a
black hole with a magnetic charge Qm, or with both. The solution (2.2.2) still holds,
but with Q = (Q2

e +Q2
m)1/2 and (2.2.2b) replaced by

F = −2Qe

r2
dt ∧ dr + 2Qm sin θ dθ ∧ dφ. (2.2.8)

The extremal case is still given byM = |Q|. We remark that the charges are quantized
according to the usual Dirac or Wu-Yang argument, i.e. QeQm ∼ n, n integer.

The extremal case becomes even more interesting when one realizes that the
Einstein-Maxwell Lagrangian (2.2.1) is in fact the bosonic part of the pure N = 2,
d = 4 supergravity theory [81]. In addition to the vielbein ea

µ and the gauge field
Aµ – which in this context is often called the graviphoton – the N = 2 supergravity
contains two Majorana gravitinos ψi

µ, i = 1, 2.
The supersymmetry transformations of the gravitinos read up to terms cubic in

the fermions:

δQ(ǫ)P±ψ
i
µ = Dµ(ω)P±ǫ

i − 1

4
F−

ab ΓabΓµε
ijP∓ǫ

j , (2.2.9)

16This is called the cosmic censorship conjecture.
17The near-horizon limit r → 0 is interesting. We get

ds2 = − r2

M2
dt2 +

M2

r2
dr2 +M2dΩ2,

which is the product space AdS2 × S2.
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where ε12 = +1 and F± = 1
2 (F±i∗F ). The RN black hole is a purely bosonic solution

of the N = 2 supergravity field equations. For generic values of M and Q it preserves
no supersymmetries. However, in the extremal case 1/2 of the supersymmetries are
preserved [82]. To prove this, we need to show that the supersymmetry variations
δQ(ǫ) of the fields are zero for suitably chosen ǫ. This is guaranteed for ea

µ and Aµ,
since their variations always involve at least one power of ψµ. We therefore only need
to check that δQ(ǫ)ψI

µ = 0. The solutions of this equation are called Killing spinors.

For the extremal RN black hole the Killing spinors turn out to be ǫi = H−1/2ǫi0,
where ǫi0 are constant spinors that satisfy

P±ǫ
i
0 = −εijΓ0 P∓ǫ

j
0. (2.2.10)

This condition determines exactly one half of the components of the ǫi0 in terms of
the other half, demonstrating that the extremal RN solution indeed breaks 1/2 of the
supersymmetries.

Configurations that preserve some fraction of the supersymmetry are called BPS
configurations. There is another way of looking at these configurations that is very
useful. In the previous chapter we mentioned the semiclassical approximation to a
quantum theory in which one expands the fields around a classical solution of the
equations of motion and obtains a field theory for the fluctuations. It turns out
that the symmetries of the classical solution around which we expand become global
symmetries of this resulting field theory. At large distances from the horizon (r →∞)
the solution (2.2.2) reduces to Minkowski spacetime, which is actually a maximally
supersymmetric solution of the N = 2 supergravity theory. Physics very far from the
black hole should thus be described by a field theory with global N = 2 Poincaré
supersymmetry. The RN black hole has an alternative interpretation as a state in the
spectrum of this theory.

The interesting part of the N = 2 superalgebra18 reads

{Qi
α, Q

j
β} = 2δij(ΓaC−1)αβPa + 2εij(C−1)αβZe + 2iεij(Γ∗C

−1)αβZm. (2.2.11)

We have included on the right-hand side the central charges Ze and Zm. They
commute with all the other generators in the N = 2 Poincaré superalgebra. It can be
shown that these charges are just the electric and magnetic charges Qe and Qm that
are carried by massive point particles.

We are interested in massive particle representations of this algebra. In the rest
frame Pa = (iM, 0, . . . , 0). For the charges we have Ze = iQe, Zm = iQm. The tools
of appendix A allow us to rewrite (2.2.11) as

{Q,Q†} = 2

(
M −QeΓ

0 − iQmΓ∗Γ
0

QeΓ
0 + iQmΓ∗Γ

0 M

)
(2.2.12)

18Our conventions are such that the bosonic generators are antihermitian, i.e. P †
a = −Pa and

Z† = −Z.
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The matrix on the RHS has eigenvalues λ = 2(M ± Q) ≥ 0. They are nonnegative
since the operator on the LHS is positive semidefinite. This leads to the Bogomolnyi-
Prasad-Sommerfield (BPS) bound :

M ≥ |Q|, with Z =
√
Q2

e +Q2
m. (2.2.13)

Naked singularities are thus excluded by N = 2 supersymmetry. When the bound
is saturated, i.e. if M = |Q|, exactly half of the eigenvalues λ are zero (which ones
depends on the sign of the charge). This means that this state is annihilated by 1/2
of the supersymmetry generators, in accordance with our earlier discussion on the
Killing spinors of the extremal RN solution.

An important property of the BPS configurations is that they are stable: the
charge Q is conserved and there are no states of lower mass with this charge. In ad-
dition, the BPS states fall into smaller multiplets than the states for which M > |Q|,
because 1/2 of the supersymmetry generators are represented trivially. Since the
number of states in a quantum theory can not change abruptly as we vary the pa-
rameters of the theory, the BPS relation M = |Q| is not renormalized by quantum
corrections [83]. It is hard to overemphasize the importance of this result. As men-
tioned in chapter 1, it allows one to extrapolate results from perturbation theory to
the strong coupling regime of a theory and to test S-duality conjectures.

2.2.2 Supergravity p-branes

Let us reformulate the results of the previous section in the language of branes. We
obtained a 0-brane solution of the field equations of N = 2, d = 4 supergravity that
was electrically or magnetically charged w.r.t. the 1-form A. The presence of these
charges was crucial in obtaining a supersymmetric solution. Note that a magnetic
charge corresponds to an electric charge w.r.t. to the dual Ã.

We can generalize this to arbitrary dimension d and rank q of the gauge field as
follows. Consider the following Lagrangian for gravity coupled to a scalar φ and a
q-form C(q):

2κ2 L = R ∗1− 1

2
∗dφ ∧ dφ− 1

2
eaφ ∗G(q+1) ∧G(q+1), (2.2.14)

where a is a real constant and G(q+1) = dC(q). This action can be obtained as a
consistent truncation from the full supergravity Lagrangians of the previous section
for suitable choices of d, a and q after going to the Einstein frame using (1.2.32) and
a suitable rescaling of φ – see e.g. [84,85] for details. With a consistent truncation we
mean that any solution of the truncated theory is also a solution of the full theory.

We expect p-brane solutions that carry an electric charge Qe for p = q − 1 and a
magnetic charge Qm for p = q̃ − 1:

Qe ∼
∫

Sq̃+1

eaφ ∗G(q+1), Qm ∼
∫

Sq+1

G(q+1), (2.2.15)
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where we defined q̃ = d−q−2 and the integrals are taken over spheres surrounding the
branes in the directions transverse to their world-volumes. The charges are conserved
due to the field equation and the Bianchi identity of C(q), respectively, and they are
quantized, QeQm ∼ n.

We now give the p-brane solutions in isotropic coordinates. We denote the coor-
dinates of the world-volume by xi with i = 0, . . . , p and those of the space transverse
to the brane by xa with a = p+ 1, . . . , d− 1. The metric is given by

ds2E = H−4q̃/(d−2)∆ ηijdx
idxj +H−4q/(d−2)∆ δabdx

adxb. (2.2.16)

In this form the ISO(1, p) × SO(d − p − 1) isometry is manifest. We defined the
parameter ∆ by

∆ = a2 +
2qq̃

d− 2
. (2.2.17)

For the electric solution we have in addition

eφ = H2a/∆, G(q+1)
e =

2√
∆

dx0 ∧ . . . ∧ dxp ∧ dH−1, (2.2.18a)

whereas for the magnetic solution

eφ = H−2a/∆, G(q+1)
m =

2√
∆
∗dx0 ∧ . . . ∧ dxp ∧ dH. (2.2.18b)

The function H = H(r), with r2 = xaxa, is harmonic on the transverse space, i.e.
∇a∂

aH = 0. For p < d− 3 we have

H = c+
Q

rd−p−3
, (2.2.19)

where if a 6= 0 the constant c is related to the asymptotic value of φ via eφ∞ = c±2a/∆.
(d− 3)-branes have a logarithmic harmonic and (d− 2)-branes a linear harmonic.

In maximally supersymmetric theories it can be shown that solutions with ∆ =
4/n preserve 32/2n supersymmetries. All 1/2 BPS solutions in type IIA and IIB thus
have ∆ = 419.

The charges again manifest themselves in the supersymmetry algebra20, which

19Other values of ∆ often give configurations that can be thought of as intersecting branes. The
harmonic function (2.2.19) then needs to be modified.

20There are two ways of deriving this result. The first [86] makes use of the world-volume theory
of the branes. In this approach the central terms in the algebra are a consequence of the fact that a
Green-Schwarz type Lagrangian for branes is not supersymmetric but varies into a total derivative.
This leads to additional terms in the definition of the supercharges that in turn give rise to the central
charges. See [87] for a condensed review. In the second approach [88] one constructs the supercharges
directly from the supergravity Lagrangian. One then calculates the commutator: the result involves
the bosonic fields. Inserting the (asymptotic) solution finally yields the central charges.
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reads schematically:

{Qα, Qβ} = 2(ΓµC−1)αβPµ + 2
∑

p

1

p!
(Γµ1···µpC−1)αβZµ1···µp

. (2.2.20)

Which p’s are included in the sum depends on the particular theory under considera-
tion. The ‘central’ charges Z are no longer central since they transform under Lorentz
transformations.

2.2.3 BPS branes in string theory

We now focus our attention on the BPS p-brane solutions of the supergravity theories
of section 2.1.4.

Type IIA and IIB

The type IIA and IIB theories both have the NS-NS 2-form B(2). We therefore the
fundamental string or F1-brane solution and its magnetic dual, the Neveu-Schwarz
five-brane or NS5-brane. The appearance of the F1-solution is not surprising, since
we are considering the low-energy limit of string theories.

In addition the IIA and IIB theories contain the R-R forms. We mentioned already
that the string theory Dirichlet branes carry these R-R charges. Here we find the
supergravity description of these objects. In the type IIA theory one finds the D0-
brane and the D2-brane and their magnetic duals, the D6-branes and the D4-brane.
As mentioned before, there is also a D8-brane which can be obtained as a solution of
the massive IIA supergravity. In the type IIB theory one finds the D1-brane and its
magnetic partner the D5-brane. The D3-brane is self-dual. There is also a D7-brane,
which carries a magnetic charge for the axion C(0). Its dual, the D(−1)-brane or
D-instanton, can however be obtained only as a solution of the Euclidean version of
(2.1.48).

We will show in the next section how the D-branes appear in superstring theory
by means of an argument based on T-duality.

Type I

The type I theory does not contain an NS-NS 2-form and thus also does not have a
BPS F1-brane solution. The fundamental string of the type I theory is thus not a
stable object: it can decay, though this process is very slow at small values of the
string coupling. The BPS solutions are the D1-brane and the D5-brane.
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Heterotic

The heterotic SO(32) and E8 × E8 theories have a massless 2-form, leading to the
heterotic string solution (F1) and the heterotic 5-brane (S5). The heterotic string
theories do not have D-branes.

11-dimensional SUGRA

The 11-dimensional supergravity theory has a 3-form gauge field Cµνρ that leads to
a membrane or M2-brane solution and its magnetic dual, the M5-brane.

Purely gravitational solutions

The theories considered above also possess BPS solutions that are not carried by a
p-form field. They are the gravitational wave and the Kaluza-Klein monopole. These
arise as purely gravitational solutions and are not of the form (2.2.16) – they have
an off-diagonal metric. Though they play a role in string theory – they are related
to the p-branes by dualities – treating them in detail would to us to far afield. We
just remark here that the KK-monopole solution is a product of (d− 4)-dimensional
Minkowski space and the 4-dimensional Euclidean Taub-NUT space, which has a
compact isometry direction. When performing a dimensional reduction along this
compact direction, one obtains a (d − 5)-brane that carries a magnetic charge w.r.t.
the KK gauge field. Hence the name.

2.3 More on supersymmetric D-branes

As discussed in the previous chapter, we can view the type I theory as a system of 16
coincident D9-branes and an O9-plane. By T-duality we can go to configurations with
lower-dimensional D-branes. Compactify for instance the 9-direction over a circle of
radius R and introduce a U(1)16 Wilson line. This does not break any of the 16
supersymmetries21. According to section 1.3.5, this configuration is T-dual to 16
parallel D8-branes situated on an interval S1/Z2 with orientifold O8-planes at the
endpoints. The unoriented type I string was obtained from the oriented type IIB
theory. Therefore in the T-dual version the physics far away from the D8-branes is
described by the oriented type IIA closed string theory.

We can continue like this and T-dualize over additional directions. We get 16
parallel Dp branes in the type IIB theory for p odd and in the type IIA theory for p
even.

21An effective field theory argument for this is the following. The gauge field Aµ and gaugino χ
transform as δAµ = ǭΓµχ and δχ = 1

2
FµνΓµνǫ under supersymmetry. Since for the Wilson line

Fµν = χ = 0, we have δAµ = δχ = 0 for all ǫ.
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We already mentioned several times before that the D-branes carry charges of the
R-R forms. Polchinski showed this in [67] by an explicit string theory calculation.
In addition, he showed that these charges satisfy the charge quantization relation
QeQm ∼ n with n = 1. The D-branes thus carry the minimum R-R charge quantum.
This strongly suggests that the D-branes of perturbative string theory and the Dp-
brane solutions of the type II supergravities are indeed different descriptions of the
same object.

Further evidence for this conjecture is obtained by comparing the tension of the
D-branes with those calculated by means of the ADM-formula in supergravity. The
BPS bound is satisfied also in perturbative string theory. A system of parallel su-
pergravity Dp-branes is stable in the same way as a system of two RN black holes in
four dimensions: the gravitational attraction is exactly matched by the electrostatic
repulsion due to the R-R charges. In string theory, one obtains the same result from
the exchange of closed strings between the D-branes (see e.g. [15]).

The D-brane’s world-volume carries a supersymmetric Yang-Mills theory with 16
supercharges. In perturbative string theory this follows from dimensionally reducing
the field content on a single D9-brane. These degrees of freedom can also be obtained
from supergravity considerations, for example from the brane scan. See [79] for a
review.

The consistency conditions of the type I string theory have a nice interpretation
in terms of the R-R charges. The sixteen D9-branes act as sources for a R-R 10-form
field. But the field strength of a 10-form vanishes identically in ten dimensions, hence
the field equation of the 10-form d∗G = ∗J is of the form 0 = 1, unless the current
density J vanishes. This is achieved by assigning a negative charge of −16 to the O9-
plane. If we compactify and T-dualize k directions, the number of D-branes remains
constant, but the number of O-planes increases to 2k. A single Op-plane therefore
carries −2p−5 units of R-R (p+1)-form charge. Whereas configurations with D-branes
on compact spaces always have to be accompanied by objects with a negative charge
because of flux conservation, D-branes can exist on their own in an uncompactified
spacetime: the R-R field lines can move off to infinity. So it makes sense to consider
individual D-branes as in section 2.2.

2.3.1 D-brane effective actions revisited

The type II string theories contain more massless fields than the bosonic string theory.
The effective action for a D-brane in a curved background therefore contains additional
terms. We again limit ourselves to slowly-varying fields. One can then show that the
effective action is a sum of two terms:

SDp-brane = SDBI + SWZ. (2.3.1a)
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The Dirac-Born-Infeld action SDBI is the same as before:

SDBI = −TDp

∫
dp+1σ e−Φ

√
−det(Gαβ + Fαβ). (2.3.1b)

In addition, there is the Wess-Zumino term SWZ which describes the R-R charges of
the Dp-brane:

SWZ = TDp

∫
ı∗
∑

k

C(k) ∧ expF . (2.3.1c)

It is understood that in expanding the exponential in (2.3.1c) only the (p + 1)-form
is kept. The appearance of the tension TDp in front of the Wess-Zumino term reflects
the fact that the Dp-brane is a BPS state. If we use the following convention for
Newton’s constant

2κ2
0 ≡ (2π)7l8s , (2.3.2)

we get a nice expression for the tension:

τDp =
1

(2π)pℓp+1
s gs

. (2.3.3)

Nice, because with this convention the ratio of the Einstein-frame tensions of the
F-string and D-string becomes τF1/τD1 = eφ. The tensions of the F- and D-string are
thus exchanged under S-duality (see below).

We see that when F = 0 the Dp-brane couples only to its associated R-R form
C(p+1). When F is switched on, the brane also couples to the R-R forms of lower rank.
This agrees with our earlier discussion in section 1.3.4, where we argued that there
are smeared branes of lower dimensionality present in the Dp-brane’s world-volume
when F 6= 0. To see that the charges work out correctly, put Bµν = 0 and expand
the exponential

SWZ = TDp

∫ ∑

k

C(k) ∧ exp 2πα′F = TDp

∑

k

(2πα′)k

k!

∫
C(p+1−2k) ∧ F k. (2.3.4)

Using (2.3.3), we obtain:

SWZ =
∑

k

TD(p − 2k)

∫
C(p+1−2k) ∧ 1

(2π)kk!
F k. (2.3.5)

We infer from this that the number of lower-rank R-R charges is indeed equal to the
Chern classes ck of (1.3.50).

2.4 The web of dualities

In the 1990’s it gradually became understood that the five different string theories all
arise as different limits of an underlying unified theory, called M-theory. We end this
chapter with a brief overview of these dualities.
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Type IIA – Type IIB

As argued in the above, the type IIA and IIB theories are T-dual to each other. We
have shown in section 1.3.2 that the D-branes transform as follows: if we perform the
duality transformation in a direction orthogonal to the Dp-brane’s world-volume we
obtain a D(p+1)-brane, whereas for a direction tangent to the world-volume we obtain
a D(p − 1)-brane. The same result can be obtained at the level of the supergravity
solutions by applying the Buscher T-duality rules – see e.g. [89] for a review.

Similarly, it can be shown that the F1 solution does not transform under a T-
duality transformation orthogonal to the world-sheet, but that a T-duality along
the world-sheet results in the wave (W) solution. Vice versa: T-dualizing along the
propagation direction of the wave yields the F1 string, whereas dualizing along a
direction orthogonal to the propagation leaves the W solution invariant.

Finally, the NS5-branes and KK5-monopoles are related to each other by T-duali-
zing along a direction transverse to their world-volumes (in the case of the KK5-
monopole we need to take the Taub-NUT isometry direction), but are invariant under
duality transformation along their world-volume directions.

Het SO(32) – Het E8 × E8

The heterotic theories are also T-dual to each other when compactified on circles of
radii R and α′/R respectively, but only when we turn on a Wilson lines that break
the SO(32) and E8×E8 symmetry to SO(16)×SO(16). The duality transformations
for the F1, W, S5 and KK5 solutions are the same as those for the type II theories.

Type IIB – Type IIB

The type IIB supergravity action (2.1.48) reads in Einstein frame

2κ2 LE
IIB = R ∗1− 1

2
∗dφ ∧ dφ− 1

2
e2φ ∗G(1) ∧G(1) − 1

2
e−φ ∗H(3) ∧H(3)

− 1

2
eφ ∗G(3) ∧G(3) − 1

4
∗G(5) ∧G(5) +

1

2
C(4) ∧ dC(2) ∧H(3).

(2.4.1)

It can be shown that this action is invariant under the following SL(2,R) transfor-
mation:

τ → aτ + b

cτ + d
,

(
C(2)

B(2)

)
→
(
a b
c d

)(
C(2)

B(2)

)
. (2.4.2)

Here we defined a complex scalar τ ≡ C(0) + ie−φ. The metric and the 4-form C+
µνρσ

are inert. In a background where C(0) vanishes, the transformation with a = d = 0
and b = −c = 1 takes φ into −φ. This suggests that the strong coupling regime of the
type IIB string is in fact dual to its own weak coupling regime. This is an example
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of S-duality. It turns out that in quantum theory the SL(2,R) symmetry is broken
to SL(2,Z) as a consequence of charge quantization.

Since the brane solutions of type IIB supergravity that we discussed are BPS, we
can trust their properties also at strong coupling. One can argue in particular that
the F1- and D1-string are transformed into each other under φ→ −φ. There actually
exists an entire class of so-called (p, q)-strings that carry both NS and R-R charges
and transform nontrivially under the complete SL(2,Z). The NS5- and D5-branes
are related in the same way, whereas the D3-brane is invariant. Also the W and KK5
solutions are invariant.

Type I – Het SO(32)

The strong coupling regime of the type I theory turns out to be dual to the weak
coupling regime of the heterotic SO(32) string and vice versa. As for the IIB string,
this can be motivated by looking at the effective actions. The type I supergravity
(2.1.52) reads in Einstein frame22

2κ2 LE
I = R ∗1− 1

2
∗dφ ∧ dφ− 1

2
eφ ∗G(3) ∧G(3) +

1

2
eφ/2 Tr ∗F ∧ F. (2.4.3)

and the heterotic supergravity (2.1.55) becomes

2κ2 LE
het = R ∗1− 1

2
∗dφ ∧ dφ− 1

2
e−φ ∗H(3) ∧H(3) +

1

2
e−φ/2 Tr ∗F ∧ F. (2.4.4)

These actions are related to each other as follows

φtype I ↔ −φhet, C
(2)
type I ↔ B

(2)
het. (2.4.5)

So indeed the weak- and strong-coupling regimes are exchanged.
At strong coupling, the lifetime of the fundamental string of the type I theory

becomes very short and this string disappears from the spectrum as a recognizable
excitation. The D1-string however is stable, and it turns out that at strong coupling
it behaves as the fundamental string of the SO(32) heterotic string. Similarly, the
D5-brane behaves as the S5-brane.

11-dim SUGRA – Type IIA & Het E8 × E8

The strong coupling limits of the type IIA and the heterotic E8 × E8 theories are
arguably even more remarkable. When we increase the strength of the coupling, an
eleventh dimension appears.

22We rescale the gauge field such that the factor κ2
0/g

2
0 no longer multiplies the kinetic term for

the gauge fields.
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Let us motivate this for the IIA theory. We reduce the 11-dimensional supergravity
theory (2.1.56) over a circle. We split our coordinates as x̂µ̂ = (xµ, z) and decompose
the 11-dimensional fields as follows

d̂s2 = e−2Φ/3gµνdxµdxν + e4Φ/3(dz − C(1)
µ dxµ)2, (2.4.6a)

Ĉ(3) = C(3) +B(2) ∧ (dz + C(1)). (2.4.6b)

The reduction is achieved by taking the unhatted fields to be independent of z. We
recognize the fields in (2.4.6) as the field content of the type IIA supergravity. It is
then no surprise that after having plugged this Ansatz into (2.1.56) we eventually
obtain:

2κ2
11 Ld=11 = 2κ2

0 LIIA ∧ dz, (2.4.7)

where LIIA is the Lagrangian (2.1.46) of the type IIA theory.
From (2.4.6a) we see that the radius of the 11th dimension is related to the expec-

tation value of the dilaton Φ. Introducing the type IIA string coupling constant gs, we

have from ĝzz that R11 ∼ g2/3
s . This is the radius measured with the 11-dimensional

Einstein metric. The closed strings of the IIA theory however experience the string
metric, for which we have from (2.4.6a) that gS

µν = ǫ2Φ/3ĝµν and thus

R11 ∼ gs, (2.4.8)

in string units. We see that the 11th dimension is invisible in perturbative string
theory.

The above suggests that d = 11 supergravity is the low-energy effective descrip-
tion of a theory that is dual to the strongly coupled IIA string. A perturbative
description of this dual theory is at present still lacking. The IIA supergravity is the
low-energy limit of weakly coupled closed strings, and these strings are recovered as
BPS F1-branes of the IIA supergravity. Similarly, by an inspection of the d = 11 BPS
solutions, one would be inclined to argue that the d = 11 supergravity has to arise as
the low-energy limit of a theory of M2-branes. Unfortunately, nobody has been able
to make sense of a quantum theory of weakly coupled supermembranes23 (or of any
of the other p-branes with p > 1 for that matter).

One can however relate BPS solutions of the d = 11 theory to that of the IIA
theory. The D0-branes arise as the KK momentum states of the d = 11 gravitational
wave (note that the RR gauge field C(1) is the KK gauge field). The D2-branes are
M2-branes and the NS5-branes are M5-branes. However, if we wrap the M2-branes
and M5-branes around the circle, we obtain the F1-string and the D4-brane. Similarly,
the d = 11 KK monopole gives rise to the d = 10 KK monopole and the D6-brane.

It has been shown [91,92] that the strong coupling regime of the E8×E8 heterotic
string theory can be related to the 11-dimensional theory compactified on an interval.

23Another and at least partially successful attempt to construct an underlying theory for the
d = 11 supergravity goes under the name of matrix-theory and is based on the quantum mechanics
of D0-branes. See e.g. [90] for a review.
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2.4.1 Toward M-theory

We have seen that the different string theories are dual to each other and to a mys-
terious 11-dimensional theory. We have summarized this web of dualities in figure
2.4.1. The picture that emerges from all of this is that the theories that we discussed
in this chapter are in fact different limits in the parameter space of a single underlying
theory, called M-theory.

?
M

11d sugra

Type IIA

Type IIB

Type I

Het SO(32)

Het E8 × E8

S1

T

Ω S

T

S1/Z2

S

Figure 2.4.1. The M-theory duality web.

Perhaps the single most important theoretical challenge in this field is to find a non-
perturbative formulation of M-theory. Though it is not at all clear what this final
theory will look like, it is very likely that the different branes that we discussed will
play a fundamental role in its formulation. In particular, the appearance of the non-
commutative geometry of stacks of D-branes is a clear indication that spacetime itself
and its group of symmetries will have to be treated very differently from what we are
used to in general relativity.



Chapter 3

The D9-brane

We have seen in the previous chapters that D-branes have many interesting properties
that can be deduced from their tree-level effective actions instead of deriving them
directly in string perturbation theory. Some of these properties are already visible if
we include only the leading order contribution to the effective action, e.g. T-duality
in the Yang-Mills action. There are however other properties that are only visible
when we include terms that are of higher order in α′. For example, to deduce the
existence of a maximum value of the electric field we needed the Born-Infeld action.
This involves arbitrarily high powers of α′. Another example is the Wess-Zumino
action: the terms that describe the coupling of a Dp-brane to R-R charges of lower
rank are of higher order in α′.

The above examples involve a single Dp-brane. It would be very interesting to
extend these (and other cases) to a stack of Dp-branes. Unfortunately, there is no
complete all-order result for the effective action for a stack of Dp-branes. As explained
in chapter 1, this is partly due to the fact that covariant derivatives do not commute.
As a result, there is no useful notion of slowly varying fields and one is forced to
incorporate terms with derivatives when investigating α′-corrections to Yang-Mills
theory.

In the following we will investigate derivative corrections to D-brane effective ac-
tions in a flat background. According to the discussion of section (1.3.3), it is suf-
ficient to consider only the space-time filling D9-brane1. The actions for the lower-
dimensional branes follow by dimensional reduction and the T-duality rules. The
non-abelian case will be the topic of chapter 4. In this chapter we will discuss the
abelian case, i.e. derivative corrections to the Born-Infeld action.

There are several reasons why it is useful to investigate the abelian case. First of

1Since we restrict ourselves to the tree-level effective action we do not have to worry about the
fact that a single D9-brane is an inconsistent object in string theory.
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all, the non-abelian case is very complicated and one can hope to gain some insight in
the general structure of the derivative corrections in the simpler – but still nontrivial
– abelian case. Second, as was argued in [93], the restriction to slowly varying fields
actually implies that gravitational effects are large, invalidating the restriction to flat
backgrounds. The argument of [93] goes roughly as follows. Negligible derivatives
imply that the fields stay large over a vast region of spacetime. An estimate of the
total energy and the corresponding volume indicates that under gravitational forces
such a system would collapse to a black hole. To avoid this, fields have to fall off over
a short distance, making derivatives large. Derivative corrections in the abelian case
are thus important in their own right.

This chapter reviews results that were published in [c] and [d].

3.1 Corrections to the Born-Infeld action

Before turning to the derivative corrections, it is instructive to consider the α′-
expansion of the Born-Infeld action itself. For a square matrix M we have log detM =
tr logM , from which

det (1 +X) = exp

[
∞∑

n=1

(−)n+1

n
trXn

]
.

Now if trX2n+1 = 0:
√

det (1 +X) = 1− 1

4
trX2 − 1

8

(
trX4 − 1

4
(trX2)2

)
+ . . . ,

and thus2:

SD9 = −τD9

∫
d10x

√
−det (ηab + 2πα′Fab)

= −τD9

∫
d10x

[
1 +

(2πα′)2

4
FabFab −

(2πα′)4

8

(
trF 4 − 1

4
(trF 2)2

)
+O(α′6)

]
.

From (2.3.3) we have τD9 = 1/gs(2π)9ℓ10s . The coupling constant g of the gauge
theory living on the D9-brane is thus

g2 = gs(2π)7ℓ6s. (3.1.1)

For a generic Dp-brane we have g2 = gs(2π)p−2ℓp−3
s . We drop the constant term to

get

S =
1

g2

∫
d10x

[
− 1

4
FabFab +

(2πα′)2

8

(
trF 4 − 1

4
(trF 2)2

)
+ . . .

]
. (3.1.2)

2We use Latin indices for spacetime coordinates in chapter 3 and 4 and always write these as
lower indices. This does not imply that we are working with a Euclidean signature.
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The field strength has dimension [F ] = +2 in units of mass and [g] = −(d− 4)/2. In
discussing the derivative corrections to the above action it is useful to introduce some
notation. We write a generic term in the effective action schematically as

Leff =
1

g2

∑

m,n

L(m,n), with L(m,n) = α′m
(
∂nF p + ∂n+1F p−2χ̄Γχ

)
, (3.1.3)

where we omit terms that are of quartic or higher order in the fermions. The powers
in (3.1.3) are related by 2p− 2m+ n− 4 = 0. We will denote the terms at order α′m

and with n derivatives by (m,n).
The form of equation (3.1.3) already takes two of the symmetries of the underlying

string theory into account: Poincaré invariance – from which follows that n is even –
and the U(1) gauge invariance of the massless fields. The following section is devoted
to an investigation of the consequences of supersymmetry. Here we want to point
out the consequences of the invariance of string theory under the world-sheet twist
operation Ω. Since Ω changes the orientation of the world-sheet, it reverses the order
of the vertex operators on the boundary of the disk amplitude. In addition, Ω acts
on the vertex operators, giving an extra factor of (−)N , where N counts the number
of oscillators involved. For a primitive amplitude A with p external massless (N = 1)
open string fields we thus have

A(1, 2, . . . , p− 1, p) = (−)pA(p, p− 1, . . . , 2, 1). (3.1.4)

The complete amplitude A is obtained by adding all noncyclic permutations:

A(1, 2, . . . , p) ≡
∑

π

A(1, π(2), . . . , π(p)) = (−)pA(1, 2, . . . , p), (3.1.5)

where the latter equality follows from (3.1.4) and cyclic invariance. We conclude that
the S-matrix elements involving an odd number of massless fields vanish and that
terms with p odd in (3.1.3) are therefore absent in the open string effective action3.

Most of the information on the abelian open string effective action concerns
bosonic terms only. The terms (m, 0) – i.e. the Born-Infeld action – was obtained by
calculating the disk partition function [94]. In [95] (see also [96]) the contributions
to L(2,0) of quadratic order in the fermions were obtained in the context of the non-
abelian theory, the quartic terms have been discussed in [97]. The supersymmetric
completion of the entire Born-Infeld action was obtained by using κ-symmetry in an
impressive paper [98] (see also [99–101]) and reads (in units where 2πα′ = 1):

L = −τD9

√
−det

(
ηab + Fab − χ̄Γa∂bχ+

1

2
χ̄Γc∂aχ χ̄Γc∂bχ

)
. (3.1.6)

3With the exception of terms that can be removed by a field redefinition, see below.
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We will show in a minute that there are no (m, 2m) and (m, 2m−2) terms, i.e. terms
with p = 2 and p = 3. In [52] it was shown that the bosonic terms (m, 2) vanish for
all m. Our calculation of (4, 2) – which we will present below – confirms this and
extends it to the corresponding fermionic terms. In [52] the bosonic part of (4, 4)
was constructed explicitly. More recently, Wyllard [102] obtained the bosonic (m, 4)
terms using the boundary state formalism. Further work has been done in [103, 104]
with the Seiberg-Witten map and noncommmutativity.

In the following we will derive the terms (m, 2m − 4) including all the fermionic
contributions, i.e. the terms with p = 4. We will use the matching procedure based
on the calculation of S-matrix elements that we discussed in chapter 1 (see also [49,
50, 93, 105, 106]). We are able to write down a closed form for the effective action
because the open string four-point function factorizes in a product of two terms: the
first term (K) depending on polarization vectors and wave functions, the second term
(G), proportional to the Veneziano amplitude, depending only on the momenta. The
first term determines how the fields should appear in the effective action. The second
term expands into an infinite series4 in α′, and determines how derivatives should be
distributed over the fields. This structure applies to both the bosonic terms and the
terms involving fermions.

Due to the factorization of the amplitude, supersymmetry of the effective action
can be easily established. We mentioned already that the supersymmetry of the term
L(2,0) which reproduces the term K was demonstrated in [95]. The term G, with
momenta replaced by derivatives, acts on K in the full effective action, but we will
show that the proof of supersymmetry still works “under the derivatives”. Before we
discuss these results, we will first review the Noether method and in particular the
calculation of L(2,0).

3.2 The Noether procedure

Our starting point is L(0,0) ≡ L0, i.e. the d = 10, N = 1 supersymmetric Maxwell
Lagrangian. χ is a Majorana-Weyl spinor and is inert under gauge transformations.

L0 = −1

4
FabFab +

1

2
χ̄/∂χ. (3.2.1)

The equations of motion are simply

∂aFab = /∂χ = 0 , (3.2.2)

4In the absence of 3-point vertices, unitarity guarantees that the 4-point functions are analytic in
the external momenta at k1 = k2 = k3 = k4 = 0.
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supersymmetry is realized linearly on the fields:

δ0Aa = ǭΓaχ, (3.2.3a)

δ0χ =
1

2
FabΓabǫ. (3.2.3b)

Closure of the supersymmetry algebra requires the fields to be on-shell and involves
a field dependent gauge transformation of the gauge field:

[δ0 ǫ1 , δ0 ǫ2 ]Aa = 2ǭ1/∂ǫ2Aa − ∂a(2ǭ1 /Aǫ2), (3.2.4a)

[δ0 ǫ1 , δ0 ǫ2 ]χ = 2ǭ1/∂ǫ2χ−
(

7

8
ǭ1Γaǫ2Γa −

1

5!16
ǭ1Γabcdeǫ2Γabcde

)
/∂χ. (3.2.4b)

This lowest order action also has a nonlinear supersymmetry:

δ0Aa = 0, (3.2.5a)

δ0χ = η. (3.2.5b)

Supersymmetric deformations of the super-Maxwell theory can be obtained by the
Noether method, which is an iterative procedure in α′. Every stage of the iteration
consists of two steps. Let the Lk for k < m be known5. The first step in obtaining
the term Lm is to write down all possible terms of order α′m, i.e., terms that have
the correct dimension and are Lorentz and gauge invariant. We limit ourselves to
terms that are at most of quadratic order in the fermions. Lagrangians are defined up
to total derivatives and field redefinitions. The possibility for the latter arises when
a term is proportional to the lowest order equation of motion (3.2.2) for one of the
fields. If such a term is present in Lm it can be removed by a field redefinition of
order m. The price one pays is that the contributions Ln with n > m are modified.
We deal with this ambiguity, at each order in α′, by not allowing in the Lagrangian
any terms that are proportional to the order α′0 field equations, or terms that can be
rewritten as such by means of a partial integration. Furthermore, we determine how
the remaining terms are related by partial integrations and keep only an independent
subset. This leaves us with a minimal Ansatz for L0 in which each term has an
arbitrary coefficient that will be determined in the second step.

The second step is to vary the fields in this Ansatz with the supersymmetry
transformation rules δ0. In addition we need to vary the lower order terms in the
Lagrangian, say Lk, k < m, with the appropriate transformation rules δm−k; both
were already obtained in a previous stage of the iterative procedure. Having done
this, we are left with two types of variations. On the one hand there are terms which

5Lm is the contribution of order α′m to the effective action. Similarly, δm indicate supersymmetry
transformations of order α′m. If we want to indicate the part of Lm with n derivatives we write
L(m,n), similarly for δ(m,n).
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are proportional to the lowest order field equation or that can be rewritten as such
using a partial integration. On the other hand there are variations that cannot be
rewritten in this way. The first set can be eliminated by new transformation rules δm
of L0, the second set must be set to zero by solving the resulting equations for the
unknown coefficients in the Ansatz.

In calculating the new transformation rules at order α′m one will find that some
variations may be quadratic in the lowest order equations of motion. In that case
there is an ambiguity in the choice of the new transformations δm. Regardless of
this choice, such variations always give rise to transformation rules that contain a
lowest order equation of motion. Therefore these terms do not play a role in checking
the closure of the supersymmetry algebra at order α′m. If such transformations are
applied to some Lk when constructing an invariant at order m+k, they give variations
that can automatically be supersymmetrized. Their contribution to the order m+ k
transformation rules need not contain a lower order equation of motion and therefore
these terms are important when pursuing the Noether procedure to higher orders.
This last issue does not yet play a role at the level of the 4-point function and will
not bother us in the following.

In addition to terms that arise as higher order contributions to invariants that
were already encountered at lower orders in α′, the Noether procedure can at any
given order in α′ yield new leading order contributions to apparently independent
superinvariants, all determined up to a multiplicative constant. However, some of
these coefficients might be determined by pursuing the Noether procedure to even
higher orders. We will come back to this issue at the end of this chapter, when we
discuss the Noether procedure at order α′4.

3.2.1 No corrections with p = 2 and p = 3

In this section we show that there are no terms in the effective action with p = 2
(with the exception of L(0,0)) or p = 3 that can not be removed by a field redefinition.
This is not a deep result – at the level of amplitude calculations it is just kinematics
– and we present it here to illustrate the kind of reasoning that we use to parametrize
candidate terms in the effective action in general.

Consider first the bosonic terms. At p = 2 we have two F ’s with an arbitrary
number of derivatives. By partial integration, we can bring any of these terms to the
form Fab(∂

nF )ab. By using the Bianchi identity in the form ∂aFbc = −2∂[bFc]a we

write these terms as Fab�
n/2Fab. These can be removed by field redefinitions, unless

n = 0.

For p = 3 we have three F ’s, and we can bring any term to the form Fab(∂
kF∂lF )ab.

Next we distribute a and b. If we put them both on the same factor ∂kF we get some-
thing of the form Fab∂

kFab∂
lF by using the Bianchi identity. Now terms of this form

that contain contractions within a single factor can be removed by field redefinitions.
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We thus require k = l+2 and get terms that read Fab∂c∂d∂
lFab∂

lFcd. But these vanish
identically. So we have to put a and b on different factors to get something nontrivial.
By using the Bianchi identity such terms can be reduced to Fab∂

kF·a∂
lF·b, with k = l

by the same argument as before. These are of the form Fab∂
k−1∂cFda∂

k−1∂cFdb and
Fab∂

k−1∂cFda∂
k−1∂dFcb. Both cases vanish identically. This concludes the proof for

the bosonic terms.
Now for the fermionic terms. There are only terms with two fermions for p = 2, 3.

By partial integration we can always remove any derivative on χ̄. At p = 2 we thus
only have terms of the form χ̄Γa∂

n∂aχ = χ̄/∂�
n/2χ and these can be removed by a

field redefinition. The terms with a Γ(n) with n > 1 vanish identically. We note here
that terms with a Γ(n) for n even never appear anywhere in the effective action, since
we are dealing with chiral fermions.

The argument for p = 3 is a bit more complicated. Terms with Γ(1) are necessarily
of the form ∂kFab χ̄Γa∂

k∂bχ, otherwise they vanish or contain contractions within
the same factor. By using the antisymmetry in ab and the Γ-matrix identity Γabc =
ΓabΓc − Γaδbc + Γbδac we can rewrite these terms as a sum of two expressions. The
first is of the form ∂kFab χ̄Γab/∂χ and can be removed by a field redefinition. The
second has the form ∂kFab χ̄Γabc∂

k∂cχ, which happens to be the only term that
we can write down with a Γ(3) according to our rules. We deal with this term by
partially integrating all derivatives on F , which results in terms with contractions
on the same factor and terms of the form Fab ∂

kχ̄Γabc∂
k∂cχ. Now we use the that

ψ̄Γ(3)χ = +χ̄Γ(3)ψ to partially integrate ∂c and obtain ∂cFab ∂
kχ̄Γabc∂

kχ, which
vanishes by the Bianchi identity. Terms with a Γ(5) or higher vanish identically.

3.2.2 The Noether procedure at α′2

We will now perform the Noether procedure at order α′2. The first step is to write
down a minimal set of Lorentz and gauge invariant terms at this order. With minimal
we mean terms that are not related – via partial integrations or the Bianchi identity
– to each other or to terms that can be removed by a field redefinition. We already
showed in the previous section that there are no such terms with n > 0, so we focus
our attention on L(2,0).

After some thought along the lines of the previous section6 we arrive at the fol-
lowing Ansatz:

α′−2L(2,0) = a1 FabFbcFcdFda + a2 FabFabFcdFcd

+ a3 FacFbc χ̄Γa∂bχ+ a4 Fad∂dFbc χ̄Γabcχ.
(3.2.6)

6In this case we are dealing with only a few fields and at most one explicit derivative, so the
number of ways in which we can perform a partial integration or use the Bianchi identity is limited.
In more complicated cases, it is best to proceed systematically and write down not only all possible
terms but all possible total derivatives as well. One then works out the total derivatives to obtain
relations between the terms.
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We have given the terms undetermined coefficients ai. The second step consist of
varying these terms with the δ0 of (3.2.3). We obtain

a1 : δ
[
FabFbcFcdFda

]
= −8

�

�

�

�
id ,

a2 : δ
[
FabFabFcdFcd

]
= −8

�

�

�

�
ic ,

a3 : δ
[
FacFbc χ̄Γa∂bχ

]
= −

�

�

�

�
ia −

�

�

�

�
id − 1

2

�

�

�

�
iiia − 1

2

�

�

�

�
iiid ,

a4 : δ
[
Fad∂dFbc χ̄Γabcχ

]
= 4

�

�

�

�
ia + 2

�

�

�

�
ib − 2

�

�

�

�
iiia + 2

�

�

�

�
iiic −

�

�

�

�
va ,

(3.2.7)

where we have used the Bianchi and Γ-matrix identities to write the result in terms
of a set of “independent variations”, i.e. terms that can not be related to each other
by means of these identities. We choose the following set:

�

�

�

�
ia = FbdFcd∂bFca ǭΓaχ,

�

�

�

�
iiia = FadFde∂eFbc ǭΓabcχ,

�

�

�

�
ib = FabFcd∂bFcd ǭΓaχ,

�

�

�

�
iiib = FabFde∂cFde ǭΓabcχ,

�

�

�

�
ic = FabFcdFcd ǭΓa∂bχ,

�

�

�

�
iiic = FadFbe∂cFde ǭΓabcχ,

�

�

�

�
id = FacFbdFcd ǭΓa∂bχ,

�

�

�

�
iiid = FabFceFde ǭΓabc∂dχ,

�

�

�

�
va = FabFcf∂fFde ǭΓabcdeχ,

�

�

�

�
vb = FabFcdFef ǭΓabcde∂fχ.

The reader should be able to retrace the logic behind the construction of these terms
by reading the indices in alphabetical order. None of these “variations” contains an
order α′0 equation of motion – ∂aFab or /∂χ. Fortunately, certain linear combinations
of the variations can be related to such terms by partial integrations.

We proceed by first constructing total derivatives which lead to contributions that
have the same structure as the variations. We obtain the following list7:

c1 : ∂a

[
FabFcdFcd ǭΓbχ

]
= ∂aFabFcdFcd ǭΓbχ− 2

�

�

�

�
ib −

�

�

�

�
ic ,

c2 : ∂a

[
FacFbdFcd ǭΓbχ

]
= ∂aFabFbdFcd ǭΓcχ+

�

�

�

�
ia − 1

2

�

�

�

�
ib −

�

�

�

�
id ,

c3 : ∂a

[
FbcFdeFde ǭΓabcχ

]
= FabFdeFde ǭΓab/∂χ− 2

�

�

�

�
ic + 2

�

�

�

�
iiib ,

c4 : ∂a

[
FbdFcdFde ǭΓabcχ

]
= FadFbeFde ǭΓab/∂χ− 2

�

�

�

�
id +

�

�

�

�
iiia +

�

�

�

�
iiic ,

c5 : ∂a

[
FaeFbeFcd ǭΓbcdχ

]
= −∂aFabFbcFde ǭΓcdeχ+ 1

2

�

�

�

�
iiib −

�

�

�

�
iiia +

�

�

�

�
iiid ,

c6 : ∂a

[
FabFcdFef ǭΓbcdefχ

]
= ∂aFabFcdFef ǭΓbcdefχ− 2

�

�

�

�
va −

�

�

�

�
vb ,

c7 : ∂a

[
FbcFdeFfg ǭΓabcdefgχ

]
= FabFcdFef ǭΓabcdef /∂χ− 6

�

�

�

�
vb .

Next we add these total derivatives with undetermined coefficients cj to the variation
(3.2.7) of our Ansatz and demand that the coefficients that multiply the independent

7These are not all total derivatives. Not included are those which can be related to the ones we
listed by means of the Bianchi or Γ-matrix identities since these do not contain any new information.
In the general case we would also not include total derivatives that already contain an order α′0

equation of motion under the derivative ∂a since these do not help in reducing the set of variations.
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variations
�

�

�

�
ia ,

�

�

�

�
ib , . . . vanish. This results in a set of linear equations:

�

�

�

�
ia : −a3 + 4a4 + c2 = 0,

�

�

�

�
iiia : 1

2a3 + 2a4 − c4 + c5 = 0,
�

�

�

�
ib : 2a4 − 2c1 − 1

2c2 = 0,
�

�

�

�
iiib : 2c3 + 1

2c5 = 0,
�

�

�

�
ic : 8a2 + c1 + 2c3 = 0,

�

�

�

�
iiic : 2a4 + c4 = 0,

�

�

�

�
id : 8a1 + a3 + c2 + 2c4 = 0,

�

�

�

�
iiid : − 1

2a3 + c5 = 0,
�

�

�

�
va : a4 + 2c6 = 0,

�

�

�

�
vb : c6 + 6c7 = 0.

Every independent solution of these equations corresponds to an independent super-
symmetry invariant. The ai determine the form of the Lagrangian, whereas the ci
give the modified supersymmetry transformation rules.

The above equations have a one-parameter family of solutions:

a1 = a, a2 = − 1
4a, a3 = −2a, a4 = 1

2a, c1 = 3
2a, c2 = −4a,

c3 = 1
4a, c4 = −a, c5 = −a, c6 = − 1

4a, c7 = 1
24a.

There is thus a unique supersymmetric deformation at order α′2 which is given by
(writing a = a(2,0)/8):

L(2,0) =
a(2,0)α

′2

8

[
FabFbcFcdFda −

1

4
FabFabFcdFcd

− 2FacFbc χ̄Γa∂bχ+
1

2
Fad∂dFbc χ̄Γabcχ

]
. (3.2.8)

The undetermined coefficient a(2,0) has to be fixed by other methods. We will see in
the next section that the string theory 4-point function yields a(2,0) = (2π)2, which
agrees with the expansion of the Born-Infeld action as in (3.1.2). It can be shown
that the fermionic terms agree with the expansion of (3.1.6), but for this one needs
to perform a field redefinition.

The modified supersymmetry transformation rules are for the boson:

δAa = ǭΓaχ−
a(2,0)

8

[
3

2
FbcFbc ǭΓaχ+ 4FacFbc ǭΓbχ

+ FabFcd ǭΓbcdχ−
1

4
FbcFde ǭΓabcdeχ

]
+ . . . , (3.2.9a)

and for the fermion

δχ =
1

2
Fab Γabǫ−

a(2,0)

8

[
FabFcdFcd Γabǫ− FacFbdFcd Γabǫ

+
1

24
FabFcdFef Γabcdef ǫ

]
+ . . . . (3.2.9b)
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An important check of the above calculation is to verify that the modified transforma-
tion rules still agree with the supersymmetry algebra. In particular, only the gauge
transformation on the RHS of (3.2.4) can in principle receive corrections. Because of
our quadratic fermion approximation we can only perform this check for the boson.
In the present case even the gauge transformations should not receive any corrections
because of the absence of derivatives in the transformation rules (3.2.9).

We could also have used the nonlinear supersymmetry (3.2.5) as the starting point
of the Noether procedure. It turns out however that this does not provide any new
information: in general nonlinear supersymmetry constrains the form of the effective
action less than linear supersymmetry. The modified nonlinear transformations turn
out to be

δAa =
a(2,0)α

′2

8

(
2Fab η̄Γbχ− Fbc η̄Γabcχ

)
, (3.2.10a)

δχ = η +
a(2,0)α

′2

32

(
2FabFab η + FabFcd Γabcdη

)
. (3.2.10b)

These do modify the order α′0 algebra [97]:

[δη1
, δη2

]Aa =
a(2,0)α

′2

2

[
η̄1/∂η2Aa − ∂a(η̄1 /Aη2)

]
. (3.2.11)

This is just the usual supersymmetry algebra, occurring at a higher order in α′. This
proves that the nonlinear supersymmetry is indeed a supersymmetry. The mixed
commutator is not modified at this order:

[∂ǫ, ∂η]Aa = 0. (3.2.12)

We note here for future reference that the nonlinear supersymmetry persists to all
orders in m for the terms L(m,0), i.e. the action (3.1.6) is invariant under both
linear and nonlinear supersymmetry transformations. This was shown in [98]. The
linear and nonlinear supersymmetry are what remains of the underlying κ-symmetric
formulation8 after gauge fixing.

8κ-symmetry is a property of the effective action of D-branes formulated in an N = 2 supergravity
background (for slowly varying fields). We have seen that the presence of the D-brane breaks half of
the target-space supersymmetries. In the effective action this is achieved by fixing the κ-symmetry:
this removes half of the fermionic degrees of freedom and breaks the supersymmetry to N = 1. The
results of [98] were obtained starting from a flat background, whereas in [99–101] general supergravity
backgrounds were considered.
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3.3 The 4-point function

The open string tree-level 4-point function is given by [105]:

A(1, 2, 3, 4) = −16i g−2α′2(2π)10δ(10)(k1 + k2 + k3 + k4)×
× G(k1, k2, k3, k4)K(1, 2, 3, 4) (3.3.1)

G contains the α′ dependence and is given by:

G(k1, k2, k3, k4) = G(s, t) +G(t, u) +G(u, s)

=
Γ(−α′s)Γ(−α′t)

Γ(1− α′s− α′t)
+

Γ(−α′t)Γ(−α′u)

Γ(1− α′t− α′u)
+

Γ(−α′u)Γ(−α′s)

Γ(1− α′u− α′s)
.

(3.3.2)

Here s, t, and u are the Mandelstam variables, satisfying s + t + u = 0. They are
defined in terms of the ki only up to momentum conservation and the mass-shell
condition. We choose to write them in such a way that G is manifestly symmetric in
the ki:

s = − k1 · k2 − k3 · k4,

t = − k1 · k3 − k2 · k4,

u = − k1 · k4 − k2 · k3.

(3.3.3)

As discussed in the above, G is regular as ki → 0, which one can verify by expanding
(3.3.2) in α′. For now we just mention that

G(k1, k2, k3, k4) = −π
2

2
+O(α′2), (3.3.4)

and postpone a detailed discussion of the expansion to a later section. K involves not
only the momenta of the external particles, but also their wave functions. For the
4-boson amplitude we have:

K(1, 2, 3, 4) = tabcdefghk1
aζ

1
b k

2
cζ

2
dk

3
eζ

3
fk

4
gζ

4
h, (3.3.5)

where ζi is the polarization vector of the ith incoming photon. An explicit expression
for the tensor t8 is given for example in [105]. tabcdefgh is antisymmetric in the pairs
(ab), (cd), etc., and is symmetric under the exchange of such pairs. It satisfies the
following identity:

tabcdefghM
ab
1 M cd

2 Mef
3 Mgh

4 =

= −2
(
trM1M2 trM3M4 + trM1M3 trM2M4 + trM1M4 trM2M3

)

+ 8
(
trM1M2M3M4 + trM1M3M2M4 + trM1M3M4M2

)
, (3.3.6)

where the Mi are antisymmetric tensors.
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The leading order contribution to the amplitude is just (3.3.5) times a constant
and is reproduced by the following contribution to the effective action:

S(2,0) =
1

8
(2πα′)2

∫
d10x

1

24
tabcdefghFabFcdFefFgh

=
1

8
(2πα′)2

∫
d10x

(
trF 4 − 1

4
(trF 2)2

)
.

(3.3.7)

This result agrees with the expansion of the Born-Infeld action in (3.1.2) and shows
that we indeed need to take a(2,0) = (2π)2 in (3.2.8). We observe that every factor of
momentum ki in (3.3.5) is reproduced by a derivative acting on the appropriate field
in (3.3.7).

The complete amplitude (3.3.1) differs from the leading order contribution by
multiplication with G, i.e. by extra factors of momentum. In order to reproduce
these factors, we simply need to act with derivatives on the appropriate fields. This is
implemented by first allowing the four fields to be “defined at different points in space-
time”, resulting in a non-local action. That is, we consider the fields Aa(xi), where
i = 1, . . . , 4, and then replace the momenta ki in the amplitude by differentiations
with respect to the appropriate coordinate in the effective action, i.e. ki,a → −i∂/∂xa

i .
We need to multiply the resulting expression by delta functions and then integrate
over the xi to make the action local.

Hence we define the following differential operator

D(∂x1
, ∂x2

, ∂x3
, ∂x4

) ≡ G(k1, k2, k3, k4)|ki→−i∂xi
, (3.3.8)

which we use to write down the effective action for the complete four-photon ampli-
tude:

Seff [Aa] = − 1

24
g−2α′2

∫
d10x

{
∏

i

d10xi δ
(10)(x− xi)

}
D(∂x1

, ∂x2
, ∂x3

, ∂x4
)

× tabcdefghFab(x1)Fcd(x2)Fef (x3)Fgh(x4). (3.3.9)

D is understood as a Taylor expansion in α′. Then the multiple integral over the
xi factorizes into a product of integrals, each involving only one of the xi and none
of the others, which is necessary in order that the above expression is well defined.
The actual proof that this action reproduces the amplitude (3.3.1) can be found in
Appendix B.2.1.

As mentioned above, we choose to express s, t, u in terms of the ki in such a way
that G is manifestly symmetric in the momenta. This will turn out to be convenient
in the following section. It is not difficult to see that a different prescription than
(3.3.3) would result in modifications of the effective action (3.3.9) by total derivatives
and/or the effects of field redefinitions. This follows from momentum conservation
ka
1 + ka

2 + ka
3 + ka

4 = 0 and the mass-shell conditions k2
i = 0, respectively.
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3.3.1 The fermionic contributions and supersymmetry

Equation (3.2.8) reproduces the four-point string amplitudes involving two fermions9

to lowest order in α′ [106]. It is then easy to guess what the effective action should
be when fermionic interactions as well as higher derivative corrections are included:

Seff [Aa, χ] = −g−2α′2

∫
d10x

{
∏

i

d10xi δ
(10)(x− xi)

}
D(∂x1

, ∂x2
, ∂x3

, ∂x4
)

×
[
Fab(x1)Fbc(x2)Fcd(x3)Fda(x4)−

1

4
Fab(x1)Fab(x2)Fcd(x3)Fcd(x4)

− 2Fab(x1)Fac(x2)χ̄(x3)Γb∂cχ(x4) + Fab(x1)Fcd(x2)χ̄(x3)Γabc∂dχ(x4)
]
. (3.3.10)

It is not difficult to prove that this action is supersymmetric. As explained in the
previous section, the operator D is symmetric in the ∂xi

. This implies that, when
we apply the Noether method, we can perform the same manipulations as the ones
necessary to demonstrate the supersymmetry of (3.2.8).
Consider for example the variation of the first term in (3.2.8). It is given by

δ
(
trF 4

)
= δFabFbcFcdFda + FabδFbcFcdFda + FabFbcδFcdFda + FabFbcFcdδFda

=4FabFbcFcdδFda.

The last step is of course completely trivial in the local case, but essential for proving
the supersymmetry. In the non-local case (3.3.10), this last step is not automatic.
We see that it is the symmetry of D that allows us to perform it.

In addition to algebraic manipulations of the kind described above, it is also
necessary to perform partial integrations to prove the supersymmetry. In the local
case one encounters for example the following total derivative at an intermediate stage
of the calculation: ∂a

(
Fab trF 2 ǭΓbχ

)
. In the non-local case this term will manifest

itself as

(
∂

∂xa
1

+
∂

∂xa
2

+
∂

∂xa
3

+
∂

∂xa
4

)
Fab(x1)Fcd(x2)Fcd(x3) ǭΓbχ(x4).

This still gives rise to a total derivative, since we can pull the
∑

i ∂/∂x
a
i out of the

9In [106] and [d] the terms with four fermions were also taken into account.
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integration over the xi:

∫
d10x

{
∏

i

d10xi δ
(10)(x− xi)

}
D(∂x1

, ∂x2
, ∂x3

, ∂x4
)

×



∑

j

∂

∂xa
j


Fab(x1)Fcd(x2)Fcd(x3) ǭΓbχ(x4)

=

∫
d10x

∂

∂x

∫ {∏

i

d10xi δ
(10)(x− xi)

}
D(∂x1

, ∂x2
, ∂x3

, ∂x4
)

× Fab(x1)Fcd(x2)Fcd(x3) ǭΓbχ(x4).

Here the symmetry properties of D are not required. We conclude, that the fact that
(3.3.10) is supersymmetric follows immediately from the supersymmetry of (3.2.8).

The above actually shows that when we replace D in (3.3.10) by any symmetric
differential operator ∆(∂x1

, . . . , ∂x4
), we obtain a supersymmetric action.

3.3.2 Derivative expansion

In this section we will consider the derivative expansion of the effective action (3.3.9).
This will allow us to make contact with previously obtained results at order α′4 as well
as to present new results at order α′5. But first let us discuss the form of the generic
Lorentz invariant symmetric differential operator ∆(∂x1

, . . . , ∂x4
) and determine the

number of independent supersymmetric invariants that are possible at any given order
in α′.

To find the form of ∆(∂x1
, . . . , ∂x4

) we need the most general Lorentz invariant
expression that is symmetric and regular in the momenta ki, after which we substitute
ki → −i∂i. In such an expression only combinations ki · kj and their products can
enter10. Using momentum conservation and the mass-shell condition all such terms
can be written as combinations of s, t, u. Any completely symmetric polynomial in
s, t, u can be written as:

∑

k≤l≤m

α′k+l+m ck,l,m P(k, l,m), (3.3.11)

where the ck,l,m are constants and

P(k, l,m) = sktlum + sktmul + smtkul + smtluk + sltmuk + sltkum. (3.3.12)

Define
P (n) = sn + tn + un , Q = stu . (3.3.13)

10We do not have to consider contractions with the ε-tensor, since all scalars that one can form
by contracting it with the momenta ki vanish.
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P(k, l,m) can be expressed in terms of P (n) and Q:

P(k, l,m) = Qk
[
P (l − k)P (m− k)− P (l +m− 2k)

]
. (3.3.14)

Furthermore, it follows from P (1)P (n− 1) = 0 that

P (n) = 1
2P (2)P (n− 2) +QP (n− 3). (3.3.15)

We conclude that we can express (3.3.11) in powers of P ≡ P (2) and Q:

∑

a,b

α′2a+3b da,b P
aQb, (3.3.16)

where the da,b are constants. The number NP,Q(m) of possible independent combi-
nations of P and Q, at order α′m in the above expansion, is given by

NP,Q(m) =

{
[m/6] + 1, if m 6= 6× [m/6] + 1
[m/6] , if m = 6× [m/6] + 1,

(3.3.17)

where [x] denotes the largest integer smaller than x.

This implies that, for a given m, there are NP,Q(m) independent supersymmetric
contributions to the open string tree-level effective action that contain terms of the
form ∂2mF 4.

We now turn to the derivative expansion of (3.3.10). We use the Taylor expansion
for log Γ(1 + z),

log Γ(1 + z) = −γz +

∞∑

m=2

(−1)mζ(m)
zm

m
, (3.3.18)

where ζ(n) is the Riemann zeta-function, γ the Euler-Mascheroni constant, to obtain
the following expression for G(s, t):

α′2G(s, t) =
1

st
exp

[
∞∑

m=2

α′m ζ(m)

m
(sm + tm − (s+ t)m)

]
. (3.3.19)

This expression can be used to calculate the α′ expansion of G(k1, . . . , k4). We give
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here the first terms in this expansion, expressed in P and Q:

G(k1, . . . , k4) =

− 1
2π

2 − 1
48α

′2π4 P − 1
2α

′3π2ζ(3)Q

− 1
960α

′4π6 P 2 − 1
48α

′5π2
[
π2ζ(3) + 12 ζ(5)

]
PQ

− 1
967680α

′6
[
51π8 P 3 + 8π2

[
31π6 + 30240 ζ(3)2

]
Q2
]

− 1
960α

′7π2
[
π4ζ(3) + 10π2ζ(5) + 120 ζ(7)

]
P 2Q

− 1
58060800α

′8
[
155π10 P 4

+ 32π2
[
67π8 + 18900π2ζ(3)2 + 453600 ζ(3)ζ(5)

]
PQ2

]

− 1
967680α

′9
[
π2
[
51π6ζ(3) + 504π4ζ(5) + 5040π2ζ(7) + 60480 ζ(9)

]
P 3Q

+ 8π2
[
31π6ζ(3) + 10080 (ζ(3)3 + 2 ζ(9))

]
Q3
]

+ . . . (3.3.20)

We see that, at least to this order, all possible combinations of P and Q indeed appear.
String theory thus seems to make use of all available superinvariants. By substituting
derivatives for momenta in the above expansion and inserting the resulting expression
in (3.3.10), one can straightforwardly construct the contribution to the effective action
at any desired order in α′. We demonstrate this for the bosonic terms at order α′4

and α′5. At order α′4 we obtain:

L(4,4) = 1
288π

4α′4 tabcdefgh ∂kFab∂kFcd∂lFef∂lFgh (3.3.21)

= 1
36π

4α′4
[(
∂kFab∂lFbc∂kFcd∂lFda + 2 ∂kFab∂kFbc∂lFcd∂lFda

)

− 1
4

(
∂kFab∂kFab∂lFcd∂lFcd + 2 ∂kFab∂lFab∂kFcd∂lFcd

)]
.

This expression is consistent with results obtained previously by different meth-
ods [52, 107]. The terms bilinear in the fermions agree with those obtained from a
direct application of supersymmetry methods – see below and also [108]. We disagree
however with [93].

At order α′5 we obtain the following result:

L(5,6) = − 1
6π

2ζ(3)α′5 tabcdefgh ∂k∂l∂mFab∂kFcd∂lFef∂mFgh (3.3.22)

= −4π2ζ(3)α′5
[
∂k∂l∂mFab∂kFbc∂lFcd∂mFda

− 1
4 ∂k∂l∂mFab∂kFab∂lFcd∂mFcd

]
.

The bosonic part of this expression can be compared with a conjecture in [103].
Wyllard conjectured that all derivative corrections to the Born-Infeld action follow



3.4 The Noether procedure at α′4 and higher 105

from the corrections to the Wess-Zumino term. He applied this conjecture in [103]
using the results for the Wess-Zumino term of [102] as input. We have taken the
six-derivative corrections given in formula (4.16) of [103], and extracted the terms of
fourth order in F . We find:

L(5,6) Wyllard = −4π2ζ(3) g2α′5
[
∂k∂lFab∂k∂mFbc∂l∂mFcdFda

− 1
4 ∂k∂lFab∂k∂mFab∂l∂mFcdFcd

]
. (3.3.23)

This agrees, up to field redefinitions, with our result (3.3.22). However, this agree-
ment should be interpreted with care. First of all the procedure of [103] involves an
infinite series involving functional derivatives of the Born-Infeld action with respect
to the field strength F . The conjecture requires an ordering prescription for these
functional derivatives. For our comparison we have taken the simplest solution to
this ordering ambiguity. Secondly, the corrections to the Wess-Zumino term in [102]
are not complete. Other corrections, such as those evaluated in [104, 109, 110], will
contribute as well. On applying Wyllard’s proposal to these extra terms, further six-
derivative corrections to the Born-Infeld term might be generated. Our agreement
with [103] indicates that these extra terms do not give rise to new six-derivative F 4

terms in the Born-Infeld action.

3.4 The Noether procedure at α′4 and higher

From the point of view of the Noether procedure, the terms L(m,2m−4) that we con-
structed in the previous section constitute – together with the super-Maxwell action
– the leading order contributions to genuine superinvariants that extend to all orders
in the number of fields. We established that the number of these terms grow linearly
with n. Two questions now come to mind.

The first question is whether the terms constructed using the symmetric non-local
operator ∆(∂x1

, . . . , ∂x4
) indeed give all possible superinvariants. We do not have a

definite answer to this question; clearly methods beyond the Noether procedure are
required. What we can say however is that even if there are any such invariants, string
theory does not seem to make use of them. Moreover, we will pursue the Noether
procedure to order α′4 [c] and see that at least at this order there is only the term
L(4,4) that we already found in (3.3.21).

The second question is one that we already posed in the introduction of section
3.2: do the terms L(m,2m−4) constitute the leading-order contributions to separate
superinvariants, or does the Noether procedure relate these terms to each other at
higher orders? Again, we have no definite answers, but is still interesting to speculate
how this might come about.
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3.4.1 Technical complications

Before turning our attention to the results of the Noether procedure at α′4 and the
general structure of the procedure at even higher orders, we pause to discuss the
technical obstacles that one encounters when pursuing the method to higher orders.

First of all, the number of terms grows rapidly with the order of α′. For example,
the problem of counting the number of bosonic terms in L(m,0) – those terms with
(m + 2) F ’s and no ∂’s – is equivalent to finding all integer partitions of (m + 2)/2.
There is a famous formula by Hardy and Ramanujan which provides an asymptotic
formula for the number of partitions p(n) of the integer n:

p(n) ∼ expπ
√

2n/3

4n
√

3
, as n→∞. (3.4.1)

The possible number of terms with derivatives and/or fermions is even larger.
Another issue is that up to this point we have not used the fact that we are

working in d = 10 (with the exception of the properties of the fermions of course).
For example, when we wrote down the Ansatz (3.2.6) we assumed that trF 4 and
(trF 2)2 are independent. This is true in d = 10, but consider d = 2. We have:

trF 2 = FabFab = F01F10 + F10F01 = −2(F01)
2,

trF 4 = FabFbcFcdFda = F01F10F01F10 + F10F01F10F01 = 2(F01)
4,

and thus trF 4 = 1
2 (trF 2)2 in d = 2. Similar identities exist in higher dimensions,

but for higher values of m. Obtaining them by writing out the summations is quite
tedious, but fortunately there is a nice trick. Consider again d = 2. Instead of working
out the traces we consider expressions that are antisymmetrized over 3 indices and
hence identically zero. For m = 2 there is only one expression that contains nontrivial
information:

0 ≡ 2F[abFc]dFabFcd

= FabFcdFabFcd + FbcFadFabFcd + FcaFbdFabFcd = (trF 2)2 − 2 trF 4.

In order to construct such Schouten identities for general d we need terms with at
least 2(d+1) indices. One can show that this implies for the bosonic terms m ≥ d−1,
whereas for the terms bilinear in the fermions Schouten identities already exist for
m ≥ (d + 1)/2 for d odd and m ≥ (d + 2)/2 for d even. For d = 10 this means that
we would have to include additional identities when pursuing the Noether procedure
at α′6 and higher. In this thesis we will only go as high as α′4, though.

The ABRA program

Clearly at some point the use of a computer becomes unavoidable. For example,
where the number of terms at intermediate stages of the calculation is in the order of
102 for the α′2 case, we need to manipulate 104 terms in the α′4 case.



3.4 The Noether procedure at α′4 and higher 107

We used the computer program ABRA developed by M. de Roo for the calculations
at order α′3 (nonabelian) and α′4 (abelian). ABRA is a computer algebra system
which was designed for calculations in component supersymmetry and was originally
written for the work of [111, 112]. Basically, the program provides an environment
in which the user can perform calculations in much the same way as on a piece of
paper. There is a list of terms which are manipulated by the program. Some of these
manipulations are performed automatically. For instance, a very time-consuming
part of calculations with tensors is the relabeling of dummy indices at each step of the
calculation. ABRA contains an algorithm which takes care of this, taking into account
the symmetry properties of the tensors. Other manipulations are performed only at
the express command of the user, for instance partial integrations, the ‘flipping’ of
Majorana fermions, the use of the Γ-matrix identities (A.1.43), (A.1.44), (A.1.46),
and the use of the Bianchi identity ∂aFbc = −2∂[bFc]a. ABRA provides a crude but
effective sorting mechanism which allows the user to reorganize the terms in the list
and to perform manipulations on groups of terms of the same structure.

The construction of lists of terms and identities as in section 3.2.2 is still done by
hand.

3.4.2 Order α′3

At order α′3 there are no supersymmetric contributions. This might be inferred by
taking the abelian limit of the result of chapter 4 or [113]. However, since it is not
obvious that every supersymmetric abelian action allows a nonabelian supersymmetric
extension, it is important to check this directly in the abelian context. This has
been done in [114] by superspace methods, and we have verified this result by an
independent calculation using the Noether procedure.

3.4.3 Order α′4

There are three nontrivial sectors in the Ansatz at order α′4: L(4,0), L(4,2) and L(4,4),
since – according to section 3.2.1 – the structures with more derivatives are removable
by field redefinitions. It turns out that this is also the case for the bosonic terms in
L(4,2) (the terms ∂2F 5) but not for the terms with fermions, which are of the form
∂3F 3χ̄Γχ.

In applying the Noether method to the case (4, 0) we need the variations δ0L(4,0)

as well as δ2L(2,0). In the cases (4, 2) and (4, 4) only the variation δ0 is needed.

The results of the Noether procedure are the following: in the sector L(4,0) with
F 6 and ∂F 4χ̄Γχ the only terms allowed by supersymmetry are those needed for the
‘continuation’ of the invariant of order α′2, i.e. the Born-Infeld invariant [115]. There
does not appear a new, independent invariant. Furthermore, the fermionic terms in
L(4,2) are not supersymmetrizable and thus L(4,2) = 0. Finally, in the sector L(4,4)
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we find indeed a single unique superinvariant as promised. The action at order α′4 is
given by:

L4 = L(4,0) + L(4,4), (3.4.2a)

with

L(4,0) =
(a(2,0))

2α′4

384

[
− 32FabFbcFcdFdeFefFaf − 12FabFbcFcdFadFefFef

− FabFabFcdFcdFefFef − 12 ∂aFbcFdeFafFbe χ̄Γcdfχ (3.4.2b)

+ 72FabFcdFbeFde χ̄Γa∂cχ+ 18 ∂aFbcFdeFefFaf χ̄Γbcdχ

+ 12 ∂aFbcFdeFbfFae χ̄Γcdfχ
]
,

and

L(4,4) = a(4,4)α
′4
[
− 8FabFbc∂d∂eFaf∂d∂eFcf − 8Fab∂cFad∂eFbf∂c∂eFdf

+ 32Fab∂cFad∂eFbf∂d∂eFcf + 16Fab∂cFde∂aFef∂d∂fFbc (3.4.2c)

+ 4 ∂a∂bFcd∂a∂bFce χ̄Γd∂eχ− 4 ∂aFbc∂a∂dFef χ̄Γbef∂c∂dχ

+ 4Fab∂c∂dFef χ̄Γabe∂c∂d∂fχ+ 8Fab∂c∂dFae χ̄Γb∂c∂d∂eχ

+ 2 ∂aFbc∂a∂d∂eFbc χ̄Γd∂eχ
]
.

We have also determined the modified transformation rules for both linear at nonlinear
supersymmetry at this order and verified the closure of the supersymmetry algebra.
See [c] for details.

3.4.4 Higher orders

Our present knowledge of the bosonic contributions to the open string effective action
is summarized in figure 3.4.1. The sectors (m,n) for which the bosonic terms are
known are indicated with a black dot. The sectors indicated by white dots are known
not to contain any bosonic terms. The gray dots correspond to sectors which are
known to be nonempty but of which the explicit form is unknown. They contain the
higher-derivative contributions of the string 2k-point functions with k ≥ 3.

For the sectors (m, 0) and (m, 2m−4), which correspond to the Born-Infeld action
(3.1.6) and the 4-point effective action (3.3.9) respectively, the fermionic terms are
also known and supersymmetry has been established. For the sectors (m, 4) with
m ≥ 6 and even, the fermionic contributions have yet to be constructed.

The absence of fermionic terms for the diagonal lines (m, 2m − 2p + 4) with p
odd, follows from the invariance of the effective action under Ω whereas for the line
(m, 2m) with m > 0 we showed this in section 3.2.1. Note however that the absence
of contributions to (3, 0) and (4, 2) is also required by the Noether procedure. It
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Figure 3.4.1. The structure of the abelian open superstring tree-level effective action.
Depicted are the bosonic contributions. See the main text for an explanation of this figure.

would be interesting to see whether supersymmetry excludes also the other terms
with p = 3 (or even the terms with p odd in general), or that the invariance under Ω
is a necessary ingredient.

Though the absence of bosonic terms for the points (m, 2) with m was established
in [52], it is not known whether these sectors are also devoid of fermionic contributions
– this with the exception of (3, 2) for which we showed this using the 4-point function.
It is in this light an interesting question whether the absence of bosonic terms implies
in general the absence of fermionic contributions, either by pursuing the Noether
procedure to higher orders or by some direct string theory calculation.

We now focus our attention on the supersymmetry transformations that connect
the dots in figure 3.4.1. We have drawn arrows to indicate some of the known super-
symmetry transformations. As a first example we consider the terms (m, 0), m even,
i.e., the Born-Infeld invariant. These terms are invariant under the transformations
δ0, δ(2,0), δ(4,0), . . ., depending only on the single parameter a(2,0). Note that we in-
dicate these transformations by a repeated addition of the same arrow, and not by
drawing new arrows from (0, 0) to (m, 0) for each m. In this way we denote that all
these terms contribute to the same invariant. Similarly, the point (4, 4) is the lead-
ing term in a new sequence of supersymmetry transformations that continues to the
points (4k, 4k), involving the parameter a(4,4). Similarly, all points on the diagonal
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(m, 2m−4) will lead to new arrows, involving new parameters a(m,2m−4)
11 The ques-

tion is now, whether these ‘independent’ invariants will remain independent when the
Noether procedure is pursued to higher orders. Consider for example the point (8, 8).
This point can be reached from (0, 0) by applying the arrow (4, 4) twice, but also by
applying the arrow (2, 0) and then (6, 8) (or vice versa). These contributions need to
be canceled by the δ0 variation of L(8,8). In principle, there are now two possibilities:
they can either be canceled separately, or not. In the latter case we need both contri-
butions at the same time, and then there must be relations between the coefficients
a(4,4)a(4,4) and a(2,0)a(6,8). So it is indeed possible that a priori independent invari-
ants are related to each other at higher orders in the iteration. Note however that at
least a(2,0) and a(4,4) will remain independent to all orders. The reason is that a(2,0)

and a(4,4) can be changed independently by rescaling α′ and the extra derivatives,
respectively12.

Now we invoke our knowledge of the string tree-level 4-point function. The invari-
ants corresponding to Pm with m even in (3.3.20) have coefficients a(m,2m−4) which
contain factors πm. The relations between these coefficients alluded to in the previous
paragraph are therefore in principle possible.

For the invariants involving powers of Q the situation is different, since the co-
efficients of these invariants involve ζ(n) for n odd. Consider for example the point
(9, 10). We can reach it for instance with supersymmetry transformations through
the Q-invariant at (5, 6) by applying δ(4,4) and from the P -invariant at (4, 4) by ap-
plying δ(5,6). This gives rise to terms proportional to a(4,4)a(5,6) ∼ π6ζ(3). But (9, 10)
can also be reached from the PQ-invariant at (7, 10) by applying δ(2,0) or vice versa,
yielding terms proportional to a(2,0)a(7,10) ∼ π4(π2ζ(3) + ζ(5)). Since there are no
(known) relations between the values of the Riemann ζ-function for odd values of its
argument, this implies that the Noether procedure can never determine the coefficient
a(7,10) in terms of a(2,0), a(4,4) and a(5,6).

We thus conclude the following: although it might be that certain terms, which
appear to be independent superinvariants at a given order in the iteration, are related
to each other at higher orders in the Noether procedure, there will always remain
an infinite number of all-order invariants, corresponding to contributions which have
factors of ζ(2n+ 1) for different n in the 4-point function. Such terms appear at any
odd order in α′.

11The number of these parameters is given in (3.3.17).
12This is no longer true in the nonabelian case, since [D,D]F = [F, F ]. In this case one would

expect that the coefficients a(2,0) and a(4,4) are related to each other, as is indeed the case [107].

We will see another example of this at order α′3 in the next chapter .
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3.5 Outlook

The results of the previous section hardly look promising. Not only is it not feasible to
continue the Noether procedure much further due to the rapidly increasing number of
terms in the Lagrangian at higher orders in α′, but the observation that there appear
new independent all-order superinvariants at any odd order in α′ also seems to exclude
the possibility of using clever recursive arguments based on results obtained at low
orders in α′.

In order to make further progress other methods are clearly required. One thing
that immediately comes to mind is a further investigation of the string theory tree-
amplitudes. For example, a detailed study of the six-point function should provide
answers to many of the questions we raised in the previous section. Another possibility
is to reorganize the Noether procedure by setting it up in d = 10 N = 1 on-shell
superspace. A clear advantage of this setting is that field redefinition ambiguities
do not arise, since all fields are constrained to satisfy their lowest order equations of
motion.

Finally, the persistence of the non-linear supersymmetry in the higher-derivative
terms is a strong indication that a κ-symmetric formulation of the all-order effective
action exists. Given the success of κ-symmetry in clarifying the structure of the
supersymmetric Born-Infeld action [98–101], it is conceivable, if not likely, that it will
yield similar striking results when applied to this problem.

We end this chapter with some wishful thinking. We have shown that the effective
action for the 4-point function is given by a differential operator acting on the F 4 term
and that supersymmetry followed “under the derivatives”. The best-case scenario
would be that this structure generalizes to the full effective action, i.e. that we would
obtain the complete effective action as some non-local derivative operator acting on
an expression derived from the Born-Infeld action and that supersymmetry (and κ-
symmetry) would follow from the supersymmetry of the Born-Infeld action.





Chapter 4

Multiple D9-branes

We now turn to the effective action of a stack of D9-branes. After a brief review
we turn our attention toward our own contribution: the supersymmetric completion
of the α′3-terms [a]. We then test the fermionic contributions of this result against
string theory [b]. We will only consider flat closed string backgrounds in this chapter.

4.1 The non-abelian Born-Infeld action

The work of Polchinski [67] and Witten [58] caused a renewed interest in the structure
of the nonabelian open superstring tree-level effective action. A considerable step
forward was made by Tseytlin [116] (see also [117]). Previous to [116] only terms at
α′2 were known completely [49,95] and partial results had been obtained at α′3 [118].

Recall that the identity [Da,Db]Fcd = [Fab, Fcd] implies that the notion of slowly
varying fields is well defined only when the commutators of the field strength are very
small. This approximation is only of limited use. When one is interested in e.g. the
equations of motion or the spectrum of small fluctuations around a fixed background,
one needs to vary the action once or twice w.r.t. Aa and there is no reason to include
only terms without derivatives. Consider for example the terms F 6 and DFDFF 3.
These both give contributions of the form F 4DF when varied once.

However, regardless of its usefulness for practical applications, the DF = 0 limit
has one big virtue: it allows one to obtain an all-order result, just as the ∂F → 0
limit allowed this in the abelian case. Tseytlin showed in [116] that, in the limit
DaFbc = [Fab, Fcd] = 0, the bosonic part of the open string effective action is given
by the following non-abelian generalization of the Born-Infeld action:

SNBI = −τD9

∫
d10xSTr

√
−det (ηab + 2πα′Fab). (4.1.1)
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This tree-level effective action arises from the disk diagram in string theory and
hence contains a single trace over the U(N) generators λA. Since the field strengths
are effectively abelian, the generators are necessarily ordered symmetrically inside the
trace:

STrλA1 · · ·λAn ≡ 1

n!

∑

π

TrλAπ(1) · · ·λAπ(n) . (4.1.2)

The symmetrized trace is imposed after working out the expansion of the square root
and determinant. The first three terms read (dropping the constant term):

SNBI =
1

g2

∫
d10x

[
1

4
TrFabFab + (2πα′)2 STr

(
1

8
trF 4 − 1

32
(trF 2)2

)

+ (2πα′)4 STr

(
1

12
trF 6 − 1

32
trF 4 trF 2 +

1

384
(trF 2)3

)
+O(α′6)

]
. (4.1.3)

The terms at α′2 agree with those obtained from the string theory 4-point function
in [49], see also [93, 106]. The supersymmetrization of these terms was obtained
in [95,97,119]. The terms at α′4 agree with those obtained in [107].

Although the action (4.1.1) reproduces the leading order contribution to the string
theory 4-point function, it was already mentioned in [116] that this is no longer the
case for the 5-point function1, i.e. at order α′3. Moreover, it was shown in [120] that
the spectrum of small fluctuations around a fixed background predicted by (4.1.1)
disagrees with the string theory spectrum at α′4.

The first corrections to the action (4.1.1) appear at order α′3. In the following we
will derive the bosonic terms and the terms that are quadratic in the fermions that
contribute at this order. We will use the Noether procedure to show that there is
one unique superinvariant at this order [a], which is – as usual – determined up to
a multiplicative constant. This constant can be determined from the string theory
4-point function. The bosonic terms at α′3 had been obtained already in [113,121,122]
by indirect methods, whereas partial results had been obtained in [93] from the string
theory 4-point function.

More work on the nonabelian case was done after our paper [a] appeared. In
[123] all the bosonic terms at α′3 were obtained directly from the string 5-point
function, improving on earlier partial results [118]. The bosonic terms at order α′4

were obtained in [107], see [108] for a discussion of these terms from the point of view
of N = 4, d = 4 super-Yang-Mills theory.

In the previous chapter we derived an all-order result from the string theory 4-point
function in the abelian case [d]. A similar result was subsequently derived in [124]
for the terms of the form D2nF 4. Since the ordering of the covariant derivatives
is not fixed by the 4-point function, the authors of [124] made a choice for this

1The amplitudes involving an odd number of fields do not vanish in the nonabelian case, except
for the three-point function, which still vanishes on-shell.



4.2 α′-corrections to super-Yang-Mills theory 115

ordering. This choice affects the form of the terms with more F ’s through the identity
[D,D]F = [F, F ]. The result of [124] was subsequently extended to the terms of the
form D2nF 5 (but not their fermionic counterparts) by means of the 5-point function
in [125]. The result of [125] is quite complicated, but agrees with the α′3 contributions
that were obtained earlier. It would be interesting to see whether this agreement still
holds for the terms at α′4 of [107].

In the following we will not discuss these recent results in any detail, but focus
on our work in [a]. We will first delve a bit deeper into the complications that arise
in the non-abelian case and spend some time on the string theory 4-point function.
After that we proceed with the Noether procedure at α′3.

4.2 α′-corrections to super-Yang-Mills theory

We will use the same notation as in the previous chapter and write terms in the
effective action as

Leff =
1

g2

∑

m,n

L(m,n), with L(m,n) = α′m Tr
(
DnF p +Dn+1F p−2χ̄Γχ

)
, (4.2.1)

with a single trace over the Yang-Mills generators and 2p − 2m + n − 4 = 0. We
restrict ourselves to terms that are at most quadratic in the fermions throughout this
chapter. The differences with the abelian case are essentially threefold.

First of all, we already mentioned several times that the terms L(m,n) with m fixed
are not independent, because the identity

[Da,Db]Fcd = [Fab, Fcd]. (4.2.2)

allows us to trade terms that contain covariant derivatives for terms without deriva-
tives. We resolve this ambiguity by always using this relation as “LHS→RHS”. In
calculations we thus first deal with the terms that involve covariant derivatives. We
treat the derivatives as if they commuted, but keep track of the [F, F ] commutators.
Only after all the necessary manipulations on the terms with derivatives have been
done, do we proceed to the terms without derivatives. We will see below that this
rule allows us to remove the terms with p = 2 and p = 3 – with the exception of
TrF 3, see below – just as we did in section 3.2.1 for the abelian case. Another conse-
quence of the relation (4.2.2) is that terms which formed independent superinvariants
in the abelian case, may become part of a single superinvariant in the nonabelian case.
There may thus be less superinvariants in the nonabelian case. This becomes relevant
at α′4, where we found two independent superinvariants in the previous chapter, one
with the coefficient a(2,0) and the other with a(4,4). The Noether procedure might put
a(4,4) ∼ a2

(2,0) in the nonabelian case. We have not pursued the Noether procedure

through α′4, so we do not have a definite answer to this question. However, in [107]
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the bosonic terms at α′4 were obtained by a different iterative procedure and found
to depend only on a(2,0). It is thus very likely that the Noether procedure will give
the same result.

Secondly, we need to worry about the ordering of the Yang-Mills generators inside
the trace. We will see below how this information can be obtained from the 4-point
function for the terms with p = 4.

Finally, because the covariant derivative contains the gauge field, it is no longer
the case that terms of a given p contribute only to the 1PI p-point function. For
example, the d = 10, N = 1 supersymmetric Yang-Mills Lagrangian L(0,0) ≡ L0,
which reads

L0 = −Tr
[
− 1

4
FabFab +

1

2
χ̄ /Dχ

]
, (4.2.3)

contributes not only a 2-point function, but also a 1PI 3-point vertex and a 1PI 4-
point vertex. In fact, the entire string theory 3-point function is already reproduced
by L0 [14, 15,105].

Before we proceed with the α′ corrections to L0 we note that the lowest order
equations of motion read

DaF
A
ab −

1

2
fABC χ̄BΓbχ

C = 0, and /DχA = 0, (4.2.4)

and that L0 is invariant under supersymmetry transformations:

δ0Aa = ǭΓaχ, and δ0χ =
1

2
Fab Γabǫ, (4.2.5)

which satisfy the supersymmetry algebra:

[δ0ǫ1 , δ0ǫ2 ]Aa = 2ǭ1/∂ǫ2Aa −Da

(
2ǭ1 /Aǫ2

)
, (4.2.6a)

[δ0ǫ1 , δ0ǫ2 ]χ = 2ǭ1 /Dǫ2χ−
(

7

8
ǭ1Γaǫ2Γa −

1

5!16
ǭ1Γa1···a5

ǫ2Γa1...a5

)
/Dχ. (4.2.6b)

Note that the RHS of (4.2.6b) involves a gauge transformation of the fermion, this in
contrast to (3.2.4b).

4.2.1 The terms with p = 2 and p = 3

We now show that there are indeed no terms with p = 2 or p = 3 in the nonabelian
D9-brane effective action if we use our rule [D,D]F → [F, F ]. Contracted covariant
derivatives acting on the same field can be removed by a field redefinition, modulo
terms with fewer derivatives. We have in particular (with �cov ≡ DaDa):

�covFab = Da(DcFcb)−Db(DcFca) + 2[Fac, Fbc],

�covχ = /D /Dχ− 1

2
[Fab,Γabχ].
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We conclude from (4.2.4) that terms which contain a factor DaFab can removed by a
field redefinition at the expense of modifying the terms which are of higher order in
the fermions. When we discuss Ansätze for the Noether procedure we can ignore this
issue, since it only replaces one undetermined coefficient by another.

The absence of the terms with p = 2 is the established in the same way as in the
abelian case. The terms with p = 3 are more complicated, since we now need to take
into account the different inequivalent orderings of the Yang-Mills generators.

First we deal with the fermionic terms, which are of the form TrDn+1Fχ̄Γχ. Any
derivative on F can be partially integrated, the only remaining terms that do not
contain lowest-order equations of motion are then

TrλAλBλC FA
abD

kχ̄BΓaD
kDbχ

C ,

TrλAλCλB FA
abD

kχ̄BΓaD
kDbχ

C .

Note that according to our rule the covariant derivatives can be treated as commuting.
These terms can both be related to terms that are “on-shell” by means of partial
integrations. To see this consider the following total derivatives:

∂a

[
TrFabD

kχ̄ΓbD
kχ
]

= TrλA[λB , λC ]FA
abD

kχ̄BΓaD
kDbχ

C + . . . ,

∂a

[
TrFbcD

kχ̄ΓabcD
kχ
]

= TrλA{λB , λC}FA
abD

kχ̄BΓaD
kDbχ

C + . . . ,

where the dots indicate terms that can be removed by field redefinitions and terms
with a lower number of derivatives. Note that we constructed these total derivatives
such that they do not give rise to terms with uncontracted derivatives on F . All
fermionic terms with p = 2 can thus be removed from the action.

Now for the bosonic terms. As in the abelian case, we can always reduce these to
the form FabD

kDcFdaD
kDcFdb or FabD

kDcFdaD
kDdFcb. In the abelian case these

vanished by antisymmetry but here we need to take into account the ordering of the
generators. The different orderings are:

TrFab[D
kDcFda,D

kDcFdb] = TrFab[DeD
k−1DcFda,DeD

k−1DcFdb],

TrFab[D
kDcFda,D

kDdFcb] = TrFab[DeD
k−1DcFda,DeD

k−1DdFcb].

Now use 2[DaΦ,DaΨ] = �[Φ,Ψ]− [�Φ,Ψ]− [Φ,�Ψ] and partially integrate the first
term that is obtained by means of this identity to see that all bosonic terms with
p = 3 can be removed, with the exception of

TrFabFbcFca = −1

2
fABCFA

abF
B
bcF

C
ca. (4.2.7)

This remaining term would contribute to a 3-point function. We however mentioned
that the string theory 3-point function is reproduced already completely by L0. It
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turns out that (4.2.7) is in fact inconsistent with supersymmetry. Indeed, varying this
term w.r.t. (4.2.5) yields

−3fABCFA
acF

B
cb ǭΓaDbχ

C .

One can show – either by inspection or by explicit construction of the total derivatives
– that this term cannot be related by means of partial integrations solely to terms
that contain either /Dχ or DaFab. It can therefore not be canceled by a modification
of the supersymmetry transformation rules2 of order α′.

4.2.2 The 4-point function, revisited

We now focus our attention toward the string theory 4-point function. As in the
abelian case we will be able to extract useful information about the structure of the
effective action from the 4-point function. In the nonabelian case the 4-point function
takes on the following form:

A4 = −8i g−2α′2(2π)10δ(10)(k1 + k2 + k3 + k4)K(1, 2, 3, 4)×
×
(
TABCD

1 G(s, u) + TABCD
2 G(s, t) + TABCD

3 G(t, u)
)
. (4.2.8)

See section 3.3 for an explanation of the different factors appearing in this expression.
As explained in chapter 1, the only difference with the abelian amplitude (3.3.1) are
the traces over the Chan-Paton factors:

TABCD
1 = TrλAλBλCλD + TrλAλDλCλB ,

TABCD
2 = TrλAλBλDλC + TrλAλCλDλB ,

TABCD
3 = TrλAλCλBλD + TrλAλDλBλC .

(4.2.9)

The last factor in A4 can be written as a sum of terms that are proportional to
T1 + T2 + T3 (which is the symmetric trace) and Ti − Tj (which can be written in
terms of structure constants only):

1
3

(
T1 − T2

) [
G(s, u) +G(t, u)− 2G(s, t)

]

+ 1
3

(
T1 − T3

) [
G(s, u) +G(s, t)− 2G(t, u)

]

+ 1
3

(
T1 + T2 + T3

) [
G(s, u) +G(t, u) +G(s, t)

]
. (4.2.10)

We recall the α′-expansion of G(s, t):

α′2G(s, t) =
1

st
− 1

6
α′2π2 − α′3ζ(3)(s+ t)− 1

360
α′4π4(4s2 + st+ 4t2)

+ α′5
[1
6
π2ζ(3)st(s+ t)− ζ(5)(s+ t)(s2 + st+ t2)

]
+ . . . . (4.2.11)

2Note that, in general, terms that contain DaFab would have to combine with terms of higher
order in the fermions into the lowest order equation of motion (4.2.4). We do not see this in our
quadratic fermion approximation, though.
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In contrast to the abelian case, there is a contribution from the 4-point function at
α′0. This contribution is reproduced by completely by L0, via the A4 vertex and a
reducible diagram involving three-point vertices. The terms of higher order in α′ are
always reproduced by terms of the form α′mD2m−4F 4.

For the abelian case we were able to show by using the 4-point function that
the terms with p = 4 contain the leading order contributions to an infinite number of
superinvariants. We speculated that some of these superinvariants might be related to
each other at higher orders in the Noether procedure, but argued that there will always
remain an infinite number of all-order invariants, corresponding to contributions which
have factors of ζ(2n+1) for different n in the 4-point function. These terms appeared
at any odd order in α′. We also mentioned earlier in this section that certain terms
which contribute to independent superinvariants in the abelian case, will become part
of a single superinvariant in the nonabelian case because of relation (4.2.2).

We might therefore have hoped that the Noether procedure is actually simpler in
the nonabelian case. Sadly, this is not the case. There is in fact an additional infinite
number of superinvariants, which vanish in the abelian case. We can already see this
in the 4-point function, which contains terms that can be written entirely in terms of
structure constants, i.e. the terms with Ti − Tj in (4.2.10). These terms appear in
particular at every odd order in α′. Indeed, the leading term in the expansion ofG(s, t)
that contains a factor α′nζ(n) for given n is proportional to (sn + tn − (s + t)n)/st,
see (4.2.11) and (3.3.19). For n odd this is of the form

(s+ t)Pn, with Pn = −s
n + tn + un

stu
. (4.2.12)

Now in (4.2.10) the symmetric trace is proportional to

G(s, t) +G(s, u) +G(t, u). (4.2.13)

If we expand this in α′, the leading term with the coefficient for n odd gives a factor:

(s+ t)Pn + (s+ u)Pn + (t+ u)Pn = 2(s+ t+ u)Pn ≡ 0. (4.2.14)

Therefore, at every α′n for n odd there appears a new superinvariant, of which the
leading order contribution can be expressed in terms of structure constants only and
therefore vanishes in the abelian limit.

4.2.3 The Noether procedure at α′3

We have seen that at α′ there are no contributions to the effective action and that
the first nontrivial corrections to L0 appear at α′2. These corrections are essentially
of the form (3.2.8) but involve covariant instead of ordinary derivatives and a sym-
metrized trace over the gauge group. There are thus also nontrivial corrections to the
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supersymmetry transformations rule, but because of the absence of contributions at
order α′ these α′2 corrections cannot contribute to the order α′3 variations.

In the previous section we concluded that the trace over the Yang-Mills generators
of the terms of the form α′3D2F 4 and their fermionic partners can be written entirely
in terms of structure constants. Not only does the Noether procedure confirm this, it
turns out that the trace structure of the terms of the form α′3F 5 can also be written
entirely in terms of structure constants.

As we mentioned before, the Ansatz for the Noether procedure is not unique
because of (4.2.2). We use our aforementioned rule and obtain an Ansatz with 13
bosonic terms and 110 terms involving fermions: 7 + 18 terms of the form (DF )2F 2

and fermionic partners, and 6 + 92 of type F 5 with partners.

After simplifying the resulting variations with ABRA3 – see section 3.4.1 – there
remain 128 linear equations from the sector with four fields, and 320 equations from
the sector with five fields. These equations must be solved for the 123 coefficients
from the Ansatz and the 182 coefficients that parametrize total derivatives having
the same structure as the variations.

The Noether procedure yield one unique deformation of d = 10, N = 1 supersym-
metric Yang-Mills theory at order α′3, which is determined up to a single multiplicative
constant a3:

a−1
3 L3 = fXY ZfV WZ

[
2FX

abF
W
cd DeF

V
bcDeF

Y
ad − 2FX

abF
W
ac DdF

V
beDdF

Y
ce

+ FX
abF

W
cd DeF

V
abDeF

Y
cd

− 4FW
ab DcF

Y
bd χ̄

XΓaDdDcχ
V − 4FW

ab DcF
Y
bd χ̄

XΓdDaDcχ
V

+ 2FW
ab DcF

Y
de χ̄

XΓadeDbDcχ
V + 2FW

ab DcF
Y
de χ̄

XΓabdDeDcχ
V
]

+

+ fXY ZfUV W fTUX
[
4FY

abF
Z
cdF

V
acF

W
be F

T
de + 2FY

abF
Z
cdF

V
abF

W
ce F

T
de

− 11FY
abF

Z
cdF

V
cd χ̄

T ΓaDbχ
W + 22FY

abF
Z
cdF

V
ac χ̄

T ΓbDdχ
W

+ 18FY
abF

V
cdF

W
ac χ̄

T ΓbDdχ
Z + 12FT

abF
Y
cdF

V
ac χ̄

ZΓbDdχ
W

+ 28FT
abF

Y
cdF

V
ac χ̄

W ΓbDdχ
Z − 24FY

abF
V
cdF

T
ac χ̄

W ΓbDdχ
Z

+ 8FT
abF

Y
cdF

Z
ac χ̄

V ΓbDdχ
W − 12FT

abF
Y
acDbF

V
cd χ̄

ZΓdχ
W

− 8FY
abF

T
acDbF

V
cd χ̄

ZΓdχ
W + 22FV

abF
Y
acDbF

T
cd χ̄

ZΓdχ
W

− 4FY
abF

T
cdDeF

V
ac χ̄

ZΓbdeχ
W + 4FY

abF
T
acDcF

V
de χ̄

ZΓbdeχ
W

+ 4FT
abF

Y
cdF

V
ce χ̄

ZΓabdDeχ
W − 8FY

abF
T
cdF

V
ce χ̄

ZΓabdDeχ
W

+ 6FV
abF

Y
cdF

W
ce χ̄

ZΓabdDeχ
T + 5FV

abF
W
cd F

Y
ce χ̄

ZΓabdDeχ
T

3The number of terms at intermediate stages of the calculation reaches 104, so the use of a
computer was clearly unavoidable.
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+ 6FY
abF

T
acF

V
de χ̄

ZΓbcdDeχ
W − 2FY

abF
T
acF

Z
de χ̄

V ΓbcdDeχ
W

+ 4FY
abF

V
acF

Z
de χ̄

W ΓbcdDeχ
T + 4FT

abF
V
cdF

Y
ce χ̄

ZΓabdDeχ
W

− 4FY
abF

V
cdF

W
ce χ̄

ZΓabdDeχ
T

+ 1
2F

Y
abF

T
cdF

V
ef χ̄

ZΓabcdeDfχ
W + 1

2F
Y
abF

T
cdF

Z
ef χ̄

V ΓabcdeDfχ
W
]
. (4.2.15)

This result holds for an arbitrary compact gauge group G. To make contact with string
theory, we take G = U(N) and read off the value of a3 from the 4-point function:

a3 = −ζ(3)

2
α′3. (4.2.16)

Our results agree with those of [93, 113, 121, 122] on the bosonic terms. The higher
derivative terms with fermions agree with [93]. We can be quite certain our result
is also correct for the other fermionic contributions: we needed to solve 448 linear
equations for 305 unknowns. If we had made a mistake in our calculation, we would
almost certainly not have obtained any solution to these equations. Nevertheless, it
would be nice to have an independent check of these results and we will present one
in the following section (see also [b]).

An interesting implication of the fact that the trace structure can be expressed
in terms of structure constants only is the following. If the group G contains a U(1)
factor, the corresponding U(1) fields – which are certainly present at order α′0 and
α′2 – do not occur in the α′3 action. Another implication is that the action (4.2.15)
is trivially invariant under the nonlinear supersymmetry present at order α′0 and α′2.
The nonlinear transformation acts at order4 α′0 only on χ:

δ0χ
A = ηA, (4.2.17)

where η is a constant spinor, satisfying fABCηC = 0. This implies that η commutes
with all group generators, and must therefore be in a U(1) factor. The invariance of
(4.2.15) under (4.2.17) is then obvious.

4.3 A test: the spectrum of small fluctuations

We mentioned already the paper [120] in which it was shown that the spectrum of
small fluctuations around a fixed background predicted by (4.1.1) disagrees with the
string theory spectrum at α′4. The test was further developed in [126, 127], and
applied to the bosonic terms at α′3 [128] and α′4 [129]. In the following we will apply
the method to the fermionic contributions and show that our result (4.2.15) passes
the test.

4At order α′2 there are modifications [97,119].
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The test works as follows. We start with a stack of two D2p-branes and wrap
these around a p-dimensional torus and turn on a constant magnetic background
field. In section 1.3.4 we explained what happens to a single wrapped D2p-brane
under T-duality in the presence of magnetic fluxes: the T-dual picture contains a
tilted Dp-brane that is tilted w.r.t. the T-dualized direction with angles that are
related to the magnetic fluxes. Now we have two D2p-branes that will both give rise
to a tilted Dp-brane under T-duality. Generically, these angles need not be the same
for both Dp-branes and we get two intersecting branes [130] instead of a stack of
Dp-branes.

String theory allows for the calculation of the spectrum of the strings that stretch
between the two intersecting branes [130–132] in the T-dual picture. This spectrum
should be reproduced by the mass spectrum of the off-diagonal field fluctuations in
the effective action for the stack of D2p-branes. This is the essence of the test [120].

We will now develop this test for the terms quadratic in the gauginos χA. Through-
out the remainder of this chapter we work in units where 2πα′ ≡ 1.

4.3.1 The spectrum from string theory

We consider a constant magnetic background on two coincident D2p-branes,

F2a−1 2a = i

(
fa 0
0 −fa

)
, (4.3.1)

with a ∈ {1, 2, · · · , p} and fa ∈ R, fa > 0. We choose a gauge such that A2a−1 = 0,
∀a, and T-dualize in the 2, 4, ..., 2p directions. We end up with two intersecting
Dp-branes. We want to calculate the spectrum of open strings stretching between the
two branes. We take the first brane located along the 1, 3, ..., 2p− 1 directions. The
other brane has been rotated with respect to the first one over an angle θ1 in the 12
plane, over an angle θ2 in the 34 plane, ..., over an angle θp in the 2p − 1 2p plane.
The angles are determined by the magnetic fields as in section (1.3.4):

θa = 2arctan fa, ∀a ∈ {1, 2, · · · , p}. (4.3.2)

Inspired by [130] we introduce,

X̂2a−1 = cos θaX
2a−1 + sin θaX

2a, X̂2a = − sin θaX
2a−1 + cos θaX

2a, (4.3.3a)

ψ̂2a−1
± = cos θaψ

2a−1
± + sin θaψ

2a
± , ψ̂2a

± = − sin θaψ
2a−1
± + cos θaψ

2a
± . (4.3.3b)

We impose the following boundary conditions:

σ = 0 : ∂σX
2a−1 = 0, ∂τX

2a = 0, ψ2a−1
+ = ψ2a−1

− , ψ2a
+ = −ψ2a

− ; (4.3.4a)

σ = π : ∂σX̂
2a−1 = 0, ∂τ X̂

2a = 0, ψ̂2a−1
+ = ηψ̂2a−1

− , ψ̂2a
+ = −ηψ̂2a

− , (4.3.4b)
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where η = +1 or η = −1 in the Ramond and the Neveu-Schwarz sector, respectively.
Upon solving the equations of motion and implementing the boundary conditions we
get the following expansion for the bosons:

X2a−1 =
i√
2π

∑

n∈Z

(
αn+a

n+a
e−in+aτ cosn+aσ +

αn−a

n−a
e−in−aτ cosn−aσ

)
, (4.3.5a)

X2a =
i√
2π

∑

n∈Z

(
αn+a

n+a
e−in+aτ sinn+aσ −

αn−a

n−a
e−in−aτ sinn−aσ

)
, (4.3.5b)

where we introduced

εa ≡
θa

π
, n±a ≡ n± εa with n ∈ Z. (4.3.6)

In the Ramond sector (we will not need the Neveu-Schwarz sector), we get

ψ2a−1
± =

1

2

∑

n∈Z

(
dn+a

e−in+a(τ±σ) + dn−a
e−in−a(τ±σ)

)
,

ψ2a
± = ± i

2

∑

n∈Z

(
dn+a

e−in+a(τ±σ) − dn−a
e−in−a(τ±σ)

)
.

(4.3.7)

The non-vanishing (anti-)commutation relations are

[αm+a
, αn−b

] = m+aδm+nδab,

{dm+a
, dn−b

} = δm+nδab.
(4.3.8)

Both X2a−1 and X2a contribute to the vacuum energy (in units where 2πα′ = 1) by
−π/12+πεa(1−εa)/2 which is precisely canceled by the contribution of the Ramond
fermions. So just as for the case without magnetic fields, the vacuum energy vanishes
in the Ramond sector. The (light-cone) states which in the absence of magnetic fields
reduce to the gauginos are of the form

p∏

a=1

(α−εa
)ma(d−εa

)la |0〉, (4.3.9)

where ma ∈ N and la ∈ {0, 1}, ∀a ∈ {1, · · · , p} and |0〉 carries a chiral spinor repre-
sentation of Spin(8− 2p). Their masses are given by

M2 =

p∑

a=1

2 (ma + la) θa. (4.3.10)
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4.3.2 The spectrum from the effective action

The leading term

To set the stage we will first review some of the results of [133, 134] and [135]. Our
starting point is the U(2) d = 10, N = 1 supersymmetric Yang-Mills theory5 with the
action L0 as given in equation (4.2.3). For simplicity we will put g = 1 in the following.
We compactify 2p dimensions on a torus and introduce complex coordinates for the
compact directions, zα = (x2α−1 + ix2α)/

√
2, z̄ᾱ = (zα)∗, α ∈ {1, · · · , p}. We switch

on constant magnetic background fields in the compact directions Fαβ = Fᾱβ̄ = 0,
Fαβ̄ = 0 for α 6= β and6

Fαᾱ = i

(
fα 0
0 −fα

)
, (4.3.11)

where the fα, α ∈ {1, · · · , p} are imaginary constants such that ifα > 0. We only
consider the off-diagonal components of the fermions,

χ = i

(
0 χ+

χ− 0

)
, (4.3.12)

since the diagonal fluctuations probe the abelian part of the action [126]. Using the
previous choices, we can rewrite the second term in (4.2.3) as

Lfermion = χ̄−(/∂NC + /D)χ+, (4.3.13)

where the subindex NC denotes operators acting in the non-compact directions only
and D ≡ ∂ + 2iA, with A the background gauge fields. The background covariant
derivatives satisfy

[Dα,Dβ̄ ] = 2iδαβfα. (4.3.14)

The equations of motion readily follow from (4.3.13):

(/∂NC + /D)χ+ = 0. (4.3.15)

We square the kinetic operator in (4.3.15) and use (4.3.14) to obtain

(
�NC + 2

p∑

α=1

{DαDᾱ − ifα − ifαΓαᾱ}
)
χ+ = 0, (4.3.16)

where Γαᾱ ≡ (ΓαΓᾱ − ΓᾱΓα)/2 and (Γαᾱ)2 = 1. Once a complete set of eigen-
functions is constructed for the second part in (4.3.16), we can bring the relation

5The calculation of the spectrum only probes U(2) sub-sectors of the full U(n) theory [135].
6We do not sum over repeated indices corresponding to complex coordinates, unless indicated

otherwise.



4.3 A test: the spectrum of small fluctuations 125

above in the form (� −M2)χ = 0 and read off the mass M . Such eigenfunctions
are obtained from a spinor |0〉 satisfying Dᾱ|0〉 = 0, ∀α, that has been explicitly
constructed in [133, 134] and [135]. We introduce the complete set of functions
|{(m1, n1), (m2, n2), . . . , (mp, np)}〉, with m1,m2, . . . ,mp ∈ N and n1, n2, . . . , np ∈
{−1,+1} by

|{(m1, n1), (m2, n2), · · · , (mp, np)}〉 ≡
1

2
(1 + n1Γ11̄)

1

2
(1 + n2Γ22̄) · · ·

1

2
(1 + npΓpp̄)Dm1

1 Dm2
2 · · · Dmp

p |0〉,
(4.3.17)

and expand the fermion in this complete set:

χ+(y, z, z̄) =
∑

{(m,n)}

χ+
{(m,n)}(y)|{(m,n)}〉, (4.3.18)

where {(m,n)} ≡ {(m1, n1), (m2, n2), . . . , (mp, np)} and y collectively denotes the
non-compact coordinates. Using this, one gets from eq. (4.3.14) and eq. (4.3.16) that
the mass of χ+

{(m,n)}(y) is given by

M2 = 2i

p∑

α=1

(2mα + 1 + nα) fα. (4.3.19)

Replacing fα by arctanh(fα) in (4.3.19) yields the stringy result (4.3.10). As ex-
pected, we only get agreement for very small magnetic background fields. The higher
order terms in the effective action should add to this such that the string result gets
reproduced. In particular one notices from this that only even orders in α′ contribute
to the spectrum.

TheO(α′2) contribution to the spectrum

Modulo field redefinitions and up to terms terms quartic in the fermions, the effective
action through O(α′2) is given by L = L0 + L2 where L0 was given (4.2.3) and L2 is
given by [49,95,97,106,119,136]:

L2 = STr
[
x1FabFabFcdFcd + x2FabFbcFcdFda

+ x3FabFac χ̄ΓbDcχ+ x4FabDaFcd χ̄Γbcdχ
]
, (4.3.20a)

with

x1 = − 1

32
, x2 =

1

8
, x3 = −1

4
, x4 = − 1

16
. (4.3.20b)

Again we want to calculate the fermionic spectrum through this order. It is clear that
only the term proportional to x3 will contribute since the background magnetic fields
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are covariantly constant. Following exactly the same strategy as above, we get the
equations of motion:

(
/∂NC + /D − 2x3

3

p∑

α=1

f2
α (ΓαDᾱ + ΓᾱDα)

)
χ+ = 0. (4.3.21)

We square the kinetic operator:

(
�NC + 2

p∑

α=1

[
1− 4x3

3
f2

α

]
(DαDᾱ − ifα − ifαΓαᾱ)

)
χ+ = 0, (4.3.22)

where we ignored terms proportional to f4 as they are of higher order in α′. However
such terms will be relevant for a test of the – as of yet still unknown – fermionic
contributions to the effective action at α′4. It is clear that this gives the same spectrum
as in (4.3.19), but with fα replaced by

fα → fα −
4x3

3
f2

α. (4.3.23)

Consistency with the string spectrum requires that x3 = −1/4 which indeed agrees
with (4.3.20).

It was shown in [127] that the bosonic part of the effective action at α′2 is fixed
completely by the requirements that the spectrum of the gauge fields is reproduced
correctly and that the effective action has the correct abelian limit. It is clear from
the above that this is not the case for the fermionic terms. The spectral test is thus
weaker for the fermionic contributions than for the purely bosonic terms.

Testing theO(α′3) terms

We saw earlier that the terms with odd powers of α′ should not contribute to the
spectrum, so in particular we should not get any contributions from L3.

The bosonic terms at α′3 were already investigated in [128] and we thus focus our
attention on the fermionic terms in (4.2.15). The terms which contain a covariant
derivative on a field strength F will not contribute to the spectrum, since we have
chosen our background field to be covariantly constant. Furthermore, any term having
two field-strengths contracted with a single f -symbol can be ignored as well since
we took the background field strength in the Cartan subalgebra of SU(2). Having
discarded these terms, we note that – with our particular choice of background – the
remaining terms have a group theoretical factor such that the Lie algebra indices on
the gauginos are antisymmetrized. This implies that all terms involving a Γ(1) or Γ(5)

will vanish as well up to a total derivative. The only terms which can potentially
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contribute to the spectrum are thus

x1 F
T
abF

Y
cdF

V
ce χ̄

ZΓabdDeχ
W + x2 F

Y
abF

T
cdF

V
ce χ̄

ZΓabdDeχ
W

+ x3 F
Y
abF

T
acF

V
de χ̄

ZΓbcdDeχ
W + x4 F

T
abF

V
cdF

Y
ce χ̄

ZΓabdDeχ
W , (4.3.24)

with
x1 = +4, x2 = −8, x3 = +6, x4 = +4. (4.3.25)

We rewrite (4.3.24) in terms of the background field and the off-diagonal fermions
and obtain

(x1 + x2 + x4)

p∑

α=1

p∑

β=1

fβf
2
α

(
χ̄−Γβ̄βαDᾱχ

+ + χ̄−Γβ̄βᾱDαχ
+
)
. (4.3.26)

We see from (4.3.25) that this vanishes as required.

4.4 Conclusion

Though the spectral test is not as restrictive for the fermionic terms as it was for the
purely bosonic terms, it is still gratifying to see that the fermionic terms pass it as
well. At this point there is no doubt left that we have the correct supersymmetrization
of the non-abelian D-brane effective action through order α′3.





Afterword

The main topic of this thesis was the study of D-brane effective actions. The first
two chapters provided an introduction to this subject. We explained that D-branes
can be described in two complementary ways. On one side, they arise as hyperplanes
that support open strings in perturbative string theory. On the other side, they
are higher dimensional generalizations of extremal Reissner-Nordström black holes in
supergravity theories. We reviewed the role of D-branes in the dualities that relate
the various string theories to each other.

One important aspects of D-branes is the fact that they carry gauge fields on
their world-volumes. We have argued in chapter 1 that many interesting aspects of
the physics of D-branes can be investigated by studying the low-energy effective field
theories of these gauge fields and the string-theoretical α′-corrections to these theories.
As an example, we discussed the behavior of open strings under T-duality in the
presence of electric and magnetic background fields and showed how this information
is encoded in the Dirac-Born-Infeld and Wess-Zumino contributions to the effective
action of a single Dp-brane.

Another important property of D-branes that we discussed in chapter 1 is the
appearance of extra massless degrees of freedom when two or more Dp-branes coincide.
Not only do we get non-abelian gauge fields, but also the scalar fields that describe the
embedding of the stack of D-branes in spacetime become matrix-valued. A thorough
understanding of these matrix-valued coordinates and the associated noncommutative
geometry will very likely bring us a lot further on the road toward a formulation of
M-theory.

With these things in mind, we studied derivative corrections to the effective actions
of single and multiple D-branes in chapter 3 and 4, respectively. The approach we
followed was to consider only flat closed string backgrounds, since in this case one does
not have to deal with the conceptual difficulties involving the nonabelian coordinates.
We limited ourselves to D9-branes, since – as argued in chapter 1 – the actions for the
lower-dimensional branes follow by T-duality. We then used the Noether procedure
and information from the string theory 4-point function to construct α′-corrections
to the super-Yang-Mills action.
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Because of our approach to the α′-corrections, we did not discuss the behavior
of D-branes in nontrivial closed string backgrounds. It turns out however that this
behavior is quite interesting, for single D-branes and especially for multiple D-branes.
In order to make up for our disregard of these issues in the preceding chapters, we will
now briefly mention some of the phenomena associated with nontrivial backgrounds
and provide entry points into the literature. As we will see, these phenomena involve
noncommutative geometry in one way or the other.

The first case that we will consider applies to both single and multiple D-branes,
and is that of a nonzero background F-field, where F = B + 2πα′F , something we
encountered already before in our discussions on T-duality. What we did not mention
there, was that the quantization of the open strings yields something remarkable.
Consider for instance our earlier example of a D2-brane with a flux F12 ≡ F . It can
be shown using Dirac’s method of quantization that the coordinates which describe the
position of the endpoints of the open string on the D2-brane do not commute [137,138]

[X1(τ, σ),X2(τ, σ′)] =

{
±2πiα′F/(1 + F2), for σ = σ′ = 0 and σ = σ′ = π,
0, otherwise,

with the + and − signs for the σ = 0 and σ = π endpoints, respectively. According to
the open strings, the geometry on the D2-brane’s world-volume is noncommutative.
A heuristic explanation of this is the following. We explained that when F 6= 0
we actually have a bound state of a D2-brane with D0-branes. The open string
endpoints are thus not just confined to the D2-brane but also to the D0-branes which
are immersed in the world-volume of the D2-brane. But the D0-branes are completely
delocalized and this is reflected in the non-zero commutation relations of the open
string endpoints.

The above suggests that there exists an effective description for the low-energy
degrees of freedom on a D-brane with nonvanishing F in terms of a noncommutative
gauge theory in which the ordinary commutative product of functions is replaced by
a noncommutative ⋆-product, i.e. fg → f ⋆ g, known as the Moyal product [139,140].
But we know that we can describe the low-energy degrees of freedom that live on the
D-brane as an ordinary gauge theory. The description in terms of a noncommutative
gauge theory should thus be related to the ordinary one by a change of variables. That
this is indeed the case was shown in [141] and the change of variables has become
known as the Seiberg-Witten map. The Seiberg-Witten map puts restrictions on
the form of the D-brane effective action. It was shown in [141] that the Born-Infeld
action satisfies these restrictions. The constraints of the Seiberg-Witten map on the
nonabelian case were studied in [142].

The second case we want to discuss is that of nonzero RR-backgrounds. In [143]
an attempt was made to construct the nonabelian Dp-brane effective action in the
presence of background fields by taking the D9-brane as a starting point and using
T-duality as discussed in chapter 1. It is not our goal here to review Myers’ re-
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sult in detail, but we do want to make a few remarks. Myers only considered the
symmetrized trace action (4.1.1). His result is therefore only valid up to α′3, but
nevertheless has some interesting properties. For instance, the bulk fields depend on
the nonabelian scalars Φa and the pull-back of the bulk fields to the D-brane world-
volume is done with covariant instead of ordinary derivatives. So there are additional
couplings between the world-volume and bulk fields that were not there in the abelian
case.

Probably the most important aspect of Myers’ result is the Wess-Zumino term.
Recall that a single Dp-brane couples not only to the RR (p+1)-form, but also to the
RR-forms of lower rank. Myers showed that the nonabelian WZ-term also involves the
RR-forms of higher rank. A consequence of this is the Myers dielectric effect : when
multiple Dp-branes are put together in an RR-background they become polarized. A
concrete example is given by N D0-branes in a background of the RR 3-form C(3).
One can show that the energetically most favorable configuration is one in which
the D0-branes expand into a noncommutative or “fuzzy” two-sphere, which can be
interpreted as a D0/D2-brane bound state. See [18, 59] for further information and
references.

The third and final case we want to point out is that of a curved gravitational
background. A major issue here is generalization of general coordinate invariance
to U(N) the matrix-valued coordinates, i.e. ‘D-geometry’ [144]. Significant progress
was made in [145] (see [146–150] for earlier interesting work), where a formalism was
developed that allows one to write actions for multiple D-branes with general covari-
ance. A generic feature of these actions is that they necessarily involve derivatives of
the metric in order for general covariance to be realized7. So we see that the break-
down of the notion of slowly varying fields in the nonabelian case is not limited to
the world-volume fields, but also involves the bulk fields.

In [145] only the bosonic sector was investigated. A natural question to ask is
what the consequences of the nonabelian coordinates are for the local supersymmetry
of the bulk fields and κ-symmetry. κ-symmetry seems particularly important, since
it played a crucial role in the understanding of the supersymmetry of the Born-Infeld
action in the abelian case. A nonabelian generalization of κ-symmetry will perhaps
provide similar insights. In [152] a κ-symmetric action was found for a system of
coincident D0-branes. It would be interesting to see how this action relates to the
results of [145, 149]. Hopefully the results of [145] will also shed some light on the
failed attempt of [153] to construct κ-symmetric α′-corrections to N = 1, d = 10
super-Yang-Mills theory.

Finally, it is interesting to think about possible application of the α′-corrections
that we considered in this thesis. For example, it still remains to bee seen how the
α′-corrections modify the behavior of classical solutions of the Yang-Mills equations
of motion that are more complicated than the flat backgrounds that we considered in

7These additional couplings result in a gravitational version of the Myers effect [151].
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chapter 4. One may expect for instance, that the instanton solutions of N = 4, d = 4
Yang-Mills theory receive α′-corrections. In this context the fermionic contributions
to the effective action are relevant for a study of the fermionic collective coordinates
of the instanton solution.

Nevertheless, in the end one would definitely like to have a closed expression for
the nonabelian D-brane effective action. In chapter 1 we saw an explicit example
where the upper limit for the electric field on a D-brane could only be obtained by
using the complete infinite collection of α′-corrections of the Born-Infeld action. In
addition, it turns out that the Born-Infeld action also provides a finite self-energy for
the electric point particle solution. In the nonabelian case, answers to these and other
questions that are related to the resolution of classical singularities by α′-corrections,
will have to wait until we have an all-order result.



Appendix A

Supersymmetry technicalities

The first part of this appendix is devoted to a discussion of the technical apparatus
needed in supersymmetric field theories. The second part is a self-contained (but
highly condensed) review of four-dimensional supersymmetry.

A.1 Spinors and Dirac matrices

In this section we discuss the properties of spinors in an arbitrary even number of di-
mensions, d = 2n. Though we mostly need the properties of spinors in ten-dimensional
Minkowski space in the main text, we present an analysis for arbitrary signature. It is
the author’s opinion that a general discussion is helpful in keeping a clear distinction
between intrinsic properties and mere conventions.
There are many different approaches to the theory of Clifford algebras and spinors
and the literature on the subject is vast. The present discussion aims to stay close
to the presentation that is usually encountered in the supergravity and string the-
ory literature. Classic references are [154–158]. For applications to the theory of
extended super-Poincaré algebras see e.g. [159, 160]. Useful reviews can be found in
e.g. [15, 34, 47, 161–164]. For a more mathematical approach see [165, 166] and refer-
ences therein. The topic of invariant actions is somewhat controversial. For a more
extensive discussion than the one presented here, we refer to [167] and references
therein.

A.1.1 The Poincaré group

The Poincaré group P is the isometry group of Minkowski space M = (Rd, η). It
consists of those transformations (Λ, t) : xa → x′a = Λa

bx
b + ta that leave the line
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element ds2 = ηabdx
adxb invariant. We use the mostly-plus convention. Represen-

tations U of P↑
+ (i.e. those elements of P for which Λ0

0 ≥ 1 and det Λ = +1) are
obtained from the Lie algebra

[Pa, Pb] = 0, (A.1.1a)

[Mab, Pc] = −ηacPb + ηbcPa, (A.1.1b)

[Mab,Mcd] = −ηacMbd + ηadMbc + ηbcMad − ηbdMac, (A.1.1c)

by exponentiation:

U = exp
1

2
ωabMab exp τ cPc. (A.1.2)

Infinitesimal Poincaré transformations are thus given by δxa = ωa
bx

b+τa with ωab :=
ωa

cη
cb = −ωba. Moreover, when we represent the Poincaré group by unitary operators

on the Hilbert space of physical states, the Lie algebra is represented by antihermitian
matrices. The generators Pa of translations are related to the conventional momentum
operators by Pa = −iP conv

a , where P conv
a = (−E, ~p). The Mab generate the Lorentz

transformations of Λ↑
+.

In physics one actually needs to consider the covering group of Λ↑
+. In addition to the

bosonic representations of Λ↑
+ (which can all be obtained by taking tensor products

of the vector representation), the cover Λ̄↑
+ also allows for fermionic representations.

These can be obtained as follows. First one constructs a representation of the Clifford
algebra, which is generated by Γa:

{Γa,Γb} = 2ηab. (A.1.3)

The elements of the Clifford algebra are thus given by Γ(k):

Γa1···ak
= Γ[a1

· · ·Γak] =
1

k!

∑

π

(−)πΓπa1
· · ·Γπak

. (A.1.4)

The spinor representation of the Lorentz group is then given by:

Mab =
1

2
Γab. (A.1.5)

A.1.2 Dirac matrices

In the following we will keep the signature of the metric arbitrary:

ηab = diag(−1, . . . ,−1︸ ︷︷ ︸
×t

,+1, . . . ,+1︸ ︷︷ ︸
×s

). (A.1.6)
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t and s = 2n−t stand for the number of time- and spacelike dimensions, respectively1.
First we construct an explicit representation for the Clifford algebra of SO(2n) in
terms of the complex Dirac matrices:

{Γa,Γb} = 2δab. (A.1.7)

We restrict ourselves to unitary representations, hence the Γ-matrices are hermitian,
Γ†

a = Γa. We define:

ai =
1

2
(Γ2i−1 + iΓ2i), (A.1.8a)

a†i =
1

2
(Γ2i−1 − iΓ2i). (A.1.8b)

These are fermionic creation and annihilation operators:

{ai, aj} = {a†i , a†j} = 0, (A.1.9a)

{ai, a
†
j} = δij . (A.1.9b)

In particular, the 2-dimensional Clifford algebra is given by

{a, a†} = 1, a2 = (a†)2 = 0. (A.1.10)

We define the “vacuum” |−〉 by a|−〉 ≡ 0 and get a single excited state |+〉 = a†|−〉,
hence the Clifford algebra has a two-dimensional irreducible representation (up to
equivalence) that acts on C

2. If we represent a vector |v〉 = v−|−〉 + v+|+〉 by the
column matrix (v−, v+)T , we have

a =

(
0 1
0 0

)
, a† =

(
0 0
1 0

)
. (A.1.11)

There is only one irreducible representation of the SO(2n) Clifford algebra. Its carrier
space is obtained by taking tensor products of the states discussed above. Elements
of this carrier space are called Dirac spinors. We define the vacuum |Ω〉 by

|Ω〉 = |−〉 ⊗ . . .⊗ |−〉, n times, (A.1.12)

on which we act with the raising operators a†i to obtain 2n = 2d/2 states |±〉⊗. . .⊗|±〉.
We obtain

ai = σ3 ⊗ . . .⊗ σ3 ⊗
(

0 1
0 0

)
⊗ 1⊗ . . .⊗ 1, (A.1.13a)

a†i = σ3 ⊗ . . .⊗ σ3 ⊗
(

0 0
1 0

)
⊗ 1⊗ . . .⊗ 1, (A.1.13b)

1In this appendix, we number the dimensions from 1 to 2n. For Minkowski space, t = 1, it is
conventional to denote the timelike dimension by 0 and the spacelike dimensions by 1, . . . , 2n − 1.
This is the convention followed in the main text.
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with 2× 2 matrix in the ith place. Hence

Γ1 = σ1 ⊗ 1⊗ 1⊗ 1 . . . , Γ3 = σ3 ⊗ σ1 ⊗ 1⊗ 1 . . . ,

Γ2 = σ2 ⊗ 1⊗ 1⊗ 1 . . . , Γ4 = σ3 ⊗ σ2 ⊗ 1⊗ 1 . . . , etc.
(A.1.14)

Here {σi}, i = 1, 2, 3, are the standard Pauli matrices. It can be shown that this
2n-(complex)dimensional “standard” representation is unique up to an equivalence
transformation:

Γ′
a = UΓaU

−1, (A.1.15)

where U an arbitrary unitary matrix − unitary, since we want to preserve the her-
miticity properties of the Γ-matrices. Γ-matrices for SO(t, 2n − t) are obtained by
simply multiplying the first t matrices by i. We have

Γ†
a =

{
−Γa, if a = 1, . . . , t

Γa, if a = t+ 1, . . . , 2n,
(A.1.16)

which can be written as

Γ†
a = (−)tAΓaA

−1, A ≡ Γ1 . . .Γt. (A.1.17)

The chirality matrix Γ∗ is defined by

Γ∗ ≡ (−i)n+tΓ1 · · ·Γ2n. (A.1.18)

It anticommutes with the Γa, {Γ∗,Γa} = 0, is hermitian, Γ†
∗ = Γ∗, and squares to

one, (Γ∗)
2 = 1. In the standard representation Γ∗ = σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ . . .. Note

that

Γa1···ak
=

1

(d− k)! i
d/2+t εa1···ad

Γ∗Γ
ad···ak+1 . (A.1.19)

C-matrices The matrices {ΓT
a } and {−ΓT

a } also represent the Clifford algebra and
must thus be equivalent to the Γa, since there is only one inequivalent representation.
Hence there are charge conjugation matrices2 C+ and C− that satisfy

ΓT
a = ±C±ΓaC

−1
± . (A.1.20)

In the standard representation they are given by the following unitary matrices:

C+ = σ1 ⊗ σ2 ⊗ σ1 ⊗ σ2 ⊗ . . . , (A.1.21a)

C− = σ2 ⊗ σ1 ⊗ σ2 ⊗ σ1 ⊗ . . . , (A.1.21b)

2This is an unfortunate misnomer. Changing the sign of the electric charge is related to complex
conjugation of fields. So it are actually the B-matrices that give rise to charge conjugation. Indeed,
given the Dirac equation (/∂ − m + e /A)ψ = 0, one can show that the charge conjugated spinor
ψC = B−1

+ ψ∗ satisfies (/∂ −m− e /A)ψC = 0.
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Γ(k)C−1
+ :

n\k 0 1 2 3

0 + + − −
1 + + − −
2 − − + +
3 − − + +

Γ(k)C−1
− :

n\k 0 1 2 3

0 + − − +
1 − + + −
2 − + + −
3 + − − +

Table A.1.1. Behavior of Γ(k)C−1
± under transposition. A + denotes symmetry, a −

antisymmetry. The tables are (mod 4) in n and k.

regardless of the signature of the metric. We fixed an arbitrary phase. From

CT
+ = σ1 ⊗−σ2 ⊗ σ1 ⊗−σ2 ⊗ . . . ,

CT
− = −σ2 ⊗ σ1 ⊗−σ2 ⊗ σ1 ⊗ . . . ,

we obtain the symmetry properties of the C-matrices:

CT
± = ǫ±C±, with ǫ± = (−)n(n∓1)/2. (A.1.22)

We define the C matrices in other representations (A.1.15) by C → C ′ = U−1TCU−1.
It follows that their unitarity and symmetry properties are independent of the basis
we choose in spinor space.
One can straightforwardly derive the following important relation for the matrices
Γ(k)C−1:

(Γa1···ak
C−1

± )T = (−)[n(n∓1)+k(k∓1)]/2Γa1···ak
C−1

± , (A.1.23)

again regardless of the signature of the metric. The matrices CΓ(k) also satisfy this
relation. The C-matrices are related to each other via the chirality matrix:

C± = (−i)n(−)n(n±1)/2 C∓Γ∗. (A.1.24)

The matrices Γ∗Γ
(k)C−1

± therefore have the same symmetry properties as Γ(k)C−1
∓ .

B-matrices The behavior of the Γ-matrices under complex conjugation does depend
on the signature. Since {±Γ∗

a} represent the Clifford algebra, there are matrices B±

such that:
Γ∗

a = ±B±ΓaB
−1
± . (A.1.25)

They can be related to the C± by means of A. Since

Γ∗
a = (Γ†

a)T = (−)t(AΓaA
−1)T = ±(−)t(C±A

−1)T Γa(C±A
−1)−1T ,

we have (fixing an arbitrary phase)

BT
± =

{
C±A

−1, if t is even,
C∓A

−1, if t is odd.
(A.1.26)
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B+B
∗
+:

n\t 0 1 2 3

0 ⊕ − ⊖ +
1 + ⊕ − ⊖
2 ⊖ + ⊕ −
3 − ⊖ + ⊕

B−B
∗
−:

n\t 0 1 2 3

0 ⊕ + ⊖ −
1 − ⊕ + ⊖
2 ⊖ − ⊕ +
3 + ⊖ − ⊕

Table A.1.2. The sign of BB∗. A + or − sign indicates the existence of (pseudo)-
Majorana and symplectic-(pseudo)-Majorana spinors, respectively. An encircled ⊕ or ⊖
indicates Majorana-Weyl and symplectic-Majorana-Weyl spinors, respectively. In the latter
case, one can choose which B one wants to use. The tables are (mod 4) in n and t.

The B’s are unitary since A and the C’s are unitary. These relations make sense
in any representation if we let the B’s transform as B → B′ = U∗BU−1. Also the
B-matrices are related to each other:

B± =

{
in(−)n(n±1)/2B∓Γ∗, if t is even,

in(−)n(n∓1)/2B∓Γ∗, if t is odd.
(A.1.27)

The following equation will be used below:

B±B
∗
± =

{
ǫ±(−)t(t+1)/2, if t is even,

±ǫ∓(−)t(t+1)/2, if t is odd.
(A.1.28)

Finally we give relations for the complex conjugates of the C-matrices. These are
needed e.g. when discussing the reality properties of spinor bilinears:

C∗
± =

{
B−1T

± C±B
−1
± = (−)nB−1T

∓ C±B
−1
∓ , if t is even,

∓B−1T
∓ C±B

−1
∓ = ∓(−)nB−1T

± C±B
−1
± , if t is odd.

(A.1.29)

Tables for all the above properties can be readily obtained. The following relations
come in handy: (−)n(n−1)/2 = (−)[n/2] and (−)n(n+1)/2 = (−)[(n+1)/2]. Here [n/2]
denotes the largest integer ≤ n/2.

A.1.3 Irreducible spinors

When we defined the raising/lowering operators from which we constructed the Dirac
matrices in the previous section, we took linear combinations of the Γ-matrices with
complex coefficients. This means that up to now we have actually considered the
complex extension of the Clifford algebra. Even though the Γ-matrices are irreducible
representations of the complex extension of the Clifford algebra, they are in general
not irreps of its real form. In addition, they are certainly not irreducible under the
Lorentz group, which is only a subalgebra of the Clifford algebra. To arrive at irreps
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of the Lorentz group, we need to find subspaces in the 2n-dimensional complex spinor
space that are invariant under the action of 1

2Γab. This boils down to imposing certain
constraints on the spinors. These constraints come in two kinds: there are reality
conditions, which yield irreps of the real Clifford algebra, and chirality conditions,
which yield irreps of the Lorentz group only. Before we proceed let us first mention
that we denote spinors by a column matrix ψα, which are the components of the
spinor w.r.t. some fixed basis in spinor space. We usually do not write the indices
explicitly so we drop the α and simply write ψ. We also mention here that we use
the convention that complex conjugation of Grassmann variables interchanges their
order, e.g. (ψχ)∗ = χ∗ψ∗.

Chiral spinors Using the chirality matrix Γ∗, we define projection operators P±:

P± ≡
1

2
(1± Γ∗), (A.1.30)

that satisfy P±P± = P±, P±P∓ = 0, P †
± = P± and P+ + P− = 1. We can decompose

any Dirac spinor ψ into positive and negative chirality parts:

ψ = P+ψ + P−ψ, where Γ∗P±ψ = ±P±ψ. (A.1.31)

This decomposition is invariant with respect to Lorentz transformations. Indeed,
P±Γa = ΓaP∓, which implies that [Γab, P±] = 0. However, physical spinor fields
satisfy the Dirac equation

(Γa∂a −m)ψ = 0. (A.1.32)

If we impose a chirality constraint on ψ, i.e. ψ ≡ P±ψ, we can act on (A.1.32) with
P± to get

0 = P±(Γa∂a −m)ψ = (Γa∂aP∓ −mP±)ψ = −mψ,
so ψ = 0, unless m = 0. Hence chiral spinor fields are necessarily massless. Chiral
spinors are also called Weyl spinors.

Majorana spinors Given a Dirac spinor ψ, we can try to impose a reality condition on
it by restricting ourselves to a subspace of spinor space in which ψ∗ = B̃ψ, for some
matrix B̃. This subspace is invariant under Lorentz transformations if Γ∗

abB̃ = B̃Γab,

i.e. if [Γab, B
−1
± B̃] = 0. Therefore we try the following Majorana conditions:

ψ∗ ≡ αB±ψ, (A.1.33)

where α ∈ C. There is an important additional constraint. We demand that (ψ∗)∗ =
ψ, which is equivalent to |α|2B±B

∗
± = 1. Thus the reality condition (A.1.33) is

consistent only when |α|2 = 1 and

B±B
∗
± = +1. (A.1.34)
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For spinor fields we once again investigate the Dirac equation. Assuming ψ satisfies
(A.1.33), we take the complex conjugate of (A.1.32) and act on it with B−1

± :

0 = B−1
± (Γa∗∂a −m)ψ∗

= B−1
± (±B±ΓaB−1

± ∂a −m)B±ψ = (±)(Γa∂a ∓m)ψ,

If we use B+ in (A.1.33) there is no problem. However, if we use B−, we conclude
that ψ vanishes, unless m = 0. So we have two kinds of real spinors3. Those for which

ψ∗ ≡ αB+ψ (A.1.35)

are called Majorana spinors. Spinors that satisfy

ψ∗ ≡ αB−ψ (A.1.36)

are called pseudo-Majorana spinors. They are necessarily massless. The arbitrary
phase α can be fixed on physical grounds. One can demand e.g. that there exists
a hermitian action or that the supersymmetry algebra implies a positive definite
Hamiltonian.

Majorana-Weyl spinors Sometimes it is possible to impose both a chirality and a reality
condition on a spinor, i.e. ψ satisfies ψ = P±ψ and ψ∗ = αB±ψ. Now

P ∗
± =

{
B±P±B

−1
± , if n+ t = even,

B±P∓B
−1
± , if n+ t = odd.

(A.1.37)

Since ψ∗ = (P±ψ)∗ = αB±P∓ψ = 0 if n+ t = odd, we conclude that Majorana-Weyl
spinors (pseudo, symplectic) exist only if n+ t = even.
The above observation allows us to solve a small riddle. Sometimes B+B

∗
+ = B−B

∗
− =

±1, so that we can use both B+ and B− to impose a (symplectic) reality condition.
The question is then which one to use. Remarkably, the cases in which this happens
are also given by n + t = even! Now B± ∝ B∓Γ∗ by (A.1.27), so on chiral spinors
a reality condition with B± can be traded for one with B∓ by simply redefining the
phase α. We conclude that in the case of (symplectic)-Majorana-Weyl spinors there
is a choice of B-matrix.

Dirac and Majorana conjugates Using (A.1.26) we can write (A.1.33) as

ψ†Aα−1 =

{
ψTC±, if t is even,

ψTC∓, if t is odd.
(A.1.38)

3Actually, when BB∗ = −1 it is still possible to impose a reality condition. However, we need
a pair of spinors, ψ and χ. We then demand ψ∗ = Bχ, χ∗ = −Bψ. This is called a symplectic
(pseudo)-Majorana condition.
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We define the Dirac conjugate of a spinor by ψ̄D = ψ†Aα−1. “The” Majorana con-
jugate is defined by ψ̄M = ψTC; note that there are actually two of these and that
one always needs to specify which particular C is being used. With these definitions,
(A.1.33) simply reads:

ψ̄D ≡ ψ̄M . (A.1.39)

Invariant actions A complex (i.e. Dirac) spinor field satisfies (A.1.32). The hermitian
conjugate of (A.1.32) reads

ψ̄D(Γa←−∂ a − (−)tm) = 0. (A.1.40)

This depends explicitly on t, hence we have to be careful when we try to write down an
action for the Dirac fermion. Since the variational principle works with real functions,
we treat ψ and ψ̄ as independent fields in the action S[ψ, ψ̄]. Varying the action
w.r.t. ψ̄ will give us (A.1.32) whereas varying w.r.t. ψ will give us (A.1.40). Hence
for t = odd we obtain the well-known Lagrangian density (dropping the D on ψ̄)

L = ψ̄(Γ · ∂ −m)ψ, (A.1.41)

whereas for t = even the following expression does the trick:

L = ψ̄Γ∗(Γ · ∂ −m)ψ. (A.1.42)

By making a suitable choice for the phase α, both these actions can be seen to be
hermitian. We have α = ±1 for t = 0, 3 (mod 4) and α = ±i for t = 1, 2 (mod 4).
The sign of α can be fixed by requiring that the Hamiltonian is bounded from below.
In Minkowski spacetimes we get α = +i (see e.g. section A.2.1).

Unfortunately, the actions derived from these Lagrangians sometimes vanish when
considering Majorana spinors. By taking the transpose of these actions and using
(A.1.23) and (A.1.28), one can show that (A.1.41) is a total derivative when t =
3 (mod 4) and (A.1.42) when t = 0 (mod 4), if ψ is Majorana. Hence the actions
for Majorana spinors exist only when t = 1, 2 (mod 4). Fortunately this includes the
all-important case t = 1. Crucial in the above discussion is that one treats the fermion
fields ψ as anticommuting Grassmann numbers, by means of which one incorporates
the spin-statistics theorem already at the classical level.

Note that, when considering Majorana spinors, ψ and ψ̄ are no longer independent.
Finally a small remark on normalization conventions: for Dirac spinors we always
take the actions (A.1.41) and (A.1.42) as they stand, but for Majorana spinors we
normalize them with a factor of 1

2 .

Spinor indices When explicitly using indices on spinors, they get a lower index, e.g.
ψα. The Dirac matrices read (Γa)α

β . Though it makes sense to talk about the
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symmetry properties of the Γ-matrices in a particular representation, one does not
expect these properties to be valid in general. Now the C-matrices do not actually
transform as matrices under a change of basis in spinor space, but rather as bilinear
forms. In particular C−1 → C ′−1 = UC−1UT . It is therefore natural to assign lower
indices to C−1, i.e. we write (C−1)αβ . Thus we get (Γ(k)C−1)αβ , hence the symmetry
properties of these matrices are independent of the particular representation used, as
discussed above. Similarly, we assign upper indices to C, i.e. Cαβ . We get for example
λα = (λ̄M )α = (λTC)α = λβC

βα.

A.1.4 Clebsch, Gordan & Fierz

In this section we present several identities involving Γ-matrices that are indispensable
in practical calculations.

One often needs to work out products of the form Γ(i)Γ(j). The following examples
serve to illustrate the general pattern:

ΓaΓb = Γab + ηab,

ΓabΓc = Γabc + ηbcΓa − ηacΓb,

ΓabΓcd = Γabcd + ηbcΓad − ηbdΓac − ηacΓbd + ηadΓbc + ηbcηad − ηbdηac.

Hence the product Γ(i)Γ(j) gives rise to terms of the form ηkΓ(i+j−2k). There are
k!
(

i
k

)(
j
k

)
of such terms, i.e. the number of ways in which one can form k distinct

pairs, each consisting of one i- and one j-index. These factors appear explicitly in the
decomposition when one introduces antisymmetrization brackets on the right-hand
side of these relations, e.g.:

ΓabΓ
cd = Γab

cd + 4δ
[c
[bΓa]

d]
+ 2δ

[c
[bδ

d]
a].

Hence the Clebsch-Gordan decomposition of two Γ-matrices is given by:

Γa1···ai
Γb1···bj =

min(i,j)∑

k=0

k!

(
i

k

)(
j

k

)
δ
[b1
[ai
· · · δ bk

ai−k+1
Γa1···ai−k]

bk+1···bj ]. (A.1.43)

Another important relation is the following contraction identity:

Γa1···ak
Γb1···bl

Γa1···ak = ck,lΓb1···bl
,

ck,l = k!(−)[k/2](−)kl

min(k,l)∑

p=max
(0,k+l−d)

(−)p

(
d− l
k − p

)(
l

p

)
.

(A.1.44)

This can be proved as follows. First note that

Γa1···ak
Γb1···bl

Γa1···ak = k!(−)k(k−1)/2Γ|a1···ak|Γb1···bl
Γ|ak···a1|,
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where a1 < . . . < ak. We split the sum into separate cases, according to the number
of indices (which we call p) that Γ(k) has in common with Γ(l). Then:

Γâ1···âk
Γb1···bl

Γâk···â1 = (−)kl(−)pΓb1···bl
;

the hats indicate that the indices are not summed over. What remains is a combi-
natorial problem: we need to determine the number of terms in each case p. First,
there are

(
l
p

)
ways in which we can select p of the b-indices. These are put equal to

p of the a-indices. The remaining k − p a-indices have to be chosen from the d − l
numbers that are not a b-index. This can be done in

(
d−l
k−p

)
ways.

Finally, we discuss a Fierz relation. The matrices

{1,Γa,Γa1a2
, . . . ,Γ1···2n}, with a1 < a2 < . . ., (A.1.45)

form a complete set in the space of 2n × 2n complex matrices. This means that we
can expand any matrix Mα

β in spinor space as follows:

Mα
β =

1

2n

2n∑

k=0

(−)[k/2] 1

k!
tr (Γa1···akM) (Γa1···ak

)α
β . (A.1.46)

This can be derived by means of the following trace identity:

tr Γa1···ai
Γb1···bj = δij(−)[i/2] δb1···bi

a1···ai
tr 1, (A.1.47)

which in turn follows from (A.1.43), after using that tr Γ(j) = 0 unless j = 0. Indeed,
for j even we have (with the ai all different):

tr Γa1
· · ·Γaj

= −tr Γaj
Γa1
· · ·Γaj−1

= −tr Γa1
· · ·Γaj

≡ 0.

We used the commutation relations and the cyclicity of the trace. For j odd:

tr Γa1
· · ·Γaj

= tr Γa1
· · ·Γaj

Γ∗Γ∗ = −tr Γ∗Γa1
· · ·Γaj

Γ∗

= −tr Γa1
· · ·Γaj

Γ∗Γ∗ = −tr Γa1
· · ·Γaj

≡ 0,

which holds even when the ai are not all different.

A.2 Supersymmetry

This section serves as an introduction to some of the basic properties of globally and
locally supersymmetric field theories and sets the stage for the more complicated cases
that are discussed in the main text. We will treat the classic example of a globally
supersymmetric field theory, the Wess-Zumino model. In this relatively simple setting,
we will see the spinor machinery of section A.1 at work.
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A.2.1 The Wess-Zumino model

The simplest four-dimensional supersymmetric field theory on Minkowski spacetime
is the Wess-Zumino model [168]. It is a free field theory consisting of a single massless
fermion field χ and massless (pseudo)scalars4. According to section A.1, the mini-
mal spinor in four dimensions has two real on-shell degrees of freedom and is either
Majorana or Weyl. We will choose a Majorana spinor, i.e. χ∗ = iB+χ or χ̄ = χTC,
dropping the suffix on C−. Hence we need two real scalar fields A and B to get a
matching number of bosonic and fermionic degrees of freedom. The Lagrangian for
the Wess-Zumino model reads:

LWZ = −1

2
∂aA∂

aA− 1

2
∂aB∂

aB − 1

2
χ̄Γa∂aχ (A.2.1)

It is not difficult to show that this Lagrangian is invariant (up to a total derivative)
under the following supersymmetry transformations:

δQ(ǫ)A = ǭχ, (A.2.2a)

δQ(ǫ)B = i ǭΓ∗χ, (A.2.2b)

δQ(ǫ)χ = ∂aAΓaǫ+ i ∂aB ΓaΓ∗ǫ (A.2.2c)

Here ǫ is a constant anticommuting Majorana spinor, hence this is a global or rigid
supersymmetry. The factors i are needed to preserve the reality of B and χ. We see
from (A.2.2b) that B is indeed a pseudoscalar.
We are interested in whether these symmetry transformations form a closed algebra.
The commutator of two of these transformations on the scalars is easily calculated
using the flip properties for the Majorana spinors:

[δQ(ǫ1), δQ(ǫ2)]A = −2 ǭ1Γ
aǫ2 ∂aA, (A.2.3a)

[δQ(ǫ1), δQ(ǫ2)]B = −2 ǭ1Γ
aǫ2 ∂aB (A.2.3b)

This is an interesting result: the commutator of two supersymmetry transformations
is proportional to the action of a spacetime translation τa = ǭ1Γ

aǫ2 on the fields5.
We are thus led to suspect that the supersymmetry transformations form a closed
algebra that contains the Poincaré algebra as an ideal. We will see in a minute that
this is indeed the case, but that the algebraic structure is not that of an ordinary Lie
algebra.
For the fermion χ, the calculation is a bit more involved. We obtain

[δQ(ǫ1), δQ(ǫ2)]χ = Γa(ǫ2ǭ1 − ǫ1ǭ2)∂aχ− ΓaΓ∗(ǫ2ǭ1 − ǫ1ǭ2)Γ∗∂aχ

4We limit ourselves to the massless case for simplicity, though we could have certainly considered
massive fields. However, as we will see below, supersymmetry then demands that the fields all have
the same mass.

5Under a translation xa 7→ xa + ta, fields Φ transform as Φ(x) 7→ Φ′(x) ≡ Φ(x − t). For an
infinitesimal translation τ we get δT(τ)Φ = Φ′(x)−Φ(x) = −τa∂aΦ ≡ τaPa. Thus a translation Pa

is realized on fields by −∂a.
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We would like an expression similar to that for the bosons, i.e. one containing ǭ1Γ
aǫ2.

We use the following Fierz relation to achieve this:

ψχ̄ = − 1
4

[
(χ̄ψ)1+ (χ̄Γ∗ψ)Γ∗ +(χ̄Γaψ)Γa− (χ̄Γ∗Γ

aψ)Γ∗Γa− 1
2 (χ̄Γabψ)Γab

]
. (A.2.4)

Several cancellations occur and in the end we obtain:

[δQ(ǫ1), δQ(ǫ2)]χ = −2 ǭ1Γ
aǫ2 ∂aχ+ (ǭ1Γ

aǫ2)Γa/∂χ (A.2.5)

The first term is again a translation, but the second term does not correspond to
any known symmetry transformation. Luckily, it vanishes when the field equation
for χ is satisfied. This is a general feature of supersymmetric field theories: the
supersymmetry algebra only closes on-shell. This is an obvious consequence of the
fact that the Dirac equation acts as a projection operator, thereby eliminating one-
half of the fermionic degrees of freedom. So although the number of bosonic and
fermionic degrees of freedom match on-shell, there is a mismatch off-shell6.
We write a supersymmetry transformation on a generic field Φ as δQ(ǫ)Φ = (ǭQ)Φ =
ǫαQαΦ, where Qα is the generator of supersymmetries or supercharge (see appendix
A for our conventions on spinor indices). Since δQ(ǫ) preserves the reality of the fields
and ǫ is a Majorana spinor, the supercharge Q is also Majorana. Moreover, since
δQ(ǫ) is an ordinary bosonic (Grassmann-even) operator, and ǫ is Grassmann-odd,
the supercharges need to be Grassmann-odd as well. Hence:

[δQ(ǫ1), δQ(ǫ2)] = (ǫα1Qα)(ǫβ2Qβ)− (ǫβ2Qβ)(ǫα1Qα)

= −ǫα1 ǫβ2 (QαQβ +QβQα) = −ǫα1 ǫβ2{Qα, Qβ}

On the other hand ǭ1Γ
aǫ2 = ǫT1 CΓaǫ2 = −ǫT1 CΓaC−1(ǫT2 C)T = −ǫα1 ǫβ2 (ΓaC−1)αβ and

thus:

{Qα, Qβ} = 2(ΓaC−1)αβPa. (A.2.6)

The supersymmetry transformations δǫ of (A.2.2) commute with translations δτ and
Lorentz transformations δω. Now

[δL(ω), δQ(ǫ)] =
1

2
[ωabMab, ǭQ] = −1

4
ωab ǭΓabQ+

1

2
ωab ǫα[Mab, Qα],

[δT(τ), δQ(ǫ)] = [τaPa, ǭQ] = τaǫα[Pa, Qα].

6Sometimes it is possible to extend the field content with so-called auxiliary fields in such a way
that the algebra does close off-shell. These fields then need to have an algebraic equation of motion,
so that they can be eliminated on-shell. This is for example possible for the Wess-Zumino model
and the N = 1 supergravity theory in four dimensions. However, for the theories with extended
supersymmetry and in particular the ten-dimensional theories in which we are interested, it is not
known how to obtain a suitable set of auxiliary fields. We will just have to make do without.
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Thus the supercharge Qα is invariant under translations and a spinor under Lorentz
transformations:

[Pa, Qα] = 0, (A.2.7a)

[Mab, Qα] =
1

2
(ΓabQ)α. (A.2.7b)

The equations (A.2.6) and (A.2.7), together with (A.1.1), constitute a so-called su-
peralgebra7. The particular algebra under consideration is known as the N = 1, d = 4
super-Poincaré algebra, where N stands for the number of supercharges.
We end our discussion of the Wess-Zumino model with a few observations. First of all,
P 2 = PaP

a is a Casimir operator of the entire super-Poincaré algebra. This implies
that all fields in a single supermultiplet have the same mass. More interesting is the
following. From (A.2.6) we obtain (dropping the spinor indices):

{Q,Q∗} = α{Q,Q}BT = 2αΓaA−1Pa, (A.2.8)

where we used (A.1.26) and reinstated the constant α of (A.1.35). We have taken α
to be +i and now we see why. The LHS of (A.2.8) is a positive semi-definite operator.
Taking a trace over the spinor indices, we obtain:

tr {Q,Q∗} = 2αPa tr ΓaΓ0 = −2αP0 tr 1 = −8iαH ≥ 0.

This implies that (with α = +i!), the Hamiltonian H is not only bounded from below
but even nonnegative:

H ≥ 0. (A.2.9)

This inequality is saturated by those states |·〉 that are invariant under all the super-
symmetries: Q|·〉 = 0. From (A.2.6) we see that the only state in the theory that
satisfies this condition is invariant under the translations Pa, i.e. the vacuum.

7A superalgebra is basically a Lie algebra that is extended by adding anticommuting generators
to it and a suitable redefinition of the bracket operation and the Jacobi identity. It can be shown
on quite general physical grounds that the only way in which one can nontrivially combine an
internal symmetry algebra and the Poincaré transformations in a single algebraic structure, is by
embedding these algebras in a superalgebra [169,170]. We could have used this as the starting point
of our discussion, i.e. first construct the super-Poincaré algebra, then find its representations à la
Wigner and finally construct supersymmetric field theories. This is indeed the approach that is
adopted in many treatments, but it would have taken us too far afield. For more information see
e.g. [34,163,165,171–173].



Appendix B

Miscellanea

In this appendix we present additional background material for some points in the
main text. We also discuss our conventions.

B.1 Conventions and basic results

No work in string theory is complete without a discussion of the conventions. We
already discussed fermions in appendix A, so this section will be entirely about bosons.

B.1.1 Indices & differential forms

First, a warning about indices. We do not use a consistent nor an unambiguous set
of conventions for our indices throughout this thesis. In particular, the notation in
chapters 1 and 2 differs from that in chapters 3 and 4. We explain in the text what
conventions we are using at a given time.

Here we summarize our conventions for the differential form notation which we
use throughout chapters 1 and 2. For a p-form C(p) we write

C(p) =
1

p!
Cµ1···µp

dxµ1 ∧ . . . ∧ dxµp , (B.1.1)

where Cµ1···µp
denotes the components of the p-form w.r.t. a coordinate basis. We

define antisymmetrization with ‘weight one’, i.e. Cµ1···µp
= C[µ1···µp]. The wedge

product of the p basis 1-forms dxµ is defined by

dxµ1 ∧ . . . ∧ dxµp ≡
∑

π

ς(π) dxµπ(1) ⊗ . . .⊗ dxµπ(p) , (B.1.2)
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where ς(π) = +1,−1 if the permutation π is even or odd, respectively. The wedge
product A(p) ∧B(q) of a p-form A(p) and a q-form B(q) is defined by

A(p) ∧B(q) =
1

p!q!
Aµ1···µp

Bν1···νq
dxµ1 ∧ . . . ∧ dxµp ∧ dxν1 ∧ . . . ∧ dxνq , (B.1.3)

hence (A ∧ B)µ1···µp+q
= (p+q)!

p!q! A[µ1···µp
Bµp+1···µp+q ]. The exterior derivative dC(p) is

defined by

dC ≡ 1

p!
∂νCµ1···µp

dxν ∧ dxµ1 ∧ . . . ∧ dxµp , (B.1.4)

hence (dC)µ1···µp+1
= (p+ 1)∂[µ1

Cµ2···µp+1]. Note that d2 = 0.
We denote the space of p-forms on a manifoldM by Ωp(M). In particular Ω1(M) =

T ∗(M), i.e. 1-forms live in the cotangent bundle of M . Consider a submanifold Σ of
M . The embedding of Σ in M is given by the inclusion map ı : Σ → M and can be
described in local coordinated by the functions xµ(σα), where xµ are local coordinates
on M and σα on Σ. We can use ı to ‘pull-back’ p-form fields C(p) that live on M to
p-form fields that live on Σ. We have the map ı∗ : Ωp(M) → Ωp(Σ) which acts on
p-forms ı∗ : C(p) 7→ ı∗C(p) as

(ı∗C)α1···αp
= Cµ1···µp

∂α1
xµ1 · · · ∂αp

xµp . (B.1.5)

We always use the ‘mostly-plus’ metric:

ds2 = gµν dxµ ⊗ dxν = ηab e
a ⊗ eb, (B.1.6)

with ηab = diag(−1, . . . ,−1,+1, . . . ,+1) as in (A.1.6) and where ea = ea
µdxµ is an

orthonormal frame of 1-forms. ea
µ is known as the vielbein, we denote its inverse by

Eµ
a . It is customary to denote the µ-indices by ‘curved’ and the a-indices by ‘flat’, even

though the µ-coordinates could in principle be Cartesian coordinates in Minkowksi
space, say. We can use the vielbein to switch from curved to flat indices and vice
versa, e.g. Aµ

ν = Eµ
a e

b
νA

a
b.

The Levi-Civita tensor ε is defined by:

εµ1···µd
=
√
|g| ε̃µ1···µd

, εµ1···µd =
1√
|g|

ε̃µ1···µd , (B.1.7)

where the Levi-Civita symbol ε̃ is defined by

ε̃12···d = +1, ε̃12···d = (−)t. (B.1.8)

The Hodge duality operation maps p-forms to q-forms with q = d − p, ∗ : Ωp(M) →
Ωd−p(M). It is defined by

∗(dxµ1 ∧ . . . ∧ dxµp) ≡ 1

q!
εν1···νq

µ1···µp dxν1 ∧ . . . ∧ dxνq . (B.1.9)
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Hence (∗)2 = (−)pq+t and

(∗A)µ1···µq
= εµ1···µq

|ν1···νp|A|ν1···νp|. (B.1.10)

In particular
∗1 =

√
|g|dx1 ∧ . . . ∧ dxd ≡ ddx

√
|g|. (B.1.11)

Finally we note that

∗A ∧B =
1

p!
Aµ1···µp

Bµ1···µp ∗1. (B.1.12)

B.1.2 Einstein-Cartan, Weyl and Kaluza-Klein

We use the Einstein-Cartan formulation of gravity (see e.g. [9, 46, 48,174]). We start
from

dǫa =
1

2
Ωa

bce
b ∧ ec, (B.1.13)

with the Ricci coefficients Ωa
bc = Eµ

b E
ν
c (∂µe

a
ν − ∂νe

a
µ). We then have for the compo-

nents of dA w.r.t. an orthonormal frame (A is a 1-form):

(dA)ab = ∂aAb − ∂bAa + Ωc
abAc, (B.1.14)

where we define ∂a = Eµ
a ∂µ. We convert all tensors to flat indices by using (inverse)

vielbeins and define spacetime covariant derivatives:

∇µV
a = ∂µV

a + ωa
µbV

b, ∇µAa = ∂µAa − ωb
µaAb. (B.1.15)

The connection ωa
µb is metric compatible: ∇µηab = 0. This implies that ωµab = −ωµba,

where ωµab = ηbcω
c
µa. We define connection 1-forms by ωa

b = ωa
µbdx

µ. The torsion
1-form T a and curvature 2-form Ra

b are defined by the Maurer-Cartan equations:

T a = dea + ωa
b ∧ eb, (B.1.16a)

Ra
b = dωa

b + ωa
c ∧ ωc

b. (B.1.16b)

There is a unique metric-compatible and torsion-free (i.e. T a = 0) connection known
as the Levi-Civita connection. It is given by:

ωabc = −1

2
(Ωabc − Ωbca − Ωcab), (B.1.17)

where we defined ωabc = Eµ
aωµab. The Riemann tensor Ra

bcd can be read off from
Ra

b = 1
2!R

a
bcde

a ∧ eb. The Ricci tensor is defined as Rab = Rc
acb and the curvature

scalar – from which we build the Einstein-Hilbert action – by R = ηabRab. The
following identity is very useful:

R = −2∂aω
a + ωabcω

cab − ωaω
a, (B.1.18)
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where ωa = ηbcωbca. Indeed, the components of the curvature 2-form are Rab
cd =

(dωab)cd + (ωae ∧ ωe
b)cd. The desired result follows after using:

(dωab)cd = ∂cωd
ab − ∂dωc

ab + Ωe
cdωe

ab = ∂cωd
ab − ∂dωc

ab + (ωcde + ωdec)ω
eab,

and contracting indices, R = Rab
ab.

Weyl rescalings

The expression (B.1.18) provides an efficient shortcut for the calculation of the cur-
vature scalar. We now show how this works for the Weyl rescaling of the metric –
something we have used several times in chapters 1 and 2.

We are given the metric ḡµν and define a new metric gµν by

ḡµν = e2αφgµν , (B.1.19)

where α is a number. We will show that

R̄[ḡ] = e−2αφ
[
R[g]− α2(d− 1)(d− 2)∂µφ∂

µφ− 2α(d− 1)∇µ∂
µφ
]
. (B.1.20)

First we construct the vielbein 1-forms. We have ēa = eαφea. Now

dēa = deαφ ∧ ea + eαφdea = αeαφδa
c ∂bφ e

b ∧ ec + 1
2eαφΩa

bc e
b ∧ ec,

from which we read off Ω̄a
bc = e−αφ

[
Ωa

bc − α(δa
b ∂cφ− δa

c ∂bφ)
]
. The spin connection

follows straightforwardly:

ω̄abc = e−αφ
[
ωabc + α(ηab∂cφ− ηac∂bφ)

]
, ω̄a = e−αφ

[
ωa + α(d− 1)∂aφ

]
.

We have to be a bit careful with the derivatives ∂a since they contain vielbeins. We
have ∂̄a = e−αφ∂a and obtain

∂̄aω̄
a = e−2αφ

[
∂aω

a − α2(d− 1)∂aφ∂
aφ− αωa∂aφ+ α(d− 1)∂a∂

aφ
]
,

ω̄abcω̄
cab = e−2αφ

[
ωabcω

cab − 2αωa∂a − α2(d− 1)∂aφ∂
aφ
]
,

ω̄aω̄
a = e−2αφ

[
ωaω

a + 2α(d− 1)ωa∂aφ+ α2(d− 1)2∂aφ∂
aφ
]
.

The desired result follows upon recognizing that ∇aV
a = (∂a + ωa)V a.

Kaluza-Klein reduction

We now consider the Kaluza-Klein reduction of the curvature scalar from (d+1) to d
dimensions. We denote x̂µ̂ = (xµ, z) and write higher dimensional fields and indices
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with a hat. The metric ĝµ̂ν̂ decomposes into the lower-dimensional metric gµν , a
gauge field Aµ and a modulus φ as follows

d̂s2 = e2αφgµνdxµdxν + e2βφ(dz −Aµdxµ)2, (B.1.21)

with α and β are real parameters. This parametrization guarantees that the d-
dimensional fields have the correct transformation properties under the d-dimensional
general coordinate transformations. The reduction is achieved by taking the unhatted
fields to be independent of the z coordinate, i.e. ∂zgµν = ∂zAµ = ∂zφ = 0.

The reduction of the Einstein-Hilbert action starts with picking a basis of vielbein
1-forms:

êa = eαφea, êz = eβφ(dz +A). (B.1.22)

We underline the z-index to emphasize that it is a flat index. We have used local
Lorentz transformations to gauge away êa

z . A calculation similar the one we presented
above then yields:

√
|ĝ|R̂ =

√
|g| e[(d−2)α+β]φ

[
R− 1

4
e−2(α−β)φFµνF

µν − 2
[
α(d− 1) + β

]
∇µ∂

µφ

−
[
α2(d− 1)(d− 2) + 2αβ(d− 2) + 2β2

]
∂µφ∂

µφ
]
, (B.1.23)

with F = dA. We consider now the reduction of pure gravity in the Einstein frame
over a circle. We take the following coordinate interval z ∈ [0, 2πρ), where ρ is a
parameter with the dimension of length. It is convenient to take α = 0 and β = 1

2
and we obtain:

S[ĝ] =
1

2κ̂2

∫
dd+1x̂

√
|ĝ|R̂ =

2πρ

2κ̂2

∫
ddx

√
|g| eφ

[
R− 1

4
e2φFµνF

µν − 2 e−φ
�eφ

]
.

We can drop the last term since it is a total derivative,
√
|g|∇µV

µ = ∂µ(
√
|g|V µ). We

now expand the modulus φ around its vacuum expectation value and write ϕ = φ−〈φ〉
and perform a Weyl rescaling that gets rid of the eϕ in front of R. We obtain

S[g,A, ϕ] =
1

2κ2

∫
ddx

√
|g|
[
R− 1

4
e2ϕFµνF

µν − d− 1

d− 2
∂µϕ∂

µϕ
]
, (B.1.24)

where we again dropped a total derivative. We defined the d-dimensional gravitational
coupling constant by

1

2κ2
≡ 2πρ e〈φ〉

1

2κ̂2
. (B.1.25)

This is the relation we used in equation (1.3.18), with R ≡ ρ e〈φ〉 the physical radius
of the circle.
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B.1.3 Yang-Mills theory

Here we review the standard construction of Yang-Mills theories in order to fix our
conventions. Consider fields Φi that carry a matrix representation (Tα)i

j of a Lie
algebra g:

[Tα,Tβ ] = fγ
αβTγ , (B.1.26)

i.e. δΦi = ǫα(Tα)i
jΦ

j , where the parameters ǫα are real and are allowed to vary over
spacetime. The structure constants fγ

αβ are also real and satisfy fγ
αβ = −fγ

βα. We
define the gauge covariant derivative on Φ as

(DµΦ)i ≡ ∂µΦi + gAα
µ(Tα)i

jΦ
j . (B.1.27)

We will drop the parentheses and simply write DµΦi in the following. g is the
Yang-Mills coupling constant. The covariant derivative transforms as δDµΦi =
ǫα(Tα)i

jDµΦj under gauge transformations if we suppose that the gauge fields Aα
µ

transform as

δAα
µ = −1

g
∂µǫ

α + fα
βγǫ

βAγ
µ. (B.1.28)

The field strength Fα
µν is defined as the commutator of two covariant derivatives:

[Dµ,Dν ]Φi ≡ gFα
µν(Tα)i

jΦ
j , (B.1.29)

from which

Fα
µν = ∂µA

α
ν − ∂νA

α
ν + gfα

βγA
β
µA

γ
ν . (B.1.30)

A straightforward calculation yields δFα
µν = fα

βγǫ
βF γ

µν after using the Jacobi identity

fδ
ǫαf

ǫ
βγ + fδ

ǫβf
ǫ
γα + fδ

ǫγf
ǫ
αβ = 0. (B.1.31)

The adjoint representation is defined by the action of the algebra on itself:

AdTα|Tβ〉 ≡ |[Tα,Tβ ]〉 = fγ
αβ |Tγ〉. (B.1.32)

The matrix elements of the adjoint representation are thus given by (Tadj
α )β

γ = fβ
αγ .

We see that the field strength transforms in the adjoint, whereas the gauge field has an
inhomogeneous term. The coadjoint representation is given by (Tcoadj

α )β
γ = −fγ

αβ .
The contraction of a field Aα in the adjoint with a field Bα in the coadjoint is invariant
under gauge transformations: δ(AαBα) = ǫγfα

γβA
βBα −Aαǫγfβ

γαBβ = 0.
Since Fα

µν transforms covariantly under gauge transformations, the expression
DµF

α
νρ is well defined. It is straightforward to show that Fα

µν satisfies the Bianchi
identity

DµF
α
νρ +DνF

α
ρµ +DρF

α
µν ≡ 0, (B.1.33)
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using either the definition (B.1.29) or the Jacobi identity (B.1.31). Note that we can
write (B.1.28) as δAα

µ = − 1
gDµǫ

α.

It follows from the Jacobi identity that δfα
βγ = ǫκ(fα

κδf
δ
βγ − fδ

κβf
α

δγ −
fδ

κγf
α

βδ) = 0, i.e the structure constants are invariant tensors of the gauge alge-
bra. The tensor

Kαβ ≡ Tr T
adj
α T

adj
β = fγ

αδf
δ
βγ (B.1.34)

is thus also invariant. This symmetric tensor is known as the Cartan-Killing metric of
the Lie algebra (B.1.26). Contract the Jacobi identity with fγ

κδ and rename indices
to obtain

Kαδf
δ
βγ = −fκ

λαf
λ

µβf
µ

κγ + fκ
λβf

λ
µαf

µ
κγ .

Hence

Kαδf
δ
βγ = −Kβδf

δ
αγ . (B.1.35)

So the structure constants with only lower indices, fαβγ ≡ Kαδf
δ
βγ , are completely

antisymmetric in all three indices.

We can use the Cartan-Killing metric to construct an invariant Lagrangian for the
gauge field:

L[Aα
µ ] =

1

4
KαβF

α
µνF

βµν . (B.1.36)

Since Kαβ is real and symmetric, it has real eigenvalues and can be diagonalized.
An important physical requirement is the absence of ghosts, i.e. the absence of fields
which have the wrong sign in front of their kinetic terms in the Lagrangian. Fur-
thermore, we would like to have a nondegenerate Lagrangian. These requirements
are fulfilled if the eigenvalues of Kαβ are negative definite. This is the case if g is
the Lie algebra of a compact, semisimple Lie group G (see e.g. [175, 176]), which is
what we will suppose from now on. By rescaling the generators, we can always make
Kαβ = TrT

adj
α T

adj
β = −δαβ . It can be shown that TrTαTβ = −c δαβ for the other rep-

resentations of g, where c is a positive real number that depends on the representation
in question.

The finite dimensional representations U of a compact group G are all unitary and
hence (Tα)† = −Tα (we write U = exp ǫαTα). Invariant terms for the fields Φi are
now easily constructed. We write Φi as a column vector Φ. We have δΦ = ǫαTαΦ
and thus δΦ† = −Φ†

Tαǫ
α, δ(DµΦ)† = −(DµΦ)†Tαǫ

α, etc. Possible invariants are
thus for instance Φ†Φ and (DµΦ)†DµΦ.

We can also introduce a matrix notation for the gauge field and other fields that
are valued in the adjoint. Take any finite dimensional representation (Tα)i

j and define
matrix-valued fields:

(Aµ)i
j ≡ Aα

µ(Tα)i
j , (Fµν)i

j ≡ Fα
µν(Tα)i

j , (DµΦ)i
j ≡ DµΦα(Tα)i

j (B.1.37)
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and so on. We drop the indices i, j from now on. In terms of these fields we have for
instance

DµΦ = ∂µΦ + g[Aµ,Φ], (B.1.38)

and

[Dµ,Dν ]Φ = g[Fµν ,Φ], with Fµν = ∂µAν − ∂νAµ + g[Aµ,Aν ]. (B.1.39)

The finite versions of the infinitesimal gauge transformations δΦ = [ǫ,Φ] now read
Φ → UΦU

†, where U is in the same representation as Tα. Gauge invariant objects
can be formed by taking traces, e.g. TrFµνD

µ
ΦD

ν
Φ. We have in particular

L[Aµ] =
1

4c
Tr FµνF

µν . (B.1.40)

Now we redefine the generators as T̃α = Tα/
√
c, so that Tr T̃αT̃β = −δαβ (this of

course changes the normalization of the trace in the other representations as well),

the coupling constant as g̃ = g
√
c, and the gauge field as Ãα

µ = g̃Aα
µ . The Lagrangian

becomes

L[Ãµ] =
1

4g̃2
Tr F̃µν F̃

µν , (B.1.41)

with Ãµ = Ãα
µT̃α and

F̃µν = ∂µÃν − ∂νÃµ + [Ãµ, Ãν ]. (B.1.42)

This is the convention that we used in the main text. Note also that in the main text
we often write not only the adjoint indices as upper indices, but also the coadjoint
indices. In chapters 3 and 4 we indicate these indices with A,B, . . ., and the generators
with λA. For instance, the terms Fα

µνTα and fαβγtrFαF βF γ would read FA
µνλ

A and

fABCtrFAFBFC , respectively, in the main text.

B.2 Amplitudes & the 4-point function

Here we list our conventions for the amplitude calculations in chapter 3. As explained
in chapter 1, the quantum effective action for the massless modes and the Wilsonian
effective action actually coincide at tree-level. We will calculate the amplitudes in the
formalism of the QEA, since this is more convenient.

The QEA is by definition the generator of 1PI diagrams:

Seff [Aa] ≡
∑

n

1

n!

∫
d10x1 · · · d10xn Γ

(n)
a1···an

(x1, . . . , xn)Aa1(x1) · · ·Aan(xn), (B.2.1)

hence

Γ
(n)
a1···an

(x1, . . . , xn) =
δnSeff [Aa]

δAa1(x1) . . . δAan(xn)

∣∣∣∣
Aa=0

. (B.2.2)
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We define the momentum space amplitudes as follows:

(2π)10δ(10)(k1 + . . .+ kn)Γ
(n)
a1···an

(k1, . . . , kn)

≡
∫ n∏

i=1

d10xi eiki·xi Γ
(n)
a1···an

(x1, . . . , xn). (B.2.3)

An n-photon interaction gives the following contribution to the S-matrix:

A(1, . . . , n) = i(2π)10δ(10)(k1 + . . .+ kn) ζ1
a1
· · · ζn

an
Γ

(n)
a1···an

(k1, . . . , kn). (B.2.4)

B.2.1 Proof of equation (3.3.1)

In order to reproduce (3.3.1), we have to obtain the following 1PI four-point function
from (3.3.9):

Γ
(4)
klmn(k1, k2, k3, k4) = −16(gα′)2 takblcmdnk

a
1k

b
2k

c
3k

d
4 G(k1, k2, k3, k4). (B.2.5)

First we calculate the four-point function in position space:

Γ
(4)
klmn(y1, . . . , y4) =

δ4Seff [Aa]

δAk(y1)Al(y2)Am(y3)An(y4)

∣∣∣∣
Aa=0

= −4!24 1

24
(gα′)2

∫
d10x

{
∏

i

d10xi δ(x− xi)

}
D(∂x1

, . . . , ∂x4
)takblcmdn

× ∂a
x1
δ(x1 − y1)∂b

x2
δ(x2 − y2)∂c

x3
δ(x3 − y3)∂d

x4
δ(x4 − y4). (B.2.6)

The factor of 24 arises from substituting Fab = ∂aAb − ∂bAa, the factor 4! from the
distributive property of the functional derivative. To arrive at the result we renamed
dummy variables and made use of the fact that D is symmetric in its arguments. In
momentum space this becomes:

− 1

16(gα′)2
(2π)10δ(k1 + k2 + k3 + k4)Γ

(4)
klmn(k1, k2, k3, k4)

= takblcmdn

∫
d10x

{∏

i

d10xid
10yi δ(xi − x)eiki·yi

}
D(∂x1

, . . . , ∂x4
)

× ∂a
x1
δ(x1 − y1)∂b

x2
δ(x2 − y2)∂c

x3
δ(x3 − y3)∂d

x4
δ(x4 − y4)

= takblcmdn

∫
d10x

{∏

i

d10xi δ(xi − x)
}

×D(∂x1
, . . . , ∂x4

) ∂a
x1
∂b

x2
∂c

x3
∂d

x4

{∏

j

∫
d10yj eikj ·yjδ(xj − yj)

}
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= takblcmdn

∫
d10x

{∏

i

d10xi δ(xi − x)
}

× G(−i∂x1
, . . . ,−i∂x4

)∂a
x1
∂b

x2
∂c

x3
∂d

x4

{∏

j

eikj ·xj

}

= takblcmdn

∫
d10x

{∏

i

d10xi δ(xi − x) eiki·xi

}
G(k1, . . . , k4) k

a
1k

b
2k

c
3k

d
4

= takblcmdn G(k1, . . . , k4) k
a
1k

b
2k

c
3k

d
4 × (2π)10δ(k1 + k2 + k3 + k4).

This completes the proof.
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effective action: cancellation of Möbius infinities and derivative corrections to Born-Infeld
Lagrangian, Nucl. Phys. B311 (1988) 205

[53] R. G. Leigh, Dirac-Born-Infeld action from Dirichlet σ-model, Mod. Phys. Lett. A4 (1989)
2767

[54] E. Kiritsis, D-branes in standard model building, gravity and cosmology, Fortsch. Phys. 52

(2004) 200, hep-th/0310001

[55] T. H. Buscher, A symmetry of the string backround field equations, Phys. Lett. B194 (1987)
59

[56] T. H. Buscher, Path integral derivation of quantum duality in nonlinear sigma models, Phys.
Lett. B201 (1988) 466

[57] E. Bergshoeff and M. de Roo, D-branes and T-duality, Phys. Lett. B380 (1996) 265,
hep-th/9603123

[58] E. Witten, Bound states of strings and p-branes, Nucl. Phys. B460 (1996) 335,
hep-th/9510135

[59] R. C. Myers, Nonabelian phenomena on D-branes, Class. Quant. Grav. 20 (2003) S347,
hep-th/0303072

[60] N. Berkovits, ICTP lectures on covariant quantization of the superstring, hep-th/0209059

[61] P. A. Grassi, G. Policastro and P. van Nieuwenhuizen, An introduction to the covariant
quantization of superstrings, Class. Quant. Grav. 20 (2003) S395, hep-th/0302147

[62] N. Berkovits, Covariant multiloop superstring amplitudes, Comptes Rendus Physique 6

(2005) 185, hep-th/0410079

[63] N. Berkovits, Super-Poincare covariant two-loop superstring amplitudes, hep-th/0503197

[64] P. A. M. Dirac, Lectures on quantum mechanics, Dover Publications (2001)

[65] M. Henneaux and C. Teitelboim, Quantization of gauge systems, Princeton Univ. Pr. (1994)

[66] K. Sundermeyer, Constrained dynamics, Springer-Verlag (1982)

[67] J. Polchinski, Dirichlet branes and Ramond-Ramond charges, Phys. Rev. Lett. 75 (1995)
4724, hep-th/9510017

[68] L. J. Romans, Massive N = 2a supergravity in ten dimensions, Phys. Lett. B169 (1986) 374

[69] E. Bergshoeff, M. B. Green, G. Papadopoulos and P. K. Townsend, The IIA
super-eightbrane, hep-th/9511079

[70] E. Bergshoeff, M. de Roo, M. B. Green, G. Papadopoulos and P. K. Townsend, Duality of
Type II 7-branes and 8-branes, Nucl. Phys. B470 (1996) 113, hep-th/9601150

[71] F. Giani and M. Pernici, N = 2 supergravity in ten dimensions, Phys. Rev. D30 (1984) 325

[72] I. C. G. Campbell and P. C. West, N = 2, D = 10 nonchiral supergravity and its spontaneous
compactification, Nucl. Phys. B243 (1984) 112



162 Bibliography

[73] J. H. Schwarz, Covariant field equations of chiral N = 2, D = 10 supergravity, Nucl. Phys.
B226 (1983) 269

[74] P. S. Howe and P. C. West, The complete N = 2, d = 10 supergravity, Nucl. Phys. B238

(1984) 181

[75] P. Pasti, D. P. Sorokin and M. Tonin, On Lorentz invariant actions for chiral p-forms, Phys.
Rev. D55 (1997) 6292, hep-th/9611100

[76] E. Bergshoeff, C. M. Hull and T. Ort́ın, Duality in the type II superstring effective action,
Nucl. Phys. B451 (1995) 547, hep-th/9504081

[77] E. Bergshoeff, M. de Roo, B. de Wit and P. van Nieuwenhuizen, Ten-dimensional
Maxwell-Einstein supergravity, its currents and the issue of its auxiliary fields, Nucl. Phys.
B195 (1982) 97

[78] G. F. Chapline and N. S. Manton, Unification of Yang-Mills theory and supergravity in ten
dimensions, Phys. Lett. B120 (1983) 105

[79] M. J. Duff, Supermembranes, hep-th/9611203

[80] E. Cremmer, B. Julia and J. Scherk, Supergravity theory in 11 dimensions, Phys. Lett. B76

(1978) 409

[81] S. Ferrara and P. van Nieuwenhuizen, Consistent supergravity with complex spin 3
2

gauge
fields, Phys. Rev. Lett. 37 (1976) 1669

[82] G. W. Gibbons and C. M. Hull, A Bogomolny bound for general relativity and solitons in
N = 2 supergravity, Phys. Lett. B109 (1982) 190

[83] E. Witten and D. I. Olive, Supersymmetry algebras that include topological charges, Phys.
Lett. B78 (1978) 97

[84] J. P. van der Schaar, String theory limits and dualities, PhD thesis, University of Groningen
(2000)

[85] R. Halbersma, Geometry of strings and branes, PhD thesis, University of Groningen (2002)

[86] J. A. de Azcarraga, J. P. Gauntlett, J. M. Izquierdo and P. K. Townsend, Topological
extensions of the supersymmetry algebra for extended objects, Phys. Rev. Lett. 63 (1989)
2443

[87] D. Youm, Black holes and solitons in string theory, Phys. Rept. 316 (1999) 1,
hep-th/9710046

[88] A. Dabholkar, G. W. Gibbons, J. A. Harvey and F. Ruiz Ruiz, Superstrings and solitons,
Nucl. Phys. B340 (1990) 33

[89] B. Janssen, Dualities of string and branes, PhD thesis, University of Groningen (1998)

[90] W. Taylor, M(atrix) theory: Matrix quantum mechanics as a fundamental theory, Rev. Mod.
Phys. 73 (2001) 419, hep-th/0101126

[91] P. Horava and E. Witten, Heterotic and type I string dynamics from eleven dimensions,
Nucl. Phys. B460 (1996) 506, hep-th/9510209

[92] P. Horava and E. Witten, Eleven-Dimensional Supergravity on a Manifold with Boundary,
Nucl. Phys. B475 (1996) 94, hep-th/9603142

[93] A. Bilal, Higher-derivative corrections to the non-abelian Born- Infeld action, Nucl. Phys.
B618 (2001) 21, hep-th/0106062

[94] E. S. Fradkin and A. A. Tseytlin, Nonlinear electrodynamics from quantized strings, Phys.
Lett. B163 (1985) 123



Bibliography 163

[95] E. Bergshoeff, M. Rakowski and E. Sezgin, Higher-derivative super Yang-Mills theories,
Phys. Lett. B185 (1987) 371

[96] R. R. Metsaev and M. A. Rakhmanov, Fermionic terms in the open superstring effective
action, Phys. Lett. B193 (1987) 202

[97] M. Cederwall, B. E. W. Nilsson and D. Tsimpis, d = 10 super-Yang-Mills at α′2, JHEP 07

(2001) 042, hep-th/0104236

[98] M. Aganagic, C. Popescu and J. H. Schwarz, Gauge-invariant and gauge-fixed D-brane
actions, Nucl. Phys. B495 (1997) 99, hep-th/9612080

[99] M. Cederwall, A. von Gussich, B. E. W. Nilsson and A. Westerberg, The Dirichlet
super-three-brane in ten-dimensional type IIB supergravity, Nucl. Phys. B490 (1997) 163,
hep-th/9610148

[100] M. Cederwall, A. von Gussich, B. E. W. Nilsson, P. Sundell and A. Westerberg, The
Dirichlet super-p-branes in ten-dimensional type IIA and IIB supergravity, Nucl. Phys.
B490 (1997) 179, hep-th/9611159

[101] E. Bergshoeff and P. K. Townsend, Super D-branes, Nucl. Phys. B490 (1997) 145,
hep-th/9611173

[102] N. Wyllard, Derivative corrections to D-brane actions with constant background fields, Nucl.
Phys. B598 (2001) 247, hep-th/0008125

[103] N. Wyllard, Derivative corrections to the D-brane Born-Infeld action: Non-geodesic
embeddings and the Seiberg-Witten map, JHEP 08 (2001) 027, hep-th/0107185

[104] S. R. Das, S. Mukhi and N. V. Suryanarayana, Derivative corrections from
noncommutativity, JHEP 08 (2001) 039, hep-th/0106024

[105] J. H. Schwarz, Superstring theory, Phys. Rept. 89 (1982) 223

[106] E. A. Bergshoeff, A. Bilal, M. de Roo and A. Sevrin, Supersymmetric non-abelian
Born-Infeld revisited, JHEP 07 (2001) 029, hep-th/0105274

[107] P. Koerber and A. Sevrin, The non-abelian D-brane effective action through order α′4, JHEP
10 (2002) 046, hep-th/0208044

[108] J. M. Drummond, P. J. Heslop, P. S. Howe and S. F. Kerstan, Integral invariants in N = 4
SYM and the effective action for coincident D-branes, JHEP 08 (2003) 016, hep-th/0305202

[109] S. Mukhi, Star products from commutative string theory, Pramana 58 (2002) 21,
hep-th/0108072

[110] P. Grange, Derivative corrections from boundary state computations, Nucl. Phys. B649

(2003) 297, hep-th/0207211

[111] M. de Roo, H. Suelmann and A. Wiedemann, Supersymmetric R4 actions in ten dimensions,
Phys. Lett. B280 (1992) 39

[112] M. de Roo, H. Suelmann and A. Wiedemann, The supersymmetric effective action of the
heterotic string in ten dimensions, Nucl. Phys. B405 (1993) 326, hep-th/9210099

[113] P. Koerber and A. Sevrin, The non-Abelian Born-Infeld action through order α′3, JHEP 10

(2001) 003, hep-th/0108169

[114] M. Cederwall, B. E. W. Nilsson and D. Tsimpis, Spinorial cohomology of abelian d = 10
super-Yang-Mills at α′3, JHEP 11 (2002) 023, hep-th/0205165

[115] R. R. Metsaev, M. A. Rakhmanov and A. A. Tseytlin, The Born-Infeld action as the
effective action in the open superstring theory, Phys. Lett. B193 (1987) 207



164 Bibliography

[116] A. A. Tseytlin, On non-abelian generalisation of the Born-Infeld action in string theory,
Nucl. Phys. B501 (1997) 41, hep-th/9701125

[117] A. A. Tseytlin, Born-Infeld action, supersymmetry and string theory, hep-th/9908105

[118] Y. Kitazawa, Effective Lagrangian for open superstring from five point function, Nucl. Phys.
B289 (1987) 599

[119] M. Cederwall, B. E. W. Nilsson and D. Tsimpis, The structure of maximally supersymmetric
Yang-Mills theory: constraining higher-order corrections, JHEP 06 (2001) 034,
hep-th/0102009

[120] A. Hashimoto and I. Taylor, W., Fluctuation spectra of tilted and intersecting D-branes from
the Born-Infeld action, Nucl. Phys. B503 (1997) 193–219, hep-th/9703217

[121] A. Refolli, A. Santambrogio, N. Terzi and D. Zanon, F 5 contributions to the nonabelian
Born Infeld action from a supersymmetric Yang-Mills five-point function, Nucl. Phys. B613

(2001) 64, Erratum, Nucl. Phys. B648 (2003) 453, hep-th/0105277

[122] D. T. Grasso, Higher order contributions to the effective action of N = 4 super Yang-Mills,
JHEP 11 (2002) 012, hep-th/0210146

[123] F. T. Brandt, F. R. Machado and R. Medina, The open superstring 5-point amplitude
revisited, JHEP 07 (2002) 071, hep-th/0208121

[124] O. Chandia and R. Medina, 4-point effective actions in open and closed superstring theory,
JHEP 11 (2003) 003, hep-th/0310015

[125] L. A. Barreiro and R. Medina, 5-field terms in the open superstring effective action, JHEP
03 (2005) 055, hep-th/0503182

[126] F. Denef, A. Sevrin and J. Troost, Non-Abelian Born-Infeld versus string theory, Nucl. Phys.
B581 (2000) 135, hep-th/0002180

[127] A. Sevrin, J. Troost and W. Troost, The non-abelian Born-Infeld action at order F 6, Nucl.
Phys. B603 (2001) 389, hep-th/0101192

[128] P. Koerber and A. Sevrin, Testing the α′3 term in the non-abelian open superstring effective
action, JHEP 09 (2001) 009, hep-th/0109030

[129] A. Sevrin and A. Wijns, Higher order terms in the non-Abelian D-brane effective action and
magnetic background fields, JHEP 08 (2003) 059, hep-th/0306260

[130] M. Berkooz, M. R. Douglas and R. G. Leigh, Branes intersecting at angles, Nucl. Phys.
B480 (1996) 265–278, hep-th/9606139

[131] A. Abouelsaood, J. Callan, Curtis G., C. R. Nappi and S. A. Yost, Open strings in
background gauge fields, Nucl. Phys. B280 (1987) 599

[132] J. Callan, C. G., C. Lovelace, C. R. Nappi and S. A. Yost, Loop corrections to superstring
equations of motion, Nucl. Phys. B308 (1988) 221

[133] P. van Baal, Some results for SU(N) gauge fields on the hypertorus, Commun. Math. Phys.
85 (1982) 529

[134] P. van Baal, SU(N) Yang-Mills solutions with constant field strength on T 4, Commun.
Math. Phys. 94 (1984) 397

[135] J. Troost, Constant field strengths on T 2n, Nucl. Phys. B568 (2000) 180, hep-th/9909187

[136] A. A. Tseytlin, Vector field effective action in the open superstring theory, Nucl. Phys. B276

(1986) 391

[137] C.-S. Chu and P.-M. Ho, Noncommutative open string and D-brane, Nucl. Phys. B550

(1999) 151, hep-th/9812219



Bibliography 165

[138] C.-S. Chu and P.-M. Ho, Constrained quantization of open string in background B field and
noncommutative D-brane, Nucl. Phys. B568 (2000) 447, hep-th/9906192

[139] A. Connes, M. R. Douglas and A. Schwarz, Noncommutative geometry and matrix theory:
Compactification on tori, JHEP 02 (1998) 003, hep-th/9711162

[140] M. R. Douglas and C. M. Hull, D-branes and the noncommutative torus, JHEP 02 (1998)
008, hep-th/9711165

[141] N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999)
032, hep-th/9908142

[142] L. Cornalba, On the general structure of the non-Abelian Born-Infeld action, Adv. Theor.
Math. Phys. 4 (2002) 1259, hep-th/0006018

[143] R. C. Myers, Dielectric-branes, JHEP 12 (1999) 022, hep-th/9910053

[144] M. R. Douglas, D-branes and matrix theory in curved space, Nucl. Phys. Proc. Suppl. 68

(1998) 381, hep-th/9707228

[145] D. Brecher, K. Furuuchi, H. Ling and M. Van Raamsdonk, Generally covariant actions for
multiple D-branes, JHEP 06 (2004) 020, hep-th/0403289

[146] M. Van Raamsdonk, Blending local symmetries with matrix nonlocality in D- brane effective
actions, JHEP 09 (2003) 026, hep-th/0305145

[147] I. Taylor, W. and M. Van Raamsdonk, Multiple D0-branes in weakly curved backgrounds,
Nucl. Phys. B558 (1999) 635, hep-th/9904095

[148] I. Taylor, W. and M. Van Raamsdonk, Multiple Dp-branes in weak background fields, Nucl.
Phys. B573 (2000) 703, hep-th/9910052

[149] J. de Boer and K. Schalm, General covariance of the non-Abelian DBI-action, JHEP 02

(2003) 041, hep-th/0108161

[150] J. de Boer, K. Schalm and J. Wijnhout, General covariance of the non-Abelian DBI-action:
Checks and balances, Annals Phys. 313 (2004) 425, hep-th/0310150

[151] J. de Boer, E. Gimon, K. Schalm and J. Wijnhout, Evidence for a gravitational Myers effect,
Annals Phys. 313 (2004) 402, hep-th/0212250

[152] S. Panda and D. Sorokin, Supersymmetric and kappa-invariant coincident D0-branes, JHEP
02 (2003) 055, hep-th/0301065

[153] E. A. Bergshoeff, M. de Roo and A. Sevrin, Non-Abelian Born-Infeld and kappa-symmetry,
J. Math. Phys. 42 (2001) 2872, hep-th/0011018

[154] J. Scherk, Extended supersymmetry and extended supergravity theories, in *Cargèse 1978:
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Samenvatting

De Nederlandse vertaling van de titel van dit proefschrift luidt ‘Dirichlet branen, effec-
tieve acties en supersymmetrie’. Dirichlet branen, afgekort D-branen, zijn objecten
in snaartheorie en hebben een rol gespeeld in bijna alle belangrijke ontwikkelingen
binnen dit vakgebied in de laatste tien jaar. De snaartheorie is een onderdeel van de
theoretische hoge-energie fysica1, de tak van de natuurkunde die zich bezighoudt met
de wiskundige beschrijving van de fundamentele bouwstenen van de natuur. Ik zal
eerst een beknopt overzicht geven van een aantal aspecten van dit vakgebied alvorens
verder in te gaan op snaren, D-branen en de rol van effectieve acties en supersymme-
trie in de wiskundige beschrijving van deze objecten.

Aan het eind van de 19e eeuw werd het gaandeweg duidelijk dat de klassieke
mechanica van Newton slechts bij benadering een goede beschrijving levert van de
natuur. Newton’s mechanica volstaat (meestal) voor de beschrijving van fysische
systemen die een groot aantal deeltjes bevatten. Systemen met slechts een klein
aantal deeltjes gedragen zich echter volgens de wetten van de quantummechanica. Een
belangrijk aspect van de quantummechanica is dat zij slechts uitspraken doet over de
kans dat bepaalde processen plaatsvinden, hetgeen in schril contrast staat met het
deterministische karakter van de klassieke mechanica. Een ander belangrijk gegeven
binnen de quantummechanica is dat het bestuderen van almaar kleinere structuren
steeds hogere energieën vergt2. Zo is bijvoorbeeld de ordening van atomen in een
metaal niet te achterhalen met behulp van zichtbaar licht, maar wel door het metaal
te beschieten met fotonen met een hogere energie (Röntgenstraling).

Een ander noodzakelijk ingrediënt van theorieën die deeltjes beschrijven is de spe-
ciale relativiteitstheorie: de hoge energieën gaan gepaard met snelheden die dicht bij
de snelheid van het licht liggen. Volgens de speciale relativiteitstheorie zijn ruimte en
tijd niet twee afzonderlijke concepten zoals ze dat in de klassieke mechanica zijn, maar
zijn ze verenigd in ruimtetijd. De klassieke mechanica vertelt ons dat de energie E
van een deeltje met massa m gerelateerd is aan zijn impuls p volgens E = p2/2m. Als

1Ook wel bekend als de elementaire deeltjesfysica.
2Vandaar de naam hoge-energie fysica voor het vakgebied dat de kleinste bouwstenen van de

natuur onderzoekt.
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het deeltje in rust is (p = 0), is de energie nul. Volgens de speciale relativiteitstheorie
geldt echter de volgende relatie tussen energie en impuls: E2 = m2c4 + p2c2 (∗), met
c de lichtsnelheid. Als het deeltje in rust is, geldt dus E = mc2. Een consequentie
van deze relatie is dat als lichte deeltjes botsen met voldoende hoge energie, er nieu-
we, zwaardere deeltjes geproduceerd kunnen worden. Dit noemen we een interactie.
Zo kunnen (quantummechanica!) twee voldoende energetische fotonen als ze botsen
omgezet worden in een elektron en zijn antideeltje, het positron. Deze laatste deeltjes
hebben beide een massa van 511 keV/c2. De totale energie van de fotonen moet dus
tenminste 1022 keV zijn om dit proces te laten plaatsvinden.

De theorie die de wisselwerking van elektrisch geladen (anti)deeltjes met fotonen
beschrijft heet de quantumelektrodynamica (QED) en is een zogenaamde relativisti-
sche quantumveldentheorie. In quantumveldentheorieën worden deeltjes beschreven
als manifestaties van velden. Zo wordt in QED het foton beschreven door het elek-
tromagnetische veld en het elektron en positron door het Dirac veld. De gevestigde
theorieën in de hoge-energie fysica zijn allemaal quantumveldentheorieën.

De algemene structuur van quantumveldentheorieën verklaart waarom er antideel-
tjes bestaan en waarom er twee typen deeltjes zijn in de natuur: bosonen en fermionen.
De bosonen hebben altijd een heeltallige spin3 en vertonen het soort collectieve ge-
drag dat we associëren met krachtvelden. Fermionen hebben een halftallige spin en
vertonen in het algemeen juist geen collectief gedrag vanwege het uitsluitingprincipe
van Pauli. Materie is opgebouwd uit fermionen. Een andere generieke eigenschap
van quantumveldentheorieën is dat de sterkte van de interacties tussen deeltjes onder
meer afhangt van de energie van de deeltjes. Zo blijkt de elektromagnetische interactie
steeds sterker te worden op korte afstanden.

De wiskundige beschrijving van een veldentheorie wordt vaak gebaseerd op een
zogenaamde actie – aangegeven met een S. Er bestaat een recept om, gegeven de actie
van een veldentheorie, te achterhalen wat het ‘spectrum’ van deeltjes is dat beschreven
wordt door de veldentheorie in kwestie en hoe de interacties tussen deze deeltjes
verlopen. Het blijkt helaas meestal onmogelijk om de vergelijkingen die in dit recept
een rol spelen exact door te rekenen. We zijn dus genoodzaakt benaderingen te maken.
De belangrijkste benaderingsmethode is de storingsrekening of perturbatietheorie. In
deze methode wordt de actie opgesplitst in een deel waarvoor het recept wel exact
doorgerekend kan worden, Svrij, en een resterend deel, Sint. We schrijven S = Svrij +
Sint. Voor Svrij kunnen we het deeltjesspectrum precies bepalen. Het blijkt dat ieder
veld dat in Svrij voorkomt precies één type deeltje beschrijft en dat deze deeltjes vrij
zijn, d.w.z. geen interacties met elkaar hebben. Als we vervolgens Sint behandelen als
een correctie op Svrij, dan volgt dat Sint op zijn beurt de interacties of koppeling tussen
de uit Svrij verkregen deeltjes beschrijft. De sterkte van de verschillende koppelingen

3Spin is een zogenaamd quantumgetal. Verschillende typen deeltjes onderscheiden zich van elkaar
door middel van hun quantumgetallen. Andere voorbeelden van quantumgetallen zijn massa en
elektrische lading. De spin van een deeltje is altijd een veelvoud van 1

2
.
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tussen de deeltjes wordt gegeven door de zogenaamde koppelingsconstante4. In QED,
bijvoorbeeld, is de koppelingsconstante de elektrische lading van het elektron.

De storingsrekening is alleen bruikbaar zolang het gerechtvaardigd is om Sint als
een kleine verstoring te behandelen, d.w.z. bij energieën waarbij de koppelingscon-
stanten klein zijn. Als de koppelingsconstanten groot worden, is het in algemeen niet
langer mogelijk om veldentheorieën analytisch door te rekenen5. Het is dan vaak niet
eens mogelijk het deeltjesspectrum van de theorie te bepalen. Het bekendste voor-
beeld is quantumchromodynamica (QCD), de theorie van de sterke kernkracht. Deze
theorie bevat twee velden, het gluonveld en het quarkveld. Bij hoge energieën is de
koppeling klein en bestaat het spectrum van de theorie dus uit quarks en gluonen.
Het blijkt echter dat de koppelingsconstante van QCD steeds groter wordt naarma-
te de energie lager wordt. Uit experimenten weten we dat bij die lage energieën de
quarks en gluonen niet meer voorkomen als afzonderlijke deeltjes, maar dat het dan
protonen, neutronen en pionen zijn die een rol spelen in de sterke kernkracht. Deze
deeltjes kunnen gezien worden als gebonden toestanden van quarks en gluonen, een
verschijnsel dat bekend is onder de naam confinement. Het vinden van een theoreti-
sche beschrijving van confinement is één van de belangrijkste onopgeloste problemen
in dit vakgebied.

Er zijn echter ook theorieën waarbij het wel mogelijk is om met behulp van ana-
lytische methoden informatie te verkrijgen over het nonperturbatieve regime van de
theorie. Het idee is grofweg om bepaalde grootheden te berekenen in het perturbatieve
regime en de resultaten te extrapoleren naar het regime waarin de koppelingsconstan-
te groot is. Dit kan alleen maar als de grootheden ‘beschermd’ zijn door zogenaamde
nonrenormalisatie stellingen. Deze stellingen zijn over het algemeen het gevolg van
bepaalde symmetrieën die deze theorieën bezitten6. In snaartheorie blijkt het de
supersymmetrie te zijn die leidt tot nonrenormalisatie stellingen.

Voor het beschrijven van zwak gekoppelde deeltjes is het gebruik van de velden-
theoretische actie handig, maar niet noodzakelijk. Het blijkt namelijk mogelijk de
interacties van de deeltjes te beschrijven zonder een beroep te doen op veldentheorie.
Het extrapoleren van resultaten behaald bij zwakke koppeling naar het nonperturba-
tieve regime is echter gebaseerd op de zogenaamde semi-klassieke methode, waarbij
het gebruik van een veldentheoretische actie essentieel is. We zullen zien dat dit
belangrijke consequenties heeft voor snaartheorie.

Er is nog één veldentheoretisch begrip dat we moeten bespreken voordat we toe
zijn aan de snaartheorie. Het komt vaak voor dat we alleen maar gëınteresseerd zijn
in het gedrag van een veldentheorie bij lage energieën. We beschouwen als voorbeeld
weer de verstrooiing van twee fotonen. We kunnen besluiten de fotonen alleen te

4Deze is niet echt constant, omdat de interactiesterktes energieafhankelijk zijn.
5We zijn dan genoodzaakt numerieke benaderingsmethoden m.b.v. de computer te gebruiken.
6Een theorie bezit een symmetrie, als een verandering van de variabelen waarmee we de theorie

beschrijven de vorm van de actie niet verandert.
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bestuderen bij energieën ver onder de 1022 keV. Hoewel de fotonen dan niet meer
omgezet kunnen worden in een elektron-positron paar, kunnen ze volgens QED wel
botsen met elkaar doordat ze onderling virtuele elektronen en positronen uitwisselen7.
Het eindproduct van de botsing bestaat dus uit twee of meer8 fotonen, maar bevat
geen elektronen en positronen. Feitelijk zijn de fotonen dus de enige deeltjes die we
nog echt waarnemen bij lage energieën en maken de elektronen en positronen hun
bestaan alleen maar kenbaar via de interacties die de fotonen onderling met elkaar
hebben.

We kunnen hier op een alternatieve manier tegen aan kijken. Stel hypothetisch
dat we alleen metingen zouden kunnen doen aan licht bij lage energieën, die wel zo
nauwkeurig zijn dat we de verstrooiing van fotonen kunnen waarnemen. We heb-
ben dus geen weet van het bestaan van elektronen en positronen. Om de fotonen
te beschrijven stellen we een veldentheorie op. De interacties tussen de fotonen zijn
zwak, dus we kunnen storingsrekening gebruiken. Omdat we alleen fotonen zien, moet
Svrij het elektromagnetisch veld bevatten, maar niet het Dirac veld. Het deel van de
actie dat de interacties beschrijft, Sint, bevat zodoende ook alleen het elektromagne-
tische veld; de fotonen koppelen direct aan elkaar. We nemen immers geen elektronen
en positronen waar en zouden nooit op het idee komen deze als virtuele deeltjes te
gebruiken in ons model.

Het bovenstaande is een voorbeeld van het gebruik van een laagenergetische effec-
tieve veldentheorie. We spreken in dit verband dan ook over effectieve acties. Zoals
uiteengezet in de inleiding en het eerste hoofdstuk van dit proefschrift, zijn er door-
slaggevende theoretische en experimentele aanwijzingen dat de veldentheorieën die
de op dit moment bekende deeltjes en wisselwerkingen beschrijven slechts effectieve
theorieën zijn.

Een bijzondere eigenschap van veel veldentheorieën is dat ze hun eigen gebied van
geldigheid voorspellen. Dit werkt als volgt. Een belangrijke eigenschap van quan-
tummechanische theorieën is unitariteit, hetgeen zoveel wil zeggen als dat de kans
dat een gegeven proces plaatsvindt nooit kleiner kan zijn dan 0 en nooit groter dan
1. Deze ogenschijnlijk flauwe eigenschap blijkt in de praktijk erg belangrijk te zijn,
omdat de acties van veldentheorieën aan een aantal stringente mathematische eisen
moeten voldoen, willen ze een unitaire theorie opleveren. Daarnaast blijkt dat be-
paalde soorten interacties (de zogenaamde niet-renormaliseerbare interacties) slechts
unitaire theorieën leveren bij lage energieën. In het geval van ons voorbeeld van de
effectieve theorie voor de fotonen binnen QED uit zich dit als volgt. We kunnen met
die theorie de kans op een bepaald verstrooiingsproces bij een gegeven energie van de
fotonen berekenen. Bij de lage energieën waarvoor de effectieve theorie ontworpen was

7Virtuele deeltjes zijn deeltjes die niet voldoen aan de relatie (∗), dit in tegenstelling tot fysische
deeltjes. Virtuele deeltjes kunnen nooit optreden als eindproduct van een botsingsproces.

8Omdat fotonen massaloos zijn, kan er een arbitrair aantal van geproduceerd worden. Het eind-
product bevat wel altijd een even aantal fotonen, een resultaat dat volgt uit QED en dat bekend
staat als Furry’s stelling.
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gaat dit goed. Als we echter – op papier (!) – de energie opvoeren, dan zien we dat
bij precies 1022 keV de theorie onzinnige resultaten produceert en niet langer unitair
is. We zien dus dat de effectieve theorie zelf voorspelt dat ze slechts een effectieve be-
schrijving levert van een andere, onderliggende theorie – in ons voorbeeld QED. Hoe
die onderliggende theorie er dan precies uitziet, kunnen we niet achterhalen op basis
van de effectieve theorie alleen, maar we kunnen de effectieve theorie wel gebruiken
om bepaalde aspecten van de onderliggende theorie te bestuderen.

Een ander beroemd voorbeeld van een niet-renormaliseerbare quantumveldenthe-
orie is de Algemene Relativiteitstheorie (ART), die het zwaartekrachtsveld beschrijft.
Zoals bij andere quantumveldentheorieën, is in de ART de waarde van koppelings-
constante – Newton’s zwaartekrachtconstante G – afhankelijk van de energieschaal
waarop we de theorie bestuderen. In de ‘alledaagse’ hoge-energie fysica die bestu-
deerd wordt in deeltjesversnellers is de zwaartekracht veel zwakker dan de andere drie
bekende natuurkrachten en kan zij verwaarloosd worden9. Echter, bij extreem hoge
energieën wordt de zwaartekracht net zo sterk als de andere interacties en moet zij
op gelijke voet worden behandeld. En, omdat zwaartekracht niet-renormaliseerbaar
is, komt er een moment dat de ART niet langer unitair is en vervangen moet worden
door een onderliggende theorie. Dit gebeurt bij de zogenaamde Planck energie, 1018

GeV.

Er zijn in het verleden vele pogingen ondernomen om een theorie op te stellen die
de ART en de andere quantumveldentheorieën zou kunnen vervangen bij energieën
boven de Planck energie10. De meeste van deze pogingen waren weinig succesvol. Op
dit moment zijn er slechts twee kandidaten voor zo’n theorie en van deze twee is alleen
de snaartheorie in staat alle bekende interacties te beschrijven11.

Snaartheorie is in beginsel een perturbatieve theorie. Dat wil zeggen dat vrije
snaren als uitgangspunt genomen worden12 en vervolgens bekeken wordt of er een
consistente (d.w.z. unitaire) manier bestaat waarop de snaren met elkaar kunnen
interageren. Dit blijkt op slechts vijf verschillende manieren te kunnen.

De vijf verschillende perturbatieve snaartheorieën vereisen allemaal het bestaan
van zes extra ruimtelijke dimensies naast de drie die we heden ten dage waarnemen.
Daarnaast zijn deze theorieën allemaal supersymmetrisch13.

9De reden dat de zwaartekracht toch zo belangrijk is voor bijvoorbeeld astronomische verschijn-
selen, is dat de andere drie krachten effectief onzichtbaar zijn. De zwakke en sterke wisselwerkingen
werken alleen over afstanden kleiner dan een atoomkern en astronomische objecten zijn elektrisch
neutraal.

10Deze theorie zou dan met recht de ‘theorie van alles’ genoemd mogen worden.
11De zogenaamde loop quantum gravity beschrijft alleen de zwaartekracht en niet de andere drie

natuurkrachten. Daarnaast lijkt deze theorie op dit moment nog niet in staat om de laagenergetische
processen zoals die beschreven worden door de ART correct te reproduceren.

12De andere ingrediënten van snaartheorie zijn quantummechanica en de speciale relativiteitsthe-
orie, net als in de deeltjesfysica.

13Supersymmetrie verschilt van andere symmetrieën in dat het bosonische en fermionische varia-
belen met elkaar mengt.
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Net als de snaar van een gitaar hebben de ‘supersnaren’ een oneindige, maar aftel-
bare, hoeveelheid eigentoestanden. De verschillende trillingstoestanden van dezelfde
snaar kunnen opgevat worden als verschillende typen deeltjes. Alle supersnaren heb-
ben een eindig aantal massaloze deeltjes en een oneindig aantal massieve. Onder de
massaloze deeltjes bevindt zich er in iedere snaartheorie één dat zich bij lage ener-
gieën14 precies zo gedraagt als het graviton – het deeltje dat geassocieerd is met het
zwaartekrachtsveld uit de ART. Andere van de massaloze bosonische deeltjes lijken
in hun gedrag erg op de wisselwerkingdeeltjes van de andere drie natuurkrachten en
bepaalde fermionische deeltjes op de ons bekende materie.

De situatie in snaartheorie is anders dan bij de veldentheorieën. Daar begonnen
we met een actie en waren vervolgens genoodzaakt een benadering toe te passen.
Het resultaat is een set regels om de interacties tussen deeltjes te beschrijven. In
snaartheorie beginnen we met die set regels. Een onderliggende actie waar die regels
uit afgeleid kunnen worden is niet bekend, m.a.w. de niet-perturbatieve formulering
van snaartheorie is nog een raadsel. We hebben een paar bladzijden geleden gezien dat
deeltjes manifestaties van velden zijn. Eén van de grote vragen binnen de snaartheorie
is zodoende wat er op de plaats van de stippellijn moet komen in het volgende: “snaren
zijn manifestaties van . . .”.

Toch is het mogelijk om informatie over het niet-perturbatieve regime van de
snaartheorieën te verkijgen. Bij lage energieën worden de massieve trillingstoestanden
van de snaar niet geproduceerd in botsingsprocessen en kunnen we ons – zoals bij
QED – beperken tot een effectieve beschrijving van de massaloze toestanden alleen.
Deze gedragen zich dan in essentie hetzelfde als puntdeeltjes en zodoende kunnen we
voor de massaloze toestanden van de snaar wel een actie opschrijven. Op die actie
kunnen we dan vervolgens de eerder genoemde semi-klassieke methode loslaten om
niet-perturbatieve informatie te verkrijgen.

Zonder in detail te treden (zie hoofdstuk 2 van dit proefschrift voor meer in-
formatie) leert dit ons het volgende: de vijf perturbatieve supersnaartheorieën zijn
verschillende limieten van één unieke niet-perturbatieve overkoepelende theorie. In
afwachting van haar uiteindelijke formulering is ze alvast M-theorie gedoopt.

Het formuleren van M-theorie is onder andere interessant om de volgende reden.
Om contact te maken met de gevestigde theorieën in de hoge-energie fysica moeten de
zes extra dimensies effectief onzichtbaar zijn bij relatief lage energieën. Eén manier
om dit te bereiken is te veronderstellen dat de extra dimensies compact zijn en een
heel klein volume hebben – bijvoorbeeld ‘opgerold’ tot kleine cirkeltjes. Echter, het
aantal manieren waarop deze compactificatie gerealiseerd kan worden is zeer groot.
Slechts een beperkt aantal van de mogelijke scenario’s geeft resultaten die in meer
dan alleen grote lijnen overeenkomen met de gevestigde theorieën. Het formuleren
van M-theorie zal zonder meer leiden tot een beter begrip van het mechanisme achter
compactificatie.

14D.w.z. ‘laag’ in vergelijking met de Planck energie.
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Het blijkt dat M-theorie zich niet alleen maar manifesteert als snaren maar ook
als andere hoger-dimensionale objecten. Deze worden aangeduid als p-branen, waar p
staat voor de dimensionaliteit van deze objecten. Zo is een 0-braan een puntdeeltje,
een 1-braan een snaar en een 2-braan een membraan. Deze p-branen zijn hoger-
dimensionale generalisaties van zwarte gaten en worden in het algemeen geassocieerd
met niet-perturbatieve effecten15.

De best begrepen klasse van p-branen zijn de D-branen. Dit is omdat de D-branen
in tegenstelling tot de andere branen beschreven kunnen worden met behulp van de
perturbatieve snaartheorie als hypervlakken waar open snaren aan bevestigd zijn. Bij
lage energieën manifesteren de open snaren zich als een veldentheorie die ‘leeft’ op de
braan. Deze veldentheorie vertoont overigens sterke overeenkomsten met de effectieve
beschrijving van de fotonen in QED die we eerder bespraken.

Systemen met meerdere D-branen vertonen een zeer opmerkelijk gedrag. Ze er-
varen ruimtetijd op een manier die op een ingrijpende manier verschilt van wat we
gewend zijn: volgens D-branen is ruimtetijd niet-commutatief (zie hoofdstuk 1 van
dit proefschrift). Dit gedrag is op dit moment nog niet volledig begrepen, maar is
belangrijk omdat het ons iets vertelt over hoe ruimtetijd uiteindelijk behandeld zal
moeten gaan worden in M-theorie.

In de eerste twee hoofdstukken van dit proefschrift ga ik uitgebreid in op de for-
mulering van snaartheorie en haar laagenergetische beschrijving in termen van super-
zwaartekrachttheorieën. Ik behandel D-branen zowel vanuit hun rol als hypervlakken
in de perturbatieve snaartheorie als vanuit hun rol als zwarte gaten in superzwaar-
tekrachttheorieën. Vervolgens bespreek ik kort hoe de vijf snaartheorieën aan elkaar
gerelateerd zijn via dualiteiten.

Ik concentreer me in dit proefschrift in het bijzonder op de beschrijving van syste-
men met één of meerdere D-branen in termen van de laagenergetische veldentheorieën
die leven op de D-branen. Ik laat zien hoe de niet-renormaliseerbare interacties in
deze deeltjestheorieën gebruikt kunnen worden om typisch snaartheoretisch gedrag
te onderzoeken.

In hoofdstuk 3 beschouw ik een systeem met één D-braan en vat ik samen wat er in
de literatuur bekend is over de effectieve theorie die leeft op de D-braan. Vervolgens
presenteer ik nieuwe tot dus ver onbekende bijdragen aan die effectieve theorie en
beschrijf ik hoe deze resultaten verkregen zijn met een mix van veldentheoretische en
snaartheoretische methoden. Ik benadruk het gebruik van supersymmetrie.

In hoofdstuk 4 beschouw ik systemen met meerdere D-branen. Over de niet-
renormaliseerbare interacties in de effectieve theorie voor meerdere D-branen is veel
minder bekend. Wederom behandel ik de literatuur en presenteer ik nieuwe bijdragen.
Daarbij bespreek ik een snaartheoretische test voor deze resultaten.

Uiteindelijk vat ik in het nawoord het werk van hoofdstuk 3 en 4 samen en vergelijk

15p-branen blijken zogenaamde BPS objecten te zijn, dat zijn objecten die beschermd worden door
de eerder vermelde supersymmetrische nonrenormalisatie stellingen.
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ik de invalshoek die ik in dit proefschrift gekozen heb met andere methoden.
Dit proefschrift wordt gecompleteerd door twee appendices. De eerste appendix

bevat een uitgebreide behandeling van de mathematische machinerie die onontbeerlijk
is voor berekeningen aan hoger-dimensionale supersymmetrische theorieën. De tweede
appendix bevat de afleidingen van een aantal kleinere resultaten die ik op verschillende
plaatsen in de tekst gebruik.
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