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A R T I C L E I N F O A B S T R A C T

Editor: H. Gao We report the 𝑝 + 𝑝 and 𝑝 + 𝑑 differential cross sections measured in the SeaQuest experiment for 𝐽∕𝜓 and 
𝜓 (2𝑆) production at 120GeV beam energy covering the forward 𝑥-Feynman (𝑥𝐹 ) range of 0.5 < 𝑥𝐹 < 0.9. 
The measured cross sections are in good agreement with theoretical calculations based on the nonrelativistic 
QCD (NRQCD) using the long-distance matrix elements deduced from a recent global analysis of proton- and 
pion-induced charmonium production data. The 𝜎𝜓(2𝑆)∕𝜎𝐽∕𝜓 cross section ratios are found to increase as 𝑥𝐹
increases, indicating that the 𝑞𝑞 annihilation process has larger contributions in the 𝜓 (2𝑆) production than 
the 𝐽∕𝜓 production. The 𝜎𝑝𝑑∕2𝜎𝑝𝑝 cross section ratios are observed to be significantly different for the Drell-
Yan process and 𝐽∕𝜓 production, reflecting their different production mechanisms. We find that the 𝜎𝑝𝑑∕2𝜎𝑝𝑝
ratios for 𝐽∕𝜓 production at the forward 𝑥𝐹 region are sensitive to the 𝑑∕𝑢̄ flavor asymmetry of the proton sea, 
analogous to the Drell-Yan process. The transverse momentum (𝑝𝑇 ) distributions for 𝐽∕𝜓 and 𝜓 (2𝑆) production 
are also presented and compared with data collected at higher center-of-mass energies.
The SeaQuest experiment at Fermilab measures high-mass dimuons 
produced in the interaction of a 120GeV proton beam with various 
targets including liquid hydrogen, liquid deuterium, and nuclear tar-
gets [1]. Dimuons originating from the Drell-Yan process [2] and from 
the decay of charmonium states (𝐽∕𝜓 and 𝜓 (2𝑆)) were collected si-
multaneously. Results from SeaQuest on the 𝜎𝑝𝑑∕2𝜎𝑝𝑝 Drell-Yan cross 
section ratio, which is sensitive to the 𝑑∕𝑢̄ flavor asymmetry in the pro-
ton, were reported recently [3,4]. In this paper, we present results from 
SeaQuest on the 𝐽∕𝜓 and 𝜓 (2𝑆) charmonium production in 𝑝 + 𝑝 and 
𝑝 + 𝑑 interactions.

Unlike the Drell-Yan process which primarily involves the quark-
antiquark annihilation through the electromagnetic interaction, char-
monium production proceeds via the strong interaction containing both 
the quark-antiquark annihilation and the gluon-gluon fusion processes. 
The simultaneous measurement of these two very different processes 
provides complementary information on the partonic structures of the 
nucleon. In particular, the 𝜎𝑝𝑑∕2𝜎𝑝𝑝 ratio for charmonium production 
is expected to be sensitive to the ratio of the gluon distributions in the 
proton and neutron, as well as the 𝑑∕𝑢̄ ratio in the proton [5].

If quark-antiquark annihilation is an important subprocess for char-
monium production, then the 𝜎𝑝𝑑∕2𝜎𝑝𝑝 ratio would provide an inde-
pendent measurement of the 𝑑∕𝑢̄ flavor asymmetry in the proton [5], 
analogous to the Drell-Yan process. On the other hand, the gluon-gluon 
fusion subprocess would allow the 𝜎𝑝𝑑∕2𝜎𝑝𝑝 ratio to probe the relative 
gluon content in the proton and neutron, providing a test of the charge 
symmetry (CS) at the partonic level [6]. The CS operation interchanges 
the up and down quarks, and it also interchanges the proton and the 
neutron. Since the gluon is an iso-scalar particle, CS requires that the 
gluon distributions in the proton and neutron are identical. Violation of 
CS is predicted at both the hadronic [7,8] and the partonic [9] levels. 
A measurement of the gluon contents of the proton and neutron could 
test CS at the partonic level [6,10,11]. It is also interesting to compare 
the production mechanisms for 𝐽∕𝜓 versus 𝜓 (2𝑆).

While proton-induced charmonium production is often dominated 
by the gluon-gluon fusion process [12], the quark-antiquark annihi-
lation process could also contribute significantly. The relative impor-
tance of these two processes depends on the beam energy and on the 
𝑥-Feynman (𝑥𝐹 ) (see Eq. (1)) of the charmonium [5], and can be 
calculated using various production models: color evaporation model 
(CEM) [13–15], color singlet model (CSM) [16], and nonrelativistic QCD 
(NRQCD) [17]. These various models predict different relative impor-
tance of the different subprocesses [18]. In this paper, we mainly focus 
on the comparison with NRQCD, with the comparison with CEM shown 
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in the Supplemental Material.
The NA51 collaboration reported a measurement of the 𝑝 + 𝑝 and 
𝑝 + 𝑑 cross sections for charmonium production at 450 GeV at a single 
value of 𝑥𝐹 ≈ 0 [19]. The SeaQuest measurement covers the broader 
kinematic range of 0.5 < 𝑥𝐹 < 0.9 at the lower beam energy of 120GeV. 
These two measurements can provide complementary information.

The SeaQuest experiment was performed using the 120 GeV proton 
beam from the Fermilab Main Injector. The SeaQuest dimuon spectrom-
eter was designed for detecting high-mass dimuon pairs produced in 
the interaction of a proton with various targets. Details of the SeaQuest 
spectrometer can be found elsewhere [1,3,4]. A primary proton beam 
containing up to 6 × 1012 protons in a 4-second long beam spill every 
minute was incident upon one of three identical 50.8 cm long cylindrical 
stainless steel target flasks or solid nuclear targets. The targets alternated 
between liquid hydrogen, liquid deuterium, solid nuclear targets, and 
the empty flask target. A Cherenkov counter was placed in the beam to 
record the instantaneous proton intensity for each 1-ns long RF bucket 
at a 53MHz repetition rate.

The SeaQuest spectrometer consists of two dipole magnets and four 
detector stations equipped with hodoscopes and tracking chambers. A 
solid iron magnet downstream of the target focuses the dimuons and 
also serves as a beam-dump and a hadron absorber. An open magnet 
further downstream measures the muon momentum. The dimuon trigger 
requires a quadruple hodoscope coincidence with a pattern consistent 
with a muon pair originating from the target. Various diagnostic triggers 
are also implemented. In particular, the “single-muon” trigger is used to 
evaluate the accidental dimuon background, and the “random” trigger 
samples the detector response throughout the data-taking periods.

The SeaQuest data are separated into two sets, each containing 
roughly half of the total data sample. The first part includes data taken 
between June 2014 and July 2015, and the second part covers the re-
maining period up to July 2017. Results on the analysis of the Drell-Yan 
events from the first data set have already been reported [3,4]. In this 
paper, we have analyzed the full SeaQuest data sets. Since the trigger 
conditions and the detector configuration for the two data sets are not 
identical, the analysis was performed separately for each data set. Re-
sults obtained from the two data sets are first compared to verify their 
consistency, and then combined for the final results.

Details of the data analysis procedure can be found in Refs. [3,4]. 
Candidate muon tracks reconstructed in the drift chambers are extrap-
olated to the target region. Only dimuon events consistent with origi-
nating from the target are selected. The target position is then used to 
refine the parameters of each muon pair. The resulting RMS mass reso-
lution for 𝐽∕𝜓 is ≈200MeV, dominated by the finite target length and 

the multiple scattering of muons in the iron magnet.
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Fig. 1. Dimuon mass distribution for events collected on a liquid deuterium 
target for the second data set. The data points (solid squares) are compared 
with a fit (solid blue line) consisting of various components (see text).

Fig. 1 shows the dimuon mass spectrum for 𝑝 + 𝑑 data collected in 
the second data set. A comparison with the mass spectrum obtained for 
the first data set, reported in Ref. [4], shows good agreement with some 
small differences attributed to the minor changes in trigger conditions 
and spectrometer settings.

To extract the yields of 𝐽∕𝜓 and 𝜓 (2𝑆), the dimuon mass spectrum 
is fitted by including several components. First, data collected with the 
empty target flask are analyzed to determine the background originating 
from sources other than the liquid. Second, a GEANT4 [24–26] based 
Monte Carlo (MC) simulation is performed to obtain the expected line 
shapes of the 𝐽∕𝜓 and 𝜓 (2𝑆) resonances. The MC dimuon events are 
then embedded with additional hits in the detectors using data collected 
with the “random” trigger, which randomly samples the spectrometer 
response to background hits. This procedure accounts for the spectrom-
eter response to background hits. Third, dimuons from the Drell-Yan 
process are simulated using a next-to-leading order calculation [27] with 
the CT14 parton distribution functions (PDFs) [28], as described in an 
earlier publication [4]. The embedding procedure is also applied to the 
Drell-Yan MC data. Finally, the accidental dimuon background, caused 
by two independent interactions within the same RF bucket, is simulated 
by forming a random combination of data collected with the “single-
muon” trigger, as discussed in detail in Ref. [4], labeled as “mix” in 
Fig. 1. Other mixing methods [29] have also been studied and included 
in the systematic uncertainties. These embedded MC events are then an-
alyzed by applying cuts identical to those for the real data.

A fit to the 𝑝 + 𝑑 dimuon data, allowing the normalizations of the 
various components except the empty flask data to vary, is shown in 
Fig. 1. The empty flask data are normalized according to their rel-
ative luminosity. The data are well described as the sum of various 
components. The adequacy of this approach is further validated by 
the excellent agreement between this method [4] and an independent 
intensity-extrapolation method [3] for the extracted 𝜎𝑝𝑑∕2𝜎𝑝𝑝 Drell-Yan 
cross section ratios.

To obtain the charmonium differential cross sections, the data were 
split into bins of 𝑥𝐹 and 𝑝𝑇 and the dimuon mass spectrum for each 
bin is fitted with the procedure described earlier to extract the 𝐽∕𝜓 and 
𝜓 (2𝑆) yields. We note the following definition of 𝑥𝐹 [3]:

𝑥𝐹 =
2𝑝𝐿√

𝑠
(
1 −𝑀2∕𝑠

) , (1)

where 𝑝𝐿 is the longitudinal momentum of the dimuon in the hadron-
hadron center of mass frame. 𝑀 and 

√
𝑠 are the dimuon mass and the 

hadron-hadron total energy, respectively. The charmonium production 
3

cross section is obtained as
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Fig. 2. The differential cross section per nucleon 𝑑𝜎∕𝑑𝑥𝐹 for 𝐽∕𝜓 and 𝜓 (2𝑆)
production in 𝑝 + 𝑝 and 𝑝 + 𝑑 interactions at 120 GeV, integrated over 𝑝𝑇 . The 
error bars represent the total uncertainties. The curves correspond to NRQCD 
calculation [20] using the LDMEs obtained in [21] and the nucleon PDFs from 
CT18 [22] and NNPDF4.0 [23]. The error bands indicate 68% confidence level 
from the PDFs.

𝑑𝜎 = 𝑑𝑌

𝐵 ⋅Acc ⋅ Eff ⋅ Lum
, (2)

where the yield 𝑑𝑌 is the number of 𝐽∕𝜓 or 𝜓 (2𝑆) events for each 𝑥𝐹
or 𝑝𝑇 bin, Acc the spectrometer acceptance, Eff the efficiency for anal-
ysis cuts, Lum the effective luminosity including the data-acquisition 
deadtime, and 𝐵 the branching ratio for decaying into a muon pair. We 
use 𝐵

(
𝐽∕𝜓 → 𝜇+𝜇−

)
= (5.961 ± 0.033)% and 𝐵

(
𝜓 (2𝑆)→ 𝜇+𝜇−

)
=

(8.0 ± 0.6) × 10−3 [30].
The 𝑥𝐹 dependence of the 𝐽∕𝜓 and 𝜓 (2𝑆) production cross sections 

in 𝑝 + 𝑝 and 𝑝 + 𝑑 collisions is shown in Fig. 2 and listed in Table 1. In 
this and the subsequent figures, the horizontal error bars represent the 
bin width, and the data points are positioned on the ordinate at the 
mean value for the events in the bin. The 𝑑𝜎∕𝑑𝑥𝐹 differential cross 
sections are obtained with an acceptance calculation using a 𝑝𝑇 dis-
tribution which best fits the data. The systematic uncertainties include 
an overall normalization uncertainty, common to both 𝑝 + 𝑝 and 𝑝 + 𝑑

cross sections. Other uncertainties which are largely independent of data 
set are the relative normalization of the flask data, the event mixing 
procedure (≈ 7.2%), the trigger efficiency (≈ 11%), reconstruction effi-
ciency (≈ 15%) and the trigger roadset dependence (≈ 2%). A second set 
of uncertainties correlated between data sets are the 𝐽∕𝜓 and 𝜓 (2𝑆)
polarization (≈ 5.5%) and the uncertainty in the beam normalization 
(≈ 10%). More discussion on the systematic uncertainties can be found 
in Ref. [35].

The 𝑑𝜎∕𝑑𝑥𝐹 distributions of charmonium production are compared 
with theoretical calculations in Fig. 2. The calculations were performed 
using the non-relativistic QCD (NRQCD) [17,36] approach, which is 
based on the factorization of the heavy-quark 𝑄𝑄̄ pair production and 
its subsequent hadronization. The 𝑄𝑄̄ production includes the subpro-
cesses of gluon-gluon fusion, quark-antiquark annihilation, and quark-

gluon interaction. The hadronizations into quarkonium bound states are 
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Table 1

The differential cross sections per nucleon, 𝑑𝜎∕𝑑𝑥𝐹 (in nb), for 𝐽∕𝜓 and 𝜓 (2𝑆) production in 𝑝 + 𝑝 and 𝑝 + 𝑑 collisions at 120GeV
for different 𝑥𝐹 bins. The statistical uncertainties followed by systematic uncertainties are also shown.

𝑝+ 𝑝 𝑝+ 𝑑

⟨𝑥𝐹 ⟩𝐽∕𝜓 𝑑𝜎∕𝑑𝑥𝐹 ||𝐽∕𝜓 ⟨𝑥𝐹 ⟩𝜓(2𝑆) 𝑑𝜎∕𝑑𝑥𝐹 ||𝜓(2𝑆) ⟨𝑥𝐹 ⟩𝐽∕𝜓 𝑑𝜎∕𝑑𝑥𝐹 ||𝐽∕𝜓 ⟨𝑥𝐹 ⟩𝜓(2𝑆) 𝑑𝜎∕𝑑𝑥𝐹 ||𝜓(2𝑆)
0.553 6.411 ± 0.246 ± 1.130 0.550 1.654 ± 0.112+0.451−0.319 0.553 6.944 ± 0.275 ± 1.224 0.550 1.802 ± 0.112+0.468−0.315

0.625 3.618 ± 0.145 ± 0.647 0.624 1.134 ± 0.079+0.302−0.209 0.625 3.758 ± 0.166 ± 0.706 0.624 1.222 ± 0.088+0.329−0.230

0.672 2.204 ± 0.082 ± 0.383 0.671 0.709 ± 0.055+0.184−0.124 0.672 2.309 ± 0.087 ± 0.408 0.672 0.846 ± 0.055+0.220−0.148

0.733 1.149 ± 0.037 ± 0.205 0.734 0.423 ± 0.031+0.113−0.079 0.733 1.177 ± 0.039 ± 0.217 0.733 0.413 ± 0.032+0.114−0.082

0.812 0.293 ± 0.011 ± 0.056 0.817 0.109 ± 0.012+0.030−0.021 0.814 0.305 ± 0.013 ± 0.055 0.817 0.127 ± 0.013+0.034−0.024
Fig. 3. The ratio of 𝜎𝜓(2𝑆)∕𝜎𝐽∕𝜓 in 𝑝 + 𝑝 and 𝑝 + 𝑑 interactions at 120 GeV. The 
inner (outer) error bars represent the statistical (total) uncertainties. The curves 
correspond to NRQCD calculation using CT18 and NNPDF4.0. The error bands 
indicate 68% confidence level from the PDFs.

described by a set of long-distance matrix elements (LDMEs), assumed to 
be universal and fixed by the experimental data [20,36]. The LDMEs are 
taken from a recent global fit to fixed-target proton and pion induced 
𝐽∕𝜓 and 𝜓 (2𝑆) production data performed with the SMRS pion and 
CT14 proton PDFs at charm mass 𝑚𝑐 = 1.5 GeV in Ref. [21], which give 
the best overall 𝜒2 in their analysis. The estimated 𝐽∕𝜓 cross section 
also includes the feed-down from hadronic decays of 𝜓 (2𝑆) and radia-
tive decays of the three 𝜒𝑐𝐽 states as described in Ref. [21]. Fig. 2 shows 
that the 𝑑𝜎∕𝑑𝑥𝐹 data for 𝑝 + 𝑝 and 𝑝 + 𝑑 are very well described by the 
NRQCD calculation [20,36] using CT18 [22], including the overall nor-
malization, which is fixed by the LDMEs. The extracted cross sections 
are also compared to the color evaporation model (CEM) [37–41] in 
Fig. S1. In the CEM framework, the hadronization probability is inde-
pendent of the underlying sub-process, and it is typically obtained from 
fitting to data. As shown in Fig. S1 of the Supplemental Material, the 
measured 𝐽∕𝜓 𝑥𝐹 distributions are also in good agreement with CEM 
calculations, but the CEM calculations tend to underestimate the 𝜓 (2𝑆)
4

cross section at large 𝑥𝐹 .
Fig. 4. The individual contribution from the 𝑞𝑞 (red dash) and 𝑔𝑔 (blue dotted) 
process to the production of 𝐽∕𝜓 (left) and 𝜓 (2𝑆) (right) calculated in NRQCD 
using NNPDF4.0 PDFs.

The ratio of 𝜎𝜓(2𝑆)∕𝜎𝐽∕𝜓 as a function of 𝑥𝐹 is shown in Fig. 3. The 
measured ratio is found to increase as 𝑥𝐹 increases, suggesting a broader 
𝑥𝐹 distribution for 𝜓 (2𝑆) production than for 𝐽∕𝜓 production. This be-
havior is well described by the NRQCD calculations as shown in Fig. 3. 
Since the valence quark in the proton has a much broader 𝑥 distribu-
tion than the gluon, one expects the 𝑞𝑞 annihilation process would give 
a broader 𝑥𝐹 distribution than the gluon-gluon fusion process. There-
fore, the broader 𝑥𝐹 distribution for 𝜓 (2𝑆) production is attributed to 
the increasing importance of the 𝑞𝑞 annihilation process for 𝜓 (2𝑆) pro-
duction. This implies that the 𝜓 (2𝑆) production is more analogous to 
the Drell-Yan process, which is dominated by the 𝑞𝑞 annihilation pro-
cess. Fig. 4 shows the individual contribution from the 𝑞𝑞 annihilation 
and gluon fusion processes to the 𝐽∕𝜓 and 𝜓 (2𝑆) production in 𝑝 + 𝑝

collision calculated in NRQCD using NNPDF4.0 PDFs. At 𝑥𝐹 ≤ 0.6, the 
gluon fusion process is more important than 𝑞𝑞 annihilation for 𝐽∕𝜓
production. In contrast, the 𝜓 (2𝑆) production is dominated by the 𝑞𝑞
annihilation process for the entire 𝑥𝐹 range. Similar behavior was also 
observed for pion-induced 𝐽∕𝜓 and 𝜓 (2𝑆) production data [42].

It should be noted that the relative importance of these subprocesses 
remains uncertain and depends on the production model used [18]. Un-
like NRQCD, the fragmentation probability in CEM is independent of 
the underlying sub-process, and only depends on the final charmonium 
state. Hence, CEM would suggest the 𝑥𝐹 distribution to be identical for 
𝐽∕𝜓 and 𝜓 (2𝑆), except for the relative fraction of 𝜓 (2𝑆) production. 
Therefore CEM would predict the 𝜎𝜓(2𝑆)∕𝜎𝐽∕𝜓 ratio to be independent 
of 𝑥𝐹 , which qualitatively disagrees with the data shown in Fig. 3.

The 𝑝𝑇 dependence of the 𝐽∕𝜓 and 𝜓 (2𝑆) cross sections is shown 
in Fig. 5 and listed in Table 2 for 𝑝 + 𝑝 and 𝑝 + 𝑑. The 𝑑𝜎∕𝑑𝑝2

𝑇
differen-

tial cross sections are obtained by using the 𝑥𝐹 distribution obtained 
from NRQCD to evaluate the spectrometer acceptance for 𝐽∕𝜓 and 

𝜓 (2𝑆). These 𝑝𝑇 distributions are fitted with the Kaplan parameter-
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Table 2

The differential cross sections per nucleon, 𝑑𝜎∕𝑑𝑝2
𝑇

(in nb GeV−2), for charmonium production in 𝑝 + 𝑝 and 𝑝 + 𝑑 collisions at 
120 GeV for different 𝑝𝑇 bins. The statistical uncertainties followed by systematic uncertainties are also shown.

𝑝+ 𝑝 𝑝+ 𝑑

⟨𝑝𝑇 ⟩𝐽∕𝜓 𝑑𝜎∕𝑑𝑝2
𝑇

|||𝐽∕𝜓 ⟨𝑝𝑇 ⟩𝜓(2𝑆) 𝑑𝜎∕𝑑𝑝2
𝑇

|||𝜓(2𝑆) ⟨𝑝𝑇 ⟩𝐽∕𝜓 𝑑𝜎∕𝑑𝑝2
𝑇

|||𝐽∕𝜓 ⟨𝑝𝑇 ⟩𝜓(2𝑆) 𝑑𝜎∕𝑑𝑝2
𝑇

|||𝜓(2𝑆)
0.195 3.570 ± 0.134 ± 0.605 0.195 0.957 ± 0.059+0.200−0.160 0.193 3.789 ± 0.137 ± 0.634 0.194 1.017 ± 0.055+0.211−0.169

0.376 3.045 ± 0.114 ± 0.519 0.376 0.827 ± 0.043+0.181−0.149 0.376 3.119 ± 0.115 ± 0.558 0.377 0.864 ± 0.046+0.185−0.150

0.550 2.196 ± 0.070 ± 0.392 0.551 0.669 ± 0.031+0.145−0.119 0.550 2.251 ± 0.071 ± 0.421 0.553 0.645 ± 0.030+0.137−0.111

0.761 1.373 ± 0.052 ± 0.261 0.764 0.367 ± 0.023+0.102−0.091 0.761 1.337 ± 0.056 ± 0.277 0.764 0.355 ± 0.025+0.109−0.099

1.095 0.473 ± 0.021 ± 0.086 1.106 0.122 ± 0.011+0.035−0.031 1.098 0.506 ± 0.022 ± 0.096 1.111 0.108 ± 0.012+0.037−0.035⟨
𝑝2
𝑇

⟩
= 0.714 ± 0.021 ± 0.040

⟨
𝑝2
𝑇

⟩
= 0.714 ± 0.036 ± 0.068

⟨
𝑝2
𝑇

⟩
= 0.717 ± 0.022 ± 0.046

⟨
𝑝2
𝑇

⟩
= 0.663 ± 0.035 ± 0.067
Fig. 5. The differential cross section per nucleon 𝑑𝜎∕𝑑𝑝2
𝑇

, integrated over 
0.5 < 𝑥𝐹 < 0.9, for 𝐽∕𝜓 and 𝜓 (2𝑆) production in 𝑝 + 𝑝 and 𝑝 + 𝑑 interaction 
at 120 GeV. The error bars represent the total uncertainties. The curves corre-
spond to fits using the Kaplan form described in the text.

ization 𝑑𝜎∕𝑑𝑝2
𝑇
= 𝑐

(
1 + 𝑝2

𝑇
∕𝑝20

)−6
[43] and the results of the fits are 

shown in Fig. 5. The ⟨𝑝𝑇 ⟩ and 
⟨
𝑝2
𝑇

⟩
can be expressed as

⟨𝑝𝑇 ⟩ = 35𝜋𝑝0
256

,
⟨
𝑝2
𝑇

⟩
=
𝑝20
4
. (3)

And the values of 
⟨
𝑝2
𝑇

⟩
are also listed in Table 2, showing very similar 

values for 𝑝 + 𝑝 and 𝑝 + 𝑑, as well as for 𝐽∕𝜓 and 𝜓 (2𝑆). While the 
𝑝𝑇 distributions cannot be reliably calculated for 𝑝𝑇 ≪𝑀 with fixed-
order perturbative calculations, nonetheless, they could be calculated 
within the NRQCD framework by including the soft-gluon resummation, 
as outlined in Ref. [44]. It would be interesting to compare our results 
on the 𝑥𝐹 and 𝑝𝑇 dependence with NRQCD calculations including soft-
gluon resummation.

The extracted 
⟨
𝑝2
𝑇

⟩
for 𝑝 + 𝑝 → 𝐽∕𝜓 is compared with results from 

NA3 [31], NA51 [32], ISR [33] and PHENIX [34] in Fig. 6. The 
⟨
𝑝2
𝑇

⟩
√

5

increases logarithmically as 𝑠 increases over a wide range of energies. 
Fig. 6. The extracted 
⟨
𝑝2
𝑇

⟩
for 𝑝 + 𝑝 → 𝐽∕𝜓 from SeaQuest (solid red circle) 

compared to other experiments [31–34] at different 
√
𝑠. The 

⟨
𝑝2
𝑇

⟩
increases 

logarithmically versus 
√
𝑠, as illustrated by the fit (gray line) to the data.

A linear fit versus the log of the center-of-mass energy, adapted from 
Ref. [34],

⟨
𝑝2
𝑇

⟩
= 𝑎 ln

(√
𝑠∕𝑏

)
, (4)

with

𝑎 = (1.150 ± 0.043)GeV2, 𝑏 = (6.98 ± 0.37)GeV, (5)

describes the general trend. Some variation is expected due to the dif-
fering rapidity range of the measurements, as shown in previous fixed-
target 𝐽∕𝜓 production measurements [45].

The 𝜎𝑝𝑑∕2𝜎𝑝𝑝 𝐽∕𝜓 cross section ratios versus 𝑥𝐹 are shown in Fig. 7. 
As a result of the identical target geometry of the two liquid targets and 
the frequent interchange between the targets, most of the systematic 
uncertainties largely cancel in the cross section ratio. The remaining 
systematic uncertainties shown in Fig. 7 have dominant contributions 
from the uncertainties associated with the mass-fitting procedure. Also 
shown in Fig. 7 is the 𝐽∕𝜓 cross section ratio at 𝑥𝐹 ≈ 0 measured by the 
NA51 collaboration [19] with the 450GeV proton beam. The average 
ratio for the 𝐽∕𝜓 production across the SeaQuest measured region is 
≈ 1.055 ± 0.033 ± 0.025. Both the SeaQuest and the NA51 data show 
that the 𝜎𝑝𝑑∕2𝜎𝑝𝑝 ratios for 𝐽∕𝜓 production are greater than unity with 
≈ 2𝜎 significance.

The 𝜎𝑝𝑑∕2𝜎𝑝𝑝 cross section ratio for 𝐽∕𝜓 and 𝜓 (2𝑆) production 
is also compared with the Drell-Yan process [4] in Fig. 7. The differ-
ence between the Drell-Yan and the charmonium cross section ratios 
in Fig. 7 clearly reflects the different underlying mechanisms in these 
two processes. The Drell-Yan process, dominated by the 𝑞𝑞 annihila-

tion subprocess, leads to the expectation that the cross section ratio is 
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approximately 
(
1 + 𝑑(𝑥2)∕𝑢̄(𝑥2)

)
∕2 at forward 𝑥𝐹 [4], where 𝑥2 is the 

momentum fraction of the parton in the target proton. The measured 
range of 0.5 < 𝑥𝐹 < 0.9 corresponds to 0.048 < 𝑥2 < 0.078 for 𝐽∕𝜓 pro-
duction, which covers a region of 𝑥2 smaller than that covered by the 
Drell-Yan process (0.13 < 𝑥2 < 0.45) [3,4]. For charmonium production, 
the gluon-gluon fusion subprocess alone would give a cross section ratio 
as 

(
1 + 𝑔𝑛(𝑥2)∕𝑔𝑝(𝑥2)

)
∕2, where 𝑔𝑝,𝑛 refers to the gluon distribution in 

the proton or neutron. As the gluon is an iso-scalar particle, one expects 
an identical charmonium production cross section per nucleon for 𝑝 + 𝑑
and 𝑝 + 𝑝. This prediction clearly would be modified once the contribu-
tion from the 𝑞𝑞 annihilation subprocess to the charmonium production 
is included. It should also be noted as the strong interaction is insensi-
tive to the electric charge of the quarks, the relative weighting between 
𝑢𝑢̄ and 𝑑𝑑 is different between charmonium production and the Drell-
Yan process. As a result, the charmonium production is less sensitive 
to the light sea-quark asymmetry than the Drell-Yan process. The red 
solid curve in Fig. 7, obtained from the NRQCD calculation using the 
NNPDF4.0 proton PDFs, is in good agreement with the 𝐽∕𝜓 cross sec-
tion ratio data. The clear deviation from unity for the calculated ratio 
indicates a sizable contribution from the 𝑞𝑞 annihilation at the large 𝑥𝐹
region, even though the gluon-gluon fusion remains important for 𝐽∕𝜓
production at lower 𝑥𝐹 . For comparison, the black dot-dashed curve in 
Fig. 7, corresponding to the NLO calculation for the Drell-Yan cross sec-
tion ratio, gives significantly larger values for the ratio in qualitative 
agreement with the data. Our results are also compared with CEM cal-
culations in Fig. S2 of the Supplemental Material.

In summary, the SeaQuest experiment has measured the cross sec-
tions for 𝐽∕𝜓 and 𝜓 (2𝑆) in 𝑝 + 𝑝 and 𝑝 + 𝑑 interactions at 120 GeV. 
The 𝑥𝐹 dependence of the 𝐽∕𝜓 and 𝜓 (2𝑆) production cross sections 
is well described by the NRQCD calculation. The 𝜎𝜓(2𝑆)∕𝜎𝐽∕𝜓 ratio is 
also shown. The measured ratio increases as 𝑥𝐹 increases, indicating 
the increasing importance of 𝑞𝑞 annihilation in 𝜓 (2𝑆) production. The 
𝑝𝑇 dependence is also reported. The extracted 

⟨
𝑝2
𝑇

⟩
from this measure-

ment follows an increasing pattern versus 
√
𝑠 established by data over 

a wide range of energies.
We also present a direct comparison of 𝜎𝑝𝑑∕2𝜎𝑝𝑝 between 𝐽∕𝜓 pro-

duction and the Drell-Yan process. While the Drell-Yan process proceeds 
via 𝑞𝑞 annihilation, 𝐽∕𝜓 production has contributions from both the 𝑞𝑞
annihilation and the 𝑔𝑔 fusion processes. The measured 𝜎𝑝𝑑∕2𝜎𝑝𝑝 ratios 
are greater than unity for both the Drell-Yan and 𝐽∕𝜓 production, show-
ing that both processes are sensitive to the 𝑑, ̄𝑢 flavor asymmetry of the 
proton sea. The smaller values of 𝜎𝑝𝑑∕2𝜎𝑝𝑝 for 𝐽∕𝜓 production reflect 
the dilution due to the additional contribution of 𝑔𝑔 fusion for charmo-
nium production. It would be interesting to include the 𝜎𝑝𝑑∕2𝜎𝑝𝑝 𝐽∕𝜓
data in a future extraction of the 𝑑∕𝑢̄ asymmetry of the proton.
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