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Abstract

Achieving near-deterministic photon-emitter and photon-photon interactions is one of the

main challenges in constructing large-scale quantum networks. Because of the finite scattering

cross-section and branching ratio of emitters existing up to date, it is not possible to achieve

this goal without the fabrication of photonic structures around the emitter. In this work,

we employ a tunable Fabry-Pérot microcavity with a finesse as high as F = 24000, which

selectively enhances the coherent 0-0 zero-phonon line (00ZPL) of a single dibenzoterrylene

(DBT) molecule in an anthracene crystal.

Due to the small cavity mode volume of only V = 4.4λ3, we achieve high coupling rates up

to 2g = 2π ·1.54GHz between single cavity photons and molecular excitations. This exceeds

both the cavity loss rate (κ= 2π ·1.3GHz) and the free-space emission rate of the molecule

(γ= 2π ·0.04GHz). We report the first spectroscopic observation of a single molecule strongly

coupled to a cavity and find a cooperativity of C = 45. The transmission spectrum of the

coupled system shows two polariton peaks separated by a dip with transmission T < 1%. We

furthermore perform ringdown measurements which elucidate the dynamics of the energy

transfer between cavity and molecule. This marks the first measurement of a single molecule

undergoing single-photon Rabi oscillations.

As photon-emitter interactions are highly efficient in this system, we utilize its nonlinearity

to mediate photon-photon interactions. Saturating the molecule increases the transmission

through the common resonance, reaching T = 50% with a mean photon number as low as

n̄ = 0.40 in the cavity. In a pump-probe configuration, we benchmark the performance of our

system as a high-contrast all-optical switch at the level of single photons. As this nonlinearity

is quantum in origin, we inspect the photon statistics of the transmitted light and find an

intensity autocorrelation value of g (2)(0) = 252 due to the strong selective suppression of single

photons. In addition, we show that symmetric two-frequency excitation leads to four- and

even six-wave-mixing sidebands in the emitted spectrum.

Lastly, we present spectrally tailored dichroic cavity mirrors with a finesse of F = 10000, which

transmit Stokes-shifted fluorescence of the molecule. The detected rate of fluorescence light

is proportional to the excited state population of the molecule. This additional information

enables several new experiments, three of which we evaluate the feasibility of: Firstly, the

direct access to the excited-state population can be used to test the prediction that a two-level

system, our molecule, can exhibit steady-state inversion when coupled to a high-finesse cavity.

Secondly, it is possible to detect cavity-mediated coupling between two molecules by exciting
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Abstract

a two-photon transition at the average resonance frequency of the molecules. This gives rise

to a resonance which can be observed in the excited-state population, but not in the cavity

transmission. Thirdly, we estimate the cavity parameters necessary to resolve the quantization

of the AC Stark shift. This would allow us to detect the photon statistics inside the cavity.

The results in this thesis benchmark the ability of single molecules to mediate interactions

between single photons. This represents a major step towards the realization of a network of

quantum emitters connected via a quantum photonic channel.
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Zusammenfassung

Nahezu deterministische Photonen-Emitter- und Photonen-Photonen-Wechselwirkungen zu

erzielen ist eine der größten Herausforderungen beim Aufbau großflächiger Quantennetzwer-

ke. Aufgrund des begrenzten Streuquerschnitts und Zerfalls-Verzweigungsverhältnisses der bis

dato existierenden Emitter ist es nicht möglich, dieses Ziel ohne die Fertigung photonischer

Strukturen um den Emitter zu erreichen. In dieser Arbeit verwenden wir einen verstimmbaren

Fabry-Pérot-Mikroresonator mit einer Finesse von bis zu F = 24000, der selektiv die kohä-

rente 0-0-Null-Phononen-Linie (00ZPL) eines einzelnen Dibenzoterrylen-Moleküls (DBT) in

einem Anthracenkristall verstärkt.

Aufgrund des kleinen Resonator-Modenvolumens von nur V = 4.4λ3 erreichen wir hohe Kopp-

lungsraten bis zu 2g = 2π·1.54GHz zwischen einzelnen Resonator-Photonen und Anregungen

des Moleküls. Diese übersteigen sowohl die Resonator-Verlustrate (κ= 2π ·1.3GHz) als auch

die freie Emissionsrate des Moleküls (γ= 2π ·0.04GHz). Wir präsentieren die erste spektro-

skopische Beobachtung eines einzelnen Moleküls, das stark an einen Resonator gekoppelt ist,

und ermitteln eine Kooperativität von C = 45. Das Transmissionsspektrum des gekoppelten

Systems weist zwei durch die Polaritonen verursachte Maxima auf, die durch ein Minimum mit

einer Transmission T < 1% getrennt sind. Darüber hinaus führen wir Ringdown-Messungen

durch, die die Dynamik des Energietransfers zwischen Resonator und Molekül aufzeigen.

Dies ist die erste Messung eines einzelnen Moleküls, das Einzelphotonen-Rabi-Oszillationen

ausführt.

Da Photonen-Emitter-Wechselwirkungen in diesem System sehr effizient sind, nutzen wir

seine Nichtlinearität um Photonen-Photonen-Wechselwirkungen zu vermitteln. Wird das

Molekül gesättigt, erhöht sich die Transmission durch die gemeinsame Resonanz und erreicht

T = 50% bereits mit einer mittleren Photonenzahl n̄ = 0.40 im Resonator. In Pump-Probe-

Experimenten testen wir die Leistungsfähigkeit unseres Systems als optischer Schalter mit

hohem Kontrast auf Einzelphotonen-Ebene. Da diese Nichtlinearität quantenmechanischen

Ursprungs ist, untersuchen wir die Photonenstatistik des transmittierten Lichts und finden

aufgrund der stark selektiven Unterdrückung von 1-Photonen-Zuständen einen Intensitäts-

autokorrelationswert von g (2)(0) = 252. Darüber hinaus zeigen wir, dass Anregung mit zwei

symmetrisch um die Resonanz des Moleküls verstimmten Lasern zu Seitenbändern im Emissi-

onsspektrum führt, die von Vier- und sogar Sechs-Wellen-Mischungs-Prozessen stammen.

Abschließend präsentieren wir spektral maßgeschneiderte dichroitische Resonatorspiegel

mit einer Finesse von F = 10000, die die Stokes-verschobene Fluoreszenz des Moleküls
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Zusammenfassung

transmittieren. Die Detektionsrate des Fluoreszenzlichts ist proportional zur Population des

angeregten Zustands des Moleküls. Dieser zusätzliche Informationskanal ermöglicht mehrere

neue Experimente, von denen wir drei auf ihre Durchführbarkeit prüfen: Erstens kann der

direkte Zugang zur Population der angeregten Zustände genutzt werden, um die theoretische

Vorhersage zu testen, dass ein Zwei-Niveau-System, unser Molekül, im stationären Zustand

eine Populations-Inversion aufweisen kann, wenn es an einen Resonator mit hoher Finesse ge-

koppelt ist. Zweitens ist es möglich, eine durch den Resonator vermittelte Kopplung zwischen

zwei Molekülen nachzuweisen, indem ein Zwei-Photonen-Übergang bei der Durchschnittsre-

sonanzfrequenz beider Moleküle angeregt wird. Dies führt zu einer Resonanz, die sich durch

die Population des angeregten Zustands beobachten lässt, nicht aber durch die Resonator-

Transmission. Drittens schätzen wir die Resonatorparameter ab, die erforderlich sind um die

Quantisierung der AC Stark-Verschiebung aufzulösen. Dies würde es uns ermöglichen, die

Photonenstatistik im Inneren des Resonators zu erfassen.

Die Ergebnisse dieser Arbeit zeigen, dass einzelne Moleküle in der Lage sind, Wechselwirkun-

gen zwischen einzelnen Photonen zu vermitteln. Dies ist ein wichtiger Schritt auf dem Weg

zur Realisierung eines Netzwerks bestehend aus Quantenemittern, die über einen quanten-

photonischen Kanal miteinander verbunden sind.
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â†â
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1 Introduction

“Two photons met each other in free space. What happened? Nothing, they just waved.”

This joke portrays the absence of interaction between photons in vacuum. Making them

interact requires them to sense each other’s presence, for example by the photon-number-

dependent response of a material. This intensity-nonlinearity is a well-characterized property

of macroscopic materials, but too weak to mediate interactions between individual photons

[1]. Hence, nonlinear effects are typically observed under intense laser illumination. Most have

been experimentally observed only since the invention of the laser [2], for example second-

harmonic generation [3], the Kerr effect [4], spontaneous parametric down-conversion [5, 6]

or the AC Stark shift [7]. The nonlinear response of matter originates from the nonlinearity of

its constituents – atoms and molecules. In other words, even a single quantum emitter enables

experiments showing many facets of its nonlinearity [8, 9]: Rabi oscillations [10], emission

of the Mollow triplet [11, 12], stimulated emission [13] or two-photon absorption [14, 15], to

name just a few.

In these proof-of-principle experiments, the proportion of the photons interacting with each

other is very low. This is because a single photon has a low probability of interacting with

a single emitter. The probability of two photons simultaneously undergoing an interaction

with the emitter is accordingly even lower [8]. There are various approaches to increasing the

interaction probability: If the spatial waveform of the photon matches the dipolar emission

pattern [16, 17] and the temporal waveform is the inverse of spontaneous emission [18],

an atom can deterministically absorb an incoming photon. A practical implementation of

this is technically difficult. Alternatively, one can reduce the group velocity of a photon

significantly within a photonic crystal waveguide. The hereby increased emitter-photon

interaction time enables a nearly-deterministic coupling [19]. Another approach is to use

plasmonic nanoantennas to concentrate light within a few nm3. This increases the absorption

and emission rate by orders of magnitude and therefore significantly enhances the interaction

probability [20]. Our approach is to embed the emitter in a tunable micro-Fabry-Pérot cavity

[21], in which the light is concentrated in a µm3 volume over an extended period of time.
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Chapter 1. Introduction

Previously, an interaction probability of β= 93% of light with a single molecule was shown in

this system [22].

Building upon this, we recently reached the strong-coupling regime of light-matter interaction

[23]. Our experimental platform, therefore, is among the first to show strong light-matter

coupling with a single molecule, alongside one demonstration with a plasmonic nano-antenna

[24]. In the latter case, strong coupling was achieved at room temperature. However, the

coherent light-matter interaction is limited to a few femtoseconds due to the inherently high

dephasing rate. Coherent strong coupling of an individual quantum emitter to a cavity is a

particularly pertinent regime for studying the quantum nature of light-matter interaction

and has previously been achieved with other emitters, such as atoms [25], quantum dots

[26] and nitrogen vacancy centers in diamond [27]. The cavity protects the emitter from

decoherence caused by interaction with the environment [28, 29], similarly to the box around

Schrödinger’s cat [30]. Within the cavity, photons can be coherently absorbed and re-emitted

several times, analogously to Rabi oscillations in the semiclassical treatment of light-matter

interaction. However, the Rabi frequency is quantized [31]. It is proportional to the square

root of the number of photons in the cavity. The strong coupling between the emitter and the

cavity transfers the photon-number nonlinearity of the emitter to the cavity, turning it into

an anharmonic oscillator. The energy level scheme, called the Jaynes-Cummings ladder [29],

enables the overall system to respond in a photon-number dependent manner. This effect can

be utilized, for example, to create a stream of single photons via photon blockade [32, 33], or

to create N -photon bundles [34].

The ability to mediate an interaction between beams of light efficiently is often essential

in constructing optical circuit components – the building blocks of optical computers or

routers [35–38]. The earliest experiments paving this road explored a power-hysteresis effect

in cavities filled with Kerr-nonlinear media or saturable absorbers, namely optical bistability

[39–41]. However, the optical power required to reach the bistable regime in ensembles [42]

or bulk materials [43, 44] is macroscopic, in the order of several mW. Although reducing

the mode volume and choosing materials with stronger nonlinearity [45–47] reduces the

power requirements, for applications in quantum communication and quantum information

processing [48–50] it is crucial to reach the nonlinear regime with single photons. A single

quantum emitter behaves nonlinearly with ∼ 1 photon in the cavity if β is close to 1. Proof-of-

principle demonstrations were performed using single atoms [51–56], quantum dots [57–61]

and color centers in diamond [62–64]. High switching contrast is important to avoid signal

degradation in a cascade of switches. The strength of our system lies in its remarkably high

contrast, attributable to low decoherence rates.

We explored different nonlinear optical effects, with efficiencies boosted by the strong light-

matter interaction. With a mean photon number of n̄ ∼ 1 inside the cavity, we can saturate the

molecule, rendering it transparent to a second beam, thus realizing a single-photon switch.

We furthermore investigated the qualitatively different response of the molecule to different

photon numbers. This property can be utilized for photon number sorting [65]. Moreover, we
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showed that the nonlinearity of the molecule can mediate four-wave-mixing processes at the

level of individual photons.

In this thesis, we first explain the photophysics of the molecule, the properties of cavities and

the interaction of a single emitter with the cavity field in Chapter 2. We introduce a consistent

mathematical framework describing all of our experiments and describe our simulations

therein. In Chapter 3 we introduce the key components of our experimental setup and essential

experimental methods. In Chapter 4 we present the first experimental demonstration of strong

coupling between a single molecule and a Fabry-Pérot cavity, while Chapter 5 discusses the

nonlinear optical measurements mentioned in the previous paragraph. We elaborate on three

concrete experimental ideas, which are feasible within the near future in Chapter 6, before

closing the thesis with a brief summary and a broader outlook in Chapter 7.
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2 Theoretical Background

2.1 Organic Molecules in Solid State

Organic molecules have been used in a variety of optical settings ranging from the demonstra-

tion of fundamental effects [12, 66, 67] to dye lasers [68], superresolution microscopy [69, 70]

and single-molecule quantum optics [71, 72]. Essential to this diversity are the many different

types and sizes of organic molecules, with optical transitions over a broad spectral range from

200 to 800 nm [73]. This work focuses on single polyaromatic hydrocarbons (PAHs) embedded

in organic crystals. More specifically, we use dibenzoterrylene (DBT) doped anthracene crys-

tals. Both DBT and anthracene resemble cut-out pieces of graphene and are therefore also

referred to as nanographenes [74]. Fig. 2.1 shows their chemical structure.

Host: anthracene

Dopant: dibenzoterrylene (DBT)

|T1〉 =: |t〉

|g 〉 := |S0, v = 0〉
|S0, v ̸= 0〉

|e〉 := |S1, v = 0〉
|S1, v ̸= 0〉

γ

γet

γt g

γ00

00
Z

P
L

Figure 2.1: Left: The chemical structure of anthracene and DBT. Right: The relevant energy
levels and transitions of DBT.

At liquid helium temperatures (4.2 K) DBT molecules yield optical transitions with lifetime-

limited linewidths of 30–40 MHz [75]. Moreover, within the crystal the molecules are photo-

stable. Hence, the same molecule can be used over months for optical experiments.
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Chapter 2. Theoretical Background

The energy levels of DBT (Fig. 2.1) involve the electron orbitals, electron spin and movement

of the nuclei. When the molecule is excited from the ground state |S0〉 into the next higher

singlet state |S1〉, it can decay

• into the ground state |g 〉 := |S0, v = 0〉 by emitting a photon. This transition is called 0-0

zero-phonon line (00ZPL). We denote the transition rate by γ00. For DBT in anthracene

the wavelength of photons emitted via the 00ZPL is 785 nm.

• into the electronic ground state with a quantized excitation of one or more modes of

vibration |S0, v ̸= 0〉. The photon emitted in this process has less energy than a photon

emitted from the 00ZPL transition. The vibration decays into crystal phonons within a

few picoseconds [76]. We denote the overall decay rate from the |S1〉 to the |S0〉 states

by γ. The branching ratio α00 = γ00

γ is given by the Franck-Condon principle [77]. In

free space, it is α00 ≈ 33% [78], but it was previously shown [22] that this ratio can be

increased to 95 % by a frequency-selective Purcell-enhancement (see Ch. 2.3.6).

• into the triplet state |T1〉 via inter-system crossing (ISC). From there it can further

decay into the ground state either by emitting a phosphorescence photon or by internal

conversion. The transition rate in γet and out of the triplet state γt g are several orders of

magnitude smaller than γ [75]. This is because these transitions are spin-forbidden in

an ideal unperturbed system, and only weakly allowed in a real molecule. Depending on

how much the local environment of the molecule distorts its shape, the ISC rates vary

among different individual molecules [79]. Despite being very low, the ISC rate plays a

role in the saturation behavior of the molecule, as will be explained in Ch. 2.4.

Working with single molecules [80, 81] requires the density of molecules to be very low in the

spatial and spectral domains. Defects in the crystal individualize the nanoenvironment around

the molecules, shifting the energy levels, which gives rise to a spread in the transition fre-

quencies, called inhomogeneous broadening [82]. We typically work with samples exhibiting

∼ 102 molecules over a few hundred gigahertz within one diffraction-limited volume.

2.2 Cavities

Generally, an optical cavity is a structure which concentrates light in three dimensions [28].

Various geometries are possible: ring resonators [83, 84], whispering gallery mode resonators

[85, 86], photonic crystal cavities [87–89] and Fabry-Pérot cavities [90–92]. In this work, a

Fabry-Pérot cavity is used, but the concepts explained here can be generalized to other types

of cavities.

2.2.1 Mirror Coating

In a Fabry-Pérot cavity light is concentrated between two mirrors with a spacing of length L.

The mirrors can be made out of metal. The light does not penetrate deep into the metal mirror,
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2.2 Cavities

therefore the mode volume can be very small [93]. Furthermore, as it is only a single layer it is

easy to produce. However, the reflectivity of a metal mirror is limited by absorption. This is why

high-reflectivity mirrors consist of multiple layers of dielectric materials alternating between

high and low refractive indices. If the optical thickness of each layer i is a quarter wavelength,

ni di = λ/4, the partial reflections from each interface interfere constructively, making this

Bragg mirror highly reflective for the wavelength λ. Other layer thickness combinations allow

the reflectivity spectrum to be tailored to specific applications, including dichroic mirrors,

chirped mirrors and shortpass/longpass/bandpass/notch filters [94].

Reflectivities of dielectric mirrors up to 99.99984 % have been reported [95]. A more convenient

metric to express the reflectivity R is the finesse

F = π
⎷

R

1−R
. (2.1)

In a cavity consisting of two mirrors with reflectivity R, the light undertakes on average F/2π

round-trips before it leaks out or is absorbed.

2.2.2 Eigenmodes

Given the shape of the mirrors, one can find the eigenmodes of the cavity. Mathematically,

this corresponds to the eigensystem question: “Which initial field distribution leads to the

very same field distribution after propagating a full round-trip through the cavity?” [96, 97].

For spherical mirrors of radii r1,r2 this question can be answered analytically: It is the set of

Laguerre-Gauß beams.1 The modes are stable, if the distance between the mirrors L fulfils the

following condition [99]

0 <
(︃
1− L

r1

)︃(︃
1− L

r2

)︃
< 1. (2.2)

For plano-concave cavities, such as those used in this work, r1 =∞ and r2 = R0 > 0. We can

calculate the mode using the boundary condition that its wavefronts match the mirror shapes.

The wavefront radius of curvature at a distance z from the beam waist is

R(z) = z

(︃
1+

(︂ zR

z

)︂2
)︃

, (2.3)

with the Rayleigh range zR . The beam waist (z = 0) must be at the flat mirror, because only

here is the wavefront flat: R(0) →∞. The other beam parameters are fixed by the second

mirror at z = L. To match its radius of curvature, R(L) must equal R0, hence

zR =
√︁

(R0 −L)L. (2.4)

1More generally, for elliptical mirrors the eigenmodes are Hermite-Gauß modes. If the semi-axes of the ellipse
are equal (it is a sphere), the Hermite-Gauß modes Hmn and Hnm become degenerate, i.e. resonant for the same
cavity length L. At these common resonances, the Hermite-Gauß modes hybridize into Laguerre-Gauß modes. If
the finesse of the cavity is high enough, one can resolve individual Hermite-Gauß modes [98].
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2.2.3 Resonance

A beam of wavenumber k = 2π
λ is on resonance with the cavity, if the phase it acquires during

one round-tripΦ is an integer multiple of 2π. The round-trip phase [93]

Φ= 2kL+2ψ(L)−φ1 −φ2 (2.5)

consists of three contributions: The phase due to propagation 2kL, the Guoy phase ψ(L) for

each half round-trip and the phase shift upon reflection from the mirrors −φ1 −φ2. With the

Guoy phase

ψ(L) =−(m +1)arcsin

√︄
L

R0
(2.6)

one can numerically solve

q ·2π= 2kL−2(m +1)arcsin

√︄
L

R0
−φ1 −φ2 (2.7)

for the length L of the mode with longitudinal mode number q and transversal mode number

m. We use this relation to determine q experimentally, as described in Appendix I. Fig. 2.2

shows the relation for our experimental parameters.
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L =λ/2 ·q

R0 = 10 µm

Figure 2.2: Red: The cavity length L as a function of the longitudinal mode number q for the
fundamental mode (m = 0) of wavelength λ= 785nm in a cavity with mirror radius R0 = 10µm.
The black dashed line shows the cavity length in the absence of the Guoy phase (Eq. 2.6), or
for R0 →∞. For simplicity, we assume the reflection phases of the mirrors to be φ1 =φ2 = 0 to
assign q = 0 to the mode of length L = 0. If the reflection phase is φ1 =φ2 =π, the L = 0 mode
is q = 1 using the convention from Eq. 2.7.
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2.3 Interaction of a Single Emitter with the Cavity Field

2.2.4 Mode Volume

The mode volume V specifies how much the cavity concentrates the light. It is defined as

V =
Ð

u (⃗r )d3r⃗

max[u (⃗r )]
, (2.8a)

where

u (⃗r ) = ε(⃗r )
⃓⃓
E⃗ (⃗r )

⃓⃓2
(2.8b)

is the energy density of the mode considered, with E⃗ (⃗r ) being the electric field strength and

ε(⃗r ) the electric permittivity at position r⃗ . The integration runs over all space, but practically

the field is confined between the two mirrors. For short cavities L =O (λ) the field within the

mirror coating also contributes significantly. The mode volume V is the amount of space

homogeneously filled with the highest energy density in the cavity, max[u (⃗r )], which contains

the same total energy as the cavity mode
Ð

u (⃗r )d3r⃗ . For a standing-wave Gaussian beam

with beam waist w0 the mode volume in a cavity of length L is [100]

V = π

4
w0

2L. (2.9)

We note that in [100] Eq. (12.56), the mode volume is twice as large. This is because the authors

consider a travelling wave. In a standing wave, as in our Fabry-Pérot cavity, the energy is

concentrated in half as much volume because of the interference between the forward and

backward propagating beams.

To provide some exemplary numbers, we compare our microcavity with the filter cavity used

in Chapters 5.2 & 5.4. The microcavity consists of a planar mirror and a curved mirror with a

radius of curvature R = 10µm (see Ch. 3.1.1). Neglecting the field penetration into the mirror

coatings, a distance of L = 2.5µm between the mirrors results in a mode waist of w0 = 1.0µm

for a wavelength of λ= 785nm. This mode has a volume of V = 2.1µm3. The filter cavity is

a confocal cavity consisting of two spherical mirrors with radii of curvature R = 2cm, which

are L = 2cm apart. The beam waist of this mode is w0 = 50µm. Therefore, the mode volume

measures V = 0.039mm3.

2.3 Interaction of a Single Emitter with the Cavity Field

So far, the system has been described classically. However, if a quantum emitter is introduced

into the cavity, a description using the Schrödinger equation is necessary to account for all

quantum effects. The state |ψ(t )〉 describes the state of the molecule and the field in the cavity.

The basis vectors of this Hilbert space are denoted by |g /e,n〉, where the first part describes the

state of the emitter (g for the ground, e for the excited state) and n is the number of photons

in the cavity.

9



Chapter 2. Theoretical Background

2.3.1 Jaynes-Cummings Hamiltonian

The Hamiltonian of the system is [29]

Ĥ = ĤE + ĤF + ĤI , (2.10a)

where

ĤE = ℏωe |e〉〈e| =: ℏωe ρ̂ee (2.10b)

is the energy if the emitter,

ĤF = ℏωc

(︃
â†â + 1

2

)︃
(2.10c)

is the energy of the field in the cavity and

ĤI =− ˆ⃗d · ˆ⃗E (⃗r ) (2.10d)

is the interaction energy of the electric field ˆ⃗E with the emitter at position r⃗ in dipole approx-

imation [101]. ωe and ωc are the transition frequency of the molecule and the resonance

frequency of the cavity, respectively. The electric field operator ˆ⃗E (⃗r ) can be written in terms of

the creation â† and annihilation â operators of the cavity mode:

ˆ⃗E (⃗r ) =−
√︄

ℏωc

2ε0V

(︂
f⃗ (⃗r )â + f⃗ ∗(⃗r )â†

)︂
, (2.11)

in which f⃗ (⃗r ) is a unitless function which accounts for the spatial distribution of the field [29].

The dipole operator is [101]

ˆ⃗d = d⃗eg
(︁|g 〉〈e|+ |e〉〈g |)︁=: d⃗eg (σ̂−+ σ̂+) , (2.12)

in which d⃗eg is the dipole matrix element for the emitter’s transition. For DBT in anthracene

its amplitude is 13.1 Debye (≈ 4.37 ·10−29 Cm) [102] times the square root of the free-space

branching ratio
⎷
α00. Defining

g (⃗r ) :=−
√︃

ωc

2ℏε0V
d⃗eg · f⃗ (⃗r ) (2.13)

we can write the interaction Hamiltonian (Eq. 2.10d) as

ĤI = ℏ (σ̂−+ σ̂+)
(︂
g â + g∗â†

)︂
= ℏg

(︂
σ̂−â + σ̂−â† + σ̂+â + σ̂+â†

)︂
, (2.14)

where the phase of the dipole is chosen such that g is real and positive [101]. The operator

σ̂−â† describes the emitter transitioning from the excited into the ground state while a photon

in the cavity is created, while σ̂+â describes removing a photon while exciting the emitter.

10



2.3 Interaction of a Single Emitter with the Cavity Field

The other two terms describe the simultaneous creation of a photon and an excitation of the

emitter, or their annihilation, respectively. These energy nonconserving terms play a minor

role if g ≪ωc and are therefore neglected in the rotating-wave approximation [29].

As can be seen from the Schrödinger equation

∂t |ψ(t )〉 =−i
Ĥ

ℏ
|ψ(t )〉 , (2.15)

the vacuum energy of the cavity field 1
2ℏωc (Eq. 2.10c) only contributes a global phase

e−iωc t/2, and therefore does not affect observables. Hence, we omit it and arrive at the Jaynes-

Cummings Hamiltonian [103]

Ĥ

ℏ
=ωe ρ̂ee +ωc â†â + g

(︂
σ̂−â† + σ̂+â

)︂
. (2.16)

2.3.2 Single-Photon Rabi Oscillations

As an example of the dynamics imposed by this Hamiltonian, we solve the Schrödinger

equation for the initial state |ψ(0)〉 = |g ,1〉; with the emitter in the ground state and one

photon in the cavity. We denote a general state

|ψ(t )〉 = cp (t ) |g ,1〉+ ce (t ) |e,0〉 . (2.17)

This describes a superposition of one excitation consisting of a photon with probability

amplitude cp and an excitation of the emitter with probability amplitude ce . The normalization⃓⃓
cp (t )

⃓⃓2 +
⃓⃓
ce (t )

⃓⃓2 = 1 must be satisfied for all times t . Because the Hamiltonian conserves the

number of excitations in the system, the amplitudes for all other basis vectors of the Hilbert

space remain 0. Substituting this expansion into the Schrödinger equation results in

∂t
(︁
cp (t ) |g ,1〉+ ce (t ) |e,0〉)︁=−i

(︁(︁
ωe ce (t )+ g cp (t )

)︁ |e,0〉+ (︁
ωc cp (t )+ g ce (t )

)︁ |g ,1〉)︁ , (2.18a)

which can be separated into

{︄
∂t cp (t ) =−i

(︁
ωc cp (t )+ g ce (t )

)︁

∂t ce (t ) =−i
(︁
ωe ce (t )+ g cp (t )

)︁
.

(2.18b)

For the given initial conditions cp (0) = 1,ce (0) = 0 the solution to these coupled differential

equations is

cp (t ) = exp
(︂
−i
ωc +ωe

2
t
)︂(︃

i (ωc −ωe )

Ω1
sin

(︃
Ω1

2
t

)︃
+cos

(︃
Ω1

2
t

)︃)︃

ce (t ) =−2i g

Ω1
exp

(︂
−i
ωc +ωe

2
t
)︂

sin

(︃
Ω1

2
t

)︃
,

(2.19)
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Figure 2.3: Single-photon Rabi oscillations for various cavity-emitter detunings ωc −ωe after
the system is initialized in the state |ψ(0)〉 = |g ,1〉.

where Ωn =
√︁

n(2g )2 + (ωc −ωe )2 is used.2 In Fig. 2.3 the evolution of the probabilities of

finding a photon in the cavity
⃓⃓
cp (t )

⃓⃓2 and finding the emitter in the excited state
⃓⃓
ce (t )

⃓⃓2 are

plotted against time t . If the cavity and emitter are resonant ωe =ωc , the photon is completely

absorbed and re-emitted with a period of 2π/2g . Analogously to the Rabi oscillations occurring

in the semiclassical theory of light-matter interaction, 2g is called the single-photon Rabi

frequency (or vacuum Rabi frequency). If the cavity and emitter are detuned relative to each

other, the Rabi oscillations occur with reduced amplitude at a higher frequency Ω1. More

generally, an n-photon state in the cavity drives the emitter into Rabi oscillations of frequency

Ωn , which is called the generalized n-photon Rabi frequency.

2.3.3 Polaritons

These dynamics show that the product states of emitter and cavity field are not eigenstates

of the Hamiltonian, except for the trivial case of |g ,0〉. The eigenstates for n ≥ 1 excitations,

called polaritons, are superpositions of excitations of the emitter and the cavity field. They are

given by [101]

2A general solution for the case of n excitations is given in chapter 6.2.1 of [104].
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|n+〉= sinθn |g ,n〉+cosθn |e,n −1〉
|n−〉= cosθn |g ,n〉− sinθn |e,n −1〉

(2.20)

and have energies of

En± = ℏ
(︃
(n −1)ωc +

ωc +ωe ±Ωn

2

)︃
. (2.21)

3ωe −10g

3ωe

3ωe +10g

2
p

3g

2ωe −10g

2ωe

2ωe +10g

2
p

2g

ωe −10g

ωe

ωe +10g
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Figure 2.4: Energy levels of a two-level emitter of fixed frequency ωe coupled to a cavity of
frequency ωc . The thin grey lines show the energies of uncoupled states. The thick colored
lines show the energies for a single-photon Rabi frequency of 2g . Their colors encode the
proportion of the state in which the emitter is excited |e,n −1〉, as given by Eq. 2.20.
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The mixing angle θn ∈ [0,π/2], also called Stückelberg angle, is given by

tan2θn =− 2
⎷

ng

ωc −ωe
. (2.22)

Fig. 2.4 shows the energies of the polaritons as a function of the cavity frequency ωc . On

resonance ωc =ωe , the mixing is maximal θn = π
4 . In this case, the energy splitting is minimal

En+−En− = 2
⎷

nℏg . (2.23)

In the limit of high detuning |ωc −ωe |≫ 2
⎷

ng the energy eigenstates converge to the uncou-

pled states |g ,n〉 and |e,n −1〉.

2.3.4 Losses and Driving

So far, the cavity and emitter have been considered a closed system without connection to the

environment. In a real experiment the emitter does not only interact with the cavity mode,

but also with a continuum of free-space modes, resulting in a decay into non-cavity modes at

a rate γ. Moreover, the cavity mirrors do not reflect 100 % of the light. With mirror reflectivities

R1,R2 every round-trip a fraction of (1−R1R2) of the energy is lost by outcoupling through the

mirrors or by absorption or scattering. This leads to an energy loss rate of

κ= − ln(R1R2)

tRT
, (2.24)

where tRT is the round-trip time in the cavity [105]. These two loss mechanisms couple the

system under observation to the environment. We do not explicitly model the environment,

hence the system is generally described as a mixed state ρ, which evolves according to the

Lindblad equation [106, 107]

∂tρ =−i

[︃
Ĥ

ℏ
,ρ

]︃
+Lγ(ρ)+Lκ(ρ). (2.25a)

with the Lindblad terms

Lγ(ρ) = γ
(︃
σ̂−ρσ̂+− 1

2

(︁
σ̂+σ̂−ρ+ρσ̂+σ̂−

)︁)︃= γ
(︃
σ̂−ρσ̂+− 1

2

(︁
ρ̂eeρ+ρρ̂ee

)︁)︃
(2.25b)

and

Lκ(ρ) = κ
(︃

âρâ† − 1

2

(︂
â†âρ+ρâ†â

)︂)︃
. (2.25c)
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2.3 Interaction of a Single Emitter with the Cavity Field

2.3.5 Damped Single-Photon Rabi Oscillations

To describe the lossy cavity-emitter system, we follow the approach in [108], chapter 13.3.1.

The density matrix can be decomposed into two parts

ρ(t ) = ρ0(t )+ρ1(t ), (2.26)

where

ρ0(t ) = Pemitted(t ) |g ,0〉〈g ,0| (2.27a)

ρ1(t ) = |ψ(t )〉〈ψ(t )| . (2.27b)

Pemitted(t) is the probability that the system has decayed to the ground state |g ,0〉 by time t

via either of the two decay channels. |ψ(t )〉 is a pure state

|ψ(t )〉 = cp (t ) |g ,1〉+ ce (t ) |e,0〉 , (2.28)

describing the coherent evolution within the 1-excitation subspace. The difference to Eq. 2.17

is that |ψ(t )〉 is not normalized, but instead
⃓⃓
cp (t )

⃓⃓2 +|ce (t )|2 +Pemitted = 1. The differential

equations for the coefficients cp (t ), ce (t )

{︄
∂t cp (t ) =−i

(︁
ωc cp (t )+ g ce (t )

)︁− κ
2 cp (t )

∂t ce (t ) =−i
(︁
ωe ce (t )+ g cp (t )

)︁− γ
2 ce (t )

(2.29)

show damping at rates κ
2 and γ

2 additionally to the unitary dynamics of the lossless system (cf.

Eq. 2.18b). Starting with the emitter in the excited state ce (0) = 1, the solution to Eq. 2.29 is

cp (t ) =−2i g

Ω̃1
exp

(︂(︂
−i
ωc +ωe

2
− κ+γ

4

)︂
t
)︂

sin

(︃
Ω̃1

2
t

)︃

ce (t ) = exp
(︂(︂
−i
ωc +ωe

2
− κ+γ

4

)︂
t
)︂(︃

cos

(︃
Ω̃1

2
t

)︃
+ i

δ̃

Ω̃1
sin

(︃
Ω̃1

2
t

)︃)︃
.

(2.30a)

This describes Rabi oscillations with a complex frequency Ω̃1 damped at a rate κ+γ
2 . The

complex Rabi frequency takes detuning and losses into account:

Ω̃1 =
√︂

(2g )2 + δ̃2 (2.30b)

with

δ̃= (ωc −ωe )− i
κ−γ

2
. (2.30c)

Fig. 2.5 shows the evolution of the photon |cp (t)|2 and excited state population |ce (t)|2 for

various damping rates in the resonant case ωc =ωe . The Rabi oscillations are exponentially
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Figure 2.5: Single-photon Rabi oscillations damped equally due to cavity outcoupling at rate κ
and free-space emission at rate γ.

damped at a rate (κ+γ)/2. If the Rabi oscillation dominates the dynamics, a photon in the

cavity can interact multiple times with the emitter before it leaks out of the cavity. Therefore,

this regime is called the strong coupling regime.

We note that the strong coupling regime can also be defined by the exceptional point of the

complex Rabi frequency [109]. For a resonant cavity ωc = ωe , the complex Rabi frequency

(Eq. 2.30b) is imaginary provided 4g < κ−γ. For g higher than the exceptional point gex =
(κ−γ)/4, the system is said to be in the strong coupling regime and Ω̃1 is real.

2.3.6 Purcell Effect

In the bad cavity limit (κ≫ g ,γ) photon reabsorption does not play a role, but the cavity does

enhance the interaction between the emitter and the electromagnetic field of the cavity mode,

as in the previous chapters. This is indicated by an increased decay rate of the excited state.

For g ≪
⃓⃓
δ̃
⃓⃓

the ratio δ̃/Ω̃1 approaches 1. We can therefore use Euler’s formula to write the
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wavefunction coefficient for the excited state ce (t ) in Eq. 2.30a as

ce (t ) = exp
(︂(︂
−i
ωc +ωe

2
− κ+γ

4

)︂
t
)︂

exp

(︃
i
Ω̃1

2
t

)︃
. (2.31)

Next, we Taylor-expand Ω̃1 around g = 0 and obtain

Ω̃1 =
√︂

(2g )2 + δ̃2 =
√︁
δ̃2 + 2g 2

√︁
δ̃2

+O (g 4) ≈ δ̃+ 2g 2

δ̃
. (2.32)

Some terms in the exponent cancel with the δ̃ giving

ce (t ) = exp

(︄(︄
−i
ωc +ωe

2
− κ+γ

4
+ i

ωc −ωe

2
+ κ−γ

4
+ i g 2

(ωc −ωe )− i κ−γ2

)︄
t

)︄

= exp

(︄(︄
−iωe −

γ

2
+ i g 2

(ωc −ωe )− i κ−γ2

)︄
t

)︄
. (2.33)

Together with κ−γ≈ κ the probability of finding the emitter in the excited state

|ce (t )|2 = exp

(︃(︃
−γ+ i g 2

(ωc −ωe )− i κ2
− i g 2

(ωc −ωe )+ i κ2

)︃
t

)︃

= exp

(︄(︄
−γ− 4g 2

κ

(︁
κ
2

)︁2

(ωc −ωe )2 + (︁
κ
2

)︁2

)︄
t

)︄
(2.34)

decays exponentially at the free-space decay rate γ plus an additional rate

γcav =
4g 2

κ

(︁
κ
2

)︁2

(ωc −ωe )2 + (︁
κ
2

)︁2 (2.35)

due to the cavity. The Purcell factor FP is the ratio of cavity-induced to free-space decay rates:

FP := γcav

γ
= 4g 2

κγ

(︁
κ
2

)︁2

(ωc −ωe )2 + (︁
κ
2

)︁2 . (2.36)

The Purcell factor can alternatively be explained in terms of enhancing the density of modes

and concentrating their electric field within the cavity volume [110]. This is evident when

the Purcell factor is expressed by the cavity properties alone. We can write the free-space

spontaneous emission rate

γ=

⃓⃓
⃓d⃗eg

⃓⃓
⃓
2
ωe

3

3πε0ℏc3 (2.37)

and the coupling g (see Eq. 2.13) in terms of the transition dipole moment d⃗eg . If the emitter

is in the field maximum of the cavity mode, resonant with the cavity ωe =ωc and its transition
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dipole moment parallel to the mode polarization d⃗eg ∥ E⃗ , the Purcell factor is

FP = 4g 2

κγ
= 4

κ

ωc
2ℏε0V

⃓⃓
⃓d⃗eg

⃓⃓
⃓
2

⃓⃓
⃓d⃗eg

⃓⃓
⃓

2
ωc

3

3πε0ℏc3

= 3

4π2

(︃
λ

n

)︃3 Q

V
(2.38a)

= 6

π3

(︃
λ

n

)︃2 F

w0
2 , (2.38b)

where we introduce the quality factor Q =ωc /κ. To maximize the Purcell factor, a cavity must

have a high finesse F and the cavity mode must be strongly focused to achieve a small mode

waist w0. We would also like to note that the Purcell factor depends neither on the linewidth of

the emitter γ nor on the length of the cavity L. This means, for a given Gaussian beam defined

by its waist w0 and wavelength λ, one could place a wavefront-matched curved mirror at any

distance from the beam waist (see Fig. 2.6) and obtain the same Purcell factor. This only a

thought experiment, because the mirror radius r2 depends on the distance from the waist z,

as in Eq. 2.3.

w0

r2,longr2,shortr1 =∞

Figure 2.6: Thought experiment: Constructing a cavity for a given Gaussian beam. A flat mirror
(r1 =∞) is placed at the beam waist, and a curved mirror of radius r2 is placed at a distance z
from the waist. The radius r2 is chosen to match the wavefront curvature R(z) of the beam
(see Eq. 2.3). The figure shows two cavities with vastly different lengths. Despite the different
mode volumes V , both cavities have the same Purcell factor FP .

The cooperativity C can be used to assess the purity of interaction of the emitter with the

cavity compared to its interaction with the environment. For an ideal two-level system, the

cooperativity is the same as the Purcell factor for a resonant cavity

C := 4g 2

κγ
. (2.39)
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2.3 Interaction of a Single Emitter with the Cavity Field

However, for emitters with several decay channels from |e〉 to |g 〉, there is a difference: While

for the cooperativity the decay rate γ in the denominator means the overall decay rate of

all channels, for the Purcell factor only the resonantly enhanced transition is taken into

account. In our case, the cavity is tuned in resonance with the 00ZPL of DBT, which constitutes

α00 = γ00

γ ≈ 1
3 of the overall free-space decay rate. The cooperativity C =α00FP is therefore one

third of the Purcell factor. To achieve a high cooperativity, emitters with a high branching ratio

α00 are preferred.

A similar measure is the beta-factor β, which specifies the ratio of light emitted into the cavity

mode Cγ compared to the overall decay rate γ+Cγ

β= Cγ

γ+Cγ
= C

1+C
. (2.40)

Hence, a high β implies that the emitter interacts with nearly every photon in a cavity, making

linear and nonlinear light-matter interactions much more likely than without a cavity. In our

experiments, we find a cooperativity of up to 45. Since in the strong coupling regime a photon

can be emitted and reabsorbed several times, we note that the definition of the beta factor

does not apply here. Furthermore, we have assumed that the spontaneous emission rate into

non-cavity modes γ is the same as in free space. This is not generally the case [111, 112], but a

reasonable approximation in our case, because the cavity covers only a small solid angle.

2.3.7 Laser Driving

The previous examples illustrate the dynamics of the cavity-emitter system starting from a

given initial state. In our experiments, we create these states by coupling one or two laser

beams into the cavity. The lasers can be pulsed, as in the experiments described in Ch. 4.2,

or continuous-wave as in all other experiments. Here, we explain how the laser driving is

included in the model.

The laser drives the cavity with a strength Ξ(t ), analogously to the description of the semiclas-

sical Rabi frequency drive on a two-level system. This adds

ĤL(t ) = ℏ
(︂
Ξ(t )âe iωL t +Ξ∗(t )â†e−iωL t

)︂
(2.41)

to the Hamiltonian. To remove the phase rotating atωL we switch to a rotating frame, in which

the overall Hamiltonian reads

Ĥ(t )

ℏ
= (ωe −ωL) ρ̂ee + (ωc −ωL) â†â + g

(︂
σ̂+â + σ̂−â†

)︂
+Ξ(t )â +Ξ∗(t )â†. (2.42)

A. Auffèves-Garnier et al. [113] show that under certain approximations an analytic solution

is possible. These approximations include correlations between cavity and emitter being
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negligible and the corresponding operators becoming factorizable, for example

⟨︁
ρ̂ee â

⟩︁= ⟨︁
ρ̂ee

⟩︁〈â〉 . (2.43)

This is a close approximation for a weakly coupled system, in which a photon emitted into the

cavity has negligible back-action onto the emitter. However, in the strong coupling regime,

defined by said back-action, the operators cannot generally be separated. There are exceptions

in the cases of extremely strong Ξ→∞ and extremely weak driving Ξ→ 0. In the former,

the fraction of the photons the emitter can interact with approaches 0. Hence, observables

such as the transmission through the cavity T approach the case without an emitter. They

can therefore be described accurately by the model. More importantly for our experiments

in Ch. 4.1, in the case of weak driving, the population of the excited state of the emitter is

very small, as are the correlations to the cavity. This model therefore shows close agreement

with the full numerical model we explain in Ch. 2.4, but with the advantage of analytical

expressions for the transmission and reflection spectra. Therefore, we review its main results.3

It is possible to calculate the field transmission coefficient t of the system

t (ωL ,ωc ,ωe ) = t0(ωc −ωL)

⎛
⎜⎝−1+ 1

1+ 2i (ωe−ωL )+γ
4g 2

κ
t0(ωc−ωL )

⎞
⎟⎠ (2.44a)

with the field transmission coefficient of the empty cavity

t0(ωc −ωL) = 1

1+ i ωc−ωL
κ/2

. (2.44b)

The intensity transmission coefficient is the absolute value of the the field transmission

coefficient squared

T (ωL ,ωc ,ωe ) := Itrans

Iin
=

⃓⃓
t (ωL ,ωc ,ωe )

⃓⃓2
(2.45)

where Itrans is the rate of transmitted, and Iin = (2Ξ)2 /κ the rate of incident, photons. If

the cavity is resonant with the emitter ωc = ωe , and if γ≪ g ,κ, the transmission spectrum

simplifies to

T (ωL ,ωc =ωe ) = 1

1+
(︂

2g 2

κ(ωe−ωL ) −
ωe−ωL
κ/2

)︂2 . (2.46)

Its maxima are at ωc ± g , the energies of the first polaritons, therefore the single-photon Rabi

frequency can be identified in a measured spectrum from the separation of the maxima.

Fig. 2.7a) shows the transmission spectrum of a single emitter according to Eqns. 2.45 & 2.44

3We note that in Ref. [113] κ denotes the field decay rate, which is half our κ, the rate at which the intensity
inside the cavity decays. Furthermore, some quantities have different symbols. Our g is theirΩ, our γ is their γat,
our rate of incident photons Iin is denoted |bin|2 in their paper.
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2.4 General Theoretical Model and Simulations

for a range of cavity frequencies around the emitter frequency. The case ωc =ωe is shown in

Fig. 2.7b), together with the resonance frequencies of the polaritons.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

C
av

it
y

d
et

u
n

in
g

fr
o

m
em

it
te

r
ν

c
−
ν

e

(a)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sm
is

si
o

n
T

|1−〉 |1+〉
2g
2π(b)

νc −νe =
0.0 GHz

1.5 GHz

3.0 GHz

0.0 0.2 0.4 0.6 0.8 1.0

Laser frequency detuning from emitter νL −νe (GHz)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.7: (a) The transmission through the cavity-emitter system as a function of the laser
and cavity detuning calculated for the weak-excitation limit [113] for g /2π= 0.63GHz, κ/2π=
1.28GHz and γ/2π= 0.04GHz. (b) Some cross-sections through the 2D spectrum for constant
cavity frequencies νc indicated by the correspondingly colored arrows in (a).

While this model describes the weak-excitation experiments presented in Ch. 4.1 accurately,

the approximation (Eq. 2.43) does not hold in the strong coupling regime at intermediate

driving strengths, when the photon number in the cavity is on the order of 1. This is the

regime, in which the nonlinear experiments (Ch. 5) take place. To be able to compare our

experimental results with the theoretical predictions in this regime and to conceptualize

relevant measurements, we formulated a numerical model, described in the next section.

2.4 General Theoretical Model and Simulations

The model is intended to describe all experimental situations consistently. Additionally, it

should allow us to include the specifics of our system. We therefore employ simulations carried

out with the Python package QuTiP [114, 115], which offers convenient handling of quantum

states and operators as well as eigenvalue and differential equation solvers.

In addition to the two Lindblad terms used in the general model (Eq. 2.25), for our molecule we

must account for the effect of the long-lived triplet state (see Chapter 2.1). One extra Lindblad

term

Lγet (ρ) = γet

(︃
|t〉〈e|ρ |e〉〈t |− 1

2

(︁|e〉〈e|ρ+ρ |e〉〈e|)︁
)︃

(2.47a)
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accounts for the incoherent transition from the excited state to the triplet state |e〉→ |t〉 at a

rate γet and another one

Lγt g (ρ) = γt g

(︃
|g 〉〈t |ρ |t〉〈g |− 1

2

(︁|t〉〈t |ρ+ρ |t〉〈t |)︁
)︃

(2.47b)

for the incoherent transition from the triplet into the ground state |t〉 → |g 〉 at a rate γt g .

Although the decay in and out of the triplet state is much slower (tens to hundreds of kHz

[79]) than the other dynamics in the molecule, they change the dynamics noticeably. While

the molecule is in the triplet state, it is far from resonance with the laser or the cavity. Hence,

the cavity behaves as if the molecule was not there. In the limit of driving the molecule very

strongly Ξ(t ) →∞, the molecule spends 1
/︂(︂

2
γt g

γet
+1

)︂
of the time in the triplet state.

We note that we do not include the energy of the triplet state in the Hamiltonian, because

all transitions in and out of the triplet state are incoherent and therefore a term of the form

Et |t〉〈t | commutes with the Hamiltonian:
[︁
Ĥ , |t〉〈t |]︁= 0.

The Hilbert space H is the tensor product of the Hilbert spaces of the molecule Hmol and

the cavity Hc . While Hmol is 3-dimensional (basis vectors |g 〉, |e〉 and |t〉), Hc is infinite-

dimensional (basis vectors
{︁ |n〉

⃓⃓
n ∈N0

}︁
). The size of the simulated Hilbert space must be finite.

The number of computational steps to find the eigenvalues of a matrix scales with the third

power of the size of the matrix [116]. As such the optimal size is the smallest possible Hilbert

space for which the errors are small. This depends heavily on the concrete experimental

parameters and the observables of interest. A Hilbert space with too few dimensions results in

photon-number dependent nonlinear behavior of the cavity, which is the same behavior we

would like to observe in the molecule. To ensure we do not introduce artificial nonlinearities

to the simulation, we increase the size of the Hilbert space to the point where additional

dimensions change the density matrix only by a value comparable to the floating-point

precision. Fig. 2.8 compares the photon number statistics for an empty driven cavity for

two different sizes Nc of the Hilbert space. For this simple situation, there is an analytic

steady-state solution |ψ〉ss – a coherent state |α〉 builds up in the cavity:

|ψ〉ss = |α〉 = exp

(︃
−|α|2

2

)︃ ∞∑︂
n=0

αn

⎷
n!

|n〉 (2.48a)

It has a Poissonian photon number distribution [104]

P (n) = |〈n|α〉|2 = exp
(︁−|α|2)︁ |α|

2n

n!
. (2.48b)

Its amplitude α is Ξ∗/
(︁ i

2κ− (ωc −ωL)
)︁

(see Eq. B.15). In the nonlinear optical experiments

described in Ch. 5, the photon number in the cavity can be high (> 101). To describe these

situations accurately and simulate beyond the experimental parameters, requires large Hilbert

spaces, which would slow down the simulations drastically. In the following we explain how
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Figure 2.8: The photon number distribution of a cavity without emitter. (a) For a mean
photon number of |α|2 = 1.0, a 20-dimensional photonic Hilbert space describes the situation
accurately. (b) For a higher laser power leading to |α|2 = 10 photons in the cavity, this is
insufficient. High photon number states can evolve in ways which take them outside the
Hilbert space, for example â† |19〉 ∼ |20〉 is not captured. Therefore, the low-dimensional
simulation computes too little population of the high Fock states and too much population of
the low Fock states.

to simulate the molecule-cavity system accurately without power-dependent Hilbert space

dimensionality.

Single-photon emitters can only absorb or emit one photon at a time. Therefore, their influ-

ence on a strong coherent state is limited. The left column of Fig. 2.9 compares the photon

number statistics of a driven cavity-molecule system with the Poissonian statistics of the state

|α(t )〉 which builds up in the absence of the molecule. The difference between them is small,

especially when the laser power is high. On displacing the photonic state by the amplitude

α(t), what remains is purely the effect of the molecule. As the molecule can only absorb or

emit one photon at a time and photons leave the cavity at a rate κ, they require many fewer

Hilbert space dimensions to be computed accurately. The photon number statistics in this

vacuum picture [117] are shown in the right column of Fig. 2.9.

The transformation is detailed in Appendix B. We call the transformed density matrix ρv and

the transformed Hamiltonian is given by

Ĥv

ℏ
= (ωe −ωL) ρ̂ee + (ωc −ωL) â†â + g

(︂
σ̂+

(︂
â +α(t )

)︂
+ σ̂−

(︂
â† +α∗(t )

)︂)︂
. (2.49)

The Lindblad terms are not changed, because the molecular states are not affected by the

transformation and the nonclassical state of light created by the molecule decays at the same

rate κ as the rest of the light. Comparing this Hamiltonian with the non-transformed Hamilto-

nian (Eq. 2.42), we note that the driving of the cavity mode Ξ(t )â +Ξ∗(t )â†, which indirectly

affects the molecule, is now replaced by a direct drive of the molecule g (σ̂+α(t )+ σ̂−α∗(t ))

due to the coherent state of amplitude α(t ). Coherent states are eigenstates of the electric field
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Figure 2.9: Left column: The probabilities P (n) of finding n photons in the cavity. Without
an emitter, a coherent state builds up in the the cavity (see Eq. 2.48). In the presence of an
emitter, the photon number distribution changes slightly, but closely resembles a Poissonian
distribution. Right column: In the vacuum picture, we simulate the deviation from the
coherent state. Because the molecule only scatters one photon at a time, its influence on
the deviation is limited. Hence, even at high excitation power only few dimensions in the
photonic part of the Hilbert space are necessary for an accurate description of the state. In
this simulation, we used g /2π= 0.63GHz, κ/2π= 1.28GHz and γ/2π= 0.04GHz.

operator and therefore the connection between the classical and quantum description of light

[118]. Therefore, the Hamiltonian is the same as if the molecule was driven directly with a

classically modelled beam of Rabi frequencyΩα(t ) = gα(t ), as illustrated in Fig. 2.10. Only in
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(a) (b)

g σ̂+ â +c.c.g σ̂+ â +c.c.

gα(t )σ̂++c.c.
=Ωα(t )σ̂++c.c.

Ξ(t )â +c.c.

Figure 2.10: Comparison of the regular driven Jaynes-Cummings model (Eq. 2.42) and its
vacuum picture transformed version (Eq. 2.49). (a) In the regular Hamiltonian, the cavity mode
is populated by the laser driving term Ξ(t )â +c.c., where c.c. stands for complex conjugated.
In the absence of the molecule, this would create a coherent photonic state |α(t )〉 in the cavity.
A molecule interacts with and modifies this state by means of the term g σ̂+â +c.c.. (b) For the
molecule, this situation is equivalent to a free-space laser driving with Rabi frequencyΩα(t )
plus its interaction with the photons it emitted into the cavity.

measurements of the total cavity field (or the field leaking out of the cavity) does one need to

account for the coherent part.

Note that the vacuum picture is not an approximation, but an exact transformation. In the

following subsections we explain how concrete experimental measurements are modeled. To

summarize, the general equation of motion in the vacuum picture is

∂tρv =−i
[︂

(ωe −ωL) ρ̂ee + (ωc −ωL) â†â + g
(︂
σ̂+

(︂
â +α(t )

)︂
+ σ̂−

(︂
â† +α∗(t )

)︂)︂
,ρv

]︂

+κ
(︃

âρv â† − 1

2

(︂
â†âρv +ρv â†â

)︂)︃

+γ
(︃
σ̂−ρv σ̂+− 1

2

(︁
ρ̂eeρv +ρv ρ̂ee

)︁)︃

+γet

(︃
|t〉〈e|ρv |e〉〈t |− 1

2

(︁|e〉〈e|ρv +ρv |e〉〈e|
)︁)︃

+γt g

(︃
|g 〉〈t |ρv |t〉〈g |− 1

2

(︁|t〉〈t |ρv +ρv |t〉〈t |)︁
)︃

.

(2.50)

2.4.1 Steady State

To compute the reflection and transmission spectra of the cavity-molecule system, we use the

steady-state solver steadystate of QuTiP. Since the laser is tuned over the spectral features

much slower than the dynamics of the system, we can approximate the system to be in the
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steady state ρv,ss at any laser frequency ωL . To find ρv,ss QuTiP solves the equation

0
!= ∂tρv,ss = ˆ̂Lρv,ss , (2.51)

in which ˆ̂Lρv,ss is the right-hand side of Eq. 2.50, written with the Liouvillian superoperator ˆ̂L

[114]. In other words, the steady state ρv,ss is the eigenstate of the Liouvillian ˆ̂L with eigenvalue

0. If N = Nmol ·Nc is the number of dimensions of the Hilbert space H =Hmol⊗Hc describing

the state of the molecule and the cavity, the density matrix ρv,ss has N 2 entries. The Liouvillian
ˆ̂L is therefore represented as an N 2 ×N 2 matrix. Finding the eigenvalues of this matrix has

a computational complexity of O
(︂(︁

N 2
)︁3

)︂
[116]. This is the bottleneck in computing the

transmission/reflection spectrum. Then the transmitted photon flux

It = κ
⟨︁(︁

â† +α∗)︁(︁
â +α)︁⟩︁

(2.52)

is obtained from the steady state density matrix. It is the energy loss rate of the cavity κ

multiplied by the total number of photons in the cavity 〈(â† +α∗) (â +α)〉. Note that the total

number of cavity photons is not only
⟨︁

â†â
⟩︁

, because ρv does not contain the coherent light

due to the laser. Leaving the coherent part out is a convenient way to inspect solely the light

scattered into the cavity mode by the molecule or to model the situation depicted in Fig. 2.10b).

In some cases we do not detect purely the transmitted light, since it interferes with coherent

light of amplitude β. For example, the reflection of the cavity is a superposition of the light

leaking out of the cavity with the coherent light reflected from the first mirror of the cavity.

Even in the cross-polarized detection scheme (see Ch. 3.4.2) some back-reflected light is not

eliminated by the polarizer and interferes with the light from the cavity. These situations can

conveniently be described by adding the complex amplitudes of the coherent cavity field α

and the additional coherent field β

Iint = κ
⟨︃(︃

â† +
(︃
α+ β⎷

κ

)︃∗)︃(︃
â +

(︃
α+ β⎷

κ

)︃)︃⟩︃
. (2.53)

The factor
⎷
κ arises from the fact that the field of strength α is inside the cavity, while the

interfering field has the amplitude β outside the cavity.

In addition to the transmission and reflection of the laser light, we can observe the population

of the excited state of the molecule by detecting the red-shifted fluorescence (see Ch. 6.1). The

emission rate is proportional to
⟨︁
ρ̂ee

⟩︁
.

2.4.2 Time Evolution

While we usually measure expectation values in the steady state, in the ringdown experiments

(Ch. 4.2) we observe the evolution of the system after preparation by a short laser pulse. We

use a Hamiltonian with time-dependent α(t ) (see Eq. B.22) to describe the effect of the laser
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pulse. Using QuTiP’s mesolve we solve Eq. 2.50 for the evolution of ρv (t). This allows us to

find the time-dependence of expectation values, for example for the transmitted light It(t ).

2.4.3 Emission Spectrum

To compute the emission spectrum of our system, as in the four-wave mixing experiments

(Ch. 5.4), we use the Wiener-Khinchin theorem [119]. This states that the emission spectrum

S(ω) is the Fourier transform of the (unnormalized) first-order correlation function G (1)(τ):

S(ω) =
∫︂ ∞

−∞
G (1)(τ)e−iωτdτ (2.54a)

G (1)(τ) ∼
⟨︂

â†(t +τ)â(t )
⟩︂

(2.54b)

The expectation value in Eq. 2.54b is calculated using the quantum regression theorem [104]

⟨︁
Â(t +τ)B̂(t )

⟩︁= Tr[Â(t +τ)B̂(t )ρ] = Tr[Â(t +τ)
(︁
B̂ρ(t )

)︁
]

= Tr[ÂÛ (t ; t +τ)
(︁
B̂ρ(t )

)︁
Û †(t ; t +τ)], (2.55)

with Û (t ; t +τ) the time-evolution operator from t to t +τ. In our simulations, this is imple-

mented by first computing the steady state of the system ρss , evolving the product âρss over

a time τ (using QuTiP’s mesolve), multiplying by â† from the left and then taking the trace.

According to Eq. 2.54a, we must calculate G (1)(τ) for all values of τ. However, calculating it for

τ ≥ 0 is sufficient due to the Hermitian symmetry G (1)(−τ) = G (1)(τ)∗. In practice, however,

it suffices to calculate a discrete spectrum S(ω) with enough samples to resolve all spectral

features. The spectral resolution dν and span νmax are reciprocally related to the span of

τ-values τmax and the temporal resolution dτ:

dν= 1

2τmax
(2.56a)

νmax =
1

2dτ
. (2.56b)

We also use the quantum regression theorem to simulate g (2)(τ), as for Ch. 5.3. In detail, we

use

g (2)(τ) ∼
⟨︂

â†(t )â†(t +τ)â(t +τ)â(t )
⟩︂
= Tr[â†(t )â†(t +τ)â(t +τ)â(t )ρ]

= Tr[â†(t +τ)â(t +τ)
(︂
âρ(t )â†

)︂
] = Tr[â†âÛ (t ; t +τ)

(︂
âρ(t )â†

)︂
Û †(t ; t +τ)].

(2.57)

This means we evolve the product âρss â† over a time τ, multiply it by the photon number

operator â†â and then take the trace.
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Chapter 2. Theoretical Background

2.4.4 Two-Frequency Excitation

In some experiments, we use two laser beams of different frequencies, as in the switching

(Ch. 5.2) or four-wave mixing experiments (Ch. 5.4). When modeling these situations, there is

no rotating frame in which the Hamiltonian Ĥv , in particular the coherent state amplitude

α(t ), is time-independent. Hence, the system does not converge towards a steady state ρv,ss .

The explicit form of the time dependence of α(t) is calculated in Appendix B.3. However, it

varies periodically with a frequency ∆ν, corresponding to the detuning between the two lasers.

Instead of a time-independent steady state, the system converges to a stationary state ρv,st (t ),

which changes over time, but repeats itself after one period T = 1/∆ν: ρv,st (t +T ) = ρv,st (t).

The measured emission spectra are the average over the emission of all states during a period.

Therefore, the definition of G (1)(τ) in Eq. 2.54b must be modified by averaging over all possible

starting times t within one period

G (1)(τ) ∼ 1

T

∫︂ T

0

⟨︂
â†(t +τ)â(t )

⟩︂
dt . (2.58)
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3 Experimental Platform

This chapter describes the specific experimental methods and the setup used to perform

the measurements presented in Ch. 4 & 5. The first part deals with the production and

characterization of the key component of the setup – the cavity mirrors. Next, we describe the

growth of DBT doped anthracene crystals. After illustration of the cryogenic assembly, the

functional units of the optical setup are explained. The last part contains a description of the

feedback loop used to stabilize the cavity length and how its error signal is used in the data

analysis.

3.1 Mirrors

3.1.1 Substrates

The cavity consists of a flat and a spherical dielectric mirror. The substrate of the flat mirror is

a 10×10×0.17mm3 borofloat glass coverslide. To facilitate approaching the curved mirror

to distances below 1µm, even in the presence of relative tilt, its substrate must have a small

footprint. This was realized in two ways: (i) by using the end facet of an optical fiber as

substrate or (ii) by grinding the front facet of a cylindrical gradient index (GRIN) lens.

Optical Fiber

The end facet of a single-mode fiber is a suitable substrate for curved mirrors. A recent review

on this type can be found in [120]. A depression for the curved mirror is FIB machined in

the center of the fiber to allow a part of the cavity mode to couple to the mode propagating

in the fiber core. Accurate positioning on the Ø 125µm end facet relative to the fiber core is

difficult, because the FIB machine does not provide optical access to the sample. Hence, the

coupling efficiency can be low.1 For the fiber used in the experiments described in Ch. 4 & 5,

the coupling efficiency was so low that we employed a cross-polarization detection scheme,

1The effect of misalignment is analyzed in detail in [121, 122].
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as described in Ch. 3.4. More details about the fabrication of the fiber mirrors can be found in

[123].

GRIN Lenses

Figure 3.1: The GRIN lens as substrate for the curved
mirror collimates the light outcoupled from the cav-
ity mode. The proportions are not to scale.

We purchased Ø 2 mm GRIN lenses (GT-

LFRL-200-025-50-NC, Grintech GmbH)

as substrates for the curved mirrors. A

Ø 30–50µm pedestal was machined on

the front facet by ultrasound-assisted

diamond turning (UPT Optik Wodak

GmbH). Then, several near-spherical de-

pressions were milled into the pedestal

by focused ion-beam (FIB) machining

(see Fig. 3.2). Fig. 3.1 sketches the shape

of a GRIN lens with a single curved mir-

ror. The GRIN lens mode matches the

cavity mode with a collimated free-space beam, similar to [124], where a GRIN fiber is spliced

at the end of a single-mode fiber to mode-match the fiber output and cavity modes.

1 mm

10µm

Figure 3.2: Photograph of an uncoated GRIN lens in the holder for the coating machine.
The inset is a scanning electron microscope image of the pedestal. Four micromirrors with
different geometry and some alignment markers are FIB-machined into the pedestal. This
GRIN lens still has many particles from the diamond turning process on the front facet. The
GRIN lenses sent for coating were cleaned in an ultrasonication bath.
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3.1 Mirrors

Curved Mirror Profile

The FIB machine (ORION NanoFab, Carl Zeiss Microscopy Deutschland GmbH) accelerates

and focuses gallium ions into the sample to remove material with high precision [125]. Com-

pared to the common technique of CO2 laser ablation [126, 127], it can produce very small

mirrors, down to a radius of curvature (ROC) of 2.6µm while keeping the root-mean-square

surface roughness below 5 nm [93]. The shape of the depression is controlled by the dose of

gallium ions. Fig. 3.4 shows a cross-section through the FIBbed structure. It is a spherical

depression with a ROC of 10µm or 15µm and a depth t of 493 nm or 303 nm, respectively. To

reduce the risk of internal-stress-induced cracks in the coating, the edges are smoothed with

a radius rs between 2–7µm (see Fig. 3.3). For mirrors of this size, the surface roughness is

< 0.4nm [22].

!

Figure 3.3: Principle of the edge smoothing. The profile in Fig. 3.4 shows a smoothed profile
with the actual aspect ratio.
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Figure 3.4: Profile of the micromirrors: The shape is defined by its ROC, the depth t and the
smoothing radius rs .

3.1.2 Coating

The substrates are then sent to Laseroptik GmbH, who coat them with multiple layers of

dielectric materials by ion beam sputtering [128]. The mirrors consist of a total of 25 layers,

alternating between Nb2O5 with a refractive index of 2.27 and SiO2 with a refractive index of

1.48 at λ= 785nm. Each layer has an optical thickness of a quarter wavelength, such that all

partial reflections at the layer interfaces interfere constructively. This type of mirror is also

called distributed Bragg reflector (DBR) or Bragg mirror.

The reflectivity of this stack is 99.994 % at an angle of incidence (AOI) of 0°, corresponding to a

finesse of 57000. Experimentally, we found a finesse between 20000 and 50000. This is due to
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Figure 3.5: The reflectivity spectrum of the Bragg mirrors for different AOI and polarizations,
simulated with the transfer matrix method [129].

several factors: Firstly, the cavity mode is a Gaussian beam with a divergence θ between 10° and

16°, depending on the longitudinal mode. Therefore, some parts of it experience the coating

under a different AOI. For tilted incidence, the reflectivity spectrum is blue-shifted (see Fig. 3.5),

so that the reflectivity for these partial waves is lower. Fig. 3.6 shows the AOI dependence

of the reflectivity at λ= 785nm. The Fresnel coefficients depend on the polarization of the

incident light. A focused Gaussian beam contains both, s- and p-polarized light, as explained

in Fig. 3.7. As Fig. 3.6 shows, the divergence of the beam does not have a strong effect on the

reflectivity of the Bragg mirror, because the large majority of power hits the mirror at an angle

where the reflectivity is almost the same as for 0° AOI. In contrast, for the mirrors described in

Ch. 6.1, this consideration plays an important role in the design.
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Figure 3.6: The AOI dependence of the Bragg mirror reflectivity for the 00ZPL wavelength
λ= 785nm. The vertical lines indicate the fraction of power contained in a beam of divergence
θ = 15° up to their corresponding AOI.

32



3.2 Anthracene Crystals
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Figure 3.7: A linearly polarized laser beam
is focused on a mirror. Each partial ray
is polarized orthogonal to its propagation
direction. Hence, half of the power in the
beam hits the mirror as s-polarized, the
other half as p-polarized [130]. This need
to be considered in the calculation of the
Fresnel coefficients.

Secondly, the finesse is reduced due to clipping losses [127]: The Gaussian beam extends

spatially beyond the finite area covered by the curved mirror. A partial ray which is reflected

off a part of the curved mirror outside the spherical region, walks off the cavity and is therefore

lost. Thirdly, additional sources of loss reduce the effective reflectivity of the mirrors. This can

be scattering from particles within the cavity mode or from surface roughness. Additionally,

the light can be absorbed within the coating layers, but for Bragg-design mirrors, the role of

absorption is small, because among all layer sequences it has the lowest field penetration

depth [131].

3.2 Anthracene Crystals

DBT doped anthracene crystals are grown from supersaturated vapor [132] and then trans-

ferred onto the flat cavity mirror (see previous section).

The growth apparatus is sketched in Fig. 3.8a). First, a DBT:anthracene stock solution with

a DBT concentration between 50 and 500 ppm is created by melting the two constituents

together in a closed vial. After the stock solution has cooled down, we insert tens to a few

hundreds of milligrams of it into a 50 mL pear-shaped flask, together with a cleaned coverglass.

The flask is connected to a pump and a supply of dry nitrogen. To remove water and oxygen,

the flask is flushed 3 times with nitrogen [133]. At the end of the last flushing cycle, we set

the pressure to 500–1000 mbar. We found the influence of the pressure to be insignificant

compared to the influence of other factors, such as the heating time or the amount of raw

material. The stock solution is heated with a heatgun set to 300 °C directly underneath the vial.

10 s after the stock solution has melted, the heatgun is switched off and the system is left to

cool down to room temperature. During the cooling thin crystals form on the coverslide, the

flask walls and in the atmosphere. To optimally collect the crystals formed in the atmosphere,

the coverslide lies horizontally inside the flask as shown in Fig. 3.8b). The coverglass with the

crystals is carefully taken out of the vial, then we gently lay a flat cavity mirror on it, to pick
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N2

heatgun

coverglass
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valves

pump

(a) (b)

1 cm

Figure 3.8: (a) Sketch of the setup to control the pressure and temperature during the crystal
growth. See text for the procedure. (b) The coverslide inside the flask after crystal growth.
Anthracene crystals up to several millimeters in size grew on the bottom side.

up some loose crystals. Some excess crystals which are not properly attached to the mirror

surface can be blown away with nitrogen from a nozzle.

We then inspect the crystals on the mirror with a white-light cross-polarization microscope.

Our experiments require crystals thick enough to have a field maximum of the cavity mode

within them (≳ 200nm) and thin enough to allow the two cavity mirrors to be brought close

enough together to have negligible clipping losses (≲ 2µm). Additionally, a transversal size

larger than 50µm facilitates the manual alignment of the cavity (see Ch. 3.3 and Appendix H).

The thickness of the crystals can be estimated using their color in the cross-polarization image

(see Fig. 3.9), which originates from their birefringence. The refractive index for light polarized

along the a-axis is na = 1.55 and nb = 1.775 along the b-axis [134]. If light of wavelength λ

passes through the crystal, its polarization component along the a-axis acquires a different

phase than the polarization component along the b-axis. Passing through the crystal twice, in

the reflection geometry shown in Fig. 3.9a), the polarization state changes, such that a fraction

(︃
2cosθ sinθ · sin

(︃
2π (nb −na)

d

λ

)︃)︃2

(3.1)

of the reflected intensity is polarized orthogonally to the incident beam (see Appendix C.1). θ

is the angle between the incident polarization and the b-axis. For a given crystal thickness d ,

34



3.2 Anthracene Crystals

Mirror
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DBT:AC crystal

Camera

100µm 100µm

(a) (b) (c)

Figure 3.9: Cross-polarization inspection of the crystals. (a) Simplified beam path of the cross-
polarization microscope: Light is (y-)polarized by passing through a polarizing beamsplitter
(PBS). When traversing the anthracene crystal, it changes its polarization. Only light of the
opposite (x-)polarization is used to image the crystals on the camera. (b) A very thin crystal
appearing in faint blue. (c) A crystal with a thickness gradient.

the wavelength with maximum transmission through the cross-polarizer is therefore

λmax = 4(nb −na)d ≈ 0.9d . (3.2)

The transmission through the faint blue crystal in Fig. 3.9b) is dominated by blue light. The

thickness is therefore clearly less than 400 nm. Cross-polarization colors ranging from blue to

orange in the crystal in Fig. 3.9c) reveal that its thickness increases towards the edge.
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Figure 3.10: (a) A scan of the cavity length over the resonance lengths of the a- and b-modes
in a d = 327nm thick crystal on a dichroic mirror (see Ch. 3.1.2). (b) The thickness can be
determined by the polarization mode splitting. Without taking the interference between the
anthracene crystal and the mirror layers into account (Eq. 3.3, orange dashed line), the crystal
appears to be d = 257nm thick. Treating the crystal together with the mirror, the situation can
be modeled by the transfer matrix method [129] (red line).

35



Chapter 3. Experimental Platform

After a suitable crystal has been placed on a flat mirror and aligned within the cavity mode

(see Ch. 3.3), we can determine its local thickness from the polarization mode splitting of the

cavity. In an empty cavity, the resonance condition (Eq. 2.7) is independent of the polarization

of the light, i.e. the polarization modes are degenerate.2 The birefringent crystal changes the

optical round-trip length of the cavity differently for light polarized along the a- and b-axes.

Hence, the resonance condition for a- and b-polarized light is fulfilled at different physical

mirror distances Lres,a/b . We can measure the difference in resonance lengths Lres,a −Lres,b by

scanning the cavity length and detecting the resonances (see Fig. 3.10a). Considering only the

optical path length in one round-trip, we can deduce a crystal thickness of

d = Lres,a −Lres,b

nb −na
≈ 4.4

(︁
Lres,a −Lres,b

)︁
. (3.3)

This simple model neglects multiple reflections within the anthracene layer and their inter-

ference with the mirror. For a rigorous treatment, the effect of the anthracene crystal must

be included in the properties of the flat mirror [136]. This leads to oscillatory behavior of the

polarization mode splitting when the thickness of the crystal is varied (see Fig. 3.10b).

For our measurements, we couple the spectroscopy lasers to the b-mode, because the transi-

tion dipole moment of DBT is aligned with the b-axis [137].

3.3 Cryogenic Setup

3.3.1 Cryostat

The anthracene crystal and the cavity are cooled to 4.2 K within a bath cryostat (10002, Cry-

oVac). It is the same as in D. Wang’s dissertation [123]. The sample chamber is in thermal

contact with a liquid helium tank. Around it is an isolation layer in contact with another liquid

helium tank. To reduce the evaporation rate of the helium, there is a third cryogenic layer

around it, which is in contact with a liquid nitrogen tank. The outermost layer is at room

temperature. The layers are separated from each other by an isolation vacuum.

3.3.2 Cryostat Insert

In the sample chamber, the cryostat insert stands on a Maxwell kinematic coupling on the

baseplate. To minimize the influence of vibrations transferred to the cavity via the sample rod,

it is decoupled by a balls-and-rods system (see Fig. 3.11). The insert hosts an aspheric lens for

coupling light into the cavity. It can be moved with a piezoelectric slip-stick nanopositioner

(PSN) (attocube ANPx51) along the optical axis to adjust the focus. The flat mirror adheres to a

ring piezo (PD080.30, PI Piezotechnology) mounted on a PSN (attocube ANPz51), which can

2In high-finesse cavities one can sometimes resolve a polarization mode splitting without crystals. This is
caused by the ellipticity of the mirror and/or stress-induced birefringence of the coating [135]. But its effect is
negligible compared to that of the crystal.
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move vertically. This enables us to move different crystals on the flat mirror through the cavity

mode. The alignment along the horizontal direction must be performed manually during the

assembly outside the cryostat (see Appendix H). The curved mirror is mounted on a ring piezo,

which is mounted on a horizontally moving PSN (attocube ANPx51). This allows us to coarsely
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Figure 3.11: The cryostat insert. The inset shows the GRIN lens cavity.
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approach or retract the curved mirror. If the substrate for the curved mirror is a fiber (see

Ch. 3.1.1), another aspheric lens is mounted after the curved mirror to for in-/outcoupling of

light from this side. The GRIN lenses are both, substrate for the curved mirror and coupling

optics (see Fig. 3.1). The ring piezos on the mirrors allow continuous fine scanning and locking

(see Ch. 3.5) of the cavity length.

3.4 Optical Setup

The optical setup is sketched in Fig. 3.12. Four optical paths start on the table with light

coupling out of a fiber (outcouplers Opump, Oprobe, Olock, Ocurv). Which laser is connected to

which outcoupler depends on the measurement and is mentioned in the individual chapters

4, 5 & 6. Each path has a laser-line filter to remove unwanted light created in the fiber, a

linear polarizer, a half-wave plate (HWP), a quarter-wave plate (QWP), neutral density (ND)
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Figure 3.12: The optical setup. Asph: aspheric lens, BP: bandpass filter, BPD: balanced photo-
diode, BS: beamsplitter, FM: flip mirror, FSM: fast steering mirror, HWP: half-wave plate, LED:
light-emitting diode, µM: micromirror, ND: neutral-density filter, Oi : fiber outcoupler, PBS:
polarizing beamsplitter, PD: photodiode, PM: planar mirror, PMF: polarization-maintaining
single-mode fiber, Pol: linear polarizer, QWP: quarter-wave plate.
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filters and a beam sampler with a photodiode. The photodiode is part of a feedback loop

to stabilize the intensity. A proportional-integral-differential controller (PID) monitors the

photodiode signal and corrects the laser intensity by controlling the modulation amplitude of

an acousto-optic modulator (AOM), as shown in Fig. 3.13. The pump, probe and lock paths

merge and access the cavity from the flat mirror side, while the fourth path comes from the

curved mirror side.

0

1

0

1

BS

PID

PMF to Oprobe

PMF to Opump

PID

from PD

from PD

Laser

AOM

AOM

Figure 3.13: Preparation of the pump and probe beam. AOM: acousto-optic modulator,
BS: beamsplitter, Oi : fiber outcoupler (see Fig. 3.12), PD: photodiode (see Fig. 3.12), PID:
proportional-integral-differential controller, PMF: polarization-maintaining single-mode
fiber.

3.4.1 Lock Detection Path

Light coming from the flat mirror side of the cavity reaches the detection path through a

30:70 (R:T) beamsplitter and is separated into a lock detection and spectroscopy detection path.

Using appropriate laser-line filters around 760 nm and 785 nm we ensure a clean separation

of the signals. The lock beam’s polarization is adjusted with a HWP and a QWP and then split

by a polarizing beamsplitter (PBS) onto the two detectors of a balanced photodiode (OE-200,

Femto Messtechnik GmbH). The locking scheme is explained in Ch. 3.5.

3.4.2 Cross-Polarization Detection

The spectroscopy detection path (see Fig. 3.15) starts with a HWP, QWP and a linear polar-

ization filter for cross-polarized detection. This method is used to detect a transmission-like

signal in reflection. The birefringence of the anthracene crystal splits the resonance of the

cavity into a mode polarized along the a- and a mode polarized along the b-axis of the crystal

(see Ch. 3.2). Since the dipole moment of DBT in anthracene aligns with the b-axis [137], we

tune the length of the cavity such that a b-polarized mode is resonant with the molecule of

interest. The laser, also around the resonance frequency, is sent into the cryostat with a polar-

ization at 45° relative to the b-axis. Half of its intensity couples into the cavity, interacts with

the molecule and then leaks out through both mirrors. The waveplates in the spectroscopy

detection path are set such that the linear polarizer removes the polarization component

39



Chapter 3. Experimental Platform

parallel to the incident light. This means that one half of the light coming out on the flat mirror

side is transmitted through the polarizer. As this light has been in the cavity, the detected

intensity is proportional to the transmitted intensity.
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Figure 3.14: The cross-polarization axes.
The green hexagon indicates the orienta-
tion of the anthracene crystal. Einc: in-
cident electric field vector, Ecav: electric
field vector within the cavity, Edet: electric
field vector after the cross-polarizer.

3.4.3 Spectroscopy Detection Box

The rest of the spectroscopy detection path is enclosed in a box to reduce stray light (see

Fig. 3.15). First, the light passes through a confocal pinhole, then we can direct it to various

detectors: A sCMOS camera (Orca Flash 4.0, Hamamatsu Photonics), an APD (SPCM AQRH-14,

Excelitas Technologies Corp.), a photodiode (PDA36A, Thorlabs Inc.) or a Hanbury Brown &

Twiss (HBT) setup with two fast APDs (PDM100, Micro Photon Devices S.r.l.). Additionally, we

can filter the light through a scannable Fabry-Pérot cavity (Tropel 240, 7.5 GHz FSR, 30 MHz
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Figure 3.15: The spectroscopy detection path. APD: avalanche photodiode, BS: beamsplitter,
FC: filter cavity, FM: flip mirror, HWP: half-wave plate, MMF: multi-mode fiber, ND: neutral-
density filter, PD: photodiode, Pol: linear polarizer, QWP: quarter-wave plate, sCMOS: scientific
complementary metal-oxide-semiconductor camera.
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FWHM) or couple it into a fiber and guide it into a spectrometer (Andor Kymera-328i-B2-SIL,

Oxford Instruments).

3.5 Lock

A high-finesse cavity is extremely sensitive to changes in the cavity length. At a finesse of

24000, as in the experiments described in Ch. 4 & 5, the FWHM of the transmission peak in a

cavity length scan is 16 pm. Mechanical vibrations cause the cavity length to fluctuate during

the measurement and thereby wash out the detected signals.

3.5.1 Hänsch-Couillaud Locking Scheme

We utilize the birefringence of the anthracene crystal for a Hänsch-Couillaud lock [138]. This

scheme requires that only one polarization component of the incoming beam couples to the

cavity. Our system fulfills this requirement because of the polarization mode splitting due to

the birefringent crystal (see Ch. 3.2). The lock laser is sent to the cavity with a polarization

at 45° relative to the cavity mode. For the lock we can use either, the a- and the b-mode,

whichever is within the lock laser scan range while a b-polarized mode is resonant with the

molecule of interest. If we have the choice, we preferably lock to an a-mode, because the

cross-polarizer then suppresses the lock laser, in addition to the spectral filter. We lock the

cavity at λlock = 760nm with an external cavity diode laser (DL Pro, Toptica Photonics AG).

When using the dichroic cavity mirrors introduced in Ch. 6.1 we use a wavelength between

975 nm and 1005 nm from a Ti:sapphire laser (Matisse 2 TS, Sirah Lasertechnik GmbH).

The Hänsch-Couillaud locking scheme is based on measuring the phase difference between

the polarization component which couples to the cavity and the directly reflected light. Using
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Figure 3.16: The error signal for a Hänsch-Couillaud lock on a cavity mode of finesse F = 1000
as a function of the cavity detuning.

41



Chapter 3. Experimental Platform

a quarter-wave plate (QWP) and a polarizing beamsplitter (see Fig. 3.12), the phase difference

is converted to an intensity difference Ia − Ib between the two detectors of the balanced

photodiode3

Ia − Ib = Iin
T R sinδ

(1−R)2 +4R sin2
(︂
δ
2

)︂ (3.4)

(see Fig. 3.16). Iin is the incident intensity and T and R are the transmissivity and reflectivity

of the mirrors, respectively. The detuning in this equation is given in units of phase mismatch

per round-trip δ= 2π (L−Lres)/λ.

The error signal Err(t) := Ia(t)− Ib(t) is fed into a PID (PID 110, Toptica Photonics AG or

SIM960, Stanford Research Systems). The output voltage is then applied to the ring piezo

on the flat mirror side. Although the bandwidth of the balanced photodiode at the used

amplification is 50 kHz, we set the PID gains such that the feedback only compensates for

slow (< 30Hz) vibrations. Mechanical resonances between 100–2000 Hz (see Fig. 3.17) cause

the feedback to be 180° out of phase, leading to an amplification of the vibration, if the PID

bandwidth is too high. A standard PID feedback loop therefore cannot dampen the resonant

vibrations.

We therefore took several measures to keep the excitation of the vibrations low. To isolate

the cryostat insert from external acoustic noise, it is decoupled from the transfer rod by a

balls-and-rods system, as shown in Fig. 3.11. The cryostat is surrounded by 2 layers of noise

insulation foam (Basotect G+, Flexolan GmbH) and 1 layer is glued to the laboratory doors.
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Figure 3.17: The spectrum of the error signal, revealing several sharp peaks. The inset shows a
closeup of the most prominent vibration mode. Note that this vibration spectrum is extracted
from the measurement shown in Fig. 3.18, with the error signal linear with respect to the cavity
length change, facilitating the conversion from error signal (V) to vibration amplitude (pm).

3The derivation and a sketch of the setup are detailed in [138]. However, the resulting equation for the error
signal therein (Eq. 6; corresponding to Eq. 3.4 here) is missing the “+” in the denominator.
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3.5 Lock

All lasers with chillers are located in another room and all other noisy electronic devices are

enclosed in a sound isolated network rack (Logilink W15D67G, 2direct GmbH). The turbo

pump for the isolation vacuum of the cryostat is located on the ground floor of the building

and damped by massive concrete blocks, while our experimental setup is in the basement.

To minimize vibrations originating within the cryostat, we adjust the filling schedule. Boiling

liquid nitrogen causes strong vibrations, therefore we only fill it in the evening. The amount is

chosen such that the nitrogen tank empties in the morning before we start measurements.

The helium tanks are also filled in the evening. This ensures that they reach an equilibrium

state overnight. Furthermore, the needle valve connecting the two tanks is adjusted to be

nearly closed. It then warms to ∼ 60K, creating a helium bubble between the tip and seat

which prevents helium flow even if the pressure between the tanks is not perfectly equal.

In addition to these measures, one could employ more sophisticated feedback loops capable

of overcoming the resonances [139]. Furthermore, a stiffer cryostat insert mechanically decou-

pled from the internal vibrations of the cryostat would reduce the amplitude of vibrations of

the cavity [140–142].

3.5.2 Synchronized Detection

Instead of implementing a more complicated locking scheme to dampen the vibrations at the

mechanical resonance frequencies, we record the error signal at a rate of 1 Mega-sample per

second (1 MS/s) and use it in the data analysis. We synchronize the data acquisition with the

error signal recorded by a DAQ card (USB6363, National Instruments). Because the bandwidth

of the error signal is limited to 50 kHz by the balanced photodiode, we smoothen the data via

a moving average over 10µs to reduce the effect of noise. After shifting the data tracks relative

to each other to account for their relative delays (see Appendix D), we distribute them into

bins depending on the error signal. Effectively, this means that we extract data for different

cavity detunings from one dataset (see Fig. 3.18) and therefore acquire 2D spectra such as that

shown in Fig. 2.7. For the experiments presented in Ch. 4 & 5, we focus on the situation when

the cavity is on resonance with the molecule. We therefore only use data from moments in

which the error signal is within a narrow range around the voltage indicating resonance V0.

The experiments described in Ch. 6 detect features which appear in the dispersive regime,

when the cavity is detuned relative to the molecule. We can then use the full dataset, as in

Fig. 3.18, to identify these features in the dispersive regime and confirm that they disappear at

zero detuning.
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Figure 3.18: The transmission spectrum as a function of the error signal. (a) 2D histogram
of the transmission through the cavity, binned over the error signal and the laser frequency.
The red dashed line indicates the translation between cavity resonance frequency and error
signal. The finesse of the mode used for the lock is low, such that the error signal fluctuates
only within its approximately linear range, far from the turning points around resonance (see
Fig. 3.16). (b) Three transmission spectra for different values of the error signal, indicated
by the colored arrows in (a). The detunings of the cavity relative to the molecule are −2 GHz
(blue), 0 GHz (orange) and +2 GHz (green), respectively. The overall spectrum, averaged over
all error signal values, is plotted in black.
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Figure 3.19: Same as Fig. 3.18, but with the cavity locked to a high-finesse mode. (a) The cavity
vibrations cause the error signal to fluctuate beyond the turning points. Hence, when the error
signal lies outside [−1V,+1V], we cannot identify the cavity resonance frequency uniquely.
(b) However, within a small range, it is possible to select the cavity resonance frequency. The
cavity-molecule detunings are −0.2 GHz (blue), 0 GHz (orange) and +0.2 GHz (green).

44



4 Strong Coupling

If an emitter exchanges a single photon with a photonic structure faster than the photon

is lost, they are strongly coupled to each other [143]. In the strong coupling regime, the

energy eigenstates of the molecule and the cavity hybridize into polariton states (see Ch. 2.3.3),

which we detect in the spectral domain in Ch. 4.1. If the composite system is initialized by

an excitation of either the molecule or the cavity, the excitation is exchanged back and forth

between them (see Ch. 2.3.5). We experimentally explore these oscillations in Ch. 4.2. The

results presented in Chapters 4 & 5 were obtained using a cavity consisting of two Bragg mirrors

(see Ch. 3.1.2), with an optical fiber as the substrate for the curved mirror (see Ch. 3.1.1).

The content of this and the next chapter was published in Single-Molecule Vacuum Rabi

Splitting: Four-Wave Mixing and Optical Switching at the Single-Photon Level by A. Pscherer,

M. Meierhofer, D. Wang, H. Kelkar, D. Martín-Cano, T. Utikal, S. Götzinger and V. Sandoghdar,

Phys. Rev. Lett. 127, 133603 (2021).

4.1 Vacuum Rabi Splitting

To detect the hybridization of energy levels, we use the following experimental configuration:

One beam from the spectroscopy laser is coupled into the cavity from the planar mirror side.

We detect light leaving the cavity on the same side. Using crossed polarizations (see Ch. 3.4.2),

the intensity detected on the APD is proportional to the transmission through the cavity.

To minimize the effect of the mechanical vibrations of the cryostat insert, we employ the

synchronized detection technique described in Ch. 3.5.2. The detected photon count rate

Cdet is corrected for the photons hitting the APD within the deadtime of Td = 87.3ns (see

Appendix E). Furthermore, we subtract the incoherent background caused by the locking

laser.1 Scanning the spectroscopy laser frequency across the cavity reveals a Lorentzian profile

with FWHM of κ/2π= 1.28GHz (see Fig. 4.1b)). This is the lifetime-limited linewidth of the

cavity, as we confirmed by ring-down measurements (see Ch. 4.2). Together with a FSR of

1The locking laser at λlock = 760nm creates red-shifted light in the cavity, some of which is transmitted through
the 785±5nm laser-line filter in the detection path. The origin of this light is unknown.
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Figure 4.1: The transmission spectrum of the cavity without a molecule. (a) 2D histogram over
the transmission binned over the laser frequency and the error signal. The red dashed line
shows the relation between the cavity frequency νc and the error signal. Between [−0.5,0.5] V
error signal the apparent transmission through the cavity in this measurement is higher than
for error signal values outside this range. These error signal values correspond to two different
possible cavity frequencies, hence the corresponding transmission spectra are averaged over
both detunings. (b) The spectrum for an error signal of V0 = 0V (blue + orange fit) compared
to the vibrationally broadened spectrum with a FWHM of 5.0 GHz (black). The extinction dip
at νL = νc −2.1GHz is due to a weakly coupled molecule.

31.09 THz [123], this gives a finesse of F = 2.4 · 104, or a Q factor of 3.0 · 105. Without the

synchronized detection technique (see Ch. 3.5.2), the linewidth measured in this way would

be broadened, because the cavity changes its resonance frequency during the measurement.

In addition, the apparent linewidth changes from one measurement to another, because the

amplitude of the mechanical vibrations in the cryostat depends on many factors, such as the

levels of cryogenic liquid in the tanks of the cryostat and the temperature of the needle valve.

Knowing the lifetime-limited linewidth of the cavity is particularly important when it interacts

with a molecule. κ is not the spectroscopically measured linewidth, but it determines how fast

photons leave the cavity. As shown in Ch. 3.5, the vibrations of the cavity are in the kHz range

– much slower than the optical transition of the molecule. At any given time, the molecule

therefore interacts with a cavity of certain frequency, and at a later time it interacts with a

cavity of a different frequency. If, in contrast, the broadened linewidth corresponded to the

energy loss rate κ, the molecule would interact with a lossier cavity and therefore exhibit

different behavior.

Fig. 4.2b) shows the measured transmission spectrum through the cavity-molecule system,

when the 00ZPL is resonant with the bare cavity resonance frequency. From a fit to the

model described in Ch. 2.4.1 we extract 2g /2π= 1.54GHz and κ/2π= 1.31GHz. The cavity is

resonant with the molecule at an error signal of V0 =−0.29V. A small amount of vibrational

broadening remains in this measurement, even after selecting this error signal value in the
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Figure 4.2: The transmission spectrum of the cavity strongly coupled to a molecule. (a) 2D
histogram over the transmission binned over the laser frequency and the error signal. (b) The
spectrum for an error signal of V0 =−0.29V (blue + orange fit) compared to the vibrationally
broadened spectrum (black). The vertical lines indicate the transition frequencies from the
ground state |g ,0〉 to the first polaritons |1±〉.

data analysis. The broadening can be described by a Gaussian distribution of cavity resonance

frequenciesνc with a FWHM of 0.90 GHz. Together with a free-space decay rate of the molecule

of γ/2π = 0.04GHz, we obtain a cooperativity of C = 45. Since the energy exchange rate

between molecule and cavity is higher than the energy loss rate of the cavity 2g > κ, this

molecule is in the strong coupling regime. In the next section, we investigate the energy

exchange dynamics in the time-domain.

4.2 Vacuum Rabi Oscillations

In a microcavity, the dominant damping of the Rabi oscillations is due to the losses of the

cavity κ∼ 1/tRT because of the short round-trip time tRT. Reaching the strong coupling regime

therefore requires the single-photon Rabi frequency 2g to exceed the cavity decay rate κ.

One way to achieve this is to use emitters with a large transition dipole moment d⃗eg , since

g ∼ |d⃗eg |. This led to the first demonstration of strong coupling with quantum dots [26, 92]

in the spectral domain. As the energy exchange rates of these systems lies in the tens of GHz

range, the dynamics are too fast to observe directly. Our system achieves strong coupling

due to the high finesse of our cavity and the correspondingly low κ. This allows us to resolve

single-photon Rabi oscillations with low-timing-jitter single-photon detectors.

We perform ring-down measurements to observe the time-evolution of the cavity. We couple

7 ps pulses from a Ti:sapphire laser into the cavity and detect the light leaking out of the cavity

with a fast APD (see Ch. 3.4.3). Ideally, the photon detection probability, as a function of

the delay after the excitation pulse, is directly proportional to the number of photons in the

cavity. However, the detection electronics respond with a non-constant delay, washing out the
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Chapter 4. Strong Coupling

temporal dynamics of the investigated system. This is described by the instrument response

function (IRF): If a photon hits the APD at time t = 0, the IRF describes the probability

distribution of times at which the photon is registered by the timetagger (PicoHarp 300,

PicoQuant GmbH). This is partially due to noise and the binning in the time tagger2, but

mostly due to processes in the APD. The exact time when an electrical pulse is generated

depends on where in the APD the photon is absorbed. APDs tailored for low timing jitter have

a thin active area (1–2µm) to minimize the spread in travel times for charge avalanches. This

allows the FWHM of the IRF to be as narrow as 38 ps in our case. Some photons pass through

the active area and are absorbed below it. The charges created this way diffuse and eventually

reach the active area, leading to a pulse delayed by the more widely distributed diffusion time.

This gives rise to the slowly decaying exponential tail [145, 146]. The IRF of our detection

system is shown in Fig. 4.3. The probability distribution of registering a photon is given by the

convolution of the IRF with the emission probability distribution intrinsic to the process, such

as exponentially decaying Rabi oscillations.
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Figure 4.3: The IRF of the fast APD:
A Gaussian peak with a FWHM of
38 ps is followed by an exponential de-
cay e−t/Tt with a time constant Tt =
320ps. Each contribution contains
approximately half of the detected
photons.

First, we investigate the decay rate of the cavity when it is off-resonant from any molecule.

The 7 ps laser pulses are spectrally much broader than the cavity, hence only a fraction of the

light enters the cavity, while most of it is reflected. This would lead to a strong background

in our measurements, even with the cross-polarization technique described in Ch. 3.4.2. We

therefore send the pulses into the cavity from the curved mirror side (see the optical path

starting with Ocurv in Fig. 3.12), through the fiber. Start-stop histograms are then recorded

with a timetagger, with the “start” signal coming from the intra-resonator photodiode of the

pulsed laser and the “stop” signal is the detection of a photon on the fast APD.

Fig. 4.4 shows the start-stop histogram. We observe an exponential decay of the intensity with

a rate κ= 2π ·1.28GHz, convolved with the instrument response function (IRF) of the APD

(see Fig. 4.3). This confirms the value obtained in the spectral domain. It corresponds to a

photon lifetime in the cavity of 1/κ= 125ps. Note that this measurement is not influenced by

the cavity vibrations, because the leakage rate of the cavity does not change within a detuning

2We use the PicoHarp 300 with a specified single-channel timing precision of 20 ps (FWHM) [144]. Of the

measured IRF with 38 ps FWHM we can therefore attribute
√︂

(38ps)2 − (20ps)2 = 32ps to the APD.
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4.2 Vacuum Rabi Oscillations

of a few GHz. We can therefore use the whole dataset instead of restricting it to a narrow range

of error signal values. This is the reason for the high signal to noise ratio of the empty cavity

decay curve compared to the decay curve of the coupled system in Fig. 4.4.
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Figure 4.4: The start-stop histograms of the ringdown measurements. The solid lines are fits of
the physical model (Ch. 2.4.2) convolved with the IRF. See Fig. 4.5 for the comparison to the
pure theory.
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Figure 4.5: The measured start-stop histograms (dots) and the pure theory (without IRF; solid
lines) curves, calculated with the parameters extracted from the fits, on a linear (a) and a
logarithmic axis (b).

Second, we tune the cavity in resonance with the molecule described in the previous sec-

tion. The ringdown measurement now reveals oscillations with an exponentially decaying

amplitude. When the pulse impinges on the cavity, it first excites the cavity mode. Hence,

immediately after the excitation pulse, the start-stop histogram is highest. The photon then

excites the molecule, such that after half a Rabi cycle, the remaining energy is stored in the

molecule. Because of the absence of cavity photons, the histogram shows a minimum at that

time. During another half Rabi cycle the molecule re-emits the excitation into the cavity. This
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Chapter 4. Strong Coupling

leads to another maximum in the histogram. The cycle repeats, but with decaying amplitude,

because the excitation leaks out of the cavity at a rate κ and out of the molecule at a rate γ. We

ensure that each pulse excites ≪ 1 photon, such that we can neglect contributions from 2 or

more photons to the detected signal. A fit of the model described in Ch. 2.4.2 convolved with

the IRF reveals a single-photon Rabi frequency 2g /2π= 1.53GHz and a cavity decay rate of

κ= 2π ·1.31GHz. In this measurement, the Rabi oscillations wash out after 1½ cycles because

of the slowly decaying tail of the IRF (see Fig. 4.3).

The cavity vibrations must be considered for this measurement. To synchronize the timetags

of the start-stop measurement with the cavity error signal, we send TTL pulses from the DAQ

card to the marker inputs of the timetagger. From the same dataset, we can choose error signal

values corresponding to a detuned cavity. Fig. 4.6a) shows the complete 2D histogram and

b) shows individual cross-sections corresponding to different cavity detunings. As predicted

by the theory (Eqns. 2.19 & 2.30), the contrast decreases and the effective Rabi frequencyΩ1

increases with detuning.
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Figure 4.6: Single-photon Rabi oscillations for different cavity-molecule detunings. (a) 2D
histogram. The red dashed line marks the time after which 1 Rabi cycle is finished. (b) 1D
histograms for detunings 0, 0.6 and 1.1 GHz, respectively. They are vertically shifted to assist
visualization.

To model a measurement, we could deconvolve the IRF from the measured data and then fit

the physical model to the result. The issue with this method is that convolution is not perfectly

reversible over a finite dataset, and the deconvolved signal can be very noisy, because both

the experimentally measured IRF and data are noisy to begin with [116]. Instead, we convolve

our physical model with the IRF and then fit it to the measured data. This is how the fits in

Fig. 4.4 & 4.6 were calculated. Fig. 4.5 compares the measured data to the physical model

without the effect of the IRF.

To summarize, we performed the first measurements with a single molecule strongly coupled

to a Fabry-Pérot cavity. We provided evidence for this in the spectral domain by observing

pronounced Rabi splitting, as well as in the temporal domain by resolving single-photon Rabi
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4.2 Vacuum Rabi Oscillations

oscillations. Having demonstrated the efficient interaction between the molecule and single

photons, in the following chapter we use the molecule to mediate photon-photon interactions

effectively.
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5 Nonlinear Optical Experiments at the
Level of Single Photons

The anharmonicity of the energy level spacing of atoms or molecules causes them to behave

qualitatively differently from a linear harmonic oscillator. A laser resonantly driving the

molecule from its electronic ground state into its first excited state is far off-resonant from

driving it further into the second excited state. This is why it is justified to treat our emitters

as two-level systems, which undergo stimulated emission rather than transitioning into a

higher state. This is the fundamental reason behind all nonlinear effects shown in this chapter.

We begin with an investigation of the saturation behavior of the molecule (Ch. 5.1), which

happens at the level of single photons in the cavity, due to the high interaction efficiency. We

then use this low saturation threshold to saturate the molecule with one laser beam to make it

transparent to another one, realizing an efficient all-optical switch (Ch. 5.2). In chapter 5.3 we

realize the quantum version of a switch, in which the molecule-cavity system only transmits

photons pairwise. Lastly, we analyze how photons of new frequencies originate in four-wave

mixing processes (Ch. 5.4).

The content of this and the previous chapter was published in Single-Molecule Vacuum Rabi

Splitting: Four-Wave Mixing and Optical Switching at the Single-Photon Level by A. Pscherer,

M. Meierhofer, D. Wang, H. Kelkar, D. Martín-Cano, T. Utikal, S. Götzinger and V. Sandoghdar,

Phys. Rev. Lett. 127, 133603 (2021).

5.1 Saturation

The nonlinearity of our system is revealed on saturating it by increasing the laser power. We

record spectra in the same experimental configuration as in Ch. 4.1, i.e. using cross-polarized

detection (Ch. 3.4.2) synchronized with the lock (Ch. 3.5.2) and correcting for APD deadtime

(Eq. E.1c) and incoherent background. When we scan the laser frequency across the common

resonance of the molecule and cavity with low power, we find two transmission maxima

due to the transitions from the ground state |g ,0〉 to the first polaritons |1−〉 and |1+〉. The

molecule used in this experiment shows a single-photon Rabi splitting of 2g /2π= 1.26GHz
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Chapter 5. Nonlinear Optical Experiments at the Level of Single Photons

in a κ/2π = 1.28GHz broad cavity. Fig. 5.1 shows the spectrum on a logarithmically scaled

vertical axis, together with spectra measured at higher laser powers.

−2 −1 0 1 2

Laser frequency detuning from molecule νL −νmol (GHz)

104

105

106

107

108

109

Tr
an

sm
is

si
o

n
(C

o
u

n
ts

/s
)

14.2 pW

70.8 pW

235 pW

482 pW

907 pW

1.81 nW

4.14 nW

10.1 nW

19.8 nW

35.4 nW

|1+〉
|2+〉
|3+〉

|1−〉
|2−〉
|3−〉

Figure 5.1: Transmission through the cavity on resonance with a molecule. The colored
numbers on the right-hand side indicate how much laser power was coupled to the cavity
in the respective spectra. The power corresponding to one photon per cavity lifetime is
2.04 nW. Vertical lines are drawn at the resonance frequencies of the n-photon transitions
|g ,0〉 → |n±〉 (see Fig. 5.2 and explanation in the text). For excitation power ≥ 235pW we
inserted a calibrated ND filter in the detection path, which attenuated the intensity by a factor
of 22.45±0.32; for power ≥ 4.14nW it was attenuated by a factor of 323±18.

The double-peaked low-power spectrum gradually turns into the single-peaked spectrum of

an empty cavity as the laser power increases. As mentioned in the introduction to this chapter,

the reason for this behavior is that the molecule is a two-level system: It can only absorb

one photon at a time – a subsequent photon arriving within the lifetime of the excited state

stimulates the re-emission of the first photon, effectively keeping the number of photons in

the beam constant. Hence, the higher the rate of incident photons, the less the effect of the

molecule on the fraction of transmitted photons.

In the strong coupling regime, the energy eigenstates are not the uncoupled states of the

molecule and the cavity, but the polaritons (see 2.3.3). We can equivalently describe the

saturation behavior in this basis. At low laser power, incident photons usually encounter

the molecule-cavity system in the ground state |g ,0〉. When the laser is resonant with the

transition to the first polaritons |1±〉, the photons can excite the system. In the transmission
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5.1 Saturation

spectrum, this results in a peak at these frequencies ωc ± g . With increasing laser power, the

chances of a second photon arriving at the cavity before the first excitation has leaked out

of the system increases. It is possible that the energy to excite the system into the second

polariton ℏ
(︁
2ωc ±

⎷
2g

)︁
is shared between two photons, leading to a resonance at the laser

frequency ωL = ωc ± g
/︁⎷

2 . Analogously, when the laser is tuned to ωL = ωc ± g
/︁⎷

n , the

energy of n photons excites the system into the nth polariton |n±〉. The higher n, the closer

the resonance frequency to that of the empty cavity. Fig. 5.2 illustrates these transitions

for n ∈ {1,2,3}. Deeper in the strong coupling regime, when the width of the polaritons(︁
(2n −1)κ+γ)︁/︁

2 is less than the separation of the different n-photon resonance frequencies,

it is possible to resolve discrete resonances. They appear as additional transmission peaks

as the laser power increases, seen, for example, in Fig. 3.3d of the dissertation of D. Najer

[147] or very clearly in a transmon qubit [148]. For our system parameters, the resonances are

not resolved. Instead, the gap in the transmission spectrum between the first polaritons |1±〉
is continuously filled, making the spectrum increasingly similar to that of the empty cavity.

The spectrum taken at a power of 1.81 nW shows that the transmission maxima are not at the

single-photon resonance.
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Figure 5.2: 1-, 2- and 3-photon transitions into the upper and lower polaritons |n±〉. The sharp
purple and turquoise lines indicate the energy of the lower and upper polaritons, respectively.
The color gradients indicate their linewidths.

Qualitatively, the transmission through the common resonance of cavity and molecule is very

low as long as the excitation is kept weak. In the limit of infinite power, the transmission goes
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Chapter 5. Nonlinear Optical Experiments at the Level of Single Photons

to 1. We can quantify this by extracting the transmission from each spectrum in Fig. 5.1. Doing

so involves the following steps: First, we fit the model described in Ch. 2.4.1 to the spectrum.

Here, we leave g and κ as free fit parameters for the lowest power and use their resulting values

as fixed parameters in the fits of the higher power data. This reduces the uncertainty in the fit,

because the effect of the molecule on the spectrum is small at high powers. Second, we extract

the coherent cross-polarization background αcp from the fit and subtract it from the data.

As the absolute transmitted countrate Ctrans, mol we take the average countrate in a window

of [−50,+50] MHz around the molecule frequency νmol. Third, we calculate the countrate

transmitted in the absence of the molecule at the same power Ctrans, cav by evaluating the fit

model with the coupling strength g set to 0. As a result, we find the normalized transmission

through the cavity-molecule system to be the ratio

T = Ctrans, mol

Ctrans, cav
. (5.1)

Fig. 5.3 shows the normalized transmission extracted this way as data points of the same color

as the corresponding spectra in Fig. 5.5. The blue line shows the theory curve assuming that

the decay rates in and out of the triplet state are equal γet = γt g . We note that these rates vary

from molecule to molecule and we do not know them for the molecule used in this experiment.

However, it suffices to know their ratio, since this determines how much population is shelved

in the triplet state |t〉. Fig. 5.4 shows a comparison between theoretical transmission curves

with γet /γt g ranging from 10−1 to 10+1. The slower the molecule relaxes from the triplet state
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Figure 5.3: Normalized transmission through the cavity-molecule system. At an excitation
power of 1 photon per cavity lifetime the transmission is T = 77%. The inset illustrates the
spectral configuration for this measurement: The laser probes the transmission through the
common resonance of molecule and cavity.
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5.1 Saturation

to the ground state (γt g ) compared to the rate at which it transitions from the excited state into

the triplet state (γet ), the higher the average transmission at intermediate excitation power.

This is because the molecule spends more time in the triplet state. During that time, the

molecule does not interact with the cavity and therefore transmits light as if there was no

molecule.
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Figure 5.4: Theoretical saturation of the transmission for different ratios γet /γt g . The molecule
behaves like a two-level system in the limit γet ≪ γt g .

In order to benchmark the low power required for our system to behave nonlinearly, we

now quantify the degree of saturation as assessed using different quantities. We therefore

define different versions of the saturation parameter, analogous to the saturation parameter

S2LS describing saturation in a two-level system in free space. On resonant excitation, the

saturation parameter is [101]

S2LS := 2Ω2

Γ2 = 1
1/2
ρee

−1
, (5.2)

whereΩ is the free-space Rabi frequency and Γ is the free-space emission rate of the two-level

system. We cannot straightforwardly transfer this definition to our system. While we have

an analog to the Rabi frequency Ωα = gα (see Ch. 2.4), the emission rate of the molecule

is not clearly defined because in the strong coupling regime, the decay of the molecule’s

excited state population is not monotonic, as demonstrated in Ch. 4.2. Instead, we can use the

population of the excited state ρee to quantify the saturation. Eq. 5.2 normalizes the excited

state population to its value in the limit of infinite laser power ρee (Ω→∞), which is 1/2 in the

case of a two-level system. In contrast to that, our system reaches a steady-state population of

ρee (Iin →∞) = γt g
/︁

(γet +2γt g ) . Defining

Sρee (Iin) := 1
ρee (Iin→∞)
ρee (Iin) −1

, (5.3a)
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Chapter 5. Nonlinear Optical Experiments at the Level of Single Photons

our system reaches a saturation parameter of Sρee = 1 for 0.24 photons per cavity lifetime

Iin = 0.24κ (see red curve in Fig. 5.5). Alternatively, one can use the normalized excited state

population pe := ρee /(ρee +ρg g ) and define

Spe (Iin) := 1
1

2pe (Iin) −1
(5.3b)

(see green curve in Fig. 5.5). The threshold of Spe = 1 is reached for Iin = 0.32κ. We would like

to note that the definitions 5.3a and 5.3b result in negative values in the regime of an incident

power of ∼ 2 photons per cavity lifetime, because ρee (Iin ≈ 2κ) > ρee (Iin →∞). We discuss this

population inversion effect in Ch. 6.2. A third possibility is to define the saturation parameter

using the directly measured transmission through the cavity T . It rises monotonically from

T (Iin → 0) = (1+C )−2 to T (Iin →∞) = 1 with the rate of incident photons Iin. Then,

ST (Iin) := T (Iin)−T (Iin → 0)

1−T (Iin)
(5.3c)

reaches ST = 1 when the transmission is halfway between 1 and T (Iin → 0). This is the case for

0.40 photons per cavity lifetime.

Fig. 5.5 plots the three described quantities, together with the absolute value of the coherence

term |ρeg | (orange). It is proportional to the dipole moment and therefore a measure of the

amount of coherently scattered light. It reaches its maximum value at Iin = 0.31κ.
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Figure 5.5: Different quantities indicating saturation. The dots and vertical lines indicate
the threshold when the corresponding saturation parameter (Eqns. 5.3) reaches 1. These
graphs are simulated for the system parameters measured in the experiment: g /2π= 0.63GHz,
κ/2π= 1.28GHz, γ/2π= 0.04GHz and γet = γt g .
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In the Purcell regime (Ch. 2.3.6) it is common to compare the rate of incident photons Iin to

the Purcell-enhanced excited-state decay rate γcav = 4g 2

κ , instead of the energy loss rate of the

cavity κ. One then finds that the rate of photons per emitter lifetime to reach a saturation

parameter of S2LS = 1 approaches 1/4 in the limit of β→ 1 [22, 113].

In conclusion, we have demonstrated the nonlinear transmission through the cavity-molecule

system due to saturation. The observed behavior matches the theoretical model elaborated

in Ch. 2.4.1 closely, including the low photon number required for the onset of saturation.

Furthermore, we would like to highlight that the molecule remained stable despite the high

rates of photon absorption and emission in these experiments. This would lead to severe

excitation-induced spectral diffusion [149–152] in many other solid-state systems.

5.2 High-Contrast All-Optical Switching

Motivated by the high dynamic range of transmission experienced by the laser beam in the

previous chapter, we now explore the nonlinearity from a different angle – mediating an

interaction between different laser beams. The transmission of one beam is controlled by the

presence of another one, as in a logical AND gate.

We perform pump-probe experiments, in which a pump laser drives the system into a partic-

ular state while a weak probe laser is used to acquire information about the system without

perturbing it significantly. In our case, the probe laser is on resonance with the molecule

and the cavity, to assess the transmission through them, and the pump laser saturates the

system, thereby increasing its transmission. The excitation is the same as in the previous

chapters (excitation through the planar mirror, using the cross-polarization scheme described

in Ch. 3.4.2), except that we combine the probe and pump beams via a beamsplitter before

coupling them into the cavity (see Ch. 3.4). In order to measure the transmission of the probe

beam in the presence of the up to 800 times stronger pump beam, the pump beam is detuned

by ∆ν=+300MHz from the probe and we use a Fabry-Pérot cavity with a linewidth of 30 MHz

(FWHM) in the detection path (see Ch. 3.4.3) to separate the two beams. The inset of Fig. 5.6

shows the frequencies of the two lasers relative to a low-power transmission spectrum of the

cavity with molecule. The filter cavity is scanned around the probe frequency in linear ramps

of 10 s duration to acquire the spectrum of the transmitted light convolved with the Lorentzian

line shape of the filter cavity. The scan voltage is sampled synchronously with the APD counts

and the error signal for the postprocessing described in Ch. 3.5.2. Each ramp is then fitted

with a double-Lorentzian plus background

T̃ (V ) = Aprobe

1+
(︂

V −Vprobe

w

)︂2 + Apump

1+
(︂

V −(Vprobe+k∆ν)
w

)︂2 +B (5.4)

to account for the probe, pump and incoherent light. k = 0.78V/GHz is the conversion factor

between the voltage applied to the scanning piezo of the filter cavity and the change in its
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Chapter 5. Nonlinear Optical Experiments at the Level of Single Photons

resonance frequency; w = 10.4mV is the HWHM of the Lorentzians on the voltage axis. Fig. 5.6

shows an example ramp from the measurement with the highest pump power Ppump = 9.2nW.

Although the tail of the Lorentzian from the pump beam spans the probe Lorentzian, we can

extract the amplitude of the probe peak Aprobe with confidence.
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Figure 5.6: Example filter cavity ramp at pump power Ppump = 9.2nW. The quantity of interest,
Aprobe, is the height of the Lorentzian centered at Vprobe above the residual signal from pump
and background (dashed line).

The extracted amplitude Aprobe is then normalized to the amount of light which would be

transmitted through an empty cavity at the same probe power Ddirect. Therefore, we record a

transmission spectrum with only the probe beam in the same way as in Chapters 4.1 & 5.1

shortly before the pump-probe measurement, referred to as “normalization spectrum” in the

following. We correct this spectrum for the APD deadtime, subtract the incoherent background

and then fit each laser scan ramp of it with the model described in Ch. 2.4.1. We can calculate

the rate of photons transmitted through the empty cavity Ddirect by evaluating the fit model

with g set to 0. The normalized probe transmission is then Tprobe = Aprobe/(ηcavDdirect), where

ηcav = 9.7% is the calibrated peak transmission through the filter cavity. Two refinements make

this normalization more accurate: Taking (i) the contribution from the cross-polarization

background and (ii) the cavity length jitter remaining after the postprocessing into account.

For (i), we use the fit of the normalization spectrum to decompose the transmission countrate

through the empty cavity into the actual transmission through the empty cavity D ′
direct and

the cross-polarization background CPdirect

Ddirect = D ′
direct +CPdirect. (5.5a)
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5.2 High-Contrast All-Optical Switching

The cross-polarization contribution also contributes to the amplitude of the Lorentzian at the

probe frequency, in addition to the actual probe transmission through the cavity and filter

cavity A′
probe, hence

Aprobe = A′
probe +ηcavCPdirect. (5.5b)

The more accurate normalized probe transmission is therefore

Tprobe =
A′

probe

ηcavD ′
direct

= Aprobe/ηcav −CPdirect

D ′
direct

. (5.5c)

This decomposition is particularly important for measurements at low pump power, when

the actual probe transmission through the cavity is very low, i.e. the contribution from the

cross-polarization background is relatively high.

The issue with (ii) is that despite the synchronized detection and postprocessing the mapping

between error signal and cavity resonance frequency has a residual uncertainty, for reasons

we do not know at the time of writing. This means that the transmission through the cavity

is averaged over a range κvib of detunings. Therefore, the average transmission is lower

than for a fixed-frequency cavity, as demonstrated by the example in Fig. 4.1. If the residual

uncertainty was the same in each measurement, we could calibrate it once and take it into

account in the data analysis. In practice, however, it varies between 0 and 0.9 GHz between

measurements. While it is possible to extract it from measurements in which the laser is

scanned across the cavity resonance frequency, in the pump-probe experiments detailed

in this chapter the laser frequency is fixed and we therefore cannot determine the residual

broadening κvib. Despite this we found a correlation between κvib and the integrated noise

in the error signal in the spectral range [13.5,27] kHz. Using this, we can estimate κvib in the

pump-probe measurements and correct for it.

The probe transmission for a wide range of pump powers is shown in Fig. 5.7. It ranges

between 2.29±0.76% and 103.1±10.5%, where the uncertainty denotes the variation among

the individual scan ramps within the measurement. Additionally, we note that there is a

systematic tendency to underestimate the contribution of the cross-polarization background,

because of polarization drifts between the measurements. Hence, the subtracted contribution

tends to be lower than the actual background, leading to an overestimation of the probe

transmission. This has a high relative impact on the probe transmission calculated at low

pump power, because the transmission is very low for these measurements. A more accurate

value of the probe transmission is available in the absence of the pump beam from the

normalization spectra, because here we can obtain a much more accurate estimation of the

cross-polarization background from the edges of the spectrum. The probe transmission in

these measurements is 0.64±0.32%. The ratio between this and the maximum transmission,

22.1±2.2dB, is a marked improvement over previous experiments without a cavity [13, 153].

The low transmission in the absence of the pump beam results from the remarkably high
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Figure 5.7: Normalized probe transmission in the presence of a ∆ν = +300MHz detuned
pump beam. The blue curve shows the value expected from theory with the independently
measured parameters κ/2π= 1.28GHz, g /2π= 0.63GHz, γ/2π= 0.04GHz and γet = γt g . The
inset shows the frequencies of pump and probe relative to the transmission spectrum of the
cavity and molecule.

cooperativity C = 31 of this molecule. From Eq. 2.44 we can determine the all-resonant

transmission T (ωL =ωc =ωmol) = (1+C )−2 ≈ 0.10% in the limit of zero probe power.

The measured transmission data in Fig. 5.7 agree closely with the theoretical prediction using

independently measured system parameters. The nonlinearity sets in at very low pump power,

as evidenced by a 89 % probe transmission at only 1 pump photon per cavity lifetime. The

theory also predicts the probe beam to be slightly amplified around Iin ≈ 3κ, which is not

resolved in the data. We would like to note that the amplification in this experiment, with

pump detuning ∆ν= 300MHz, is not due to population inversion of the molecule. Inversion

would occur at a different combination of pump and cavity detuning, as we elaborate in

Ch. 6.2. The amplification is instead caused by coherent energy transfer from the pump to

the probe beam, which can also be described as stimulated emission in the laser-dressed

molecular states [117, 153, 154], also called “three-photon resonance” on page 325 in R. Boyd’s

Nonlinear Optics [1].

Fig. 5.8 shows the probe transmission for other choices of the pump detuning ∆ν. While

the effect on the maximum probe transmission is small, the threshold power shifts to higher

values as the pump detuning increases. This is because the pump can saturate the molecule

more efficiently if they are resonant. While the switching threshold would be slightly lower for

lower pump detuning, for the experiment we chose a detuning of ∆ν= 300MHz. As such, the

threshold is low, and we are able to separate the pump and probe frequencies in the detection

with a high fidelity, as shown in Fig. 5.6.
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Figure 5.8: The probe transmission as a function of the pump power for a range of pump
detunings. The yellow dashed line indicates the pump detuning used in the experiments
∆ν= 300MHz.

To summarize, we have demonstrated how the saturation behavior of a single molecule

can be used to realize an all-optical switch. The efficient light-matter coupling enabled by

the cavity not only increases the switching contrast, but also reduces the critical number

of photons required to “flip” the switch, compared to free space. However, for an ideal

AND gate the two beams would be interchangeable and an increase in the power by a factor

of 2 would suffice to switch the transmission from ∼0 % to ∼100 %. In this way, one beam is

too weak to be transmitted, but both beams together saturate the molecule and are therefore

transmitted. The reason this does not happen despite near-unity interaction efficiency is that

the molecule’s intrinsic nonlinearity manifests in its response to different photon number

states |n〉 rather than to different coherent field amplitude states |α〉. The coherent states in the

cavity created by the probe and pump beams are superpositions of different photon number

states (see Eq. 2.48) and therefore wash out the discrete behavior. In turn, this suggests that

the molecule-cavity system can be used to operate on single-photon states – an essential task

in quantum computation [49]. Indeed, this photon-number nonlinearity is benchmarked

with a continuous-wave beam in the next chapter. Yet, constructing a quantum gate for

single-photon pulses has been shown to have a fundamental fidelity limit because of the

time-bandwidth problem [155, 156]: If the pulses are comparable to, or longer than, the

storage time of the cavity κ−1, there is the possibility that the single photons are scattered

independently, i.e. without interacting. Instead, if the pulses are comparable or shorter, parts

of their spectrum are filtered out because of the finite bandwidth κ of the cavity. Hence, there

is a probability of them being reflected without interacting with the molecule. Rosenblum

et al. [156] propose a solution involving a 3-level atom to increase the memory time of the

system. Alternatively, the time-bandwidth limitation can be circumvented by employing a

dynamically coupled cavity as a load-lock for the cavity with the two-level system [157, 158].
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5.3 Photon Number Sorting

In this subchapter, we explain the quantum version of the all-optical switch described in

the previous chapter. Instead of the average transmitted power, we measure correlations in

the arrival times of transmitted photons. We couple a weak continuous-wave laser into the

cavity and send the transmitted light to a Hanbury Brown & Twiss (HBT) setup (see Ch. 3.4.3).

The arrival times of the photons are registered with a PicoHarp 300 (PicoQuant GmbH). We

then compute the unnormalized intensity autocorrelation G (2)(τ) by counting the absolute

occurrence of arrival time differences τ between all possible pairs of photons. G (2)(τ) is then

normalized, to g (2)(τ), using the condition that for time differences τ much longer than the

memory time of the system, no correlation is expected, i.e. g (2)(τ=∞) = 1. The result is shown

in Fig. 5.9.
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Figure 5.9: Normalized intensity autocorrelation g (2)(τ) of the transmitted light. The peak
around τ= 0 is evidence of distinct photon bunching. Around τ= 2ns the data is systematically
higher than the expectation. This is due to cross-talk between the APDs, caused by the
breakdown flash of one APD sending a photon to the other APD [159]. These data points are
excluded from the fit.

The value of g (2)(0) reaches the notably high value of 252, which is a significant increase over

the value of 21 reported in our previous work [22] and other systems [54, 62, 160–164]. One can

interpret the intensity autocorrelation function in terms of conditional probability as [165]

g (2)(τ) = P (t +τ|t )

P (t )
, (5.6)

where P (t) is the probability density of detecting a photon at time t and P (t + τ|t) is the

conditional probability density of detecting a photon at time t +τ if another photon was

detected at time t . Applied to our experiment, this means that if one photon is detected, one is

252 times more likely to detect another photon at the same time (τ= 0) than with a long time

difference (τ→∞). This pronounced superbunching has its origin in the aforementioned
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photon-number nonlinearity of the single-photon emitter. For an intuitive understanding, we

consider the coherent state in the cavity created by the laser as a superposition of different

Fock states |0〉, |1〉, |2〉, etc. (see Eq. 2.48). Because of its anharmonic energy level spacing, a

molecule suppresses the single-photon component |1〉 in the cavity strongly but its response

to the Fock-state components consisting of several photons is qualitatively different. Adapting

the model in [166] to a single emitter [22, 123] we can find analytic expressions for the relative

probability amplitudes of the 1- and 2-photon states in the cavity. The probability of finding

1 photon in the cavity is reduced to a fraction 1
/︁

(1+C )2 compared to a cavity without a

molecule of cooperativity C . The 2-photon probability is only reduced by (1−C )2
/︁

(1+C )2 .

In the limit of infinite cooperativity C →∞, the 1-photon probability goes to 0, while the 2-

photon probability is unaffected. The input to the cavity is randomly sampled by the coherent

laser beam from the three situations

(i) 0 photons

(ii) 1 photon; the transmission is strongly suppressed

(iii) 2 photons; the transmission is almost unimpeded for high cooperativity C .

As the measurement described here is performed with a single coherent beam, the photons

are indistinguishable and therefore do not have designated roles as “pump” and “probe”. We

would nevertheless like to point out the parallels to the switching experiments in the previous

chapter. A single photon resembles the case with only one beam (probe or pump) on, hence

the transmission probability is low. Two photons correspond to both beams on, with an

accordingly high transmission probability. The strongly correlated transmission is attested

to by the high value of g (2)(0). For the molecule used in this experiment (g /2π = 0.63GHz,

κ/2π= 1.28GHz, γ/2π= 0.04GHz), we would therefore expect a value of

g (2)(0) =
(1−C )2

(1+C )2

(︂
1

(1+C )2

)︂2 = (︁
1−C 2)︁2 = 9.2 ·105. (5.7)

The main reason we do not reach this high value is that we measure g (2)(τ) at a finite laser

power, while the aforementioned model operates in the limit of zero excitation power. Shot-

noise in the coincidence histogram sets a practical limit on the lowest excitation power we

can use: The rate at which two-photon coincidences are detected is proportional to the

power squared. Fig. 5.10 shows how the shot noise and the effect of APD cross-talk decrease

when the rate of detected photons increases. Unfortunately, the expected value of g (2)(0)

significantly reduces even at very low incident laser power (see simulations in Fig. 5.11). Even

if we increased the measurement duration to overcome the shot noise, a finite background

would limit the maximally achievable value of g (2)(0). The strong correlation in the actual

signal g (2)
act(τ) is diluted due to uncorrelated coincidences between background and signal

photons, and between background and background photons. If the ratio of countrates of
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Figure 5.10: g (2)(τ) for different laser powers. The countrates of the timetagger channels are
listed in the legend.

background to signal is Ibg/Isig =: rbg/s, we only measure (see Appendix C.2)

g (2)
meas(τ)−1 = g (2)

act(τ)−1
(︁
1+ rbg/s

)︁2 . (5.8)
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Figure 5.11: The influence of incident power, the triplet state, background/dark counts and
the detector IRF on the measured value of g (2)(0). The data points correspond to the three
measurements shown in Fig. 5.10. The inset shows the photon number statistics for three
different laser powers (not corresponding to the three measurements). Higher laser power
weakens the selective relative suppression of the 1-photon component.
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5.3 Photon Number Sorting

In our experiments, we had approximately 200 photons/s background. Fig. 5.11 shows such a

background affects the measured value of g (2)(0), especially at low power.

The triplet state of the molecule also affects the achievable g (2)(0): For the time that the

molecule is in the triplet state, the laser fully passes through the cavity, contributing the

coincidences of a coherent state g (2)
coh(τ) = 1 to the histogram. Since the transmission through

the empty cavity is much higher than through molecule & cavity, the accordingly higher

countrate contributes a significant fraction of the overall coincidences, even if the fraction of

time the molecule spends in the triplet state is small.

Lastly, we must also take the IRF of our APDs into account. The timing jitter redistributes

coincidences over a longer time span, thereby reducing the height of the peak at τ= 0 [167].

Fig. 5.12b) shows the theoretical g (2)(τ) without the IRF. Without the timing jitter, the peak of

g (2)(0) above 1 would be 1.44 times higher than the measured value.
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Figure 5.12: a) The IRF of both fast APDs, indicating the timing jitter of photon coincidences.
b) The measurement shown in Fig. 5.9. The fit is calculated from the theoretical model (see
Ch. 2.4.3) convolved with the IRF.

Taking all of the above effects into account, we expect g (2)(0) values which are close to those

measured (see Fig. 5.11). We note that the power used in the measurements is not calibrated

and may deviate from the values plotted in that figure. To minimize the effect of background,

in particular from imperfect cross-polarization, we coupled the laser into the cavity from the

curved mirror side through the fiber (see Fig. 3.12). The exact incoupling efficiency here is un-

known, but very low. To estimate the power coupled to the cavity in the measurements shown

in Fig. 5.10, we used the countrate on the fast APDs and compared it to the normalization

spectra from the switching experiments, taking the relative quantum efficiencies of the APDs

into account.
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Chapter 5. Nonlinear Optical Experiments at the Level of Single Photons

In this chapter, we have provided experimental evidence of the pronounced photon-number

dependence of the transmission in the molecule-cavity system. The highly selective transmis-

sion of photon pairs manifests itself in a measured value of g (2)(0) = 252±9. More generally,

this photon-number nonlinearity creates photon bound states, which were recently detected

in a similar system optimized for low losses [168].

5.4 Four-Wave Mixing

In this section, we focus on the interaction of laser beams of different frequencies via the

nonlinearity of the molecule to generate photons of new frequencies. As in the other experi-

ments presented in this chapter, this happens at low average photon numbers around 1 in the

cavity. We generate two laser beams with a relative detuning of ∆ν= 300MHz (see Fig. 3.13)

and couple both to the cavity (see Ch. 3.4) using the usual cross-polarization scheme (see

Ch. 3.4.2). We tune the lasers such that they are symmetrically detuned from the common

resonance frequency of cavity and molecule by ±∆ν/2 =±150MHz, as sketched in the inset of

Fig. 5.13. In the detection path we direct the light through the same filter cavity with linewidth

30 MHz (FWHM) as for the switching experiments. Scanning the resonance frequency of the
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Figure 5.13: Experimental data (dots) of FWM experiments at various laser powers. The legend
indicates the laser power coupled to the cavity per beam, using the calibrated incoupling
efficiency of 17 %. The solid lines are purely theoretical (up to a global vertical scaling factor)
and calculated from the independently determined system parameters g /2π = 0.63GHz,
κ/2π= 1.28GHz, γ/2π= 0.04GHz. The inset depicts the detuning of the two lasers relative to
a transmission spectrum through the molecule-cavity system.
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5.4 Four-Wave Mixing

filter cavity reveals the spectrum of light leaking out of the microcavity. Fig. 5.13 shows the

resulting spectra for various laser powers.

At low power, we see two peaks at the frequencies of the incident laser beams. However, as

the laser power is increased, an additional pair of peaks at frequencies ±450MHz becomes

apparent. The power contained in these frequencies generated by four-wave mixing (FWM)

is (1.4±0.3) % of the power in the excitation frequencies for a cavity-coupled power of only

425 pW, corresponding to 0.21 photons per cavity lifetime. If we couple as much as 1.7 nW per

beam into the cavity, we can see a further pair at ±750MHz produced by a process involving at

least 6 photons. The efficiency of these four- and six-photon processes is significantly higher

than in a previous experiment where the lasers were strongly focused on a molecule without a

cavity [153]. We further verify the origin of the side peaks in the nonlinearity of the molecule

with two control experiments, shown in Fig. 5.14. If only one frequency is coupled into the

cavity, we find only one peak in the emission spectrum, because it does not interact with a

beam of different frequency to generate sidebands. Also, if the cavity and lasers are tuned

off-resonance from any molecule, two beams do not cause additional frequencies to occur,

because the cavity itself behaves linearly.
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Figure 5.14: The FWM sidebands are absent when only one beam hits the molecule (a) or in
the absence of a molecule (b). The insets indicate the spectral constellation of cavity, molecule
and lasers. The red dataset is identical with the highest-power dataset in Fig. 5.13. The two
control datasets were also recorded with 1.7 nW in each beam.

We now explain the observed phenomena from two different perspectives. In the time-domain,

the two laser beams at ±∆ν/2 =±150MHz are equivalent to one laser beam at 0 MHz intensity-

modulated as I (t) = 4I0 cos2
(︁
2π∆ν2 t

)︁
with the beating frequency ∆ν and the intensity of an

individual beam I0. Floquet’s theorem [169] states that a periodically driven system with

dissipation converges towards a stationary state in which its density matrix evolves with the
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Chapter 5. Nonlinear Optical Experiments at the Level of Single Photons

same period. In our case, this period is the inverse of the beating frequency T = 1/300MHz.

This condition, ρss(t +T ) = ρss(t), implies that only integer multiples of the fundamental

frequency can be part of the evolution of ρss(t ) [170]. In the case of a linear system, it would

even be restricted to the fundamental frequency only. In a nonlinear system such as ours,

higher harmonics of the beating frequency emerge through the deviation from linear behavior.

Fig. 5.15 shows the evolution of the photon number in the cavity
⟨︁

â†â
⟩︁

(t) and the excited

state population of the molecule
⟨︁
ρ̂ee

⟩︁
(t) for the laser powers used in the experiment. At

low power, both quantities evolve sinusoidally with the beating frequency. However, as the

molecule approaches saturation, it can not linearly follow the varying intracavity intensity

and imprints higher harmonics onto the evolution. These higher harmonics show up as sharp

peaks in the emission spectrum (Fig. 5.16). Additionally, the emission spectrum reveals a

broad background from the incoherent decay of the polaritons. When this emission spectrum

is convolved with the spectral response of our filter cavity (a 30 MHz FWHM Lorentzian), we

obtain the theory curves in Fig. 5.13, where the incoherent background is not clearly resolved

under the tails of the coherent emission peaks. One can only see that there is some background

when comparing the situations with/without molecule, as in Fig. 5.14b).

Complementarily, the nonlinear processes can be explained in the spectral domain, by drawing

the elementary processes relative to the energy levels of the nonlinear system (Fig. 5.17). This is
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Figure 5.15: Evolution of the power inside the cavity and the excited state population during
the FWM measurement.
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Figure 5.16: Theoretical FWM spectra without the filter cavity linewidth and background.

often done to find all possible paths which end at the same energy as they started. Additionally,

this method allows one to assess how likely a process is: The further an intermediate step is

from a real energy level, the lower the contribution of this process [1]. The coherence created

as a result of the driving between the involved energy levels can be used to detect decoherence

processes caused, for example, by phonons [171]. Furthermore, the closed-loop nature of

the processes reveals insights into correlations between photons of different frequencies

being created in the same process. A follow-up experiment could quantify the entanglement

between photon pairs [172]. Moreover, synchronized single photons could be used to trigger a

particular process with high efficiency [173]. Narrowband photon pairs from spontaneous

parametric downconversion in whispering gallery mode resonators [174] could be a viable

candidate.

In this chapter, we have demonstrated several experimental scenarios revealing the nonlinear-

ity of a two-level emitter. Because of the high interaction efficiency, the nonlinear phenomena

can be observed with the minimum number of photons required for the process. The data

match the theoretical model very closely and we have used these simulations to provide

further insights into the mechanisms behind the observations. However, being restricted to

the light of the cavity mode leaking through the mirrors limits our capability to assess the

dynamics within the cavity. Gaining access to the excited-state population of the molecule
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allows more direct access to the internal configuration of the cavity molecule system. In the

next chapter, we propose experiments using this extra information.
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6 Near-Term Future Experiments

In the previous chapters we showed the potential of DBT molecules in anthracene as a highly

coherent quantum emitter in classical and quantum nonlinear experiments. Moreover, the

coupling to a high-finesse microcavity allowed us to perform these experiments with high

efficiency at mean photon numbers in the cavity around n̄ ∼ 1. In these experiments, we

used Bragg design mirrors, which are highly reflective at the wavelengths of the Stokes-shifted

fluorescence of DBT (see Ch. 2.1). In Ch. 6.1, we introduce specially designed dichroic cavity

mirrors with a high transmission for these wavelengths. This allows us to gain information

about the excited-state population of the molecule, which is proportional to the fluores-

cence emission rate. Hence, instead of being limited to the excitation light scattered by the

cavity-molecule system as a whole, we gain insight into the states and dynamics within this

compound. The subchapters following thereafter provide examples of experiments using

this additional channel. In Ch. 6.2, we explain how the coupling to a cavity mode enables

a two-level system to be population-inverted in the steady-state, and how this effect can

be measured in our system. In Ch. 6.3, we propose a simple way to reveal cavity-mediated

coupling between two molecules. In Ch. 6.4, we explore how strong light-matter interaction

gives rise to a photon-number-dependent AC Stark shift and the experimental parameters

required to resolve the discretization.

6.1 Dichroic Cavity Mirrors

The dichroic coating is designed to have a transmission window for Stokes-shifted fluorescence

of DBT. At the same time, the finesse at λ= 785nm is intended to be comparable to the finesse

of the Bragg mirrors. As such, a cavity made of one Bragg and one dichroic mirror has balanced

reflectivities and therefore does not lose coupling efficiency due to over- or under-coupling.

To collect as much of the fluorescence spectrum as possible, the reflectivity edge must be

very steep. This introduces some challenges; in particular the divergence of the mode must

be taken into account, as tilted incidence shifts the spectrum towards the blue and therefore

extends the transmission window closer to λ= 785nm. We took the divergence of the mode
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Chapter 6. Near-Term Future Experiments

into account by considering the effective finesse

Feff =
π
⎷

Reff

1−Reff
. (6.1a)

This is calculated using the effective reflectivity

Reff =
∫︂ π/2

0
R(α)pθ(α)dα, (6.1b)

which is the average reflectivity for all AOI α, weighted by the fraction of power pθ(α) in

the Gaussian mode under this angle. Since half of the mode hits the mirror with s- and

p-polarization (see Fig. 3.7), the reflectivity R(α) is the average of the reflectivities for both

polarizations.

A typical strategy for designing a mirror with such specific requirements is to start with several

DBR stacks with spacer layers between them to describe the desired spectrum approximately

and then perform a numerical optimization of the layer thicknesses such that the resulting

spectrum approaches the desired one as close as possible [94]. Laseroptik GmbH designed

a coating (catalog number B-18605) consisting of 38 layers alternating between TiO2 with

a refractive index of 2.37 and SiO2 with a refractive index of 1.48 at λ= 785nm. The optical

thickness of each layer deviates from a quarter wavelength, optimized for the aforementioned

spectral properties. The exact layer thicknesses are confidential. Fig. 6.1 shows the theoret-

ical reflectivity spectrum without losses of the final design. We would like to highlight the

steep reflectivity edge separating the 00ZPL wavelength λ = 785nm and the fluorescence

transmission window, which blue-shifts for tilted incidence. The angle-dependent reflectivity

for λ = 785nm (Fig. 6.2) reflects this fact. The reflectivity of the dichroic mirrors reduces

more significantly with increasing AOI than the reflectivity of the Bragg mirrors (c.f. Fig. 3.6).
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Figure 6.1: The reflectivity spectrum of the dichroic mirrors for different AOI and polarizations.

74



6.1 Dichroic Cavity Mirrors

0° 5° 10° 15° 20° 25° 30° 35° 40°

AOI

99.92%

99.94%

99.96%

99.98%

100.00%
R

efl
ec

ti
vi

ty
at
λ
=

78
5

n
m

90
%

99
%

99
.9

%

99
.9

9%

s-polarized

p-polarized

unpolarized
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λ= 785nm. The vertical lines indicate the fraction of power contained in a beam of divergence
θ = 15° up to their corresponding AOI.

This angle dependence is taken into account in the effective finesse Feff, defined in Eq. 6.1a.

Fig. 6.3 shows the effective finesse for the dichroic mirrors and the Bragg mirrors. The emission

spectrum of an ensemble of DBT molecules inside a dichroic cavity is also shown. It reveals

the characteristic emission peaks corresponding to transitions into vibrational states [75]. The

design additionally results in a high reflectivity around λ= 1000nm, which can be used for
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Figure 6.3: The effective finesse Feff and effective reflectivity Reff of the two mirror designs for
a mode with divergence of 15°. For comparison, the emission spectrum of DBT in anthracene,
measured in a dichroic cavity, is shown in red. While the Bragg design has an effective reflec-
tivity Reff > 90% for most of the emitted wavelengths, the dichroic mirror has a transmission
window.
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locking the cavity length (see Ch. 3.5) at a wavelength which can easily be separated from the

fluorescence and the 00ZPL.

Experimentally, the finesse at λ= 785nm reaches up to 10000. In addition to the loss mecha-

nisms in the Bragg-design mirrors, absorption within the coating plays a major role, because

the steep edge in the reflectivity spectrum near 785 nm causes the field to penetrate further

into the coating than for Bragg mirrors. While a finesse of 10000 suffices for the experiments

described in Ch. 6.3 & 6.2, the experiment in Ch. 6.4 requires a significantly higher ratio g /κ.

There are ways to optimize the mirrors for higher finesse: Firstly, an anthracene crystal of

given thickness can be taken into account as an additional mirror layer. This restricts the

flexibility of the setup, but since most crystals show a thickness gradient (such as the one in

Fig. 3.9c), it is likely that many crystals have a region with the design thickness. Secondly, the

transmission window can be designed less restrictively. In the current design, the reflectivity

is < 5% between 827–919 nm. Relaxing this condition would in turn allow a decrease in the

field penetration depth at 785 nm.

We can detect single molecules in a dichroic cavity with the common fluorescence excitation

spectroscopy method [81], except that the excitation happens via the cavity mode. We excite

the molecules via the 00ZPL and filter out the excitation laser (see Ch. 3.4) to detect only light

with wavelengths λ> 800nm. Scanning the excitation laser reveals several narrow resonances,

corresponding to the 00ZPLs of individual molecules (see Fig. 6.4). A saturated molecule

results in around 105 detected photons per second.
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Figure 6.4: The fluorescence excitation spectrum of several molecules in a dichroic cavity. The
laser power is increased by approximately a factor of 4 between the measurements. At the
highest power a background emerges from many molecules in the excitation volume.
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6.2 Steady-State Inversion of a Two-Level System

6.2 Steady-State Inversion of a Two-Level System

In the all-optical switching experiments (see Ch. 5.2) we found that the probe beam can

be amplified when passing through the cavity-molecule system. To establish whether this

is caused by stimulated emission from a population-inverted molecule, we simulated the

excited-state population as a function of the pump power. Fig. 6.5a) shows this, together with

the transmission of the probe beam. It reveals that population inversion does not occur at

the pump power for which > 100% probe transmission is observed. As detailed in Ch. 5.2,

the reason for the probe amplification is multiphoton processes transferring energy from the

pump to the probe beam. In contrast to this observation, we find that in a simple resonant

saturation measurement, a two-level system coupled to a cavity can be inverted. However,

due to energy conservation in this one-beam experiment, the transmission does not exceed

100 % (Fig. 6.5b)). Despite the fact that a two-level system cannot be inverted in its steady

state, the 53 % excited state population is not an error in our simulation. In fact, this effect had

already been discovered numerically in 1988 by C. M. Savage [175].
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Figure 6.5: A molecule coupled to a cavity with
{︁

g ,κ,γ
}︁= 2π · {0.63,1.28,0.04} GHz. (a) A weak

resonant probe beam interrogates the transmission through the molecule-cavity system while
a ∆ν= 300MHz detuned pump beam saturates the molecule. (b) A single resonant laser beam
saturates the molecule.

These two examples show that a pump-probe experiment is not suited to unambiguously

proving inversion, because it is not fully correlated with transmission through the cavity.

However, the dichroic cavity mirrors (see Ch. 6.1) allow use of the fluorescence emission rate

to assess the excited state population. S. Hughes & H. J. Carmichael [176] have theoretically

explored the excited state population for a wide range of parameters, including the detunings

between cavity, emitter and laser, and found even higher excited state populations up to 75 %.

Fig. 6.6 shows 2D detuning spectra for the cavity and molecule parameters such as those in

the nonlinear optics experiments (Ch. 5). We find excited-state probabilities of up to 63.4 %.
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Figure 6.6: The excited state population for a cavity-coupled molecule with
{︁

g ,κ,γ
}︁ = 2π ·

{0.63,1.28,0.04} GHz for different incident laser powers. The colormap is chosen such that
50 % excited state probability corresponds to the color white. Values above 50 % are red.

Notably, the inversion occurs within an elongated region of the spectrum, for which cavity

and molecule are detuned from each other and the laser pumps at a frequency between the

two. The slope of this region is ∂νc
/︁
∂νL ≈ 2, which suggests a two-photon process may be

responsible for the inversion.

To understand how the cavity-coupled molecule can be inverted, whereas a molecule in

free-space cannot, we examine the elementary processes [177]. A two-level system in free

space (Fig. 6.7a)) can not be inverted, because laser driving at Rabi frequency Ω couples

|g 〉↔ |e〉 bidirectionally, i.e. it increases the rate of stimulated absorption and emission equally.

Therefore, the population between |g 〉 and |e〉 can at most be balanced. The additional channel

of spontaneous emission shifts the balance towards the ground state. If we add the cavity,
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6.2 Steady-State Inversion of a Two-Level System

two more elementary processes are added: The Jaynes-Cummings interaction, in which the

cavity and emitter exchange an excitation, and the decay of photons out of the cavity at rate κ.

We now ascertain if one or a combination of these processes can lead to a net increase in the

excited-state population. We model the system in the vacuum picture (see Ch. 2.4), in which

the laser effectively drives the emitter directly and for the cavity mode we only consider the

photons scattered by the emitter. As the basis, we use the states
{︁|g /e,n〉

⃓⃓
n ∈N0

}︁
, which are not

the energy eigenstates of the coupled system, but do form a complete basis. In the limit of high

cavity-emitter detuning, they approach the energy eigenstates (see Ch. 2.3.3). Fig. 6.7b) shows

how the elementary processes connect the first four states. The laser driving and the Jaynes-

Cummings interaction are bidirectional, hence they do not drive the molecule into inversion.

The release of cavity photons does not influence the state of the molecule, and the free-space

decay of molecular excitations counteracts inversion. Next, we evaluate the effect of the

second-order processes, i.e. combinations of first-order elementary processes (see Fig. 6.7c)).

Combining one laser driving and one Jaynes-Cummings step results in a process connecting

|g /e,n〉 ↔ |g /e,n +1〉, hence not changing the population of the excited state. Repetitions

of the same process leave the complete system unaffected. Hence, second-order processes

cannot invert the molecule, either. However, there is one third-order process (Fig. 6.7d))
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Figure 6.7: (a) Elementary processes in a laser-driven two-level system. (b) First-order, (c)
second-order and (d) third-order elementary processes in the first four states of a cavity-
coupled laser-driven two-level system.
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which allows an effective transport of population into the excited state: A combination of

two laser drive steps and one Jaynes-Cummings step. This process, by itself, is bidirectional

|g ,0〉↔ |e,1〉. However, a subsequently emitted cavity photon brings the system into the state

|e,0〉 and therefore out of reach of the reverse process.

The set of |g ,0〉 ↔ |e,1〉 → |e,0〉 (marked by the red dashed line in Fig. 6.7d)) is therefore

similar to a three-level laser, in which the population is pumped into |e,0〉 [178]. To achieve

inversion, the rate of this pumping must exceed the spontaneous emission rate γ of the two-

level system. The highest inversion can be achieved when the pumping process is driven with

as little activity as possible in the other, potentially population-equalizing, processes. If the

cavity is far-detuned from the emitter, the rate of Jaynes-Cummings transitions is low; and

if the laser is detuned from the single-photon resonance of the molecule, this process can

also be suppressed. Instead, the laser is tuned in resonance with the two-photon transition

|g ,0〉↔ |e,1〉. This explains the slope of ∂νc
/︁
∂νL ≈ 2 of the inversion feature in Fig. 6.6d): If

the cavity is detuned by∆νc , the laser frequency must be detuned by∆νc /2 to remain resonant

with the two-photon transition, as illustrated in Fig. 6.8. The offset of the inversion feature

from the line νL = (νmol +νc )/2 is due to the interaction energy 2ℏg and the laser-dressing of

the cavity-dressed states [179].
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6.2 Steady-State Inversion of a Two-Level System

Although the fluorescence countrate is proportional to the excited state population, it is not

normalized, i.e. we cannot determine from a single data point whether the molecule is inverted.

Therefore, we ideally record 2D spectra as in Fig. 6.6 to be able to compare the fluorescence

countrate for different combinations of laser and cavity detunings. As described in Ch. 3.5.2,

our data is naturally recorded in these 2D spectra. In a first test, we assembled a cavity with

dichroic mirrors. The optical setup was modified from what we describe in Ch. 3.4. The curved

mirror substrate was a GRIN lens (see Ch. 3.1.1). This allowed us to excite the cavity mode

through the flat mirror and detect the transmission through the cavity on the curved mirror

side, instead of using a cross-polarization scheme. Additionally, we collected Stokes-shifted

fluorescence transmitted through the flat mirror. We find a cavity linewidth of κ/2π= 3.9GHz

and identify a molecule with g /2π= 0.7GHz as a suitable candidate. Simulations show that

0

2

4

6

8

10

12

14

ν
c
−
ν

m
o

l
(G

H
z)

Iin = 4.1 ·10−2κ

(a)

Iin = 1.2 ·100κ

(b)

0.0

0.1

0.2

0.3

0.4

0.5

E
xc

it
ed

st
at

e
p

o
p

u
la

ti
o

n
ρ

ee

0 2 4 6 8

νL −νmol (GHz)

0

2

4

6

8

10

12

14

ν
c
−
ν

m
o

l
(G

H
z)

Iin = 7.3 ·100κ

(c)

0 2 4 6 8

νL −νmol (GHz)

Iin = 6.5 ·101κ

(d)

0 2 4 6 8

νL −νmol (GHz)

Iin = 6.5 ·102κ

(e)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.9: The excited state population for a cavity-coupled molecule with
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GHz for different incident laser powers.
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the excited state population in this system can be as high as 58.5 % (see Fig. 6.9). Fig. 6.10

shows the 2D fluorescence spectra for increasing laser powers. At high excitation power the

background around νL = νc dominates the detected fluorescence, masking any signature of

inversion. The background has the same polarization and spatial profile as the fluorescence

from the single molecule. The spectrum also shows a strong similarity. We therefore suggest

that it originates from a phonon-wing excitation [180] of a small ensemble of DBT molecules

within the cavity mode. An ideal crystal for this experiment would therefore have a significantly

lower doping concentration.
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Figure 6.10: The detected fluorescence as a function of the laser frequency and the cavity
frequency for different laser powers.

To conclude, this experiment highlights the difference between a two-level system in free

space and a two-level system which interacts with its own nonclassical emission via a cavity.

Furthermore, multi-photon transitions of this kind in an off-resonant cavity-molecule system

have been proposed as a source of N -photon bundles with potential applications in quantum

metrology and quantum information processing [34].
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6.3 Molecule-Molecule Coupling via the Cavity Mode

6.3 Molecule-Molecule Coupling via the Cavity Mode

Before discussing the specific case of two molecules coupled via a common cavity mode, we

give a more general review of emitter-emitter coupling. Two emitters, coupled via common

electromagnetic field modes, can coherently exchange energy at a rate 2J . The Hamiltonian of

this system consists of three contributions

Ĥ = ĤE ,1 + ĤE ,2 + Ĥcoupl, (6.2a)

namely the energies of the individual emitters with resonance frequencies ωe,i

ĤE ,i

ℏ
=ωe,i ρ̂ee,i (6.2b)

and the coupling term

Ĥcoupl

ℏ
= J

(︁
σ̂−,1σ̂+,2 + σ̂+,1σ̂−,2

)︁
. (6.2c)

The σ̂ and ρ̂ee operators are the same as in Ch. 2.3.1 ρ̂ee,i = |ei 〉〈ei |, σ̂+,i = |ei 〉〈gi | =
(︁
σ̂−,i

)︁†,

except that the subscript i indicates that it acts on the i th molecule. Analogously to the

hybridization between cavity and molecule (see Ch. 2.3.3), the single-excitation energy eigen-

states of the coupled emitters are the dark |D〉 and superradiant state |S〉 (see Fig. 6.11)

|S〉 = sinθ |e1g2〉+cosθ |g1e2〉
|D〉 = cosθ |e1g2〉− sinθ |g1e2〉 ,

(6.3a)

with the mixing angle θ ∈ [0,π/2] given by

tan2θ = 2J

ωe,2 −ωe,1
. (6.3b)

For two resonant emittersωe,1 =ωe,2, the mixing angle is θ =π/4 and |S〉 and |D〉 are maximally

entangled states (see Fig. 6.11a)). In the emission of the superradiant state |S〉, the transition

dipole moments of the two emitters interfere constructively, giving rise to an accelerated

radiative decay of this state, while the transition dipoles in the dark/subradiant state interfere

destructively, reducing the radiative decay rate.1 The energies of these states are

ES/ℏ=ωe,1 sin2θ+ωe,2 cos2θ+2J sinθcosθ

ED /ℏ=ωe,1 cos2θ+ωe,2 sin2θ−2J sinθcosθ.
(6.4)

1The modified decay rates and the coupling J can be derived from the coupling of the emitters to common
modes of the electromagnetic field. R. Dicke [181] describes a situation with an arbitrary number of emitters
coupled to a single mode; U. Akram et al. [182] describe two emitters coupled via a continuum of modes.
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Figure 6.11: Energy levels of two emitters, interacting with coupling strength J > 0 for (a)
resonant emitters ωe,1 =ωe,2 and (b) detuned emitters.

The origin of the coupling can be a dipole-dipole interaction of two nearby emitters. For two

emitters whose separation r⃗12 is small compared to the wavelength of the light λ, the coupling

rate is [183]

J = 3

4

⎷
γ1γ2(︁n

c ω
⃓⃓
r⃗12

⃓⃓)︁3

⎛
⎝ d⃗1 · d⃗2⃓⃓

d⃗1
⃓⃓ ⃓⃓

d⃗2
⃓⃓ −3

(︂
d⃗1 · r⃗12

)︂(︂
d⃗2 · r⃗12

)︂

⃓⃓
d⃗1

⃓⃓ ⃓⃓
d⃗2

⃓⃓ ⃓⃓
r⃗12

⃓⃓2

⎞
⎠ , (6.5)

where d⃗i is the transition dipole moment of the i th emitter. Fig. 6.12a) illustrates the situation.

Practically, one rarely finds a pair of emitters, for which the coupling rate J is comparable to or

higher than the radiative decay rate γ of the emitters. There are few publications, in which the

near-field coupling of two molecules has been reported [184–186]. This is because the emitters

must be spatially and spectrally close for the coupling to affect the spectrum significantly.

Moreover, for real emitters, the branching ratio α00 must be taken into account. Only the

emission via the 00ZPL γ00 = α00γ contributes to the coupling, because all other emission

pathways involve environmental degrees of freedom which dissipate quickly.

Quantitatively, in a highly doped DBT:anthracene crystal with 104 emitters per µm3 each

emitter has on average 100 emitters close enough that |J | > γ, assuming α00 = 1/3. However,

since their resonance frequencies ωe,i exhibit an inhomogeneous distribution of typically

104γ, the proportion of molecules with a spectral neighbor within [−10γ,10γ] is 10−3.

However, the energy exchange need not be a near-field interaction. The field could be guided

over long distances between the emitters by an optical waveguide [187]. Alternatively, the

emitters can be coupled to the same cavity mode as illustrated in Fig. 6.12b). This relaxes

the spatial requirement in particular: Instead of a sub-wavelength distance, as for the dipole-

dipole interaction, the emitters must only be within the cavity mode. Treated rigorously, a

system of two emitters coupled to a cavity mode gives rise to energy eigenstates in which the
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(a) (b)
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r⃗12

g1 g2

Figure 6.12: (a) Two molecules coupled via their near-field dipole-dipole interaction. (b) Two
molecules individually coupled to a common cavity mode.

excitations are shared among the two emitters and the cavity, where the coefficients depend

on the relative detunings and coupling strengths. Within this parameter space, rich physics is

to be explored [188]. Here, we focus on a subset of these configurations, namely two emitters

dispersively coupled to a cavity, meaning that the cavity is detuned from the emitters by more

than the detuning between the emitters. As such, the molecules can interact with each other

due to the spatial confinement of their emission by the cavity. However, because of its high

detuning, the cavity mode is only weakly populated. Hence, the energy eigenstates of the

coupled tripartite system approach the pure emitter states |S〉 and |D〉. Usually, as is also the

case in our system, the cavity mode loses excitations at a much higher rate than the emitters

κ≫ γ. The low weight of cavity excitations in the hybridized states is therefore beneficial. In

the limit gi ≪
⃓⃓
ωe,i −ωc

⃓⃓
, the Hamiltonian of the system

Ĥ

ℏ
=ωe,1ρ̂ee,1 +ωe,2ρ̂ee,2 +ωc â†â + g1

(︂
σ̂+,1â + σ̂−,1â†

)︂
+ g2

(︂
σ̂+,2â + σ̂−,2â†

)︂
(6.6a)

can be approximated to second order perturbation in gi /(ωe,i −ωc ) to yield [189]

≈ ω̃E ,1ρ̂ee,1 + ω̃E ,2ρ̂ee,2 + ω̃c â†â + J
(︂
σ̂+,1σ̂−,2 + σ̂−,1σ̂+,2

)︂
, (6.6b)

where ω̃E1, ω̃E2 and ω̃c are the Lamb-shift-corrected resonance frequencies of the two emitters

and the cavity. The coupling strength in the last term is

J = g1g2

2

(︃
1

ωe,1 −ωc
+ 1

ωe,2 −ωc

)︃
. (6.7)

Coupling two emitters via a cavity mode is routine in circuit quantum electrodynamics [191,

192], but has only recently been demonstrated in the optical domain with silicon vacancy

centers (SiVs) in a diamond photonic crystal resonator [190] and with rubidium atoms in the

evanescent field of a photonic crystal resonator [193]. Fig. 6.13 shows transmission spectra

from the former experiment, in which the super- and subradiant states are identified. Because

of the detuning-dependence of J (cf. Eq. 6.7), the subradiant state |D〉 is always the one closer

to the cavity frequency. Transmission spectra with only one emitter were also recorded, by

ionizing one SiV. This allows a direct comparison between the single-emitter and coupled-
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Figure 6.13: Transmission spectra of two silicon vacancy centers (SiVs) in diamond coupled
to a detuned photonic crystal resonator. The individual coupling strengths and loss rates are{︁

g1 ≈ g2,κ,γ1 ≈ γ2
}︁ = 2π · {7.3,30,0.19} GHz. (a) The cavity is blue-detuned by 79 GHz from

the SiVs. The grey data show the transmission spectra when one of the SiVs is inactivated
by ionizing it. (b) The cavity is red-detuned by 55 GHz. The inset shows the linewidths ΓS,D

of the super-/subradiant states for various splittings δSD between |S〉 and |D〉. From [190] /
Reprinted with permission from AAAS. Modified with permission from the author.

emitter spectra (Fig. 6.13a)). Using the triplet state |t〉 of our molecules to passivate them

temporarily would allow us to perform a similar measurement, but the few µs lifetime of the

triplet state makes this measurement protocol very demanding. Alternatively, the coupling

could be confirmed by tuning the emitters in and out of resonance with each other [186, 194]

and observing the linewidth and resonance frequency of the coupled states |S〉 and |D〉.

Here, we propose detecting the coupling via a two-photon transition |g1g2〉→ |e1e2〉 into the

state where both molecules are excited simultaneously. Even though this process connects

two separable states, it only works if the molecules can exchange energy via their coupling

[183]. Since it is a two-photon process, it is revealed only at higher excitation power and can

be identified by its saturation behavior. As demonstrated by various experiments (Ch. 5),

our system is very well suited to such nonlinear optical experiments. Fig. 6.14a) shows the

simulated transmission spectrum of two cavity-coupled molecules
{︁

g1 = g2,κ,ωe,2 −ωe,1
}︁=

2π·{0.63,1.28,2.0} GHz for different excitation powers. The two-photon resonance, equidistant

between between the one-photon resonances, causes only a very shallow feature in the

transmission spectrum. This is because the molecules are close to saturation when the laser

power is high enough to excite the two-photon transition noticeably. Therefore, its relative

effect on the transmission spectrum is very small. In a cavity made of dichroic mirrors we can

additionally detect Stokes-shifted fluorescence, which is proportional to the sum of excited

state probabilities
⟨︁
ρ̂ee,1 + ρ̂ee,2

⟩︁
. As shown in Fig. 6.14b), the two-photon resonance can be

clearly identified here. Because of the low weight of the cavity mode in the hybridized states,

this effect is only weakly sensitive to the cavity decay rate κ. Fig. 6.15 shows that the two-
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Figure 6.14: (a) Transmission spectra for two molecules detuned by νmol,1 −νmol,2 = 2GHz
coupled to a cavity;

{︁
g1 = g2,κ,γ1 = γ2

}︁= 2π · {0.63,1.28,0.04} GHz. They are vertically shifted
by 0.01 relative to each other for clearer visualization. (b) Combined excited-state probability of
both molecules, proportional to the overall detected fluorescence. We note that these spectra
are simulated with the full Hamiltonian (Eq. 6.6a), without the dispersive approximation
(Eq. 6.6b). The extra peaks on the right side of the spectrum originate from multiphoton
processes, such as those described in the previous subchapter.

photon peak is still clearly resolved in a cavity three times lossier. κ= 3.9GHz is the linewidth

of the dichroic cavity we assembled for a first test.
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Figure 6.15: Same as Fig. 6.14, but with κ/2π= 3.9GHz.
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This test uses the same experimental configuration as described in the previous subchapter.

However, for this initial test, the doping concentration of the anthracene crystal was too

low, such that the closest candidate for molecule-molecule coupling was a pair of molecules

with
{︁

g1, g2,κ,ω2 −ω1
}︁ = 2π · {0.36,0.5,3.9,2.4} GHz. The coupling between them is too low

to resolve the two-photon resonance. At the time of writing, however, we have verified our

ability to grow crystals with significantly higher doping by increasing the temperature of the

DBT-anthracene mixture in the sublimation process (see Ch. 3.2).

To increase spectral coincidences, one could employ electrodes to tune individual emitters

with respect to each other via the Stark effect [185, 194]. Furthermore, M. Colautti et al. [195]

have recently demonstrated that DBT molecules can be persistently spectrally shifted by

intense irradiation. With this method one could tune molecules into resonance without being

restricted to a region close to electrodes.

Beyond the measurements detailed in this chapter, it may also be fruitful to investigate the

dynamics of the system more closely using intensity correlations. The red-shifted fluorescence

emitted from the double-excited state |e1e2〉 is bunched. The decay of correlations as a func-

tion of the time delay τ contains information about the decay via the sub- and superradiant

states. This can furthermore be correlated to the emitted resonance fluorescence. Overall,

many features of the two molecules coupled via the cavity can be revealed.

6.4 Quantized AC Stark Shift

Analogously to the AC Stark effect in the semiclassical treatment of light-matter interaction (see

for example [1, 101]), cavity quantum electrodynamics provides a fully quantum mechanical

description of the shift in an emitter’s resonance frequency. Without loss of generality2 we

focus on a cavity blue-detuned relative to the emitter ωc >ωe . In the limit of high detuning

ωc −ωe ≫ g , the state |n+〉 becomes the state |g ,n〉 and the state |(n +1)−〉 becomes |e,n〉 (see

Fig. 6.16). The energy difference between them, that is the energy to excite the emitter while

leaving the photon number in the cavity constant, is (cf. Eq. 2.21)

E(n+1)−−En+ = ℏ
(︃
nωc +

ωc +ωe −Ωn+1

2
−

(︃
(n −1)ωc +

ωc +ωe +Ωn

2

)︃)︃

= ℏ
(︃
ωc −

1

2
(Ωn+1 +Ωn)

)︃
(6.8a)

= ℏ
(︃
ωe +2χ

(︃
n + 1

2

)︃
+O

(︃
1

(ωe −ωc )3

)︃)︃
. (6.8b)

2In the case of the opposite detuning ωc < ωe , the states |n−〉 and |(n +1)+〉 turn into the states |g ,n〉 and
|e,n〉, respectively. This neither changes the definition of χ nor the frequency shift of the emitter by 2χ(n + 1

2 ), but
the sign of χ changes, according to its definition in Eq. 6.9.
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Figure 6.16: Energy levels of a emitter-cavity system (c.f. Ch. 2.3.3). The cavity is far blue-
detuned from the emitter. Arrows indicate the transition energies for the emitter while leaving
the photon number unaffected (red) and for adding a photon to the cavity while the emitter
remains in the ground state (orange) or in the excited state (blue).

Here, we have introduced the dispersive coupling strength as

χ= g 2

ωe −ωc
. (6.9)

The resonance frequency of the emitter is shifted by 2χ
(︁
n + 1

2

)︁
from its bare resonance fre-

quency, depending on the photon number n in the cavity. The red arrow in Fig. 6.16 shows

this transition for n = 1. At the same time, the cavity resonance frequency is shifted depending

on the state of the emitter. If the emitter is in the ground state |g 〉, the energy between n and

n +1 photons in the cavity is

E(n+1)+−En+ = ℏ
(︃
nωc +

ωc +ωe +Ωn+1

2
−

(︃
(n −1)ωc +

ωc +ωe +Ωn

2

)︃)︃

= ℏ
(︃
ωc +

1

2
(Ωn+1 −Ωn)

)︃
= ℏ

(︃
ωc −χ+O

(︃
1

(ωe −ωc )3

)︃)︃
. (6.10a)

Hence, the cavity is shifted by −χ from its bare resonance frequency (see orange arrow in

Fig. 6.16). If, instead, the emitter is in the excited state |e〉, the cavity is shifted by +χ (blue
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arrow in Fig. 6.16):

E(n+1)−−En− = ℏ
(︃
nωc +

ωc +ωe −Ωn+1

2
−

(︃
(n −1)ωc +

ωc +ωe −Ωn

2

)︃)︃

= ℏ
(︃
ωc −

1

2
(Ωn+1 −Ωn)

)︃
= ℏ

(︃
ωc +χ+O

(︃
1

(ωe −ωc )3

)︃)︃
(6.10b)

The latter case (Eqns. 6.10a & 6.10b) is commonly used to infer the state of a superconducting

circuit qubit from the shift in the resonance frequency of a dispersively coupled supercon-

ducting resonator [196, 197]. The discrete AC Stark shift (Eq. 6.8) has also been measured and

could be used to implement quantum gates [198]. For example, the qubit state can be flipped

conditionally by applying a π-pulse at frequency ωe +2χ
(︁
m + 1

2

)︁
. In a general state

|ψ〉 =
∞∑︂

n=0
cg ,n |g ,n〉+ce,n |e,n〉, (6.11)

this swaps the cg ,m and ce,m coefficients. Furthermore, if the cavity field is in a photon number

superposition, as in a coherent state (Eq. 2.48), a measurement of the emitter’s resonance

frequency collapses the cavity field to a Fock state.

To enable observing the splitting and implementing the gates described, the n-photon res-

onances must be resolvable, i.e. their splitting 2χ must be larger than their width Γn =
1
2

(︁
γ+ (n̄ +n)κ

)︁
[199]. The photon-number splitting of the emitter’s resonance can be demon-

strated in a pump-probe experiment: The pump beam is tuned on resonance with the shifted

cavity resonance frequency ωpump =ωc −χ and creates a coherent state |α〉 in the cavity. The

weak probe laser then scans around the frequency of the emitter ωe . Fig. 6.17 shows the

ωe +13χ ωe +11χ ωe +9χ ωe +7χ ωe +5χ ωe +3χ ωe +χ ωe −χωe

Probe frequency ωprobe

0.00
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Population
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|e,1〉
|e,2〉
|e,3〉
|e,4〉
|e,5〉
|e,6〉

Figure 6.17: The excitation spectrum of an emitter dispersively coupled to a cavity. In this
example ωc >ωe , hence χ< 0. Furthermore, |ωe −ωc | ≫ |χ| and 0.1 |χ| = γ≫ κ. The pump
beam creates a coherent state with a mean photon number n̄ = 2.0 in the cavity. The dashed
blue lines mark the resonance frequencies of the emitter for various photon numbers n.
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6.4 Quantized AC Stark Shift

excited-state population of the emitter as a function of the probe frequency. While there is no

resonance at the uncoupled resonance frequency of the emitter ωe , the probe beam drives

transitions at the new resonance frequencies ωe + 2χ
(︁
n + 1

2

)︁
. For a given n, a peak in the

population of the state |e,n〉 attests to the driving of the transition |g ,n〉→ |e,n〉.
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Figure 6.18: The excitation spectrum of an emitter dispersively coupled to a cavity with variable
coupling strength g . The dashed lines display the resonances predicted by the dispersive
approximation ωe +2χ

(︁
n + 1

2

)︁
and the solid lines show the precise frequencies of transitions

between polaritons (Eq. 6.8a). The uncoupled emitter resonance frequency νe is marked with
the black line. In all subplots κ/2π= 0.4GHz and γ/2π= 0.04GHz. The pump laser creates a
coherent state with n̄ = 2.0photons in the cavity. Because of the finite detuning ωpump −ωe ,
the emitter is driven by the pump to some extent. This leads to a probe-frequency independent
base excited state population in the spectra, increasing from (a) to (f).
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The purpose of Fig. 6.17 is to illustrate the effect with full clarity. While superconducting

resonators can exhibit parameters close to this idealized simulation, they are out of reach for

resonators at optical frequencies. However, even with lower g /Γn , a splitting in the resonances

can be observed. Fig. 6.18 shows the excitation spectrum for various parameters, approaching

those of our experimental system. By decreasing the detuning |ωe −ωc |, the splitting
⃓⃓
2χ

⃓⃓
can

be kept high enough to resolve it even with a lower coupling strength g . We note, however,

that the lower the detuning, the more hybridized the states (see Eqns. 2.20-2.22). Hence,

the spectral peaks do not strictly represent the resonances of the emitter and the cavity, but

generally the transition frequency between particular polaritons. We can clearly observe the

splitting between the lowest polaritons |g ,0〉→ |1−〉 and the second rung |1+〉→ |2−〉, even for{︁
g ,κ,γ

}︁= 2π · {1.0,0.4,0.04} GHz. Essential to achieving this goal is reducing the cavity decay

rate κ, as it is the dominant contribution to the linewidth Γn .

With experimental parameters
{︁

g ,κ,γ
}︁= 2π · {0.7,1.28,0.04} GHz, resembling those in Chap-

ters 4 & 5, the discrete resonances are too broad to be resolved. Nevertheless, it is possible

to observe a clear shift and broadening of the overall resonance as a function of the photon

statistics inside the cavity [199, 200]. Fig. 6.19 shows excitation spectra for various pump

powers.
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Figure 6.19: The excitation spectrum of an emitter dispersively coupled to a cavity
{︁

g ,κ,γ
}︁=

2π · {0.7,1.28,0.04} GHz with a detuning of νe −νc = −10GHz. The solid lines show the fre-
quencies of transitions between polaritons (Eq. 6.8a).

Using the extremes of a Q factor of 106 and V = 1.4λ3 as in [201] we would have κ/2π =
0.382GHz and g /2π= 5.53GHz for a molecule in the field maximum with free-space branching

ratio α00 = 1/3 (see Eq. 2.13). This would lie within the regime shown in Fig. 6.18c), where the

first three peaks are clearly resolved. Additionally, to separate the excitation of the molecule

due to the pump, one could employ a lock-in measurement scheme.
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7 General Outlook and Concluding Re-
marks

In this work, we have provided experimental evidence of the first realization of strong coupling

between a single molecule and an optical cavity. The improved efficiency of the inherent

photon-number nonlinearity of the molecule made it possible to perform a set of nonlinear

optical experiments at intensities corresponding to ∼ 1 photon in the cavity. Spectrally tailored

dichroic cavity mirrors give us access to the excited state population of the molecule, enabling

a whole new class of experiments, some of which we have laid out quantitatively.

The experimental platform is suited to many further applications. Collective light-matter

interaction [181, 202] at the transition between quantum and classical physics can be inves-

tigated with a number of emitters 2 ≤ N ≪ 1023. In particular, a single- or N -molecule laser

[203–205] could be realized by incoherently pumping the molecules via a vibrational state

|g , v = 0〉 → |e, v ̸= 0〉 while the cavity is resonant with the 00ZPL or a particular |e, v = 0〉 →
|g , v ̸= 0〉 transition.

The ability of molecules to generate highly pure [71, 206] and indistinguishable [72] single

photons with high quantum yields [207] makes them strong candidates for quantum commu-

nication [208], linear optical quantum computation [209] and even redefining the candela

[210]. A high-Purcell-factor cavity would enhance all these benefits [211, 212]. A major chal-

lenge to the operation of single-photon sources is separating the excitation light from the

stream of single photons. This led to the invention of customized excitation protocols, such

as phonon-assisted cross-polarization schemes [213]. The energy level scheme of molecules

allows one to utilize the vibrational transitions mentioned in the previous paragraph. The

excitation light is far blue-detuned from the photons emitted via the 00ZPL and can therefore

be filtered out spectrally with high discrimination ratio.

For applications in quantum communication or information processing [214], one could use

the long-lived triplet state |t〉 [75], or switch to a different species of molecules – metal ion

complexes [215, 216], which have stable spin-sublevels in their electronic ground states. This

would allow for the implementation of equivalent functionality as in other spin-systems with

cavity-improved optical transitions such as color centers in diamond [217], quantum dots [218]
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Chapter 7. General Outlook and Concluding Remarks

and rare-earth ions (REIs) [219]. More generally, microcavities are a platform excellently suited

to exploring the properties of various optically active materials, such as carbon nanotubes

[220], 2D materials [221–223] and inorganic REI nanocrystals [224].
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Appendices

A Acronyms

00ZPL 0-0 zero-phonon line. i, iii, 5, 6, 19, 32, 46, 74–76, 84, 93, 115

AAAS American Association for the Advancement of Science. 86

AOI angle of incidence. 31, 32, 74, 75

AOM acousto-optic modulator. 39, 113

APD avalanche photodiode. 40, 45, 47, 48, 53, 59, 60, 64, 65, 67, 108, 109, 111, 112

DAQ data acquisition. 43, 50, 108

DBR distributed Bragg reflector. 31, 74

DBT dibenzoterrylene. i, iii, 5, 6, 10, 19, 29, 33–36, 38, 39, 73, 75, 82, 84, 88, 115

FIB focused ion-beam. 29–31

FSR free spectral range. 45

FWHM full width at half maximum. 45–48, 59, 68, 70, 115

FWM four-wave mixing. 68–72

GRIN gradient index. 29, 30, 37, 38, 81, 117

HBT Hanbury Brown & Twiss. 40, 64

HWHM half width at half maximum. 60

HWP half-wave plate. 38–40

IRF instrument response function. 48–50, 66, 67

ISC inter-system crossing. 6
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LED light-emitting diode. 38, 118

ND neutral density. vi, 38, 40, 54, 113, 114

PAH polyaromatic hydrocarbon. 5

PBS polarizing beamsplitter. 35, 38, 39

PID proportional-integral-differential controller. vi, 39, 42, 113

PSN piezoelectric slip-stick nanopositioner. 36, 37

QuTiP Quantum Toolbox in Python. 21, 25, 26, 110

QWP quarter-wave plate. 38–40, 42

REI rare-earth ion. 94

ROC radius of curvature. 31

sCMOS scientific complementary metal-oxide-semiconductor. 40

SiV silicon vacancy center. 85, 86

TTL transistor-transistor logic. 50

96



B Vacuum Picture Transformation

B Vacuum Picture Transformation

The molecule-cavity system evolves according to the Lindblad equation

∂tρ =−i

[︃
Ĥ(t )

ℏ
,ρ

]︃
+Lκ(ρ)+Lγ(ρ)+Lγet (ρ)+Lγt g (ρ) (B.1)

with (see Eq. 2.42)

Ĥ(t )

ℏ
= (ωe −ωL) ρ̂ee + (ωc −ωL) â†â + g

(︂
σ̂+â + σ̂−â†

)︂
+Ξ(t )â +Ξ∗(t )â† (B.2)

and (see Eq. 2.25c)

Lκ(ρ) = κ
(︃

âρâ† − 1

2

(︂
â†âρ+ρâ†â

)︂)︃
. (B.3)

Lγ(ρ) (see Eq. 2.25b), Lγet (ρ) (see Eq. 2.47a) and Lγt g (ρ) (see Eq. 2.47b) are not considered in

this transformation, as they only affect the state of the molecule, not the photonic state.

B.1 Properties of the Displacement Operator

We aim to transform the equation of motion by displacing the photonic part of the density

matrix ρ and the photonic operators â, â† with the amplitude of the coherent α(t ) field in the

driven empty cavity. The value of α(t ) depends on the driving strength of the cavity Ξ(t ), as in

Eqs. B.12 and B.13. For this, we use the displacement operator

D̂ (α(t )) = exp
(︂
â†α(t )−α∗(t )â

)︂
, (B.4)

which has the following properties:

D̂† (α(t )) âD̂ (α(t )) = â +α(t ) (B.5a)

D̂† (α(t )) â†D̂ (α(t )) = â† +α∗(t ) (B.5b)

D̂† (α(t ))
(︁

ÂB̂
)︁
D̂ (α(t )) = D̂† (α(t )) ÂD̂ (α(t ))D̂† (α(t )) B̂D̂ (α(t )) (B.5c)

D̂† (α(t )) = D̂ (−α(t )) (B.5d)

D̂† (α(t ))ρD̂ (α(t )) =: ρv (B.5e)

∂t D̂ (α(t )) = D̂ (α(t ))
(︂(︂

â† + 1
2α

∗(t )
)︂
α̇(t )− α̇∗(t )

(︁
â + 1

2α(t )
)︁)︂

(B.5f)

B.2 Transformation

We apply the displacement operator to each part of the equation of motion and rewrite it in

the same form as Eq. B.1.
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Evolution of the Vacuum Picture Density Matrix

We first evaluate the temporal derivative of the transformed density matrix ρv , as this will be

the left-hand side of the transformed equation of motion.

∂tρv = ∂t

(︂
D̂† (α(t ))ρD̂ (α(t ))

)︂
(B.6a)

=
(︂
∂t D̂

† (α(t ))
)︂
ρD̂ (α(t ))

+ D̂† (α(t ))
(︁
∂tρ

)︁
D̂ (α(t ))

+ D̂† (α(t ))ρ
(︁
∂t D̂ (α(t ))

)︁
(B.6b)

We use properties B.5d and B.5f on the first summand and B.5f on the third summand.

∂tρv = D̂† (α(t ))
(︂(︂

â† − 1
2α

∗(t )
)︂

(−α̇(t ))− α̇∗(t )
(︁
â − 1

2α(t )
)︁)︂
ρD̂ (α(t ))

+ D̂† (α(t ))
(︁
∂tρ

)︁
D̂ (α(t ))

+ D̂† (α(t ))ρD̂ (α(t ))
(︂(︂

â† + 1
2α

∗(t )
)︂
α̇(t )− α̇∗(t )

(︁
â + 1

2α(t )
)︁)︂

(B.6c)

In the first summand we insert the identity D̂ (α(t ))D̂† (α(t )) (see B.5c) before ρ and apply

definition B.5e. In the third summand we also transform ρ according to B.5e.

∂tρv = D̂† (α(t ))
(︂(︂

â† − 1
2α

∗(t )
)︂

(−α̇(t ))− α̇∗(t )
(︁
â − 1

2α(t )
)︁)︂

D̂ (α(t ))ρv

+ D̂† (α(t ))
(︁
∂tρ

)︁
D̂ (α(t ))

+ρv

(︂(︂
â† + 1

2α
∗(t )

)︂
α̇(t )− α̇∗(t )

(︁
â + 1

2α(t )
)︁)︂

(B.6d)

We then transform â and â† in the first summand according to B.5a and B.5b, respectively.

∂tρv =
(︂(︂(︂

â† +α∗(t )
)︂
− 1

2α
∗(t )

)︂
(−α̇(t ))− α̇∗(t )

(︁
(â +α(t ))− 1

2α(t )
)︁)︂
ρv

+ D̂† (α(t ))
(︁
∂tρ

)︁
D̂ (α(t ))

+ρv

(︂(︂
â† + 1

2α
∗(t )

)︂
α̇(t )− α̇∗(t )

(︁
â + 1

2α(t )
)︁)︂

(B.6e)

With some rearrangement of the first summand

∂tρv =−
(︂(︂

â† + 1
2α

∗(t )
)︂
α̇(t )− α̇∗(t )

(︁
â + 1

2α(t )
)︁)︂
ρv

+ D̂† (α(t ))
(︁
∂tρ

)︁
D̂ (α(t ))

+ρv

(︂(︂
â† + 1

2α
∗(t )

)︂
α̇(t )− α̇∗(t )

(︁
â + 1

2α(t )
)︁)︂

(B.6f)
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we can merge the first and third summands and write

∂tρv = D̂† (α(t ))
(︁
∂tρ

)︁
D̂ (α(t ))

−
[︂(︂

â† + 1
2α

∗(t )
)︂
α̇(t )− α̇∗(t )

(︁
â + 1

2α(t )
)︁

,ρv

]︂
.

(B.6g)

Hence, transforming the left-hand side of the equation of motion B.1 results in

D̂† (α(t ))
(︁
∂tρ

)︁
D̂ (α(t )) = ∂tρv +

[︂(︂
â† + 1

2α
∗(t )

)︂
α̇(t )− α̇∗(t )

(︁
â + 1

2α(t )
)︁

,ρv

]︂
. (B.7)

Cavity Decay Term

On the right-hand side of the equation of motion we transform the Hamiltonian part and the

cavity decay term Lκ(ρ). For the decay term

D̂† (α(t ))Lκ(ρ)D̂ (α(t ))

= D̂† (α(t )) κ2

(︂
2âρâ† − â†âρ−ρâ†â

)︂
D̂ (α(t ))

(B.8a)

we transform all occurrences of â, â† and ρ according to B.5a, B.5b and B.5e

= κ
2

(︂
2(â +α(t ))ρv

(︂
â† +α∗(t )

)︂

−
(︂
â† +α∗(t )

)︂
(â +α(t ))ρv

− ρv

(︂
â† +α∗(t )

)︂
(â +α(t ))

)︂
(B.8b)

and expand the products.

= κ
2

(︂
2âρv â† +2âρvα

∗(t )+2α(t )ρv â† +2α(t )ρvα
∗(t )

− â†âρv − â†α(t )ρv −α∗(t )âρv −α∗(t )α(t )ρv

−ρv â†â −ρv â†α(t )−ρvα
∗(t )â −ρvα

∗(t )α(t )
)︂

(B.8c)

The blue terms form Lκ

(︁
ρv

)︁
, the red terms cancel and the green and magenta terms cancel

partially.

=Lκ

(︁
ρv

)︁+ κ
2

(︂
âρvα

∗(t )+α(t )ρv â† − â†α(t )ρv −ρvα
∗(t )â

)︂
(B.8d)

We can rearrange this into a commutator.

=Lκ

(︁
ρv

)︁+ κ
2

(︂
α∗(t )

[︁
â,ρv

]︁−α(t )
[︂

â†,ρv

]︂)︂

=Lκ

(︁
ρv

)︁+ κ
2

[︂
α∗(t )â −α(t )â†,ρv

]︂
(B.8e)
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Hamiltonian Evolution

We use tranformations B.5a, B.5b and B.5e on the Hamiltonian part to obtain

D̂† (α(t ))

[︃
Ĥ

ℏ
,ρ

]︃
D̂ (α(t ))

=
[︂

(ωe −ωL) ρ̂ee + (ωc −ωL)
(︂
â† +α∗(t )

)︂
(â +α(t ))

+ g
(︂
σ̂+ (â +α(t ))+ σ̂−

(︂
â† +α∗(t )

)︂)︂

+ Ξ(t ) (â +α(t ))+Ξ∗(t )
(︂
â† +α∗(t )

)︂
,ρv

]︂
.

(B.9)

Merging the Parts

We then use the transformed parts from Eqs. B.6g, B.8e and B.9 and rearrange them into the

form of a Lindblad equation (Eq. B.1).

∂tρv =−i
[︂

(ωe −ωL) ρ̂ee + (ωc −ωL)
(︂
â† +α∗(t )

)︂
(â +α(t ))

+ g
(︂
σ̂+ (â +α(t ))+ σ̂−

(︂
â† +α∗(t )

)︂)︂

+ Ξ(t ) (â +α(t ))+Ξ∗(t )
(︂
â† +α∗(t )

)︂
,ρv

]︂

−
[︂(︂

â† + 1
2α

∗(t )
)︂
α̇(t )− α̇∗(t )

(︁
â + 1

2α(t )
)︁

,ρv

]︂

+ κ
2

[︂
α∗(t )â −α(t )â†,ρv

]︂

+Lκ(ρv )+Lγ(ρv )+Lγet (ρv )+Lγt g (ρv ).

(B.10a)

We merge the commutators, expand some products

=−i
[︂

(ωe −ωL) ρ̂ee + (ωc −ωL)
(︂
â†â + â†α(t )+α∗(t )â +|α(t )|2

)︂

+ g
(︂
σ̂+ (â +α(t ))+ σ̂−

(︂
â† +α∗(t )

)︂)︂

+Ξ(t )â +Ξ(t )α(t )+Ξ∗(t )â† +Ξ∗(t )α∗(t )

− i â†α̇(t )− i
2α

∗(t )α̇(t )+ i α̇∗(t )â + i
2 α̇

∗(t )α(t )

+ i
2κ

(︂
α∗(t )â −α(t )â†

)︂
,ρv

]︂

+Lκ(ρv )+Lγ(ρv )+Lγet (ρv )+Lγt g (ρv ).

(B.10b)
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and find that some scalar summands only contribute to a global phase and can be removed.

=−i
[︂

(ωe −ωL) ρ̂ee + (ωc −ωL)
(︂
â†â + â†α(t )+α∗(t )â

)︂

+ g
(︂
σ̂+ (â +α(t ))+ σ̂−

(︂
â† +α∗(t )

)︂)︂

+Ξ(t )â +Ξ∗(t )â† − i â†α̇(t )+ i α̇∗(t )â

+ i
2κ

(︂
α∗(t )â −α(t )â†

)︂
,ρv

]︂

+Lκ(ρv )+Lγ(ρv )+Lγet (ρv )+Lγt g (ρv ).

(B.10c)

We define the vacuum picture Hamiltonian Ĥv from the first part of the above commutator

∂tρv =: −i

[︃
Ĥv

ℏ
,ρv

]︃
+Lκ(ρv )+Lγ(ρv )+Lγet (ρv )+Lγt g . (B.10d)

Relation betweenα(t ) andΞ(t )

In this form, the Hamiltonian contains both the cavity driving strength Ξ(t ) and the coherent

field amplitude α(t ), which builds up in the cavity due to the driving. To find the connection

between these quantities we compute ̇̂a for an empty cavity (g = 0, ρ̂ee = 0) in the Heisenberg

picture:

̇̂a = i

[︃
Ĥv

ℏ
, â

]︃
+Lκ(â) (B.11a)

= i
[︂

(ωc −ωL)
(︂
â†â + â†α(t )+α∗(t )â

)︂
+Ξ(t )â +Ξ∗(t )â†

− i â†α̇(t )+ i α̇∗(t )â + i
2κ

(︂
α∗(t )â −α(t )â†

)︂
, â

]︂

+κ
(︂
â†ââ − 1

2

(︂
â†ââ + ââ†â

)︂)︂
(B.11b)

In the commutator, terms with only â drop out, because [â, â] = 0. Using
[︁
â†, â

]︁ = −1 and[︁
â†â, â

]︁= [︁
â†, â

]︁
â =−â, the rest reduces to

̇̂a =− i
(︁
(ωc −ωL)

(︁1
2 â +α(t )

)︁+Ξ∗(t )− i α̇(t )− i
2κα(t )

)︁− κ
2 â. (B.11c)

In an empty cavity there is only the coherent field |α(t )〉. Hence the transformed field operator

is â = 0, as is its derivative ̇̂a = 0. Using this, we can eliminate all operators from Eq. B.11c and

find that

0 = (ωc −ωL)α(t )+Ξ∗(t )− i α̇(t )− i
2κα(t )

⇔ Ξ∗(t ) = i α̇(t )+ (︁ i
2κ− (ωc −ωL)

)︁
α(t ) (B.12)
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or

⇔ α(t ) = e−i (ωc−ωL )t−κt
2

(︃
α(−∞)− i

∫︂ t

−∞
Ξ∗(τ)e i (ωc−ωL )τ+κτ2 dτ

)︃
. (B.13)

Simplify the Hamiltonian

We can insert Eq. B.12 and its complex conjugate into the Hamiltonian as defined by Eqs. B.10c

and B.10d.

Ĥv

ℏ
= 1

2 (ωe −ωL) ρ̂ee + (ωc −ωL)
(︂
â†â + â†α(t )+α∗(t )â

)︂

+ g
(︂
σ̂+ (â +α(t ))+ σ̂−

(︂
â† +α∗(t )

)︂)︂

− (︁
i α̇∗(t )+ (︁ i

2κ+ (ωc −ωL)
)︁
α∗(t )

)︁
â + (︁

i α̇(t )+ (︁ i
2κ− (ωc −ωL)

)︁
α(t )

)︁
â†

− i â†α̇(t )+ i α̇∗(t )â + i
2κ

(︂
α∗(t )â −α(t )â†

)︂

(B.14a)

= 1
2 (ωe −ωL) ρ̂ee + (ωc −ωL) â†â + (ωc −ωL) â†α(t )+ (ωc −ωL)α∗(t )â

+ g
(︂
σ̂+ (â +α(t ))+ σ̂−

(︂
â† +α∗(t )

)︂)︂

− i α̇∗(t )â − i
2κα

∗(t )â − (ωc −ωL)α∗(t )â

+ i α̇(t )â† + i
2κα(t )â† − (ωc −ωL)α(t )â†

− i â†α̇(t )+ i α̇∗(t )â + i
2κα

∗(t )â − i
2κα(t )â†

(B.14b)

All colored terms cancel, simplifying the Hamiltonian to

Ĥv

ℏ
= 1

2 (ωe −ωL) ρ̂ee + (ωc −ωL) â†â + g
(︂
σ̂+ (â +α(t ))+ σ̂−

(︂
â† +α∗(t )

)︂)︂
. (B.14c)

B.3 Coherent Field Strength

For concrete experimental realizations we can calculate α(t). In this thesis we use three

different excitation schemes: Single-frequency continuous drive, two-frequency continuous

drive and pulsed excitation.

Single-Frequency Excitation

If only one laser beam drives the cavity at constant strength Ξ∗ = 1
2

⎷
Iinκ, where Iin is the rate

of photons hitting the cavity, we can use Eq. B.12 without the time-dependence (α(t) = α,

Ξ∗(t ) =Ξ∗, α̇(t ) = 0) and solve for α, giving

α= Ξ∗
i
2κ− (ωc −ωL)

. (B.15)
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B Vacuum Picture Transformation

Two-Frequency Excitation

When two lasers of different frequencies ωpump, ωprobe drive the cavity simultaneously, there

is no rotating frame, in which Ξ∗(t ) is time-independent. To remove the rotating phase from

at least one of the beams, we set ωpump =ωL . Then the driving strength is

Ξ∗(t ) =Ξ∗
pump +Ξ∗

probee−i(ωprobe−ωpump)t . (B.16)

We can show that

α(t ) =αpump +αprobee−i(ωprobe−ωpump)t (B.17)

fulfills Eq. B.12:

Ξ∗(t ) =Ξ∗
pump +Ξ∗

probee−i(ωprobe−ωpump)t

!= i α̇(t )+ (︁ i
2κ−

(︁
ωc −ωpump

)︁)︁
α(t )

(B.18a)

= iαprobe
(︁−i

(︁
ωprobe −ωpump

)︁)︁
e−i(ωprobe−ωpump)t

+ (︁ i
2κ−

(︁
ωc −ωpump

)︁)︁(︂
αpump +αprobee−i(ωprobe−ωpump)t

)︂ (B.18b)

=αprobee−i(ωprobe−ωpump)t (︁(︁
ωprobe −ωpump

)︁+ i
2κ−

(︁
ωc −ωpump

)︁)︁

+αpump
(︁ i

2κ−
(︁
ωc −ωpump

)︁)︁ (B.18c)

=αprobee−i(ωprobe−ωpump)t (︁ i
2κ−

(︁
ωc −ωprobe

)︁)︁

+αpump
(︁ i

2κ−
(︁
ωc −ωpump

)︁)︁ (B.18d)

We can extract αpump and αprobe from Eq. B.18d by separating the time-independent terms

from those rotating at e−i(ωprobe−ωpump)t :

Ξ∗
pump =αpump

(︁ i
2κ−

(︁
ωc −ωpump

)︁)︁

⇔ αpump =
Ξ∗

pump

i
2κ−

(︁
ωc −ωpump

)︁
(B.19a)

Ξ∗
probe =αprobe

(︁ i
2κ−

(︁
ωc −ωprobe

)︁)︁

⇔ αprobe =
Ξ∗

probe

i
2κ−

(︁
ωc −ωprobe

)︁
(B.19b)

Pulsed Excitation

If the input is a Gaussian pulse of duration T

Iin(t ) = (2A)2

κ
exp

(︃
− t 2

2T 2

)︃
(B.20)
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and center frequency ωL , the driving strength is

Ξ∗(t ) = 1
2

√︁
Iin(t )κ= A exp

(︃
− t 2

4T 2

)︃
. (B.21)

We can calculate α(t ) using Eq. B.13:

α(t ) = e−i (ωc−ωL )t−κt
2

(︃
α(−∞)− i

∫︂ t

−∞
Ξ∗(τ)e i (ωc−ωL )τ+κτ2 dτ

)︃

=−i Ae−i (ωc−ωL )t−κt
2

∫︂ t

−∞
e i (ωc−ωL )τ+κτ2 − τ2

4T 2 dτ

=−i
⎷
πATe

−i (ωc−ωL )t−κt
2 +

(︂
i (ωc−ωL )+κ2

)︂2 (︃
1+erf

(︃
t

2T
− κT

2
− i (ωc −ωL)T

)︃)︃
(B.22)

We use the same definition of the error function

∫︂ t

−∞
exp

(︃
− τ2

2T 2

)︃
dτ=:

√︃
π

2
T

(︃
1+erf

(︃
t⎷
2T

)︃)︃
(B.23)

as the Python implementation in scipy.special.erf(z) (version 1.9.0).
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C Further Derivations

C Further Derivations

C.1 Polarization Rotation in a Birefringent Crystal

Without loss of generality, we choose the coordinate system such that the incident laser beam

is polarized along the x-axis. Its electric field vector is therefore

E⃗inc =
(︄

Einc,x

0

)︄
. (C.1)

When passing twice through a birefringent crystal of thickness d , this vector is transformed

according to Eq. 4.9 in [225]

E⃗refl =
(︄

e iδ cos2θ+ sin2θ
(︁
e iδ−1

)︁
sinθcosθ(︁

e iδ−1
)︁

sinθcosθ e iδ sin2θ+cos2θ

)︄
E⃗inc

=
(︄

e iδ cos2θ+ sin2θ(︁
e iδ−1

)︁
sinθcosθ

)︄
Einc,x , (C.2)

resulting in the polarization vector E⃗refl of the reflected light. θ denotes the angle between the

polarization of the incident light and the slow axis of the crystal, and δ= 2π(nb −na) 2d
λ is the

phase difference between the a- and b-polarized parts of the beam accumulated during the

propagation through the crystal over a distance 2d . The x-component of the reflected beam is

filtered out by the cross-polarizer; we detect only the intensity of the y-polarized component.

This is a fraction

Irefl,y

Iinc
=

⃓⃓
Erefl,y

⃓⃓2

⃓⃓
Einc,x

⃓⃓2 =
⃓⃓
⃓
(︂
e iδ−1

)︂
sinθcosθ

⃓⃓
⃓
2
=

(︂
2sin δ

2 sinθcosθ
)︂2

=
(︃
2sinθcosθ sin

(︃
2π(nb −na)

d

λ

)︃)︃2

(C.3)

of the incident intensity Iinc.

C.2 Reduction of the Measured g (2)(τ) Value due to Background

We use the classical definition of g (2)(τ) based on the time-dependent intensity I (t )

g (2)(τ) := 〈I (t )I (t +τ)〉
〈I (t )〉2 . (C.4)

The overall intensity has three contributions

I (t ) = Īsig +∆Isig(t )+ Ibkg, (C.5)
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the background Ibkg, the mean intensity of the signal Īsig and its fluctuations around the mean

value ∆Isig(t ). We can substitute this expansion into the numerator of Eq. C.4:

〈I (t )I (t +τ)〉 = ⟨︁(︁
Īsig +∆Isig(t )+ Ibkg

)︁(︁
Īsig +∆Isig(t +τ)+ Ibkg

)︁⟩︁

=
⟨︂(︁

Īsig + Ibkg
)︁2

⟩︂
+⟨︁(︁

Īsig + Ibkg
)︁
∆Isig(t )

⟩︁+⟨︁(︁
Īsig + Ibkg

)︁
∆Isig(t +τ)

⟩︁+
+⟨︁
∆Isig(t )∆Isig(t +τ)

⟩︁
(C.6)

We further assume the background to be uncorrelated, i.e.
⟨︂

I 2
bkg

⟩︂
= ⟨︁

Ibkg
⟩︁2 = I 2

bkg and uncor-

related with the fluctuations of the signal, i.e.
⟨︁

Ibkg∆Isig(t )
⟩︁= Ibkg

⟨︁
∆Isig(t )

⟩︁
. The separation

of the signal into mean Īsig and fluctuation ∆Isig(t ) means that the average value of the fluctu-

ations is zero, i.e.
⟨︁
∆Isig(t )

⟩︁= 0. We can therefore simplify the above expression to

〈I (t )I (t +τ)〉 = (︁
Īsig + Ibkg

)︁2 + (︁
Īsig + Ibkg

)︁
0⏟ ⏞⏞ ⏟⟨︁

∆Isig(t )
⟩︁+(︁

Īsig + Ibkg
)︁

0⏟ ⏞⏞ ⏟⟨︁
∆Isig(t +τ)

⟩︁

+⟨︁
∆Isig(t )∆Isig(t +τ)

⟩︁

= (︁
Īsig + Ibkg

)︁2 +⟨︁
∆Isig(t )∆Isig(t +τ)

⟩︁
. (C.7)

Analogously, we can expand the denominator of Eq. C.4

〈I (t )〉2 = ⟨︁
Īsig +∆Isig(t )+ Ibkg

⟩︁2 = (︁
Īsig +

⟨︁
∆Isig(t )

⟩︁+ Ibkg
)︁2 = (︁

Īsig + Ibkg
)︁2

. (C.8)

Combining the numerator and denominator, the measured g (2)(τ) is

g (2)
meas(τ) =

(︁
Īsig + Ibkg

)︁2 +⟨︁
∆Isig(t )∆Isig(t +τ)

⟩︁
(︁
Īsig + Ibkg

)︁2 = 1+
⟨︁
∆Isig(t )∆Isig(t +τ)

⟩︁
(︁
Īsig + Ibkg

)︁2

= 1+
〈∆Isig(t )∆Isig(t+τ)〉

Ī 2
sig

(Īsig+Ibkg)2

Ī 2
sig

= 1+ g (2)
act(τ)−1

(︂
Īsig+Ibkg

Īsig

)︂2 = 1+ g (2)
act(τ)−1

(︁
1+ rbg/s

)︁2 . (C.9)

Here, we define the background-to-signal ratio rbg/s := Ibkg/Īsig. Eq. C.9 can now be rearranged

into the form of Eq. 5.8.

C.3 Difference between G (1)(τ) and
⟨︁

â†â
⟩︁

(t )

In the simulations of the four-wave mixing experiments, there seems to be a contradiction:

While the time-domain simulation (Fig. 5.15) demonstrates clearly visible higher harmonics of

the beating signal in the number of cavity photons
⟨︁

â†â
⟩︁

(t ), in the spectrum S(ν) computed

from the same simulation (Fig. 5.16) the power in the first higher harmonic is 2 1
2 orders of

magnitude lower than that of the incident frequency. We can resolve this apparent incon-

sistency with a calculation of classical fields. Assuming the field in the cavity contains four
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frequencies: ±1
2∆ν and the four-wave mixing frequencies ±3

2∆ν,

E(t ) = A0

(︂
e−2πi · 1

2∆νt +e2πi · 1
2∆νt

)︂
+ AFWM

(︂
e−2πi · 3

2∆νt +e2πi · 3
2∆νt

)︂

= A0 cos
(︁
2π · 1

2∆νt
)︁+ AFWM cos

(︁
2π · 3

2∆νt
)︁
. (C.10)

The spectrum S(ν) is the Fourier transform of G (1)(τ) (see Ch. 2.4.3).

G (1)(τ) = lim
T →∞

1

2T

∫︂ T

−T
E∗(t +τ)E(t )d t

= lim
T →∞

1

2T

∫︂ T

−T

(︁
A∗

0 cos
(︁
2π · 1

2∆ν(t +τ)
)︁+ A∗

FWM cos
(︁
2π · 3

2∆ν(t +τ)
)︁)︁

· (︁A0 cos
(︁
2π · 1

2∆νt
)︁+ AFWM cos

(︁
2π · 3

2∆νt
)︁)︁

d t

= lim
T →∞

1

2T

∫︂ T

−T

(︃
2 |A0|2

(︁
cos

(︁
2π · 1

2∆ν(2t +τ)
)︁+cos

(︁
2π · 1

2∆ντ
)︁)︁

+2A0 A∗
FWM

(︁
cos

(︁
2π · 1

2∆ν(4t +3τ)
)︁+cos

(︁
2π · 1

2∆ν(2t +3τ)
)︁)︁

+2A∗
0 AFWM

(︁
cos

(︁
2π · 1

2∆ν(4t +τ)
)︁+cos

(︁
2π · 1

2∆ν(2t +τ)
)︁)︁

+2 |AFWM|2 (︁
cos

(︁
2π · 3

2∆ν(2t +τ)
)︁+cos

(︁
2π · 3

2∆ντ
)︁)︁)︃

d t

= 2 |A0|2 cos
(︁
2π · 1

2∆ντ
)︁+2 |AFWM|2 cos

(︁
2π · 3

2∆ντ
)︁

(C.11)

The spectrum

S(ν) = 2 |A0|2
(︁
δ(ν− 1

2∆ν)+δ(ν+ 1
2∆ν)

)︁+2 |AFWM|2 (︁
δ(ν− 3

2∆ν)+δ(ν+ 3
2∆ν)

)︁
, (C.12)

therefore consists of four Dirac Delta functions δ(x). Hence, the power ratio of the four-

wave mixing frequency and the incident frequency is |AFWM|2/︁ |A0|2. In contrast, the photon

number expectation value
⟨︁

â†â
⟩︁

(t ) ∼ |E(t )|2

|E(t )|2 =
(︂

A∗
0 cos

(︁
2π · 1

2∆νt
)︁+ A∗

FWM cos
(︁
2π · 3

2∆νt
)︁)︂

·
(︂

A0 cos
(︁
2π · 1

2∆νt
)︁+ AFWM cos

(︁
2π · 3

2∆νt
)︁)︂

= 2 |A0|2
(︁
1+cos(2π ·∆νt )

)︁

+2
(︁

A∗
0 AFWM + A0 A∗

FWM

)︁(︁
cos(2π ·∆νt )+cos(2π ·2∆νt )

)︁

+2 |AFWM|2 (︁
1+cos(2π ·3∆νt )

)︁
(C.13)

has a frequency component oscillating at twice the beating frequency 2∆ν with an amplitude

of 2
(︁

A∗
0 AFWM + A0 A∗

FWM

)︁
. The 2∆ν component is therefore amplified as in a heterodyne

measurement [226].
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D Compensation for Temporal Shifts in Acquired Data

In Ch. 3.5.2 we describe a detection scheme in which the vibration of the cavity is recorded

alongside the APD signal and the wavemeter reading. If all three signals are synchronous, we

can extract cavity transmission spectra for a range of different cavity resonance frequencies

ωc from one dataset. However, due to the finite bandwidth of the balanced photodiode, the

error signal is slightly delayed with respect to the APD signal. Since both signals are recorded

by the same DAQ card, this delay ∆terr is constant across measurements and can therefore

be calibrated. In contrast, the delay in the wavemeter reading ∆twm fluctuates between

measurements. This is because the wavemeter samples the laser frequency independently of

the measurement program. The delay ∆twm depends on the time which elapses between the

wavemeter reading the laser frequency and the measurement program querying the reading.

D.1 Calibration of the Error Signal Delay

The calibration measurement for the error signal delay ∆terr is sketched in Fig. D.1: The

lock and spectroscopy lasers are both tuned within the respective longitudinal cavity modes

such that they are resonant at the same cavity length. Then the cavity length is scanned

around this double-resonant length while we record the spectroscopy laser transmission

10 20 30 40 50 60 70 80 90 100

Time (ms)

Cavity length

APD signal

Error signal
49.96 49.98 50.00 50.02 50.04

Time (ms)

tAPD,− terr,−

99.96 99.98 100.00 100.02 100.04

Time (ms)

tAPD,+terr,+

Figure D.1: Calibration of the error signal delay ∆terr by scanning the cavity length while
recording the cavity transmission with the APD and the error signal.
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on the APD and the Hänsch-Couillaud error signal in the same setting as we would do for

a regular transmission spectrum. Given the exact simultaneous resonance of the lock and

spectroscopy laser, the error signal delay is the difference between measured error signal

zero-crossing and transmission peak of the APD signal ∆terr = terr − tAPD. Practically, however,

the double-resonance is not exact. In Fig. D.1 the APD signal peaks for a slightly longer cavity

than the error signal crosses zero. We therefore use the time delays terr,±− tAPD,± on both

directions of the cavity scan – increasing (+) and decreasing (−) cavity length. A resonance

mismatch changes these delays in opposite directions. Hence, we can extract the pure error

signal delay due to acquisition ∆terr from the sum

(︁
terr,+− tAPD,+

)︁+ (︁
terr,−− tAPD,−

)︁= 2∆terr. (D.1)

By detecting the transmission peaks and the error signal zero-crossings for several hundred

scan periods we extract an error signal delay of ∆terr = 5.47±0.34µs.

D.2 Wavemeter Delay Compensation

One can evaluate the timing of the wavelength reading relative to the APD signal by separating

the dataset into ramps of rising/falling laser frequency, as shown in Fig. D.2. In this example,

the spectra obtained from rising laser frequency ramps are shifted to lower frequencies,

indicating that the wavemeter reading is delayed compared to the APD signal.
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Figure D.2: A relative delay between the wavemeter reading and the APD signal causes a
systematic shift between the spectra in which the laser frequency rises/falls.

To correct for this delay, we shift the wavemeter readings relative to the APD signal to minimize

the horizontal offset shown in the insets of Fig. D.2. To find the optimal shift very precisely,

we divide the dataset into 100 frequency bins and calculate the variance of APD countrates in
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each bin. As exemplarily shown by the two vertical orange lines, a systematic shift between

the partial spectra from rising/falling ramps causes a high variance, especially in parts of the

spectrum with a steep slope. Minimizing the sum over the variances in all 100 spectral bins

therefore optimizes the relative shift between the data tracks.
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Figure D.3: Shifting the wavemeter data track with respect to the others reveals a minimum
variance at ∆twm = 28.510ms. This is the wavemeter delay for the measurement shown in
Fig. D.2.

Fig. D.3 shows the sum of variances as the wavemeter data track is shifted. It exhibits a

minimum at a few tens of ms delay. To reduce the influence of “roughness” on the outcome, we

obtain the optimal wavemeter delay ∆twm from a parabolic fit. This optimization procedure

and its implementation details can be found together with the QuTiP simulations on our

internal GitLab [227].
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E APD Deadtime Correction

An avalanche photodiode (APD) creates a macroscopic electrical pulse for each absorbed

photon. This is made possible by applying a high voltage across a diode, close to its breakdown

voltage. If a single photon is absorbed, a single electron-hole pair is created. The charge

carriers are accelerated by the high voltage and excite further electron-hole pairs, leading to a

macroscopic avalanche. To protect the APD from damage, a quenching circuit is activated.

It switches off the high voltage until the avalanche has decayed and the diode is back in its

equilibrium state after several tens of nanoseconds. During this so-called deadtime Td no

further avalanches can be triggered. Hence, the APD does not respond to a photon absorbed

during this time [145].

With a rate of Cactual photons absorbed in the APD, we fail to detect on average CactualTd

photons per deadtime-cycle. As the deadtime is triggered at the rate of detection events Cdet,

the rate of missed photons is

Cmiss =Cdet (CactualTd ) . (E.1a)

Hence, we can reconstruct the actual rate of photons on the APD

Cactual =Cdet +Cmiss. (E.1b)
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Figure E.1: The detected countrate against the rate of absorbed photons of an APD with
deadtime Td = 87.3ns.
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Substituting Eq. E.1a into Eq. E.1b and solving for Cactual results in the APD deadtime correction

formula

Cactual =
Cdet

1−TdCdet
. (E.1c)

Fig. E.1 shows the detected rate Cdet as a function of the incident rate Cactual for a deadtime

of Td = 87.3ns. For low rates, the detected rate is equal to the real rate, but they deviate for

higher countrates. With detected countrates exceeding 1 MHz in our experiments, we must

correct for the APD deadtime in order to obtain accurate measurements.

We can determine the deadtime of the APD used in our experiments by time-tagging its output

pulses and computing an autocorrelation histogram (see Fig. E.2). The choice of light source

is irrelevant to this measurement. The probability of detecting a second photon with a time

delay τ after a first photon is 0 for a few tens of nanoseconds. Zooming in on the sharp rise in

coincidences reveals that this deadtime lasts for Td = 87.3ns. The figure also shows a short

interval τ ∈ [87.3,110.9] ns of afterpulses, before the APD returns to normal operation.
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Figure E.2: Coincidence histogram of the APD used in the experiments described in Chap-
ters 4 & 5: Deadtime until τ= 87.3ns, afterpulses until τ= 110.9ns, then normal operation.
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F Calibration of Power and Cavity Incoupling Efficiency

We would like to emphasize that the power axes in the nonlinear optical experiments, for

example Figs. 5.3 & 5.7, are not inferred post-hoc to match the saturation behavior of a single

molecule, but result from a careful calibration of the laser power coupled into the cavity. Here,

we explain the three steps undertaken to determine the power coupled into the cavity.

F.1 Calibration of the PID Setpoints in the Power Feedback Loops

As explained in Ch. 3.4, each laser beam is power-stabilized by a feedback loop. The signal of a

photodiode measuring the power of the laser beam is fed into a PID loop. The PID controls

the driving amplitude of an AOM, which in turn changes the power of the beam. We set the

laser power using the PID setpoint. To map a given setpoint to power, we measure the laser

power in front of the cryostat with a powermeter (Vega, Ophir Optronics Solutions Ltd.) for

various PID setpoints. This gives rise to the linear relations shown in Fig. F.1. Since we measure

the power outside the cryostat for this calibration, we must additionally multiply it by the

transmission through the cryostat windows, namely 87 %.
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Figure F.1: The background-subtracted power inside the cryostat as a function of the PID
setpoint SP for the probe and pump feedback loops.

F.2 Calibration of the ND Filters

After the beam pickoff for the photodiode, we can insert several different ND filters into the

laser beam to change the laser power in coarse steps. Their attenuation Ai is given by

Ai =
measured laser power with filter i −background power

measured laser power without filter−background power
. (F.1)
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Several ND filters in series allow us to reduce the laser power by up to 9 orders of magnitude.

F.3 Calibration of the Cavity Incoupling Efficiency

Only some of the light which enters the cryostat couples into the cavity mode. This is due

to spatial mode mismatch, the polarization mismatch in the cross-polarization scheme (see

Ch. 3.4.2) and imperfect reflectivity balance of the two mirrors. We obtain the incoupling

efficiencies of the pump ηpump and probe beam ηprobe from the depth of their resonance dips

in a reflection spectrum, shown in Fig. F.2. To ensure constant incoupling efficiency across

experiments performed on different days, we re-optimize the spatial position of the laser

beam every 20 min by scanning the fast steering mirror in front of the 4 f telecentric system

(see setup, Fig. 3.12).
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Figure F.2: Measurement of the incoupling efficiencies η of the probe and pump beam.
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G Theoretical Expectation of Coupling Strengths

We would like to compare the cavity-emitter coupling strengths we found among molecules

(g < 2π ·0.8GHz) to theoretically expected values. Z. Sadeq et al. [102] calculated a transition

dipole moment of 13.1 Debye. Assuming a branching ratio ofα00 = 1/3, the dipole moment for

the 00ZPL transition is therefore deg =⎷
α00 ·13.1Debye. Further assuming a mode volume of

V = 4.4λ3, the coupling strength can reach up to g = 2π ·3.1GHz (see Eq. 2.13). Here, we list

several factors which can be responsible for the difference between the ideal theoretical value

and those experimentally observed.

Firstly, the cavity mode is polarized along the b-axis of the anthracene crystal, whereas the

transition dipole moments of individual DBT molecules can be slightly misaligned. A. Nicolet

et al. [137] find a distribution of 10° FWHM around the b-axis. While a misalignment of 10°

only leads to a reduction of g by a factor cos10° ≈ 0.98, we would like to note that cases with a

misalignment of 26° have also been observed [228], in which g decreases by 0.90.

Secondly, the transition dipole moment could be lower than the theoretical prediction. The

aforementioned amplitude of 13.1 Debye [102] is the result of a Hubbard model simulation

and refers to the transition dipole moment of the electronic transition |S1〉→ |S0〉 (see Fig. 2.1),

including the vibrational sublevels. Including a local-field correction, this transition dipole

moment implies a homogeneous linewidth of γ/2π= 40MHz, which is in line with experimen-

tal measurements. In this theoretical calculation, as throughout this thesis, it is assumed that

this linewidth is purely due to radiative decay. However, the overall decay rate is the sum of

the radiative γr and nonradiative γnr decay rates, while the transition dipole moment deg only

contributes to the radiative decay rate. At the time of writing, the nonradiative decay rate [229]

has not yet been finally determined. M. Musavinezhad et al. [207] find the fraction of radiative

decay η= γr
/︁(︁
γr +γnr

)︁
to lie within 70±20% for DBT in para-dichlorobenzene. Because of

the lower transition frequency of DBT in anthracene, η is assumed to be lower, according to

the energy gap law [230]. A reduction of the purely radiative linewidth by a factor of η= 50%

would imply a reduction of the dipole moment, and hence g , by
⎷

0.5 ≈ 0.71.

Thirdly, the anthracene crystal changes the mode structure of the cavity. Depending on the

crystal thickness, the cavity modes can be air-like or anthracene-like [136]. In the former, the

intensity in the air part of the cavity mode is a factor nb higher than in the anthracene part.

In the latter, the intensities in both parts are comparable. Therefore, in an air-like mode, g

is a factor of
√︁

1/nb ≈ 0.75 lower than in an anthracene-like mode. We did not measure the

crystal thickness at the position of the cavity mode in the strong coupling experiments. When

we removed the sample from the cryostat, an atomic force microscope measurement revealed

a thickness between 1.1µm and 1.3µm.

Lastly, the field amplitude of the cavity mode in the crystal is not uniform, but follows a

spatial distribution, described by the unitless function f⃗ (⃗r ) in Eq. 2.11. Since we have no

control over the position of the molecules within the crystal, we find a random distribution

of coupling strengths for a given cavity mode. We can derive an approximate expression
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Figure G.1: (a) Equal-field-strength surfaces of a standing-wave Gaussian beam of diameter
w = 1µm. The vertical axis extends over 2½ periods of the standing wave, or over 1¼ wave-
lengths of λ= 785nm. (b) The differential volume element V (E)dE for the same beam.

for the distribution. The field amplitude has the form of a standing-wave Gaussian beam.

Approximating the mode diameter to be constant along the optical axis w(z) = w0, we can

write it as

E(r, z) = E0

⃓⃓
⃓⃓sin

(︃
2πnb z

λ

)︃⃓⃓
⃓⃓exp

(︃
− r 2

w0
2

)︃
(G.1)

in cylindrical coordinates (r, z). We can assign surfaces of equal field strength within this mode,

as sketched in Fig. G.1a). Molecules within one surface have the same coupling strength to the

cavity mode. The probability density for finding a molecule experiencing a field strength in a

small interval [E ,E +dE ] is proportional to the differential volume

V (E)dE = λw0
2

nbE
arccos

(︃
E

E0

)︃
dE . (G.2)

Fig. G.1b) shows this distribution. Over the majority of the range of possible coupling strengths

the probability density decreases proportional to 1/E , with the arccos term leading to a hard

cutoff at the maximal field strength E0. We have not yet performed a rigorous statistical survey

of the distribution of experimentally obtainable coupling strengths. Doing so will provide

a more precise estimation of the maximum coupling strength. This in turn will allow us to

establish boundaries for systematic reductions of the coupling strengths due to the reasons

described above. We would also like to note that the doping concentration varies within a given

crystal. In particular a doping gradient along the optical axis would change the probability

density for coupling strengths from the differential volume V (E)dE in Eq. G.2.

Reducing the coupling strength from the theoretical optimum to the measured values requires

the assumption of relatively low values for the four factors elaborated on. It is therefore likely

that additional mechanisms contribute to a further reduction.
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H Alignment Procedure for the Cryostat Insert

The cryostat insert is aligned outside the cryostat on a duplicate of the landing plate. This

chapter documents the full alignment procedure. A regular exchange of the curved/flat mirror,

requires only step 8 or 9 respectively, assuming all other components are still aligned. The

subfigure labels in Figs. H.1 & H.2 correspond to the following steps:

1

2

3

4/6

Figure H.1: Cryostat insert alignment.

1. Set the fast steering mirror (see Fig. 3.12) to the
center of its movement range, by applying 0 V
to the x- and y-inputs. Use a mirror pair to
align the laser beam to the two irises defining
the optical axis.

2. Mark the position of the beam (for example
with a camera). Then, place the cryostat insert
on the landing plate and remove every element
in the beam path, except for the aspheric lens
on the curved mirror side. In Fig. H.1, we addi-
tionally removed one of the two pillars connect-
ing the top and bottom parts of the insert. This
is not necessary, but simplifies handling. Man-
ually adjust the lateral position of the aspheric
lens such that the center of the laser beam co-
incides with its previous center. If the curved
mirror substrate is a GRIN lens (see Ch. 3.1.1),
there is no asphere on the curved mirror side
and this step can be skipped.

3. Attach the curved mirror assembly to the cryo-
stat insert. When tightening the screws, push
the assembly away from the aspheric lens until
both screws touch the straight part of the slot-
ted holes. This will serve as a reference when
the assembly is removed and brought back. The
exact lateral position of the assembly is not rel-
evant at this point.

4. Attach a mirror to the ring piezo of the curved
mirror assembly. Loosen the screws holding
the mirror mount on the x-attocube. Adjust the
orientation of the mount such that the backre-
flection coincides with the incident laser beam,
then re-tighten the screws for the mount.
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5

7

8

9

Figure H.2: Cryostat insert alignment.

5. Attach a flat mirror to the ring piezo of the flat
mirror assembly and install it in the insert. Here,
we create a reference by pushing the assembly
towards the curved mirror until the ends of the
slotted holes are stopped by the screws.

6. Analogously to step 4, adjust the mount of the
flat mirror until the laser beam is reflected onto
itself.

7. Remove the mirror assemblies from the beam
path and insert the aspheric lens on the flat
mirror side. Manually align it such that the
laser beam is centered at the same position as
in step 2.

8. Reattach the curved mirror assembly using the
reference from step 3. Illuminate the curved
mirror with the LED shown in Fig. 3.12 and
image the substrate of the curved mirror on
the camera inside the detection box (Fig. 3.15).
Shift the curved mirror substrate laterally with
respect to the ring piezo until the image of the
pedestal is at the same position as the image of
the laser beam.

9. Attach the flat mirror with anthracene crystals
(see Ch. 3.2) to the flat mirror assembly and
install it in the insert using the reference from
step 5. Illuminate the flat mirror and image it
on the detection box camera. Shift it laterally
with respect to the ring piezo until the desired
crystal is imaged to the same position on the
camera as the curved mirror.

10. If applicable, reinstall the second pillar. Fasten
all electrical connections and ensure they are
all located within the cylindrical envelope of
the insert. The insert is now ready for insertion
into the cryostat.
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I Longitudinal Mode Number Estimation in the Cryo Insert

We can estimate the longitudinal mode number q of the cavity in a two-wavelength mea-

surement. We co-couple two lasers at wavelengths λ1 and λ2 into the cavity and scan the

cavity length around the two fundamental-mode resonances. They are detected by a dip in

the reflected power, as in the estimation of the crystal thickness by the polarization mode

splitting, see Fig. 3.10. The distance between the two resonances (in terms of voltage applied

to the ring piezo Vpiezo, c.f. Fig. 3.11) for a series of successively increasing longitudinal modes

grows approximately linearly, as in Fig. I.1. This allows us to extrapolate the q = 0 mode, for

which the resonances at λ1 and λ2 coincide.

Two issues require consideration here: The phase-shifts upon reflection from the mirrors

φ1,φ2 and the Gouy phase, as explained in Ch. 2.2.3. We absorb the reflection phase shifts into

an effective mode number qeff [93], such that Eq. 2.7 reads

qeff ·2π= 2kL−2arcsin

√︄
L

R0
. (I.1)

To compute the length difference ∆L between the resonances for λ1 and λ2 with the same

qeff, we must solve Eq. I.1 for L. We are not aware of an analytical solution, so we denote the
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Figure I.1: Estimation of the longitudinal mode number qeff for a cavity with Bragg mirrors
(a) and dichroic mirrors (b). The distance between the resonances in the shortest mode in
(b) is higher than predicted by the theory. This is because the two mirrors are in mechanical
contact. Hence, higher voltages across the piezo ∆Vpiezo are required to move the same
physical distance ∆L. This data point is excluded from the fit. The slight difference in the
piezo calibration constants kpiezo is due to modifications on the cryostat insert between these
two measurements recorded about 1 year apart. We also note that the piezo voltage plotted
here is the voltage before a x10 amplifier (MDT693B, Thorlabs Inc.).
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numerical solution for a given qeff,k,R0 as L(qeff,λ). Then, the function fitted to the data is

∆L(qeff) = L(qeff,λ2)−L(qeff,λ1), (I.2)

where ∆L is expressed by the voltage difference on the piezo times its calibration constant

∆L = ∆Vpiezokpiezo. Similarly, while recording the data, we do not know the effective mode

number qeff of the modes, so we parameterize qeff = j + qoffset, where j is the index of the

mode in the sequence of scans. The fit therefore delivers the effective mode number of the

shortest measured mode qoffset as well as the conversion factor between piezo voltage and

cavity length change kpiezo.
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[18] M. Stobińska, G. Alber, and G. Leuchs, “Perfect excitation of a matter qubit by a single

photon in free space”, EPL (Europhysics Letters) 86, 14007 (2009).

[19] M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup,

E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, “Near-Unity Coupling Efficiency of a

Quantum Emitter to a Photonic Crystal Waveguide”, Physical Review Letters 113,

093603 (2014).

[20] A. F. Koenderink, “Single-Photon Nanoantennas”, ACS Photonics 4, 710–722 (2017).

[21] M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M.

Kraft, “Microfabricated high-finesse optical cavity with open access and small volume”,

Applied Physics Letters 87, 211106 (2005).

[22] D. Wang, H. Kelkar, D. Martín-Cano, D. Rattenbacher, A. Shkarin, T. Utikal, S. Götzinger,

and V. Sandoghdar, “Turning a molecule into a coherent two-level quantum system”,

Nature Physics 15, 483–489 (2019).

[23] A. Pscherer, M. Meierhofer, D. Wang, H. Kelkar, D. Martín-Cano, T. Utikal, S. Götzinger,

and V. Sandoghdar, “Single-Molecule Vacuum Rabi Splitting: Four-Wave Mixing and

Optical Switching at the Single-Photon Level”, Physical Review Letters 127, 133603

(2021).

[24] R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetri-

adou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room

temperature in plasmonic nanocavities”, Nature 535, 127–130 (2016).

[25] R. J. Thompson, G. Rempe, and H. J. Kimble, “Observation of normal-mode splitting

for an atom in an optical cavity”, Physical Review Letters 68, 1132–1135 (1992).

[26] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B.

Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a

photonic crystal nanocavity”, Nature 432, 200–203 (2004).

122

https://doi.org/10.1038/nature08134
https://doi.org/10.1364/OL.20.002532
https://doi.org/10.1126/science.271.5256.1703
https://doi.org/10.1126/science.271.5256.1703
https://doi.org/10.1007/s00340-007-2859-4
https://doi.org/10.1007/s00340-007-2859-4
https://doi.org/10.1134/S1054660X07070055
https://doi.org/10.1209/0295-5075/86/14007
https://doi.org/10.1103/PhysRevLett.113.093603
https://doi.org/10.1103/PhysRevLett.113.093603
https://doi.org/10.1021/acsphotonics.7b00061
https://doi.org/10.1063/1.2132066
https://doi.org/10.1038/s41567-019-0436-5
https://doi.org/10.1103/PhysRevLett.127.133603
https://doi.org/10.1103/PhysRevLett.127.133603
https://doi.org/10.1038/nature17974
https://doi.org/10.1103/PhysRevLett.68.1132
https://doi.org/10.1038/nature03119


Bibliography

[27] Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with Diamond Nanocrystals and Silica

Microspheres”, Nano Letters 6, 2075–2079 (2006).

[28] K. J. Vahala, Optical Microcavities, Advanced Series in Applied Physics, Volume 5 (World

Scientific Publishing Co. Pte. Ltd., Singapore, 2004).

[29] S. Haroche and J.-M. Raimond, Exploring the Quantum (Oxford University Press, Aug.

2006).

[30] E. Schrödinger, “Die gegenwärtige Situation in der Quantenmechanik”, Die Naturwis-

senschaften 23, 807–812 (1935).

[31] M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond, and S. Haroche,

“Quantum Rabi Oscillation: A Direct Test of Field Quantization in a Cavity”, Physical

Review Letters 76, 1800–1803 (1996).
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