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In this paper, the nonlinear Volterra series expansion is extended and used to describe cer-
tain types of nonautonomous differential equations related to the inverse scattering prob-
lem in nuclear physics. The nonautonomous Volterra series expansion lets us determine a
dynamic, polynomial approximation of the variable phase approximation (VPA), which is
used to determine the phase shifts from nuclear potentials through first-order nonlinear
differential equations. By using the first-order Volterra expansion, a robust approximation
is formulated to the inverse scattering problem for weak potentials and/or high energies.
The method is then extended with the help of radial basis function neural networks by ap-
plying a nonlinear transformation on the measured phase shifts to be able to model the
scattering system with a linear approximation given by the first-order Volterra expansion.
The method is applied to describe the 'Sy NN potentials in neutron-proton scattering be-
low 200 MeV laboratory kinetic energies, giving physically sensible potentials and below
1% averaged relative error between the recalculated and the measured phase shifts.

Subject Index A13, A34, D00, D06

1. Introduction

Many real-life phenomena can be explained by linear or nonlinear dynamical models [1-3],
and while linear approximations are adequate to describe such systems in a number of cases,
these approximations are usually only able to grasp some of the properties of the full underlying
physical system. Some examples where the linear approximation is sufficient can be found in the
modeling of thermal systems, in electronics, in structural engineering, or in the linear control
of complex systems for small perturbations, etc. On the other hand, many phenomena, e.g. in
biology, fluid dynamics, low-temperature thermal systems, etc., can only be described by intro-
ducing static or dynamic nonlinearities into the model [4-7], which in turn greatly complicates
the analytical and numerical calculations of such problems.

One method to model weak nonlinearities is called the Volterra series approximation [8—
10], which is an infinite-dimensional convolutional description of nonlinear systems contain-
ing static or dynamic nonlinearities. In comparison to linear models, where the system can be
described by a simple convolution of a kernel function and the excitation, in the Volterra rep-
resentation, the system is described by higher-order convolutional operators in addition to the
first-order case. The theory has found its applications in many biological, electrical, and
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mechanical engineering problems as well [11-16]. Due to its well-developed mathematical foun-
dations, the Volterra approximation can also be used to model the underlying dynamical equa-
tions by determining the Volterra kernels straight from the dynamical equations without relying
purely on measurements if a mathematical model is at hand.

This paper intends to deal with the problem of inverse scattering in particle and nuclear
physics by using the Volterra series approximation on a first-order nonlinear, nonautonomous
differential equation called the variable phase approximation (VPA) [17], which is able to de-
scribe the asymptotic phase shifts generated by local or nonlocal potentials. Here, we will only
deal with local and spherically symmetric potentials; however, the method is much more general
and is not limited to only such systems. In general, inverse problems are very hard to solve due
to their sensitivity and ill-conditioned nature [18]. In the nuclear inverse scattering problem,
a local or nonlocal potential is sought from the asymptotic phase shifts at different energies
and/or angular momenta. There are several methods that aim to solve the inverse scattering
problem at fixed energies or fixed angular momenta [19,20]; however, a perfect identification of
the potential without any preliminary knowledge of the scattering system is almost impossible,
and each method gives slightly different results, which also depend on the parameters used in
the inversion. Due to this, there is still an ongoing desire to be able to describe the inverse scat-
tering problem with a robust and fast method that is insensitive to at least the measurement
noises in the phase shifts.

In this paper, the Volterra series expansion is used to describe the forward problem of elas-
tic two-body quantum scattering given by the VPA. Due to the nonautonomous nature of the
forward problem, the original Volterra method has to be extended to be able to describe nonau-
tonomous nonlinear systems as well, which is described in Sect. 2, where first the general model
is explained, then a simple example is given where the nonautonomous Volterra kernels are de-
termined analytically. After the model description, the method is put to real use in Sect. 3,
where first in Sect. 3.1 the Volterra expansion of the VPA at zero angular momentum (s-wave
scattering) is given, then in Sect. 3.2 the convergence of the first-order approximation is studied,
while in Sect. 3.3 we study the inversion capabilities of the first-order Volterra expansion with
two different basis functions that are used to describe the interaction potentials. After showing
the capabilities of the first-order expansion in the inversion procedure, in Sect. 4 the method is
applied to real-life s-wave neutron-proton scattering, where due to the more severe nonlinearity,
a nonlinear transformation using radial basis function (RBF) neural networks [21] is applied to
the phase shifts so that the obtained system could be described as a first-order Volterra model
and the inversion equations shown in the previous section could still be applied. At the end,
Sect. 5 concludes the paper by mentioning some possible future applications in nuclear and
particle physics where the Volterra series could be applied.

2. Volterra series approximation for nonautonomous nonlinear systems

In this section, we introduce the Volterra series expansion of autonomous nonlinear dynamical
systems and show that, with some modifications, the original Volterra series can be extended to
describe nonautonomous nonlinear dynamical systems as well. By using the harmonic balance
method, we show a possible way to determine the nonautonomous Volterra kernels in an ana-
lytical fashion. The method will then be used to describe a simple nonautonomous nonlinear
differential equation by determining the »n’th-order Volterra kernels in the Laplace domain.
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2.1.  General model

Volterra series are originally defined as being able to describe autonomous dynamical systems
with weak nonlinearities and have a great many possible applications, mostly in engineering;
however, due to their wide modeling capabilities, it is also possible to extend their usage into
the fields of nuclear and particle physics. In the original Volterra representation, the output
x(r) of a dynamical system that is excited by an f(r) function can be described by an infinite-
dimensional higher-order convolution integral as:

n b b i
x(r) > hy+ ) [/ / hi(z1. . z0) [ [ £ — Zj)dz_,-:|, (1)
=1 Ll 24 j=1

1

where r is the variable on which the output and input depend, e.g. time, coordinates, etc., z;’s are
dummy variables used in the integrals, and h;(zy, z2, ..., z;) are the i’th-order Volterra kernels.
The integral limits @ and b in general go from —oo to oco; however, in practice, many real-life
physical systems are causal, which means we can take a = 0, so in the convolutional integrals we
only take into account the “previous” excitations. The upper limit is usually called the memory
of the system, which also does not necessarily have to go all to infinity and could have a finite
value that corresponds to the memory of the system under description.

The h(2), hy(z1, z2), ..., hy(z1, ..., z,) kernel functions contain all the information about the
dynamics of the system and should have good properties, e.g. continuity, finiteness, bounded-
ness. The nonlinearity comes from the multiplicative terms of the excitation functions, where
the number of terms depends on the order of the corresponding kernel. With each added term,
a higher nonlinearity could be approximated, and in general, if the corresponding differential
equations are known, it should be possible to give general expressions to the analytical form
of the Volterra kernels [22,23]. In practice, however, one does not want to keep all the possible
higher-order terms, and in many cases, it is sufficient to only keep the second- or third-order
terms, which could still give very precise results in practical applications.

In the following, let us assume that /o = 0, which term will be unimportant in the applications
in this paper. The Volterra series representation could also be explained in the Laplace domain
as:

(s) = L{x(r)} (s) = hy () (s) + hals1, s2)F (s (52) + . ..
= hiCsr.....s) [ [EGs)). )
i=1 j=1

where £ {-} represents the usual n-dimensional Laplace transform operator, f(s) is the Laplace
transform of the excitation, and hy(sy, . . ., s;) are the Volterra kernels in the Laplace domain.
As the convolution operator in the original domain will be a simple product in the Laplace
domain, the integral equations are simplified to algebraic equations, which are in many cases
more convenient to work with.

One of the easiest ways to obtain the kernel functions straight from the differential equa-
tions is through the so-called harmonic balance method [24], where we use specific harmonic
functions to excite the system, and by substituting the response of the Volterra representa-
tion and the excitations back into the original differential equations, we could express the
kernel functions directly by algebraic equations [25]. In this way, we are able to obtain the
higher-order kernel functions as well, iteratively, step-by-step, from the kernel functions of
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the previous order. In the following, the method of obtaining the kernels will be described
in detail for autonomous and nonautonomous systems as well.

Firstly, let us assume that we have a general autonomous system, which can be described
by a differential equation containing the output x(r) and its derivatives with respect to the
variable r, as well as the excitation f(r). In general, the system can be described in the following
form:

Jdx0  Pxn o
dr > drr  dr X

where on the left-hand side F[-] is a function of the output and its derivatives, while on the
right-hand side sits the excitation that drives the system. In general, the F[-] function can be
nonlinear as well, which is why we will have to use the Volterra series representation to be able

(V)} = f(r), )

to estimate the solution of the differential equation. The autonomous nature of the system
here means that there is no explicit dependence on the variable r, which greatly simplifies the
determination of the kernel functions.

In the harmonic balance method, let us first use the harmonic excitation fi(r) = ¢*, where s
is a complex parameter representing the “frequency” of the excitation. Substituting f;(r) into
the Volterra series in Eq. (1) we will arrive at the following infinite sum for the output x;(r):

x1(r) = hy(s)e” + ha(s, )& + ...+ hu(s, ..., 5)e™, (4)
—_—
n

where the subscript in x;(r) represents that it is the response for the input fi(r). The hi(s),
flz(s, s), ... coefficients are the corresponding transfer functions in the Laplace domain. Let
us now substitute x;(r) back into Eq. (3), where we have to take the derivatives of x;(r) with
respect to r as well. Due to the simple exponential dependence, the &’th derivative can be easily
expressed as:

d*xi(r) _ Ak kT 2 k ki ~
= hi(s)e™ 4+ 255 ha(s, s)e”™ + ...+ n"sh,(s, ..., )™ (%)
dr ~——

n

Substituting everything back, we will arrive at the following algebraic equation:

F, |:f11(s), flz(s, 8)y e, fln(s, s 8), e, L si| =e", (6)

where Fi[-] represents the new function after substituting back the Volterra output for the first
harmonic excitation. After collecting the terms with different exponential factors (harmonics),
we will arrive at the following structure:

ur(hy(s), $)e” + ua(ha(s, ), Dy (s), )€ + ... + up(hnls, ..., ), ..., 1i(s), )™ =0, (7)

where each u;(-) will be a function of the Volterra kernels and the s variable. To be able to
satisfy this equation, each u;(-) subfunction weighting the different harmonics has to be zero,
so u;(hy(s), ..., s) = 0 for all i. The general structure will very much depend on the nonlinear-
ity in the original F[-] function; however, by Taylor expansion, it can always be expressed in a
polynomial form, so it will always be possible to gather the terms with the corresponding expo-
nential factors even if the system does not have a polynomial nonlinearity. This will be used in
later sections, where we need to expand a sin’(-) function to be able to determine the Volterra
kernels. In general, to determine the kernel functions, we first have to solve an algebraic equa-
tion (u;(h;(s), s) = 0) to obtain the h; (s) first-order kernel. The other equations do not give us
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anything useful except the diagonal terms of the higher-order kernels, which is of course not
enough as we need the full frequency behavior of the higher-order kernels as well. To do this,
let us now excite the system with two harmonics at the same time as f>(r) = ¢ 4 ¢*2". In this
case, the response of the Volterra representation becomes:

XZ(V) = ﬁ](S])eslr + ﬁl (Sz)eé‘zr + 2B2(S1 , S2)6(51+S2)r
+ha(s1, 51)e™" + ho(sz, 52)e*” + ... + (higher-order terms), (8)

where the first two terms correspond to the first-order kernels again, while the third term now
corresponds to the second-order kernel at all frequencies s;, and s, in two dimensions. The other
terms are again not important as they do not give us the full frequency behavior. The higher-
order terms here consist of the like of ﬁ3(sl, 51, 82) or ﬁ4(sl, s1, 81, 81) etc., which are also not
important. Now putting back X,(r) into the original differential equation, we will arrive at the
following functional representation:

k> |:f11 (s1), hy(52), ha(s1, s1), ha(st, $2), ha(sa, 2) ..., Bulsa, - ., 52),

eS]V, e2s1r’ o enslr’ eszi" €2szr’ L enszr’ e(s1+sz)r’ e(2s1+sz)r’
e(s1+2s2)r’ o e(S]-‘r(}’l—l)Sz)l" s1, s2i| = 1 4 %, (9)

Following the previous arguments, we will obtain algebraic equations for h;(s;), hi(s»), and
ﬁg(sl, 52, fll(sl), fl](sz)), where ﬁz(sl, s7) will also depend on the lower-order kernels, in this
case on ﬁl(sl) and fll(sz). The equations for the first-order kernels will be the same as they
were previously, and the only difference now is that they will depend on s; and s,, and they will
appear in the other algebraic equations with these variables. To generalize the procedure to the

n’th order, we have to excite the system with f,,(r) = > 7, ¢"”, in which case the response of the
Volterra representation becomes:

n n n
Xn(r) = Z hy(s)e™ + Z Z S ho(s;,, s )elSn T 4
i=1

=1 =i,

i. .. 2”: Sil...z',,ﬁn(sil, cee Sz',,)e(zi;:1 s, (10)

i1=1 in=Iy—1
where S, ; are symmetrical factors defined as n/m!, where n is the order of the kernel and m
is the number of the same frequencies, e.g. for h3(sy, 51, s2) it is Sj;o = 3/2. Substituting back
X,(r) and f,(r) into the original differential equation, we get the following functional form:

Fn [fll(si)’ 1712(5'1'1!'2)7 sty 1’Nll’l(slll...l',l)v eSir’ e2Sir3 ceey enSil" e(Si] +Si2)’”’ sty

n
el ttsin)r sl,sz,...,snj| = E et (11)
i=1

After collecting the terms with the same harmonics, we will again have a set of algebraic equa-
tions to determine each kernel, starting from 7, up to /,, where each corresponding equa-
tion will depend on the results of the previous kernels. To summarize the procedure, to be able
to determine the n’th-order Volterra kernel, first we have to apply a specific excitation with
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n different harmonics, and by expressing the response of the Volterra representation to that
excitation and substituting it back into the original differential equation, we can express the n
algebraic equations by collecting the terms for each harmonic. By solving these equations iter-
atively, we can obtain each kernel one after another.

The method works well for autonomous systems; however, our main task is to extend the
Volterra series representation to nonautonomous systems [22]. In this case, the dynamic equa-
tions (the original differential equation) have an explicit dependence on r as well, and the general
form can be expressed as:

“ ey 5 9 ) 12
drk dr? dr X(r), r (12)

k 2

F |:d x(r) d=x(r) dx(r) :| — ).
where the only difference to Eq. (3) is that now the F[-] function depends on r as well and not
just on x(r) and its derivatives. To be able to generalize this into the Volterra representation, let
us assume that the kernel functions in the Laplace domain have an extra parameter dependence
(let us call it R for the time being) as follows: fl,-(sl, cey Si) = fl,-(sl, ..., 8 R). What that means
is that now the Volterra kernels in the Laplace domain will be R-dependent, therefore, our task
is to determine the kernels at all frequencies for all possible R parameters. With the R-dependent
kernel functions, the response of the Volterra system in the Laplace domain can be expressed
as:

K(s: R)~ ) “hisr. ... R) [ [1s)), (13)
i=1 j=1

where the R parameter dependence sits in the kernel functions. In practice, we are not inter-
ested in just any parameter, but we would like to give a representation where R = r so that
the kernel functions in the Laplace domain also depend on the actual r variable. In the fol-
lowing, the meaning of such kernel functions will be clarified, and after the general descrip-
tion, a simple example will be given to show that the method works well for nonautonomous
systems.

The first main difference compared to the autonomous case will be in the derivative terms,
as now the output of the Volterra system depends on the parameter R, which in this case
will be equal to the variable r, so we are interested in the evolution of the transfer function
in the Laplace domain through the evolution of the original r variable. Using this assump-
tion, the first-order derivative of the Volterra response x;(r; R) to the f(r) = ¢ excitation
becomes:

dxi(r; R)
dr

d |~ ~
= — |:h1(s; r)e’” + ho(s, s; 1) + .. :|
Ry dr

_ dhy(s; )

dﬁz(s, $3T) o
— ‘¢
dr

+ 2sha(s, 55 1)e” + ..., (14)
dr

e+ sfll(s; rye’ +

where it is obvious that due to the r-dependence of the transfer functions, the derivative will
contain the derivatives of the h;(s; ) functions as well as extra contributions. By applying the
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n’th-order excitations f,, (n > 1) the derivative term can be expressed in a generalized form as:

{Zhl(sl’ r)eS’ + Z Z Slll7hlll2(slla Sl'n r)e(311+‘12)’ . } ==

l1 112 11

; .
dhy(s;; r ~ .
Z (ye” + sihy (s r)e”) +
‘ dr
i=1
n n =~
dhy(s;, 8i01) o L. ~ .

>0 S (%e( B (s, s)Ra(ss . s r)é’“"”'z)r) T
iv=1 ir=i

(higher-order terms), (15)

where the higher-order terms again contain the derivatives of the higher-order kernels. The
higher-order derivatives are straightforward to express; however, they will not be needed in the
applications shown in this paper.

Using the harmonic balance method with the Volterra representation for x,, to the n’th-order
input f,, we will get a functional representation that depends on the s frequencies and their
exponentials ¢, ¢%", ..., ¢™" and on the transfer functions fll(sl; r), fll(sz; F)yours ﬁl(s,,; r),
flz(sl, S5 1), flz(sl, 825 F), ..., flz(sn, S 1)y vt fln(sl, 82y ey Sy )y et fln(sn, Spy ..., 8y 1) and
their derivatives with respect to r as follows:

G |:d}~11(s,-1; r) dﬁz(sil, Siyy 1) dfln(sl-l, Siyy e vvs Si3 1)

d}" ’ d}" 3 sty d}" aﬁl(sil;r)’ﬁz(silvsiz;r)v”-a

" . SIF Sor Spl’ -
hy,(siys Siys oo vy 85,5 7), €7 ,62,---,6”,51,52,---55ni| =0, (16)

where the i; indices in s;; go from 1 to n, with i;y; > i;. By expanding G, we will arrive at a
polynomial approximation of the nonlinearities; therefore, it is always possible to collect the
exponential terms due to the structure given by the derivatives in Eq. (16). By doing that, we
will obtain the following form:

Ze”g( >+ZZe“”“")’g ( Dt +Z Ze@f”'”g,,x ) =0, (17)

i1=1 =i i1=1 ip=lp_

where the gi(. . .) subfunctions will be dlfferentlal equations (possibly nonautonomous), instead
of algebraic equations as was the case before, now for the h;(...) kernels, whose structure will
depend on the actual nonlinear differential equations. As before, we have to solve each subequa-
tion (now differential equations) to zero to be able to determine the kernel functions iteratively.
In the next subsection, we will give explicit expressions for the g;(...) functions for a simple
nonlinear differential equation. After we obtained the kernel functions in the Laplace domain,
we could apply the n-dimensional inverse Laplace transform to h,(si, . . ., s,; r) as:

ﬁsl,...,s,,{fln(sl, e Shs r)}(zl, e zmr)=hy(zy, ...,z 7). (18)

Assuming a causal system with f(r) = 0 for r < 0, the n’th-order Volterra response can be ex-
pressed as:

n

x(r) >~ Z |:/l . ../rh,-(zl, ey 20 r)l_[f(r — zj)dzj:|, (19)
=1 L0 70 j=1
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where the convolutional integrals are going from 0 to r, and the upper bound r is exactly
the extra parameter we introduced into the Laplace-transformed Volterra kernels before. In the
next subsection, we will show a simple example of how to deal with a system that is described
by a nonautonomous differential equation by calculating the Volterra kernels up to the third
order.

2.2. Volterra expansion of a simple nonautonomous nonlinear differential equation
In this section, we show a simple example of how to determine the nonautonomous Volterra
kernels for a nonlinear dynamical system described by the following differential equation:

dx(r) B
= f(r)(r + X(r)), (20)

where f(r) is the excitation, while x(r) is the output of the system. Following the description

given in the previous subsection, first let us apply a single harmonic excitation f; = ¢ and

determine the corresponding Volterra output, which will be x; = hy(s; r)e” + ha(s, 53 r)e®" +

et fln(s, ..., s;r). By substituting this back into Eq. (20) we will arrive at the following dif-

ferential equation:

dhy(s: r)
r

—d e’ + Sfl](S, V)e‘w. +...= esr(l’ + Bl(s’ r)eSr + EZ(Ss S, ,,)62sr +... )7 (21)

where it is easy to see that by collecting the terms with different harmonics, the differential
equation, which corresponds to the ¢ terms, will be:

dh (s, -
# +shi(sr) = (22)
;
which is a first-order linear, nonautonomous differential equation and has the following general
solution:
N -1
hi(s;r) = e_f“'dr[ / ey + Cl] -7 s— +Cie™™, (23)
s

where the C; constant has to be determined by the initial conditions of the system. Let us
assume here, for simplicity, that x(r = 0) = 0, in which case we could choose the integration
constant to be C; = 0, which will be apparent from the inverse Laplace—transformed response.
Taking this into account, the first-order Volterra kernel in the Laplace domain can be expressed

as:
sr—1

fll(S; r)= 2

24)

which function has a good, continuous, decaying behavior in the s-domain as we have ex-
pected. The implicit » dependence also shows itself, which tells us that the frequency behavior
of the Volterra kernel will change depending on what r we are interested in. To determine the
second-order Volterra kernel, let us apply an excitation with two harmonics s; and s; in the
usual form: f; = """ 4 ¢, giving the Volterra response as x; = fl](S], rye’ + fll(sz, rye? +
2Dy (s1, 2, F)e® 52 4 (... Substituting back into the original differential equations, we will
arrive at the following form:

dhi(si,r) o o  dhy(sn, .
1211 r)esll +Slhl(Sl, 7‘)@51' + %eszr_i_szhl(sz’r)eszr
o) o : -

+2M8(31+32)V+2(S1 +S2)h2(S1,S2,V)e(bl-ﬂz)’ + ...

dr
= (e‘“r + esz’”) (r + fll(sl, rye’” + I~11(s2, r)e + 2I~12(s1, 52, r)e(‘““’)’ +.. .), (25)
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where now we have more derivative terms as well as more mixed and higher-order terms. By
collecting the different terms with the same harmonics, we can express this in a more convenient
form as:

es”[ dhy(s1, 1)

- dhi(s2,r) -
— S| RN 7 —
0 + sthi(s1, 7) r]—i—e [ P + s2h(s2, 7) V]-i'

gi(...) o(...)

e(Sl+S2)V[ 2dh2(_S1 52, 1)

o + 2(s1 + $2)ha(s1, $2, 7) — Dy (s1, ) — By (sa, r)] +...=0, (26)

gna(..)

where it can be seen that the differential equations corresponding to the ¢*'” and ¢*2" harmonics
are the same as they were before for the f1 = ¢ excitation and again correspond to the first-
order Volterra kernels, but now with s; and s, variables. The relevant equation for the second-
order kernel is shown in the second line with the coefficient ¢ 1527 where it can also be seen
that it depends on fll(sl; r) and fll(szg r), as stated in the general description of the method in
the previous section. Each bracketed term now has to be equal to zero, which gives us basically
two differential equations to solve, as the first two equations are the same but with different
variables. The first differential equation has been solved previously, while the differential equa-
tion for the second-order Volterra kernel has the same structure, and its general solution can
be expressed as:

~ GE hy (s2:
ho(sy, 505 7) = e~ 019" fe(s“r”)’( 18137 + s r)>dr+C2:|

2

= e_(sl+s2)r /6(51+52)"<S1r_2 1 —+ S2r_2 l)dr + C2
257 255

2 2 22
B r(s7s2 + 8551) — 87 — 85 — S152

—(s1+52)
2s353(s1 + 52) + G @7)

where on the second line we substituted the solutions for hy(s;; ) and h;(s»; r). The solution

again has an extra constant, C,, which can be set to zero due to the same reasoning as before.

The solution for the second-order nonautonomous Volterra kernel can therefore be expressed

as:

r(s%sz + s%sl) — s% — s% — 5182
2s%s§(s1 +57) '

hy(sy, s257) = (28)

Before we give a general expression for the determination of the n’th-order kernels,
let us work out the third-order kernels by applying the usual excitation but now with
three harmonics as: f3 = €''" + %" 4 ¢®". The response of the Volterra system now will
be x3 = hy (s1, )’ + hy (52, 7)e%" + fll(S3, r)ess’ + 21~12(sl , 52, r)elsits)r 4 21~12(s1, 53, )elits)r 4
20 (82, 53, )2 4 6h3(sy, 52, 83, F)e® 2 4 (). Putting everything back into Eq. (20)
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we will arrive at the following form:

dhy(s1,7)
dr

dhy(s2,7)
dr

dho(s1, 92, 7) (545
AL AR
dr

dhy(s3, 1)
dr ¢

S3r

e + sihy(sy, r)e’” + e + sohy(s7, r)e’™ +

+s3hy (53, 1)e +2 + 2(s1 + $2)ha(sy, 52, r)eTHr

+ 2dh2(sla S37 r)e(51+53)r dh2(S2a S37 r)e(52+53)r

+ 2(51 + S3)}~12(S1, $3, r)e(~Y1+S3)r +2

dr dr
- dhs(sy, 52, 83,7 o
+ 2(s7 + 53)ho (52, 53, r)e(S2+33)r + +6%e(ﬁ+52+53)1
r
+6(s1 + 52 + 53)h3(s1, 52, 53, el L — [es" + e+ es-”]

x [r + Ry (s1, e + hy(sar)e™ + hy(ss, r)e™ + 2hy(sq, 52, r)el
+ 2Ry (s1, 53, 1) T 4 DMy (52, 83, 1) HI 4 Ghs(sy, 52, 53, 1)@ TR 4 ] (29)

where now we have terms for the determination of the ﬁg(sl, 52, 53) kernel functions as well.
The expression looks a little tedious; however, by collecting the different terms, we will see that
it has a very general form. But before we generalize it to the n’th order, let’s express the three
relevant differential equations for the first-, second-, and third-order kernels. By collecting the
terms with the same harmonics, we arrive at the following equation:

3 ~
z : dh i ~
i=1 dr

3003 ~
ts i) dhy(s;, s, 7) ~ ~ ~
+) D el [SjjTj + Sij(si + s)ha(si, 55, 1) — hilsi r) — ha(sy, f’)}

i=1 j=i

33 3 B
st dhs(si, sj, Sk, 1) ~
+ Z Z Z eltsrtsir |:Sijk+ + Siji(si + 57+ si)hs3(si, 7, Sk, 1)

i=1 j=i k=j
— Sijflz(sz', Sj, 1) — Sicha(si, sk, 1) — Sjkflz(sj, Sk, r):| +...=0, (30)

where again, we will have higher-order but irrelevant terms as well. As before, all the bracketed
terms have to be zero, which gives us the differential equations to solve for the kernel functions
up to the third order. The differential equations for the first-order kernels will have the exact
same form as before:
dfll(sﬁ r)
dr

where i = 1, 2, 3. The differential equations for the second-order kernels now will be:

+ sihu(sisr) —r =0, (€2))

dBZ(Siv A r)
Si— g

with i # j so §;; = 2. To determine the third-order kernels, the only relevant term is when 7 #
J # k,so (i, j, k)= (1,2, 3), therefore S;jx = 6, and S;; = Six = Sjx = 2, in which case we will

+ Si(si + Sj)flz(sl-, Sjr) — fll(si; r)— fll(sj; r)=0, (32)
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arrive at the following differential equation:
dhs(sy, 52, 837 7 ~
6% + 6(s1 + 52 + s3)h3(s1, 52, 83 7) =

2B (s, 525 1) + 20a(s1, 533 7) + 2ha(s2, 53 7). (33)

Following the expressions given for the higher-order kernels, it is easy to generalize to the n’th
order, in which case the differential equations for the nonautonomous Volterra kernels can be
expressed in the following compact form:

dhu(s1, ..., s, — ! h
(Sl - r) (ZSI) ha(st, ..oy Spy 1) = 4 I ) D PG,
n.

ilvin---vin—IE,Pn

(34)

where the factorial coefficients on the right-hand side are coming from the statistical factors
S, and the iy, ..., i, € P, in subscript in the sum on the right-hand side means that we take
all the possible unique permutations with i; < i, for j < k of the variables si, ..., s, for the
n — 1’th kernel, e.g. for n = 4 the right-hand side sum will consist of the terms B3(S1, S, 83;7),
h3(s1, 52, 545 1), ha(s1, 53, 545 7), and hs(s2, 53, 545 7).

To be able to give a cleaner representation of the results, let’s go back to the “original” domain

by inverse Laplace transforming the kernel functions by the definition of Eq. (18), where “r” is
just a parameter. The first-order kernel then becomes:

hi(z;r)=r—z, (35)

where the r dependence is obvious. Applying the 2D inverse Laplace transform to hy(sy, s2; 7)
we will arrive at the following expression:

r A
mmjzn=5+m—mm@rﬂo—i, (36)

2
where ©(z, — z;) is the Heaviside function. Finally, the inverse Laplace transform of the third-

order Volterra kernel becomes:

h3(z1, 22, z331) = [@(22 —21)0(z3 — zl)(_ — %)

4+ O(z3 — 21)O(z3 — Zz)(_ - %)
6 6/ 6

where again we have a simple r dependence as well. The response of the system can now be
expressed in the following convolutional integral form:

x(r) >~ /‘Orhl(z, Nf(r —z)dz + /0" /0" hy(z1, zo, DE(r — z))f(r — 22)dz1dzy

+m@—mm———)+ma—mx——9)—ﬁ}+g (37)

+/ f / h3(zy, z2, z3, )I(r — z)f(r — 22)f(r — z3)dz1dzoz3 + . . ., (38)
0o Jo Jo

where, due to the simple linear dependence on the z; dummy variables, it is very easy to calculate
the Volterra response for, e.g. polynomials; therefore, it is possible to give analytical expressions
for a wide range of excitations.

To show the behavior of the Volterra approximations of different orders, let us force the sys-
tem with a constant excitation: f(r) = 4. To proceed further, let us assume that the differential
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Fig. 1. The first three Volterra approximations (left) of the nonautonomous, nonlinear differential equa-
tion in Eq. (20) with 4 = 3 constant excitation (right).

equation in Eq. (20) is in a dimensionless form, therefore, r, x(r), and f(r) are all dimensionless
quantities. Let’s also set the amplitude to 4 = 3, and calculate the first-, second-, and third-
order Volterra approximations, which can be integrated out in closed form, giving the following
simple polynomial approximation to the solution of the nonlinear dynamical system:

x(r) >~ Ar* + A% (% — é) + A3r4<1—12 +t 85T 11—8) + O@), (39)
where the different coefficients in the brackets come from the integration of the separate parts
with the Volterra kernels in Egs. (35), (36), and (37). The results of the approximation can
be seen in Fig. 1, where the numerical solution of Eq. (20) is also shown with the first three
Volterra approximations. The results show that the Volterra approximation is better with in-
creasing order, which is the exact behavior that we wanted to see. It is also evident that the
nonlinearity in the original equation and/or the amplitude of the excitation are too large to be
able to describe the system in this range. While modeling a specific system, it is always crucial
to check the operating range of the specific approximation, e.g. first-order Volterra, which in
this case would mean the amplitude, type, and range of the excitations. In the next section, we
will go a step further and apply the nonautonomous Volterra expansion to a specific nonlinear
differential equation, which is able to describe the phase shifts in two-body quantum scatter-
ing experiments. Therefore, we will obtain an approximation that could be used in real-world
scattering problems.

3. Volterra expansion of the VPA at zero angular momentum
In this section, we will apply the nonautonomous Volterra expansion to the so-called VPA,
which is a first-order, nonautonomous, nonlinear differential equation and describes the phase
shift evolution through the interaction potential in two-body elastic scattering. In general, to
be able to describe the phase shifts in scattering experiments, one has to solve the Schrodinger
equation for an incoming plane wave in coordinate space until it reaches an asymptotic value. In
contrast, the VPA equation describes the evolution of the phase function through the particle’s
trajectory through the interaction potential, while the asymptotic value of the phase function
corresponds to the measurable phase shifts. The VPA equation for general angular momentum
can be expressed as [17]:

dsi(nk)  2uV(r)

2
dr kh? ’

[j 1(kr) cos(8;(r, k)) — n;(kr) sin(§;(r, k))] (40)
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where V(r) is the interaction potential, §;(r) is the phase function at distance r, and at momen-
tum k defined as k = (2uE/h?)!/?, while j;(kr) and n;(kr) are the Ricatti-Bessel and Ricatti—
Neumann functions, respectively.

The VPA is just a reformulation of the same quantum mechanical two-body problem which
can be described by the Schrodinger equation, and while it may have been more sensible to
look at the scattering problem through the evolution of the phase shift, it is still not an easy
task to solve analytically or numerically, especially for higher angular momenta, where usually
4th- or 5th-order Runge-Kutta methods are necessary [25]. In the following subsections, we will
use the previously described nonautonomous Volterra method to approximate the solution of
the VPA equation for / = 0, which describes the elastic s-wave scattering of two particles. In
particular, we will be interested in the so-called best linear approximation (BLA) [26], which is
described by the first-order Volterra system. After the determination of the Volterra kernels, we
will apply a simple convergence study to be able to determine the operating range of the BLA,
which is necessary to use the method for our main task, which is the construction of a robust
inversion method.

3.1.  Determination of the Volterra kernels
From now on, we will be interested only in s-wave scattering, therefore, in Eq. (40) we set the
angular momentum to / = 0, which greatly simplifies the equation to the following form:
d‘s‘)g’ B__ 2’“2;(” sin® (kr + 8(r, k), 41)
where again V(r) is the interaction potential, u is the reduced mass of the two-body systems,
k is the center-of-mass momentum, and §y(r, k) is the / = 0 phase shift. This differential equa-
tion still has a dominant sin®(-) nonlinearity with the variable r sitting inside, which makes the
system essentially nonautonomous, which greatly complicates the analytical solution of such a
problem. Previously, we assumed that the nonlinearity in the dynamical equations was polyno-
mial, therefore, we can express the Volterra system easily using the harmonic balance method
by collecting the different harmonics and solving the resulting differential equations for the
Volterra kernels. To be able to use the same method to determine the kernels, first we will Tay-
lor expand the nonlinear term as:

4 6 8 o i+192i—1,.2i
.9 , X 2x X 9 (=1)y*2""x
~y_ 4 2 Lo = _ 42
e B N T ; 20! (42)
where x = kr 4 §o(r); therefore, the nonlinearity can be expressed further as:

sin?(kr + 8o(r, k)) =~ Cy(kr + 8o(r, k))* + Calkr + 8o(r, K))* + ... =

=Y Gilkr + 8(r, k), (43)
i=1
where for simplicity, we have defined the C; coefficients as:
(_ 1)i+122i—1
Ci=—rr—. 44
(20)! 44

The series expansion of the nonlinear term introduces another approximation into the model,
and it is necessary to check the number of dominant terms we need to be able to describe
the system in a desired operating range. This will be done in the next subsection, where the
convergence analysis of the BLA will be carried out. It is also worth mentioning that instead
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of Taylor expanding the nonlinearity, it might have been better to express it by some orthogonal
polynomial, e.g. Chebyshev or Legendre, in which case the convergence could have been better.
Putting the Taylor expanded form back into the VPA equation in Eq. (42) we will arrive at the
following differential equation:

\ |
do(r k) 26V () [Z i (kr + k))z’}, (45)
i=1

dr kh?

where we have truncated the Taylor series expansion at order N and therefore approximated
the nonlinearity at O(x*V+1).

Let us now proceed and determine the first-order Volterra kernel by applying V) = ¢ ex-
citation, in which case the response of the Volterra system will be in the usual hy(s; r, k)e” +
ha(s, 53 1, k)e®" + (. ..) form, where the transfer functions will also depend on the K momentum
variable. Substituting this expression into Eq. (45), then taking its derivative on the left-hand
side, we arrive to the following equation for the transfer functions:

dhy(s; 1, k)

dr

~ 2uVi(r) l ~ 2i
e+ shi(s;r ke + ... = —W[;Q(lﬂ’ +hi(s;rn k)e + .. ) j| (46)

where we have omitted the higher-order terms, which have no importance in the determination
of the first-order transfer functions. Now let’s express the right-hand side by using the binomial

theorem as:
2i

(kr +hi(sin ke 4. 0% = (2l ) (kr>j(ﬁ1(s; ke + . .)ZH

=0

2i—j

2 . .

= 2,1 kr ’ l~11(s; r ke’ + ﬁz(s, ST, k)ez” 4.+ fl,,(s, o8 k)e™ ,
—o J
=

47)

which is a necessary step to be able to separate the different harmonics and collect the relevant
terms. In the Taylor expansion, the only contributions to the ¢* terms are C(kr)> + Cy(kr)* +
C»(kr)® + ... due to the multiplicative relation with the potential (excitation Vi (r)), which adds
an extra ¢ term to the mixed and to the (8y)" terms, which will consist of at least an ¢*" factor,
so even at the lowest order, the mixed terms will give a contribution to the ¢ (n > 1) terms,
which are not needed in the determination of the first-order kernels. Here, this means only
the j = 2i term will contribute to the determination of the first-order kernel. This can be seen
more clearly by writing out all the necessary terms in Eq. (46), in which case we will arrive at
the following form:

dhy(s; 1, k)
dr

s N 2 ; i=j
_le:Tez [ 2 G (211) (kr)] (ﬁl (57 R+ A s, s, k)ew)z ji| ' o
=l j=0

Collecting the first-order terms with the ¢ harmonics and equating them to zero gives the
following first-order nonautonomous differential equation for the first-order kernels:

dhy (s; 1, k)
dr

n dfln(s, R k)e

ol S nsfl,,(s, L8 ke =
dr

e+ sfll(s; k) +...

N 2 4
sty (s k) = =5 > Gl (49)
i=1
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The general solution to this differential equation can be given as:

hi(s; k) = —e_fm{ / [ef‘gdr{% ﬁ: kazj_lr%”dr - K}’ G
i=1

where the momentum k outside the sum has been put inside the sum, giving an overall k%!
contribution to the right-hand side of the differential equation. To solve the integral, we can use
the following general expression for the integral of an exponential multiplied by a polynomial:

. —D*rQi+1, —
/.e”rZ’dr _ ( ) L(Y2il+'li‘ I’S), (51)

where I'(2i 4+ 1, —rs) is the incomplete Gamma function, which in the case where 2i + 1 is an
integer can be given by the following sum:

(_ )21 J
2i =
Substituting back the results into Eq. (50) and omlttlng the K integration constant due to the
initial conditions of the VPA equation, we arrive at the general expression for the first-order
nonautonomous Volterra kernel in the Laplace domain:

. ZI/L N 2i (_1)j+1(2i)!k2i—l hi
hus; k)=§ZZ{Cf PR 3)
i=1 j=0

where we used the fact that (—1)*~/ = (—1)/ and the overal minus sign goes into the sum,
giving an overall (—1)/*! sign factor. The next step is to apply the inverse Laplace transform to
Eq. (53) to be able to easily express the phase shifts in coordinate space, which is more suitable
for the applications in which we would like to use the method.

As the first-order kernels in the Laplace domain have a simple 1/s/T! dependence on the
frequencies, the inverse Laplace transform can be carried out analytically by using the following

transformation rule [27]:
1 z/
cfonl =5 (54)

Applying the inverse transform, the first-order nonautonomous Volterra kernel can be ex-
pressed in the following form:

o) N 20 1V (i)
h](Z; V,k):h—/;LZZ{ l( '(;l _(])l') k2l 1r21 j ]>
0

i=1

TQ2i+ 1, —rs) = €(2i)! Z (rs)* . (52)

N i
m ( 1)z+/2211 l ;
ey | Gue e 9

0
where in the second line we have substituted C; from Eq. (44) and used the fact that (—1)*/+2 =
(-1 )i+ J
In the next subsection, the applicability of the BLA will be studied through a simple conver-
gence analysis, where we check the number of necessary terms in the Taylor expansion of the
nonlinearity and also address the operating range of the first-order Volterra approximation.

3.2.  Convergence of the first-order approximation
Let us first address the Taylor expansion of the sin’() nonlinearity in Eq. (41) by making some
assumptions on the problem we would like to describe with the Volterra approximation. As
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Fig. 2. Absolute error of the Taylor expansion of the sin’ (x) nonlinearity defined in Eq. (58). The colored
curves with different colors show the errors at different orders, while the dashed black line at Ey = 0.1
is only for reference.

the aim of this study is to describe low-energy, elastic nuclear scattering, we could make some
safe assumptions, e.g. on the range and strength of the expected potentials [28,29]. Before that,
however, let’s check the convergence radius of the Taylor expansion, which can be easily done

by the ratio test as follows:
(_1)N+222N+]xZN+2

2
. (2ZN+2)! T 4x B
Jim. Ty A e | = (56)

where x = kr + §(r), and the results indicate that the convergence radius of the Taylor expan-
sion of the sin®() function is infinite, thus we could safely use it to describe the nonlinearity
in the VPA equation. This, however, does not tell us the number of necessary terms we have
to use to estimate the original differential equation with good accuracy. To assess this, we will
check the error of the N’th-order Taylor expansion of f(x) = sinz(x) near xo = 0, which can be
characterized by the N + 1’th derivative of f(x) as:

dN'Hf(x) (x _ xO)N—H N+1

— ain2
AN+ Vi ORI

where ¢ is just some value where we would like to express the function, while we set xy = 0.
Due to the bounded nature of the nonlinearity, an upper bound on the absolute value of the
error can be given as follows:

Ry(x) = (57)

N+1

sin’(¢)—

IRy(x) = N1 D)

=<

(38)

N+l
‘(N + 1) ‘
_

En(x)
where Ey(x) represents the upper bound of the absolute error in the N’th-order Taylor expan-
sion of the nonlinearity. In Fig. 2 the error dependence on x and N can be followed, where x
is not just the distance, but the combination of the distance, momentum, and the coordinate-
dependent phase shifts as well. As the phase shift can be negative or positive, a rapidly changing
phase function could make x smaller (or at least not grow too much with increasing r); there-
fore, that would make the error of the Taylor approximation smaller or at least more controlled
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as well. In the worst case, if the potential is, e.g. strictly negative, the phase shifts would be
a monotonically increasing positive function, therefore, x will be a monotonically increasing
function as well. This would mean that we would need more and more terms in the Taylor
expansion as we go further in r. In nuclear physics, r is a few fermi, and k& depends on the bom-
barding energy, and the masses of the colliding particles. For nucleon—nucleon collisions at a
few MeV up to a few hundreds of MeV itis around k € [0.1, 1] fm~!, while the phase shift also
depends on the number of bound states, etc. An example for the possible range we are dealing
with is r € [0, 5] fm, k € [0.1, 1] fm~!, while ¢(r) &~ [, 7] as we do not want to include many
bound states in the calculations. By trying out the Volterra approximation for many bounded,
vanishing potentials, it has been concluded that N = 20 will be more than enough for practical
calculations.

The first-order Volterra approximation is, of course, not the full description of the nonlinear
dynamical system, therefore, it is also necessary to check what the operating range of the model
is, which in this case means the range of the potentials in both magnitude and distance. This
is also strongly related to the previously examined Taylor expansion, therefore, the number of
terms in the expansion should also depend on the possible potentials. To get a grasp on the
operating range of this system, we will generate many vanishing potentials with a predefined
range and magnitude and check the relative errors of the first-order Volterra approximation,
defined as:

1o 18507, k) — 8D (7, k)

A4, k) = — .
Ns ; 18307, k)|

(59)

where A represents the magnitude, Ny is the number of samples, and Séi)(r_,-) is the true phase
function of the 7’th sample at coordinate 7 calculated directly by the VPA equation, while 83)(r )
is the first-order Volterra approximation of the phase function calculated by convolving the
potentials with the h;(z; r) kernel functions in Eq. (55). The relative errors are only calculated
at the “asymptotic” value 7 set to be 5 fm according to the test potentials’ maximum range. To
generate the test potentials, a simple random-phase multisine form is used [30], which can be
defined as:
or/L ZnNzl sin(nwor + ¢,)
N )
where N is a normalization factor and is set to be NV = max(| Zr]lv:] sin(nwor + ¢,)|), while A4
is the “amplitude” of the potential, N is chosen randomly for each sample from N € U].. ],
and ¢, is sampled uniformly from the interval ¢, € U[0, 7], where U represents the uniform
distribution. The exponential factor makes sure that the multisine signal vanishes after a cer-
tain distance set by L. The parameters applied here generate continuous, “not too oscillating,”
and vanishing excitations in the range V(r) € [—A4, A] MeV. In Fig. 3 the averaged relative er-
rors for the multisine test potentials at three different laboratory energies are shown by using
Ng = 1000 samples in the error estimation. From the relative errors shown in Fig. 3 we can
crudely estimate the operating range of the first-order Volterra approximation; however, one
has to keep in mind that these errors are calculated by using only vanishing multisine test poten-
tials in the range of r & [0, 5] [fm], which is sufficient to describe the physical potentials we seek
in scattering experiments, but it might not be valid for other systems. By using these assump-
tions, we could deduce that the first-order Volterra approximation could describe the scattering
system with a few percent accuracy when the potentials are below a few tens of MeV and the

V(r;A,L)= A4 (60)
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Fig. 3. Relative errors of the first-order Volterra approximation for bounded, vanishing potentials gen-
erated by random-phase multisines at 71, = 1, 10, 100 [MeV] laboratory energies.
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Fig. 4. Phase function of the first-order Volterra approximation compared to the phase function obtained
from solving the VPA for a test potential shown in the right panel at 71 ,, = 10 MeV.

laboratory energy is under a few hundred MeV. In Fig. 4 an example is shown for nucleon-
nucleon scattering at 71, = 10 MeV, where the first-order approximation is good enough to
describe the scattering system.

In nucleon-nucleon scattering, the potentials could be larger than a few tens of MeV [30-32],
especially if we consider a hard repulsion near the scattering center. In that case, we would need
to extend our approximation by including higher-order terms, or we would need to model the
“remaining error” by some static nonlinear model if possible. To model nuclear potentials, we
will use the latter method, but before that, in the next section, the inversion procedure will be
shown, which will ultimately be used to describe the neutron—proton interaction potentials.

3.3.  Inversion of the first-order Volterra approximation

In this section, we will use the first-order Volterra approximation to solve the inverse scattering
problem, where the interaction potential is sought through the measured (or, in this case, sim-
ulated) phase shifts [33]. The forward problem is described by the VPA, and for the inversion,
we will use the first-order Volterra representation given by a convolutional integral with the
kernel function h;(z; r). In this section, we will use the previously determined operating range
to be able to estimate the phase function using the BLA with good accuracy. Keeping all that
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in mind, we will approximate the s-wave phase function in the VPA equation by the first-order
Volterra approximation as follows:

So(r k) ~ frhl(z; nk)V(r—z)dz

1 l+j221 1
/ {( '; KNPV (r - 2)dz, (61)
priardl WA R )l

where h;(z; r) is given by Eq. (55). In measurements, only the asymptotic » — oo phase shifts are
accessible, therefore, here we will set r to a value where the potential is zero or very close to zero,
and it will not cause any more detectable change in the phase function. The convolution integral
in Eq. (61) could be inverted by Fourier transform and division [34]; however, when there is
noise in the measurements, this simple technique is not very effective due to the sensitivity of
the deconvolution operation [35]. As we would like to give a more robust and noise-insensitive
approximation to the inversion problem, we will use a different method to estimate the V(r)
potentials from the measured asymptotic phase shifts. To solve the deconvolution problem,
we will assume that the potentials we seek can be approximated by a finite order of continuous
basis functions in coordinate space, in which case the integrals could be done analytically. In this
section, we will use two different basis functions to solve the deconvolution: (1) nonorthogonal
polynomials, and (2) orthogonal Legendre polynomials.

Let us start with the simplest representation, when the potential is given by a linear combi-
nation of nonorthogonal polynomials:

M
V(z) = Z amz", (62)
m=0

where a,,’s are the coefficients of the m’th basis functions, and the summation goes from 0
to M, where M represents the highest order in the series. By substituting the nonorthogonal
polynomials back into Eq. (61) we will arrive at the following form:

2 11+122—1 ) o M
So(r, k) =~ / “ZZ{( . (;l o P (e — 2)dz, (63)

i=1 j=0 m=0

where the linear dependence on the unknown a,, coefficients is apparent. The integral consisting
of z can be expressed analytically due to the simple polynomial form as:

./rZ-/(r —z)"dz = LG+ DEen + 1) pltmel (64)

0 T(j+m+2)

where, due to the fact that j and m are integer numbers, the gamma functions can be simply
expressed as factorials. By putting back the integrated form into Eq. (63) we will arrive at the
following analytical representation of the first-order Volterra response of the phase function
when the potential is expressed with nonorthgonal polynomials:

(k) = Z Z Z (= 1) 722! 21 2ikmt] (65)
0 nomla r al‘}’l . . r k]
Opolynonia h2 2i— )G +m+ 1)

i=1 j=0

where 8polynomial (7, k) 1s the ﬁrst-order Volterra approximation of §y(r, k) with nonorthogonal
polynomial basis functions of order M. This form is clearly linear in the a,, coefficients, which
greatly simplifies the inversion procedure as the sought coefficients could be described in an
analytical fashion or estimated by well-known optimization methods, ¢.g. gradient methods.
We will describe the inversion procedure at the end of this section, but before we do that, let’s
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express the first-order Volterra response with other basis functions, which will be more suited
for our purpose as well.

It is well known that nonorthogonal polynomials are not the best choice for fitting purposes
due to the large condition numbers of the coefficient matrices [36]. Large condition numbers
are undesirable if one works with noisy data, therefore, we would like to constrain them as
much as possible to be able to make a more robust estimation of the unknown coefficients. To
do this, let’s express the potential by Legendre polynomials [37] as:

M
V() =Y awPu(2), (66)

where P,,(z) is the scaled m-th order Legendre polynomial. To be able to describe functions on
z € [0, r] we need to scale the original Py )(zo) Legendre polynomials defined as:

e

(0)(20) . 2m Z( 1) ( ><2mm 2l> 81 2/’ (67)

where zy € [—1, 1]is the interval of the unscaled Legendre polynomials. To proceed, we need to
apply azo € [-1, 1] — z € [0, r] transformation, which can be done by zy = %Z — 1. The scaled
Legendre polynomials are now defined on z € [0, r] and can be expressed as:

[5]

1 2m =21\ (2 m=2
Polz) = 2m2( 1)( )(mm )(;z—l) . (68)

By substituting the scaled Legendre polynomials back into Eq. (61), we arrive at the following
expression for the first-order Volterra response:

r l H—]221 ) o
So(r, k) ~ fo { ZZ {( '(;l - k21—1r21—_/Z./}
M [%]

XZ Z( 1)( )(Zm 21) (2(r}’_2)_1)m_2l:|dz’ @)

mO

where the integrals are now a b1t more complicated than in the nonorthogonal case; however,
they can be put into a more convenient form by applying the solution of the following integral:
r m—21 i
/'zf'(z("_z)—l) dz:zFl[j+1,21—m;j+2;2].ﬂ—+l, (70)
0 r j+1
where »F1[a, b; ¢; d] is the hypergeometric series [38], and again the integral has the form ~ %,
where « is a positive integer number, which depends on the number of terms in the Taylor
expansion of the sin’() nonlinearity in the original differential equation. Putting everything
back into Eq. (69), the first-order Volterra response, using scaled Legendre polynomials can be
expressed as:

M N 2 [5] I dieme]
20 (= 1)+ 2A=m=1 (N 2 )]
8Legendre(”'a k) = 72 Zam ZZ { A -
prar e ot PAC MG+ DA "
szl[j+ 1,20 —m; j+2: 2]k2i—1r2"+1}, (71)

where, despite the fairly complicated expression with the hypergeometric series, the actual
result for relatively low-order polynomials is quite straightforward and easy to obtain. The
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first-order response 8y cgendre(r, k&) will have much better behavior than the previously derived
S8polynomial (7, k), which will be apparent from the obtained condition numbers at the end of this
section.

After showing that the convolutional integral in the first-order Volterra response can be ex-
pressed in closed form by using polynomial basis functions, let’s proceed with the actual inverse
problem we would like to solve. Here, let’s assume that the scattering problem is in the operat-
ing range of the first-order Volterra model, which means that the sought potential should be
in the range of a few tens of MeV’s and it should vanish around r ~ 5 fm. These numbers are
the consequence of the convergence studies shown in the previous subsection. As we have seen
before, each case has a linear dependence on the identifiable a,, coefficients, therefore, the prob-
lem is greatly simplified in contrast to the case when the system is described by a higher-order
Volterra series.

In the general case, when the phase function at some specific energy (k;) is described by a
higher-order Volterra model and the potential is sought in the form of a linear combination
of some basis functions, ¢.g. orthogonal polynomials, the response can be cast in the following
simplified form:

M M M
So(r, k) ~ ZamHl(r, k; N, m) + Z Z Ay A, Hao (1, ke N, my, my)

m=0 my=0 my=m,

M M M
+ Z Z Z amlamza"’l}H3(V’ k; N,ml,M2,M3)+--- ) (72)
my=0 my=m; mz=m;
where the £k momentum variable naturally corresponds to the energy of the scattering process,
while the H, (r, k; N, my, ...m,) functions contain the n-dimensional convolutional integrals,
which depend on the parameter N (the order of the Taylor expansion of the sin’() nonlinear-
ity). If one keeps only the first term, we arrive at the previously described BLA of the nonlinear
dynamical system, which in this case means the forward problem described by the VPA equa-
tion. As our task is to estimate the interaction potential by measuring the asymptotic phase
shifts, we need to find the inverse of the functional form shown in Eq. (72), which in this case
boils down to finding the unknown ¢; expansion parameters by knowing the 8y(7, k;) phase
shifts at some discrete energies corresponding to k; momenta, and at a “far enough” 7 coordi-
nate, which is related to the asymptotic phase shift where after that point the phase function will
not have significant changes. As the Volterra representation has a simple polynomial form, the
overall inverse problem is now a well-known optimization problem that can be solved by mul-
tiple numerical methods, even for higher-order polynomials that correspond to higher-order
Volterra representations.
Here, we will try to solve the inverse problem by using only the first-order Volterra represen-
tation, which means the problem can be cast into the following matrix form:

Hy(#, ks N, 1) Hy(7, ks N,2) -+ - Hi(7 ks N, M) || aq 8o(7, k)
Hi(7, ko; N, 1) Hi(F, ko; N,2) -+« Hi(7, ko; N, M) || a4z 8o(7, k2)

: (73)

Hi (7, kr; N, 1) Hy(7, ks N, 2) - - Hiy (7, ks N, M) | | am 8o(7, kr)

where L represents the number of asymptotic phase shifts we can use for the inver-
sion, ki, k»,,....,k; are the corresponding energies, while H(#, k; N, m) are the first-order
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convolutional integrals with the corresponding parameters at a specific 7 coordinate. The linear
system of equations representing the forward system is now directly invertible by matching the
number of measured phase shifts (L) and the order of the expansion of the potential (M), or
by using all the available phase shifts (which could be more or less than the order of the ex-
pansion in the potential), the a,, parameters could be estimated by numerical techniques, e.g.
by the conjugated gradient method. A good measure for the robustness of the inversion in this
case would be the condition number of the coefficient matrix, which will depend on the type
of expansion of the V(r) potential function. One would expect that the condition number of
the orthogonal polynomial expansion will be smaller than in the nonorthogonal case, which
indeed will be the case; however, it is not straightforward to see due to the rather complicated
expressions appearing in the Taylor expansion of the nonlinearity. Due to our a priori knowl-
edge of the physical system, it is easy to set up well-defined constraints for the optimization
problem. To show the general behavior of the method that we will extend later on to describe
real-life physical systems, let us set up a benchmark problem first, where we will try to estimate
the following potential from the measured phase shifts:

V() =e (" = 1), (74)
where the exponential decaying factor makes sure that the potential is within the operating
range of the first-order Volterra approximation. To construct the coefficient matrix, let us cal-
culate the phase shifts in the energy range 7i ., € [1, 101] MeV with a resolution of ATy, =5
MeV, which means L = 21 discrete points, which can be used to determine the unknown a,,
coefficients. The momentum k, which appears in the derivations, can be determined from the
laboratory energy as:

(T2 + 2m Tiay)

(4 m)? + 2my T
where m; and m, are the masses of the scattering particles set to m; = my = 940 MeV. The
next step in the inversion is the choice of the optimal order M of the polynomials. This is not
a straightforward task, as a too-complex model tends to overfit, and the coefficient matrices
could have large condition numbers, which will be problematic if the measured phase shifts
have too much noise. In contrast, a too-simple model will not be able to grasp the fine structure
of the potential, and we will not be able to reproduce the measured phase shifts well enough.
This is, of course, a well-known problem, and in practice, a few methods exist that use different
criteria to assess this issue, e.g. Akaike information criterion (AIC) and Bayesian information
criterion (BIC) [39,40].

Here, we will use a more straightforward method to deduce the optimal order of the polyno-
mial approximations, which will take into account that the original system is described by not
the Volterra model, but the VPA. In this way, we are able to compare the obtained phase shifts
calculated by the VPA equation from the estimated (inverted with the Volterra model) poten-
tials to the original phase shifts. By doing that, we will implicitly add some extra information
to the order selection procedure, e.g. if the inverted potential is outside of the assumed operat-
ing range of the first-order Volterra approximation, then this will be shown on the recalculated
phase shifts because, in this case, the potential we obtain from inversion is not guaranteed to be
part of the forward system that is estimated by the first-order Volterra approximation. There-
fore, to determine the optimal order of the polynomial approximations, we will compare the
original and the recalculated phase shifts by calculating their relative errors at different orders

(75)
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Fig. 5. Relative errors of the recalculated phase shifts from the inverted potentials with non
orthogonal and Legendre polynomial expansions of different orders. In both cases the optimal order
isM=>5.

as follows:

_ L 19 k) — 9% (k)|

L& gtk

R (76)

where L is the number of phase shifts at different k; momenta, while ¢'™°(k;) is the true asymp-
totic phase shift, and ¢*'(k;) is the estimated phase shift obtained by plugging the inverted
potential function into the VPA equation and determining the asymptotic phase shifts at all
the necessary k; momenta.

Using the above definition, after constructing the coefficient matrices in Eq. (73), inverting
them, and using the obtained potentials in the VPA equation at the previously defined L = 21
energies, we get the results shown in Fig. 5 for the nonorthogonal, and for the Legendre poly-
nomial cases, respectively. The relative error calculated in this way shows the same behavior for
both cases, which is not surprising as both are polynomial approximations. The huge difference
will be in their respective condition numbers of the coefficient matrices, which can be seen in
Fig. 6. The condition numbers shown in Fig. 6 suggest that our initial guess was indeed correct,
as the Legendre polynomial expansion has much lower values at all orders than its nonorthog-
onal counterpart. This will have great consequences when dealing with noisy data, but before
that, let’s show our results with the derived optimal orders M = 5 for each case. In Figs. 7 and
8 the estimated potentials with the recalculated phase shifts can be seen for the nonorthogonal,
and the Legendre polynomial cases, respectively. As can be seen, both potentials are very simi-
lar, which is not a surprise as they both have similar polynomial approximations. In both figures,
the right panel shows the original and recalculated phase shifts. In that graph, the blue circles
(Volterra) show the phase shifts calculated by the first-order Volterra approximation with the
inverted potentials, while the red crosses (Inversion (VPA)) show the phase shifts calculated by
the VPA equation with the inverted potentials. In this case, both results are very close to each
other, which is the expected behavior when the inverted potential is in the operating range of
the Volterra approximation.
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Fig. 6. Condition numbers of the coefficient matrices defined in Eq. (73) for the nonorthogonal and
Legendre polynomial cases. The graph strongly suggests that the Legendre polynomial expansion will be
much better in describing noisy data than will the nonorthogonal case.
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polynomials as basis functions. The phase shifts marked by circles correspond to the values obtained by
using the first-order Volterra approximation, while the red crosses show the values for the VPA calcula-
tions with the same inversion potential.
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Fig. 8. Reconstructed potential (left) and the corresponding phase shifts (right) using Legendre polyno-
mials as basis functions.

To conclude this section, we will check the robustness of the inversion with the Legendre
expansion by introducing some reasonable noise into the phase shifts used in the inversion
procedure. To do this, let’s add uniformly distributed random noise to each phase shift and do
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Fig. 9. Reconstructed potential (left) and the corresponding phase shifts (right) using Legendre polyno-
mials as basis functions, obtained by using noisy phase shift inputs.

the inversion with the noisy data. Figure 9 shows the potentials obtained with the recalculated
and original phase shifts when the random noise corresponds to 40% (upper side) and 20%
(bottom side) relative errors measured relative to the original phase shift data. The results are
convincing in both cases, as the general characteristics of the potentials are reconstructed even
when the noise is relatively large. From the recalculated phase shifts, it can be seen that the
Volterra approximation tends to smooth out the general behavior of the energy dependence of
the phase shifts, which will manifest itself in the obtained smooth potential functions. In the
next section, we will extend the model to be able to describe potentials that are outside of the
operating range of the first-order Volterra approximation and use the final model to obtain
the nuclear potentials using the measured nucleon-nucleon scattering data.

4. Nuclear potentials from the first-order Volterra expansion

In this section, the previously shown inversion technique with the first-order Volterra approx-
imation will be applied to the nucleon-nucleon inverse scattering problem. To do so, however,
the method has to be extended to be able to describe potentials which are expected to be out
of the operating range of the first-order approximation. One way to do this would be to use
higher-order terms in the Volterra approximation; however, in this case, the inversion proce-
dure will lose its simplicity because we will not have a simple linear relationship between the
free parameters and the measured phase shifts. It is worth mentioning, however, that when the
system is described by higher-order Volterra approximations, instead of Eq. (73) we will arrive
at a polynomial relation between the free parameters and the phase shifts, which can be solved
numerically by many well-known methods [41].

Here, however, we will use a different approach, mainly due to the simplicity and robustness
of the first-order approximation, which have been shown in the previous section. Let us first
make a few assumptions about the system we would like to describe. On one side, the sought
potentials fall into the previously described picture as they have to be (1) continuous and (2)
vanishing near 4-5 [fm]. By examining the first-order Volterra approximation in the previous
section, we have seen that the relative errors do not depend too much on the energy of the
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collisions; however, they have an increasing tendency with larger potentials. In Fig. 3 it can be
seen that for potentials reaching a few hundred MeV’s, the relative error is about 10%, which
is not too large, but it could be problematic in practical applications. Our task is therefore to
somehow model this difference between the first-order Volterra approximation and the true
system in the operating range of potentials a few hundred MeV in magnitude and at colli-
sion energies below 71 ,, = 200 MeV. While doing this, we would like to keep the first-order,
linear relationship between the «,, expansion parameters and the measured phase shifts, there-
fore, we will seek a (possibly) nonlinear transformation that transforms the phase shifts of the
true system described by the VPA equation to the phase shifts given by the first-order Volterra
approximation for the same potential function. To make this more clear, we aim to find the
following transformation:

o () = Q(¢o(k), .. ). @)

where ¢ (k) are the true phase shifts obtained by solving the VPA equation for some potential
V(r), while ¢y (k) is the first-order Volterra response for the potential and is given by the first
term on the right-hand side in Eq. (72). By defining the problem this way, the system could be
approximated by the following expression:

M
Q(d0(h). .. ) = Y anHi(F ks N, m), (78)
m=0

where H; () consists of the convolutional integral, whose form depends on the type of expansion
that we use for the potential functions e.g. nonorthogonal polynomial, Legendre polynomial,
etc., while 7 refers to the cutoff distance. In general, the Q() function could be anything, and
it is not necessary for it to be invertible. This way, we have kept the linear relationship between
the @, parameters and the (now) transformed Q(¢y(k), . ..) phase shifts.

To find the Q() transformation, we will use a data-driven approach and fit an RBF-type neu-
ral network in a desired operating range set by the applied training, validation, and test data, for
which we generate 10 000 vanishing potentials by random-phase multisines defined in Eq. (60)
in the magnitude range between —200 MeV and 200 MeV. The data have been divided as fol-
lows: 8000 samples are used for training, and 2000 samples are used for testing and validation
purposes. It is also a modeling step on how to define the inputs and outputs of the sought trans-
formation, e.g. for inputs, it could be simply the ¢ (k;) phase shift at a specific k;, or it could
be the full (¢(ky), ..., ¢(k,)) set of phase shifts, while the output could also be only one or
more phase shifts. By trying out different configurations, we came to the conclusion that to be
able to give reasonably good estimations, it is necessary to set up a Multi Input Single Output
(MISO) system, where the inputs of the system will be the ¢o(k;), po(k2), ..., Ppo(k,) measured
phase shifts at a predefined energy range and a specific k; parameter, while the output of the
system will be a single ¢y (k;) phase shift at the same k; energy. Considering all the above, the
transformation we seek can be described by the following expression:

MRBF _ [ ,_,71 (¢0(k,-)7hl.)2 n (kj=byy1 2 ]
d)V(k]) — Z ane i= o Tn+1 (79)
m=1

Q(go(k1).po(ka), ..o (k). Ke )

where w,,, b;, and o; are the free parameters of the RBF network, which have to be trained
through an appropriate method. As there is no need for this transformation to be able to
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Fig. 10. Relative errors of RBF networks with different numbers of basis functions. The networks are
trained by using 8000 training data, while the errors are calculated by using 2000 test data.

describe the whole system at any operating range, the determination of the k1, .. ., k, grid could
be problem-specific; however, it has to be noted that if one wants to describe a different sys-
tem, e.g. in a different energy range, the network has to be retrained with the appropriate new
parameters. In our case, the scattering problem is defined in the range approximately between
Tiap = 1 MeV and Ti 4, = 200 MeV, which corresponds roughly to k; € [0.1, 1.5] fm~!. By try-
ing out different configurations, it has been concluded that a uniform grid in k; is much better
than a uniform grid in 7} ., therefore, we set the k; parameter range to k; € [0.1, 1.5] fm~! with
a resolution of Ak; = 0.1 fm~!, which means 15 + 1 inputs for the RBF network (15 phase
shifts and 1k;). To train the free parameters wy,, b;, and o;, the method described in Ref. [42]
is used, where the b; centers and o; widths are chosen in an unsupervised manner, and the w,,
parameters are determined in a supervised manner by solving the remaining linear system of
equations.

The complexity of the network (Mggr) has been determined by trying out different config-
urations with different numbers of neurons in the hidden layer, whose results can be seen in
Fig. 10, where the averaged relative errors for the test data can be followed as a function of
the number of basis functions. By examining the errors, it can be concluded that Mggr ~ 1000
basis functions is enough to describe the system with an accuracy of a few percent ( 5%), which
will be enough for the application in which we intend to use the model. From the calculated rel-
ative errors, we can also see the general tendency that the error will decrease when we add more
neurons; however, after some point, the network will start to overfit (overtrain), and the test er-
rors, which in this case were used for validation as well, will stagnate or even increase. By using
more training data and more neurons, it would be possible to achieve a better generalization;
however, for our applications, this accuracy to a few percent will suffice.

In Fig. 11 we show results of an RBF network with Mggr = 1000 basis functions for 40
normalized test data, which means that the outputs (phase shifts) are normalized to the interval
[—1, 1]. The training of the network has been done by first normalizing the inputs and outputs
between [—1, 1], then “training” the widths and centers in an unsupervised manner and finally
solving the remaining linear system of equations to obtain the w,, coefficients.
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Fig. 11. Comparison of the output of the trained RBF network with Mrpr = 1000 basis functions (red
crosses), to the test data (black line with dots). By considering Fig. 10 the relative errors are approximately
5%.

As can be seen, the RBF network was able to describe relatively well the remaining nonlin-
ear errors after identifying and using the first-order Volterra approximation; however, some
remarks are in order. Firstly, we have used vanishing potentials generated by multisine signals
for training the RBF network. In general, we could have used any other type of training data
that suit our needs, e.g. they do not have to be vanishing, or they could be rapidly oscillating,
etc. It has to be noted, however, that with more complex signals, the resulting RBF network
should be more complex as well. It is also possible that a simple “static” RBF construction is
not enough to be able to describe the remaining dynamic nonlinear system.

On the other hand, it is not necessary to model every possible phase shift generated by the
vanishing multisine potentials. In this case, we did not make any constraints on the possible
output phase shifts that we wanted to model; however, by using potentials that correspond to
a specific interval of phase shifts, e.g. ¢ € [0, ], the network could be greatly simplified. This
could be simply done by knowing the phase shifts we want to describe.

By applying the trained RBF network, in theory, now we would be able to model a nucleon-
nucleon scattering scenario with a few percent accuracy if the potential is approximately be-
tween [—200, 200] MeV. This assumption is, however, not neccessarily known before we make
some tests or know more about the system in question. One thing we could do is check the
generated phase shifts of the training data, and if they cover the range we would like to de-
scribe, then there is a huge possibility that a potential which satisfies the constraints can be
found.

To be able to give a more precise estimation for the interaction potential, we will introduce a
correction step into our inversion scheme so that we will be able to make a better fit to the phase
shifts by making small changes in the potentials. First, let’s assume that after the inversion,
we have obtained a potential Vy(r), which is able to describe the measured phase shifts with
a few percent accuracy. By assuming that the general shape of the potential is readily given
by this first estimation, we only want to make small corrections in this potential as Vo (1) =
Vo(r) + AV(r). The correction will be given by using Spline basis functions by first interpolating
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the starting potential Vy(r) with a predetermined number of control points. The number and
places of control points can be easily determined by observing the Vy(r) potentials, e.g. if the
potential should be described in the range of r € [0, 6] fm, then a good choice would be 10-20
control points distributed uniformly between 0 fm and 6 fm.
Next, to make the correction step, we will vary the “amplitude” of the control points until
we reach an optimum or a satisfying value in the following error function:
Ny

1 ) | (k") = Poorr (k")
- FGED
where N, is the number of phase shifts we use for the correction step at the original (measured)
and not the interpolated momentum grid A"*, ¢(k****) are the measured phase shifts, while
Georr (k°*) are the recalculated phase shifts from the corrected Vo potential. To optimize
for this error function, we will use the Simulated Annealing (SA) algorithm, which has some
probability of accepting corrections with larger errors; however, this acceptance probability will
decrease in time with a predetermined speed given by the following exponential form:

T = Toe ™™, (81)
where T and k are free parameters, while 7 is the number of steps in the annealing algorithm.
The free parameters control the speed of convergence and are problem-dependent. By applying

the previously described method, the full inversion scheme can be summarized in the following
three steps:

E=—
Ny

(80)

* Interpolate the measured phase shifts ¢ to the predetermined momentum grid (used for the
RBF network) and transform the interpolated phase shifts into the Volterra phase shifts ¢
by using the trained RBF network using Eq. (79).

» Choose suitable basis functions, and an order M for the potential (polynomial, Legendre,
etc.), and build the coefficient matrix in Eq. (73), then solve the resulting linear system of
equations for the unknown «,, parameters described by Eq. (78).

e Assuming the obtained potential V(r) is close to the real one, make small corrections on it
by expanding the V((r) potential with Spline basis functions, and using the SA algorithm
to try to find a better solution V. (), which has a better fit to the measured phase shifts
at the orginal (not interpolated) momentum grid.

Finally, we could use the described method to obtain the interaction potentials in nucleon-
nucleon scattering at fixed angular momentum, for which we will use the data for the 1S,
neutron—proton phase shifts summarized in Ref. [43]. After going through all the steps of the
inversion scheme (interpolating the measured phase shifts onto the predetermined momentum
grid, solving the linear system of equations for the coefficients of the polynomials, then making
small corrections by the corrector step), we arrive at the interaction potential shown in Fig. 12.
The obtained potential has the expected shape, with a stronger repulsive part at short distances,
possibly due to nonperturbative quantum chromodynamic effects, and a long-distance attrac-
tive part, while the whole potential tends to vanish around 5 fm.

Next, let us check the recalculated phase shifts for the uncorrected and also for the corrected
potentials. This can be followed in Fig. 13, where in the left panel the uncorrected phase shifts
calculated at the interpolated momentum grid are compared to the measured and interpolated
phase shifts, while in the right panel the corrected phase shifts now at the measured momenta
are compared to the measured phase shifts. In the left panel, the comparison has been done on
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Fig. 12. The final V. (r) potential obtained after inversion using Sth-order nonorthogonal polynomials.
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Fig. 13. Comparison of the recalculated phase shifts using the obtained pure Vy(r) and corrected V o (r)
potentials. In the left panel the comparison is done between the uncorrected results and the measured
phase shifts interpolated to the momentum grid of k; € [0.1, 1.5] with a resolution of Ak; = 0.1, while
in the right panel the corrected results are shown compared to the measured phase shifts at k7",

the interpolated momentum grid because the pure inversion is done at those &; values; however,
the correction step uses the original momentum grid, therefore, in the right panel, the corrected
results are compared at those momenta. From the comparison of the phase shifts, it can be seen
that the pure inversion was able to reproduce the measured phase shifts relatively well with a
few percent averaged accuracy, which is the expected behavior, since the RBF network, which
models the difference between the first-order Volterra approximation and the full nonlinear
dynamical system, had an accuracy of the same order of magnitude. After the correction, the
relative error became even smaller, reaching less than 1%, which can be followed in Fig. 14,
where the averaged relative errors are shown at each accepted annealing step. Finally, let’s check
the difference between the pure and corrected potentials. This can be seen in Fig. 15, which
shows that indeed, a few MeV corrections here and there will give us the necessary corrections
in the phase shifts. This means that the crude shape of the sought potentials is indeed achievable
without using any correction step, and after we have a good first guess of the potentials, any
other suitable method could be used to achieve an even better fit to the measured phase shifts.
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Fig. 14. Averaged relative errors during the SA optimization with a stopping condition of 1% relative
error. The initial 5% value corresponds to the recalculated phase shifts using the uncorrected Vo (r) po-
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Fig. 15. Comparison of the pure V(r) and the corrected Vo (r) potentials. The upper panel shows the
potentials, the lower panel shows their difference.

With this simple real-life example, we have shown that the method is indeed able to describe
the inverse nonlinear and nonautonomous system with good accuracy, even without final state
correction. The main advantage of the method is the analytical representation of the under-
lying dynamical system for weak potentials, which can be extended by additional terms in the
Volterra series. Here, we only applied the first-order Volterra representation, which gave us the
BLA of the nonlinear system, therefore, the inverse problem boils down to solving a 1D decon-
volutional problem. This approximation is only valid at a certain operating range; therefore,
if we want to use the Volterra method to solve the more general inverse problem, we have to
add higher-order terms into the Volterra series or have to model the difference between the full
system and the BLA with some additional method. In the first case, the Volterra kernels can
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be determined in an analytical fashion, and after we choose a basis function set for the expan-
sion of the sought potentials (e.g. polynomials), the inverse problem can be formulated as an
algebraic (polynomial) system of equations that has multiple well-developed numerical meth-
ods for its solution. In the second method, the difference between the true and the first-order
system has to be modeled by a suitable method, e.g. by using neural networks. Here, an RBF-
type neural network has been used to model the “remaining” system. The advantage of this
method is the flexibility in how to model the difference, as we can easily choose the inputs, out-
puts, and hidden parameters, and we can even use the preliminary knowledge of the system to
constrain the training samples, therefore greatly simplifying the possible model.

The method described before should be able to model the system with an accuracy of ap-
proximately the applied neural network model, therefore, it is a crucial step to fit a model that
is able to generalize well enough to inputs that were not part of the training samples. Solving the
inverse problem this way, we will be able to obtain a good representation of the sought poten-
tial; however, as the phase shifts are very sensitive to even small perturbations in the potentials,
whenever we might have some larger discrepancy in some of the phase shifts, we could apply
a correction step to “fine-tune” the potentials. In the case of the 'Sy neutron-proton scattering
example, we have seen some larger discrepancies between the phase shifts only at lower ener-
gies; therefore, we could have assumed that the V() potential needed some minor corrections
at larger distances near its decaying tail, which was indeed the case.

5. Conclusions

In this paper, the Volterra series method to approximate nonlinear dynamical systems has been
extended to be able to describe nonautonomous nonlinear differential equations as well. In this
case, to be able to determine the Volterra kernels, differential equations have to be solved instead
of the usual algebraic equations. The method has been used to obtain the first-order Volterra
kernel of the VPA with zero angular momentum, which is a first-order nonautonomous and
nonlinear differential equation used to describe the phase shift evolution in an s-wave two-body
elastic quantum scattering scenario. We have shown that the first-order Volterra approximation
is able to describe the system in a reasonably wide operating range; however, to be able to de-
scribe nuclear scattering, it was necessary to include higher-order Volterra terms or model the
difference between the full system and the linear approximation with an appropriate model. We
chose to describe the difference as a nonlinear noise term with RBF neural networks. By using
reasonable assumptions on the potentials (vanishing, continuous, bounded, etc.), we were able
to model the noise term as a “static” system in the sense that it does not depend on the coordi-
nates » but only on multiple phase shifts at a predetermined momentum grid. By extrapolating
the measured phase shifts to this momentum grid and then using the RBF network to trans-
form them into some new phase shifts, which can now be described by the first-order Volterra
approximation, the inverse problem can be cast into a 1D deconvolutional form. By expanding
the sought-after potentials in polynomials, the deconvolution can be written as a linear system
of equations for the unknown coefficients, which can be easily solved. To determine the opti-
mal order of the polynomials, we recalculated the phase shifts by solving the VPA equation for
the resulting potentials at each order. After the inversion, the potential should be able to ap-
proximate the true one with the approximate accuracy of the applied neural network. At the
last stage, a fine-tuning step has been applied using Spline basis function interpolation and SA
optimization, whereby, using small adjustments in the values at the control points, we were able
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to make small, continuous changes in the potentials in coordinate space. This method can be
used for optimization by using the averaged relative difference of the measured and recalculated
phase shifts as a goal function for the SA method.

The described method has been applied to the 'Sy neutron-proton scattering at fixed angu-
lar momentum in the energy range of 1 < 71,5, < 200 MeV, giving very good results with an
averaged relative error of less than 1% at the measured phase shifts. Regarding the inverse scat-
tering problem the method could be extended to be able to describe nuclear scattering at fixed
energy, where the general, angular momentum-dependent VPA equation has to be approxi-
mated by the nonautonomous Volterra series method. It is also possible to include singular
potentials into the picture; however, to do so, we have to consider different initial conditions
when determining the Volterra kernels, which could complicate the analytical determination of
the higher-order kernels.
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