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ABSTRACT: In this work, we demonstrate that quantizing gravity on a null hypersurface leads
to the emergence of a CFT associated with each null ray. This result stems from the ultralocal
nature of null physics and is derived through a canonical analysis of the Raychaudhuri
equation, interpreted as a constraint generating null time reparametrizations. The CFT
exhibits a non-zero central charge, providing a mechanism for the quantum emergence of
time in gravitational systems and an associated choice of vacuum state. Our analysis reveals
that the central charge quantifies the degrees of freedom along each null ray. Throughout
our investigation, the area element of a cut plays a crucial role, necessitating its treatment
as a quantum operator due to its dynamic nature in phase space or because of quantum
backreaction. Furthermore, we show that the total central charge diverges in a perturbative
analysis due to the infinite number of null generators. This divergence is resolved if there is a
discrete spectrum for the area form operator. We introduce the concept of ‘embadons’ to
denote these localized geometric units of area, the fundamental building blocks of geometry
at a mesoscopic quantum gravity scale.

KEYWORDS: Classical Theories of Gravity, Models of Quantum Gravity, Scale and
Conformal Symmetries, Space-Time Symmetries

ARX1v EPRINT: 2407.11132

OPEN AccEss, © The Authors.

Article funded by SCOAP? https://doi.org/10.1007/JHEP12(2024)028


https://orcid.org/0000-0001-6631-836X
mailto:ciambelli.luca@gmail.com
mailto:lfreidel@perimeterinstitute.ca
mailto:rgleigh@illinois.edu
https://doi.org/10.48550/arXiv.2407.11132
https://doi.org/10.1007/JHEP12(2024)028

Contents

1 Introduction 1
2 Classical results 4
2.1 Review of previous results 4
2.2 Area commutator 7
2.3 Primed diffeomorphisms 9
2.4 Conformal time and caustics 11
3 Quantum gravity CFT 14
3.1 Spin-0 By CFT 16
3.2 Perturbative gravity CFT 18
3.3 Asymptotic infinity 27
4 Quantum time 29
4.1 The problem of time. .. 30
4.2 ...and its resolution 33
5 Mesoscopic quantum gravity: the embadon 36
5.1 Molecular geometry 37
5.2 Relationship with other approaches to quantum gravity 40
5.3 Embadons and gravitons 42
6 Final words 43
A Classical details 45
B Perturbative brackets 46

1 Introduction

Physics on null hypersurfaces radically differs from physics on timelike and spacelike hyper-
surfaces. Already at the geometric level, a null hypersurface has a degenerate metric and a
preferred vector field [1-3]. The consequences of describing physical laws on this structure,
now referred to as a Carrollian structure [4-7],! are still unfolding [10-17]. Specifically, it
took the community many decades to completely master the geometry and dynamics induced
by gravity on a generic finite distance null hypersurface [18-24]. In [24] (see as well [25, 26]),
echoing [27-36], a symplectic analysis for the Raychaudhuri constraint has been performed,
and the Poisson bracket has been derived.

While at asymptotic infinity the symplectic phase space has been quantized [37—46],
at finite distance this task is more challenging. The quantization of finite-distance null

'The Carroll group is the ultrarelativistic contraction of the Poincaré group [8, 9].



hypersurfaces has been primarily addressed for black holes [47, 48] and its thermodynamics [49—
56], while generic null hypersurfaces have been studied in the series of precursory works
by Reisenberger [57—61], Wieland [62—66], and in [67]. At finite distance, an important
breakthrough led by Bousso and Wall has been the application of quantum information tools
to QFT and gravity, leading to the formulation of entropy bounds and area laws [48, 68—
82]. A major difference between finite distance and asymptotic infinity is that in the latter
the Ashtekar-Streubel phase space (and generalizations thereof [83-88]) does not contain
the celestial sphere metric, which is therefore not dynamical. This implies that one can
successfully quantize asymptotic gravitons without quantizing the underlying geometry, even
for finite Newton’s constant. At finite distance the situation changes: the metric of a cut
and the shear are conjugate pairs, and thus one cannot avoid promoting the geometric data
to quantum operators. Even perturbatively in Newton’s constant, if one wants to include
quantum backreaction [89-93] (see also [94] and references therein), the geometry must be
properly quantized. These quantum effects predict that the area is an operator [95, 96]
which needs to be identified with the modular Hamiltonian, and therefore acquires quantum
fluctuations [73, 97, 98].2 The quantum aspects of null hypersurfaces and gravity-induced
dynamics is the primary target of this manuscript.

Although seemingly more technical, we focus our attention on the null case because
some universal features drastically simplify the study of dynamics, such as the notion of
ultralocality, which has been fully appreciated and exploited in [48]. It dictates that the
Poisson brackets are zero for fields evaluated at different null rays, rendering the system
effectively one-dimensional. In other words, fields on different null generators are independent.
This is a tremendous simplification with dramatic consequences for the quantization. Another
simplification is that null physics is inherently conformal, as there is no intrinsic meaning of
distances in null time; the only meaningful notion is that of past or future, i.e., of the causality
of events. This fact has been successfully exploited in near horizon physics, to appreciate
that gravity contains a dimensionally-reducible CFT sector [102-104], which could provide a
framework for computing the black hole entropy from horizon’s microstates [102, 105-107].
However, this has been done only for specific backgrounds, such as spherically symmetric
spacetimes and/or (near) extremal black holes, in which an AdS subspace emerges and thus
a CFT naturally appears from its isometries (see e.g. [108]). It is our intention to show
that this CFT structure pertains to all geometries: it is a universal feature of the induced
gravitational phase space on a generic null hypersurface. Indeed, we will demonstrate that
ultra-locality and conformality implies that every gravitational system is a one-dimensional
(i.e., a two-dimensional chiral) CFT, once projected on a null hypersurface. This provides us
with a window toward the quantization of null geometry and gravity, in which the infinitesimal
area of a cut is pivotal. We emphasize that the dynamical fields are the geometric data
themselves, together with the spin-2 gravitons and matter.

The most basic quantum feature of a two-dimensional chiral CFT is its central charge.
We show that in this context, the central charge is associated with the boost symmetry, that
is, the rescaling of the null vector field, and we compute its value explicitly in certain settings.
Turning off the spin-2 radiative fields, we compute its contribution from the geometric data

2Other signatures of quantum gravity effects on null hypersurfaces are described in [99-101].



alone, which organizes as a fy CFT [109, 110]. We can also compute the central charge in
perturbative gravity, and we propose a novel framework here for considering perturbations
around expanding backgrounds. We show that the central charge is a count of the number
of fields on each null ray, and thus it diverges as long as there are infinitely many null
generators on a cut.

The central extension of the algebra of constraints is a key result. We have that the
central charge vanishes classically, diverges in QFT, and we postulate that it is finite in
quantum gravity. Furthermore, we argue that the central charge plays an important role in
addressing the problem of time, which is one of the main issues of background-independent
models of quantum gravity [111-113]. Indeed, diffeomorphism invariance and background
independence lead to the absence of a physical time, expressed in the impossibility of defining
creation and annihilation operators. We take the appearance of a central charge and the
subsequent anomaly in rescaling time as an indication that time appears as a result of a
quantum effect. This is related to the constraint algebra being represented projectively and
the appearance of a preferred sl(2, R)-invariant vacuum state.

The central charge being infinite is a manifestation of the universal nature of divergences
in QFT [114]. This is also present in any effective field theory of gravity, and it is rooted
in the problem of subregions and factorization of the gravity phase space at the classical
level, and Hilbert space at the quantum level, [92, 115-127].3 A potential resolution is the
introduction of quantum constituents that localize the degrees of freedom to subregions.
The constituents are quantum bits of area, crucial in the quantization. Indeed, the area
universally couples the spin-0 geometric data to the spin-2 and matter, and its value classifies
the different types of representation of the corner group associated with any codimension-2
cut of spacetime, [135, 136]. We therefore propose a molecular quantization in which the
quantum area operator can vanish except at ‘punctures’ On the latter, the area form creates
geometry, and thus, we refer to these area constituents as epfad6v, which is the Greek term
for area and in the Latin alphabet it reads epfaddov= embadon. The works of Krasnov can
be considered as progenitors of the embadon [137-139]. This is similar to the introduction of
molecules in the discovery of Brownian motion. If only N punctures are created, we show
that the total central charge becomes finite, such that the QFT limit is a large-N limit.

The paper is organized as follows. In section 2 we review [24], focusing on useful results
for the quantum aspects of the theory. We then offer a classical application, the area
commutator at two different null times. Finally, we discuss the notion of conformal time
and caustic avoiding times. Section 3 is devoted to the principle quantum computations of
the manuscript. After proposing the OPE of the Raychaudhuri constraint at the quantum
level, we focus on the spin-0 sector alone and find that its quantization leads to a Sy CFT.
Ultralocality then implies that the central charge diverges due to the infinite number of null
generators. Afterwards, we reintroduce the spin-2 degrees of freedom in the perturbative
regime G — 0. We describe how to set up a phase space analysis for generic expanding
backgrounds. Performing the canonical quantization of the system, we compute the central
charge for non-expanding backgrounds and discuss the steps for expanding backgrounds. The

3This is particularly relevant in lower-dimensional gravity models, where one can fully quantize the theory.
Recent papers include [128-134].



section ends with the application of our results at asymptotic null infinity, where the infinite
central charge is at the core of the infinite Bondi mass quantum fluctuations. In section 4,
we argue that the appearance of time is a quantum effect in gravity. This is rooted in the
construction of gauge-invariant observables and in the choice of vacuum. In particular, the
presence of an anomaly in the quantum constraint algebra is crucial for the appearance of
time, and we argue that certain features of QFT are recovered if the central charge diverges.
The central charge can be rendered finite by introducing the concept of embadon. In section 5,
we show how we can achieve this while maintaining covariance. For this, we argue that the
area at an intermediate energy scale, called mesoscopic gravity, has discrete support on the
cuts, leading to a molecular view of the geometric data. We finish by comparing this approach
with other quantum gravity scenarios. Section 6 offers a series of open questions and avenues
of investigations that we intend to pursue next. Technical details on the derivation of the
Poisson brackets are displayed in appendices A and B.

2 Classical results

2.1 Review of previous results

Let us begin with a short review of [24]. We will focus on concepts that are directly relevant to
the present paper, and further details are collected in appendix A. Consider a 3-dimensional
manifold AV endowed with a Carrollian structure. The geometric data are a nowhere-vanishing
Carrollian vector field ¢* and a degenerate (corank-1) metric g,p such that £%q,, = 0. This is
the geometric baseline to describe a generic null hypersurface in spacetime from an intrinsic
perspective, where ¢ describes the null generators.

In [24], building upon previous results [7, 11, 13, 21, 22], we have seen that the bulk
Einstein equations projected to a null hypersurface, i.e., the Raychaudhuri and Damour
constraints, can be recast as the conservation of a Carrollian energy-momentum tensor. That
is, introducing the Carrollian connection D,, the constraints can be written as DyT,? = Toat,
If we project this on £ = J,, we obtain in particular the Raychaudhuri equation

C = TH — 1°DyT,° = 02Q — pd,Q + Q0. 0y + STGTHAY). (2.1)

Here, 0,° is the shear, Q is the infinitesimal area element on a cut C of N, and pu is the
surface tension, defined as

=K+ Q (2.2)
2

It thus contains the inaffinity x,* which coincides with the surface gravity in the special
case of a Killing horizon, and the expansion 6. The surface tension, identified in [30], plays

a pivotal role in our analysis.
The manifold A is a null hypersurface in the bulk. A generic null hypersurface is expected
to develop caustics at finite time.® Caustics are focusing points, where the null rays converge,
and thus the area of transverse cuts shrinks to zero, which implies locally 2 — 0. We will

40n N we have D% = rf°.
5We generically refer to creases, corners, and caustics, as discussed in [140], as caustics.



choose N to be the portion of a null hypersurface between two caustics, or between one
caustic and infinity, such that classically © and thus its integral (the area of a cut) is always
positive definite inside A/. Calling the caustics Cy and Cy, we therefore require ON = Cy U Cy.
As we will see, we can always perform a diffeomorphism to a time that spans from —oo to
+oo inside A. Thus, without loss of generality, we can assume that we are using coordinates
such that A is of infinite coordinate extent. One should note that given such a choice of
time, there are diffeomorphisms that preserve these properties and there are diffeomorphisms
that do not. We will see later that these remarks are important for quantization, and in
fact one must make a judicious choice of time to be used.

In [24], we constructed the primed canonical phase space, in which the condition ¢ = 0
is imposed. As we review in section 2.3, this can be achieved by suitably combining the
symmetries of the theory — diffeomorphisms on A and local internal boosts (rescalings of
¢) —, leading to the primed phase space transformations

2Ianb = £anb> E/f‘gab = au(fgab)a (2'3)
o= 0u(f1) + o2 f, g0 = f0,Q, £:0=0,(10).  (2.4)

An important point is that the transformation of p is anomalous, in the sense of [32].
That is, one might have expected p to transform as a 1-form Lfp = 0,(fp), but under
the primed phase space transformation, it transforms as a connection. One can say that
its phase space transformation does not agree with the naive spacetime transformation
App = (Ef —Lf)p = 02 f, where Ly is the spacetime Lie derivative associated to f0,,
see [141].

The canonical symplectic two form for the gravitational degrees of freedom is

Qen = ﬁ /N ey (5(%90—‘”’) A S8Gap — S0 A 59), (2.5)

where, since we are focusing on the Raychaudhuri constraint, we decoupled the spin-1 sector
setting 0/ = 0 (the primed phase space) and thus gauge fixed ¢ = 9,. We introduced in
this expression the coordinate measure 55\0/) =dv A e(co), where g¢ = Qséo) is the measure
on a cut C at constant v.

Using the field variations spelled out above one can then compute the charges
I}Qcan = —0M; + Fy. (2.6)

The last term is a corner term that represents the symplectic flux

1

_ 0) 1) ab — 189 2
Fr = 5nc o2 1 (300000 — 19, (2.7)

and needs to vanish in order for the symmetry to be canonical.® The first term is the
Noether charge

- L (© - A 1 (0) _
My =ga /Nw (fC+0u(20.f = [0,)) = —= /Mec (Q0uf — f0,0).  (2.8)

5Tn this analysis we restrict our attention to cuts at constant v, since we have gauge fixed ¢ = 9,. These
cuts are also called corners in this manuscript, as they are codimension-2 surfaces from the bulk perspective.



Here = means that we impose the constraint C' = 0. In the absence of fluxes at the
boundaries, we computed the charge algebra

{My, Mg} = =My g, (2.9)
where for convenience we write the Witt Lie bracket as

[f7 g] = favg - gavf' (2.10)

This is the Lie algebra of infinitesimal null time reparametrizations labelled by functions
f, which represents the vector field f0,.

We recall in appendix A the derivation of the Poisson bracket of elementary fields. Using
these, we can evaluate the algebra of composite operators. By construction, the Raychaudhuri
constraint satisfies the algebra

{Cy,Cy} = —87G Cpyy, (2.11)

where we introduced the current
Cy= /Nsﬁ\‘})fc. (2.12)

These currents, with C' given by (2.1), generate the transformations (2.3)-(2.4), i.e. {C¢,0} =
87G S’fAO.

Another crucial property of null hypersurfaces, and Carrollian physics in general, that can
be deduced from these Poisson brackets is ultralocality on the cut. Indeed, the propagator (A.3)
displays a delta function on the cut 6 (z; — 25): the bracket among fields on different null
generators identically vanishes. This is an extremely powerful feature of null physics; it
implies that physics on a null hypersurface can always be reduced to a 1-dimensional system,
per each null generator. This ultralocal nature has been appreciated in [48] and exploited to
prove the generalized second law for black hole horizons. This property will be systematically
exploited in the following, in making all results valid per null generator, and thus local on C.

Classically the proper thing to do is to set the constraint to zero, as we did for example
n (2.8). As we mentioned in [24], this has the appealing interpretation of setting a 1d (or
more precisely a chiral 2d) stress tensor to zero. This stress tensor can be decomposed
into constituent spin-0, spin-2, and matter parts. The spin-2 sector contains the shear and
thus the radiative degrees of freedom, while the spin-0 sector is given by 2 and u, and thus
describes geometric data. The Raychaudhuri constraint is then a balance equation between
the spin-0 degrees of freedom and the radiative and matter degrees of freedom.

While this is an appealing picture, we will argue in this paper that the quantum version
is quite different: the constraint algebra given above is centrally extended, there being a
chiral central charge that would, as is familiar, appear in a number of places, particularly
in the operator product expansion of currents. Because we wish to consider the theory
coupled to arbitrary (massless) matter, this is not a situation where we would expect the total
central charge to vanish. We will see that this central charge is crucial in the construction
of a sensible quantum theory — in fact, it is an important feature of the quantum theory
rather than a sickness.



2.2 Area commutator

As an application of our established phase space structure we compute the Poisson bracket of

the area at two different times. Thanks to ultralocality, we can perform this analysis for the

infinitesimal area element, that is, per null generator. To compute this quantity, we introduce

the following notation. We introduce the charge aspect ¢y

My = 1/ O (C + 0,(Q0,f — F0,9)) = / O» = L _(Qo.f - f0.9).
3T v N v v v N c 4f af Fye. v v

(2.13)

We can evaluate the local charge between two null times vy and v1, and we define the

light-ray operator

A7) = g [ d (O + 0,00, - 10.9) o) (210

where x = (v, 2,%Z) and (z,%) denotes a point on the spatial cut. The latter dependence

will be implied from now on. On-shell, the Raychaudhuri constraint C' vanishes, and we

are left with a corner charge
ma[f] =

——=(Q0uf — fO, Q) = qy(v1) — qr(vo). (2.15)

8G

Given the light-ray operator, we can extract q¢(vi) by arranging for q¢(vo) to vanish. This
can be done in two different ways, either by requiring the vector field and its first derivative
to vanish at vg, or by requiring the cut at vy to have some particular properties. For instance,
if there is a caustic at vg, then Q(vg) = 0, and it is sufficient to require that the vector field
vanishes there, f(vg) = 0, to obtain g¢(vg) = 0. Alternatively, suppose that the expansion
vanishes at vy while the area remains finite, then 9,(vg) = 0, and thus it is sufficient to require
that 0, f(vg) = 0. This is an interesting setup when discussing a black hole event horizon.

In the following, we will assume that a caustic is formed at vg, and choose a vector
field f that vanishes there, such that we obtain

my[f] = qf(v1). (2.16)

Importantly, we also suppose that the vector field is such that it has support only on the
domain [vg,v;1], namely f(v > v;) = 0. If, in addition, the vector field f is a boost for v
approaching v1, normalized such that 0, f(v;) = 1, then

My [f] = ——=0(v1) (2.17)

is the area density of the cut at v;. A simple example of such a vector field is where

f(v) = “5.2%(v — v1) on the domain v € [vg,v1], where we use the notation vi; = v; — v;.

Near the corner v ~ v, this resembles a boost.” A basic observable is the Poisson bracket

"If, on the other hand, the expansion vanishes at vo, we would require 9, f (vo) = 0 so that the charge

aspect vanishes there, and we then obtain my}[f] = %S:é).

Fo) = U5~ Joo.

An example of such a vector field is given by



of two area densities at different null times. We can write the bracket of two light-ray
operators in the form

{mulfil, mig [f2l} = ©(va1) € mii[fi] = O (v12) € mid[fa]- (2.18)

This bracket implements a time ordering, where the light-ray operator defined on the larger
interval acts in the phase space on the light-ray operator defined on the smaller interval.
We notice that in the case where v; = wo, this reduces to the canonical equal-null-time
bracket. We thus can evaluate the Poisson bracket by considering each term separately.
Let us assume vp > vy, and thus focus on the first term. The light-ray operator m;?|fs]
is well-defined on the domain [vg, v3]. Since f; has support on [vg,v1] C [v,ve], it can be
canonically extended into a vector field f; on [vo, v2] which is identical to f; on [vg, v1] and
vanishes outside of it. Since fi(v1) = 0 we have that the vector field fy involved in the
variation acts smoothly on fi. So we compute

1

my [f1] = 3G

dv[flz: C'+0u(€} Q0uf1 — 110,27 Q). (2.19)

Here, we implicitly used ultralocality and thus restricted our attention to a single null
generator. These expressions should, however, be understood as local on the cut, with always
a delta function §(2)(z12) = 6®) (21 — 22) enforcing ultralocality.

We then evaluate

€, 0= hoC+20,C,  £0=F0,0 (2.20)
and thus we find
nlh] = o G / Ao f120,C + 20100 o€ + 0u( F200 102 — FiD(£20,)]

- [ [0u(11120) + U YC = 011220+ [, £10.9))

= mg(l)[[flanH + #{flf?(c - 839) - Qav[flva]}vl- (221)

vo

Alternatively, one can directly compute the Poisson bracket of areas using the kinematic
Poisson brackets reviewed in appendix A, and one finds consistency with the result (2.21),
together with (2.18).

Specializing to the area operator, for which fi(v;) = 0 = fi(v), this expression sim-
plifies to

[ mifi] = 8xGma([f1, fal] — [Q0u[f1, ]2 (2.22)
= /le dv[f1, f2]C — [[f1, f2] 0025, (2.23)

To compute the area-area bracket, we now need to choose fo judiciously. We select vector
fields satisfying

filwo) =0 fi(v1)) =0 Oufi(vi) =1  fa(vo) =0 fa(v2) =0 Oyfa(ve) =1. (2.24)



This implies

[f1, f2](vo) = 0, [f1, fa](v1) = —fa(v1). (2.25)

We plan to explore further elsewhere the space of such test functions and the comparison
between it and the Schwartz space of rapidly decreasing functions, [142].
Using this and the result in (2.22), we arrive at

{mays[fil, mz[fo]} = — 87G(9,Q[ f1, f2])(v1) = 8TG(Dp 2 f2)(v1), (2.26)

which, restoring the cut dependency, and using vy > vy, reads

{m2[f1](21,71), mi2 [ fo) (22, F2) = — 87G (0o f1, fo]) (21)0P) (212), (2.27)

and, given the conditions spelled out in (2.24),

MR 7)) = o), milfal(en3) = o Oa). (229)

Recalling that the expansion 9,2 = 60 is the corner charge aspect for a null translation, we
see that the Poisson bracket of two area operators is a translation, on shell.

While we performed this computation at the classical level, using methods that we
will develop in this paper, we expect its quantum version to instruct us about the area
fluctuation on finite-distance hypersurfaces. In a later section, we will consider similar physics
in the celestial context.

2.3 Primed diffeomorphisms

Let us review the derivation of the primed phase space performed in [24]. The symmetries
of a null hypersurface are the diffeomorphisms of A" and the rescaling of ¢, which we refer
to as a boost. The former act on the phase space via the ordinary Lie derivative. We
focus on time reparametrizations, which is the symmetry generated by the Raychaudhuri
constraint. For a vector field f¢, one has

fngab = Eanbv 'gfa—ab = 8U(f0ab)7 S‘fg = _e(f)e (229>
i =0,(fp), £,0 = 0,9, £0=0,(f0),  (230)

where £ i and Ly are the phase space and spacetime (N') Lie derivatives, respectively. The
Carrollian structure (and in particular the condition ¢%q,, = 0) is also preserved under boosts,
which are rescalings of the Carrollian vector field £ generated by the infinitesimal parameter A,

£54ab = 0, 504" =Mo", Ll =M (2.31)
£;\U = A\u+ E()\), Q;\Q =0, 25\9 = \0. (2.32)

Combining these two phase space actions, we can consistently preserve the condition d¢ = 0.
This is done choosing ¢ = 0, and Ay = 0, f, and introducing the primed phase space Lie
derivative

2} =L+ 25, 2}6 =0. (2.33)



Therefore, on the primed phase space ¢ is a background structure, and this will be important
throughout this manuscript. The action of the symmetries on the primed phase space is
collected in (2.3)—(2.4).

We remarked above that the constraint Cy transforms ;1 as a connection rather than
as just a 1-form, due to the shift in the boost action (2.32),

{Cp,u} = 87G (Dol f1) + B2 (2.34)

There is a function on phase space which does treat p as a 1-form. Introducing the current

Ty = /N T, (2.35)
we have
[Ty, 1} = 876G O,(f1). (2.36)

One finds that C' and T are closely related, and in fact®
C=0d*Q+T, T := —pdpQ + Q0 0y + 8TGT™MaY), (2.37)

Whereas C' vanishes on-shell in the classical theory, T' does not, at least in general. Neverthe-
less, using (2.11), one can prove (see appendix A) that T satisfies the same classical algebra,

{Ty, Ty} = —8nG Tif.9 (2.38)
and we note that
87G My =T + /N 002, (2.39)

To summarize, Ty acts differently on phase space than does Cy. In fact, T' acts by the
ordinary ‘un-primed’ Lie derivative £, while C' acts with £, We recall that £/, consists of
a diffeomorphism combined with a boost chosen to preserve the null vector ¢. This can be
understood as an ‘improvement’ or ‘covariantization’ of the diffeomorphism. In covariant
phase space formalism [143], this can also be thought of as an anomaly, whereby the symmetry
(here the primed diffeomorphism) acts in phase space differently than one would expect from
the spacetime perspective (where one might naively have taken p to be a 1-form). Thus, the
covariant phase space anomaly is nothing but the fact that u is a boost connection rather
than an ordinary 1-form. We stress again that T" does not generate a local symmetry of
our system in general; rather, it is C' that does so.

There is also a close analogy here to familiar 2d conformal field theories that will play
a central role in our reasoning. The primed diffeomorphism is the analogue of conformal
transformations. The latter are a combination of a diffeomorphism and a certain Weyl
transformation. It is a familiar property of 2d CFTs that conformal symmetry is anomalous
in the sense of there being a central charge. This anomaly arises because it is impossible to

8These tensors are actually densities, ready to be integrated with the coordinate measure. This makes all
the field dependencies appearing in the associated currents explicit.

,10,



introduce a regulator without violating Weyl invariance.? We will claim that in the quantum
algebra of the Raychaudhuri constraint, there is a (field-independent) central charge. It is
crucial to realize that, just as in 2d CFTs in general, this arises not because diffeomorphisms
are anomalous, but because an anomalous ‘global’ symmetry is present. In our context, we will
interpret the theory in terms of a chiral CFT (per point on a cut), and the central charge will
arise through an anomaly in the rescaling symmetry. As far as this chiral CFT is concerned,
this rescaling looks just like a Weyl symmetry. The presence of the central charge instructs us
to think that only diffeomorphisms should be gauged in the quantum theory, not the rescaling.

2.4 Conformal time and caustics

The symplectic structure on the primed phase space is given by (2.5). In [24], we showed
that this can be rewritten in terms of fields that are dressed to diffeomorphisms and the
constraint emerges as a variable conjugate to a dressing field. The dressing field is a scalar
field V' (v) which acts as a clock and is defined through the differential equation

02V = ud,V. (2.40)

In the realm where v — V' (v, 2, 2) is invertible it can be used to define dressed fields, which
are gauge invariant. For instance

d=¢oV7l  Gu=(0V) ooV, (2.41)

where ¢ denotes scalar matter fields and tilde refers to the dressing. By construction, the
dressed fields are invariant under time reparameterization, infinitesimally

S’f&ab =0. (2.42)

The symplectic potential of the gravitational theory can be conveniently written in terms
can

of the dressing variables as the sum of a bulk and a corner term ©%" = " + 0%}, [123],
1 _ 5 ab e~ ~ 1 _ ~ ~
o =z /N & (396 0Gu+Cm)), = ngm (wovQ-0vw0). (2.43)
In this expression w denotes the Maurer-Cartan form
w:=06VoV L (2.44)

These formulas tell us that w represents the variable that is conjugate to the constraint from
the hypersurface perspective. Furthermore, once the constraint is imposed, there is a residual
corner symplectic potential in which w, representing the translation time, is conjugate to
the expansion on the corner, while 0y w, representing the boost time, is conjugate to the
area. These are the physical gauge charge terms, and they are given by translation and boost
because these represent the generators of the residual corner symmetries (represented in local

°In (critical) string theory, one insists on gauging Weyl invariance. So, one requires the central charge
to vanish. In our context, we do not have the 2d metric of string theory, but one can think of the Carroll
structure as playing an analogous role. Our construction of the quantum theory can be thought of as more
closely related to non-critical strings.

— 11 —



coordinates by 0, and vd,, respectively) supporting non-trivial gauge charges. We recall that
in this manuscript we use the terms corner and cut interchangeably.

Note that the values of V and 0,V at a corner represent initial values, necessary for the
integration of (2.40). Including them in the phase space is necessary to perform the dressing.
These corner modes are Goldstone modes or edge mode degrees of freedom, necessary to
construct gauge invariant observables that possess well-defined commutation relations.

While this discussion is relevant for a single isolated corner, we are interested in corners
along the null hypersurface. In fact, one can view (2.40) as the key equation that relates
corners to each other. Indeed, integrating it once, we find (we suppress the z,Z dependence
in what follows)

AV (v) = 9,V (v0) exp ( / ' u(v'))). (2.45)

So the value of p determines the dressing time on any cut at constant v.

As seen in [24], the dressing time plays a special role because it ensures that the energy
flux is positive. It also allows for a definition of entropy in a dynamical regime. It is, however,
not the only time one can extract from the spin-0 sector with special features. Furthermore,
as we will see in sections 3 and 4, quantization depends on the choice of time, and therefore,
it is helpful to understand the different options at our disposal.

The basic mechanism used to construct the dressing time is that p transforms under
primed diffeomorphisms as a connection. This key property is true for any combination

H(a) = p + ab, (2.46)

and we can define a physical time V, by demanding that 02V, = H(a)OuVa. From the
connection p,) we can construct the analog of a stress tensor. Defining

Y(a) = Oulbia) = 3Hi{a)s (2.47)
we have that under the primed action
2'/JcAM(a) = av(flul(a)) + 33f7 £/}E’/(a) = favV(a) + 2avfl/(a) + agf (2'48>

The finite transformation, calling v'(v) the finite diffeomorphism generated by f, is indeed
given by

V(@) = (0:0) 72 (vay (v) = {230}, (2.49)

where we introduced the Schwarzian derivative {v';v} = 81,(%) — %(gﬁg:)Q

From these transformations, we see that the algebra of transformations that preserves
the condition ji(,) = 0 is the affine algebra generated by (dv,, Vady,) [21]. Moreover, the
algebra of transformations that preserves the condition v, = 0 is the conformal algebra
s(2,R) generated by (dv,, VaOy,, V.2dy, ), which indeed has vanishing Schwarzian derivative.
For each choice of a, we thus have a choice of time V,, which is well defined up to conformal
transformation. Later we will see that the appearance of an sl(2,R) is at the core of the

quantization of the phase space.

— 12 —



Recall that ) = p+ab = £k + (a + 1)0. Setting it to zero, three choices of time are
particularly relevant: ji,) = 0 for @ = —1/2 corresponds to the affine time, pi(4) = 0 for a = 0
is the dressing time, while yq) = 0 for @ = —3/2 is the conformal time V. that will play a
key role at the quantum level. What is unique about the conformal time is that ) :=x —0
is conformally invariant under bulk conformal transformations. Indeed, under a conformal
transformation gg, — €2?gqp, which implies © — e??Q, we have that kK — x + 20(p) and
0 — 6+420(¢). Notice that this conformal transformation does not act on ¢ [32], which remains
a background structure. This is important for the quantization proposed in this manuscript.
Therefore, only for the conformal time V. = V_3/, the connection ) is invariant under
this symmetry. Given that we will find a chiral CFT on the null time, this bulk conformal
transformation is expected to play a prominent role, as it instructs us about the conformal
rescalings of the 2-planes normal to corners in the bulk.

A general null hypersurface develops caustics, where {2 — 0. Near a caustic, we can use
the area element as time. This is the areal time that we studied in [24]. The Raychaudhuri
equation implies that the relationship between dressing time and area is

_ Q
&ﬂfzsmp/"<KYQK52+8wGﬂ&§xQQ, (2.50)
0

where ¢ refers to the field ¢ expressed in areal time. From this, we see that near a caustic,
where € — 0, the dressing time behaves as in flat space since we have V = Q. This also
means that near a caustic the affine time is v/Q and the conformal time is its inverse —1 / V.

To gather intuition, we can explicitly construct these different notions of time for a null
cone t —r = 0 in flat space. The induced null metric is ds? N iv2(d92 + sin? 0d¢?). The
affine time is the advanced time v =t + r. We can evaluate the surface tension associated
with a generic vector field £ = e®"#9) 9, to be

sza(ma+@%j”) (2.51)
From this expression, we readily see that requiring to be in affine time, p, = 0 with
a = —1/2, we have a = 0 and thus V_1/2 = v. Similarly, the dressing time condition p,) =0
for a = 0, gives @ = —logv, which implies £ = v='3, and thus Vo = v?/2. The dressing
time is exactly the area. Finally, the conformal time is achieved by setting p,) = 0 with
a = —3/2, which yields o = 2logv. This implies £ = v29, and thus V, = —1/v. In general,
we have, up to an overall constant, that
2(a+1)
V, = ﬁ 0=y, = v RatDy,. (2.52)
We can distinguish these times in two classes depending on how they behave at the caus-
tic v = 0.
A caustic avoiding time (CAT) is defined to be a time for which 2 — 0 always implies
6 — 0. While the analysis of caustics in full generality is a complicated task [140, 144, 145],
in this paper we restrict our analysis to null vectors parametrized as £ = 0y, and to caustics
appearing at cuts V =cst. For such caustics, CATs necessarily have that 0 o Q7 with v > 0
near the caustic. Using that 6 = 9y Q/Q ~ Q7 we can integrate this equation to V oc Q7.
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Therefore we see that for this specific family of CATs the time range goes to infinity at the
caustic.'” It is inextensible there, and this will be crucial for the quantization. To summarize,
within our restrictive assumptions, caustic avoiding times are such that § — 0 when 2 — 0,

and V — oo at the caustic. This happens in flat space when a < —1. In this case we see
2(a+1) 11

’ ;(a—s—l)} :

This discussion is valid only for null cones in flat space so far. However, due to the argument

that the infinitesimal interval v = (0, €] near the caustic is mapped to V, = (—

presented around (2.50), we know that near a caustic the flat space description is a good
approximation of the general geometry. This seems to indicate a universal behaviour of
geometry near caustics, that deserves further exploration. Here, we conclude that times
V, for a < —1 are inextensible CATs.

Among these values we have a = —3/2, which corresponds to the choice of conformal
time. We will argue next that this value of a is special. It corresponds to a vector field
that behaves near the caustic as

v, = v?0,, (2.53)

where v denotes the affine time. In flat space, the choice of conformal time can be shown to
arise naturally for the description of CFTs on null cones because of the following facts. First,
a Rindler plane is mapped onto a null cone by the conformal inversion map and second, the
Rindler time vector field 9, which describes the flat space vacuum on the Rindler plane is
mapped to the conformal time vector field v23, by the inversion (see [73, 74]). These essential
properties firmly suggest that the conformal time is the right time to ground our quantization
scheme. The time V. defined earlier is a natural background independent candidate for a choice
of time that possesses s[(2,R) as a symmetry. The fact that such a background-independent
definition exists is quite remarkable.

To conclude this section, we observe that it is crucial to perform quantization in an
inextensible caustic avoiding time, for two reasons. The first is that for such times the value
of v on the portion of null hypersurface between caustics N runs from —oo to oo, which is
important when using tempered distributions. The second reason is that CATs remove the
symplectic flux at the boundary: both # and {2 vanish at the caustic in these times. This
makes the flux (2.7) vanish there, and so we have a well-defined classical phase space, which
is why we can propose a consistent quantization.

3 Quantum gravity CFT

Classically, the vanishing of the Raychaudhuri constraint should be understood as expressing
diffeomorphism invariance on the null hypersurface. As such, together with ultralocality, it
is natural to interpret it as a chiral stress tensor in a 2d CFT. Furthermore, we suppose

19A more general class of caustic is accessible if we use a general parametrization £ = e®(dy + U*d4) and
choose the caustic to be at V' =cst. In this case, the time V does not have to be infinite at the caustic as long
as e* — 0. It is only when we reabsorb this prefactor and the twist vector U# into the definition of time that
caustic avoiding means infinite time. In general, the V =cst caustic is then mapped into V = T'(z,%) and a
new analysis is needed.

"The limiting case a = —1 is when V_; = 87! Inv is the thermal, boost or Rindler time with vector field
= fvd,.
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that it is promoted to an operator in the quantum theory,

)= T

(3.1)

where the normalization will ensure that the central charge is dimensionless. It is important
to emphasize that what we are describing here is not a celestial CFT on a cut (which would
give rise to a 2d Euclidean CFT only in 4d gravity), but a CFT per point on a cut. By
focusing our attention on a null hypersurface, we are seeing the chiral (light-cone) half of what
presumably is a full 2d CFT on the Lorentzian plane normal to a cut.'? From this perspective,
there is a 2d CFT lurking in quantum gravity everywhere, in any spacetime dimension.
Let us take this proposal seriously. A robust prediction is that there is an anomaly in
the quantum theory that shows up, for example, in the operator product expansion (OPE)!?

. . cN 2C (2) 00,C(22) \ (2
Cln)Clez) (2(1)12 - i6)41 " (v12 — i€)? * V12 — i€ " er2).

(3.2)

The total central charge is ¢V, where c is the central charge on each null generator, and N
counts the number of null rays. The number of null rays is in one-to-one correspondence
with the number of points on the chosen cut C. The central charge ¢ depends on the field
content of the theory. In the following sections, we evaluate it perturbatively in G and
show in that regime that

c=4+ ™ (3.3)

where ™2t

is the matter central charge. This shows that the central charge is non-zero.
Determining the non-perturbative value of c is a task that we leave for future works — it is
not straightforward, since we have an interacting theory. Indeed, recall that the Raychaudhuri

constraint has the form
C = 02Q — pd,Q + Q0,0 + STGT™2Y). (3.4)

Splitting the constraint into its spin-0, -2, and matter parts, as done classically in [24], is
a challenging task, because the different sectors do not satisfy a closed algebra separately.
Nonetheless, an important repercussion of promoting the entire Raychaudhuri constraint to a
quantum operator is that the spin-0 sector is also quantized, and thus we have a quantum
geometric interpretation of the area operator. Note that the stress tensor is at most cubic in
the elementary fields. While the spin-0 piece is quadratic in the field, the cubic coupling of
the spin 0 to the spin-2 and matter fields is universal, simply involving the area form € as
an overall coupling. This leads to a physical picture where the spin-0 fields act as universal
fluctuating elements creating quantum noise for the matter fields. This is in agreement

12T 2d the light cones are simply a pair of lines and the CFT described here is similar to that discussed by
Solodukhin [102].
13While formally u, v are analogous to w, @ in Euclidean signature, they are real and not complex variables.

Moreover we here have Diff(R) symmetries and not Diff(S'). We can take this into account by keeping track

1
v1p—ie

is implicit in the fact that one assumes the radial quantization Im(z12) < 0 in the product of fields. Further

of the contour via the ie prescription and taking

in place of i In the complex case the ie prescription

discussion of related points will follow.
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with the treatment of Parikh et al. [99, 101] on the effects of gravitational perturbations
as a source of stochastic noise that can be modeled through a Langevin equation and the
Feynman-Vernon influence functional. In our case, the source of noise is due to quantum
fluctuations of the spin-0 field.

In (non-critical) string theory, it is well known that the anomaly is in the worldsheet
Weyl symmetry, with regulators preserving the worldsheet diffeomorphism invariance readily
available. In the present case, we should expect hypersurface diffeomorphism invariance to
be non-anomalous; it is the internal rescaling symmetry that is anomalous, and the anomaly
shows up in the physics of the quantum Raychaudhuri constraint because it is the Noether
constraint of the primed diffeomorphisms, which are a combination of diffeomorphisms and a
particular internal rescaling. This is directly analogous to string theory, in which conformal
transformations are a combination of particular diffeomorphisms and Weyl transformations,
the conformal anomaly then arising because of the Weyl anomaly. Note that here, as already
stressed, while we do not have a 2d metric theory, the internal rescaling is indistinguishable
from a Weyl transformation because we are seeing only a chiral half of a 2d theory, the role
of the worldsheet metric replaced by the Carroll structure.

3.1 Spin-0 gy CFT

A simplified setup that one can consider is the absence of matter and radiation. In this case,
the Raychaudhuri constraint and 7" as defined in (2.37) read

C=0d*Q—pd,Q, T =—pd,N. (3.5)
The only fields are 2 and pu, satisfying the Heisenberg algebra (x12 = 21 — x2)

{1, 2} = 87G 5 (w12), {01,921 =0  {m,pe} =0. (3.6)

A A

This system can be canonically quantized: {-,-} — L[,%]. The Poisson bracket then
becomes the commutator

(1, Q) = —i87Gh 6 (215), (3.7)

where we have promoted the classical fields to quantum operators. This holds if we choose
a caustic avoiding time v extending from —oo to 400 on the null hypersurface, such as
those discussed in section 2.4. The importance of choosing a time for quantization will be
thoroughly discussed in the next section. Indeed this analysis can only be performed with
specific choices of time (which corresponds in constraint quantization to particular choices
of gauge). The central charge will play an important role in such discussions, through the
Schwarzian derivative appearing in the transformation law of the stress tensor.

The fields 2 and € depend on the coordinates (z,%) on the cut. However, thanks to the
ultralocal nature of null physics, the algebra of operators tensor-factorizes into the product
of algebras for each null generator. In other words, the Poisson bracket in the classical case
or the commutator in the quantum case between fields at different points on the cut vanishes.
This implies that we can focus only on the v-dependency, that is, we can work per point on C.

To evaluate the OPE of () and i1, we introduce the normal direction 9, to the null
hypersurface A, in the bulk, observe that the constraint satisfies 9,C = 0, and furthermore
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that the fields are chiral. We can then derive the OPE on each null generator using standard
techniques, see e.g. [146],

4Gh

. 3.8
V12 — 1€ ( )

19 ~ —

Here and in the following we use the shortcut notation Q1 = Q(x1) = Q(v1, 21,21). We stress
again that this analysis is performed in a time v € R on N. Furthermore, from (3.6), we
also find that Q and i have only analytic correlations,

0y ~0,  firfia ~ 0. (3.9)

This is due to the absence of spin-2 and matter interactions, in the context of this section.
We will perturbatively reinstate those in the next section, and indeed the area perturbation
will acquire non-analytic correlations.

Since we have a Heisenberg algebra, it is straightforward to introduce a notion of normal
ordering, and we write the quantum Raychaudhuri constraint (3.1) as

g 1 20_.19.0-

We then remark that this Raychaudhuri constraint and the OPE (3.8) are exactly the
stress tensor and OPE of a (Lorentzian) curved bosonic Sy CFT, see [109, 110] as well
as [147, 148], with conformal weights hg = 1 and h, = 0, which corresponds to A = 1 in
the language of [147]. Indeed, the pvy OPE is

1

Biia ~ — =, (3.11)
V12 — 1€
and the curved (aka twist) stress tensor for A = 1 is
5 1 A
T = 5812, logw(%)— : 8051, (3.12)

where w(¥) is the volume element of the holomorphic top degree form in target space. This

leads us to the identification'*

B=p A= 15m (3.13)
together with w(4) = €*¥ and T77 = C.

Therefore, the surface tension operator i and the area element in Planck units play,
respectively, the role of B and 4 in this chiral CFT. It is interesting to remark that the correct
proportionality factor for the relationship between 4 and Q is exactly the Bekenstein-Hawking
numerical factor, suggesting that 4 can be interpreted as an infinitesimal entropy operator.

Using the OPE (3.8) and the stress tensor, we can easily compute the operator product
expansion
1 2T (v9) Dy, TP (03)

(?}12 — i6)4 (1112 — i€)2

T (0) TP (vg) ~ (3.14)

V12 — 1€

The central term comes from the double contraction of Bl, Bg with 9,92 and 9,91.

“This identification is further suggested by the fact that 3 is the component of a 1-form [110], and so is fi.
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Comparing with (3.2), and using N = 1 since we are focusing on a single null ray, this
shows that the spin-0 central charge on each null generator is ¢ = 2, which is indeed the
expected result given that ¢ = 3(2\ — 1)2 — 1 and here we have \ = 1.

We remark that 7" in (3.5) is the untwisted version of 777, Indeed, if one defines

1 .
T = ~1an B0, (3.15)

one also gets

1 2757 () N Do, T5Y (v2)

T8y Al ~
(Ul) (’Ug) (1}12 — i6)4 (1112 — i€)2 V12 — 1€

(3.16)

Therefore, we have shown that 777 satisfies the same OPE, and it is related to 777 via

" 924
TP =TP7 4 v 3.17
T ich (3.17)
If one reintroduces the spatial dependence, thanks again to ultralocality, this simply
amounts to adding a 6(2)(2’12) in the 8y OPE. The consequences are however dramatic,

as one readily obtains

5)(0) n 2757 () N Doy TPV (223)
4 (1}12 — iE)Q

('012 - 'L'G) V19 — 1€

TP (21) T (29) ~ ( )5@)(212), (3.18)

where we used 62 (212)0®) (219) = 6 (0)6)(212). The 6?)(0) counts the ‘number’ of points
on the cut, it plays the role of N and indicates that we have N — oo, leading to an infinite
central charge. This simultaneously establishes two facts: first, it shows that this central
charge indeed counts the fields Q) and f (¢ = 2) times the number of null generators. As
such, it truly counts the geometric degrees of freedom. Secondly, it shows the universal
nature of this divergence, simply given by the infinitely many null generators. This was
already noticed in [48] for the matter sector. We have given here a quantum derivation
for the spin-0 sector. Ome could have anticipated this from the ultralocal nature of the
commutators (brackets). In section 5, we will propose a different representation for the area
operator ), which entails a finite central charge.

3.2 Perturbative gravity CFT

We wish now to reintroduce the radiative and matter degrees of freedom. We do so perturba-
tively, in the weak gravity regime. In this framework, we derive the perturbative Poisson
brackets and canonically quantize the system. While for non-expanding backgrounds we can
confirm and generalize the results of the previous section, for generic expanding backgrounds
we offer some preliminary explorations of the quantization procedure.

We expand fields in the limit G — 0, using the expansion parameter € := +/871(G.
Given (A.1), we encode the perturbative spin-2 gravitons in the expansion of the Beltrami
differentials

¢ =eX + O(e). (3.19)
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The spin-0 data define the background, and the matter and graviton dynamics only backreact

2

on the background at order €¢“. Thus we have the expansion

Q=Qp+ w+ 0, w=po + urr + O(%), (3.20)

where (g denotes the background area form and where we called the quadratic order w
to single it out for future purposes. We will see that it represents a null version of the
Newtonian potential. Its fluctuations encode the backreaction of matter and gravitons onto
geometry, and that is why it contributes at the second order (that is, at order GG) in the
perturbative expansion.
With these expansions we can compute the leading order of the spin-2 part of the
constraint
Qo.loy® = 26200, X0, X + O(€3). (3.21)

Therefore, since the matter stress tensor couples without extra factors of GG, inserting these
expansions into the Raychaudhuri constraint we find

C =Cp+éeC+0(), (3.22)
with
Cp = 08 — 1100, 0, C = 92w — podow — prrdQ + O (20,X0,X + T (3.23)

From (2.4), we have that p transforms anomalously as a connection. An important
conceptual step is that this can be used to reabsorb its perturbation py; as a time redefinition.
This is ultimately the rationale for having a well-posed perturbative setting around a time-
dependent background. Therefore, introducing a time perturbation vy(z) satisfying

0p(Oy + Ho)vrr = prr, (3.24)

we can redefine time to be v/ = v + €2vy; + O(€3), such that pr(2’) = 0. In practice, one
would have to impose this gauge to all orders in order to have a well-defined perturbative
expansion. Here, we will confine our attention to the expansion up to second order, for
which the conditions spelled out above suffice. Given this gauge condition, we drop the
subscript in pup — p, and work in time v’ from now on. Given the discussion in [24], we
call this time the perturbative dressing time.

The zeroth order Raychaudhuri constraint determines Qg to be a functional of

Qp(z) = a(z, 2) (/ dv'elo d”//”(v”’z’z)> +0(z,7), (3.25)
0

where b(z,z) = Q4%(0,2,%z) while a(z,2) = 9,Q%5(0, 2,%) are the initial data. Here we
introduced the notation Q% to emphasize that (1p is a functional of u, on shell of Cg = 0.
If we assume that a = 0 then 9,Q% = 0: in that case, the background structure is non-
expanding, % is independent of p and can be treated as a classical background structure.
This is for instance the case for a perturbation around a black hole Killing horizon. This
scenario has been studied in the recent literature starting with the seminal work of Wall [48],
and beyond [149, 150].
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If a # 0, there is now background expansion and QY explicitly depends on p. This
situation is suitable to describe e.g., a flat space null cone, in the time defined by g,
and one can choose the reference point v = 0 to be the tip of the cone. This second case
is very different since it means that the background is time-dependent and therefore the
background area form is, in fact, an operator in the quantum theory. The fact that we can
set up a perturbation scheme in this situation is new, and one of the main results of this
manuscript. Notice that in such a regime Qf plays the same role as the dressing time V in
the non-perturbative setting, as one can see comparing (3.25) with (2.40).

In perturbative dressing time, the second order Raychaudhuri constraint (3.23) becomes

C = 0w — pdw + U (20, X0, X + T™) = 2w + T, (3.26)
where we have introduced
T = —pduw + Qs (20,X0,X + Tip). (3.27)

Our main goal is to promote the perturbative constraint (3.26) to a quantum operator
and show that it satisfies (3.2). We will see that T, on the other hand, does not satisfy a
closed algebra on expanding backgrounds. This is one of the main differences when treating
expanding backgrounds: the spin-0 geometry is fully promoted to quantum operators, and it
is not merely a spectator. Indeed, the area perturbation becomes a non-commutative field.
Note furthermore that on shell of (3.26), one obtains

92w = -T. (3.28)
Quite remarkably, this identity looks like a saturation of the Quantum Null Energy Condition
(QNEC) [75], provided we identify the area variation % =27 [, eéo)w with the relative
entanglement entropy.'%

Let us now give a proof that classically

{Cy,Cy} = —Cls g, (3.29)

where we used the same notation as in (2.12) for the currents, Cr = [, s}f}’f(agw +T). We
will demonstrate this result in two complementary ways. In the first proof, we use that C's
generates £, on the phase space. The second proof, in the next subsection, uses directly
the perturbative Poisson bracket to evaluate the algebra.

Inserting the field perturbations in the symplectic two form (2.5), a long yet straight-
forward computation gives

1 — _
ean — /N e (605 A b+ (005 A (0,X0X + 0, X0X) + dw A o

+20,(VQRIX) A V/QBIX) + O(e)). (3.30)

15Recall that for a light cone we have that the affine time is simply /.

"“The QNEC is (¢|Tvo(V, 2,2)|¢) > o= i/s((j;z\)/;’ with S(¢; V) the relative entanglement entropy [75, 77, 151,
152].
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At this stage, a proliferation of phase space variables seems to occur, because € is expanded
into two independent fields. However, imposing the background constraint Cp = 0 results
n (3.25), which in turn implies 6Q; A du = 0. This also renders the whole symplectic
two-form finite in the ¢ — 0 limit, and yields

Qoan — /N £SY (mg A (0s XX + 0, X6X) + 0w A b + 2@,( Q%&X) A Qj_é,aX) +O(e).
(3.31)

This symplectic two-form stems from the canonical potential
Qon = soean gen — /N e\ (—pow + (0, X0X + 0,X6X)) + O(e).  (3.32)
Under the symmetry transformation
u=0(fu) +0f, L= fow, X =fo.X, (3.33)

we find that the background area form transforms as a primary field of weight 0 if f and
Oy f vanish at the boundary of the null hypersurface. In other words

L = f0,0. (3.34)

Therefore, we can easily establish, using 0 f = 0, that

2’@6%:-5( / (052 >+ / eW (= pdw + QL (9, XX + 8,X6X ),
; [ 2N )+ || e (b + )

p (3.35)
can 0 ~
1o = /N 9 1 (~pdw + 20050, X0,X).
Hence, using flony = 0 = 0y flon, we have
I ycan 0) (92 _ 0) 2 _
T = 5/N5N (02w + 4T) = 5/Nng(avw+T) — 5C;.  (3.36)

This shows that C is the perturbative generator of gauge transformations when f and
O, f vanish on the boundary of N. It thus acts canonically on an arbitrary functional O
and satisfies the algebra

{C1.0} =20,  {C;.C} = Cy. (3.37)

which is our desired result, eq. (3.29).
Note that, generally, this would imply

{Tf>Tg} = _T[f,gb (338)

if and only if the area perturbation is a commutative field, namely if it satisfies {w,w} = 0.
In general, one finds

(T, T,} =T fg]+/ % 2 [102, go{wr, w2} (3.39)

In the following, we evaluate explicitly the perturbative Poisson bracket and show that {w,w}
vanishes only for non-expanding backgrounds, and therefore T' does not satisfy a closed
algebra in general, only C does.
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3.2.1 Poisson bracket

We wish to extract the Poisson bracket in the perturbative regime. We relegate to appendix B
the inversion of the symplectic two form (3.31), and report here the brackets among the
elementary fields. First and foremost, introducing the notation

Ay = Uy — Dy, (3.40)

and the Heaviside function ©(v21) as defined in (B.6), one finds that the area perturbation
w satisfies

O Vo AQYE. — _
{LU1,CU2}— / dvg/ dv4/ d ZY3" B3~ " BSL (8v5X58U4X4+8v5X58v4X4>@(021)(5(2)(212).

2/ s
Moreover, we find
{w1, 255} = AQUy, O(021)5) (212) (3.41)
Oy X
{wl,XQ} = / 33 AQB31d?}3 1}21)(5(2)(2’12) (3.42)
2\/ Vo Qs
Ous X3 (2)
{wl,XQ} = / AQBSldU?’ @ 1}21)5 (212) (343)
24/ Vo Vg,
—_ (2)
(X, Xp) = - Q)0 7 Cr2) (3.44)
2,/ gy
A good consistency check is that we get
Oy , QF
{wi, p2}t = 0Oy, (W) =03 (x12), (3.45)
V2" B2

which is evident in (3.31). This shows that Ty does not generically satisfy a closed algebra, as
instructed from (3.39). Noticeably, the algebra closes on non-expanding backgrounds, where
Qf is constant in time, and thus {wj,w2} = 0. Therefore, the phase space for expanding
and non-expanding backgrounds are radically different. In the latter, the background area
is a classical field while in the former the area expansion becomes a non-commutative field,
which is key for quantization. Already at the classical level, we can understand this central
result in the following way. On non-expanding backgrounds, the fluctuations of the area
Poisson-commute with the area itself, as one can see from (3.41) setting AQ%,, = 0. Moreover,
the area perturbation commutes with the spin-2 gravitons X and X. Thus, the spin-0 and
spin-2 sectors do not mix: the perturbative gravitons do not backreact on the geometry at this
order of perturbation. Conversely, on expanding backgrounds, backreaction is already present,
and the gravitons do not commute with the perturbative area. The constraint satisfying
an algebra in turn forces the perturbative area to become non-commutative, realizing in
formulas the idea that radiation on expanding backgrounds sources the expansion to change
perturbatively, in a cascade effect.

Using the brackets among composite fields derived in appendix B, with a lengthy
computation, one proves the following properties

{Cf7 NQ} - am (fQIJQ) + a§2f2, {Cf7 Q%Q} - f28v29%27 (3~46>
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where we used the background constraint, 92 — ud, Q% = Cp = 0. Performing similar
manipulations, we gather

{Cfa angQ} = avz(f26v2X2) {Of, av2Y2} = 6112 (f28vgy2)7 (347)

together with
{Cf, 8v2w2} = &)2 (anUQWQ) {Cf, 852002} = 812}2 (anUQWQ). (3.48)
Eventually, using these results, one computes
{C,C4} = —C[f’g]. (3.49)

This second way of deriving the constraint algebra is also an indirect proof of the exactness
of the Poisson brackets derived in appendix B. The derivation of the perturbative brackets
for an expanding background is a novel result of this manuscript, and paves the way to the
perturbative quantization of gravity on generic null hypersurfaces.

3.2.2 Canonical quantization: non-expanding background

There are two compatible ways of setting the background area to be constant. One is to
directly impose 9,€2p = 0, together with d25 = 0, in the symplectic two form and re-derive
the brackets. The second route is to directly impose 9,Q% = 0 in the brackets derived in
the previous section. However, one has to recall that Q is now independent of y, since
the zeroth order constraint is automatically satisfied. Calling the background area element
Q) p, these procedures yield the same result, that is,

{wi,we} =0 (3.50)

{wl, QBQ} =0 (351)

{w1, X2} =0 (3.52)

(w1, Xa} =0 (3.53)
— . @(1}21)(5(2)(212)

{X1, X0} = W o rsTor (3.54)

{w1, pa} = 6@ (a19). (3.55)

Various comments are in order. First, we have that the area perturbation becomes a
commutative field. This in turns implies that also T'; satisfies a closed algebra,

(T}, Ty} =Ty (3.56)

Secondly, the spin-0 and spin-2 contributions completely decouple: to this order, on non-
expanding backgrounds, the spin-2 data are disentangled from the geometric perturbation
of the background. Lastly, we note that the perturbative spin-0 sector behaves exactly like
the finite spin-0 analysis of section 3.1. Moreover, the spin-2 data also couples together in
a similar fashion, and indeed behave as a complex scalar field.

We can canonically quantize these Poisson brackets. The only non-zero commutators are
ih

o1, o] = 16 XX =~
(@1, f12] =1 (x12) (X1, X5 251082

@(021)5(2)(212). (357)
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Importantly, we assumed in this and previous sections that the background area element is
required to be nowhere vanishing, and thus invertible, both classically and as an operator.
This is natural when starting from a classical background. We will explore the consequences
of releasing this assumption in section 5. The spin-0 sector gives rise to a twisted 5~y CFT
per null generator with

h

b=5v A= (3.58)
™

It therefore contributes to the total central charge with ¢y = 2 per null generator.
For the spin-2 sector, we again confine our attention to a single null generator, and
following the same pattern we find the OPE

h

Dy X105, X 3 ~ . 3.5
e e o1z — ie)? (3.59)
Given (3.21), we define the spin-2 quantum stress tensor
N 4 ” A
TX::7§938@¥8@¥. (3.60)
We can then evaluate its OPE and gather
A X A X
~ X A X Co 2T (1}2) &JQT (1}2)
T T ~ 3.61
(vl) (UQ) 2(’1)12 — i6)4 (U12 — i6)2 V12 — 1€ ( )

with co = 2. Therefore the spin-2 sector also contributes with a central charge co = 2 per null
generator. This is expected given that the perturbative graviton is a complex scalar field,
and thus again the central charge counts the number of fields on each null ray.

Putting the spin-0 and spin-2 sectors together, we arrive at the main result. Defining
the total quantum stress tensor

. 2nC

C=—- 3.62
h ) ( )
we can compute the complete OPE and find
N c 2C(v2)  8,,C(v2)
C(n)C ~ = 3.63
(Ul) (Uz) 2(1)12 — i€)4 + (’U12 — i€)2 + V12 — 1€ ’ ( )
where
c=co+ cy+ P =24 24 mAt, (3.64)
Here, ¢™ is the matter contribution to the central charge, in case matter is added to
the system.
Notice that one obtains the same result using
A2
T=""T, (3.65)
h
id est
A ¢ MM(va) By, T(v2)
T(v))T ~ 2 . 3.66
(1)1) (UQ) 2(’()12 — i6)4 + (Ulg — iE)Q + V12 — 1€ ( )
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This is due to the fact that on non-expanding backgrounds the area perturbation commutes,
{w1,ws} = 0. On the other hand, this ceases to hold on generic backgrounds, whereby the
central charge can exclusively be computed using the constraint OPE. Similar to section 3.1
and thanks to ultralocality, reintroducing the cut dependency gives

N a 62 (0) 2C(z3)  0y,Cl(22)
~Y v (2)
C(z1)C(z2) <%m—kﬂ+wH—Mf+mr%eé (212).

(3.67)

The addition of the spin-2 sector perturbatively does not interfere with ultralocality, and the
central charge counting the degrees of freedom on each null generator. The only substantial

difference is the number of such degrees of freedom, now given by 2 + 2 + ¢™at,

3.2.3 Canonical quantization: general backgrounds

The canonical quantization of the perturbative phase space on expanding backgrounds is
more challenging, given the structure of the Poisson brackets. We leave its rigorous derivation
for future works. Although our phase space is infinite dimensional, we offer here some
preliminary observations on quantization and the anomaly based on finite dimensional phase
spaces. Going from the phase space to the quantum algebra of observables always involves a
departure from the Poisson commutators, except if the observables are linear in momenta,
or if the observables are at most quadratic in the canonical variable and the polarization is
chosen to be the Heisenberg one. Moreover, the quantum commutator depends on the choice
of polarization. Here, we get some control of the anomaly of the constraint algebra, since
the constraint (2.37) is at most cubic in the canonical fields.!”

Given our symplectic data, to obtain the quantum commutator we can begin by defining
the star product. If the symplectic structure is globally constant, the symplectic manifold
is R?" and we can use the Moyal star product [153]. For any function ¢,¢ € R?" the
latter is defined via

=g+ Y hCr(g, ), (3.68)
n=1

where the order-n bidifferential can be written explicitly using Berezin’s formula [154]. The
first orders in h are

B |2
Gxth = ¢+ %nlﬂ(am)(aj@z}) - ST (8i040) (0,0t) + ... (3.69)
Here, 4, j,... are field space indices, and II is a Poisson bivector,
I =11Y0; A 0. (3.70)

The matrix II¥ is nothing but the Poisson brackets on this symplectic manifold.

There are two reasons why we need to generalize this formula. The first is that our
symplectic manifold is not globally R?” and so we should work only locally. One could locally
try to find a change of coordinates to Darboux coordinates, as done by Fedosov [155, 156],

1"We also need to take into account the fact that the target space for the spin-2 field is the homogeneous
space SL(2,R)/U(1).
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but this is not required, as we can directly use the Kontsevich quantization formula [157],
which applies to an arbitrary Poisson manifold. The latter reads

$xp =+ Y WBi(9,0), (3.71)

k=1

for a new order-k bidifferential By (¢,1)). The first terms in the i expansion are given by

¢ * 1/} = <Z>1/1 + %Hijaiﬁé ajw - %Hiljl Hiijail 8i2¢aj1 8j2¢ (3 72)
— P19, T1272 (9, 01, 300 — 04y 6 03, Dj10) + O(BP) '

which obviously reduces to (3.69) when the Poisson brackets are constant in phase space,

that is when 6;I17F = 0. With this star product, we can define the quantum commutator as'®

[6,9] = ¢ %) — ¥ x ¢ = ih{g, P} + O(h?). (3.73)

This solves the first problem. The fact that the quantum commutator reproduces to first

order the Poisson brackets is one of the pillars of the theory of deformation quantization.
The second issue is that we need to extend the star product to the space of microcausal

functionals. The Poisson brackets II¥ must be upgraded to a Kéhler structure

HY = GY 4+ {11Y, (3.74)

such that the singularity structure of H” is only in the future. The precise formulation of
this step is extensively explained using the wave front analysis in chapter 5 of [158], see
also references therein such as [159-161]. In simple terms, to understand the singularity
structure in the quantization, we need a full symmetric and anti-symmetric structure in field
space, while the Poisson brackets only inform the anti-symmetric part. Replacing II with H
in (3.71) gives a new product, called x7, that can be applied to microcausal functionals. The
main point is that, on regular functionals, the two star products * and xp are isomorphic:
there exists a gauge transformation apy such that

o> v = amr((ay'0) * (ag' ). (3.75)

As is well-explained in [158], the physical interpretation of passing from x to xy is the
introduction of a notion of normal ordering since : A :: B :=: Axy B:. Therefore the %
product is the algebraic version of Wick’s theorem. The normal ordering is equivalent to
a choice of time, a choice of ground state and a choice of (almost) complex structure in
holomorphic quantization, which we explore in the next section.

Eventually, we would like to explicitly evaluate (3.72). This is a long and intricate
computation that we defer to future works. The expected outcome is

A ~ c
1,8l = ~Clyg — 15 |, &N (0% — 9031, (3.76)

18Strictly speaking, this cannot be applied directly in field theory, as the configuration space is infinite

dimensional.
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with 0rC
A . T f
Cy= .

The most important detail is to ensure that the central charge is non-zero and field independent,

. (3.77)

that is, it is still counting the degrees of freedom as in the non-expanding case.

In conclusion, this preliminary analysis shows that while the quantization on expanding
backgrounds becomes more sophisticated, we expect that the essence remains the same as
for non-expanding backgrounds: the constraints satisfy an algebra at the quantum level
with a field-independent central extension counting the degrees of freedom. While we do
not have a full proof of this result, we intend to return and perform this analysis in future
works. Ultimately, we expect that the tools developed in the theory of Wick deformation
quantization will be of central relevance [162]. In particular, these techniques can be applied
directly to the non-perturbative phase space.

3.3 Asymptotic infinity

In this section we study the consequences of our results for asymptotic null infinity. Following
e.g. the conventions of [87], the metric of an asymptotically flat spacetime in Bondi coordinates
is given to second order in the radial expansion by

1 1 1
ds® = —2¢’du (dr + (2 - mB)du) +r*yap (daA - 2HAdu> <daB + 2HBolu), (3.78)
r T r

where the fields admit the following asymptotic expansion

1
ef=1- @(JABCAB +... (3.79)
1
4 = §DBCBA +... (3.80)
1 1
YaB = qap + ~Cap + @C@DCCDQAB ... (3.81)

Here gap is the time independent round sphere metric and the metric expansion implies
that det(y) = det(q). This metric converges toward the flat space metric at +*. This means,
once an adapted supertranslation frame is chosen, that

lim mg(u,0) =0, lim Cap(u,0)=0. (3.82)

u—-+00 Uu—-+00

Note that the limit to ¢g of mg and C4p is non-vanishing and respectively given by the ADM
mass and the memory observable. As customary at asymptotic null infinity, we have denoted
the null time by u, such that the boundary coordinates are (u,c?). We also introduce the
news tensor Ngag = 9,C4B.
At asymptotic null infinity the time evolution of the energy is controlled by the Bondi
mass loss formula
1 1
Oump = ZDADBNAB —TH, ™ .= gJ\IABNAB + 8TGT™mat, (3.83)
where TH represents the matter and spin-2 hard degrees of freedom. A convenient way
to write this equation is to introduce the Moreschi mass my = mg — %DADBCAB for

which (3.83) simply reads d,mpm = —T".
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In [163], the authors have established the important result that the renormalized area
of the asymptotic sphere is directly related to the time integral of the Moreschi mass. We
briefly re-derive their result here locally on the cut. Consider the hypersurface r = r(ug)
satisfying 0,r? = 2mpg — r. This is a null hypersurface approaching asymptotic infinity in
the limit ug — oo. Integrating this equation means that

_ 2 +o0
r2(u) = (u4uo) + 20, ' mp(u) + . . ., o tme(u) == —/ du'mg. (3.84)
The induced metric on the cuts Cr = {u = T'(0)} is
1 1
Qan =1 (T)vep (52 + T2HC8AT> (53 + TQHD@BT) (3.85)

where II#4 = %DBCBA to leading asymptotic order. Consequently
QT) = Vdet @ = /g(r*(T) + I*DaT) + ... (3.86)

N2
We can renormalize this area using the flat space contribution, Qr = Q — %, thus

obtaining
Qr(T) = (07" (2me + JADAT) |(T), (3.87)
where we denoted J4 = 9,114 the current and we denote [9;'O|(T) := ffoo 0. If
limy, 400 umpg = limy 100 ulNgap = 0, we can evaluate
+o0
0 mg(T) = / (4 — T)dyms (3.88)
T
“+o0o +oo
O (JADAT) = / JADs(u—T) = —/ (u —T)D4J* + DAMA(T), (3.89)
T T

where we introduced a “memory term” MA(T) := [/ J4(u — T)du. This term vanishes
when integrated over the cut, and so it does not contribute to the total area derived in [163].
Putting these results in (3.87), and using (3.83), we derive the renormalized area element

Qr(T) = /m(u —T)(20ymg — DaJ?) + DAMA(T) = -2 /W(u —T)TH + DAMA(T).
' . (3.90)
Notice that we previously derived that the area is the boost Hamiltonian, and we are
here seeing a confirmation of this result from asymptotic infinity, since we have found,
following [163], that the renormalized area is the integral of the boost aspect (u — T)T™, plus
a total derivative term. Another remark is that the renormalized area is entirely dictated by
the graviton distribution at infinity. In section 5, we will introduce the concept of embadon,
as a quantum area bit on the cut. Here, the asymptotic analysis shows that the embadon
attains its maximal value in flat space, and then decreases due to the presence of gravitons.
A suggestive picture is that the embadon decreases over time because it emits gravitons
and thus loses degrees of freedom.
The quantization of the asymptotic phase space at null infinity has been achieved in [37—
44], see also [69]. The asymptotic time is defined to be the Bondi time and the 2 independent
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components of the news operator are the time derivative of a complex scalar. Therefore,
calling N,, = N and Nz = N, the OPE is

452) (012)

(3.91)

This result appeared in many works on asymptotic infinity, see e.g. [42-44, 47, 164, 165].
Assuming no matter is present, from (3.83) we can then compute the OPE

(3.92)

TH(xl)TH(m2)~< O, 2a) +3“2TH($2>>5<2><012>.

(U12 — i€)4 (Ulg — i6)2 u12 — 1€

This is the analog at null infinity of (3.61), and shows that there is central charge co = 2
on each null generator for the radiative sector. This entails an infinite central charge due
to the infinitely many null generators.

Using the Bondi mass loss formula, this is also the OPE of the time derivative of the
Moreschi mass operator

§@)(0) _ 20u,mm(z2) 92, mm(z2)
(u1g —ie)*  (u1z — i€)?

U1y — 1€

8ulmM(w1)8u2mM(x2) ~ ( )5(2)(0'12). (3.93)

The asymptotic mass has therefore infinite fluctuation,'” controlled by

B 5(2)(0)5(2)(0-12)

Sy — 07 (3.94)

mm(21)mm(z2) ~
This result is expected to have relevant repercussions in celestial holography. Indeed, although
we have not yet computed the area fluctuation, it is now a well-posed problem. Note that
in the limit u; — oo this divergence can be argue to cancel [44] and we recover the fact
that the ADM mass is a well defined operator with finite fluctuation. One still has even in
this limit non-zero fluctuations due to the neglected terms in the ellipsis. Understanding
the nature and scale of these fluctuations is important for a deeper understanding of the
black hole evaporation process.

This result establishing infinite fluctuation of the Bondi mass was anticipated by Wall
and Bousso in [166], where the authors argued that the Bondi mass does not exist as an
operator. What our result shows is that the infinite fluctuation of the Bondi mass is expected
from its interpretation as a modular Hamiltonian. Indeed, it is well established that due to
the type III nature of QFT, the modular Hamiltonian has infinite fluctuation [119]. Here
we understand this fact as being the consequence of an infinite central charge.

4 Quantum time

In this section we discuss the appearance of time at the quantum level due to the central
charge in the algebra of the quantum constraints.

19We acknowledge private discussions with Suvrat Raju on this point.
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4.1 The problem of time...

One of the central problems in quantum gravity is the problem of time [111-113]. One
usually assumes that at the quantum level the constraints are satisfied without anomaly.
Therefore, implementing the time evolution constraints means that no fundamental notion of
time exists: physical observables must be time-independent, while states must be invariant
under time reparametrizations. The first part of the problem of time, about observables, is by
now essentially resolved [167-171]: one needs to construct physical observables as relational
observables. Such a procedure requires decomposing the system into a clock and a physical
subsystem. The physical subsystem elements then evolve relative to the clock subsystem. As
shown in [24], a clock subsystem is readily available for gravitational physics along a null
surface in terms of spin-0 data where a physical time V was defined satisfying 02V = ud,V;
this can be viewed as a feature of the extended phase space [123, 172, 173]. The clock time is
then a physical observable. As such, it is necessarily subject to quantum fluctuations that
can smooth out some of the UV divergences of QFT [119, 120, 122, 123, 150, 151, 174].

The second part of the problem of time, i.e., the time reparametrization invariance of
physical states, is a problem which still needs to be solved. It is a problem which lies at the
core of preventing non-perturbative approaches to quantum gravity from agreeing with QFT
techniques and Fock-like quantization.?’ Given the ongoing and dynamic nature of research
in quantum gravity, and the central importance of the problem of time as a stumbling block
to our understanding, let us delve further into this point.

There are three related cornerstones in building a relativistic quantum field theory. The
first is the choice of Fock ground state, which requires the choice of background time to
decompose fields into positive and negative frequency components. The ground state is
defined as the state annihilated by the negative energy field modes. The second foundational
property is that the Fock ground state and any high energy state are thermally entangled
across subregions [181]. The third one is that the parity reversing operator P is quantized as
a unitary operator, while the time reversal operator is quantized as an anti-unitary operator.
Each of these features points towards a quantization scheme that breaks diffeomorphism
invariance in some way.

Let us begin with the choice of ground state, reviewing some familiar features of free
field theories: in order to quantize a physical system represented by a symplectic potential,
one has to select a polarization. In field theory, the only polarizations available are complex
polarizations, which require, in agreement with the geometric quantization program, equipping
the classical phase space with a complex structure [182, 183].

The field space complex structure I, satisfying I? = —1, that defines the Fock ground
state in a quantum field theory is given by I(¢) = iP1¢ — iP_¢ where Py are projectors onto
positive and negative frequency modes of ¢. Given a null time v € R, the positive frequency

20The incompatibility between quantum gravity states appearing in loop quantum gravity (LQG) and
the usual Fock states has been the subject of many debates [175, 176]. For example, Thiemann emphasizes
in [176] “in LQG, we cannot use perturbation theory, Fock spaces, background metrics, etc. .. This is not
the fault of LQG. It will be a common feature of all quantum gravity theories which preserve background
independence.” This tension also manifests itself in the discussion around the Kodama state, which provides a
non-perturbative solution of the Wheeler-de-Witt constraints [177-179]. See [180] for a recent discussion on
this issue in quantum gravity.
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projectors are given by the non-local time integral

(Pro)e) = [ gLt

_— P,:PT. 4.1
oo 2miU —u — g€’ + (4.1)

Such a positive frequency projector is not invariant under diffeomorphisms. Indeed, denoting
C'f = [TZdvf (v)C' the infinitesimal generator of the diffeomorphism f@, and Fy¢(v) the
corresponding finite diffeomorphism, a weight-0 scalar field transforms as

Therefore, one gets

. . +oo
P Onlo) = [ ;@Ff%fj(;ﬁ; o £ P, (43)
where we have assumed that the domain of F¢(v) is the same as the domain of v, that is, R.

This non-trivial transformation property of the projector shows that a choice of ground
state is not a notion that is invariant under diffeomorphisms. Indeed, one of the hallmarks
of QFT states is that diffeomorphisms changing the time integration domain are associated
with thermal behaviour [52, 184]. For instance, consider the transformation Fy(v) = e". It
converts a translation 9, in (0, +00) into a boost vector field kFyJp, on R. It also maps the
ground state at the quantum level into a thermal state with temperature x/2m. The fact
that after the map Fy the state is thermal follows from the fact that Fy(v — 27i/k) = Fy(v),
which implies the KMS condition, i.e., thermality.

We have seen that the choice of time determines the ground state. Remarkably, the
converse is also true. This is the thermal time hypothesis formulated by Connes and
Rovelli [115], stating that a choice of state is equivalent to a choice of time, and formulated
using the Tomita-Takesaki theory [185]. This result emphasizes that in QFT the ground
state depends on the chosen time.

For the arguments presented here, it is instructive to recall the behaviour under time
reparametrization of the two-point function of a free complex scalar field ¢. Given a Fock
ground state |0) in some given time v, we denote by |Ff), := e‘iéf]0> the ground state
associated with the time Fy(v). Given (4.2), one has

OpF§(v1)0yFy(v2)
(Fy(v1) — Fr(va) —ie)?

0<Ff|av§£18v(52‘Ff>o = <0|eicf8v9glav¢;26_icf‘0> = (4'4)
That is, 81,(5 behaves as a primary field of weight one. The creation operator ELL associated
with the ground state |0) is related to the creation operator &TZ:, associated with the ground
state |Ff), via the Bogoliubov coefficients

+oo ) .,
Bow = / dv Ve Frv), (4.5)

If ||8]|? < oo, then the transformation is inner [186]. We emphasize that there is nothing
special about the state that we called |0): it is on the same footing as any of the |F) . Given
a choice of such a state, we can discuss physics in relation [171, 173, 187-200] to that state.
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Denoting Hp, (v1,v2) = 0<Ff|6v<2318U¢A52|Ff>0 the correlation function in the ground
state |F¥),, one of the important properties of such a family of ground states is that the
difference between two expectation values is free of divergences. Remarkably, one finds
that [186, 201, 202]

lim (Hp, (vr,v2) — Ho(vn, 02)) = é{Ff;vg}, (4.6)

V1 —V2

where we recall that {Fy;v} = av(gé%) _ %(255;)2 is the Schwarzian derivative.

The appearance of a central charge in the constraint algebra allows us to propose a
resolution of the fundamental tension between the ground state definition in QFT, which
depends on the time chosen, and the sought-for background independence in quantum gravity.
Indeed, the usual perspective is that background independence implies the absence of a
physical notion of time [203], and choosing a preferred ground state |0) leads in one way
or another to a violation of background independence. These statements are based on the
usual idea that the diffeomorphism constraints can be applied either classically or quantum
mechanically. As we have seen, the main point now is that the constraint algebra is anomalous
at the quantum level. A central charge is produced in the quantization scheme due to the

presence of normal ordering necessary to define the constraint operator
(O, O = —Crpo— = [ Q7039 — g3 F 47
frYg [f>9] EN( vd — 90y )7 ( . )
12 Jar
which implies, calling Fy(v) = v’(v) to make contact with standard CFT notation,
C'(W) = (9,0) - (C’(’U) - 1—62{1/; v}) (4.8)

At the classical level ¢ = 0; in perturbative QFT on the other hand we have that
cqrT = 00. We postulate that in quantum gravity, cqg = ¢V is finite and is a measure
of its self-regulated nature. In cqq, ¢ is a count of the number of fundamental degrees of
freedom on each null generator. Thus the presence of a central charge in the constraint
algebra radically changes the discussion around the time problem, and as we will show,
provides a simple and natural resolution of it.

First, it is of crucial importance that the anomaly we find in the constraint algebra is
associated to a central charge and not a field-dependent cocycle, which would lead to an
impasse in the quantization.?! The fact that the algebra deformation is central means that the
notion of physical operators is unchanged since we can still define gauge invariant operators
to be time-independent. In other words, O is physical if and only if [C'f, O] = 0. This is
consistent since, if the algebra deformation is central, the commutator algebra is unmodified

[C1,1Cy, O = [Cy, [Cy, Ol = ~[Cly.g), O). (4.9)

Therefore, the presence of a central charge does not modify the notion of gauge invariant
observables. In particular, it does not change the ‘number’ of degrees of freedom measured
by those observables.

2 A field-dependent cocycle is a deformation of the algebra [Cf,Cy] = —Cly.q + K(f.4) where K is not
central, that is, [K(fyg%OA] # 0, see [141, 204, 205].
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On the other hand, the central charge modifies discussion about states. It is no longer
possible to impose at the quantum level that C ¢|1) = 0 for all f. We now have to select a
projective representation of Diff(R) associated with the given central charge. In particular
one finds that

€711 |Gy)y = e NPURCD|Fy 0 Gy, (4.10)
where we recall |Gg), = e*iég|0>, |FyoGg)y = eiié[f791|0>, and
1
B(Ff,Gy) = — 1o / dvIn[(9,Fy) 0 Gy)d, n[0,G,] (4.11)

is the Bott-Thurston cocycle [206, 207].

As already mentioned, we stress that the anomalous transformation is the rescaling of
£, which is used in the primed phase space to render ¢ a background structure, ¢ = 0. On
the other hand, diffeomorphisms of A/ are not anomalous, consistent with the absence of a
gravitational anomaly [208, 209]. The primed diffeomorphisms used in our construction are a
combination of diffeomorphisms and rescalings, and therefore are anomalous. This is analogous
to the Weyl anomaly in ordinary CF'Ts, where the Weyl transformation is a global symmetry
used to compensate conformal isometries, in order to preserve the background metric.

4.2 ...and its resolution

In the previous section we have seen that the quantization depends on the choice of time.
Furthermore, we have seen that the central charge induces a projective representation of
the primed diffeomorphisms. In section 2.4, we have discussed choices of dressing times
and argued that conformal time is particularly significant in that it is the unique choice
for which p. remains invariant under conformal transformations. Correspondingly, for time
reparametrizations on N, there is an sl(2, R) subalgebra that arises as a ‘global’ symmetry
in conformal time.

We will be interested in constructing a suitable Hilbert space, with this s[(2,R) as a
guide. Since we regard this as a global symmetry, physical Hilbert space states should be
associated with representations of s[(2,R). Note that this is not a statement that one would
usually make, given that we regard diffeomorphisms as gauge symmetries; however, we must
take into account the fact that the constraints projectively represent the action of primed
diffeomorphisms. Suppose we have a state |0)), and consider the expectation value of the
centrally extended OPE in this state. One immediately sees that it is not possible to set
éf\@> = 0 for all f. Instead, what one can do is split the constraints into two sets, one
which annihilates (), and one which does not (instead creating physical finite norm states).
As discussed in section 3.2.3, one should regard this as specifying that the theory must
be quantized in a holomorphic polarization, and should be interpreted as the introduction
of a particular notion of projectors Py analogous to those discussed in section 4.1. What
is most important though is the fact that such a choice of projectors is associated with
particular s[(2,R) representations. We will propose that there is a quantization in which
there is an sl(2, R)-invariant state.

The identification of the sl(2,R)-invariant state allows us to clarify the role of the
Raychaudhuri constraint. It is useful to consider the familiar case of the quantization of 2d
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conformal field theories on a circle as a warm-up exercise: in that case, there is a convenient
choice of basis f, ~ €™, and the modes of the stress tensor are the discrete L,,n € Z where
L_1, Lo, L1 generate an sl(2,R) subalgebra. The sl(2, R)-invariant vacuum state satisfies
L,|0) =0 for n =—1,0,1,2,... whereas L_,|0) for n = 2,3,... are (generally) physical. The
significant structure here is the splitting of the modes into two subsets, one which annihilates
the vacuum and one which does not. The algebra of the L,’s possesses a *-involution under
which LY = L_,,, and it is its existence which allows us to properly invoke the constraint in
the quantum theory in the presence of a central charge. That is, the vacuum expectation
value of the constraint vanishes.

The construction in our case proceeds analogously. Since we are quantizing on the
real line instead of the circle, some details are different. As is familiar, there are many
available representations of SL(2,R), and as a non-commutative algebra, it is convenient
to interpret a unitary (projective) representation on a Hilbert space H as defining a map
7 : Diff(N) — U(H).

Given the discussion in section 2.4, we consider the real line parameterized in conformal
time, here renamed v., which is a caustic avoiding time, v. € (—00,+00). We then write
as before

¢ = /_ O:O dvef (v)C(ve). (4.12)

We will interpret C ¢ as a Hermitian operator for all vector fields generating time reparame-
terizations £ = f(v.)0,,. We are interested here in introducing a suitable basis to express
the functions f. One might have expected that this formula implies that C'f is a tensor.
This is not quite true, as is familiar in any 2d CFT. Recalling (4.8), and considering a
diffeomorphism v, — v'(v.) generated by f; we have

¢t = / ao' f () C' (W) = Gy — [ o:o dvef(ve){V'; 0o, (4.13)

where we used that f is the component of a vector field, f/'(v') = (9,0 f(ve).

This will mean that operators ¢~Cs will furnish a projective representation of time
reparameterizations, which contain inside a representation of SL(2,R) generated by the C I
with f € sl(2,R). That is, if we restrict attention to SL(2,R), the Schwarzian vanishes
and thus C'f is a tensor.

Now we consider the corresponding representation space H. It is useful to consider
a basis that diagonalizes v.0,, .22 The eigenfunctions ¢a(v.) € C®(R) are of the form
da(ve) ~ v with eigenvalue A. The spectrum of A is as yet undetermined. The most
important assumption is that for each ¢, there is a corresponding ¢, where A, is the
dual value. While other representations constructed by acting with primary operators will
be considered shortly, the reader may anticipate that given that we are talking here about
modes of C'(v), we will be interested for now in a particular representation which includes

22 Another choice of basis would be the Fourier basis e "*7¢ for which 10y, is diagonal and Hermitian if
w € R. We use the following basis instead, because then the s[(2, R) generators correspond to f(ve) = (1, ve, v2)
rather than e¥¢ for n = —1,0, 1. These two bases can be thought of as being related via a diffeomorphism
with non-zero Schwarzian.
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all such modes, in which A is real. In the present situation, one has A, =2 — A. It is then
convenient to relabel A =1+ A, in terms of which A\, = —X and thus we will assume that

the spectrum is real and symmetric about the origin in A. We write the formal expression®

A o) A
C :/ dv. )1 C(ve). (4.14)
—0oQ
In this basis the x-involution corresponds to inversion v, — —1/v.. This implies
Cr =C_y, (4.15)

which follows from previous formulas, noting that the inversion is in fact an element of SL(2, R).
The sl(2,R)-invariant vacuum then satisfies

Cyl0) =0,  VA> 1. (4.16)

There is a close analogy here with ordinary 2d CFT. What we are describing is the vacuum
module of the chiral conformal symmetry. The vacuum state |()) should not be confused with
a Fock ground state |0). Indeed, this vacuum has the special feature of being the unique
s[(2,R)-invariant state in the module, corresponding to the identity operator of the CFT.
The physical states then are generated by acting on the vacuum with C_, for A > 1, which
correspond to conformal descendants of the identity. As we described above, it is useful to
introduce the ‘orientation states’ associated with diffeomorphism group elements

|Fy) = e~ 1)), (4.17)
This is an overcomplete basis of states which satisfy (4.10),
(FylGy) = NPT (0j0), (4.18)

It is interesting to consider what these states correspond to physically. Given that they
are defined by acting with the unitary operator ¢~iCs on the s[(2, R)-invariant state, it is
natural to interpret them as a ground state from the perspective of a different time. Thus
in this construction, all such states are in fact physical and related to the sl(2, R)-invariant
state by symmetry. The vacuum module constructs all such states. This is in contrast
to what happens in a non-conformal quantum field theory where the Fock ground state
is associated with a choice of time and consequently a choice of such a state in which to
quantize the theory. Then, the problem of time can be viewed from this perspective as
the fact that diffeomorphisms (here just time reparameterizations) act non-trivially on such
states. In fact, as discussed for example in [173], the states |F) correspond to quantum
reference frames, see [171, 187-200].

Now suppose that we considered an excited state, which we think of as obtained by acting
with a field operator on the vacuum. For instance, we can think of the graviton excitation &,
although the precise details are not relevant here. As discussed in section 2.4 (see also [24])

Z8Here we are suppressing issues of convergence. In particular, this expression is formal because it is not a
tempered distribution, that is, f is not rapidly decreasing. One way to resolve this is to include a regulator
factor e~ €lel. This is the same mechanism at the origin of the v12 — ie factors in correlators.

,35,



we recall that in going to a dressing time such as conformal time, operators are dressed to
the time reparameterization diffeomorphisms, so they are invariant under the constraints,

—iCy (4.19)

Il
9»

which is the finite version of (2.42). Therefore, we can always think of the corresponding
excited states as arising from acting on the s[(2, R)-invariant vacuum, |5, ) = &|0), such that

¢'C115,0) = 6|Fy) = |5, Fy). (4.20)

This means that a dressed excitation can be covariantly defined on any state in the vacuum
module. Stated differently, the dressed graviton can be expressed in any time frame, and
the relation between the states in different frames is given as usual in terms of Bogoliubov
coefficients. This again is a reflection of the fact that the notion of quantum reference frames
are provided by the dressing here. The novelty of the current construction is that there is in
fact a unique vacuum |()) from which all other states |F) in the vacuum module are built.

In our discussion, we have implicitly considered the central charge as finite. Consequently,
we have found that all orientation states |Fy) are on the same footing, and in fact we
can consider arbitrary superpositions of them. This stands in stark contrast to the usual
assumptions in quantum field theory, where one makes a choice of ground state |Fy), (and
a corresponding time) in which to quantize the theory. These ground states are regarded
as defining a superselection sector, all such states being orthogonal.?* This usual approach
leads to a violation of covariance or background independence when applied to the usual
field theoretical quantization of gravity. In fact, these ideas can be recovered from the above
formalism by regarding the central charge c as divergent. Indeed, in eq. (4.18) if one takes
cN — oo the right-hand side would rapidly oscillate, leading to zero.

The central charge diverges whenever the cut gives rise to a smooth classical geometry,
N — oo. In the next section, we will offer a notion of quantum geometry, in which a
cut, thought of as a representation of the diffeomorphism group, is interpreted as a finite
dimensional representation. From this perspective then, the resolution of the problem of
time is a truly quantum effect.

5 Mesoscopic quantum gravity: the embadon

We have found that the central charge in the algebra of the operator C is infinite. We can
track this divergence to the absence of a cutoff in the number of null generators, which
is registered by the contribution §() (0) counting the number of points on the spatial cut.
In this section, we suggest a model for how quantum gravity may evade this problem and
render the central charge finite.

241f we associate the central charge with a notion of energy (such as Casimir energy), an infinite central
charge implies that transitioning from one state to another within the vacuum module requires an infinite
amount of energy. This results in a fixed background in the classical limit. Conversely, at the quantum level, a
finite central charge means the energy gap between these backgrounds is finite, allowing for their coexistence.
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5.1 Molecular geometry

At first sight, one might think that to render the central charge finite it is enough to introduce
a cutoff in the theory. However, we are dealing with a theory of quantum gravity where,
thanks to the equivalence principle, symmetries define the dynamics, and it is not acceptable
to simply break the local symmetries by the presence of a cutoff. Instead, we need to change
the nature of the vacuum to preserve the symmetries.

As shown in [117, 210], the generic corner symmetry algebra induced from Einstein
gravity at an isolated corner is ECS := Diff(C) x SL(2, R)¢ x (R?)C. This is the starting point
of the corner proposal [135, 136, 141, 210-217] (see also the reviews [218-220] and references
therein). Here, as in [24], we are restricting our attention to a null hypersurface, and thus
reducing this group to the so-called Weyl-BMS group BMSW := Diff(C) x R® x RC, where
the first R factor represents local boosts while the second one are the supertranslations. We
expect that the quantum theory forms a representation of this symmetry group [218, 219] or a
deformation of it [136]. We cannot simply break this symmetry with a cutoff since this would
amount to breaking the underlying background independence. Quite remarkably the BMSW
corner symmetry group (and related subgroups) is the group of symmetries of asymptotic
infinity [84, 85, 87, 221]. More importantly for our interpretation, restricting our attention to
the affine group GBMS = Diff(C) x R®, one remarks that this is the group of symmetries of
a barotropic fluid [222, 223], for which much is known about its representation [135, 224].2

While we do not need to enter into the details of the representation theory of the
hydrodynamic group GBMS, we can use it as a source of ideas for the present discussion.
Indeed, we recall that the area density plays the role of a Casimir of GBMS and that there
are essentially two kinds of representations depending on its properties. The first kind of
representations are the classical fluid ones: they are characterized by the fact that Q is a
strictly positive and absolutely continuous measure on the cut. This is the hypothesis that
we implicitly have been making so far since {2 represents the induced area form, which is
continuous and strictly positive by design in a classical spacetime.

The second type of representations are the molecular representations. The molecular
representations are fundamentally quantum; they postulate that the area form operator
Q(m) represents, when diagonalized, a positive but not strictly positive discrete measure
on the cut. The support of the measure represents the gravitational fluid constituents and
determines how the boost symmetry R acts. In quantum hydrodynamics, these constituents
are the fluid’s molecules which, in addition, may carry quantum vortices labelling a Diff(C)
representation [227].

Inspired by these results, this section aims to show that the molecular representation
of the area operator lead to a finite central charge. The terminology here reflects that one
should think of the molecular representation as a description lying in between the Effective
Field Theory (EFT) description, where geometry is classical, and a complete description

of quantum gravity, such as string theory. The molecular description is a ‘mesoscopic’

25See [224] for a study of the asymptotic GBMS representation in terms of the barotropic fluid perspective
and [225, 226] for analogous statements in 3d gravity. To include supertranslations, one needs to extend the
phase space introducing edge modes on the cut. We plan to explore quantum representations of BMSW in
future works, but it is clear that it will not change the area quantization proposal of this section.
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description that captures the essence of what it means for geometry to become quantum,
without assuming that we have the full UV complete description of the theory, similar in
spirit to the discovery of Brownian motion.

In the simplest molecular representation, one assumes that the constituents are scalars.
Concretely this means that we assume that Q, as a quantum operator, has discrete support
on the codimension-2 spatial cut, and is given by?°

N
Qz) =Y 0(0)6P (2 — ), (5.1)
=1

where z; are N distinct points on C, and z; # z; when ¢ # j. The operator Q; denotes the
value of the area operator at the point z = z;. Since the area commutes with itself, we can
always work in a polarization where Q, are diagonalized and treated as functions on the
cut. Each puncture z; hosts a codimension-2 degree of freedom that carries quanta of area
represented by Q;. We refer to these quanta of area as embadons. The name embadon is a
Greek term for area = epPBaddv. The root of the word also reminds us of the word embedding,
an accurate name for the geometry constituents.

The first point to emphasize is that we have not introduced a UV regulator in terms of a
fundamental length scale. We have introduced a dimensionless number N that represents the
number of fundamental constituents. We take this as a fundamental lesson of holography:
the regularization determines the number of constituents, not a scale. What this buys us is
the fact that this construction does not break the Diff(C) gravitational symmetry. Indeed a
diffeomorphism ¢ : C — C on Q— d)*Q simply acts on the labels z; — ¢~ 1(2;). A specific
subclass of diffeomorphism would simply permute the label points, i.e., ¢~1(2;) = Zo(;) Where
o € Sy is a permutation. If we assume that the statistics of this field is bosonic, we can
identify the configurations related by permutations.

To reiterate, the fact that the molecular representation is compatible with diffeomorphism
symmetry is what distinguishes it fundamentally from any other form of regularization, which
would simply break the symmetry instead of representing it in a different manner than the
continuum. In particular, the molecular representation is not a lattice discretization, nor is it
a UV cutoff regularization. Instead, as the name suggests, it simply predicts the appearance
of a constituent of the area, the embadon.

To understand the consequences of assuming a molecular spectrum (5.1) for the area
element, we analyze the symplectic structure. The spin-0 part of (2.5) localizes entirely
on the support of Q:%7

QR = ———— 0 0Nl =——— Ol 682;(v)do, 2
(0) 8@ /J\/EN pA 7G ) K (U) A (’U) v (5 )

where we denote p;(v) := (v, z;, z;). The first piece of information we can extract from this
presymplectic structure is that the values of (v, 2z, %) for z # z; are pure gauge. Only the

26We could have a more general description where the constituents are dipoles (or even more generally
multipoles) in which case we would have higher multipole expansion Q£946® (z — z;) + Q2B DA D6 (2 —
z;) + ... as constituents. We restrict our analysis to scalar constituents that represent area elements.

2TWe here assume that z; are not part of the phase space, dz; = 0. This restriction can be relaxed including
the Damour constraint [228].
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value of p at the location of the ‘punctures’ z; are physical. Indeed, when given a symplectic
form Q" the gauge transformations are the kernel of dx: I5, Q<" = 0.

We are used to the classical condition that the area form is strictly positive. In this
case the only gauge invariance available for the full symplectic form are diffeomorphism
transformations. This is the usual notion of gauge invariance which is field independent. When
Q) is not strictly positive a new type of gauge invariance appears: any field transformation
with value in the interior of the set {2 = 0} is a gauge transformation. Hence the space of
(gauge invariant) physical fields depends on the support of the area form 2. In other words
the number of physical degrees of freedom can be reduced by having a smaller support for
the non-zero value of the area form. The mechanism just described cannot happen in QFT
since there, the geometry is a fixed background structure. It can only happen in quantum
gravity where the area element is a physical field and the question of what support it has
depends on the quantum gravitational state. Here we investigate the ‘molecular’ case where
the support of 2 is along a finite number of points on the cut. In this case the set of spin-0
physical degrees of freedom is finite dimensional.

From (5.2) we easily conclude that the Poisson bracket of the spin-0 data is

{Qi(vl), /Jj (Ug)} =8&nG (5(1)12)(52']‘. (53)

Thanks to ultralocality, the exact same procedure as in (3.8) can be implemented here for
the quantization of each molecular component, leading to the OPE

AGhS;;

V12 — Z'E'

fi(v1)Q(v2) ~ — (5.4)

The molecular representation of symplectic degrees of freedom extends to the spin-2 sec-
tor in (2.5)

can 1 al o b

— ¢ .

Q(Z) = m Z; /_oo dU(é(QzUZ' ) A 5qlab)7 (55)
1=

where 0% := 0% (v, 2;, ;) and qiap(v) = qup(v, 2, Z;). From this we conclude that the value

of g and its time derivative outside of the punctures are pure gauge. Similar conclusions
can be achieved for the matter sector.

The generator of time reparametrizations can be constructed in this restricted phase
space. Since we have established that the field variations outside the punctures are pure
gauge, the only relevant action of the diffeomorphisms £ = fd, on the molecular phase space
is given by the action of its restriction f;(v) = f(v, 2, %;) on each molecular variable. The
canonical primed action is the molecular restriction of (2.3)—(2.4),

Slfqiab = L, %iab, 'glfo'iab = 0y (fi0id"), (5.6)

E}Mz‘ = Ou(fipts) + O2f;, Qlfﬂi = fi0u, 2}9 = 0v(fif), (5.7)

and one finds that its canonical generator is simply given by

Ci(v) = 029 — 11:0,% + Qi(0P 00y + STGTIAY), (5.8)

v
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Ultralocality plays a crucial role, resulting in the constraint localizing at punctures, {Cj, C;}
0ij-
At the quantum level, using

Ciw) = o (5.9)
the non-perturbative OPE is of the form
o ¢ 2C;i(v2) 95, Cj(v2)
: : ~ by J 2 =) 1
Ci(v1)Cj(v2) ~ by (2(012 i) + (012 — ic)? s e ) (5.10)

where ¢ is the single null ray central charge. Notice that, as stated, the construction is
diffeomorphism covariant on the base, as ¢ : C — C simply acts on the labels z; — ¢~!(z;).
However, to realize on the phase space this symmetry one has to include the Damour
constraint, which is the generator of such diffeomorphisms. This will be discussed in our
upcoming paper [228], but the underlying assumption is that embadons will carry through.
The embadons which are localized on each cut of N describe the number of constituents
associated with this cut. Therefore, what we have achieved with the introduction of embadons
is that the total central charge of the cut, associated with the constraint C' = 3"V, C; is now
finite and given by ¢V, where N is the total number of embadons.

In conclusion, we have studied a regime called mesoscopic quantum gravity where we
encountered the appearance of area constituents, called embadons. Embadons allow us to
localize the symplectic analysis and quantization on punctures, making the total central
charge finite.

5.2 Relationship with other approaches to quantum gravity

In this section, we want to clarify the connections between the ideas developed here and
previous results in the quantum gravity literature. Let us first emphasize that our approach
in this manuscript is a ‘bottom-up’ approach to quantum gravity. This means that we are
proposing an effective description that includes backreaction of matter and spin-2 degrees
of freedom on geometry. In this regard, it goes beyond the usual QFT and classical gravity
perturbative regime, which assumes that geometry is fixed. In our description, embadons are
representation labels of a fluid-like symmetry group. The area operator is expected to be
related to the modular Hamiltonian, which, in turn, measures the entanglement of states.
Consequently, since the corner symmetry group organizes embadon representations, it is
connected to the entanglement structure of the theory. This ‘mesoscopic’ description of
quantum geometry is not a fundamental description of nature like string theory aims to be.
It is a new stepping stone towards full quantum gravity that better equips us to deal with
the upcoming technical, conceptual, and experimental challenges.

The starting point of UV-complete quantum gravity theories, which one could call ‘top-
down’ models, is often to postulate desirable features of gravity in the UV and then try to
connect back to QFT and general relativity in the IR. In one way or another, these theories
must take into account the classical symmetries of the phase space. Our bottom-up approach
has the virtue of taking these classical symmetries as the starting point, proposing a covariant
quantization. The final aim is to appreciate the presence of a regime, the mesoscopic regime,
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where one can consistently straddle the gap between top-down and bottom-up models. Our
approach integrates two essential lessons coming from different quantum gravity communities.
The first lesson is from loop quantum gravity (LQG) [229-232], and is that geometry is
quantum. The second lesson comes from string theory and AdS/CFT [233-236], and is that
gravity is holographic. These two approaches illuminate different aspects of quantum gravity,
and we propose that a comprehensive understanding of quantum gravity can be achieved
by integrating them coherently.

First, in LQG, the states are assumed to be supported by graphs called spin networks
whose edges carry quanta of area [95, 96, 237]. It was then proposed that the counting of
surface states associated with the intersection of spin networks with 2-horizons gives rise to
the black-hole entropy [137-139, 238-242]. This leads to a picture of quantum geometry for
black holes that is consistent with the more general embadon picture proposed here.

In AdS/CFT, and more broadly in holography, the fundamental degrees of freedom
are, by definition, excitations of a boundary CFT. Therefore, they are, like embadons,
localized on codimension-2 slices. This is the outcome of the holographic dictionary: bulk
asymptotic symmetries are dual to boundary global symmetries. Consequently, physical
charges are codimension-1 integrals on the boundary and, therefore, codimension-2 extended
quasilocal charges in the bulk. Moreover, the entanglement of boundary quantum states
builds the architecture of bulk spacetime, and its smooth gluing of subregions [243—-249].
In particular, this is based on the correspondence where the minimal area in the bulk is
dual to the boundary entanglement entropy [250], thereby highlighting the special role of
bulk areas and entanglement wedges.

In LQG, there are three significant areas for potential improvement, which incidentally
are the lessons of holography. The first one is more technical: apart from works on black-hole
entropy, the focus of LQG has been on promoting the fundamental degrees of freedom
to be codimension-1 extended excitations rather than codimension-2. The second is that
in LQG, quantum geometry excitations carry a representation of the SU(2) local Lorentz
symmetry only, which is assumed to be the only local group responsible for the entanglement
of excitations, while no entanglement arises from diffeomorphisms. Nonetheless, it is now
firmly established [117, 251] that diffeomorphisms must carry entanglement in quantum
gravity. This follows from the fact that the gluing of adjacent regions along codimension-2
spacetime cuts is achieved at the quantum level as a fusion product that ensures the matching
of Noether charges associated with each symmetry, including diffeomorphisms tangent or
transverse to the cut. The third and most significant opportunity for improvement in LQG
is related to this issue: the loop gravity vacuum representing empty spacetime makes no
reference to a choice of holomorphic polarization and is consequently not reconcilable with
a Fock ground state, [94, 252]. In particular, the modular Hamiltonian associated with
cuts of quantum geometry in LQG is not related to the boost diffeomorphism symmetry
(see [241, 253] for some notable exceptions), which is one of the foundational principles of
QFT [52, 254-256], and in particular of holography [77, 246, 257, 258].

In holography, there are significant areas for potential improvement, which incidentally
are the lessons of LQG. Indeed, in most holographic treatments, the area is regarded as a
central element and often not as an operator. This is in line with the idea in holography that
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gravity can be quantized without quantizing geometry. While this is a foundational principle
of the AdS/CFT correspondence, it is also a point of contention and a potential area for
improvement for several reasons. First, while AdS/CFT provides a robust framework, it
does not fully resolve the issue of how to reconcile quantum principles with the fundamental
nature of spacetime geometry at a microscopic level. Quantizing gravity involves dealing
with the quantum fluctuations of spacetime itself or with the quantum backreaction on the
geometry of field perturbation, which is not fully addressed in the holographic duality. Second,
gravity in the bulk AdS space emerges from the boundary CFT, suggesting that geometry
may not be fundamental but rather an effective description. This raises questions about the
underlying nature of space and time at the quantum level and whether gravity truly can be
understood without a deeper quantization of geometry. Related to this is the proposition
that the holographic nature of gravity is a quasilocal feature [117, 123, 216, 259] that can be
extended to finite regions using corner symmetries. The AdS/CFT correspondence focuses
on observables defined only at infinity (with few exceptions [75]), and thus understanding
the nature of quantities like entanglement entropy or information in terms of bulk geometry
remains a challenge [260]. Clarifying how these dual descriptions relate more intuitively
to traditional semiclassical gravitational concepts could provide deeper insights into the
nature of gravity itself.

As highlighted, a notable feature is that one perspective contributes to improving the
deficiencies of the other. First, both perspectives lead to the conclusion that gravity possesses
codimension 2 excitations and that the black hole entropy is finite; hence, the fundamental
excitations should regulate UV divergences. From LQG, we learn that these excitations should
carry quanta of area, necessitating the promotion of the area to a quantum operator. In parallel,
holography makes concrete the connection between the area operator, modular Hamiltonian,
and entanglement entropy. These elements naturally interconnect when considering the
quantization of null geometry. Specifically, the emergence of embadons at the mesoscopic
level integrates the diverse insights from top-down quantum gravity theories comprehensively.

5.3 Embadons and gravitons

We have seen in section 3.3 that the dynamics and operator structure of a large null surface
becomes, in asymptotically flat space, the same as the Bondi description of asymptotic
infinity. The shear becomes the news o4p — Nap/r while, looking at constant cuts u =T,
the renormalized area Qp = 2 — W becomes the time integral of the Bondi mass. For

these cuts, where D4T = 0, we have from (3.90) that
o W L[+ AB
Qr(T) = —2/ (u—T)TH + 5/ (u—T)DaDpNAE. (5.11)
T T

As already remarked, this formula shows that the integral of 25 on the cut is strictly negative
if the Bondi mass is non-vanishing. Flat space, whereby mp = 0, is thus a mazimal area
spacetime. Any other physical asymptotic states representing a non-empty spacetime have
a lower asymptotic area. Stated differently, the flat space background is realized as a state
of mazimal embadon density.

The asymptotic limit therefore is such that N — oo, where N controls the finite central
charge. The difference between N — oo at a finite distance hypersurface and asymptotic null
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infinity is that in the latter we also have that the area A = Zi]\il Q; diverges. Conversely,
the QFT limit for bulk hypersurfaces is set by N — oo while keeping A finite. This suggests
that in the QFT limit Q; o p/N, where p becomes the continuum area element.

We thus understand the asymptotic quantum gravity vacuum as a continuum limit of
embadons, in the same way that classical fluid dynamics can be understood as a thermody-
namic limit of molecules. What is interesting is that in this limit, the flat space vacuum acts
as a maximal density state, similar to a Fermi surface at maximal density. In this limit, all
the excitations lower the area element eigenvalues, as in a graviton emission process. More
precisely, we know [261, 262] that the Bondi news can be expanded in terms of graviton
creation and annihilation operators (a+(w), al (w)), while since TH(u) is quadratic in the
news it can be expanded as a quadratic functional in (a(w),al,(w)). The formula (5.11)
then provides an explicit action of the area element acting on the Fock ground state. The
detailed study of this action is beyond the scope of the present paper. What we can conclude,
nevertheless, is that while graviton eigenstates are not area eigenstates, coherent graviton
states are associated with area element coherent states. Therefore, we see a direct connection
between embadon coherent states and those of gravitons.

While the limit to asymptotic null infinity makes the connection between embadons and
gravitons sharp, we remark that such a connection is also present for a finite-distance null
hypersurface in the bulk. This is visible both in the classical phase space and in the dynamics.
In the former, the evidence in support of this claim is the bracket above (3.41), which shows
that the fluctuation of the perturbative area is dictated by the perturbative gravitons 0, X
and 9,X. In the latter, this is readily deduced from the Raychaudhuri constraint (2.1).
Suppose for instance that we are in dressing time p = 0 and there is no matter present, the
area is the ANEC operator [*°_dvoT (see (2.37)), which is the light-ray operator describing
the gravitons on the null hypersurface.

6 Final words

We have explored the quantization of gravity on a null hypersurface. We have shown that
the ultralocal nature of the phase space, combined with the null geometric structure, reveals
that gravity on a null hypersurface effectively reduces to a one-dimensional chiral sector of a
CFT. This insight allowed us to predict the presence of a central charge and, consequently,
an anomaly in the quantum primed time reparametrization due to the rescaling of the null
generator needed to establish it as a background structure. We computed the central charge
and demonstrated that it quantifies the degrees of freedom on each null generator, formally
diverging when infinitely many such generators are considered. We studied this concept in
various setups: the spin-0 sector, the perturbative gravity regime on static and expanding
backgrounds, and asymptotic infinity.

We then noted that the presence of the central charge allows for a resolution of the
problem of time in quantum gravity. This led us to venture into a novel and exploratory
direction: we proposed a mesoscopic regime where ‘molecules’ of geometry arise. In this
regime, the quantum area operator acquires a discrete spectrum, with constituents that we
called embadons, from the Greek word epfoddév= area. Notably, we showed that in this
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mesoscopic regime, the central charge can be rendered finite, which we suggest should be
taken to be the hallmark of quantum gravity, outside of semiclassical constructions.

There are many avenues our exploration has touched upon that are worth further
development. First, in a recent series of papers [98, 263] Verlinde and Zurek have proposed
that in quantum gravity, fluctuations of the modular Hamiltonian K are tamed in a universal
manner. Instead of being infinite, it satisfies (AK)? = (K). An experiment designed to
measure this effect has been proposed [264]. It is worth mentioning that the property
of the modular Hamiltonian cited above is a well-known property of 2d CFTs (this was
mentioned recently, for example, in [265] and will be explored in [266]). In this paper, we
have demonstrated that the dynamics of quantum gravity on a null hypersurface is controlled
by a chiral CFT, and so our construction suggests that there is good reason to believe
that (AK)?/(K) is fixed in quantum gravity in general. The mesoscopic construction is a
framework in which both quantities are expected to be finite, as a consequence of the central
charge being finite. As we discussed, the finiteness of the central charge allows us to consider
superposition of states in the vacuum module. Conversely, this is not possible in the QFT
limit, where the central charge diverges and thus one is forced to have superselection. As
such, this is a truly a quantum gravity effect, that we intend to explore in future work.

The perturbative setup on expanding backgrounds is definitely worth pursuing, in
particular its canonical quantization. It would be interesting to complete the deformation
quantization analysis, and compute explicitly the star product of constraints. Mastering
these backgrounds allows us to make contact with the thriving topic of de Sitter perturbation
theory and cosmology.

While we worked primarily in 4-dimensional bulks, our results hold in any dimension. We
could for instance explore 2-dimensional gravity, where the cut becomes a point, and there is
no need to appeal to ultralocality. Another interesting venture is to apply our results to the
dimensional reduction of gravity in the vicinity of a null hypersurface, such as a black hole
horizon. This allows us to make contact with the thermodynamic analysis of black holes, and
extend its domain of applicability to all null hypersurfaces. We expect that our construction
enhances the thermodynamic laws to hold in the regime where quantum geometric effects are
relevant. For black hole horizons, our results should align with [102, 103, 267, 268], allowing
to export their analysis to any null hypersurface, and making this construction independent
of the symmetry structure of the background chosen. Furthermore, we intend to relate in
detail our work with the near-horizon CFT construction in [102, 106], see also [269].

To describe all the constraints induced by gravity on a 3-dimensional null hypersurface,
we must include the Damour constraint into the quantization picture described here. This is a
priority for us, and we expect to report about it soon. Incidentally, the comprehension of the
Damour constraint makes further contact with the celestial CF'T program, where the Virasoro
algebra arises in the spatial directions on the celestial sphere [40, 270]. Including the Damour
constraint is expected to have repercussions for the embadon, providing a way to formulate the
embadon representation theory on the cut, and its interplay with the Raychaudhuri constraint.

The discussion in section 4 touched upon foundational properties of QFT. We wish to
explore how our analysis intertwines with the Hadamard property of the vacuum [160, 271—
273], the Hadamard singularity structure [274, 275], and its null limit [47]. Another aspect

— 44 —



that we wish to explore further is the rephrasing of the anomaly found here in the standard
QFT formalism [208, 209, 276]. In this direction, we could deepen our understanding of
the phase space and its quantization arising from our symplectic potential, which has a
universal structure appearing in many physics systems, such as non-linear sigma models
and thus string theory.

A final direction to follow is the interplay between our quantization framework and
quantum information tools in gravity. Specifically, we plan to study the generalized second law
on a generic null hypersurface. The notion of time chosen becomes of primary importance in
formulating the generalized second law, and subsequently the quantum focusing conjecture [75].
Indeed, the latter is not invariant under rescaling, and this might provide yet another way to
corroborate the special role played by the conformal time discussed in this paper.
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A Classical details

In this appendix, we collect results from [24] that will be useful at various points in the main
text. If we assume no fluxes at ON, we can derive the kinematic Poisson bracket from the
symplectic two form (2.5). To do so, we use the Beltrami differentials for the unimodular
metric g,,. The Beltrami diffentials are the fields ((x) and ((z) satisfying

|dz + ¢dz|?
20—,
p
where 8 =1 — ¢(. They allow us to rewrite the spin-2 degrees of freedom in terms of ¢, C,
8

dab = QG yp, Gupdatdab = (A1)

and their temporal derivatives?

I S Y S ey Y

A, = , v = , Wy — Wy A2
5 8 23 (A.2)
Then, introducing the propagator (P12 = —Pa1)
—2 fv2 wydv
Pla= )
P12 = H(Ul - U2)5 (21 - 2’2), (A3)

V1 Q9

28Note the useful identity 020 = 2A,A,.
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with H(vi2) the odd Heaviside function satisfying 0, H(v12) = 0(vi2), we derived in [24]
the kinematic Poisson brackets

{Q1, o} = 817G 6% (215) (A.4)
(i1, 2} = 4G (D0, B, Pra + By Ay, Prs) (A.5)
{m, G} = 4G A, B2 P12 (A.6)
{C1, Co} = 4mG B1 B2 P, (A7)

where we use the notation Q; = Q(xz;), etc.

B Perturbative brackets

To find the Poisson bracket, it is convenient to use the composite functional Q; in the phase
space basis, such that the latter is spanned by Z%(x) = (w(z),V5(z), X (z), X (z)). Then,
we can write the symplectic two form (3.31) as a bi-local integral

1 ) / ) 8
Qe = 7/ € 062 (x1) N QG5 (01, 22)0 27 (22), B.1
2 Iy M (1) (z1,22)02" (22) (B.1)
with (512 = 5(3)(3112))
0 B,y (izzé;;) 0 0
Oy, 0 ~
(01351(%_17.%2) — V1 ((91,119’151) 0 a1}2)(2512 8112)(2612

0 —0y, X 1012 0 =24/, Q500,612
0 —8v1X1612 21/9%19%28@612 0

(B.2)
To check this, one uses p = 9,1n 8,0 and thus dpu = 9, %”63}.
We then invert this matrix, and obtain ¥
Qe (w1, 72)  — ALy O(va1) QX (w1, 72) QX (w1, 72)
AQBm@(UQl) 0 0 0
Qein(@1,22) = | _qwX (3, 1,) 0 0 —onl %(521& 6 (212), (B.3)
B1°"B2
_OwX O(v21)
Qcan(xlva) 0 2\/7m 0
with AQE,, = Q% (x2) — Qg(z1), and®
vz Oy, X (03, 21,
QX (3 ) = — 2002 / s X (U3 2121) A g (B.4)
\/Q“ z2) T 24/ (vs,21,71)
w 2 Oy X (v3,21,21)
QX ( g AQY, dvs (B.5)

U21
can 3317562
y/QM .CCQ v1 21/QM ’03,2:1,21)

4 AQE
Qcan(‘rl .732) (1)21)/ 81)39%3d1)3/ d’U4/ d’l)52 B51
U1 U1 U1

Va5

29%We used AQY., for compactness, but the spatial points are the same here: Qf;(vs, z1,%1) — Q% (v1, 21, Z1).

(95 X'5004 Xa 00 X500, X 1)
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Furthermore, we introduced ©(vi2) satisfying
V1 > V2 = @(1}12) = 1, v1 < V2 = @(1)12) =0. (BG)

Using the conventions Q%5 (x1,29) = —{Z%(x1), Z°(x2)}, we read the Poisson bracket

Oy U AQE — _
{wi,wa} = /dv3/ dv4/ dyg—2—B3—"B51 (av5X58v4X4+av5X58v4X4>®(U21)5(2)(212)7
2 9%49735

together with

{wr, Q= AQL, O(v21)5®) (212) (B.7)
811 X3 2
{wl,XQ} = / 3 Aﬂ%gldvg @ ’021)5( )(2’12) (BS)
VL 2y Vo Qs

Oy X3

{Wl,XQ} - /
v 2y Qo3

@(’021)5( )(212) '

2,/ Q1 s

These are the brackets reported in the main body of the paper. Some useful composite

AQBSldU3 C) v21)5( )(212) (B.g)

{X1, X0} =— (B.10)

brackets are

{8y, w1, Uiy} = =8y, Vs, 0 (021)0P (219), (B.11)
{00, w1, s}y = — (95,5, O(vm) - am%la(vzl))a(”(zm), (B.12)
v2 8U3X3

{8v1w1, XQ} = 81)1 Q%l dvge Ugl 2’12) (B13)

v 2y Qg p3
O Xo Oy / D0y X3
v 2

{81)1("}1’6@2)(2} = 61)19%1 ( -
VAL

2005, 20/,
I
{831(,01,)(2} — (82 QN / angS _ 8U19Blav1Xl) @(U21)6(2)(212) (B15)
v 9

m 2,/ 5,00,

81) X &U QF 51; X

{8’31(“'}176’02)(2} - 6319%1< 242 _ 2°“B2 / 3<% 3
. 2\/@

2005, 2005,
—d(v12) + @(Uzl)) 5 (212) (B.16)
I
52 ( 2\/%%

8,)2Y2 _ 81,2(2%2 / 8U3X3
29%2 29%2 v1 9

dvg) @(U21)5(2)(212) (B.14)

dvg) @ ’U21 212)

{avlwl,awxz}:amgg( dvg) O(v21)6P (212)  (B.17)

__ av X3 81) Q av Xl

{02 w1, X} = (32 ok / 3 LBl )@ v91)6P (z12)  (B.18)
vt 2y QBQQBZS 2\/ Vol

{0y, w1, Opywa} = =0y, U1 Oy, Vo K (21, 32)0(v21)6@ (212) (B.19)
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where we used 9,, ©(va1) = —d(v12), and introduced the spin-2 holonomy functional

v2 vs hou X 40y, X s X200, X
K(wl,xg):/ dvg/ dpy Qs 1000 X3 0ui XaBun X3 (B.20)
V1 V1

2,/ Q34

This functional satisfies the useful identities K (x1,z1) = 0 = K (22, x2), and

v2 Oy, X104y X 3 + Oy, X 10y X
81111((1‘1,332):*/ dovs vy X10v3 X 3 + Ovy X100, 3‘

vl 24/ Qs
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