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Chapter 1

Introduction

The mechanical parts of Micro- and NanoElectroMechanical Systems (MEMS
and NEMS) are often designed to work at separations where the interaction
mechanisms caused by quantum fluctuations of the electromagnetic field can-
not be neglected. It is well known, for example, that non-retarded van der
Waals forces play a central role in interfacial adhesion and friction between
surfaces in contact [1]. At larger separations, long-range retarded van der
Waals forces can still affect the performance of MEMS and NEMS [2–4]. It is
thus now commonly believed that, if one could suitably engineer the strength of
those interactions with techniques that can be easily reproduced in micro- and
nanofabrication processes, unprecedented opportunities would come available
for the development of conceptually new MEMS and NEMS [5–10]. For this
reason, previous studies on dispersion forces in colloidal suspensions [11, 12]
are currently receiving renewed attention [7, 13, 14], because they prove that
the retarded van der Waals attraction can be largely reduced or even switched
to repulsive if the gap between the surfaces is filled with a liquid [15–17]. Since
MEMS and NEMS are often designed to work in air or other gaseous environe-
ments, it is now interesting to investigate whether similarly dramatic effects
can be observed in the absence of liquids, where, due to historical reasons, the
long-range retarded van der Waals force is called Casimir force [18].

Driven by these considerations, over the last four years we have devel-
oped an experimental setup designed to carry out precise measurements of
the Casimir force between a sphere and a plate in the presence of a gaseous
intervening medium [19, 20]. In this thesis we describe the instrument and the
experimental procedure, show its versatility as a general tool for the investiga-
tion of forces between surfaces at sub-micron separation, and present several
original results obtained with this setup.

This chapter is partially based on the paper: S. de Man, K. Heeck, K. Smith,
R. J. Wijngaarden, and D. Iannuzzi, Int. J. Mod. Phys. A 25, 2231 (2010)
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4 1 Introduction

1.1 The Casimir effect

With the development Quantum Mechanics and Quantum Electrodynamics,
we have come to understand that the vacuum ground state is not empty,
but filled with continuous fluctuations of the electromagnetic field. These
fluctuations are often interpreted as virtual particles that frequently pop in
and out of existence to disturb the emptiness of vacuum, and have observable
consequences like the Lamb shift and spontaneous emission [21]. It was not
until 1948, however, that it was realized that these quantum fluctuations would
have any effect on macroscopic objects. Hendrik Casimir, at that time working
at Philips Research (Philips Gloeilampenfabriek NV), considered what would
happen with two perfectly conductive and electrically neutral plates placed
parallel in a vacuum filled with electromagnetic fluctuations [18]. Since the
plates impose boundary conditions on the electromagnetic fields, the number
of allowed vacuum modes inside the cavity is substantially less than outside
the cavity. Casimir derived that the plates are actually pulled together by
the quantum fluctuations, by showing that the total free energy of the system
decreases as the cavity gets smaller. It was later shown that one can also state
that the virtual photon pressure on the outside walls of the cavity is stronger
that on the inside walls, because more vacuum modes exist outside the cavity
than inside [22]. The Casimir force between perfectly conducting plates is
given by

FC = −π
2~cA

240d4
, (1.1)

where A is the area of the plates, d is the distance between them, and ~ and
c are the usual fundamental constants. Interestingly, apart from the prefactor
π2/240, this equation can be obtained from dimensional analysis. In fact, the
notion of a quantum force combined with electromagnetic field fluctuations
leads naturally to F ∝ ~αcβ. Considering that the force has to scale linearly
with A and should depend on distance, we have F ∝ ~αcβAdγ, of which the
only solution with correct units is α = 1, β = 1, and γ = −4.

In 1956, E. M. Lifshitz generalized the theory to incorporate the finite
conductive of the plates that form the cavity [23]. He followed a different
route than Casimir and started from the dipole-dipole interaction between the
atoms of the interacting surfaces. He then performed a continuous medium
approximation and described the dielectric properties of the surfaces with their
dielectric functions. Furthermore, Lifshitz took into account that the electro-
magnetic fields that travel from one plate to the other have a finite propagation
speed, namely the speed of light. Lifshitz final result is, although mathemati-
cally quite involved, very illuminating. His result turned out to be equivalent
to Casimir’s result when one substitutes perfectly conducting dielectric prop-
erties, but he also recovered the Van der Waals force for small plate-plate
separation. For relatively large separation (i.e. larger than roughly 10 nm),
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the finite speed of light starts to play a role, and the force is then called “re-
tarded Van der Waals force”. Lifshitz thus accomplished to unify the Van der
Waals force and the Casimir force, and showed that both are limiting extremes
of the same interaction. In the literature, there is no strict distinction in the
use of this terminology, and the wording Casimir effect is also used for the
interaction between real (dielectric) materials.

The first attempt to experimentally verify the existence of the Casimir effect
was carried out by Sparnaay, a colleague of Casimir at Philips in 1958 [24]. His
results did not deviate significantly from Casimir’s theory, but were certainly
not precise enough to confirm it either. In 1978, though, Van Blokland and
Overbeek measured the force between two surfaces coated with chromium [25].
Their experiment demonstrated the existence of the Casimir force and showed
good agreement with the Lifshitz theory. In 1997, Lamoreaux published the
force data he acquired with his torsion pendulum setup and also showed good
agreement between theory and experiment [26]. From then on, various groups
started to perform Casimir force measurements and begun to investigate both
fundamental and practical aspects of the Casimir effect. For a general review,
see, for example, [5] or [27].

The Casimir effect has received a lot of attention in the literature during
the last decade, because of its fundamental nature and perhaps also its magic
appearance. In experimental tests probing forces at short separations, the
Casimir force is often considered as a major background force that has to be
accurately accounted for. The main problem with the Casimir effect in such
experiments is that one cannot switch it off: it will thus always be present
in force measurements between closely spaced objects. Only by changing the
dielectric properties of the interacting surfaces or by altering the intervening
medium can one reduce the interaction strength. In the search for new extra-
gravitational forces at short distances, a solid understanding of the Casimir
force is essential.

From a more practical point of view, the miniaturization of all kinds of
electrical and mechanical devices has brought the relevant dimensions down
to such a degree that the Casimir and Van der Waals forces are becoming the
dominant interaction mechanisms. In particular, stiction in MEMS and NEMS
is often governed by these forces [1, 4]. Therefore, finding ways to reduce the
Casimir force will allow MEMS and NEMS to become even more compact.

1.2 Measuring the Casimir force

The Casimir force is quite a weak force and notoriously difficult to measure
because it is easily dominated by electrostatic forces. There are only a handful
of experimental setups in the world that can provide systematic measurements
of the Casimir interaction. These setups can be divided into macroscopic and
microscopic versions. The torsion balance is a significant example of the macro-
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scopic branch as it is widely used for detection of small forces, most notably
the gravitational force. It is also used for the detection of the Casimir force in
the sphere-plate geometry, for example by Lamoreaux in 1997 [26] and more
recently in Japan in 2009 [28]. In 2002, researchers in Italy used a macroscopic
cantilever (2 cm long) and a parallel juxtaposed surface to study the Casimir
effect in the plane-plane geometry [29]. It is commonly understood that with
these macroscopic setups it is more difficult to control spurious electrostatic
forces than in microscopic ones, because of the difficulty to create large surfaces
with homogenous electric properties (e.g. uniform work functions).

It is therefore not surprising to see that most groups investigating the
Casimir effect have resorted to the use of micromechanical systems in the
sphere-plane geometry. These microscopic setups can then be split into two
groups, namely based on MEMS see-saw force sensors or based on Atomic Force
Microscopy (AFM). The see-saw Casimir force experiments were started at Bell
Labs by Capasso and Chan [2, 3] and later on used by both Decca [30, 31] and
Iannuzzi [32, 33]. The AFM approach to measuring surface forces between a
sphere and a plate was initiated by Ducker [34] and applied to Casimir force
measurements by Mohideen [35]. Now several groups are using this device to
obtain systematic data, for example the groups of Chevrier [36] and Binns [37].
Our work also fits into this last category, although we have significantly im-
proved the experimental method and setup to obtain very reproducible force
measurements.

In general, in a Casimir force setup, there are at least three technical issues
that must always be carefully addressed:

• Calibration: Casimir force experiments necessarily rely on a force sensor.
The force sensor must be calibrated with a known force. Furthermore,
one must be sure that, during the measurements, the calibration param-
eters do not vary significantly.

• d0: in most of Casimir force setups, the two interacting surfaces are
initially put at a given separation d0, and then moved closer and closer
with calibrated steps or ramps. The initial value of d0 is not known
a priori. d0 must thus be independently measured, and must remain
constant within one run. It is thus highly desirable to measure how
much thermal drifts influence the measurement of d0 [19, 20, 36].

• V0: the electrostatic potential difference between two juxtaposed surfaces
connected to ground is, in general, not zero. The residual potential V0

can give rise to electrostatic forces that easily overcome the Casimir force.
It is thus important to measure V0 and apply a counter-bias potential
to compensate for this effect. Recently, it has been emphasized that V0,
in general, varies with surface separation and time [19, 38, 39]. A single
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measurement for one single separation is thus not sufficient for accurate
Casimir force experiments.

We have developed an experimental method that allows one to simultane-
ously (i.e., in the same run): (i) calibrate the force sensor, (ii) measure d0, (iii)
compensate for V0, (iv) measure the Casimir force [19, 20]. In the next section,
we give an overview of the experimental method. Further on in the thesis the
experimental method is discussed in full detail (see, for example, section 3.3).

1.3 Our new experimental method

The experimental setup we designed to perform precise measurements of the
Casimir force is a custom made Atomic Force Microscope (AFM). The mea-
surement head is from a Veeco Multimode AFM (with low-noise laser upgrade).
The force sensor is a 1 N/m Si cantilever with a 200 µm diameter sphere at-
tached to its free end. This sensor is mounted into the AFM head, and its
deflection is measured with an optical lever, where a light beam reflected from
the back of the cantilever is detected by a position sensitive photodetector. The
surface of the sphere has to be brought in close proximity to another surface,
in order for the Casimir effect to become measurable. We mount a planar
sample on a piezoelectric stage that is feedback controlled with an internal
capacitive sensor (resolution on the order of 50 pm). The calibrated transla-
tor is used to accurately vary the separation between the surfaces. We also
added a stick-slip piezoelectric stepper motor to perform the coarse adjustment
of the sample position. The measurement head and piezoelectric positioning
stage (feedback controlled piezo and stepper motor combined) are mounted on
an aluminum block that functions as a temperature stabilized heat reservoir
roughly 10 K above room temperature; mechanical drifts due to expansion and
contraction of the setup is hereby strongly reduced. The AFM is then placed
on an active anti-vibration platform inside an anechoic chamber to isolate the
setup from mechanical and acoustic vibrations (see Fig. 1.1a). The anechoic
chamber is placed on an optical table inside a temperature controlled labora-
tory. In Fig. 1.1b, we show a close-up of our custom designed AFM. Apart
from the AFM head and positioners, an optical fiber mounted on a mechanical
translation stage is visible on the forefront of the photo. This fiber is pointed
towards the bottom of the sample, and is used as an interferometer to measure
the phase and amplitude of a small modulation of the planar sample position,
as will become clear later in the text.

The technique employed to tackle the technical issues common to Casimir
force experiments is based on Kelvin probe force microscopy[40]. The trick
is to apply an AC potential difference across the sphere and planar sample
surfaces, which will give rise to two signals at different oscillation frequencies
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a) b)

Figure 1.1: Photographs of the Casimir force setup. a) Our custom built Atomic
Force Microscope (AFM) mounted on an active anti-vibration stage inside an acous-
tic isolation box. b) Close-up of the AFM with the Veeco Multimode measurement
head mounted at the upper part of an aluminum block and the piezoelectric transla-
tors mounted underneath the head. In front of the AFM, an optical fiber is mounted
on a manual translation stage pointed at the piezoelectric stage to interferometri-
cally measure the phase and amplitude of the separation modulation (see text for
details).
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that will allow us to calibrate the instrument and extract d0, and compensate
the residual potential V0 independently.

The electrostatic force between a conductive sphere and a conductive plate
at separation d is

F =
ε0πRV

2

d
(1.2)

where ε0 is the permittivity of vacuum, R is the radius of the sphere, V is
the net potential difference across the surfaces, and d � R (Proximity Force
Approximation[41]). Since the photodetector signal, S, depends linearly on
the deflection of the cantilever, it is clear that S is proportional to the applied
force.

Let’s now suppose that there exists no residual contact potential difference
between the two surfaces (i.e. V0 = 0). Then the signal arising from the
oscillating potential difference V (t) = VAC cos(ω1t) satisfies

SV0=0(t) ∝ (V (t))2

d
=

(VAC cos(ω1t))
2

d
=
V 2
AC

2d
+
V 2
AC

2d
cos(2ω1t) (1.3)

in which the fact that the electrostatic force depends quadratically on voltage
results in a signal at 2ω1, twice the driving frequency (with ω1 � ωres, the
free resonance of the cantilever). The amplitude of the oscillating signal at
2ω1, which we will call S2ω1 , is measured by a lock-in amplifier and used to
extract d0 and to calibrate the force sensitivity of the instrument as explained
in a previous paper[19]. By examining the value of d0 for consecutive measure-
ment runs, we established that the mechanical drift of our setup is ≤ 0.2 nm
per measurement run [19, 20]. If one would keep VAC constant during a mea-
surement run in which the separation d is varied, the amount of cantilever
oscillation would strongly vary as the force diverges for small d (see Eq. 1.2
and 1.3). To avoid that, the lab computer is reducing VAC as the separation
decreases (the computer symbol in Fig. 1.2a)[19]. In this way, we typically
keep the electrostatic calibration force constant at roughly 100 pN RMS [19].

However, even when both surfaces are coated with the same material, there
generally is a contact potential difference V0 between the surfaces. We have
to compensate this residual potential in order to have no background electric
force in our Casimir force measurement. The counter bias voltage is a DC
voltage that we call VDC (see Fig. 1.2a). Then the presence of both potentials
V0 and VDC implies

S(t) ∝ (V (t) + V0 + VDC)2

d
(1.4)

=
(V0 + VDC)2

d
+

2 (V0 + VDC)VAC
d

cos(ω1t) +
V 2
AC

2d
+
V 2
AC

2d
cos(2ω1t)

The cross-product appears at the frequency ω1 and is proportional to (V0 + VDC).
By measuring the amplitude Sω1 of this signal with a lock-in amplifier we can



10 1 Introduction
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Figure 1.2: a) Schematic of the experimental setup and working principle. b) Spec-
trum of the motion of the cantilever in response to the electric, Casimir and hydro-
dynamic forces, as a result of an oscillating potential difference across the interacting
surfaces at ω1 and the small modulation of the separation d at ω2. The dashed arrow
between figures a) and b) indicates that the V0 compensation mechanism effectively
zeros the signal at ω1. See text for details.
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create a negative feedback loop that generates VDC in such a way that Sω1 be-
comes negligible, i.e. V0 + VDC = 0[19, 39]; this feature is indicated in Fig. 1.2
by the dashed arrow that point from Fig. 1.2a to Fig. 1.2b and eliminates the
presence of the signal peak at ω1. We have thus successfully compensated the
contact potential difference between the interacting surfaces. Note that the
addition of both V0 and VDC in the treatment does not alter the amplitude of
the oscillation at 2ω1 (S2ω1).

With the residual potential compensated, the force sensitivity calibrated,
and the absolute surface separation determined, we can now turn to the actual
measurement of the Casimir force. As it is hard to measure the static deflection
of the cantilever resulting from the Casimir force (the force is small, the spring
constant is relatively high, and the read-out is not very stable in DC), we
resort again to a modulation technique. We let the planar sample execute a
very small oscillatory motion ∆d cos(ω2t), with ∆d ' 2 nm and ω2 � ωres. As
a result, there will be an in-phase oscillatory response of the cantilever because
the Casimir force is separation dependent:

SIω2
(t) ∝ ∂F

∂d
∆d cos(ω2t) (1.5)

where ∂F/∂d represents the gradient of the force at the current separation. By
measuring the amplitude of SIω2

(t) with another lock-in amplifier, we measure
directly the gradient of the Casimir force∗. In the sphere-plane geometry that
we employ, and within the validity of the Proximity Force Approximation[41],
the measured Casimir force gradient is equal to the expected force between
parallel plates.

As the measurements are performed in air, the oscillation of the position of
the planar sample gives rise to a moving column of gas above it. This results
in a hydrodynamic interaction between the plate and the sphere, resulting in
a signal of the form:

SQω2
(t) ∝ v(t)

f(d)
=
ω2∆d sin(ω2t)

f(d)
(1.6)

where v(t) is the velocity of the plate, and f(d) is constant for separations
d � R, is proportional to d for separations for which both d � R and the
non-slip boundary conditions for the Navier-Stokes equations are valid, and
has a more complicated dependence on distance for values of d close to the
mean free path of the air molecules due to the gas slip at the surfaces[42, 43].
From Eqs. 1.5 and 1.6, it is clear that both signals at ω2 are orthogonal (one
is a cosine, the other a sine), and can thus be independently measured with

∗There is also a small contribution of the gradient of the electrostatic calibration force
to SI

ω2
(t), but we can correct for that with the simultaneous measurement of S2ω1 . The

derivation of this correction goes beyond the scope of this section.
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the same lock-in amplifier locked at ω2
†. It is of crucial importance, however,

that the phase of the lock-in amplifier is aligned perfectly with the actual phase
of the oscillatory motion of the plate, because otherwise both signals SIω2

(t)
and SQω2

(t) get mixed by the lock-in. The fiber optic interferometer is used
to secure the correct phase alignment of the ω2 lock-in amplifier. Using the
setup described above, we have recently explored the role of conductive oxides
in Casimir force experiments (see chapter 3).

1.4 Sneak preview

Stiction and jump-to-contact in MEMS and NEMS is mainly caused by elec-
trostatic and Casimir/van der Waals forces. Although the electrostatic inter-
action can be controlled by using metallic coatings, their result is a strong
Casimir interaction, as reflective materials tend to cause strong confinement of
the electromagnetic vacuum fluctuations. Therefore, to reduce both the elec-
trostatic and Casimir interactions in a MEMS or NEMS, one would need to use
a material that is DC conductive to get rid of electric charges, but insulating
at optical frequencies to reduce the Casimir interaction. One such a material
is Indium Tin Oxide (In2O3:Sn), a material widely used in semiconductor in-
dustry, for example in LCD displays and touch screens. We have performed
Casimir force measurements between a gold coated sphere and a plate coated
with this transparent conductive oxide, and we have demonstrated that the
Casimir interaction between these surfaces is halved with respect to the gold-
gold interaction, and that the ITO surface is conductive enough to prevent
any electrostatic interaction. Thus the total force between these surfaces is
very small. Coating of MEMS and NEMS surfaces with ITO could, there-
fore, extend the working range of these devices because of less severe stiction
problems. The experiment is described in chapter 3.

Next to performing Casimir force measurements, we have used this setup
to verify the distance dependence of the electrostatic force between a sphere
and a plate, investigated contact potential variations, measured hydrodynamic
forces at short separations, and even explored chemical forces due to hydrogen
adsorption. The verification of the electrostatic force is crucial for our Casimir
force measurements, because we calibrate our system with this force. Using our
calibrated piezoelectric stage (calibrated with respect to traceable standards),
we verified with high statistics the 1/d distance scaling of the force, and ruled
out any spurious scaling as observed in a different experimental setup [38].
Furthermore, we also found that the contact potential compensation scheme
that we use is supplying a distance dependent counter bias to the sphere and
plate, implying that the net contact potential difference between the sphere

†Note that the implicit time dependence of d in f(d) (due to the separation modulation
at ω2) does not invalidate eq. 1.6, as it will only cause signals at higher harmonics of ω2.
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and plate is separation dependent. This effect is observed also in other setups
in the world, and is still under debate. These results are presented in chapter 2.

The small mechanical oscillation of the plate that we use to measure the
Casimir force gradient also generates a hydrodynamic interaction between the
sphere and the plate. The gas molecules in the gap between the interacting
surfaces is pushed in and out continuously. Of course, the strength of this inter-
action depends on the specific gas molecules that are mediating the force. We
have therefore investigated the hydrodynamic interaction between a 100 µm
radius sphere and a plate in the separation range from 10 µm to 100 nm in air,
He, Ar, and SF6 gas. Although air and Ar are gases with typical mean free
paths, He and SF6 represent two extremes on the mean free path scale. He
is the smallest and lightest gas molecule and has therefore the longest mean
free path, while SF6 is a large and heavy molecule with a very short mean
free path. Since the hydrodynamic interaction is governed by collisions of the
gas molecules amongst themselves and with the interacting surfaces, the force
should depend drastically on the mean free path. Because our setup was de-
signed to measure the Casimir force, it gives hydrodynamic force data at small
separation with unprecedented accuracy and reproducibility. We present our
results on this interesting subject in chapter 4.

Apart from using gases to change the strength and form of the hydrody-
namic interaction, one could also use a gas to switch the Casimir force, as
proposed and tried by Iannuzzi [32] with H2 gas. In that experiment, the re-
searchers had coated one of the surfaces with a Hydrogen Switchable Mirror
(HSM) [44], a material that changes its dielectric properties from metallic to
insulating upon exposure to hydrogen gas. Since the Casimir effect depends
strongly on the dielectric properties of the surfaces, a decrease of the force
was expected. In chapter 4 we compute how much of a decrease in the force
one should detect when the HSM loads with hydrogen. This calculation clar-
ifies the negative outcome of the experiment, because the resolution of their
MEMS based Casimir setup was not sufficient to observe the predicted effect.
On the other hand, this calculation also shows that the expected switch in
the force should be easily detectable by our Casimir force setup in its present
state. Motivated by this, we also performed force measurements with HSM’s
in hydrogen atmosphere. However, instead of a reduction of the force upon hy-
drogenation we observed a significant increase in the force, especially at large
separation. This leads us to believe that the strong interaction is some kind of
electrostatic force caused by the adsorption of the hydrogen molecules on the
surfaces. These fascinating results are presented in chapter 4.

1.5 A new force sensor

During my research on the Casimir effect, our group invented a new optical
fiber force sensor. This invention was triggered by a technical problem related



14 1 Introduction

to the optical lever force detection as used in our AFM. The laser light that is
used to detect the deflection of the cantilever is not entirely reflected by the
cantilever, therefore part of the light hits the sample and is reflected from there
into the detector. This second light path interferes with the original one coming
from the cantilever, giving rise to spurious detection signals. We have therefore
used a single mode optical fiber to guide the laser light inside its 7 µm core
and carved a cantilever out of the end of the fiber itself. Since the cantilever
is placed directly on top of the fiber core, and it is significantly wider than
the core, all light is reflected back into the fiber; no light reaches the sample.
The deflection of this carved out cantilever is measured interferometrically
by examining the amount of light traveling backwards into the fiber. The
detection precision of this technique is comparable to the AFM optical lever
readout. The versatility of this sensor, however, is huge. We have already
demonstrated that it can be used for measurements of temperature, sample
stiffness, index of refraction, hydrodynamic forces and Casimir forces, and
used it for AFM topography and detection of chemical species [45–49]. The
sensor is fabricated with a Focused Ion Beam (FIB) milling device and a FIB
micrograph of such a device is shown in Fig. 1.3. Because of its all-optical
design, the sensor is especially suitable for use in critical environments like
explosive gases and ultra-low temperatures.

In chapter 5, we present our efforts to measure the Casimir force using a
fiber-top force sensor. To increase the sensitivity with respect to a normal
rectangular beam cantilever (as shown in Fig. 1.3), we fabricated a torsional
device from the end of the fiber. The sensitivity of this device turned out
to be very good, i.e. comparable to the resolution of our AFM-based setup,
but we very unable to perform Casimir measurements with the device; most
likely the gas flow resulting from the oscillation of the bottom plate in our
measurement technique caused erratic motion of the torsional cantilever, thus
rendering it useless. The electrostatic calibration measurements (with plate
oscillation turned off) worked without flaw though.

To overcome this limitation, we scaled up the device and fabricated the
cantilever from a ferruled fiber, instead of just a fiber [50]. A ferrule is a block
of glass (typically 5 mm diameter and 5 mm height) with a hole in the center
in which the optical fiber is glued. This allows us to machine a long cantilever
with reasonably low spring constant. This ferrule-top sensor was then used
to measure the Casimir force with high precision between two gold surfaces.
These measurements are presented in chapter 5.

Currently, the group is employing these ferrule-top sensors for AFM de-
sign [51], stiffness measurements, humidity measurements, biochemical detec-
tion, and fluid flow experiments, opening up an entire new field of research.
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We present a monolithic device obtained by carving a cantilever on the top of a single-mode optical
fiber. We show that the vertical position of the cantilever can be determined with accuracy
comparable to atomic force microscopes and other commonly used scientific instruments. The
device does not require any alignment procedure and can be used in critical environments as well
as in standard applications. © 2006 American Institute of Physics. #DOI: 10.1063/1.2170139$

Micromachined cantilevers are the most elementary and
successful example of miniaturized sensors. A free-standing
rectangular beam can often detect changes in the chemical,
biological, and physical properties of the surroundings with
sensitivity comparable, if not superior, to much more com-
plicated devices. It is thus not surprising that this simple
design is still at the heart of several scientific instruments,
the most celebrated of which is the atomic force microscope
!AFM".1 These instruments rely on the possibility to measure
the vertical position of the suspended edge of the beam with
atomic accuracy, a level of precision that can be achieved by
electronic readout !e.g., tunneling probes,1 integrated field-
effect transistors,2 capacitive methods,3 piezoelectric or pi-
ezoresistive devices"4,5 or with optical techniques !e.g., opti-
cal levers6,7 or optical fiber interferometers8–10". Electronic
readouts are not always compatible with the environment
where measurements must be performed !e.g., electrically
conductive liquids or extreme temperatures". Furthermore,
their fabrication often involves rather cumbersome and ex-
pensive processes, an important detail that has limited their
commercial and scientific impact. Optical techniques are
much more widespread, as, in principle, they do not offer
any real limitation. However, they generally require an in-
convenient alignment procedure, which can also represent a
major technical challenge for applications beyond standard
experiments.

In this letter we present a plug-and-play device suitable
for AFM measurements in critical environments and other
applications where cantilevers can be used. The device is
obtained by machining a thin rectangular beam out of the
cleaved edge of an optical fiber !see Fig. 1". The vertical
displacement of the cantilever is determined by measuring
the interference of laser light reflected at the fiber-to-air edge
with that reflected by the cantilever, as in common fiber in-
terferometers. Because of its monolithic structure, the device
does not require any alignment procedure. The displacement
sensitivity is comparable to commercially available AFMs,

suggesting that fiber-top cantilevers might represent an inter-
esting alternative not only for critical environments, but also
in standard experiments.

In Fig. 1 we show a scanning-electron-microscope image
of the device. A single-mode optical fiber !core diameter
=9 "m, cladding diameter=125 "m" was stripped of its
jacket, cleaved, and coated with a thin metallic layer !5 nm
Cr, 20 nm Pd" to prevent electrostatic charge accumulation in
the next fabrication step. The metal coated edge of the fiber
was micromachined by means of a focused-ion beam tech-
nology to obtain a cantilever anchored to the fiber, parallel to
its edge, with its center point suspended over the core of the
fiber. The fiber was then placed vertically inside a thermal
evaporator, where a%100 nm silver coating was deposited.

The device was plugged to the readout instrumentation
sketched in Fig. 2. The light of a laser beam !1.31 "m wave-
length", coupled to the fiber, is partially reflected at the fiber-
to-air, air-to-cantilever, and cantilever-to-metal interfaces
back into the fiber. While propagating backwards, the three
signals enter a fiber coupler that transmits %50% of the op-
tical power to another fiber aligned with an infrared sensor. If
multiple reflections are neglected, the output signal of the
detector is given by

a"Electronic mail: iannuzzi@few.vu.nl

FIG. 1. A scanning-electron-microscopy image of the fiber-top cantilever
!before the evaporation of the silver layer". Dimensions: length%112 "m,
width%14 "m, thickness%3.7 "m.

APPLIED PHYSICS LETTERS 88, 053501 !2006"

0003-6951/2006/88"5!/053501/3/$23.00 © 2006 American Institute of Physics88, 053501-1
Downloaded 30 Jan 2006 to 128.103.60.225. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp

Figure 1.3: Focused Ion Beam (FIB) micrograph of a fiber-top cantilever. The light
is guided by the fiber core, which is located in the center of the fiber, directly below
the cantilever.



Chapter 2

Calibration with the
electrostatic force

2.1 Introduction

To accurately calibrate our Casimir force setup, we have chosen to use the
electrostatic interaction. This interaction is easy to control by applying ex-
ternal voltages to the interacting surfaces, and is well understood after two
centuries of physics research. It is therefore not surprising to see that most
Casimir force setups in the world are in fact calibrated using the electrostatic
interaction [30, 32, 35, 36, 52, 53]. In 2008, however, a research group from
Dartmouth College presented measurements in which the distance dependence
of the electrostatic force was not matching the theoretical law. Motivated by
this finding, we gathered systematic measurements of the electrostatic interac-
tion with our setup, and showed that we do not observe this anomaly. Our data
agree very well with the theoretical predictions, and thus allow us to indeed
use the electrostatic interaction to calibrate our instrument. In section 2.2, we
describe our findings concerning the behavior of the electrostatic force.

Secondly, in the last couple of years, more and more groups have identified
a possible problem in their measurements. Although it is well known that one
has to supply a bias voltage to the surfaces to cancel the electric field generated
by the difference in surface work functions, it is new that this bias voltage needs
to be distance dependent in order to minimize the electric field in the gap. We
have also observed this effect, and it is treated briefly in section 2.2. Since no
explanation for this distance dependent bias voltage has been found until now,
we have explored this strange behavior in more detail, addressing both time
dependence (drifts) and separation dependence individually. These results are
presented in section 2.3.

Note that in this chapter ω ≡ ω1, because only one modulation is used, and that S2ω is
defined as peak-to-peak instead of amplitude like in the rest of the thesis.

16
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2.2 No anomalous scaling in electrostatic cal-
ibrations for Casimir force measurements

Abstract – In a recent paper (Phys. Rev. A 78, 020101(R) (2008)), Kim et
al. have reported a large anomaly in the scaling law of the electrostatic interac-
tion between a sphere and a plate, which was observed during the calibration
of their Casimir force setup. Here we experimentally demonstrate that this
behavior is not universal. Electrostatic calibrations obtained with our setup
follow the scaling law expected from elementary electrostatic arguments, even
when the electrostatic voltage that one must apply to minimize the force (typ-
ically ascribed to contact potentials) depends on the separation between the
surfaces.

This paper has been published: S. de Man, K. Heeck, and D. Iannuzzi, Phys. Rev. A
79, 024102 (2009)
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Casimir force experiments are routinely used to set new limits on Yukawa
corrections to the Newtonian gravitational attraction between surfaces at sub-
micron separation (see [54] and references therein). To strengthen those con-
straints, new experiments must provide data with errors smaller than any other
previous measurement. With claims reaching 0.19% relative experimental er-
rors at a 95% confidence level [54], it is important to ask whether there exists
any technical challenge or physical mechanism that might impede any further
improvement in this important field.

In a recent paper [38], Kim et al. have reported a systematic effect ob-
served during the calibration of their Casimir force setup that might represent
a severe limitation to the development of future experiments on the Casimir
effect, and that, in some extent, might have been overlooked even in previously
reported high accuracy measurements. They observed that the electrostatic
force gradient between a ' 30 mm radius spherical mirror and a metallic
plate scales with surface separation d like ' 1/d1.7, which represents a 15%
deviation on the exponent with respect to the 1/d2 behavior expected from
elementary electrostatic calculations. If this anomaly were confirmed to be
a general phenomenon for metallic surfaces at very close separations, all the
arguments used to calibrate high accuracy Casimir force setups, which relies
on elementary analysis of the electrostatic attraction between the two surfaces,
would be invalidated ∗, with severe consequences on the results of those exper-
iments. Driven by these considerations, we have performed a high precision
experiment to investigate the electrostatic force between a sphere and a plate
in the separation range from ' 100 nm to ' 2 µm.

The main goal of this paper is to test the validity of:

F = −ε0πR (V + V0)
2

d
, (2.1)

where F is the electrostatic force expected between a spherical surface of ra-
dius R and a plate kept at a separation d with d << R, and where ε0 is
the permittivity of vacuum, V is the applied voltage, and −V0 represents the
voltage that one has to apply to obtain minimal electrostatic force (typically
ascribed to contact potentials) [26].

In the apparatus used for this experiment (see Fig. 2.1), the sphere is
directly glued under the hanging end of a micromachined cantilever (the force
sensor), which is then mounted inside the measuring head of a commercial
atomic force microscope (AFM). The plate is anchored to a custom-designed
mechanical stage, which is fixed underneath the AFM head. The mechanical
stage allows one to bring the plate in close proximity with the sphere, and to
perform measurements of the force as a function of separation.

∗This argument does not apply to Casimir force experiments between surfaces in liquids
[13], which, however, have not been used to set new limits on Yukawa corrections to gravity.
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Figure 2.1: Schematic view of the experimental apparatus.

The force sensor used in this experiment is a rectangular Si cantilever
(525×35×4 µm3) with nominal spring constant k ' 0.9 N/m. A 100 µm radius
polystyrene divinylbenzene sphere (Duke Scientific) is attached to the free end
of the cantilever with UV curable glue. The cantilever and the sphere are then
coated with a 10 nm Ti adhesion layer and a 200 nm Au film by magnetron
sputtering. A similar coating is also deposited onto the plate – a 5 × 2 mm2

polished sapphire slide. The AFM head is a low-noise Veeco Multimode, which
exploits standard optical lever techniques to measure deflections of the can-
tilever with 0.1 nm precision over a 50 kHz bandwidth. The mechanical stage
consists of a stick-slip motor (Attocube) and a piezoelectric translator (PI).
The stick-slip motor is moved only at the beginning of the experiment to bring
the plate within a few microns from the sphere, while the separation between
the two surfaces during the actual experiment is varied with the piezoelectric
translator. This translator, which is controlled by a capacitive feedback loop,
has been calibrated by the manufacturer against traceable standards. Its res-
olution is reported to be equal to 50 pm. The mechanical stage and the AFM
head are anchored to a 1 dm3 aluminum block that is maintained at a tem-
perature ' 10 K above room temperature by means of a feedback controlled
heating system. The block is mounted on a commercial active anti-vibration
stage (Halcyonics), which is placed inside a 1 m3 acoustic isolation box. Fi-
nally, this box is placed on an optical table inside a temperature controlled
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room.
In order to measure the dependence of the electrostatic force between the

sphere and the plate as a function of their separation, we apply an oscillating
voltage V = VDC + VAC sin (ωt). Using Hooke’s law and Eq. 2.1, the signal S
of the photodetector of the AFM head can be written as

S = γ
F

k
= −γε0πR

kdp

[
(V0 + VDC)2 +

V 2
AC

2

+ 2 (V0 + VDC)VAC sin (ωt)− V 2
AC cos (2ωt)

2

]
, (2.2)

where k is the spring constant of the cantilever and γ is a parameter that trans-
lates cantilever deflection into signal (expressed in V/m). Note that we have
added an exponent p to the denominator: our goal is to verify whether p = 1
or not. The signal S contains two static components and two periodic com-
ponents at angular frequencies ω and 2ω. The static components of the signal
represent the static deflection of the cantilever, which, as we will show later,
is always smaller than 0.2 nm, and will thus be neglected. The two periodic
components can be used to fully characterize the electrostatic interaction. For
this reason, the photodetector is connected to two lock-in amplifiers operating
at frequencies ω (L1) and 2ω (L2), as illustrated in Fig. 2.1. From Eq. 2.2,
one can see that the output of L1 is proportional to V0 + VDC . One can thus
create a negative feedback loop where L1 generates VDC in such a way that
it keeps V0 + VDC small, as typically done in Kelvin probe force microscopy
[40]. The loop gain G of the current experiment varies from 103 (at ' 2µm
separation) to 104 (at ' 100nm separation). Because VDC = − G

G+1
V0 and

|VDC | < 50mV in all our measurements, the feedback loop certainly compen-
sates V0 down to |VDC + V0| < 50 µV. Thus, one can assume VDC = −V0 for
all practical purposes. We stress that the purpose of this feedback loop is two-
fold: the compensation voltage VDC is measured accurately at all distances
and the static deflection of the cantilever is minimized by effectively zeroing
the first term of the expansion in Eq. 2.2. As far as L2 is concerned, note that
its peak-to-peak value is given by:

S2ω =
γε0πR

kdp
V 2
AC ≡ αV 2

AC , (2.3)

where α is proportional to the curvature of the parabola described by Eq. 2.1,
which can be obtained as S2ω/V

2
AC . Therefore, by examining the measured

values of α as a function of d one can verify whether p = 1 or not. To obtain
α as a function of d, we start by placing the plate a few micron away from
the sphere. We then move the plate towards the sphere in discrete steps. For
each position, we measure S2ω for a properly chosen value of VAC . At first, one
might think to simply keep VAC constant during the whole run. However, it
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is more convenient to reduce VAC such that S2ω stays constant as the surfaces
approach, because, in this way, the relative random error of α is equal for all
separations: σα/α = σS2ω/S2ω (if we assume that the random error on VAC is
negligibly small). Therefore, before we move the plate to the next measurement
point, we use the values of α measured in the same run at larger separations
to estimate the value that α should assume in the next position, and we set
the new value of VAC accordingly †. This procedure does not by any means
introduce systematic errors on α, which is still evaluated as α = S2ω/V

2
AC ,

where S2ω is the actual value measured by L2. Systematic errors on VAC
can also be ruled out, because we calibrated the digitally controlled function
generator before starting the experiment.

In the current experiment, L2 has a 24dB/octave low pass filter with a 1 s
RC time, and data are acquired with 5 s integration time at every position. We
use an S2ω set-point that corresponds to a peak-to-peak cantilever movement
at 2ω of roughly 0.3 nm ‡. With this set-point, VAC varies between 450 mV at
d ' 2 µm to 100 mV at d ' 100 nm. This corresponds to a static deflection
of the cantilever at VDC = −V0 of roughly 0.15 nm, which is thus negligible.
To minimize drifts of the amplitude response S2ω due to potential changes of
the resonance frequency of the cantilever, we work in the quasi-static regime,
setting ω/2π to 72.2 Hz §, which is much smaller than the resonance frequency
of the force sensor (1.65 kHz, as obtained with an independent measurement).
The total measurement consists of 184 runs over 1050 minutes.

In Fig. 2.2 we show the value of α as a function of the extension of the
piezoelectric stage dpz (see Fig. 2.1) for one randomly chosen run. If we ne-
glect the static deflection of the cantilever, the actual separation between the
surfaces d is given by d = d0−dpz, where d0 is the initial separation, which is a
priori unknown. To validate whether p = 1, we fit the data with an equation
of the form

α =
κ

(d0 − dpz)p , (2.4)

where d0 and κ = γε0πR
k

are free parameters. The fits are performed using
standard χ2 minimization algorithms, for which it is necessary to first estimate
the error on the data. This is done by measuring α at a fixed dpz for 120
minutes. The results are shown in Fig. 2.3. The data distribute along a
smooth curve that is not constant because of drifts in d0 and/or κ ¶. In the
inset, we plot a histogram of the relative difference between the data points and

†To avoid that data at very large separations influence the estimate of VAC at closer
distances, we only use the 8 closest points to estimate the next value of α.
‡To determine this value, we first independently determined the value of γ. A description

of the technique used to determine γ goes beyond the aim of the paper, and, for the sake of
brevity, is omitted. We refer the reader to section 3.3.
§This frequency is determined by a Deliyannis-Friend filter in the ω feedback loop.
¶Later in the text, we show that the drift in κ is negligible on the scale of Fig. 2.3.
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Figure 2.2: Plot of α (see Eq. 2.3) as a function of the position of the piezoelectric
translator for run number 107. The error bars on the data are within the dimension
of the symbol. Black squares indicate data that are used for the analysis. Open
squares are data that are excluded from the analysis. The continuous line shows
the fitting curve obtained with elementary electrostatic arguments (α ∝ 1/d). The
dashed line represents the best fit obtained on the basis of the anomalous behavior
observed in [38] (α ∝ 1/d0.7).
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the smoothed curve. One can clearly see that α follows a normal distribution
with a standard deviation of 0.56%; the relative error in a single measurement
of α is thus 0.56%. Note that this error represents an uncertainty of 600 fm in
the determination of the root-mean-square motion in response to the varying
potential difference VAC . Using this relative error, we repeat the fit three times:
letting p as a free parameter, and forcing p = 1 (as elementary electrostatic
calculations suggest) or p = 0.7 (as found in [38]). If p is a free parameter,
one obtains p = 1.005 ± 0.004 with reduced χ2 equal to 1.19. The fit with
p = 1 gives rise to a comparable value of reduced χ2 (χ2 = 1.21). The fit
with p = 0.7, on the contrary, produces a reduced χ2 of 411. Our data thus
follow the behavior expected from elementary electrostatic arguments. It is
important to stress that these values are obtained analyzing all data except
those for which d < 120 nm (see the open squares of Fig. 2.2). If those data
are included, the χ2 quickly increases. This is not surprising because, at small
separations (smaller than ' 120 nm), the Casimir force bends the cantilever so
much that, within the precision of the current experiment, one cannot assume
d = d0 − dpz anymore.
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Figure 2.3: Plot of α (see Eq. 2.3) as a function of time for a fixed value of dpz.
The thick line represents a smoothed curve that accounts for the drifts in our setup
during this measurement. The inset shows a histogram of the relative difference
between the data points and the smoothed curve, together with a Gaussian fit.

To make our claim more robust, we fit each single data set with p = 1
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and analyze the behavior of the reduced χ2. For the sake of computational
convenience, we rewrite Eq. 2.4 as

1

α
=

1

κ
(d0 − dpz) . (2.5)

To avoid systematic errors due to the bending of the cantilever at small sep-
arations, we apply again a mask to the closest N − 41 data points, where N
is the total number of points in a single run (similar to Fig. 2.2). The relative
error on α is so small, that 1/α also follows a normal distribution (with 0.56%
relative error). The average reduced χ2 over 182 runs (two runs are outliers
with χ2 values of 4.8 and 2.9) is 1.03, and the χ2 values are distributed with
a standard deviation of 0.23 ‖. The anomalous scaling law observed in [38] is
thus not a universal behavior.
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Figure 2.4: Residuals of the fits with p = 1 plotted as a function of separation. The
continuous line represents the expected deviations due to the use of the proximity
force approximation instead of the whole analytical equation. The dashed line indi-
cates the separation at which the data of Fig. 2.3 were taken. Inset: value of the
initial separation between the sphere and the plate as a function of run number as
obtained by fitting the data on the basis of elementary electrostatic arguments.

Now that the p = 0.7 behavior is ruled out, it is interesting to plot the

‖Note that the value of the reduced χ2 for run 107 is actually higher than the average
χ2 of all runs. The data presented in Fig. 2.2 are thus certainly not among the ones that
better match the theory.
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residuals of the fits with p = 1. From this plot, reported in Fig. 2.4, it
is evident that our data systematically deviate from the fit, with maximum
deviation of ' 1%. This behavior is due to the fact that eq. 2.1 is based on
the use of the so-called proximity force approximation (PFA) [21]. Using the
complete analytical equation for the electromagnetic force between a sphere
and a plate [55] to calculate the average residual expected from a fit with
eq. 2.5 (with κ and d0 as free parameters), one obtains the continuous line of
Fig. 2.4. Note that, although the difference between the complete analytical
equation and the PFA goes to zero as separation decreases, Fig. 2.4 does not
show this behavior. This is due to the fact that we are fitting a linear function
(eq. 2.5) to slightly curved data. From the same figure, one can also see that
the random errors at larger separations are actually smaller than that used in
the fits (0.56%), which was measured at d ' 150 nm (see dashed line of Fig.
2.4). This justifies the fact that the fit with eq. 2.1 and p = 1 gave χ2 ' 1
even if a not completely correct theoretical model was used.

We want to stress that such an excellent agreement can only be obtained
if the experimental apparatus is exceptionally stable. In the inset of Fig. 2.4,
we plot the initial separation d0 obtained from the fits of all 184 runs. The
total drift in d0 is 45 nm over 1050 minutes. This means that our setup drifts
only ' 40 pm/min (compared to 1 nm/min in [36]), or 0.24 nm drift per
measurement run (compared to ' 60 nm per run in [38]). From the fits, we
also observe that the other fit parameter κ drifts 1.1% over 1050 minutes. This
corresponds to 0.001%/min or 0.006% per run, and is likely due to a change of
γ caused by a slow drift of the laser spot over the photodetector of the AFM
head. The effects of both drifts are negligible in one measurement run.

The authors of [38] noticed that, in their setup, the voltage needed to
minimize the force depends on the separation between the surfaces. In Fig. 2.5
we plot VDC as a function of d for the data set shown in Fig. 2.2, where d0

was determined by fitting α as a function of dpz with p = 1. Also in our
measurements, the compensation voltage clearly depends on d, varying by
' 6 mV over 2 µm. This behavior is reproduced in the other 183 measurement
runs. In the inset of the figure, we plot VDC at d ' 275 nm as a function of
run number. Although the drift of VDC during the 1050 minutes of the entire
experiment is of comparable magnitude as the dependence on separation for
a single run, it is clear that the dependence of VDC on d cannot be caused by
a drift of VDC with time. As one can see from the inset of Fig. 2.5, the drift
in VDC from one run to the next is certainly much smaller than the difference
observed, within one run, as a function of distance (i.e., 6 mV).

Interestingly, the data seem to distribute along a curve that goes like
a log d+b (reduced χ2 = 0.8). A similar behavior has been recently reported in
an experiment between Ge surfaces [56]. A rigorous explanation of the origin
of the dependence of VDC on d goes beyond the purpose of this paper. Still,
our measurements, together with the results of [56] and [38], suggest that it is
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Figure 2.5: Electrostatic compensation voltage as a function of sphere-to-plate sepa-
ration for run 107. The continuous line represents the best fit with VDC = a log d+b
(reduced χ2 = 0.8, a = −4.4 ± 0.2 mV, b = 4.3 ± 0.6 mV, d in nm). The initial
separation between the sphere and the plate is obtained from the continuous line of
Fig. 2.2. Each error bar represents the standard deviation of the gaussian distribu-
tion of the 184 values of VDC at that separation. Inset: VDC at d ' 275 nm as a
function of run number.
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indeed of fundamental importance to measure VDC for all values of d, as in [38],
and, previously, in [32]. Furthermore, since our calibration follows elementary
electrostatic arguments, we conclude that, in general, it is not sufficient to
check the scaling of α with d to rule out the presence of a distance-dependent
VDC .
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2.3 Contact potentials in Casimir force setups:
an experimental analysis

Abstract – We present an extensive study of the contact potential difference,
V0, between a gold coated sphere and a gold coated plate kept in air at sub-
micron separation. Our data confirms that, in ambient conditions, V0 depends
on both time and separation. We discuss the origin of the time dependence
of V0 and elaborate on its functional dependence on separation, d. Our data
strongly support a log(d) hypothesis, but also show that in air this description
is not quite complete. These effects might have important implications in the
realm of Casimir force experiments.

‖This paper has been published: S. de Man, K. Heeck, R. J. Wijngaarden, and D. Ian-
nuzzi, J. Vac. Sci. Technol. B 28, C4A25 (2010)
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2.3.1 Introduction

Measurements of the contact potential difference between conducting surfaces
plays a peculiar role in Casimir force[18] experiments. Although in these ex-
periments the actual value of the contact potential is not of direct interest,
it has to be accurately counter biased in order to avoid residual electrostatic
forces that would otherwise mimic the Casimir effect[26]. It was pointed out
recently that in such experiments, where generally a sphere is brought into
close proximity of a plate, the contact potential might depend on the sep-
aration between the interacting surfaces[38]. This finding was confirmed in
an independent experiment[19], where it was also observed that the contact
potential varies in time. The latter observation was also reported in [57], in
which a torsion balance has been used to emulate the Laser Interferometer
Space Antenna (LISA). In another recent experiment between Ge surfaces at
small separation[52], again a separation dependent contact potential was mea-
sured. All these observations triggered interest in whether one has to take into
account the variation of the contact potential in the analysis of Casimir force
experiments or not, and which theoretical model should be used to describe
the experimental findings[56, 58].

In this paper, we present a series of experiments in which we have investi-
gated the behavior of the contact potential between a sphere and a plate under
ambient conditions. Measurements as a function of time seem to indicate that
water layers adsorbed at the surfaces play an important role. Measurements
as a function of separation reveal a clear dependence that we hope will trigger
the development of new theoretical models for the description of the contact
potential in Casimir force setups.

2.3.2 Experimental details

Our experimental setup is designed to measure the Casimir force between a
sphere and a plate at sub-micron separation. The setup can simultaneously
measure the electrostatic force, the Casimir force, the hydrodynamic force, and
the contact potential between the two interacting surfaces[20]. To determine
the contact potential, we employ a modified Kelvin probe force microscopy[40]
scheme. The sphere is attached to an Atomic Force Microscope (AFM) can-
tilever and mounted inside an AFM head to detect the bending of the can-
tilever in response to external forces. A planar sample is mounted in front
of the sphere on a piezoelectric translator to vary the separation between the
two surfaces. We apply an AC potential difference between the surfaces at
a low frequency (much below the free mechanical resonance frequency of the
probe) and use a lock-in amplifier to detect the response of the cantilever at
that frequency. The output of the lock-in amplifier closes a negative feedback
loop that compensates the contact potential[19]. The contact potential can
then be recorded as a function of time at fixed separation or as a function of



30 2 Calibration with the electrostatic force

the distance between the interacting surfaces.
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Figure 2.6: Schematic drawing of the electronic circuit of the contact potential
measurement. See text for details.

More in detail, a 100 µm radius polystyrene sphere is attached to a 1 N/m
AFM cantilever. The probe is then coated with a Ti adhesion layer followed by
a 100 nm Au film. The planar sample is a polished sapphire substrate coated
in the same deposition run as the sphere. The probe is mounted inside a Veeco
Multimode AFM head. The flat sample is anchored to a capacitive feedback
controlled piezoelectric scanner in front of the sphere (see Fig. 2.6), which
allows one to accurately vary the separation between the sphere and the plate.
For a detailed description of the calibration procedure that translates relative
piezo displacements into absolute surface separation, we refer the reader to
[19].

The sphere and the plate are electrically isolated from the setup, and are
connected to a separate electronic circuit as depicted in Fig. 2.6. The potential
difference across the interacting surfaces, V , is equal to the sum of the contact
potential, V0, a low frequency (72.2 Hz) AC voltage, VAC(t), the counter bias
voltage generated by the lock-in amplifier, VDC , and a computer controlled
DAC power supply, VDAC . V0 represents the net electrostatic potential caused
by the contact potential difference between the two interacting surfaces. VAC(t)
is supplied via a transformer to eliminate any spurious contribution that may
otherwise arise from DC drift in the output voltage of the function generator.
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VDAC allows the lock-in amplifier to work in its optimal range (i.e. close to
zero output voltage), as will be explained more in detail later in the text. A
voltmeter (ADC with buffer amplifier), VM , is used to measure the total DC
counter bias VDC +VDAC . All our experiments are conducted in air at ambient
pressure and room temperature.

We will know explain in detail the working principle of the counter biasing
negative feedback loop that we use to measure the contact potential. The elec-
trostatic force between a sphere and a plate for very small surface separations,
d, can be obtained with the proximity force approximation[41]:

F (d) = 2πRupp(d), (2.6)

where R is the radius of the sphere (R� d) and upp(d) is the potential energy
between two parallel plates per unit area. The potential energy per unit area
for a parallel plate capacitor is

upp(d) = −1

2

CV 2

A
= −1

2

ε0V
2

d
, (2.7)

where V is the potential difference between the plates, ε0 is the permittivity
of vacuum and A is the plate area. The minus sign comes from the fact that,
under the condition of fixed applied voltage, the potential energy is the sum of
the electric field energy and the work done by the power supplies [59]. Eq. 2.6
thus reads

F (d) = −ε0πRV
2

d
. (2.8)

From Kirchhoff’s loop rule, we obtain 0 = V + VAC(t) + VDC + VDAC + V0 (see
Fig. 2.6). Consequently

F (d) = −ε0πR(V0 + VAC cos(ωt) + VDC + VDAC)2

d
, (2.9)

where we have substituted VAC(t) = VAC cos(ωt). It is evident that Eq. 2.9
contains a single AC component at ω, namely

Fω(d) = −2ε0πR

d
(V0 + VDC + VDAC)VAC cos(ωt). (2.10)

Since the frequency of our AC voltage (72.2 Hz) is much lower than the res-
onance frequency of the probe (2 kHz), the cantilever can easily follow the
modulation and the response is in phase and given by Hooke’s law. The out-
put of the AFM optical triangulation readout (see Fig. 2.6) at radial frequency
ω is thus

Sω(d) = −2γε0πR

kd
(V0 + VDC + VDAC)VAC cos(ωt). (2.11)

where γ is the sensitivity of the optical lever readout and k is the spring
constant of the cantilever (1 N/m). The root-mean-square of this signal is
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measured by the lock-in amplifier, amplified with gain G, and outputted as
VDC :

VDC = −2Gγε0πRVAC√
2kd

(V0 + VDC + VDAC). (2.12)

Let us denote the loop gain 2Gγε0πRVAC√
2kd

= GL; its value varies from 103 to 104

in a typical experiment[19], but could be made much higher by increasing VAC .
Then Eq. 2.12 can be simplified to

VDC = − GL

GL + 1
(V0 + VDAC). (2.13)

From Eq. 2.13 one can see that, as mentioned earlier, VDAC can be adjusted to
keep the output of the lock-in amplifier, VDC , small. Rewriting Eq. 2.13, we
see that

V0 = − (VDC + VDAC)− VDC
GL

= −VM − VDC
GL

, (2.14)

where VM is the readout of the voltmeter as shown in Fig. 2.6. Since we kept
|VDC | < 50 mV and GL > 3 103 in all experiments presented here, VM measures
directly the contact potential V0 up to a systematic offset < 17 µV (this offset
does depend on d though, as GL increases with decreasing d). Because this
offset is very small, we assume VM = −V0 in the rest of the paper.

It is noteworthy that, as long as |VDC/GL| � |VM |, any drift in VDAC or
in the output amplifier of the lock-in is automatically compensated by the
feedback mechanism. Therefore, any variation we observe in VM must be
caused by changes in V0.

It is interesting to note that we feed the output of the lock-in amplifier
directly into the electronic circuit of Fig. 2.6, instead of using a PID controller.
When the lock-in is operated with a 6dB/octave filter roll-off, then the single
time constant in the feedback loop ensures stability. However, due to the large
loop gain GL, one has to equip the lock-in amplifier with a rather large external
time constant τRC , because the effective time constant of the loop is τRC/GL.
To minimize noise in VDC , we typically use a τRC on the order of 103 seconds.

2.3.3 Results and discussion

In this section we present two sets of contact potential data acquired during
several months of force measurements using gold surfaces, and we discuss their
dependence on time and surface separation.

Time dependence

The first data set contains 1944 measurement runs in which the surface sepa-
ration is changed from d = 1.1 µm to d = 60 nm in 50 steps. The data were
collected in a continuous experiment from a Friday afternoon until Monday
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afternoon 10 days later (the relevance of this detail will become clear). In
Fig. 2.7 we plot V0 at a particular value of d (d = 275 nm) as a function of
run number (black squares). The white continuous line represents a smoothed
curve that indicates the trend of the drift in V0. It is evident that from the
start of the measurement it takes a couple of days until the value of the contact
potential has stabilized. This rather slow convergence is compatible with the
observations in [57]. After this initial settling at roughly run 500, V0 devel-
ops an oscillatory behavior with a 24 hour periodicity, except for the weekend
where the oscillation is absent. On Monday morning, however, it clearly sets in
again. V0 data at other separations show exactly the same temporal behavior.
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Figure 2.7: Measurements of the contact potential V0 between two gold surfaces
separated by 275 nm during 10 consecutive days as a function of measurement run
number (black squares). The continuous white line represents the same data, but
smoothed with a 100 points moving window second order Savitsky-Golay filter. After
an initial stabilization period V0 starts to oscillate with a 24 hour rhythm, except
for the weekend. Inset: Histogram of the deviation between the data points and the
smoothed curve, fitted with a Gaussian. The best fit has a standard deviation of
0.9 mV.

We want to emphasize that our measurements of V0 are gathered in a setup
that works in air at ambient conditions. Our force apparatus is actively sta-
bilized at 300 K and placed inside an acoustic isolation box. Inside the box,
several silica gel packs help to lower the relative humidity of the air. Just
before we start a measurement series, the acoustic isolation box has been open
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for some time to allow for sample placement and AFM optical lever alignment.
After closing the acoustic isolation chamber, the air inside the box is getting
warmer (because of the heating due to the temperature stabilization system)
and less humid (because of the silica gel packs). We speculate that the slow
decrease in V0 in the first couple of days is caused by a change in the thick-
ness and composition of the adsorbed water films covering our surfaces, as a
consequence of the constant increase of temperature and decrease of humidity.
After 2 days, the air inside the box reaches an equilibrium and the exponential
behavior ceases.

The daily oscillation of roughly 10 mV that we observe at a later stage must
somehow be caused by a change in the temperature of the laboratory, which
is oscillating strongly in winter (the central heating system of the building is
switched off during the nights and weekends and isolation is poor). Voltage
variations in the electrical leads and connections due to the Seebeck effect are
unlikely, simply because the oscillations are too big: typical thermo-couple
coefficients are around tens of µV/K and can thus never account for more
than 1 mV of V0 oscillation. However, the variation of the temperature of the
laboratory slightly alters the temperature of the air inside the box because the
box does not provide sufficient thermal isolation. This temperature variation
of the air that is in contact with the investigated surfaces might induce changes
in the properties of the adsorbed water layers.

Separation dependence

In [19], we investigated the dependence of the V0 data on separation for one
specific measurement run out of a measurement series containing 184 runs. It
is interesting to analyze more deeply the data presented in [19], and assess the
separation dependence for all measurement runs. First, in Fig. 2.8, we plot
V0 versus d for another, randomly chosen, single run. The straight line is the
best fit of a function V0(d) = a log(d) + b to the data, resulting in a reduced
χ2 of 0.93. To understand whether we can extract some systematic properties
of V0 from the 184 data sets, we fitted the function V0(d) = a log(d) + b to
all of them. In inset a, we plot the offset fit parameter, b, as a function of
time (we have removed run 176 because it is an outlier). In this data there
is not such a strong drift in V0 with time as in Fig. 2.7, because the acoustic
isolation box was already closed for quite some time before the data of Fig. 2.8
were gathered; the initial settling of V0 had already taken place before the
first run. In inset b of Fig. 2.8, we plot the slope a of the fits as a function
of run number, where the error bars denote the errors on the fit parameter as
propagated through the fit procedure. It seems that a does not depend on time.
If we fit a constant to these data, though, we obtain a reduced χ2 of 1.4, which
means that it is quite unlikely that the model is correct given the fact that
we have 182 degrees of freedom. Therefore, we have either underestimated the
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Figure 2.8: Re-analysis of the data published in [19]. The main figure shows the
distance dependence of V0 of a single measurement run from the 184 data sets of
[19]. The line indicates the best fit with a logarithmic function V0(d) = a log(d) + b
(reduced χ2 = 0.93, a = −4.5± 0.3 mV/order of magnitude, b = 4.6± 0.6 mV and
d in nm) a, Plot of the variation in time of the fit parameter b. b, Plot of the time
dependence of the fit parameter a c, Histogram of all obtained values for a. The
best fit with a Gaussian resulted in a = −4.6± 0.6 mV.
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error on a or there is a hidden dependence of V0 on time. The first option is not
really feasible, because the reduced χ2 values of the logarithmic fits distributed
neatly around 1, and the error on a is just calculated from this fit procedure.
The second hypothesis would indicate that there is a dependence of a on run
number, albeit in a random way (there is no apparent functional dependence
visible in Fig. 2.8 a). We speculate that such a random contribution to the
V0 scaling properties may be related to the actual measurement procedure.
Namely, during a measurement run, where we start at large separation and
decrease d in successive steps, we reduce the excitation voltage VAC to keep
the electrostatic force constant (see [19]). At the end of the run we retract
the piezoelectric stage quickly while the VAC excitation voltage is still at the
lowest setting (as we were at the closest point). After a few seconds, the
next run is started and the VAC value is increased again to reach the same
electrostatic force as we used in the run before. This procedure leads to a
significant drop in electrostatic field strength in between measurement runs.
It could be that this fast change of field strength causes the adsorbed water
layer and its contaminants to rearrange on the surfaces. Fig. 2.8 c presents all
the obtained values of a in a histogram. The Gaussian fit resulted in a value
for a of −4.6± 0.6 mV/order of magnitude. It is interesting to note that the
values of a follow a normal distribution, which then indicates that, although
there is a random run-to-run variation in a (by which we mean a real variation
and not one that merely follows from the statistical uncertainties in the V0

measurements), this run-to-run randomness of a follows a normal distribution.

To complete the analysis, it is interesting to check whether the data pre-
sented in Fig. 2.7 also depend on the separation between the interacting sur-
faces. In order to assess the precision of our data, we have smoothed the V0

data with a second order Savitsky-Golay filter with a 100 points moving win-
dow and plotted the resulting curve as the white line in Fig. 2.7. Then we
have created a histogram of the deviations between the actual data and the
smooth line and fitted a Gaussian function with the standard deviation as the
only fit parameter, as shown in the inset of Fig. 2.7. The resulting standard
deviation is 0.9 mV, which is thus the statistical error in a single V0 measure-
ment at d = 275 nm. Because the loop gain of our negative feedback loop
depends on separation, the precision in the measurement of V0 is separation
dependent: the precision increases when the separation decreases. Therefore,
we have repeated the described procedure for 5 other values of d (covering the
entire measurement range) and then fitted the size of the statistical error as a
function of separation with an exponential that seemed to describe the general
trend well. In the continuing analysis, we can now use this fit function to
obtain the statistical error in V0 at any separation within the analyzed range.

Similarly to Fig. 2.8, we plot the contact potential versus the surface sep-
aration for a randomly chosen run (run 1000) on a semi-logarithmic scale in
Fig. 2.9. The continuous line is a fit to the data assuming a V0 = a log(d) + b
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Figure 2.9: Contact potential V0 as a function of surface separation d for run 1000
from the data set of Fig. 2.7. The continuous line represents the best fit with a
function of the form V0(d) = a log(d)+b (reduced χ2 = 0.93, a = −1.0±0.3 mV/order
of magnitude, b = −107.1 ± 0.7 mV and d in nm). The dashed line shows the
best fit for a separation independent V0 hypothesis (reduced χ2 = 1.13 and V0 =
−109.3± 0.1 mV).
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functional dependence (reduced χ2 = 0.93), whereas the dashed line assumes
simply a constant contact potential (reduced χ2 = 1.13). Although the re-
duced χ2 values of both fits are quite close to 1, one can see by eye that the
residuals related to the dashed fit show a systematic behavior for large d, in-
dicating that a constant contact potential does not model the data well. The
residuals belonging to the log(d) behavior are clearly more random, but it
would be quite bold to claim that the model is correct. A better formulation
would be to state that with the relatively big statistical error compared to the
total variation of V0 in Fig. 2.9, we cannot exclude the logarithmic dependence
on separation.
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Figure 2.10: Contact potential V0 as a function of surface separation d, obtained by
averaging all but the first 250 runs from the data set of Fig. 2.7.

It is thus clear that an improvement in the precision of V0 could lead to
more conclusive statements regarding its dependence on separation. Since the
data were acquired during more than a week, there is ample room to employ
averaging procedures. We have therefore averaged the last 1694 measurement
runs and plotted the resulting mean V0 values in Fig. 2.10. We have excluded
the first 250 runs from the averaging procedure because of their strong drift
(see Fig. 2.7). Although the total variation in V0 is of course still small at a
little less than 1 mV, the high precision in the mean values of V0 reveals a
definite trend in the data∗∗. For d > 100 nm, V0 seems to scale logarithmically

∗∗In this experiement, GL varies from 4.3 103 at d = 1 µm to 1.6 104 at d = 60 nm.
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with separation, in agreement with the observations in [38] and [19]. For
d < 100 nm, however, the trend is clearly altered. We would therefore like to
conclude that in these experiments there is certainly a logarithmic contribution
in the function V0(d), but there are definitely other components too.

2.3.4 Conclusions

We have reported systematic measurements of the contact potential difference
between a gold coated sphere and a gold coated plate kept in air at sub-micron
separation. Our data confirm that the contact potential in Casimir force ex-
periments can depend on both separation and time, and seem to indicate that
water layers on the interacting surfaces play an important role in the electro-
static interaction between conducting surfaces in ambient conditions. We hope
that our findings will trigger new theoretical investigations on the behavior of
contact potentials in Casimir force experiments.
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Therefore, the systematic error in V0 varies from < 12 µV to < 3 µV with |VDC | < 50 mV
(see Eq. 2.14). The effect of this systematic error can thus at most be a tilt in the data of
±9 µV over the whole d range, which is still negligible compared to the observed variation
in V0.



Chapter 3

Halving the Casimir force

3.1 Introduction

The strength of the Casimir interaction depends only on the separation be-
tween the objects and the dielectric properties of their surfaces and the inter-
vening medium. As long a one does not work in liquids, the dielectric proper-
ties of the medium are essentially equal to those of vacuum, and one can only
alter the interaction strength by tuning the material properties. To weaken
the force, one has to use material properties that do not impose such strong
boundary conditions on the electromagnetic quantum fluctuations in the gap.
It is thus necessary to use materials that are not electrically conductive over
a wide part of the electromagnetic spectrum. On the other hand, however, it
would not make much sense to use insulators, because, although the Casimir
force is supposed to be small, electric forces generated by trapped charges on
the surfaces would be so strong that the total force between the objects would
be much larger than the Casimir force between metals. Therefore, an ideal
material would be DC conductive enough to prevent charge accumulation, but
transparent enough for infrared and optical frequencies to significantly reduce
the Casimir interaction. In section 3.2 we describe an experiment that shows
that by using a transparent conductive oxide, typically used for touch screens
in semiconductor industry, one can halve the Casimir force with respect to the
gold-gold interaction.

In section 3.3, we expand the description of the experiment presented in
section 3.2, and discuss in full detail the experimental technique and charac-
terization of the samples. This section also treats the experimental errors and
data analysis, as well as a new method to determine the spring constant of the
force sensor using the fourth harmonic of the electrostatic excitation voltage
at ω1. This section is the most complete description of our experimental setup,
and can be used as a reference for future use. Concerning the experimental
details of the residual potential compensation circuit, the best description is
in section 2.3.

40
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3.2 Halving the Casimir force with Conduc-
tive Oxides

Abstract – The possibility to modify the strength of the Casimir effect by
tailoring the dielectric functions of the interacting surfaces is regarded as a
unique opportunity in the development of Micro- and NanoElectroMechanical
Systems. In air, however, one expects that, unless noble metals are used,
the electrostatic force arising from trapped charges overcomes the Casimir
attraction, leaving no room for exploitation of Casimir force engineering at
ambient conditions. Here we show that, in the presence of a conductive oxide,
the Casimir force can be the dominant interaction even in air, and that the
use of conductive oxides allows one to reduce the Casimir force up to a factor
of 2 when compared to noble metals.

This paper has been published: S. de Man, K. Heeck, R. J. Wijngaarden, and D. Ian-
nuzzi, Phys. Rev. Lett. 103, 040402 (2009). It was highlighted in P. Ball, News and Views,
Nature Materials 8, 705 (2009).
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The mechanical parts of Micro- and NanoElectroMechanical Systems (MEMS
and NEMS) are often designed to work at separations where the Casimir ef-
fect [18] might play a relevant role [1–4]. It is thus commonly believed that, if
one could suitably engineer the strength of the Casimir force, unprecedented
opportunities would come available for the development of conceptually new
MEMS and NEMS [5–7, 14]. The most simple approach to tailor the Casimir
force is to properly choose the materials of which the interacting surfaces are
made. According to the Lifshitz theory [23], the interaction between two ob-
jects depends on their dielectric functions. Transparent dielectrics, for exam-
ple, attract less than reflective mirrors. This property may be used to reduce
the Casimir attraction whenever the design requires a smaller short range in-
teraction. It is however fair to say that, for the vast majority of applications,
MEMS and NEMS operate in air, where surfaces tend to accumulate trapped
charges. Those charges give rise to a strong electrostatic interaction that can-
not be compensated by a counterbias voltage and that typically overcomes the
Casimir force. It is thus difficult to imagine that the Casimir force can play an
important role in MEMS and NEMS operating in air, unless all surfaces are
coated with noble metals to reduce the forces due to surface charges to negligi-
ble levels. In that case, however, there is not much room to tune the strength
of the Casimir interaction because the diversity in the dielectric functions of
different metals is simply not large enough [30]∗. As a matter of fact, to date,
there is no experiment that shows that, in air, the Casimir force can still be
tuned significantly while remaining the dominant interaction mechanism.

In this Letter we present a precise measurement of the Casimir force be-
tween a gold coated sphere and a glass plate coated with either a thick gold
layer or a highly conductive, transparent oxide film. The experiment was per-
formed in air, and no electrostatic force due to residual trapped charges was
observed over several weeks of measurements in either case. The decrease of
the Casimir force due to the different dielectric properties of the reflective gold
layer and the transparent oxide film resulted to be as high as ' 40% − 50%
at all separations (from ' 50 to ' 150 nm). Our experiment shows that, in
the presence of a conductive oxide layer, the Casimir force can still be the
dominant interaction mechanism even in air, and indicates that, whenever the
design might require it, it is possible to tune the Casimir attraction by a factor
of 2.

Our experimental set-up is designed to perform precise measurements of
surface forces between a 100 µm radius sphere and a plate as a function of their
separation (see Fig. 3.1 and [19]). The sphere is glued onto the hanging end

∗An unsuccesful attempt to change the Casimir force in gas is reported in [32]. ' 1%
tunability of the Casimir force in vacuum was shown in [60]. ' 20% tunability of the
Casimir force was observed in [33]; this method is not practical, because the interaction
strength strongly varies on the local thickness of the film (see [36]). ' 30% variations of
the Casimir force were observed in [61]; also this strategy is not practical for MEMS in air,
because the passivation layer is not stable under atmospheric conditions.
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Figure 3.1: a, Drawing of the experimental set-up. b, Schematic representation
of the working principle of the experimental technique. c, Definition of d0 (initial
separation), dpz (movement of the piezoelectric stage), and d (separation between
the two surfaces).
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of a micromachined cantilever (spring constant ≈ 1 N/m, resonance frequency
(with the sphere attached) ≈ 1.9 kHz). The plate is mounted on a capacitive
feedback controlled piezoelectric transducer that allows one to accurately vary
the separation between the sphere and the plate in discrete steps. Any force
acting between the two surfaces results in a bending of the cantilever that is
detected by the optical lever of a commercial Atomic Force Microscope (AFM)
head †. The set-up is kept at a fixed temperature to reduce mechanical drifts
and is placed on an active anti-vibration stage inside an acoustic isolation box
to decouple the force sensor from external vibrations.

Precise Casimir force measurements typically require careful analysis of
three crucial issues. First, even when both the sphere and the plate are coated
with metallic films, there might still exist an electrostatic potential difference
V0 between the two surfaces that gives rise to a residual electrostatic force. This
force must be actively canceled by counter biasing V0 with an externally ap-
plied voltage. Second, although the relative displacements of the piezoelectric
transducer that moves the plate, dpz, are precisely controlled, the separation
between the two interacting surfaces at the start of the measurement, d0, is a
priori unknown (see Fig. 3.1). Therefore, the absolute separation d = d0−dpz
has to be obtained from a calibration procedure. Third, the electronic signal
coming out of the AFM head must be converted into force. It is thus nec-
essary to calibrate the instrument with a controlled force. To address these
problems, we have designed a measurement technique that allows one to simul-
taneously: (i) compensate for the residual potential, (ii) calibrate the set-up,
and (iii) measure the Casimir force (see [19] and section 3.3). In a nutshell,
in each calibration/measurement run the plate is moved in discrete steps from
d0 to a minimum value of d (just before contact with the sphere). A cali-
brated AC electrostatic potential is applied between the sphere and the plate
at a frequency ω1 much lower than the resonance frequency of the force sensor
(ω1

2π
= 72.2 Hz). This AC excitation is used to drive a feedback circuit that

compensates for the residual voltage V0, and, simultaneously, generates an elec-
trostatic force that makes the cantilever oscillate at 2ω1. The amplitude of the
oscillations, measured with a lock-in amplifier (calibration lock-in in Fig. 3.1b),
are recorded as a function of dpz, and are then used to calibrate the instrument
and extract d0. At the same time, a transducer mechanically coupled to the
piezoelectric translator makes the plate move around dpz with an amplitude of
3.85 ± 0.08 nm at a frequency ω2, which is again much lower than the reso-
nance frequency of the force sensor (ω2

2π
= 119 Hz) ‡. In the presence of a force

that depends on separation (e.g., the Casimir force), the cantilever bends in
phase with the modulation of d. The amplitude of the in-phase oscillation,

†Measurements of surface forces between a sphere and a plate with an AFM were first
reported in [34]. Its utilisation for large range forces between metals was first introduced in
[35].
‡A similar technique was introduced in [62].



3.2 Halving the Casimir force with Conductive Oxides 45

measured with another lock-in amplifier (measurement lock-in in Fig. 3.1b), is
proportional to the derivative of the force with respect to d. Furthermore, the
presence of the cushion of air between the two surfaces gives rise to a hydro-
dynamic force that depends on the velocity with which the plate moves. The
signal produced by this force manifests itself at the same frequency at which
d is modulated, but with a phase rotated by 90 degrees. This contribution
does not influence the output of the in-phase component and can be measured
independently with the same lock-in amplifier. The integration times of the
lock-in amplifiers are 8 s for every value of dpz. A typical measurement run
consists of ' 50 dpz set-points in the measurement range 50 < d < 1100 nm,
and takes roughly 7 minutes. The cantilever responses to the modulations at
ω1 and ω2 are < 80 pm (root-mean-square) during the entire experiment. All
force measurements are performed in air at atmospheric pressure, temperature
300 K, and 29% relative humidity.

In this Letter we present two experiments performed with the same sphere
and two different plates. The sphere is a polystyrene sphere with nominal
radius 100 µm coated with a Ti adhesion layer followed by a 100 nm Au film
(surface roughness 3.8 nm RMS). The plate used in the first experiment is
a polished sapphire substrate coated with a metallic film similar to the one
deposited on the sphere (surface rougness 0.8 nm RMS). The plate used in
the second experiment is a float glass substrate with a 190 nm Indium Tin
Oxide (ITO, In2O3:Sn) sputtered thin film on top (PGO CEC010S, typically
8.5 Ω/�, or, equivalently, ρ = 1.6 10−4 Ωcm, total surface roughness 4 nm
RMS). We have measured the reflection and transmission spectra of both plates
in the wavelength range 180 nm < λ < 2.5 µm, and observed that the optical
properties of our films are in agreement with the literature [63, 64].

Fig. 3.2a presents measurements of the force between the sphere and the
plates coated with either Au or ITO §. The experimental data represent the
spatial derivative of the total force (normalized by the sphere radius R), which
is the sum of the Casimir interaction, a Coulomb interaction induced by the
presence of trapped charges (if any), and an electrostatic attraction due to the
AC calibration potential. The strength of the latter can be estimated from
the simultaneous calibration procedure (see section 3.3). From Fig. 3.2, it is
evident that this electrostatic contribution, which is anyway equal in both ex-
periments (within 2%), is small compared to the total force signal. The black
lines in Fig. 3.2a are computations of the Casimir force using the Lifshitz the-
ory [41] with dielectric functions calculated as in [64] (for ITO) and [65] (for
Au); the electrostatic force due to the calibration potential is added to the
theory in order to compare with the raw data. The calculation of the Casimir

§Our estimate of d0 relies on the proximity force approximation [41], which is only valid
for d � R. This assumption is not entirely correct in the probed separation range [19]
and results in a systematic error in d0 of ' 1.4 nm. Still, the corresponding underestimate
of the separation is equal for both Au-Au and Au-ITO, and can thus be neglected in the
comparison.
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Figure 3.2: a, Spatial derivative of the total force as a function of absolute surface
separation for the Au-Au (green squares) and Au-ITO (red squares) interactions
for randomly chosen subsets of the data (150 out of 580 for both cases). The blue
line represents the derivative of the electrostatic force caused by the simultaneous
calibration procedure (common to both the gold and ITO measurements). The
black lines indicate the calculated Casimir forces with the electrostatic background
added. b, Spatial derivative of the Casimir force, with the electrostatic background
subtracted from the data. The black lines correspond to the calculations of the
Casimir force. c, Histograms of 580 force measurements for Au-Au and Au-ITO at
d = 120 nm. d, Same as c, but for d = 80 nm.
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force should only be considered approximate, because the dielectric functions
of the samples are not known precisely [66], and no surface roughness correc-
tions are applied. Still, the agreement between the calculation and the data
shows that the Casimir effect largely dominates any Coulomb interaction that
would have been otherwise observed in the presence of a significant amount of
trapped charges. Fig. 3.2b shows the data and theory on a double logarithmic
scale, where we have subtracted the electrostatic background due to the AC
calibration potential using the simultaneously obtained calibration data. At
small separations d < 60 nm, both data sets curve upwards, which might be a
sign of surface roughness effects. At separations d > 120 nm, the experimental
data for the Au-Au Casimir interaction start to deviate significantly from the
theory because of an artefact caused by reflections from the optical lever light
by the sample. This reflected light reaches the photodetector and causes a
background signal that is not related to any force. This artefact is common
to all optical lever based AFM techniques, and the related signal is typically
assumed to be linear in the piezo extension and subtracted from the data ac-
cordingly [35]. Because the reflectivities of our two samples are so different,
we prefer to refrain from such a procedure, and present the data as is. In
Figs. 3.2c and d we show histograms of all the obtained measurements for the
derivative of the Casimir force for two specific separations (d = 120 nm and
d = 80 nm). The histograms at d = 80 nm can be described by Gaussians with
a standard deviation of roughly 5%, which means that our method provides a
precision in the mean measured Casimir force derivative of 0.2%. It is evident
from the histograms that the spatial derivative of the Casimir force between a
Au and an ITO surface is roughly ' 40%− 50% smaller than between two Au
surfaces. In our geometry (i.e., for separations much smaller than the radius of
the sphere), the spatial derivative of the force is proportional to the pressure
between two parallel plates [41]. We can thus conclude that the Casimir pres-
sure that one would measure between a Au plate kept parallel to an ITO plate
would be roughly ' 40%− 50% smaller than in the case of two Au plates.

Even though the agreement between the theoretical prediction and the
measurement of the Casimir force in both situations is good, one might still
argue that the observed decrease could be mimicked by drifts in d0. For both
measurements series, we gathered 580 data sets continuously, which allows us
to directly assess the run-to-run drift of d0. Due to the temperature stabiliza-
tion of our setup, the mechanical drift is very small at ' 0.1 nm and ' 0.2 nm
per run for the Au-Au and the Au-ITO experiments, respectively. We con-
clude that the decrease of the Casimir force cannot be ascribed to drifts in
d0. We have also verified that the electrostatic force used to calibrate the in-
strument and extract d0 follows what expected from elementary electrostatic
arguments, as suggested in [38] and discussed in [19]. Concerning the com-
pensation voltage, we observed that V0 varies approximately 1 mV and 3 mV
over the complete measurement range in the Au-Au and Au-ITO cases, respec-
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tively ¶. These slight variations of V0 do not compromise the measurement of
the Casimir force at the current level of sensitivity.

Finally, the different surface roughnesses of the sphere and the plates also
influence the strength of the Casimir effect. Since both experiments are con-
ducted with the same sphere, the difference in the observed Casimir force can
never be due to the surface roughness of the sphere. Second, we recall that
the surface roughness of the ITO sample is larger than that of the Au sub-
strate. Since surface roughness enhances the Casimir force [67] we note that,
if it played a role in the probed separation range, it would lead to a stronger
interaction between Au and ITO than between two Au surfaces, contrary to
the measurements presented in Fig. 3.2.
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Figure 3.3: Hydrodynamic force acting on the sphere as a function of the absolute
separation d for Au-Au (green squares) and Au-ITO (red squares), for the data sets
shown in Figs. 3.2a and b.

To make our claim even more robust, we can now compare the hydrody-
namic force observed during the two experiments. Because the geometrical
configuration of the experiment is equal in both cases, we expect to measure
the same hydrodynamic force. The results are shown in Fig. 3.3. It is clear
that the hydrodynamic force is very similar in both cases, although there ex-
ists a slight discrepancy between the two curves (' 2%). Since both curves

¶The value of V0 at d = 100 nm during the entire experiment drifts from −106 mV to
−103 mV for Au and from 72 mV to 50 mV for ITO.
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are parallel on a double logarithmic scale, we conclude that this discrepancy
cannot be ascribed to a difference in the calibration of d0. Therefore, we rule
out that the large difference in the Casimir force reported in Fig. 3.2 be due
to an error in the determination of d0.

In conclusion, we have demonstrated that an ITO coating of one of the
two surfaces is sufficient to readily create situations where the Casimir force is
still the dominant interaction mechanism regardless the presence of air in the
surroundings. Since ITO is transparent over a wide range of frequencies, the
Casimir attraction is up to a factor of 2 smaller when compared to the case of
the Au-Au interaction, leaving ample room for Casimir force engineering even
at ambient conditions, where MEMS and NEMS typically operate.
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and making them accessible for catalysis 
(Fig. 1b,c). The hydrolysis reaction can be 
followed by the emerging fluorescence of the 
hydrolysed FDP.

The process of masking and unmasking 
the enzymes is reversible, and thus 
bioactivation can be turned on or off 
on demand by applying more or less 
mechanical strain. When the film is no 
longer stretched, the enzymes are again 
masked by the dense polymer barrier and 
the catalysis is switched off.

The researchers identified two important 
requirements needed for successful 
mechanically tunable enzymatic reactions. 
First, the barrier should be thick enough 
to prevent enzyme diffusion through the 
unstretched barrier, but at the same time 
it should be relatively thin to unmask 
the enzyme on stretching. Second, the 

critical stretching degree required for the 
biocatalytic activation was found to be 70%, 
a significant level of deformation.

The work of Voegel and co-workers 
shows that the design of ‘cryptic-like’ 
surfaces capable of reversibly inducing 
biochemical reactions by applying a 
mechanical stress is feasible with layer-by-
layer materials. Manipulating the construct 
design, for example, by varying the barrier 
thickness and reservoir parameters, is a way 
to tune the amplitude of the biocatalytic 
activity triggered by mechanical stimuli. 
The work has great potential in the design of 
responsive bioengineered materials aimed 
at triggering and modulating chemical 
and biochemical reactions by mechanical 
action, with applications ranging from smart 
microbiofluidic devices to mechanically 
controlled biopatches. ❐
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There are few topics in physics more 
prone to misrepresentation than the 
Casimir force. In popular discourse, 
the term is commonly preceded by 
‘ghostly’, as though there is something 
barely credible about the manifestation 
of an attractive interaction between 
two surfaces separated by a vacuum. 
Interpretations in terms of virtual 
particles or suppressed quantum 
fluctuations of the electromagnetic 
field only encourage that view. But 
regarded as the familiar dispersion 
force resulting from induced dipoles, 
‘slowed down’ by the finite speed of 
photons, the Casimir force becomes 
altogether more prosaic.

All the same, proposals to alter 
its influence — to engineer it — 
have about them something of the 
marvellous, as though the inescapable 
exigencies of nature are somehow 
being cheated. This possibility, 
however, was already implicit in 
Evgeny Lifshitz’s recasting of the 
Casimir force in 1956, when he worked 
out the theory for real materials with 
finite dielectric permittivity (that’s 
to say, finite conductivity). It’s easy 
to see from Lifshitz’s theory that, for 
certain choices of plate materials and 
media separating them, the Casimir 
force can actually be made repulsive. 
All the same, it wasn’t until earlier 
this year that the right combination 
of materials — silica, gold and an 

organic liquid — was found1. (It’s often 
overlooked that a classical analogue 
of this repulsive force, due to density 
fluctuations of a fluid at its critical 
point between two surfaces, was seen 
some time ago in superfluid helium2.)

This raises the prospect of ‘quantum 
levitation’ and of ultralow friction 
and contactless bearings for micro- 
and nanoelectromechanical systems 
(MEMS and NEMS, respectively). But 
the reality is trickier. The choice of 
materials, for example, is commonly 
dictated by other engineering 
considerations. Transparent 
dielectric surfaces such as silica will 
in themselves reduce the Casimir 
attraction relative to reflective metals, 
even if they don’t alter its sign. But they 
also have a tendency to accumulate 
surface charges in air, which, on non-
conductive media, cannot be dissipated 
and create a strong electrostatic 
attraction. A thin film of noble metal 
such as gold will allay that issue, but 
at the expense of constraining the 
dielectric function and leaving little 
scope for tuning the Casimir force.

Davide Iannuzzi and colleagues at 
the University of Amsterdam have now 
shown that it is possible to combine 
the best of both worlds3. Conductive 
transparent metal oxides such as 
indium tin oxide (ITO), indispensable 
for semiconductor display technology, 
offer amenable dielectric properties 

while dispersing surface charges 
in air. The researchers have used a 
customized atomic-force microscope 
to measure the force between a 
gold-coated polystyrene microbead 
and a flat surface coated with gold or 
ITO. In both cases, the Casimir force 
clearly dominates over any residual 
Coulombic force in ambient conditions 
for separations down to about 60 nm. 
But for ITO the attractive force is 
about a factor of two smaller. This, 
they say, should leave plenty of scope 
for tailoring the interaction in MEMS/
NEMS applications. It’s an intriguing 
example of how the right choice of 
materials can alter the basic physics. ❐
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3.3 Halving the Casimir force with conductive
oxides: experimental details

Abstract – This work is an extended version of a paper published last year
in Physical Review Letters [S. de Man et al., Phys. Rev. Lett. 103, 040402
(2009)], where we presented measurements of the Casimir force between a
gold coated sphere and a plate coated with either gold or an indium-tin-oxide
(ITO) layer. The experiment, which was performed in air, showed that ITO
is sufficiently conducting to prevent charge accumulation, but still transpar-
ent enough to halve the Casimir attraction when compared to gold. Here,
we report all the experimental details that, due to the limited space avail-
able, were omitted in the previous article. We discuss the performance of our
setup in terms of stability of the calibration procedure and reproducibility of
the Casimir force measurement. We also introduce and demonstrate a new
technique to obtain the spring constant of our force sensor. Furthermore, we
present a thorough description of the experimental method, a comprehensive
explanation of data elaboration and error analysis, and a complete character-
ization of the dielectric function and of the surface roughness of the samples
used in the actual experiment.

¶This paper has been published: S. de Man, K. Heeck, and D. Iannuzzi, Phys. Rev. A
82, 062512 (2010)
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3.3.1 Introduction

It is well known that the Casimir effect [18] strongly depends on the dielectric
function of the interacting surfaces [23, 41]. Transparent dielectrics, for exam-
ple, attract less than highly reflective metals. Dielectric materials, however,
tend to accumulate isolated charges. Those charges give rise to an electrostatic
force that easily overcomes the Casimir interaction.

In a recent paper [20], we have presented measurements of the Casimir force
between a gold coated sphere and a plate coated with either gold or an Indium-
Tin-Oxide (ITO, In2O3:Sn) layer. The experiment, which was performed in
air, showed that ITO is sufficiently conducting to prevent charge accumulation,
but still transparent enough to halve the Casimir attraction when compared
to gold.

The experiment was carried out by means of a quite complicated novel tech-
nique that, due to the limited space available, was not thoroughly explained
in our previous work. We believe it is important to extend that work and
provide the community with all the details of the experimental technique and
data analysis, which is the purpose of this paper.

This paper is organized as follows. First, we describe the experimental
setup and discuss general issues one has to tackle to perform Casimir force
measurements. Then we discuss the experimental technique we developed to
simultaneously calibrate the setup and measure the Casimir force gradient,
and derive in detail the specific forms of all our calibration and measurement
signals. Second, we illustrate a new method to determine the spring constant
of our force sensor. Third, we present experimental results on the general
performance of our setup, namely the stability of the calibration procedure,
the reproducibility of the force gradient measurements, and the spring constant
determination. Fourth, we present the Casimir force measurements for the
gold-gold and gold-ITO interactions, and show measurements of the dielectric
functions and surface topographies of our surfaces. Finally we compare the
hydrodynamic forces for the two sets of experiments.

3.3.2 Experimental setup

Description

Our experimental setup is designed to precisely measure surface forces between
a 100 µm radius sphere and planar samples at ambient pressure. The sphere is
attached to a micromachined cantilever (spring constant roughly 1 N/m) whose
deflection in response to external forces can be measured with pm sensitivity
by a commercial Atomic Force Microscope (AFM) detection head (Veeco Mul-
timode); the detection system is formed by a laser beam that reflects from
the free end of the cantilever and hits a position sensitive photodetector (see
Fig. 3.5). The sphere-cantilever assembly is coated with a Ti adhesion layer
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and a 100 nm Au film. The planar sample is mounted on a two-stage me-
chanical translator formed by a stick-slip piezoelectric motor (Attocube) and
a feedback controlled piezoelectric transducer (Physik Instrumente) to vary the
separation between the sphere and plate surfaces. The stick-slip motor is used
for coarse approach (travel range 6mm), while the feedback controlled trans-
ducer executes the fine distance scanning (range 12 µm, closed loop resolution
50 pm). Both the detection head and the two-stage mechanical translator are
anchored to a 10 cm3 Al block that is actively temperature stabilized at 300 K
to reduce mechanical drift from differential thermal expansion of the compo-
nents. The Al block is screwed onto an active anti-vibration table (Halcyonics),
which is placed inside an anechoic chamber. This chamber lies onto a heavy
marble optical table that is located in a temperature controlled laboratory.

Three crucial issues

In a Casimir force measurement, there are three crucial issues that have to be
dealt with.

First, even if one would electrically connect both interacting surfaces, there
exists an electrostatic potential difference V0 due to the different work functions
of the surfaces. Since work functions of surfaces depend on quite a number of
parameters, like crystal growth orientation and adsorbates, typically there even
exists a potential difference between surfaces made out of the same material.
This electrostatic potential difference gives rise to a force that is generally
stronger than the Casimir force. To avoid this problem, most Casimir force
setups rely on a counterbias circuit that is used to apply −V0 to the surfaces
in order to have no residual electrostatic force.

Second, even in setups where the distance between the sphere and the
plate is varied with a feedback controlled piezoelectric transducer, one has only
knowledge of the relative position changes and not of the absolute separation
between the surfaces. It is thus mandatory to find the initial separation d0 with
a calibration procedure. Because the distance dependence of the electrostatic
force between a sphere and a plate is known exactly, most modern setups use
this force to extract d0.

Third, the instrument has to be calibrated with a known force. Again, one
can use the electrostatic interaction to calibrate photodetector voltage versus
force. We have developed a measurement scheme that solves all three issues
at the same time.

Force modulation measurements

We present a measurement technique that makes use of simultaneous detection
of both calibration signals (based on the electrostatic force) and the Casimir
force. The motivation for this approach is the benefit of absolute certainty that
the calibration parameters always correspond to the measured forces because
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Figure 3.5: a, Drawing of the experimental setup used to perform precise measure-
ments of the Casimir force between a 100 µm radius sphere and a plate. The alu-
minum block acts as a heat reservoir to keep the temperature of the setup constant.
The instrument is based on a commercial AFM head that is, together with a custom-
designed mechanical translator, mounted on the aluminum block. b, Schematic rep-
resentation of the working principle of the experimental technique. The V0 feedback
circuit allows one to measure and compensate the residual voltage present between
the sphere and the plate. The calibration lock-in amplifier is used to calibrate the
instrument and to find the initial separation between the two surfaces d0. The mea-
surement lock-in amplifier performs the measurements of the Casimir force gradient
and the hydrodynamic force. c, Definition of the initial separation d0, the movement
of the feedback controlled piezoelectric stage dpz, and the non-modulated separation
between the surfaces d = d0 − dpz as used in the Taylor expansion that leads to
Eqs. 3.2 to 3.7.
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they are acquired simultaneously; it is thus impossible to have inconsistent
calibration and force data due to time-related drifts or other events. In order
to achieve this goal, we have separated the calibration and Casimir signals in
frequency space: the signals are modulated at distinct frequencies that can be
de-modulated individually with lock-in amplifiers.

Modulating an electrostatic interaction is extremely easy: one just has to
apply a time-dependent potential difference to the sphere and the plate (VAC
in Fig. 3.5 b). We thus apply an oscillating voltage VDC + VAC cos (ω1t) be-
tween the sphere and the plate, where VDC is used to compensate for the
contact potential difference V0 [19]. Unfortunately, modulating the Casimir
force is a lot more challenging as its strength depends only on geometry
and dielectric properties of the surfaces. On the other hand, of course, the
strong distance dependence of the Casimir force can be used to modulate
its strength considerably. Therefore, we chose to add a small modulation
of the form ∆d cos (ω2t) to the piezoelectric transducer displacement dpz, as
previously introduced in [62]. When the sphere and plate surfaces are sep-
arated by a distance d, we have the following three forces acting on the
sphere: F (V, d, ω2,∆d) = FE(V, d) + FC(d) + FH(d, ω2,∆d) where FE(V, d)
is the electrostatic force for externally applied potential difference V , FC(d)
is the Casimir force, and FH(d, ω2,∆d) is the hydrodynamic force due to the
moving air caused by the oscillatory motion of the plate. These forces induce a
bending of the cantilever F/k according to Hooke’s law, where k is the spring
constant of the cantilever. The output of the optical lever read-out S is then
changed by ∆S = γF/k, where the sensitivity of the read-out is characterized
by the calibration factor γ. We will now develop the full form of this signal
∆S.

Following elementary electrostatic arguments, one can show that the elec-
trostatic force between a plane and a sphere of radius R is given by

FE(V, d) = −ε0πR (V + V0)
2

d
, (3.1)

where ε0 is the permittivity of vacuum, V is the externally applied voltage,
V0 is the contact potential difference between the two surfaces, and d � R
(i. e. within the proximity force approximation (PFA) [41]). To evaluate the
total signal ∆S, we substitute V = VDC + VAC cos (ω1t) and incorporate the
distance modulation ∆d cos (ω2t). We then approximate the photodetector sig-
nal with a first order Taylor expansion for small excursion ∆d cos (ω2t) around
d = d0 − dpz (see Fig. 3.5 c):

∆S(t) ' S0+Sω1 cos(ω1t)+S2ω1 cos(2ω1t)+SIω2
cos(ω2t)+SQω2

sin(ω2t)+Srem(t),
(3.2)

where
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S0 = −γε0πR
[
(V0 + VDC)2 + V 2

AC/2
]

k (d0 − dpz) +
γ

k
FC (d0 − dpz) , (3.3)

Sω1 = −2γε0πR (V0 + VDC)VAC
k (d0 − dpz) , (3.4)

S2ω1 = − γε0πR

k (d0 − dpz)
V 2
AC

2
, (3.5)

SIω2
= −γε0πR

[
(V0 + VDC)2 + V 2

AC/2
]

∆d

k (d0 − dpz)2 − γ

k

∂FC
∂d

∣∣∣∣
d0−dpz

∆d, (3.6)

SQω2
=
γ

k
FH(d0 − dpz, ω2,∆d), (3.7)

FC (d0 − dpz) is the Casimir force at separation d0 − dpz, Srem(t) contains the
cross terms at frequencies like ω1 ± ω2 and 2ω1 ± ω2 and the gradient of the
hydrodynamic force at 2ω2, and we have neglected the effect of the cantilever
deflection on the distance between the surfaces. Since the remaining terms in
Srem are located at different frequencies than our measurement signals, they
do not interfere with the lock-in measurements of Sω1 , S2ω1 , S

I
ω2

and SQω2
. Srem

will thus be neglected in the rest of the paper.
Eq. 3.2 is only valid if the force sensor can follow the modulations of the

force without picking up phase delays. It is thus convenient to operate in
the quasi-static regime, which also ensures that the amplitude response of our
cantilever at the various measurement frequencies does not vary. For these
reasons, we set ω1/2π = 72.2 Hz and ω2/2π = 119 Hz, which are both much
lower than the resonance frequency of the force sensor (1.9 kHz, quality factor
' 75 in air). Furthermore, we have not included the elastic component of the
hydrodynamic interaction in SIω2

. According to [68], the compression effect is

small as long as σsphere = 4ηω2R
pd

< 1, where η is the viscosity of air and p is the

air pressure. In our experiment, σsphere ≤ 10−3, so the elastic component can
be neglected and we only have to consider the dissipative part of FH(d, ω2).
Since a dissipative effect depends on velocity v = ∂d/∂t = ω2∆d sin(ω2t),
it will manifest itself as a cantilever oscillation at ω2 with a corresponding
detector signal SQω2

that is 90 degrees rotated with respect to SIω2
.

Electrostatic calibration

The first task of the electrostatic calibration procedure is to compensate for
the presence of the contact potential difference V0 between the two interacting
surfaces. Since Sω1 is proportional to V0 + VDC (see Eq. 3.4), we can create a
negative feedback loop in which a lock-in amplifier at ω1 generates VDC in such
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a way that Sω1 vanishes, i.e. VDC = −V0 [19, 39]. The stability of this feedback
loop is guaranteed by a single large time constant. In the current experiment,
the systematic error in the compensation voltage is negligible (|V0 + VDC | <
50 µV), and the statistical error is ' 1 mV. This feedback scheme is similar
to Kelvin probe force microscopy [40], and allows one to measure V0 at all
sphere-plane separations. Even more, the automatic compensation of V0 leads
to the zeroing of the (V0 + VDC) terms in Eqs. 3.3 and 3.6, greatly simplifying
the measurement scheme.

The periodic component of ∆S at 2ω1, S2ω1 , measured with a second lock-
in amplifier (the calibration lock-in in Fig. 3.5 b), is used to calibrate the force
sensitivity and to find the initial separation between the surfaces d0. We define

α =
γε0πR

k (d0 − dpz) . (3.8)

According to Eq. 3.5, α can be experimentally obtained from α = 2 |S2ω1| /V 2
AC .

In this way, we have essentially performed an AC measurement of the curvature
of the electrostatic parabola, instead of using multiple DC measurements with
different applied voltages [32]. We measure α as a function of dpz by varying
the extension of the capacitive feedback controlled piezoelectric transducer (see
Fig. 3.5c) in discrete steps. We then fit Eq. 3.8 to these α data. This procedure
allows us to calibrate the separation at the start of the measurement d0 and
the force sensitivity κ = γε0πR/k for each measurement run. We then use the
estimate of d0 to adjust the initial value of dpz of the next measurement run in
order to have all runs start at the same separation. To avoid large electrostatic
forces at small separations, we reduce VAC as the surfaces approach such that
S2ω1 stays nearly constant at a value that corresponds to a root-mean-square
electrostatic force of ' 50 pN [19].

Casimir force measurement

We use a third lock-in amplifier (the measurement lock-in in Fig. 3.5 b), locked
at ω2, to measure the Casimir force. The phase of this lock-in amplifier is
aligned to the actual motion of the plate by examining the signal from a
dedicated fiber optic interferometer (not shown in Fig. 3.5). The same inter-
ferometer is used to calibrate the amplitude ∆d of the separation modulation.
We see from Eq. 3.6 that the in-phase component SIω2

contains both an elec-
trostatic contribution and the gradient of the Casimir force FC at the current
separation. Since V0 + VDC = 0 by the V0 feedback circuit, Eq. 3.6 simplifies
to

SIω2
= − γε0πR

k (d0 − dpz)2

V 2
AC

2
∆d− γ

k

∂FC
∂d

∣∣∣∣
d0−dpz

∆d. (3.9)

Combining Eqs. 3.5 and 3.9, one obtains
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SIω2
=

S2ω1

d0 − dpz∆d− γ

k

∂FC
∂d

∣∣∣∣
d0−dpz

∆d. (3.10)

Since the absolute separations d0 − dpz and S2ω1 are known from the simul-
taneous electrostatic calibration (and ∆d is calibrated too), one can calculate
the value of the first term of Eq. 3.10. Using the force sensitivity κ = γε0πR/k
obtained from the calibration, we can finally get the Casimir force gradient:

1

R

∂FC
∂d

=
ε0π

κ

(
S2ω1

d0 − dpz −
SIω2

∆d

)
. (3.11)

It is interesting to note that we obtain the Casimir force gradient divided
by the sphere radius R, because we have calibrated the instrument with the
electrostatic force which scales linearly in R (see Eq. 3.1). However, within the
PFA, the gradient of the force between a sphere and a plate relates directly to
the pressure between two parallel plates Ppp as long as d� R:

1

R

∂FC
∂d

= 2πPpp(d), (3.12)

where Ppp(d) can be calculated with the Lifshitz theory [23] and depends only
on the dielectric properties of the interacting surfaces. Therefore, we can
directly compare our 1/R ∂FC/∂d data to theory, without any need to know
the precise radius of the sphere.

Furthermore, by using a quadrature lock-in amplifier at ω2, we can obtain
SQω2

together with SIω2
. We can thus measure the hydrodynamic interaction

between the sphere and the plate simultaneously with, but independently from,
the Casimir force gradient.

Determination of deflection sensitivity and cantilever spring con-
stant

So far, we have neglected the bending of the cantilever in the assessment of
the distance between the sphere and plate surfaces. This is valid as long as the
forces are relatively weak and the spring constant of the cantilever is relatively
high. Of course, the nominal spring constant of the cantilever is supplied
by the manufacturer, but the addition of a glued sphere and metal coating
influence the stiffness. Therefore, we have developed a technique to measure
the spring constant with the electrostatic force. Furthermore, this method also
allows us to extract the deflection sensitivity γ of the optical lever readout; we
can then convert photodetector signal ∆S into cantilever deflection F/k. This
technique might be useful for AFM force measurements in general.

To obtain the cantilever spring constant and the deflection sensitivity, we
apply a relatively large VAC between the sphere and the plate. Exactly like de-
scribed above in the electrostatic calibration section, we keep the electrostatic
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force at 2ω1 constant, but now at roughly 2 nN RMS instead of 50 pN RMS,
by reducing VAC while increasing the piezoelectric transducer extension dpz in
discrete steps. This strong force will reduce the sphere plate distance, and
we therefore have to solve the following implicit equation for the electrostatic
force

FE = − ε0πRV
2

d0 − dpz + FE/k
(3.13)

where, since we have already dealt with the contact potential difference V0

with the feedback circuit, V just refers to the AC component of the applied
voltage. For the sake of simplicity, we have omitted the piezo modulation at
ω2 from this derivation, as it does not affect the results. Eq. 3.13 has two
solutions for FE, and the physically correct one reads

FE = −1

2

[
k(d0 − dpz)−

√
k2(d0 − dpz)2 − 4kε0πRV 2

]
. (3.14)

If we Taylor expand this expression for small cantilever deflection (which means
small force and small applied voltage V ), and use ∆S = γF/k, we obtain

∆S = − γε0πRV
2

k(d0 − dpz) −
γε20π

2R2V 4

k2(d0 − dpz)3
+O(V 6). (3.15)

Substituting V = VAC cos(ω1t) and neglecting the higher order terms yields a
detector signal

∆S(t) ' S0 + S2ω1 cos(2ω1t) + S4ω1 cos(4ω1t), (3.16)

where S0 is the DC component and the amplitudes of the two AC components
are given by

S2ω1 = − γε0πRV
2
AC

2k(d0 − dpz) −
γε20π

2R2V 4
AC

2k2(d0 − dpz)3
(3.17)

and

S4ω1 = − γε20π
2R2V 4

AC

8k2(d0 − dpz)3
. (3.18)

S2ω1 is already measured by our electrostatic calibration lock-in amplifier, and
we simply add another lock-in amplifier locked at 4ω1 to detect S4ω1 .

The second term in Eq. 3.17 is much smaller than the first term and can
be neglected. We then find that

VAC

√
S2ω1

S4ω1

= 2

√
k

ε0πR
(d0 − dpz), (3.19)

which means that we can obtain k/R by fitting Eq. 3.19 to data of VAC
√
S2ω1/S4ω1

as a function of relative piezo displacement dpz. Apart from the resulting
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knowledge on the cantilever spring constant (the sphere radius is roughly
known), we also obtain the deflection sensitivity γ by combining the value
of k/R with the one of κ = γε0πR/k determined by the analysis of the si-
multaneously acquired α data (as described in the electrostatic calibration
procedure).

3.3.3 Results and Discussion

We have divided our experimental results into two parts. In the first part, we
describe the precision and stability of the electrostatic calibration procedure
and comment on the reproducibility of the Casimir force gradient detection
in a set of 580 measurement runs between two gold coated surfaces. Also, we
present a single dataset obtained with a large electrostatic force between the
sphere and the plate that allows us to check the validity of Eq. 3.6 (and Eq. 3.11
as well), and to obtain the spring constant of our cantilever and the deflection
sensitivity of the optical lever readout. In the second half, we combine the
Casimir force measurements between the two gold surfaces with measurements
between a gold surface and a surface coated with ITO (In2O3:Sn), as presented
in [20], adding details that, for the sake of brevity, were previously omitted.
Furthermore, we obtain the hydrodynamic forces for both measurement sets
and compare the results.

General performance

We will now analyze the 580 measurement runs between two gold surfaces
obtained during nearly 72 hours of continuous data acquisition. In this exper-
iment, the separation between the surfaces is varied in discrete steps with the
feedback controlled piezoelectric transducer, and a typical measurement run
consists of ' 50 dpz set points in the measurement range 50 < d < 1100 nm.
The lock-in measurements are obtained with 24 dB roll-off low-pass filter set-
tings with 1 s RC time. The waiting time for every value of dpz is 8 s, and
a complete run takes roughly 7 minutes. The S2ω1 set point corresponds to a
cantilever movement of approximately 50 pm RMS. The distance modulation
is set to ∆d = 3.85 ± 0.08 nm, and the in-phase and out-of-phase cantilever
responses at ω2 are < 80 pm RMS during the entire experiment. All force mea-
surements are performed in air at atmospheric pressure, temperature 300 K,
and 29% relative humidity.

Concerning the electrostatic calibration, we have to fit our α data with
Eq. 3.8 to obtain the initial separation d0 and the force sensitivity κ. Due to
the fact that we hold S2ω1 constant by reducing VAC , the relative statistical
error in α is constant (see reference [19]) and was measured to be ' 0.7%. We
have verified that α follows Eq. 3.8, as suggested in [38] and discussed in [19].
In Fig. 3.6 and Fig. 3.7, we present the fitted values for d0 and κ and analyze
their stability in time. Fig. 3.6 a shows all the values of d0 for the 580 runs
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Figure 3.6: Mechanical stability of the experimental setup. a, Mechanical drift in
the initial separation d0 as a function of run number for all 580 Au-Au measurement
runs. The error bars are determined by propagation of the error on α into the
estimate of d0 by the fit with Eq. 3.8. The grey line represents a trend line that
accounts for the slow thermal drift of the setup. b, Histogram of the differences
between the measured d0 values and the grey line of a. The line represents the best
Gaussian fit, resulting in a 0.5 nm standard deviation.
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with error bars as propagated from the error on α. The grey line represents
the smooth thermal expansion of the setup, and is estimated by smoothing the
data with a 100 point moving window second order Savitsky-Golay filter. The
total mechanical drift of our setup is 52 nm in 72 hours, which is less than 1 nm
per hour and less than 0.1 nm per measurement run. Clearly, we can neglect
the mechanical drift in our assessment of separation between the surfaces in
a single run. In Fig. 3.6 b, we plot a histogram of the difference between the
d0 data and the smoothed grey line of Fig. 3.6 a. These differences are clearly
normally distributed with a standard deviation of 0.5 nm. Therefore, in these
experimental runs, we could determine the separation between the sphere and
plate surfaces with 0.5 nm precision. This estimate of the precision in the
measurement of d0 is insensitive to the precise form and size of the smoothing
window.

Fig. 3.7 a shows all the values of the force sensitivity κ that we obtained
from the fit to our electrostatic calibration data. The error bars are calculated
by propagating the errors on α. The grey line is a smoothed trend line that
represents slow variations in κ over time, obtained by smoothing the data
with a 200 point moving window second order Savitsky-Golay filter. There is
clearly no long-term drift in the force sensitivity, which shows that our setup
is very stable. In Fig. 3.7 b, we plot a histogram of the relative deviations
between our κ data and the smooth grey line of Fig. 3.7 a. These deviations
are normally distributed with a standard deviation of 0.2%, and are insensitive
to the specifics of the smoothing window. We have thus determined the force
sensitivity of the setup for every single measurement run with a precision of
0.2%.

In Fig. 3.8 we present measurements of the total force gradient

1

R

∂F

∂d
= −ε0π

κ

SIω2

∆d
(3.20)

as a function of the non-modulated separation d = d0 − dpz (see Fig. 3.5 c).
This force gradient should, according to Eq. 3.11, obey

1

R

∂F

∂d
=

1

R

∂FC
∂d

+
1

R

∂FE
∂d

(3.21)

with
1

R

∂FE
∂d

= −ε0π

κ

S2ω1

d0 − dpz . (3.22)

In Fig. 3.8 a, the data points represent the −ε0πS
I
ω2
/(κ∆d) data points and the

solid line shows the electrostatic force gradient as obtained with Eq. 3.22 from
the S2ω1 values of the simultaneous electrostatic calibration procedure. For
clarity, we have shown only 150 measurement runs out of the total 580. It is
clear that in the distance range that our setup is sensitive for the Casimir force,
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Figure 3.7: Stability of the electrostatic calibration. a, All 580 obtained values for
the force calibration constant κ as a function of run number. The error bars are
calculated by propagating the error on α. The grey line is a smooth trend line that
accounts for slow variations. b, Histogram of the relative deviations of the κ data
from the trend line in c. The Gaussian fit has a standard deviation of 0.2%.
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Figure 3.8: a, The data points represent measurements of the total force gradient as
a function of separation between the sphere and plate surfaces for 150 measurement
runs out of a total of 580 runs. The line shows the electrostatic force gradient
associated to the simultaneous calibration procedure. b, Plot of all 580 force gradient
measurements obtained for d ' 95 nm as a function of time. The grey line represents
the average force gradient. c, Histogram of all the relative deviations between the
single force gradient measurements around 95 nm and the average force gradient.
The Gaussian fit has a standard deviation of 3.5%.
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the electrostatic force gradient caused by the simultaneous electrostatic cali-
bration is small compared to the Casimir force gradient. To assess the stability
of our force gradient measurement, we have plotted all 580 1/R ∂F/∂d data
points gathered around 95 nm from our 580 measurement runs in Fig. 3.8 b.
Our data do not show any drift in time, which means that the setup is sta-
ble. The grey line represents the average of the data points. In Fig. 3.8 c, we
plot a histogram of all the relative deviations of the data with respect to the
average. These deviations are normally distributed with a standard deviation
of 3.5%, which corresponds to a standard deviation in the measurement of
the force gradient of 1.85 N/m2. This value represents an overestimate of the
noise though, because the data are obtained at slightly different separations;
the exact position of a data-point depends on the estimate of d0 coming from
the previous measurement run. Since the error in the determination of d0 is
0.5 nm (see Fig. 3.6 b), the data are horizontally scattered with a standard
deviation of 0.5 nm. For d ' 95 nm, the local slope of the data in Fig. 3.8 a
is approximately 1.3 Nm−2/nm, which translates this scatter in d into a force
gradient scatter of 0.65 N/m2. Therefore, the actual precision in a single force
gradient data point around 95 nm is 1.75 N/m2, if we assume that both the
force gradient noise and the scatter in separation are uncorrelated.

From the electrostatic calibration results, we could have also estimated
the noise in the force gradient measurement. In fact, the noise in S2ω1 is
30 µV RMS with a 1 s RC time. The force gradient signal at ω2 is located
at a comparable frequency, therefore the noise will be quite the same. If we
substitute our measured values of κ and ∆d into Eq. 3.20, we see that we would
have expected the noise in 1/R ∂F/∂d to be 1.62 N/m2. But we have not taken
into account yet the 0.5 nm error in the separation that arises from the estimate
of d0. For d ' 95 nm, this results in an additional statistical error of 0.65 N/m2

in the force gradient at this distance. The combined error, assuming the force
gradient and distance errors are uncorrelated, is then 1.75 N/m2 for d ' 95 nm,
which agrees perfectly with the data of Fig. 3.8.

Since our Casimir force gradient measurement consists of measuring the to-
tal force gradient and subtracting the electrostatic force gradient (see Eq. 3.11),
it is interesting to investigate the accuracy in the assessment of 1/R ∂FE/∂d.
For that, we have gathered a new dataset with a relatively strong electrostatic
interaction (high VAC) between the sphere and the plate. When we combine
the high VAC total force gradients with measurements obtained with low VAC ,
we can get

1

R

∂F

∂d

∣∣∣∣
VAC>

− 1

R

∂F

∂d

∣∣∣∣
VAC<

=
1

R

∂FE
∂d

∣∣∣∣
VAC>

− 1

R

∂FE
∂d

∣∣∣∣
VAC<

(3.23)

because the Casimir force gradient is equal in both cases and drops out. Even
more, any other systematic effects present in the force gradient measurement
that do not depend on VAC , like, for example, laser light that reflects from the
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Figure 3.9: Plot of the electrostatic force gradient difference between a measurement
run performed with a strong electrostatic interaction and a run performed with a
weak electrostatic force. Data are plotted as a function of separation. The line
corresponds to the electrostatic force gradient obtained from the calibration signal.
See text for details.
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planar sample and hits the photodetector, are also cancelled in this way. The
right-hand-side of Eq. 3.23 can be calculated with Eq. 3.22, and we can thus
assess the validity of the latter and, consequently, of Eq.3.11. In Fig. 3.9, we
have plotted the difference in total force gradients (obtained with Eq. 3.20) as
a function of distance. The solid line represents the difference in calculated
electrostatic force gradients (Eq. 3.22), determined with the corresponding
sets of S2ω1 data. Although the agreement between the two electrostatic force
gradients is good (there are no adjustable parameters), there exists a slight
discrepancy between the two curves. The measured total force gradient differ-
ence is systematically about 3% higher than the values calculated from S2ω1 . If
this discrepancy means that there is a small error in the determination of the
electrostatic force gradient, then the measurement of the Casimir force gra-
dient is almost unaffected. For example, for all d < 120 nm the electrostatic
force gradient is always < 25% of the total force gradient, which results in an
error of < 1% in the measurement of the Casimir force gradient. If, on the
other hand, the mismatch is caused by the uncertainty in the determination
of ∆d with the dedicated fiber optic interferometer, then our Casimir force
gradients are affected by a 3% systematic error. Nevertheless, this systematic
error will not hamper the comparison between force gradient data obtained
with different samples, as we always use the same ∆d.

To measure the deflection sensitivity of the readout and the spring constant
of the cantilever, we follow the procedure outlined above. In essence, we apply
a big potential difference between the sphere and the plate, record both the
cantilever deflection signal at 2ω1 and 4ω1 as a function of relative piezo-electric
transducer displacement dpz, and fit Eq. 3.19 to those data. In Fig. 3.10, we

plot VAC
√
S2ω1/S4ω1 as a function of dpz for such a single dataset. The straight

line represents the best fit with Eq. 3.19 (reduced χ2 = 0.25). The error bars
were determined by measuring the absolute error in S2ω1 and assuming that
the error in S4ω1 is equal and independent from the error in S2ω1 . This is not
entirely correct, because some sources of error, like for example fluctuations in
d, will lead to correlated variations in S2ω1 and S4ω1 . We have thus overesti-
mated the error in VAC

√
S2ω1/S4ω1 , which leads to a reduced χ2 < 1. Anyhow,

the slope of the data allows us to extract k/R = (11.12± 0.06) 103 N/m2 (the
uncertainty is obtained by setting reduced χ2 = 1). When we combine this
value of k/R with the simultaneously determined κ = 191.3 ± 0.2 nm/V, we
find that γ = (7.64± 0.04) 107 V/m. With this value of γ, we can now estab-
lish that the S2ω1 set point we used for this dataset corresponds to a cantilever
motion of 2 nm RMS at 2ω1. It is interesting to observe that this 2 nm modu-
lation of the separation d at 2ω1 gives rise to a measurable signal at 4ω1 even at
1 µm distance. Furthermore, if we use the approximately known sphere radius
of 100 µm, we obtain the spring constant of our cantilever k = 1.1 N/m. As
the nominal spring constant before sphere attachment and gold coating was
0.9 N/m, the value we find with this electrostatic method is very reasonable.
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Figure 3.10: Plot of VAC
√
S2ω1/S4ω1 as a function of piezoelectric transducer exten-

sion. The line represents the best fit of the data with Eq. 3.19 (reduced χ2 = 0.25).
The slope of the fit can be used to obtain the cantilever spring constant and the
deflection sensitivity γ.
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With the deflection sensitivity calibrated, we can now assess the total can-
tilever bending and the precision in the measurements of the cantilever deflec-
tion. In the measurement runs presented in Figs. 3.6, 3.7 and 3.8, we used
an S2ω1 set point of 4 mV RMS, which corresponds to a cantilever motion of
52 pm RMS. Therefore, the static bending of the cantilever due to the elec-
trostatic calibration procedure is 74 pm (see Eqs. 3.3 and 3.5). Anyway, this
static bending is constant during the measurement run and it is thus auto-
matically taken into account in the estimate of d0. The cantilever oscillations
at ω2 caused by the total force gradient and the hydrodynamic interaction are
< 80 pm RMS for these measurement runs, which means that the correspond-
ing static bending is < 113 pm. It is thus evident that we can safely neglect
the static bending of the cantilever in our data analysis. Since the noise in
S2ω1 is 30 µV RMS, the precision in the detection of the cantilever deflection
is 400 fm RMS with our 1 s RC time (24 dB low-pass filter). This means that
our setup has an RMS sensitivity of 1 pm/

√
Hz at 2ω1/2π = 144.4 Hz.

Halving the Casimir force

We now present a comparison between two experiments performed with the
same gold coated 100 µm radius sphere and two different plates. The first
experiment is conducted with a polished sapphire substrate coated with a gold
film similar to the one deposited on the sphere. The general performance
of our setup was discussed above by analyzing this first experiment. The
second experiment consists of 580 measurement runs in which the plate is
replaced by a float glass substrate with a sputtered ITO thin film on top
(PGO CEC010S, typically 8.5 Ω/�, or, equivalently, ρ = 1.6 10−4 Ωcm).
After purchase, this sample has been exposed to air for more than two years
before our measurements were performed.

Fig. 3.11 shows the Casimir force gradient between the two pairs of sur-
faces (Au-Au in green triangles, Au-ITO in red squares) [20]. In Fig. 3.11 a,
we plot the force gradients as a function of separation on a double logarithmic
scale for randomly chosen subsets of the data (150 out of 580 for both cases).
Both datasets are obtained with the exact same settings for the electrostatic
calibration and the force gradient measurement, and the Casimir force gradi-
ent is obtained from Eq. 3.11. The black lines indicate the theoretical force
gradient, as will be explained below. Figs. 3.11 b and c present two histograms
of all 580 Casimir force gradient measurements for both Au-Au and Au-ITO
at separations d = 120 nm and d = 80 nm, respectively. It is clear that the
interaction strength with the ITO sample is considerably reduced with respect
to the gold plate.

Note that our estimate of d0, and thus d, relies on the simple form of Eq. 3.1
and is only valid for d � R (PFA). This assumption is not entirely correct
in the probed separation range [19] and results in a systematic error in d0 of



70 3 Halving the Casimir force

60 80 100 120 140 160 180 200
1

10

100

 

d (nm)

5 10 15 20 25

40 50 60 70 80 90

(a)

~ 40%

~ 50%

(b)

(c)

Figure 3.11: a, Casimir force gradient as a function of separation for the Au-Au
(green triangles) and Au-ITO (red squares) interactions for randomly chosen subsets
of the data (150 out of 580 for both cases) plotted on a double logarithmic scale,
with the common electrostatic background subtracted from the data. The black
lines correspond to the calculated Casimir interactions. b, Histogram of all 580
force measurements for both the Au-Au and Au-ITO measurements at d = 120 nm.
The difference in Casimir force gradient is ' 50% between the gold and ITO mea-
surements. c, Same as b, but for d = 80 nm. At this separation, the difference in
the force gradient is ' 40%.
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about 1.4 nm. Still, the corresponding underestimate of the separation is equal
for both the measurements with Au and ITO, and can thus be neglected in
the comparison of the two experiments.

Concerning the compensation voltage, we observed that V0 varies approx-
imately 1 mV and 3 mV over the complete measurement range in the Au-Au
and Au-ITO cases, respectively. These slight variations of V0 do not compro-
mise the measurement of the Casimir force at the current level of sensitivity.
The value of V0 drifts in time from −106 to −103 mV for Au-Au and from 72
to 50 mV for Au-ITO at d = 100 nm. It is also important to note that, during
the whole duration of the experiment, we never observed any problem with
electrostatic charging of the Au or ITO layers, which would have most likely
resulted in erratic behavior of α and/or V0.

In order to compare the obtained Casimir force gradients with theoretical
predictions, we have investigated the dielectric properties of our surfaces. In
Fig. 3.12, we show the reflection and transmission spectra of the two plates,
measured from the thin film side, in the frequency range from 0.5 to 6.5 eV.
The black continuous lines represent the reflection and transmission spectra
calculated from the literature. For Au, we used the values reported in [63].
The imaginary part of the dielectric function of ITO is constructed from a
sum of Drude and Tauc-Lorentz models with the parameters from [64]. The
real part of the dielectric function is calculated with direct Kramers-Kronig
integration. The thickness of the ITO thin film is fitted by examining the
interference fringes in the reflection and transmission spectra (taking into ac-
count the refractive index of the material) and turned out to be 190 nm, which
is close to the typical thickness reported by the manufacturer (180 nm). The
agreement between the spectroscopic measurements and these literature values
is reasonable in the probed energy range. We want to stress that for Au there
are no adjustable parameters whatsoever in Fig. 3.12, and that for ITO only
the thickness was fitted. These results allow us to estimate the Casimir force
expected in the two cases (Au and ITO) and compare the calculation with our
measurements (see Eq. 3.12).

The theoretical Casimir interaction is calculated with the Lifshitz equation
using the dielectric properties of our surfaces. For Au, we have extrapolated the
data of [63] with a Drude model (ωp = 9.0 eV and 1/τ = 0.035 eV from [27]).
For ITO, we used the model from [64] for all frequencies. The computed force
gradient is plotted as the black lines in Fig. 3.11. The agreement between
data and theory is reasonable, although we do seem to obtain different powers
for data and theory. At small separation, the experimental curves are bending
upwards, which is a sign of surface roughness effects [67]; the theoretical curves
were calculated for perfectly smooth surfaces. Furthermore, the Au-Au data
tend to give rise to a stronger force at large distance compared to theory, which
is most likely caused by an artifact common to many AFM force measurements:
the laser light is reflected from the planar sample into the photodetector giving
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Figure 3.12: Measured reflection (R) and transmission (T) spectra as a function
of photon energy for the Au on sapphire (green data) and ITO on float glass (red
data) samples. The continuous black lines are calculations of the reflection and
transmission spectra expected for our samples (no fit parameters except ITO layer
thickness), using handbook data for gold [63] and a model from [64] for ITO. The
transmission spectra for gold are zoomed in because the maximum transmission
(around 2.5 eV) is only 1.4%. The calculation of the transmission spectrum of the
ITO sample is quite sensitive to the choice of dielectric properties of the float glass for
photon energies above 4 eV. The black lines describe the measured data reasonably
enough to allow for calculations of the Casimir force.
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rise to a background signal. In the Casimir force gradient method presented
here, this artifact results, in first order, to an offset in the data; this explains
the upwards trend of the data for large d. Although the precise distance
dependence and strength of this artifact is unknown, we estimate from the force
gradient data at large separation (d > 500 nm) that the associated systematic
error is certainly < 2 N/m2. In the case of the Au-ITO measurements, such a
background signal is a lot smaller because ITO does not reflect well the laser
light (see Fig. 3.12 at ω = 1.9 eV). To explain the mismatch, it is therefore more
likely that the model we used for the dielectric properties [64] is too metallic
at low energy and that, consequently, the calculated Casimir interaction is too
strong especially at large d.

(a) (b)

(c)
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Figure 3.13: a,b AFM topography scans (10 by 10 µm) of the surfaces of the Au on
sapphire and ITO on float glass samples, respectively. The surface roughness for the
gold sample is 0.8 nm RMS, while the ITO plate has a surface roughness of 4 nm
RMS. c, Optical profiler scan of the bottom of the gold coated polystyrene sphere
that is attached to the cantilever for our force measurements. The surface roughness
of the sphere is 3.8 nm RMS.

So far, we have neglected the effects of surface roughness in our analysis.
In Fig. 3.13, we show topology measurement of our surfaces. Figs. 3.13 a and b
are AFM tapping-mode scans (10 by 10 µm) of the Au on polished sapphire
and ITO on float glass samples, respectively. The gold sample has an RMS
surface roughness of 0.8 nm, while the ITO coated plate has a roughness of
4 nm RMS. Fig. 3.13 c presents a height profile of the surface of the sphere
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bottom obtained with an optical profiler. Since the cantilever is mounted at a
15 degrees angle with respect to the planar sample surface (this is typical in
AFM design), the top of this profile does not correspond to the area of closest
approach in a force measurement. However, this height profile does give us the
ability to estimate the surface roughness of the sphere, resulting in a value of
3.8 nm RMS.

Since we used the same sphere in both sets of measurements, the surface
roughness of the sphere can never cause the observed difference in Casimir
force gradients between the Au-Au and Au-ITO cases. Furthermore, we recall
that surface roughness tends to enhance the strength of the Casimir interac-
tion [67]. It is therefore impossible that the different surface roughnesses of
the two planar samples is responsible for the difference reported in Fig. 3.11,
because the ITO sample is considerably rougher than the gold coated sapphire
substrate.
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Figure 3.14: Hydrodynamic force (RMS) acting on the sphere as a function of sep-
aration for a subset of the data (150 out of 580 for both cases), caused by the
oscillations of the plate surfaces at 119 Hz. The green triangles represent the force
in the case of two gold-coated surfaces, while the red squares correspond to the
Au-ITO interaction.

When we discussed the experimental details of our experiment, we men-
tioned the interesting feature that we can measure both the Casimir force
gradient and the hydrodynamic force acting on the sphere with the same lock-



3.3 Halving the Casimir force with conductive oxides: experimental details 75

in amplifier at ω2. Fig. 3.14 shows the hydrodynamic force for both the Au-Au
interaction (green triangles) and for the Au-ITO case (red squares). We have
plotted the RMS force resulting from the 2.72 nm RMS oscillation of the plate
at ω2/2π = 119 Hz. Both curves appear to change exponent at a separation
of around 200 nm. This bending is caused by the slip of the air flow across
the surfaces, i. e. the fluid velocity at the gas-solid interface is nonzero. This
phenomenon is treated in [42] and the expressions derived in there describe
our data satisfactorily. Concerning the comparison of the two sets of hydro-
dynamic data, it is clear that the hydrodynamic forces are very similar in the
Au-Au and Au-ITO experiments. Still, there exists a small difference between
the two curves of roughly 2%. This difference cannot be caused by an error
in the determination of the initial separation d0, because both data sets are
parallel on the double logarithmic plot. We suppose that the cause may lie
in the different surface roughnesses of the Au and ITO samples that lead to
different amounts of fluid slip over the sample surfaces.

It is worthwhile to compare our method for the detection of hydrodynamic
forces with recent measurements obtained with AFM’s [68, 69]. In [68], the
cantilever with sphere is driven at its free resonance and the amplitude and
phase of the cantilever motion are used to extract the hydrodynamic force.
In [69], two methods were employed to measure the hydrodynamic interaction
between a colloid sphere and a plate: measuring the static deflection of the can-
tilever during a fast approach of the planar sample and analyzing the thermal
noise of the cantilever while slowly approaching the plate towards the sphere.
In both papers, however, the separation between the two interacting surfaces
was determined by bringing the sphere and plate into contact, a method that
is prone to inaccuracies due to surfaces asperities (this is also reported in [69]).
Since our method employs both a hydrodynamic force measurement and a pre-
cise calibration of the distance at the same time, we have developed a more
reliable technique for hydrodynamic force measurements.

3.3.4 Conclusions

We have presented the experimental details of our Casimir force measurements
between gold and ITO surfaces [20]. We have shown that the mechanical drift
of our setup is less than 0.1 nm per measurement run and that our electrostatic
calibration is performed with 0.2% precision. Force gradient data obtained over
approximately 72 hours reveal no drift in the signal at all, confirming the high
stability of the setup. Furthermore, we have introduced and demonstrated a
new method to determine the spring constant of our cantilever and the de-
flection sensitivity of the AFM readout. We also presented our measurements
of the Casimir and hydrodynamic interactions between the gold and ITO sur-
faces, and provided a complete characterization of our samples in terms of
their dielectric properties and surface roughness.
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Chapter 4

Force measurements in gases

4.1 Introduction

In this chapter, we will discuss force measurements at short separation in the
presence of different gases. Concerning the Casimir force, one can understand
from the Lifshitz equation that the interaction strength, although it depends
on the intervening medium between the interacting surfaces, is practically in-
sensitive to the choice of gas (contrary to liquids). If one wants to tune the
Casimir force with gases, it is thus mandatory to coat the interacting sur-
faces with materials whose surface dielectric properties depend on the specific
gaseous surrounding. One of such materials are Hydrogen Switchable Mirrors
(HSM): reflective metals that upon hydrogen absorption become transparent
semiconductors or insulators. In 2004, Iannuzzi and co-workers at Harvard
University performed Casimir force measurements between a gold plate and a
sphere coated with a HSM in both argon and argon/hydrogen atmosphere. Un-
fortunately, they were unable to observe any change in the interaction strength
upon hydrogen exposure. In Section 4.2 we perform a precise computation of
the Casimir force between gold and HSM surfaces in both the hydrogen loaded
and unloaded states, and show that the presence of a Pd capping layer cov-
ering the HSM dramatically reduces the difference in Casimir force for both
states. In fact, this reduction is so strong, that the force contrast between
both configurations is smaller than the resolution of the setup that was used
in 2004, which clearly explains the negative result of the experiment.

The setup we describe in this thesis, however, is much more capable of
Casimir force measurements in terms of stability and precision. We have
therefore initiated a second round of Casimir force measurements with HSMs.
In section 4.3, we present our force data between a Y/Pd HSM and a gold
coated sphere. Interestingly, we were also unable to observe a decrease in the
force upon hydrogen loading of the HSM, but found, on the contrary, a much
stronger attractive interaction between the two surfaces in H2 atmosphere.
This strong interaction has most likely an electrostatic origin, and we will de-
fend this claim by examining the distance dependence of the extra force and
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of the contact potential.
The hydrodynamic interaction between the sphere and the plate depends,

of course, also on which type of gas is present in the gap. In section 4.4, we
present measurements of the hydrodynamic damping force in air, Ar, He, and
SF6. These gases span a wide range of mean free paths, by which we can
effectively explore gas surface slip. In fact, although in He both the gas slip
length and the mean free path are larger than the smallest gap size, it turns
out that the continuous medium theory developed in 1973 by Hocking works
flawlessly at these small separations.
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4.2 On the use of Hydrogen Switchable Mir-
rors in Casimir force experiments

Abstract – Hydrogen Switchable Mirrors (HSMs) are shiny metals that be-
come optically transparent upon exposure to hydrogen. The Casimir force
between HSMs is thus supposed to be stronger in air than in hydrogen. A few
years ago, an experiment designed to measure this effect gave an unexpected
result (Iannuzzi D, Lisanti M and Capasso F 2004 Proc. Nat. Ac. Sci. USA
101 4019–23): no change of the force was observed upon hydrogenation. Qual-
itative arguments show that this result is reasonable if HSMs do not switch at
long wavelengths, where no measurements of the dielectric function are avail-
able. Because the exact composition of the mirrors used in that experiment
is not known, a more quantitative comparison of the data with theory is not
possible. Still, calculations of the Casimir force in the presence of similar
HSMs of known composition might provide new insights for the interpretation
of the experimental result and may suggest precious hints for the development
of future analogous experiments. In this paper, we present calculations of the
Casimir attraction between Mg2Ni mirrors in air and in hydrogen. Our results
clearly indicate that the modulation of the Casimir force with HSMs should
be observable with modern set-ups.

This paper has been published: S. de Man and D. Iannuzzi, New J. Phys. 8, 235 (2006)
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4.2.1 Introduction

In the last decade, the literature dedicated to the Casimir effect [18] has been
strongly influenced by a series of papers claiming the achievement of ulti-
mate accuracy in the comparison of Casimir force experiments with theoret-
ical predictions (see for example [70] and references therein). These papers
have triggered a renewed interest in this field, stimulating a vivid discussion
on the calculation of systematic errors of both experimental data and theoret-
ical analysis. It is therefore not surprising that the large majority of modern
experiments are performed using surfaces coated with thick, bulk-like metal-
lic layers. From an experimental point of view, the use of metals offers the
possibility to control and eliminate any residual electrostatic interaction that
might disturb the measurements and increase the experimental uncertainty.
Concerning the theoretical analysis of the data, the Casimir force between two
objects is typically calculated by substituting the dielectric functions of their
surfaces directly into the Lifshitz equation for van der Waals interaction [23].
The accuracy of the predicted results is thus strictly related to the degree
of confidence with which those functions are known. The choice of bulk-like
metallic films facilitates accurate calculations, because the dielectric functions
of metals are known better than those of dielectrics. Measurements of Casimir
forces between materials other than metals would thus not contribute to the
discussion on the accuracy issue, giving rise to less impactful results.

It has been already recognized, however, that this trend represents a severe
narrowing of the focus of modern literature [7, 32, 33, 71, 72]. The dependence
of the Casimir force on the dielectric function of the interacting surfaces should
not be considered only as an annoying detail that makes measurements and
precise calculations more difficult. It should rather stimulate new experiments
that explore the possibility of tailoring the Casimir effect using materials with
suitably chosen dielectric functions.

(a) (b)

Figure 4.1: An image of a Hydrogen Switchable Mirror (a) before and (b) after
exposure to hydrogen (courtesy of Ronald Griessen).

A few years ago, in the attempt to emphasize the importance of studies
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that go beyond the accuracy issue, one of us (DI), in collaboration with M.
Lisanti and F. Capasso, performed the first measurement of the Casimir force
between Hydrogen Switchable Mirrors (HSMs) [32]. HSMs are materials that
alter their dielectric properties upon hydrogen absorption [44] (see Fig. 4.1).
They change from reflective conductors to transparent semiconductors or insu-
lators when they are transferred from air to hydrogen. The effect is reversible;
when the mirror is put back in air, it switches again to the reflective state.
Because of this change of their optical properties upon hydrogen absorption
and desorption, HSMs offer in principle the possibility to observe a reversible,
in-situ change of the Casimir force between surfaces at fixed separation, a fas-
cinating prospect from both a fundamental and technological point of view.
According to the Lifshitz theory, the attraction between highly reflective metals
is larger than the attraction between transparent dielectrics, which provide a
less efficient confinement of the electromagnetic modes in the cavity formed by
the two interacting surfaces. It should thus be possible to reduce the Casimir
force between HSMs by exposing the mirrors to a hydrogen atmosphere; the
force could then be brought back to higher values by replacing hydrogen with
air. Surprisingly, the experiment reported in reference [32] was not capable of
detecting any effect. In spite of the dramatic change of the optical properties
of the mirrors, the Casimir force measured in hydrogen was not significantly
different from that obtained in air. Due to the limited amount of information
on the dielectric function of the HSMs used in the experiment, the authors
could not present a rigorous theoretical calculation to compare with the data.
Nevertheless, a mathematical exercise based on ad hoc materials with properly
chosen dielectric functions made it possible to explain this unexpected result
in terms of a counterintuitive property of the Lifshitz theory. Yet, a complete
analysis of the magnitude of the effect is still missing, and one might wonder if
there is a configuration for which a reversible change of the Casimir force be-
tween HSMs upon hydrogenation could be observed with modern experimental
set-ups.

The goal of the present paper is to address this topic. First, we will briefly
review the previous experiment and the mathematical arguments reported to
explain the data. Then, we will discuss the switching properties of Mg2Ni
mirrors, HSMs with composition similar to the one used in the experiment. We
will show that, although direct measurements of reflectivity and transmittivity
are available only in a limited wavelength region, it is still possible to estimate
the behavior of the dielectric function over a much broader spectrum by means
of a simultaneous analysis of Hall effect and resistivity data. Finally, we will
present the results of Casimir force calculation obtained by substituting these
dielectric functions in the Lifshitz equation. We will demonstrate that the
decrease of the attraction after hydrogenation of the mirrors is expected to be
smaller than the sensitivity of the experiment discussed above, but sufficient
to be observed with an updated version of that apparatus or with one of the
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set-ups that, according to literature, can provide measurements of the Casimir
force with 1% (or better) precision.

4.2.2 Casimir effect with Hydrogen Switchable Mirrors:
previous experimental results

Measurements of the Casimir force using HSMs were reported in reference [32]
(see also [71, 73]).

Figure 4.2: Schematic view of the experimental set-up that has been used for the
measurement of the Casimir force between a gold coated plate and a sphere coated
with a Hydrogen Switchable Mirror (not to scale) [32]. The four top panels illustrate
the rotation of the micromachined see-saw in response of the Casimir interaction with
the sphere.

The set-up used for the experiment is similar to the one originally developed
at Bell Laboratories by H. B. Chan, F. Capasso, and their collaborators [2, 3]
(see Fig. 4.2). The force sensor consists of a micromachined device that
resembles a miniaturized see-saw. A polysilicon plate (0.5 × 0.5 mm2 area),
covered with a 5 nm thick chromium adhesion layer and a 200 nm thick gold
coating film, is kept in suspension by means of two thin rods that depart
from the middle point of two opposite sides of the plate and end onto a post
anchored to the substrate. The two rods define the pivot axis of the see-saw.
Two electrodes, located underneath the plate in a symmetric configuration
with respect to the pivot axis, allow capacitive measurements of the rotation
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of the top plate with accuracy on the order of 10−7 rad, which corresponds to
a torque sensitivity of ' 10−15 Nm.

The force sensor is mounted on top of a calibrated piezoelectric stage and
aligned to a polystyrene sphere (100 µm radius) in the position illustrated in
Fig. 4.2. The separation between the sphere and the top plate of the see-
saw can be varied by changing the voltage applied to the piezoelectric stage.
For separations d smaller than ' 400 nm, the Casimir attraction between the
sphere and the plate is sufficient to induce rotations of the see-saw that are
larger than the experimental sensitivity. With this set-up, it is thus possible
to carry out measurements of the Casimir force between the sphere and the
plate from d ' 400 nm down to the jump-to-contact point, i.e., to that value
of d where the restoring force of the torsional rods is not sufficient to overcome
the attractive force between the two surfaces.

In this experiment, spheres were coated with a Pd-capped Mg-Ni HSM [74].
The mirror was fabricated by means of seven consecutive depositions of Mg-Ni
layers, followed by a single deposition of a 5 nm thick palladium cap. Each
Mg-Ni layer was obtained by evaporating a 2 nm thick nickel film on top of a
10 nm thick magnesium film. The palladium cap was added to promote hydro-
gen absorption [44], because, in the conditions of the Casimir force experiment
(room temperature and less than atmospheric partial pressure of hydrogen)
an uncapped HSM would have not spontaneously absorbed hydrogen. The
presence of a metallic layer at the interface with the external environment had
another important function, in that it allowed for the control of electrostatic
interactions. In similar uncapped HSMs, the HSM-to-air interface quickly oxi-
dizes. Accumulation of surface charges on the oxide film would have given rise
to electrostatic forces that could have easily overcome the Casimir attraction.
The deposition of the palladium cap on top of the HSM prevented this process
to occur. Furthermore, the presence of a metallic interface, opportunely con-
nected to a power supply, gave the possibility to control the potential difference
between the two interacting surfaces, an essential element in all Casimir force
experiments [25, 70].

Measurements of the Casimir force FC between a HSM-coated sphere and
the top plate of the see-saw were carried out as a function of separation d
following the scheme described in reference [32]. We refer the reader to the
original paper for a detailed explanation of the data acquisition technique.
Here we only want to stress that this technique allows one to calibrate the
set-up with electrostatic forces and to perform, simultaneously, FC-versus-d
measurements.

Measurements were carried out in air and in a 4% hydrogen-in-argon mix-
ture at room temperature and nearly atmospheric pressure, and repeated using
different spheres and force sensors. A comparison of the data obtained before
and after hydrogen loading reveals that there was no significant change in the
Casimir force upon hydrogenation of the HSM [32].
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4.2.3 Casimir effect with Hydrogen Switchable Mirrors:
qualitative analysis of the experimental results

The results reviewed above have been qualitatively explained in reference [32].
The dielectric function of Mg-Ni HSMs is known only in a wavelength re-
gion that approximately spans from 0.2 µm to 2.5 µm [74], where reflectivity
switches from ' 70% to ' 20% upon hydrogenation. Very little information
is available at longer wavelengths, where HSMs might not switch at all. It
is thus important to understand whether those longer wavelengths contribute
to the Casimir force between surfaces at sub-micron separation. If infrared
modes are relevant and HSMs do not switch in the infrared spectrum, the
decrease of the Casimir force might be too small to be observable with the
experimental set-up described in the previous section. The following mathe-
matical exercise demonstrates that infrared modes do play a significant role
in the Casimir interaction at those distances, and that the change in the force
upon hydrogenation is dramatically hampered if one assumes that these HSMs
do not switch at long wavelengths.

The Casimir force between a plate made out of a material 1 and a sphere
made out of a material 2 separated by a medium 3 can be calculated by plug-
ging the dielectric functions of the interacting surfaces and of the intervening
medium directly into the Lifshitz equation for van der Waals interaction [23]:
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where ~ is the reduced Planck’s constant, R is the radius of the sphere∗, c is
the speed of light in vacuum,
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In Eqs. 4.1, 4.2 and 4.3, εj stands for the dielectric function evaluated at
imaginary frequency, εj(iξ). This quantity is defined by the following relation:
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2
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where ε′′j (ω) is the imaginary part of the dielectric function.

∗Note that Eq. 4.1 relies on the Proximity Force Approximation, which is acceptable only
if R� d
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In the experiment described in the previous section, the intervening medium
was either air or a hydrogen enriched gaseous mixture kept at room tempera-
ture and nearly atmospheric pressure. One can thus assume ε3(iξ) = 1 at all
frequencies.

Following references [32, 71], we can now define an ad hoc material whose
dielectric function (at real frequencies) is identical to that of gold, with the
exception of a wavelength range that spans from λmin to λmax, where ε′′ is
assumed to be identical to zero. Using Eq. 4.1, we can then calculate the
Casimir force between a sphere and a plate made out of this hypothetical
material. If we assume that infrared modes do not contribute to the Casimir
interaction, the values of ε′′ at wavelengths larger than ' 1 µm should not
be of any relevance. The Casimir force expected for an ad hoc material with
λmin = 1 µm and λmax = 200 µm should thus not differ from the attraction
between two gold surfaces.

Calculations reveal that, on the contrary, the value of ε′′ at long wavelengths
is of great importance for a correct evaluation of the Casimir force at sub-
micron separations. For d = 100 nm, for example, the Casimir attraction
between a sphere and a plate made out of an ad hoc material with λmin = 0.3
µm and λmax = 2.5 µm is only ' 3% smaller than that expected between gold
surfaces. However, if one assumes λmin = 1 µm and λmax = 200 µm, this
difference becomes significantly higher, reaching ' 35%.

This behavior is due to the fact that the Lifshitz equation (Eq. 4.1) is
intimately connected to the dielectric function of the interacting materials
calculated at imaginary frequencies, which can be obtained by means of Eq.
4.4. For every imaginary frequency iξ, the imaginary part of the complex
dielectric function ε′′ is integrated over all real frequencies, with non-negligible
contributions arising from a wide range of modes.

In the original paper [32], it was stressed that the theoretical discussion was
not accounting for the presence of the thin palladium layer that was added on
top of the HSM. The thickness of this coating film is smaller than the skin-
depth and should intuitively not contribute significantly to the interaction.
However, the authors suggested that a more rigorous calculation might reveal
that this thin metallic layer plays a counterintuitive role. We will come back
to this point in the next section.

4.2.4 Casimir effect with Hydrogen Switchable Mirrors:
is the modulation of the force observable?

While the arguments reported above provide a reasonable qualitative explana-
tion of the experimental results, it would be interesting to perform a rigorous
comparison of the data with theory. Unfortunately, this is not feasible. It is
known that the dielectric function of Mg-Ni HSMs strongly depends on their
composition and on their hydrogen content upon hydrogenation [74]. Due to
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the fabrication technique used in the experiment (consecutive deposition of
thin layers of magnesium and nickel), it is not possible to establish the ex-
act composition (neither before nor after hydrogenation) of those particular
films, which might even have been non-homogeneous. Any attempt to provide
a more quantitative comparison of the data with theory would inevitably be
based on very rough approximations on the composition of the mirrors. These
approximations would lead to ambiguous conclusions.

It is possible, however, to calculate the magnitude of the decrease of the
Casimir force between similar HSMs of known composition. The results might
provide a clear indication on the feasibility of an experimental observation of
the effect, and might also emphasize potential problems that were not consid-
ered in the previous experiment.

To achieve this goal, we have calculated the Casimir attraction between a
gold plate and a 100 µm radius sphere coated with a palladium capped Mg2Ni
mirror. The first step to perform the calculation is to evaluate the dielectric
function of the HSM both in its reflective and in its transparent states (i.e., in
air and in hydrogen, respectively).

It is known that, in the optical frequency range, HSMs can be well described
by a Drude-Lorentz model [75]:

ε (ω) = ε∞ −
ω2
p

ω2 + iω
τ

+
∑
j

fj
ω2

0j − ω2 − iβjω (4.5)

The model includes a Drude contribution arising from the presence of free
charge carriers with plasma frequency ωp and relaxation time τ , and a series of
Lorentz oscillators with strengths fj, resonance frequencies ω0j and damping
terms βj. Because Eq. 4.5 is analytic, the dielectric function at imaginary
frequency can be simply obtained by substituting ω with iξ:

ε(iξ) = ε∞ +
ω2
p

ξ2 + ξ
τ

+
∑
j

fj
ω2

0j + ξ2 + βjξ
(4.6)

The Drude-Lorentz parameters ωp, τ , fj, ω0j, βj, and ε∞ for Mg2Ni HSMs
were obtained by Lohstroh et al., who analyzed reflectivity and transmittiv-
ity measurements in the wavelength region spanning from ultraviolet to near
infrared [76, 77]. According to their results, for mirrors in the reflective state
(i.e., mirrors in air before exposure to hydrogen), one Lorentz oscillator and
one Drude term are sufficient to reproduce the experimental data. For mirrors
in the fully loaded transparent state (i.e., after complete hydrogenation, cor-
responding to Mg2NiH4−δ, with δ ' 0), four Lorentz oscillators are necessary,
but no Drude tail is needed†. Optical data, in fact, do not reveal any Drude-like

†We thank the authors for providing us with the values of the Lorentz parameters: ε∞ =
2.45,

√
f1 = 2.67 eV, ω01 = 2.54 eV, β1 = 0.40 eV,

√
f2 = 3.62 eV, ω02 = 3.08 eV,

β2 = 0.69 eV,
√
f3 = 4.32 eV, ω03 = 3.87 eV, β3 = 1.40 eV,

√
f4 = 4.48 eV, ω04 = 5.64 eV,



4.2 On the use of Hydrogen Switchable Mirrors in Casimir force experiments 87

1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

R

 ( m)

1

2

3

4

Figure 4.3: Reflectivity of Mg2Ni Hydrogen Switchable Mirrors as a function of
wavelength. The shaded area represents the wavelength region were experimental
data are available. Curve 1 refers to a Drude-Lorentz model that fits the optical
data of the mirror in its reflective state (before switching). Curve 2, 3, and 4 refer
to hydrogenated Hydrogen Switchable Mirrors. Curve 2 represents a Lorentz model
obtained by fitting the optical data. Curve 3 is equivalent to Curve 2, with the
addition of a Drude term obtained from the combined analysis of Hall effect and
resistivity measurements. Curve 4 is the sum of curve 2 and a Drude term with ad
hoc plasma frequency and relaxation time.
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Figure 4.4: Imaginary dielectric function of Mg2Ni Hydrogen Switchable Mirrors as
a function of wavelength. Symbols are equivalent to those used in Fig. 4.3.
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behavior up to the longer wavelengths investigated (' 2.5 µm). To understand
the relevance of this point, in Fig. 4.3 and Fig. 4.4 we plot, respectively, the
reflectivity and the dielectric function of Mg2Ni HSMs before and after switch-
ing. The shaded area represents the wavelength region where experimental
data are available. Curve 1 refers to the fitting function proposed by Lohstroh
et al. for Mg2Ni HSMs before hydrogenation. Curve 2 corresponds to the
fitting function proposed by the same group for the hydrogenated state, with
four Lorentz oscillators and no Drude term. Curves 3 and 4 were obtained by
us using the same function as in curve 2 with an additional Drude tail‡. The
precise meaning of these curves will be clarified later in the text. Here we want
to stress that curves 2 and 3, which have different behavior in the infrared,
are very similar over the whole wavelength region where experimental data are
available. None of these curves is thus in contradiction with the experiment. It
is then evident that a correct extrapolation of the dielectric function at longer
wavelengths cannot rely on these data. Unfortunately, these data still repre-
sent the only direct source of information available: to our knowledge, in fact,
optical properties of HSMs have never been systematically measured beyond
' 2.5 µm§.

In the absence of more direct experiments, it is still possible to estimate
the Drude term in fully hydrogenated Mg2Ni HSMs by a combined analysis
of Hall effect and resistivity measurements. Hall effect experiments provide a
direct measurement of the density of free charge carriers n [79]. If resistivity is
known, one can then calculate the dissipation factor and the plasma frequency
of the Drude term using the following equations [79]:

τ =

(
0.22

ρµ

)(
rs
a0

)3

× 10−14 sec (4.7)

ωp = 7.27

(
a0

rs

)3/2

× 1016 rad sec−1 (4.8)

where ρµ is the resistivity in µΩcm, a0 is the Bohr radius, and rs is given by

rs =

(
3

4πn

)1/3

(4.9)

Magnetoresistance and charge carrier density of Mg2Ni HSMs were measured
by Enache et al. for different hydrogen concentrations [80]. For fully loaded

β4 = 3.03 eV.
‡For curve 4, the oscillator strengths of the Drude-Lorentz model fj were multiplied by

a factor of 0.9.
§In reference [78], the authors reported measurements of the reflection and transmission

coefficients up to 6 µm. However, raw data were not analyzed in terms of the Drude-Lorentz
model, and cannot be used in our calculations. It is however important to emphasize that
those measurements do not reveal any Drude tail in the wavelength region between 2.5 µm
and 6 µm, still in agreement with curves 2 and 3.
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mirrors, the authors obtained n = 9.28 ·1020 carriers/cm3 and ρ = 12.9 mΩcm.

We can now comment further on Fig. 4.3 and Fig. 4.4. We recall that curve
1 represents the HSM in its high reflectivity state¶, and that curve 2 was ob-
tained by fitting the optical data from visible to near infrared with four Lorentz
oscillators and no Drude term. This model, which is equivalent to assume that
HSMs become highly transparent at long wavelengths, is not consistent with
Hall effect and resistivity measurements, and must thus be considered incorrect
in the infrared spectrum. Curve 3 is equivalent to curve 2 plus a Drude term
calculated according to the arguments reported above; it represents the best
estimation of reflectivity and dielectric function of Mg2NiH4−δ (with δ ' 0)
that one can obtain with the data available in literature. Curve 4 is again an
ad hoc model that will serve to stress once more the importance of infrared
modes in the Casimir interaction. The properties of this hypothetical mirror
are in contradiction with Hall effect and resistivity measurements.

At this point, we have enough information to model the Mg2Ni mirrors
in air (model 1) and in hydrogen (model 3), and to discuss the consequences
that the use of erroneous models for the hydrogenated state would have in
the calculation of the Casimir force upon hydrogenation (models 2 and 4).
The presence of a thin palladium layer deposited on top of the mirror can be
introduced in the calculation by means of a model developed by Parsegian and
Ninham [81], according to which the Casimir force between a material 2 and
a material 1 covered with a cap layer 4 of thickness t4, immersed in a medium
3, is obtained from Eq. 4.1, replacing ∆

(1,2)
31 with

∆
(1,2)
31 → ∆

(1,2)
34 + ∆

(1,2)
41 e−

xt4s4
pd

1 + ∆
(1,2)
34 ∆

(1,2)
41 e−

xt4s4
pd

(4.10)

In order to run the calculation, it is still necessary to evaluate the dielectric
function of the gold plate and of the palladium layer. For these materials, we
use the tabulated data for the corresponding bulk metal [63] plus a Drude term
as described in reference [27] (for gold) and reference [82] (for palladium).

In Fig. 4.5 we report the results of the calculations. The graphs show the
decrease of the Casimir force between a gold plate and a 100 µm sphere coated
with a Mg2Ni HSM, alternatively exposed to either air or hydrogen. FR and
FT indicate the force for the reflective state and for the optically transparent
hydrogenated state, respectively. d is the separation between the sphere and
the plate. Different curves refer to different models of the hydrogenated state
(see table 4.1), and have been numbered in accordance with Figs. 4.3 and
4.4. Curves 2, 3, and 4 were obtained neglecting the presence of the palladium
film. Concerning curve 3-Pd, a 5 nm thick palladium layer was added to the

¶It is interesting to note that, for the reflective state (Mg2Ni), the combined analysis
of Hall effect and resistivity measurements gives rise to plasma frequency and dissipation
factor values that are in agreement with those obtained from optical data [76].
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Figure 4.5: Expected decrease in the Casimir force between a gold plate and a
100 µm radius sphere coated with a Hydrogen Switchable Mirror exposed to either
air or hydrogen. FR and FT indicate the force for the reflective state and for the
transparent hydrogenated state, respectively. d is the separation between the sphere
and the plate. Calculations were performed using the dielectric functions reported
in Fig. 4.4 (see also table 4.1). Different curves refer to different models of the
hydrogenated state, and have been numbered in accordance with Figs. 4.3 and 4.4.
The suffix ′′Pd′′ indicates whether the 5 nm thick palladium coating layer was taken
into account in the calculations or not. Inset: comparison of the results of the
calculations with the experimental data reported in reference [32]. Light and dark
gray symbols refer to measurements performed in air and hydrogen, respectively.
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calculation of both FT and FR. From this graph, two important conclusions
can be drawn.

• Curves obtained with no Drude term (curve 2), with the correct Drude
term (curve 3), and with the fictitious Drude term (curve 4) are signif-
icantly different. This result emphasizes once more that if one assumes
that hydrogenated HSMs remain highly reflective at long wavelengths,
the decrease of the force upon hydrogenation is much smaller than that
expected with a wide band switching mirror. Long wavelengths are thus
indeed relevant, as already pointed out in reference [32].

• The 5 nm thick palladium capping layer deposited on top of the HSM
plays a dramatic role in the interaction. At 100 nm separation, the
change of the Casimir force upon hydrogenation for an uncapped mirror
is larger than 35% (curve 3); if the palladium layer is added (curve 3-
Pd), the effect reduces to ' 20%. Further calculations show that a 10
nm thick palladium would decrease the change of the force at 100 nm
to ' 10%. The palladium layer represents a serious obstacle for the
observation of large Casimir force modulations.

In the inset of Fig. 4.5 we report a direct comparison of the calculations
with the experimental data of reference [32]. We want to stress once more that
the curves represent the results of calculations performed using the properties
of materials that probably have a different composition with respect to the ones
used in the experiment. Nevertheless, the graph allows us to emphasize that,
even in the best case scenario of fully loaded HSMs with fairly good switching
properties in the infrared, the effect could have been hardly observed with the
experimental sensitivity of the set-up described in [32].

It is to note that our calculation relies on the hypothesis that the HSM
in use undergoes full hydrogen loading upon hydrogenation. Partial loading
would significantly alter the result. It is known, in fact, that the loading process
in Mg2Ni HSMs (and, more generally, in most of Mg-Ni compounds) involves a
remarkable self-organized double layering [83]. Hydrogen first penetrates inside
the film and quickly reaches the substrate, from where hydrogenation starts
(see inset of Fig. 4.6). Partial loading leads to a bi-layered structure formed
by a transparent layer close to the substrate and a non-switched metallic layer
close to the palladium film. This non-switched metallic layer is still highly
reflective. Its presence would have a dramatic effect on the Casimir force, as
it increases the overall thickness of the metallic film above the hydrogenated
part of the mirror (see Fig. 4.6). Note that it is not possible to establish
whether the HSMs used in the experiment of reference [32] were fully loaded.
The presence of a non-switched layer below the palladium film might have
contributed to reduce the magnitude of the Casimir force difference between
measurements in air and in hydrogen.
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Figure 4.6: Schematic view showing that partial loading of Hydrogen Switchable
Mirrors plays a detrimental role in Casimir force modulation experiments. Sketch (a)
refers to the mirror before hydrogenation; sketch (b) shows the layered structure that
would form in case of partial hydrogen loading, with a relatively thick reflective layer
still present at the interface; sketch (c) illustrates the absence of layered structures
at the interface in fully loaded mirrors. Inset: schematic diagram of the hydrogen
loading mechanism in Mg-Ni Hydrogen Switchable Mirrors.
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Our analysis also neglects the correction to the Casimir force due to the
surface roughness of the interacting objects. These corrections cannot be ex-
plicitly calculated a priori, because the morphology of HSMs strongly depends
on the deposition technique [84]. In this respect, it is worth stressing that the
surface profile of HSMs in air undergoes large variations during the first few
hydrogen loading and unloading cycles [84, 85], after which no more morpho-
logical adjustments are observed. Therefore, reproducible modulations of the
Casimir force with HSMs can be achieved only after the mirrors have been
switched a few times. It is also evident that for a correct interpretation of
the data, accurate measurements of the morphology of the surfaces both in
air and in hydrogen are needed, because the alteration of the roughness upon
hydrogenation could mimic or hinder the decrease of the Casimir force induced
by the change of the optical properties of the mirrors.

4.2.5 Conclusions

Tuning the Casimir force with HSMs is a fascinating opportunity that calls
for deeper investigations. The only measurements reported so far [32] were
affected by a relatively large experimental error, which was mainly due to
the fact that the experiment was carried out at atmospheric pressure. The
change in the force upon hydrogenation was smaller than intuitively expected,
and was not sufficient to be observed. A qualitative theoretical analysis first
showed that the results could have been explained assuming that the dielectric
function of HSMs switches only in a limited wavelength region that spans
from ultraviolet to near infrared, where optical data are available [32]. Longer
wavelengths play in fact an important role in the interaction: if the mirror
remains highly reflective in the infrared part of the spectrum, the change in
the force upon hydrogenation can be smaller than the experimental sensitivity.
A more complete theoretical analysis of the experiment was not performed,
because the exact composition of the mirrors was not known.

In this paper we have calculated the expected decrease of the force for
similar mirrors of known composition (Mg2Ni). The results confirm the main
conclusion of reference [32]: for an accurate comparison of experimental data
with theory it is necessary to know the value of the dielectric functions of the
interacting materials over a broad wavelength range that extends up to the
far infrared region. Furthermore, the presence of a palladium capping layer
strongly reduces the effect. Still, at 100 nm separation, the Casimir force is
expected to decrease ' 20% upon full hydrogenation. We thus believe that it
is possible to design a new experiment for the first observation of an in situ
modulation of the Casimir force between HSMs. A significant reduction of the
experimental uncertainty can be obtained by performing the measurements
in vacuum. It is known that, in vacuum, hydrogenated HSMs do not release
hydrogen. One could thus load or unload the mirror by flushing the measuring
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chamber with proper gases at atmospheric pressure (hydrogen for loading, and
air for unloading), and then pump vacuum during Casimir force measurements.
In order to obtain a more pronounced effect, it would be also desirable to reduce
the contribution of the thin palladium layer deposited on top of the HSM. The
use of films thinner than 5 nm is in principle a possible solution to this problem.
However, the resulting layer would probably be discontinuous after switching
[85] and would not allow a complete control of electrostatic forces. A possible
alternative is to replace palladium with a metal that wets the mirror better
than palladium does, and then use hydrogen diffusion from a palladium pad
located away from the interaction region (i.e., away from the portion of the
sphere that, upon assembling of the experimental set-up, stands in front of
the force sensor) to obtain uniform switching [86, 87]. This choice might allow
one to reduce the thickness of the cap layer down to 2 or 3 nm. A more
precise experiment would also probably stimulate a more accurate comparison
with theory. Direct measurements of the dielectric functions in the infrared
wavelength region and of the surface morphology of the films deposited onto
the interacting surfaces would certainly facilitate a rigorous interpretation of
the experimental data.
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4.3 Force measurements in H2 gas

Abstract – We present force measurements between a gold coated sphere and
a planar sample coated with a Y/Pd hydrogen switchable mirror. Measure-
ments were performed in air, argon and argon/hydrogen mixture. First, we
prove that our setup is capable of working in hydrogen atmosphere by ana-
lyzing our measurements of the hydrodynamic force. Then we show that in
hydrogen atmosphere, the force gradient detected between the sphere and the
plate is much stronger than expected. A comparison of these data with data
in pure argon suggests that this extra force gradient component has an electro-
static origin, since it follows a power law with relatively small exponent -2.35.
Third, we present the simultaneously acquired contact potential measurements
and show that although V0 is rather constant as a function of separation in ar-
gon, it strongly depends on the distance in the argon/hydrogen mixture. This
observation further enhances our suspicion that the stronger force gradient
measured in hydrogen atmosphere has an electrostatic origin.
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In the previous section, we have calculated the force between a Mg/Ni
switchable mirror and a gold sphere in both the hydrogen loaded and unloaded
states of the mirror. We concluded that the change in force upon hydrogenation
of the HSM should be around 20%. With the current experimental setup, such
a change should be easily observable. Therefore, we have upgraded our system
such that it can work in hydrogen atmosphere at ambient pressure. We have
fabricated a leak-tight chamber with electrical and fiber-optic feed-throughs
in which the Casimir setup is placed. This chamber is anchored to the active
anti-vibration stage that is placed inside our anechoic box. The chamber can
be opened by removing the top half to access the Casimir setup for AFM laser
alignment and sample placement. Since the vertical position of the position
sensitive photodetector inside the AFM head has sometimes to be adjusted to
account for slow drifts, we have equipped the associated control-knob with a
stepper motor. This stepper motor can be controlled with sufficient precision
with the computer. In Fig. 4.7 we show two pictures of the upgraded gas-
capable setup. Fig. 4.7 a shows the setup with the top cover removed and
photograph b is taken with the chamber closed for experiments in gaseous
atmosphere. Experiments were carried out in air, argon and argon/hydrogen
mixtures. The maximum partial pressure of hydrogen that we used is 40 mbar,
as we used a maximum concentration of 4% H2 in Ar at 1 bar. We were
reluctant to increase hydrogen content, because several parts of the setup, most
notably the feedback controlled piezoelectric transducer (PI) and the Veeco
AFM head, are not warranted to survive operation in hydrogen atmosphere.
Retrospectively, we can say that a 4% hydrogen in argon mixture does not
compromise the workings of our setup.

As a first test to understand whether we would be able to observe the
reduction of the Casimir force associated to hydrogen loading of a switchable
mirror, we mounted an Y based mirror in the setup. The sample consists of
a 30 nm Y layer sputtered on a 10 by 10 mm polished sapphire substrate,
followed by a 5 nm Pd cap layer to facilitate the catalytic splitting of the H2

molecules needed for the absorption of the hydrogen atoms by the Y layer. We
chose to use Y as a switchable mirror because it is much easier to fabricate
than a Mg/Ni mixture of the right composition. As the other surface we used
the gold coated sphere that we also used for the experiments presented in
chapter 3. When we coated the sphere in 2008, a metallic layer consisting of
a Ti adhesion layer and a 100 nm Au film was sputtered onto it.

For all experiments presented in this section, we used the same experi-
mental procedure as outlined in detail in section 3.3. The distance between
the sphere and the plate is decreased in discrete steps,we always apply a bias
voltage to compensate for V0, and we measure the electrostatic force, the total
force gradient and the hydrodynamic force between the two surfaces. In the
experiments presented in this section, we have always started the measurement
series with reference runs in air. Afterwards, we purged the chamber with pure
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a) b)

Figure 4.7: Photographs of the experimental setup after the upgrade for measure-
ments in controlled gaseous atmospheres. In a), the top cover is removed for laser
and detector alignment and sample placement. In b), the setup is closed and ready
for gas flushing.
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Ar gas for approximately 1 hour with a flush rate of around 2 liters per minute
(the unoccupied volume of the chamber is 13 liters). We can thus assume that
the chamber is filled completely with argon for all practical purposes. We now
carry out measurement in Ar atmosphere. Then we flush the system with a
4% H2 in Ar mixture using the same procedure, and perform measurements
in this hydrogen enriched atmosphere. Finally, we flush the system again with
pure Ar to compare with the previous runs in argon and to verify whether the
system was modified or not by exposing it to hydrogen gas.
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Figure 4.8: RMS hydrodynamic force divided by the sphere radius (R ' 100 µm)
as a function of separation between the sphere and plate surfaces. Experiments are
carried out in the following order: air (red squares), argon (green circles), argon
with 4% hydrogen (blue upward triangles), and pure argon again (cyan downward
triangles).

In Fig. 4.9, we present measurements of the hydrodynamic force due to the
small oscillation of the piezoelectric stage. We have plotted the RMS force
as a function of distance on a log-log scale. The presented data represent the
force divided by the sphere radius (approximately 100 µm), because of the
way the calibration procedure works. The oscillation of the plate surface is
executed with an amplitude of 3.85 nm and a frequency ω2/2π = 119 Hz. The
measurements of the forces in air, argon, argon/hydrogen mixture, and pure
argon after removing the H2 are represented by the red squares, green circles,
blue upward triangles and cyan downward triangles, respectively. Clearly, the
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hydrodynamic interaction is weaker in air than in the other two gases, which
is caused by the lower viscosity of air with respect to Ar. Furthermore, the
measured hydrodynamic signals in Ar and Ar/H2 are very similar, which is
consistent with the idea that the presence of a small amount of H2 in Ar does
not significantly change the viscosity. Moreover, these data also proof that our
setup is working properly in the argon/hydrogen mixture, i.e. the calibration
and piezo oscillation are not affected by the presence of the H2 gas.
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Figure 4.9: Force gradient between the Y/Pd mirror and the gold coated sphere as a
function of separation. Experiments are carried out in the following order: air (red
squares), argon (green circles), argon with 4% hydrogen (blue upward triangles),
and pure argon (cyan downward triangles). The black line indicates the theoretical
Casimir interaction between two gold surfaces.

In Fig. 4.9, we present measurements of the total force gradient as a func-
tion of separation, corrected for the electrostatic background gradient caused
by the simultaneous calibration procedure (see section 3.3). We have seen in
the previous chapter that this quantity can typically be modeled correctly by
considering only the Casimir interaction. The force gradients in the cases of air,
argon, argon/hydrogen mixture, and argon for the second time, are represented
by the red squares, green circles, blue upward triangles and cyan downward
triangles, respectively. The black line indicates the Casimir force gradient for
the interaction between two gold surfaces, which should be very similar to the
interaction between our unloaded Y/Pd switchable mirror and the gold sphere.
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A fascinating observation is that the force gradient in the Ar/H2 gas is much
stronger than in Ar or air. Moreover, when we remove the hydrogen gas and
measure for the second time in pure Ar (cyan downward pointing triangles),
we recover the force gradient we measured before in Ar: the effect is reversible.
The physical mechanism that underlies this extra force gradient is unclear at
the time of writing, although we will try to shed some light on the origin of
the effect later in this section. The second observation is that the force gradi-
ents we measured in air and in argon are too small compared to the expected
Casimir force. This is not caused by the dielectric properties of the mirror, as
we checked that measurements performed later on with the same sphere and a
gold sample provide similar data (contrary to the measurements presented in
chapter 3). We therefore expect that the exposure of this sphere to hydrogen
has somehow changed its surface: a particular role could have been played by
the Ti adhesion layer that is known to absorb hydrogen. We would like to
point out that although the run in Ar/H2 was the first exposure to hydrogen
in this particular experiment, the sphere was already exposed multiple times
to hydrogen in earlier experiments, which explains why the data in air and
Ar before H2 purging are already below the theory. Anyhow, the results pre-
sented in Fig. 4.9 are certainly not compatible with the expected reduction in
the force upon exposure to hydrogen as predicted in the previous section, as
we have observed a significant increase in the interaction strength.
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Figure 4.10: Difference between the force gradients measured in Ar and Ar/H2 as a
function of distance on a double logarithmic scale (red line). The black dashed line
indicates a power law with exponent −2.35.

We also checked in a different experimental setup whether our mirror alters
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its dielectric properties upon exposure to 40 mbar partial pressure of H2, and
observed that this is not the case. Therefore, the Casimir interaction, although
smaller compared to what expected from theory, should be equal in all cases
(the Casimir force does not depend significantly on the dielectric properties of
an intervening gas). This means that we can analyze the difference between
the Ar/H2 and pure Ar force gradient data of Fig. 4.9, and assume that this
difference has no Casimir contribution in it. In Fig. 4.10, we plot the difference
between the averaged force gradients in Ar/H2 and pure Ar as a function of
distance on a double logarithmic scale (red continuous line). The dashed black
line indicates a power law with exponent −2.35. It is evident that our force
gradient difference follows this power law pretty strictly in the plotted distance
range. This exponent would indicate a force between the sphere and the plate
that scales like d−1.35. Such a weak dependence on separation might indicate
that the observed extra force is of electrostatic origin.
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Figure 4.11: Measured contact potential difference as a function of separation on a
semi-logarithmic plot. Green circles and cyan downward triangles are measurements
in pure argon atmosphere before and after exposure to hydrogen, respectively. The
blue upward pointing triangles represent the contact potential data acquired in the
4% H2 in Ar mixture.

In fact, we have more clues pointing towards an extra electrostatic interac-
tion caused by the presence of the H2 molecules. In our setup, we continuously
measure the contact potential difference between our surfaces. In our experi-
ments, this contact potential is defined by the amount of counter bias voltage
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one has to apply to have minimum electrostatic force between the sphere and
the plate. It has recently been shown in several papers [19, 38, 39, 58] that
this contact potential can depend on the separation between the surfaces. In
Fig. 4.11, we plot the measured V0 data as a function of separation on a semi-
logarithmic scale. The green circles represent data obtained before the setup
was purged with hydrogen gas. The blue upward pointing triangles were gath-
ered in the argon/hydrogen mixture. After purging with pure Ar again and
waiting 3 days to equilibrate the system, we recorded the data represented
by the cyan downward pointing triangles. It is clear that the dependence of
V0 on separation for the data sets gathered in pure Ar atmosphere is rather
small; they differ in absolute value, but this is mostly a time-related drift, as
discussed in [39]. The data obtained for the argon/hydrogen mixture, on the
contrary, strongly depend on separation. This effect is reproduced in all the
measurement runs performed in this 4% H2 in Ar mixture. Because this strong
dependence of V0 is an indication of an unknown electrostatic effect, we sug-
gest that the strong force gradient we presented in Fig. 4.9 is of electrostatic
origin. Further investigations need to be conducted to fully understand this
phenomenon.

After our force measurement between the juxtaposed Y/Pd switchable mir-
ror and the gold-coated sphere, we also performed measurements between the
same sphere and a gold mirror. These experiments revealed the same behavior,
i.e. strong dependence of V0 on d and a strong force gradient in hydrogen. Fur-
thermore, also in this case, the force gradient in air and argon was significantly
lower than the force gradient expected from theory (and thus also than the
one presented in chapter 3, because those agreed with theoretical predictions).
We suppose that the gold coating on the sphere was somehow damaged by
the exposure to hydrogen gas, perhaps due to the Ti adhesion layer that can
absorb hydrogen. Therefore, we do not know whether the results presented in
this chapter are a curiosity caused by some specific metal surfaces composition
on our sphere, or that they are generic. We therefore strongly suggest to carry
out new measurements between fresh gold coated spheres and a gold planar
sample in Argon and Argon/hydrogen mixtures‖.

Acknowledgment

We would like to thank J. H. Rector for taking care of the gas upgrade of the
system.

‖It would be better to use Cr instead of Ti as an adhesion layer, since Cr does not absorb
hydrogen.
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4.4 Hydrodynamic force measurements in var-
ious gases

Abstract – In this section we present hydrodynamic force measurements con-
ducted between a sphere and a plate at separations between 100 nm and 10 µm.
The hydrodynamic force data are acquired together with electrostatic force cal-
ibration data, ensuring a properly calibrated force setup. We have gathered
measurements in He, air, Ar, and SF6 atmosphere, and analyzed the data us-
ing a continuous medium model that takes into account fluid slip across the
interfaces. The obtained slip lengths vary between 38 ± 1 nm for SF6 and
387±9 nm for He. Interestingly, the model and the data overlap even for data
obtained at short separation in He, where the separation between the surfaces
is smaller than the mean free path of the He molecules.
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In chapter 3 and the previous section we have seen that our Casimir force
setup is capable of performing precise measurements of the hydrodynamic in-
teraction between the sphere and the plate. This interaction arises because of
the moving gas that flows in and out of the sphere-plate gap due to the plate
oscillation at ω2. For low enough oscillation frequencies this effect is purely dis-
sipative and thus out-of-phase with the other force signals. In fact, according
to [68], the in-phase elastic component is small as long as σsphere = 4ηω2R

pd
< 1,

where η is the viscosity of the intervening gas, R is the radius of the sphere, p
is the gas pressure, and d is the separation between the sphere and plate sur-
faces. In our experiments, σsphere ≤ 10−3, and we therefore neglect the elastic
component of the hydrodynamic interaction.

When we assume that the boundary conditions for the gas flow at the solid-
gas interface are the usual no-slip boundary conditions that are typically valid
in the macroscopic regime, the damping force acting on the sphere would be

FH,no−slip = −6πηvR2

d
, (4.11)

where v is the relative velocity between the sphere and the plate. This equation
has the peculiar property that the damping force diverges rapidly for d → 0.
This means that a sphere dropping towards a plate in a fluid (albeit a gas or
a liquid) would never reach the plate in a finite amount of time [42]. It turns
out that, for small distance d, Eq. 4.11 needs to be modified to include the
effects of fluid slip at the solid-gas interface.

For low fluid speeds, we assume that the flow is laminar and that thus
the fluid velocity increases linearly with the distance from the interface. We
introduce fluid slip by letting this velocity profile extend into the solid surface
for a length b (the so-called slip length). This idea is schematically represented
in Fig. 4.12, where vb is the bulk fluid velocity (which varies with distance to
the surface z) and vs is the fluid velocity at the interface. Therefore

vs = b
∂vb
∂z

(4.12)

which defines b. From these boundary conditions, Hocking derived in 1972 the
full form of the hydrodynamic damping force between a sphere and a plate [42]:

FH = −6πηvR2

d
f ∗ (4.13)

with

f ∗ =
d

3b

[(
1 +

d

6b

)
ln

(
1 +

6b

d

)
− 1

]
. (4.14)

The main result of his work was, according to Hocking, the fact that his
equation permits contact between the sphere and the plate in a finite amount



4.4 Hydrodynamic force measurements in various gases 107

!"#$%&'($)

!)

*+!,)

-./!,)

"#)

"$)

#

Figure 4.12: Schematic representation of the fluid flow boundary conditions used to
derive Eqs. 4.13 and 4.14.

of time. Therefore, it was now possible to calculate correctly the coalescence of
droplets without having to make the arbitrary assumption that collision occurs
whenever the gap between the surfaces becomes less than some arbitrarily
chosen small length, like it was done before [42]. With our Casimir force setup
we can use his equation and check how well it describes the hydrodynamic
force data and extract the slip lengths for different gases.

We have performed measurements of the hydrodynamic force between a
100 µm radius gold-coated sphere and a gold-coated polished sapphire slide.
We have calibrated the force sensitivity and the separation between the surfaces
with the electrostatic force, as described in chapter 2. The position of the plate
is oscillated at 119 Hz with an amplitude of roughly 9 nm. The separation
between the surfaces is decreased in discrete steps from 10 µm until 100 nm
using the feedback-controlled piezoelectric actuator. The lock-in integration
time is 300 ms and the waiting time at every position is 2.4 s. The mechanical
drift within one measurement run is less than 1 nm. The hydrodynamic force
measurements are conducted simultaneously with the electrostatic calibration,
ensuring correct calibration of the data. We have conducted measurements in
1 bar of He, air, Ar, and SF6 atmosphere.

In Fig. 4.13 we present the hydrodynamic forces we measured as a function
of sphere plate separation in the four different gases. The green circles repre-
sent data in pure He, the upward pointing blue triangles in air, the downward
pointing cyan triangles in Ar, and the red squares indicate data obtained in
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Figure 4.13: Double logarithmic plot of the hydrodynamic force divided by the
sphere radius R as a function of separation between the sphere and plate surfaces.
The green circles represent data in pure He, the upward pointing blue triangles in
air, the downward pointing cyan triangles in Ar, and the red squares in SF6 gas.
The lines indicate the best fits to the data with the Hocking model [42] (Eqs. 4.13
and 4.14). Obtained slip lengths are 387±9 nm in He, 124±3 nm in air, 118±3 nm
in Ar, and 38± 1 nm in SF6.
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SF6 gas. The forces are presented divided by the sphere radius, a consequence
of our electrostatic calibration procedure. The continuous lines are the best
fits to the data with Eqs. 4.13 and 4.14 with two fit parameters b and ηR.
The model fits the data well, except at large separation. We suspect that
the hydrodynamic interaction between the cantilever and the plate becomes
relevant in this region, and this effect is not taken into account in the model.
Therefore, we measure too much force at large separation.

Let us first discuss the fit parameter ηR. Since we have not measured the
sphere radius, we are unable to get the viscosity directly from our data. This
restriction is caused by the fact that the electrostatic force scales linearly in R
while the hydrodynamic force scales like R2. Therefore, we can only compare
the values of ηR among the four different experiments (R is the same for all
experiments though). If we take the viscosity of air as a reference, we find
ηHe = 1.15ηair, ηAr = 1.2ηair, and ηSF6 = 0.78ηair. From the literature, we see
that ηHe = 1.06ηair, ηAr = 1.17ηair, and ηSF6 = 0.79ηair, a sufficiently close
match, although the viscosity of He that we measure is significantly higher
than what found in the literature.

The fitted slip lengths b that we have obtained with these measurements
are 387±9 nm in He, 124±3 nm in air, 118±3 nm in Ar, and 38±1 nm in SF6.
We have thus studied around one order of magnitude variation in gaseous slip
lengths. It is known that the slip length scales with the mean free path of the
gas molecules. It is therefore not surprising to find that a very light molecule
as He slips strongly over the gold surface, whereas a heavy and big molecule
like SF6 does not slip very much. Furthermore, it is interesting to observe that
in the case of He, the probed separation range extends well into the regime
where the separation is smaller than the mean-free path of the molecules. Still,
especially at these short distances, the continuous medium theory developed
by Hocking seems to describe the data rather well. It is quite surprising to find
out that the continuous medium description works well for distances smaller
than the mean free path of the gas molecules.



Chapter 5

Fiber-top and Ferrule-top
Casimir force measurements

5.1 Introduction

At the beginning of the development of our Casimir force setup, we were having
a severe technical problem with the cantilever deflection detection system of
the AFM. In fact, the laser light that hits the cantilever is not completely
reflected into the quadrant photodetector by the cantilever, and part of the
light reaches the sample beneath. This light is then reflected from the sample
and also impinges on the photodetector, resulting in a spurious signal that
depends on the separation between the cantilever and the sample. This signal
contains multiple components, including a mostly linear background signal
and oscillating interference signals. Since we wanted to measure forces as a
function of separation, this spurious signal was problematic. It was then that
we invented the fiber-top cantilever [45].

A fiber-top cantilever is a silica cantilever carved out from the cleaved
end of an optical fiber and thus monolithically anchored to the fiber itself.
Typically, one uses a Focused Ion Beam machine to mill a cantilever from
the end facet of a single mode optical fiber (125 µm diameter with the jacket
stripped off) such that it is positioned directly above the fiber core. Therefore,
the light-guiding property of the optical fiber can be used to measure the actual
position and movements of the cantilever. When one shines light through the
fiber, the light is reflected from the fiber-to-air interface and then from the
air-to-cantilever interface, where the latter is also reflected back into the fiber
core. Both signals interfere and the intensity of the backwards traveling light
signal is a precise measure of the cantilever position. Such an interferometric
technique can determine the cantilever deflection with sub-nm precision and
with high bandwidth. In this chapter, we report on our attempts to perform
Casimir force measurements with such a sensor.

In section 5.2 we present our efforts to detect the Casimir force with a
modified fiber-top sensor. To achieve high force sensitivity, we have altered the
design of the cantilever and fabricated a torsional device, resulting in a much

110
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lower spring constant than a conventional fiber-top cantilever. We present
measurements of the force sensitivity of this device and show that the the
sensor should be capable of providing precise measurements of the Casimir
force. Unfortunately, we were unable to measure the force with this device
due to too strong hydrodynamic interactions caused by the close proximity of
the fiber edge to the sample. Two possible workarounds would be either to
move the setup into vacuum or to increase the size of the cantilever-to-fiber
gap in a new design.

Following the second route, we now fabricated a normal cantilever out of a
ferruled optical fiber. The resulting cantilever is 3.4 mm long, 200 µm wide and
40 µm thick, and the cantilever-to-ferrule gap is roughly 100 µm (compared to
only 3 µm for the fiber-top torsional force sensor). In section 5.3, we present
the Casimir force measurements we obtained with such a ferrule-top cantilever,
and show that we can precisely measure the Casimir force with this all-optical
sensor. This expedient thus paves the way for Casimir force measurements
in critical environments, where the standard Casimir force setups would be
unable to operate.

In section 5.4, we present a new interferometric scheme to detect displace-
ments with high resolution. In conventional homodyne interferometers, the
output signal is a sinusoidal function of distance, and the displacement sensi-
tivity strongly depends on the actual position in the interference fringe. One
therefore often operates these devices in the so-called quadrature point, where
the distance dependence of the signal is maximum. By slightly modulating
the position of the fiber or the end-mirror (couple of nm), one can gener-
ate a new signal that is orthogonal to the conventional signal. By combining
both signal one obtains a precise measurement of the distance that does not
have the limitation of only being able to provide good data at the quadra-
ture position. This technique is therefore extremely useful for the calibration
of piezo-electric stages, that typically travel over several interference fringes.
In this section, we present in detail this technique and show interferometric
displacement measurements that demonstrate the method.
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5.2 Casimir force experiments in air: Two birds
with one stone

Abstract – We briefly discuss a new force sensor based on fiber optics that
adapts well to Casimir force measurements in critical environments. We show
that the new sensor is sensitive enough for the detection of Casimir forces,
but that its performance is presently hampered by hydrodynamic interactions
caused by the presence of air.

This section is a part of the paper: S. de Man, K. Heeck, K. Smith, R. J. Wijngaarden,
and D. Iannuzzi, Int. J. Mod. Phys. A 25, 2231 (2010)
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5.2.1 Fiber-top Casimir force setup

The investigation of the dependence of the Casimir force on the boundary
conditions is currently pushing experimentalists to rely on instruments that
can measure surface forces under extreme conditions, such as low temperatures,
conductive liquids, et cetera. Adapting existing setups to those situations is
often not an option, and new technologies have to be developed to extend the
experimental studies beyond standard environments.
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Figure 5.1: a) Drawing of a fiber-top based Casimir force setup. A sphere is attached
to the free end of a fiber-top cantilever. The deflection of the cantilever is measured
by coupling light in the fiber. b) Schematic drawing of a torsional fiber-top device.
Instead of a normal cantilever, the torsional device is anchored to the fiber with two
thin rods that can rotate around their central axes in response to external forces. c)
Power spectrum of a fiber-top torsional device, as measured by driving the cantilever
with an electrostatic force. d) Scanning electron microscope image of a fiber-top
torsional device equipped with a sphere for performing force measurements. The
pivot point of the cantilever is at the left of the figure.

In 2005, our group has introduced a new all-optical device that repre-
sents an interesting platform for the implementation of Casimir force setups in
critical environments: the fiber-top cantilever [45]. Fiber-top cantilevers are
obtained by carving a thin mechanical beam out of the cleaved end of a single
mode optical fiber. The light coupled from the opposite end can then be used
to detect tiny deflections of the cantilever, and, thus, tiny forces applied to
the cantilever’s free hanging endc̃iteIannuzzi:2006p97,RUGAR:1989p11. This
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force sensor has no electronic contacts on the sensing head and is entirely fab-
ricated on top of a 125 µm diameter optical fiber. It thus easily fits in small
volumes (a good option, for example, for cryogenic temperatures) and still
works properly in conductive liquids (where force sensors with electronic read-
outs would fail). It is thus reasonable to envision that a fiber-top cantilever
equipped with a sphere on its free hanging end could perform well as the force
sensor in a Casimir force setup (see Fig. 5.1a).

It is however important to note that, even with the carving resolution
of the most sophisticated tools currently available (i.e., Focused Ion Beam
milling), it is not possible to fabricate fiber-top cantilevers with dimensions
small enough to achieve spring constants smaller than 1 N/m, as required in
Casimir force experiments. To solve this problem, we decided to fabricate a
slightly different fiber-top device, where the cantilever is suspended over the
fiber via two torsional beams, as reported in Fig. 5.1b. In Fig. 5.1d, we report
an Scanning Electron Microscope (SEM) image of a fiber-top torsional force
sensor equipped with a 18 µm diameter sphere on its free hanging end.

In Fig. 5.1c, we plot the power spectrum of the torsional device. This
power spectrum is acquired by applying an oscillating electrostatic force to
the sphere and recording the amplitude of the resulting cantilever motion with
a lock-in amplifier. It is clear that the force sensor has a resonance frequency
of roughly 16 kHz. Because we measured the dimensions of the cantilever and
the diameter of the sphere with the SEM, we can calculate the mass of the
cantilever (30 nanograms) using the density of the fiber material (2200 kg/m3).
With the parallel axis theorem, we then obtain the total moment of inertia
of the cantilever sphere combination around the axis that goes through the
torsional beams (1.6·10−19 kg m2). Combining the latter with the measurement
of the resonance frequency, we arrive at a torsional spring constant of 1.6 ·
10−9 Nm/rad and a spring constant of 0.2 N/m.

To assess the sensitivity of our device, we have applied an oscillating voltage
between the sphere and a nearby metallic plate (as in Fig. 5.1a) at a frequency
ω1

2π
= 72.2 Hz. A digital lock-in amplifier equipped with a 24dB roll-off low-pass

filter is used to measure the uncertainty in the resulting cantilever oscillation at
2ω1 (144.4 Hz). The result is an RMS noise of 1.2 pm/

√
Hz, which indicates

that the AC force resolution of our setup is roughly 240 fN/
√

Hz. Such a
force resolution is more than sufficient for a high precision measurement of the
Casimir force.

According to our preliminary results obtained using this device and the
method described in the previous section, it appears evident that, as soon
as the plate in front of the sphere is set into oscillation, the hydrodynamic
interaction between the mechanical beam and the fiber is not negligible and
actually hampers the efficiency of the experimental technique. To solve this
problem, we are planning to move to larger fiber-top devices (namely, ferrule-
top cantilever [50, 88]), where the gap between the force sensor and the fiber is
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much larger (' 50 µm). Studies are under way to understand the potentiality
of this new instrument. For Casimir force measurements in vacuum, though,
the system presented here should work fine.
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5.3 Measurement of the Casimir force with a
ferrule-top sensor

Abstract – We present a Casimir force setup based on an all-optical ferrule-
top sensor. We demonstrate that the instrument can be used to measure
the gradient of the Casimir force between a gold coated sphere and a gold
coated plate with results that are comparable to those achieved by similar
atomic force microscope experiments. Thanks to the monolithic design of the
force sensor (which does not require any optical triangulation readout) and
to the absence of electronics on the sensing head, the instrument represents a
significant step ahead for future studies of the Casimir effect under engineered
conditions, where the intervening medium or the environmental conditions
might be unsuitable for the use of more standard setups.

This paper has been published: P. Zuurbier, S. de Man, G. Gruca, K. Heeck, and
D. Iannuzzi, New J. Phys. 13, 023027 (2011)
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5.3.1 Introduction

Long range surface interactions are of paramount importance in the design of
Micro- and NanoElectroMechanical Systems (MEMS and NEMS), as they de-
termine the minimum separation that two miniaturized mechanical pieces can
reach before they snap to contact. It is thus not surprising that, over the last
decade, an ever increasing number of groups has been drawing the attention
of the scientific community to the potential relevance of the Casimir effect in
nanotechnology [5, 18] and on what currently goes under the name of quan-
tum fluctuations engineering – the possibility of tailoring the Casimir force
with a suitable choice of the shape and material properties of the interacting
objects and of the medium between them [14, 20, 32, 33, 37, 60, 89, 90]∗.
Driven by this trend, scientists have developed a wide variety of instruments
that can assess different aspects of this interaction mechanism. Macroscopic
setups [26, 28, 29, 52] and micromachined torsional balances [2, 3, 30] are
typically optimized for utilization in vacuum or air, but would hardly work
in liquids. Experiments in vacuum can be as well performed by means of
custom made atomic force microscopes (AFMs) [35, 36], which, after proper
modifications, can be also used to measure the Casimir force in gaseous envi-
ronments [20] or in liquids [14]. Because AFMs rely on optical triangulation,
however, it is difficult to imagine a universal measuring head that can easily
adapt to different environments, ranging, for example, from low temperature
vacuum to room temperature liquids.

Earlier this year, our group proposed to overcome this issue by replac-
ing the AFM head with an all-optical micromachined torsional force sensor
that adapts well to both vacuum and critical environments [91]. The sensor
is based on fiber-top technology [45]. It consists of a mechanical rectangular
beam carved out of the cleaved end of a standard single mode optical fiber.
The beam is suspended a few microns above the rest of the fiber by means
of two lateral torsional rods. The light coupled from the opposite end of the
fiber allows one to measure the tilting angle of the rectangular beam and,
therefore, the force that makes it tilt. Thanks to its monolithic design and to
the absence of electronics on the sensing element, this micro-opto-mechanical
balance can be in principle used in any environment without any change of the
readout mechanics, optics, or electronics. Unfortunately, however, preliminary
experiments show that, as soon as measurements are not carried out in vac-
uum, the sensor can only be used in static mode [91]. Dynamic modes, which
are typically more sensitive, are in fact disturbed by spurious effects induced

∗Over the last 30 years, there has been a much more extensive activity focused on the
investigation of the van der Waals interaction in the non-retarded limit, with particular em-
phasis to liquid environments, and there are important examples in which the investigation
has been extended to the retarded part of the interaction. A complete review of that part
of the literature is out of the scope of this paper. We refer the reader to [15, 41] for more
details.
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by the hydrodynamic force between the mechanical beam and the fiber below
(a phenomenon that goes under the name of squeezed field air damping [92]).
Furthermore, because the optical fiber is only 125 µm in diameter, fiber-top
devices are typically fabricated with an expensive and time consuming tech-
nique (namely, Focused Ion Beam (FIB) milling [93]). Fiber-top technology
cannot thus be considered as a practical solution for systematic measurements,
where, due to recurrent accidental damaging of the force sensor, one must rely
on probes that can be easily replaced.

To overcome the fabrication issue of fiber-top devices, we recently intro-
duced a novel approach that preserves the flexibility of fiber-top technology
while reducing manufacturing costs and production time: the ferrule-top can-
tilever [50]. To fabricate a ferrule-top cantilever, a standard single mode optical
fiber is glued inside the bore hole of a much bigger pierced ferrule. The fiber
and the ferrule are so well held together by the glue that they behave like a sin-
gle mechanical piece. The ferruled fiber is thus equivalent to a very large single
mode optical fiber that can now be milled in the form of a cantilever by means
of more convenient techniques (e.g., laser ablation). Interestingly, because of
the larger dimensions of the building block, the gap between the cantilever
and the remaining part of the ferrule is typically much larger than in fiber-top
devices. Ferrule-top cantilevers are thus supposed to suffer considerably less
from the hydrodynamic problems than fiber-top sensors.

In this paper we present a ferrule-top force setup designed to measure the
Casimir attraction between a sphere and a flat plate, and we demonstrate that
one can indeed perform precise measurements of the Casimir force between a
sphere and a plate kept in air with a dynamic detection scheme that does not
induce any spurious effects.

5.3.2 Experimental setup

The experimental setup presented in this paper is designed to measure the
Casimir force between a 200 µm diameter sphere and a plate as a function of
separation in a distance range between, approximately, 50 nm and 200 nm.

The force sensor is realized according to the scheme sketched in Fig. 5.2. A
pierced 2.5 mm × 2.5 mm × 7 mm rectangular ferrule, made out of borosilicate
glass, is initially carved by means of laser ablation in the form of a cantilever
that stretches over one of the diagonals of the edge of the ferrule. At the end
of the milling process, a small amount of transparent epoxy is dropped and
cured inside the 127 µm diameter hole left open at the center of the cantilever,
while a standard single mode optical fiber is slid into the hole of the ferrule
from the other side and glued with the cleaved end at approximately 100 µm
from the bottom surface of the cantilever. A 200 µm diameter sphere is then
attached to the top of the free hanging end of the sensor by means of a small
droplet of UV curable epoxy. The sensor and the sphere are finally coated
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1  mm

Figure 5.2: Fabrication steps followed to manufacture a ferrule-top cantilever for
Casimir force measurements. The building block is a pierced 2.5 mm × 2.5 mm ×
7 mm rectangular ferrule made out of borosilicate glass. The ferrule is machined in
the form of a rectangular cantilever, which is then equipped with a spherical bead.
An optical fiber slid through the central hole and glued to the ferrule allows detection
of cantilever deflections by means of interferometric techniques. The bottom figure
is a composition of six scanning electron microscope images showing the device used
in the experiment described in the paper.
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with a 5 nm thick Cr adhesion layer followed by a 200 nm thick Au film.
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Figure 5.3: Sketch of the experimental setup used to measure the Casimir force
between a plate and a sphere attached to a ferrule-top cantilever. The ferrule-top
cantilever is anchored to a translational stage that allows one to coarsely move the
sensor with the sphere close to the plate. The plate is attached to a piezoelectric
stage for fine tuning of the separation between the two interacting surfaces. A bare
fiber is anchored parallel to the force sensor and is used to measure movements of the
piezoelectric actuator via interferometric techniques. An electronic circuit supplies
an AC voltage between the sphere and the plate, which allows one to compensate for
the residual electrostatic force and calibrate the force sensor. The setup is mounted
on an aluminum block kept at fixed temperature inside an anechoic box and isolated
from the surroundings with passive vibration dampers (not shown).

The ferrule-top device is anchored on top of a manual translation stage,
just in front of a gold coated sapphire plate that is attached to a piezoelectric
stage (see Fig. 5.3). The manual manipulator allows a first coarse approach of
the sensor towards the plate, while the piezoelectric stage is used for the actual
scanning during the force-vs-distance measurements. The translational stage
also hosts a bare cleaved optical fiber, parallel to the ferrule-top sensor, that is
used to measure movements of the piezoelectric stage. The setup is fixed to a
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block of aluminum that is kept at fixed temperature by means of four resistors
controlled via a feedback circuit. To reduce acoustic and seismic coupling to
the environment, the whole instrument is mounted on a silicone pad inside an
anechoic chamber on top of a marble table equipped with passive vibration
damping blocks.

To simultaneously measure the deflection of the ferrule-top cantilever and
the motion of the piezoelectric stage, we built two fiber optic interferometers
that are fed with the same laser source (Thorlabs Pro800 chassis with a WDM
tunable laser module (1552.48 nm to 1554.18 nm)) (see Fig. 5.3). The laser
light is split by a 50/50 optical fiber coupler into two forward branches. In
both forward branches, the light is then split again by 90/10 couplers and sent
towards the ferrule-top cantilever and the bare cleaved fiber. For the ferrule-
top sensor, the light is reflected by the fiber-to-air, air-to-glue, and glue-to-gold
interfaces. The amount of light traveling backwards into the fiber is given by

W (dgap) = W0

[
1 + V cos

(
4πdgap
λ

+ φ0

)]
(5.1)

where dgap is the distance between the fiber end and the cantilever, W0 is the
mid-point interference signal, V is the fringe visibility, λ is the laser wavelength,
and φ0 is a phase shift that only depends on the geometry of the cantilever [50].
This reflected light travels back into the fiber and is split again by the coupler,
which sends part of the signal onto a photodetector (Thorlabs PDA10CS).
Reading the current generated on the photodetector, which is proportional
to W (dgap), one can measure changes in dgap (see eq. 5.1) and, thus, the
external forces that have produced those changes. The other branch of the
double interferometer works identically to the ferrule-top branch, except that
the reflected signal is composed of the reflections from the fiber-to-air interface
and from the gold mirror, allowing one to measure the relative position of the
piezoelectric stage.

From Eq. 5.1 it is clear that it is convenient to operate the force sensor
in its quadrature point, where the readout is most sensitive and linear in
deflection [94]. For this reason, before each experiment, we first coarsely bring
dgap close to quadrature by adjusting the temperature set-point of the setup,
which induces differential thermal expansions on the different parts of the
ferrule-top device. We then use the tunable laser wavelength to precisely tune
λ to the quadrature point†.

Casimir force measurements are performed following a method similar to
that described in [19, 20], which allows one to simultaneously calibrate the in-
strument, counterbias the electrostatic potential difference that exists between
the sphere and the plate, and measure the gradient of the Casimir force as a
function of separation.

†The 1.7 nm wavelength variation spanned by our laser source alone is not always suffi-
cient to adapt the laser wavelength to the actual length of the fiber-to-cantilever gap.
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In a nutshell, while slowly changing the separation between the sphere and
the plate by means of the piezoelectric stage, we supply an AC voltage to the
sphere with frequency ω1 much smaller than the resonance frequency of the
force sensor. This AC voltage gives rise to an electrostatic force that makes the
cantilever oscillate. The mechanical oscillation has one component at ω1 and
one component at 2ω1. The ω1 component drives a negative feedback loop that
compensates for the contact potential difference that exists between the sphere
and the plate, while the 2ω1 component allows one to calibrate the instrument
and to measure the separation between the interacting surfaces. On top of
the electrostatic force modulation, we add a small oscillatory motion to the
piezoelectric stage at a frequency ω2 that lies somewhere between ω1 and 2ω1.
From the in-phase motion of the cantilever at ω2, we can finally measure the
gradient of the force between the sphere and the plate.

For the details of the experimental method, we refer the reader to [19, 20].
It is however important to stress that, contrary to the piezoelectric stage of
the setup presented in [19, 20], the one used in this experiment is driven via
an open loop circuit and is not equipped with any internal calibration sensor.
For this reason, we have implemented a slightly different method to determine
the separation between the two surfaces. To explain this new approach, we
first note that the electrostatic force generated by the AC voltage is equal to:

Fe
R

=
ε0π (VAC cos(ω1t) + V0)

2

d
(5.2)

where ε0 is the permittivity of air, R is the radius of the sphere, and V0 is the
residual potential difference. Therefore, the mechanical oscillation induced by
the electrostatic force on the force sensor at 2ω1 gives rise to a 2ω1 signal
on the photodiode of the interferometer that scales like S2ω1 ∝ V 2

AC/d. The
proportionality constant can be measured by looking at the output signal of
the bare fiber interferometer. We know in fact that, when the bare fiber
interferometer signal has moved through exactly one interference fringe, the
plate has moved for exactly λ/2. Once the proportionality constant β is known,
one can extract d from d = β · V 2

AC/S2ω1 .

5.3.3 Results and discussion

The sensor used for the data presented below was a 3.4 mm long, 200 µm
wide, 40 µm thick ferrule-top cantilever (resulting in an expected spring con-
stant of ≈ 2 N/m) with ≈ 100 µm ferrule-to-cantilever gap (see the scanning
electron microscope image of Fig. 5.2). The resonance frequency was measured
independently, and resulted to be equal to 2.7 kHz, with a Q factor of 42.

In Fig. 5.4 and Fig. 5.5 we show the results of a typical measurement run.
Data were gathered during 10 consecutive back-and-forth scans. Each scan
had a duration of 1000 s and a stroke of 1 µm spanned by applying a driving
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Figure 5.4: Measurement of the residual potential between the interacting surfaces
as a function of separation as obtained during 10 consecutive scans.
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Figure 5.5: Dots: Measurements of the gradient of the Casimir force between the
sphere and the plate (normalized to the radius of the sphere) as a function of sepa-
ration as obtained during 10 consecutive scans. The grey line represents the result
expected from theory. Inset: histogram of the residuals of the data between 160 nm
and 200 nm.
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voltage to the piezoelectric stage of the form VPZT ∝ 1 − |t/τs − 1|3, with
τs = 500 seconds. The frequency of the AC voltage was set to ω1 = 72 Hz. Its
amplitude was continuously adjusted during the scan to keep the rms of the
2ω1 electrostatic force component equal to roughly 230 pN at all separations
(see [19, 20]). The oscillation frequency of the piezoelectric stage was set to
ω2 = 119 Hz with 7.2 nm amplitude. Signals at 2ω1 and ω2 were demodulated
with two lock-in amplifiers equipped with a 24dB low pass filter with RC time
of 200 ms and 100 ms, respectively. To avoid mixing of the Casimir signal with
that induced by the hydrodynamic force due to the air in the gap [20], the phase
of the ω2 lock-in amplifier was aligned with the phase of the oscillatory motion
by going to contact, where the plate and the cantilever move synchronously.
This procedure was performed only once before starting the measurement run.

Fig. 5.4 shows the potential difference V0 needed to minimize the electro-
static interaction between the sphere and the plate as a function of separation
d. The observed spread in the data is due to measurement noise and not to
a time-related drift. It is clear that the data loosely follow a behavior like
a log d + b, as observed before in [19], [52], and [39]. This dependence is not
yet fully understood.

Fig. 5.5 shows the Casimir force gradient as a function of separation. The
data were obtained by subtracting from the original data an electrostatic con-
tribution that arises from the calibration procedure [20]. This contribution,
which scales like 1/d, can be accurately calculated from the value of S2ω1 . In
our experiment, this correction ranged from 15 N/m2 at 200 nm up to 70 N/m2

at 45 nm. The grey line in the graph represents the theoretical Casimir force as
computed from the Lifshitz equation, where we have assumed that the dielec-
tric function of the gold surfaces can be obtained by combining the tabulated
data of reference [63] with the Drude term described in [95], and where we
have neglected surface roughness corrections. The theoretical result should
thus not be taken too rigorously. It is known, in fact, that gold layers de-
posited with different methods may have different optical properties, which
can lead to significant differences in the resulting Casimir force [66]. Further-
more, surface roughness corrections can be as high as several tens of percent
at the closest separations. A more refined calculation of the expected force is
however outside our scope. The goal of this paper, in fact, is not to improve
the accuracy in the comparison between theory and experiment, but to prove
that ferrule-top cantilevers can be successfully used to obtain precise (i.e., low
noise, small statistical error in force gradient) Casimir force measurements.

It is thus now important to discuss the statistical error in the Casimir force
gradient. The inset of Fig. 5.5 shows a histogram of the residuals of all the
Casimir force data collected in the separation range between 160 nm and 200
nm. The standard deviation is equal to 2.5 N/m2. For comparison, our state-
of-the-art atomic force microscope for Casimir force measurements is currently
capable of achieving a standard deviation of 1.75 N/m2 (see section 3.3) with
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an ω2 oscillation amplitude a factor of 2 lower but a ten times higher integration
time.

5.3.4 Conclusions

We have presented a ferrule-top sensor for Casimir force experiments. The
sensor is based on a monolithic miniaturized cantilever that is coupled to a re-
mote readout via optical fibers. We have demonstrated that the setup provides
measurements of the Casimir force between a sphere and a plate by means of
a dynamic detection scheme. The sensor can be easily fabricated with cost
effective techniques, allowing frequent substitution of the probe in systematic
experiments. Furthermore, it adapts well to utilization in harsh environments,
such as low temperatures, vacuum, and liquids. Similar ferrule-top devices
can of course be used to investigate other long range interaction mechanisms
as well. Ferrule-top technology can thus be considered as a new tool to ex-
plore phenomena that are of relevance in the future development of MEMS
and NEMS.
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5.4 Simple fiber-optic interferometer with lin-
ear phase response

Abstract – Simple fiber-optic interferometers measure the path-length dif-
ference between the fiber end and a reflective surface by the intensity of the
back-reflected light. Unfortunately, this signal is a sinusoidal function of the
path-length difference and therefore the sensitivity of the interferometer de-
pends strongly on the actual position of the reflective surface. Such interferom-
eters are thus convenient when they can work continuously at high sensitivity
(quadrature), for example for the detection of small cantilever motion, but are
not capable of following larger movements with high precision, as needed in
typical distance calibration procedures. We present a modified fiber-optic in-
terferometer in which the position of the reflective surface is modulated slightly,
causing an extra signal that is complementary to the total intensity signal. The
right combination of both signals results in an output signal that is linear in
the path-length difference and has constant sensitivity. This scheme can be
highly beneficial in situations were simple fiber-optic interferometers are used
for nm and sub-nm precision distance calibrations.

†This paper has been submitted: S. de Man and E. Jeffrey, 2010
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Simple fiber-optic interferometers consist of an optical fiber and a mirror
placed in front of it. The fiber-to-air interface and air-to-mirror interface form
a low-finesse optical cavity, whose length variations can be determined by ex-
amining the light that propagates back into the fiber. Typically, one uses
the intensity signal to measure these distance variations with sub-nm preci-
sion [94]. However, such a homodyne interference signal is only sensitive for
specific cavity lengths, and therefore not practical for measurement schemes
with relatively large (> 100 nm) distance variations (but practical, for exam-
ple, to read out cantilever displacements). There were several attempts to
overcome this problem by generating two quadrature interference signals, for
example by using two fibers whose cleaved ends are separated by exactly an
eight of the wavelength [96, 97], or by switching the laser wavelength [98].
Recently, a simple fiber-optic interferometer with a diode array instead of a
photodetector was used to examine the back-reflected light, also allowing the
detection of quadrature signals [99]. In [100], an alternative scheme has been
proposed based on modulation of the cavity length or laser wavelength to
create two quadrature signals at the first and second harmonic of the modu-
lation frequency, and a demonstration of the working principle for wavelength
modulation is presented in [101]. In this note, we present measurements with
an interferometric scheme that is similar to that proposed in [100], and show
that one can easily generate two quadrature interference signals by slightly
modulating the cavity length (couple of nm), achieving high sensitivity over
large scan ranges. A big advantage of this scheme compared to wavelength
modulation is that instead of a frequency tunable laser we can use a relatively
inexpensive diode laser.

coupler

not in use

IR-laser

photodiode

r1 r2i

fiber-air air-mirror

scan piezomodulation
piezo

Figure 5.6: Schematic drawing of the experimental setup. See text for details.
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Our simple fiber-optic interferometer consists of an infrared fiber-coupled
laser source (Thorlabs S3FC-1310, wavelength 1.310 µm, 1 mW output power),
an optical fiber coupler and an InGaAs photodetector (Thorlabs PDA10CS),
as schematically shown in Fig. 5.6. The light coming from the laser is split
by the fiber coupler into two branches. One of the branches functions as our
interferometer (the upper branch in Fig. 5.6), while the other one is not used
(the end is terminated with an angled cleave to avoid back-reflection). In the
upper branch of Fig. 5.6 a reflective surface is placed in front of the fiber end.
The task of the interferometer is to measure precisely the distance between
the fiber end and this mirror, in order to calibrate the scanner piezo-electric
stage to which it is attached. For typical applications, the distance between
the fiber end and the mirror will be several mm or less. In this paper, we have
used a gap of approximately 2 mm.

In a simple fiber-optic interferometer, the actual interference takes place
between the light reflected by the fiber-to-air interface (r1) and air-to-mirror
interface (r2), as shown in the magnified view of the fiber end and mirror in
Fig. 5.6. The sum of both reflected signals r1 and r2 depends on their path
length difference, which equals twice the gap size. The reflected light travels
back through the fiber and is split in two by the coupler. The light propagating
towards the laser is blocked by a faraday isolator (inside the laser housing),
whereas the light that goes into the detector is our detection signal.
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Figure 5.7: Raw data of the two interferometer signals WDC and Wω as a function
of time for a single left-to-right sweep of the piezo-electric stage.
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The output signal of the photodiode is given by [94]

W (d) = W0 (1− V cos 4πd/λ) (5.3)

where λ is the laser wavelength, d is the fiber-to-mirror distance, W0 is the
midpoint voltage, V is the fringe visibility, and we have ignored multiple re-
flections because of the very low finesse of our cavity. It is clear that the
interferometer is only sensitive for changes in d at those values of d for which
the cosine is steep, a major drawback of using this interferometric scheme.
However, when we modulate the position of the sample as d = dpz + ∆d cosωt
(with ∆d � λ/4π) with an extra piezo-electric stage (modulation piezo in
Fig. 5.6)‡, the photodiode signal becomes

W = WDC +Wω cosωt (5.4)

WDC = W0 (1− V cos 4πdpz/λ) (5.5)

Wω =
4πW0V∆d

λ
sin 4πdpz/λ (5.6)

The values of WDC and Wω can be measured with a low-pass filter and a
lock-in amplifier at ω, respectively. The DC level of the photodiode voltage is
measured with an ADC connected to a second order low-pass filter with a 1 Hz
3dB point. The small distance modulation ∆d (2.8 nm RMS§) is performed
at 119 Hz. The lock-in amplifier is locked at 119 Hz and uses a fourth order
filter with a 100 ms integration time. To test this scheme, we have swept
the scan piezo with a sinusoidal function with a period of 500 seconds and
an amplitude of roughly 1.7 µm. In Fig. 5.7, we plot the recorded raw data
of WDC and Wω as a function of time for a single left-to-right sweep during
this very slow sinusoidal motion of the piezo-electric stage. Thus, besides the
normal interferometric signal WDC , we now have an extra signal Wω. The
advantage of the modulation scheme becomes clear now: WDC and Wω are
related such that if one of them is not sensitive, the other is.

One could decide, at this point, to use then either WDC or Wω, depending
on which signal is sensitive, and switching between them if necessary. However,
it is even more convenient to combine both signals. For that, one displays the
data as {WDC ,Wω} coordinates for different values of dpz in a Lissajous plot,
as in Fig. 5.8. The resulting ellipse can be transformed into the unit circle
by appropriate scaling (both axes) and translation (horizontal axis only). We
define

X ≡ 1−WDC/W0

V
= cos 4πdpz/λ (5.7)

Y ≡ Wωλ

4πW0V∆d
= sin 4πdpz/λ (5.8)

‡We chose to add an extra piezo stage instead of adding the oscillation to the motion of
the scan piezo to ensure stability of the distance modulation amplitude.
§It will become clear later in the text how this is measured.
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Figure 5.8: Raw data of the two interferometer signals WDC and Wω in a Lissajous
plot (black circles). Fit of the data as used for the conversion to phase (white line).



132 5 Fiber-top and Ferrule-top Casimir force measurements

We then find the values of W0, V , and 4πW0V∆d/λ by a minimization pro-
cedure that fits the unit circle to our {X, Y } data-points. The fitted circle
is displayed in Fig. 5.8 by the white line intersecting the black data-points.
The amount of {X, Y } data-points belonging to consecutive dpz values one
can use in this fit procedure depends on the stability of the laser wavelength
and output power (they are assumed to be constant). It is interesting to note
that by combining the obtained values of the three fit parameters we get the
amplitude of the piezo oscillation ∆d (λ is known). It is now straightforward
to find the actual motion of the piezo-electric stage, dpz, by

dpz =
λ

4π
arctan2 (Y,X) (5.9)

where arctan2 is the four-quadrant arctangent of Y/X. Since changes in dpz are
translated linearly into changes of the phase-angle of {X, Y }, Eq. 5.9 represents
the fact that our interferometer has a linear phase response. Therefore, the
interferometer is now also sensitive to the direction of the mirror movement,
contrary to normal readouts. As the arctangent is a periodic function of its
argument, we can only find dpz up to integer multiples of λ/2. However, as long
as the scanning speed of the piezo is much lower than λ/2 per integration time,
it is easy to detect the discontinuities in the signal and to unwrap the phase of
arctan(Y/X), allowing for convenient scanning of multiple interference fringes.
In Fig. 5.9, we have plotted dpz as obtained from Eq. 5.9 for the raw phase of
{X, Y } in open squares and for the unwrapped phase in filled squares. It is
clear that a very simple algorithm suffices to detect the discontinuities in the
raw data and add appropriate multiples of λ/2 to dpz.

To examine the noise level of our interferometer, we have selected roughly
200 data-points very close to each of the {X, Y } coordinates {1, 0}, {−1, 0},
{0, 1}, and {0,−1}. Those 800 points come from a data set that spanned
roughly 26 hours of continuous measurements. In order to be insensitive to
slow variation of the laser output power, the fitting of the unit circle was
performed on 250 s portions (separate trace and retrace scans of the piezo-
electric stage). At {1, 0} and {−1, 0} (representing pure WDC measurements),
the noise in X is normally distributed with a standard deviation of 0.005,
resulting in a phase error of 5 mrad at {0, 1} and {0,−1}. At {0, 1} and
{0,−1} (corresponding to Wω measurement only), the noise in Y is normally
distributed with a standard deviation of 0.012, resulting in a phase error of
12 mrad at {1, 0} and {−1, 0}. Therefore, the noise in dpz varies between
minimum values of 0.5 nm and maximum values of 1.2 nm during scanning.
This noise is most likely due to frequency (or phase) noise of the laser diode,
that results in an equivalent distance noise δd due to a wavelength variation
δλ by δd = d(δλ/λ) [94]. As our cavity is rather large (roughly 2 mm), a
wavelength variation δλ/λ of only 5× 10−7 would be sufficient to generate the
observed noise. Such an amount of wavelength variation is typical for laser
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diodes [94]. Obviously, the precision of the interferometer can be enhanced by
working at smaller gap sizes. Anyway, even with such a large gap as used here,
the movement of the piezo-electric stage can be calibrated with nm precision,
which is sufficient for most applications.

In addition to intrinsic laser frequency noise, there are two other sources of
error. Lasers are sensitive to light coupled back into the laser cavity which can
cause amplitude and frequency fluctuations and mode-hopping. The S3FC-
1310 has a built-in isolator to reduce this effect, but it does not eliminate the
problem entirely. In addition, unwanted reflections from other fiber ends also
cause fabry-perot interference. Both of these problems are greatly reduced by
using FC/APC fiber termination at the unused port and the detector and by
intensity modulating the laser at 30 kHz. The intensity modulation decreases
the coherence length of the laser considerably, reducing the visibility of the un-
wanted fabry-perot interferences while not significantly affecting the visibility
from the 2 mm gap.

It is important to mention that it is necessary to maintain relatively slow
scan speeds of the piezo-electric stage. If the changes in both WDC and Wω

as a function of time become comparable to the bandwidths of the low-pass
filters (both the low-pass filter on WDC and the one in the lock-in amplifier),
then distortion of the circular relation between those quantities occurs; as the
signals vary more rapidly close to their maxima and minima, their maxima
and minima will be mostly reduced, resulting in non-linear compression of the
data. Therefore, the data as presented in Fig. 5.8 would look more square-like
for too fast scan speeds. Obviously, it becomes then hard to extract the phase.

Furthermore, we would like to stress that it is of course also possible to
modulate the position of the fiber instead of the sample, suggesting that this
technique can be widely employed for distance calibration in all kinds of setups.
It is interesting to note as well that the scheme presented here can also be
used for interferometric vibration measurements by increasing the detection
bandwidth and modulation frequency.

The authors thank G. Gruca, K. Heeck and D. Iannuzzi for useful discus-
sions. This work was financially supported by the Netherlands Organisation
for Scientific Research (NWO), under the Innovational Research Incentives
Scheme VIDI-680-47-209.
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Appendix A

Calculation of the Casimir force

With the Lifshitz equation, one can calculate the pressure of the Van der Waals
interaction between parallel plates of materials A and B [41]:

Ppp(d) =
kBT

πc3

∞∑
n=0

′

ξ3
n

∫ ∞
1

p2

(
1

∆
−1

A ∆
−1

B ernp − 1
+

1

∆−1
A ∆−1

B ernp − 1

)
dp,

(A.1)
where the prime on the summation indicates that the n = 0 term has to be
multiplied by 1/2, T is the temperature, ξn = 2πkBTn/~ is the n-th Matsubara
frequency, kB, ~ and c are the usual fundamental constants, and

rn = 2dξn/c,∆j =
p εj(iξn)− sj
p εj(iξn) + sj

,∆j =
p− sj
p+ sj

, sj =
√
p2 − 1 + εj(iξn).

(A.2)
The dielectric function εj(iξ) evaluated at imaginary frequency iξ is obtained
from the Kramers-Kronig relation

ε(iξ) = 1 +
2

π

∫ ∞
0

ωε2(ω)

ω2 + ξ2
dω. (A.3)

where ε2(ω) is the imaginary part of the dielectric function. We evaluate
Eq. A.3 for gold by obtaining ε2(ω) from [63] and extrapolate the data with
a Drude model for low frequencies (parameters from [27]). For ITO, we sub-
stitute the ε2(ω) from the combined Drude and Tauc-Lorentz models with
parameters from [64].

Note that in all equations above, we have set the magnetic permeability of
both surfaces and air to unity, and the electric permittivity of air equal to one
as well. Since the ITO and Au layers are described with Drude models at low
frequencies, we take ∆j = 1 and ∆j = 0 at ξ0. Ppp is calculated by summing
the first 100 Matsubara frequencies at T = 300 K. The force gradient between
a sphere and a plate is then obtained from Eq. 3.12.
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Summary

Vacuum is not empty. Even in the absence of electromagnetic sources, vacuum
is filled with zero-point fluctuations of the electromagnetic field. These fluc-
tuations give rise to quantum mechanical effects like spontaneous emission of
radiation and the Lamb shift. In 1948, Casimir realized that these zero-point
fluctuations could also have an effect on macroscopic objects. He considered
two perfectly conducting and electrically neutral plates placed inside a vacuum
filled with electromagnetic fluctuations. The plates set zero-field boundary
conditions on the fluctuations, and Casimir showed that the total energy of
the fluctuations depends on the separation between the plates. Hence, the
vacuum field exerts a force on the plates: the Casimir force. This force is gen-
erally weak, but it grows quickly as the plates are moved closer to one another.
In the sub-micrometer range, the Casimir force becomes relevant, and below
100 nm it is quite strong.

In 1956, Lifshitz generalized the theory in order to treat plates made out of
real materials, instead of perfectly conducting surfaces. His work was mathe-
matically complicated, but the results are fascinating. His theory converges to
Casimir’s result for perfectly conducting plates, but also recovers the Van der
Waals force for objects at very close separation (let’s say < 10 nm). He had
thus unified the Casimir force and the Van der Waals force, and showed that
both effects arise from the zero-point fluctuations of the electromagnetic field.
In fact, the only difference between the Casimir and the Van der Waals force
lies in the range of the interaction; at large distances, the finite speed of light
and the corresponding retardation of the electromagnetic field has to be taken
into account, whereas at small separation this retardation can be neglected.

The Casimir force is experimentally verified by many experiments, and only
few very subtle questions regarding its strength remain unsolved. These ques-
tions mainly arise because of the real material properties one has to supply to
the theory in order to calculate the force. In this work, we have not focused
on trying to solve these subtle issues, but rather to investigate more practi-
cal aspects of the Casimir force. For instance, we have investigated how to
switch the force with hydrogen switchable mirrors, and showed that by using a
transparent conductive oxide as the plate material (used in touch screens) the
strength of the Casimir interaction is halved, a practical solution for reducing
the force in small mechanical and electrical devices.
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144 Summary

We have developed an experimental setup to measure precisely the Casimir
force. The two objects that are attracted to eachother by the Casimir force
are a small plate and a small sphere. We use this geometry instead of two
plates, because it is experimentally quite involved to keep two plates parallel.
The sphere has a radius of 100 µm and is attached to a small cantilever (about
half a millimeter long). When the Casimir force attracts the sphere towards
the plate, this cantilever is bended. Using a laser reflected from the end of
the cantilever, we can determine the force precisely. To measure the force
as a function of the distance between the surfaces, we can alter the position
of the plate with a piezoelectric transducer with sub-nm accuracy. All these
parts are attached to a rigid aluminum block that is temperature controlled to
reduce mechanical drifts, and placed on an active vibration isolation system
to reduce mechanical noise. The setup is placed inside an anechoic chamber
inside a temperature controlled laboratory. We have achieved roughly 100
times smaller drifts as in comparable room temperature Casimir force setups.

In order to make accurate force measurements, the setup has to be cali-
brated with a known force. For that we use the electrostatic force, because
its characteristics are well known and it is easily controllable by applying an
external voltage difference to the interacting surfaces. Instead of performing
separate calibration and measurement runs, we have developed a measurement
scheme in which calibration and Casimir force measurement can be performed
simultaneously. By using an oscillating voltage applied between the surfaces
at a low frequency and a lock-in amplifier examining the cantilever deflection
at twice this modulation frequency, we can precisely measure the electrostatic
force, without being bothered by the Casimir effect. By modulating the dis-
tance between the sphere and the plate with a few nm at a different frequency,
we can use another lock-in amplifier to detect the gradient of force between
the objects. At short distances, this force gradient consists mainly of the
Casimir force gradient, because the Casimir force is much more dependent on
distance than the electrostatic force. In this way, we can calibrate and measure
the Casimir force at two distinct frequencies, thereby acquiring both signals
simultaneously.

For a good measurement of the Casimir force, it is essential to remove
any spurious background forces that might hide the Casimir effect. One such
a force is the electrostatic force that arises from the natural electric poten-
tial difference between the two surfaces. Even if both surfaces are electrically
grounded together, their different work functions (also possible in the case of
the same material on both surfaces) will cause an electric force. Therefore, the
experimentalist has to supply a counter bias to the surfaces, to correct for the
difference in work functions and remove this electric force. Our modulation
scheme offers a neat way to accomplish this. It turns out that by using another
lock-in amplifier locked to the voltage modulation, we can create a negative
feedback loop that automatically compensates for the difference in work func-
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tions by applying a DC voltage that minimized the electrostatic force. Thus,
in our measurements, the difference in work functions is always compensated.
In our experiments, we have found that this voltage can depend on time and
separation between the surfaces, which we discuss in detail in this thesis.

The mechanical modulation of the separation between the surfaces that
facilitates the measurement of the Casimir force gradient also causes a hy-
drodynamic interaction between the small sphere and the plate. Since this
hydrodynamic interaction is dissipative, it manifests itself 90 degrees phase-
shifted with respect to the Casimir force gradient, and it can be independently
measured with a lock-in amplifier. In fact, our setup can provide very precise
measurements of the hydrodynamic force, and we have carried out measure-
ments in air, nitrogen, helium and SF6 gas. These measurements are in good
agreement with theory.

During our research on the Casimir effect and the development of our setup,
a new optical fiber based force sensor has been invented in our research group:
the fiber-top cantilever. This sensor is a normal optical fiber of which the
end is machined in the form of a cantilever by focused ion beam milling. The
deflection of the cantilever in response to external forces can be accurately
determined by sending light inside the optical fiber and measuring the intensity
of the light that is reflected back into the fiber by the cantilever. Later on,
this design was slightly modified by carving the cantilever out of a ferruled
fiber, which is a piece of glass that is glued around the fiber. This design
is bigger (roughly 2 mm diameter), but the cantilever can be made weaker
(i.e. more sensitive). We have demonstrated that this sensor can be effectively
used to measure the Casimir force, which opens up the possibility to investigate
Casimir forces in conditions that are not suitable for conventional force sensors,
like explosive environments, liquids or cryogenic setups.

In these 4 years of research on the Casimir effect, we have built a new setup
and used it to investigate the electrostatic force, the work function difference
between the interacting surfaces, the hydrodynamic force in various gaseous
atmospheres, and the Casimir force between different materials. Most notably,
we have shown that the Casimir force between a gold surface and a surface
coated with indium-tin-oxide is a factor 2 weaker than the force between two
gold surfaces.



Samenvatting

Vacuüm is niet leeg. Zelfs in de afwezigheid van bronnen van elektromagne-
tische straling is het vacuüm gevuld met nulpunts-fluctuaties van het elektro-
magnetische veld. Deze fluctuaties leiden tot kwantummechanische effecten
als spontane emissie van straling en de Lamb verschuiving. In 1948 besefte
Casimir dat deze nulpunts-fluctuaties ook invloed konden hebben op macro-
scopische voorwerpen. Hij beschouwde twee perfect geleidende en elektrisch
neutrale platen in dit vacuüm gevuld met elektromagnetische fluctuaties. De
platen fungeren als nul-veld randvoorwaarden voor de fluctuaties, en Casimir
heeft laten zien dat de totale energie van de fluctuaties afhankelijk is van de
afstand tussen de platen. Daarom oefent het vacuüm veld een kracht uit op
de platen: de Casimir kracht. Deze kracht is in het algemeen zwak, maar
hij groeit snel wanneer de platen dichter bij elkaar gebracht worden. Voor
afstanden beneden de micrometer wordt de Casimir kracht relevant en onder
de 100 nm is hij behoorlijk sterk.

In 1956 heeft Lifshitz de theorie veralgemeniseerd zodat hij platen van echte
materialen kon begrijpen, in plaats van de perfect geleidende oppervlakken.
Zijn werk was wiskundig ingewikkeld, maar de resultaten zijn fascinerend. De
theorie convergeert naar het resultaat van Casimir voor perfect geleidende
platen, maar leidt ook tot de Van der Waals kracht voor objecten op zeer
korte afstand van elkaar (zeg maar < 10 nm). Hij had dus de Casimir kracht
en de Van der Waals kracht geünificeerd, en laten zien dat beide effecten
voortkomen uit de nulpunts-fluctuaties van het elektromagnetische veld. In
feite blijkt het enige verschil tussen de Casimir en Van der Waals kracht te
liggen in de dracht van de interactie: op grote afstand moet de eindigheid van
de lichtsnelheid en de daaruit voortvloeiende retardatie van het elektromagne-
tische veld meegenomen worden, terwijl voor kleine afstanden deze retardatie
verwaarloosd kan worden.

De Casimir kracht is experimenteel geverifieerd door veel experimenten en
slechts enkele zeer subtiele vragen over de sterkte van de interactie zijn nog
onopgelost. Deze vragen zijn voornamelijk het gevolg van het moeten invullen
van de echte materiaaleigenschappen in de theorie om de kracht uit te kunnen
rekenen. In dit werk hebben wij niet getracht deze subtiele vragen op te lossen,
maar gefocust op het onderzoeken van meer praktische aspecten van de Casimir
kracht. We hebben bijvoorbeeld onderzocht hoe we de kracht in sterkte kunnen
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omschakelen met schakelbare spiegels en we hebben laten zien dat door gebruik
te maken van transparante geleidende oxiden (zoals gebruikt in touch screens)
de sterkte van de Casimir kracht gehalveerd wordt, een praktische oplossing
om de kracht te verkleinen in kleine mechanische en elektrische machientjes.

Wij hebben een experimentele opstelling ontwikkeld om de Casimir kracht
precies te meten. De twee objecten die door de Casimir kracht naar elkaar
toe getrokken worden zijn een kleine plaat en een kleine bol. We werken met
deze geometrie in plaats van twee platen, omdat het experimenteel behoorlijk
moeilijk is om twee platen parallel te houden. De bol heeft een straal van
100 µm en is bevestigd aan een klein bladveertje (ongeveer een halve millimeter
lang). Wanneer de Casimir kracht de bol naar de plaat toetrekt, dan wordt
het bladveertje gebogen. Met een laser die op het uiteinde van het bladveertje
schijnt kunnen we precies de sterkte van de kracht bepalen. Om dan ook nog
de kracht als functie van de afstand tussen de oppervlakken te kunnen meten,
kunnen we de positie van de plaat instellen met een piezoelektrische verschuiver
met een nauwkeurigheid beter dan een nanometer. Al deze onderdelen zijn
bevestigd op een stevig aluminium blok dat temperatuur gestabiliseerd is om
thermische uitzettingen te beperken, en dit alles is geplaatst op een actief anti-
vibratie platform om mechanische ruis te beperken. De opstelling bevindt zich
binnen in een dode kamer in een temperatuur gestabiliseerd laboratorium. We
hebben een honderdvoudige verkleining van het weglopen van de opstelling
kunnen bereiken in vergelijking tot andere kamertemperatuur Casimir kracht
opstellingen.

Om accurate krachtmetingen uit te kunnen voeren moet de experimentele
opstelling gekalibreerd zijn. Wij gebruiken daarvoor de elektrostatische kracht,
omdat de karakteristieken goed bekend zijn en deze makkelijk te manipuleren
is door een spanningsverschil tussen de twee oppervlakken aan te leggen. In
plaats van afzonderlijke kalibreer en meet series uit te voeren, hebben wij
een meetmethode ontwikkeld waarbij kalibreren en het meten van de Casimir
kracht simultaan kan worden uitgevoerd. Door een langzaam oscillerend span-
ningsverschil tussen de oppervlakken aan te leggen en een lock-in versterker te
gebruiken die de buiging van het bladveertje op tweemaal deze frequentie de-
tecteert, kunnen we nauwkeurig de elektrostatische kracht meten, zonder dat
het Casimir effect ons parten speelt. Door nu ook de afstand tussen het bol-
letje en de plaat te moduleren op een andere frequentie, kunnen we een andere
lock-in versterker inzetten om de gradiënt van de kracht tussen de objecten te
bepalen. Op kleine afstanden bestaat deze krachtsgradiënt voornamelijk uit
de gradiënt van de Casimir kracht, omdat de Casimir kracht veel sterker van
de afstand afhangt dan de elektrostatische kracht. Op deze manier kunnen
we op twee verschillende frequenties kalibreren en de Casimir kracht bepalen,
zodat we beide signalen tegelijkertijd kunnen meten.

Voor een goede meting van de Casimir kracht is het essentieel om ervoor
te zorgen dat er geen onbedoelde achtergrond krachten zijn die het Casimir
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effect zouden kunnen verbergen. Zo’n kracht is bijvoorbeeld de elektrostati-
sche kracht die ontstaat door het natuurlijke spanningsverschil tussen de twee
oppervlakken. Zelfs als beide oppervlakken gezamenlijk geaard zijn zullen hun
verschillende werkfuncties (ook mogelijk in het geval dat beide oppervlakken
van hetzelfde materiaal zijn) leiden tot een elektrostatische kracht. Daarom
moet de experimentator een extern spanningsverschil aanleggen om te cor-
rigeren voor het verschil in werkfuncties, en zodoende deze elektrostatische
kracht te verwijderen. Ons modulatie schema biedt een mooie gelegenheid
om dit te doen. Het blijkt namelijk dat we nog een lock-in versterker kun-
nen inzetten die dan werkt op de frequentie van de spanningsmodulatie, en
dat we daarmee een negatieve terugkoppel lus kunnen maken die automatisch
compenseert voor het verschil in werkfuncties door een gelijkspanning aan te
leggen die leidt tot minimale elektrostatische kracht. Hierdoor is in al onze
metingen het verschil in werkfunctie altijd gecompenseerd. Wij hebben in onze
experimenten gevonden dat het spanningsverschil afhankelijk kan zijn van de
tijd en van de afstand tussen de oppervlakken, wat we uitvoerig bediscussiëren
in deze thesis.

De mechanische modulatie van de afstand tussen de oppervlakken waarmee
we de Casimir kracht gradiënt meten leidt ook tot een hydrodynamische inter-
actie tussen het bolletje en de plaat. Doordat de hydrodynamische interactie
dissipatief is zal die zichzelf manifesteren met een 90 graden verschuiving ten
opzichte van de Casimir kracht gradiënt, en kan zodoende onafhankelijk geme-
ten worden met een lock-in versterker. Daarmee kan onze opstelling eigenlijk
zeer precieze metingen uitvoeren van de hydrodynamische kracht en we hebben
dan ook metingen gedaan in lucht, stikstof, helium en SF6 gas. Deze metingen
zijn in goede overeenstemming met de theorie.

Gedurende ons onderzoek naar het Casimir effect en de ontwikkeling van
onze opstelling, is er in onze groep een nieuwe krachtsensor gebaseerd op
glasvezel ontwikkeld: de fiber-top cantilever. Deze sensor is een normale
glasvezel waarvan het uiteinde bewerkt is in de vorm van een bladveertje met
behulp van een gefocusseerd ionenkanon. De buiging van dit bladveertje ten
gevolge van externe krachten kan nauwkeurig bepaald worden door licht door
de glasvezel te sturen en de intensiteit te meten van het licht dat door het blad-
veertje teruggekaatst is de glasvezel in. Later is dit ontwerp wat aangepast door
het bladveertje te maken uit een “ferruled optical fiber”, wat een glasvezel is die
in een ronde glazen behuizing gelijmd zit. Dit ontwerp is iets groter (ongeveer
2 mm in diameter), maar het bladveertje kan slapper gemaakt worden (oftewel:
gevoeliger). We hebben laten zien dat zo’n sensor gebruikt kan worden om de
Casimir kracht te meten, wat het mogelijk maakt om Casimir krachten te
gaan onderzoeken in omgevingen die niet toegankelijk zijn voor conventionele
sensoren, zoals explosieve gassen, vloeistoffen of cryogene opstellingen.

In de 4 jaar van ons werk aan het Casimir effect hebben we een nieuwe
opstelling gebouwd en deze gebuikt om onderzoek te doen naar de elektro-
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statische kracht, naar werkfunctie verschillen tussen de wisselwerkende opper-
vlakken, naar de hydrodynamische interactie in meerdere gassen, en naar de
Casimir kracht tussen verschillende materialen. Het belangrijkste is dat we
hebben laten zien dat de Casimir kracht tussen een gouden oppervlak en een
oppervlak met een indium-tin-oxide coating een factor 2 zwakker is dan de
kracht tussen twee gouden oppervlakken.
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