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FUNDAMENTAL THEORETICAL QUESTIONS

M. Froissart, Rapporteur

_Lrltroduction

Before reviewing for you the main fields of activ-
ity regarding the fundaments of theory, let me show
you a map (Fig. 1-1) of the different logical connec-
tions among these fields, because, judging from the
attendance at the discussion sessions, I presume
that many of you are not quite as up to date as you
perhaps might be.

I have drawn a boundary separating the results
relevant to off-mass-shell theories or field theories
in a generalized sense, and the on-mass-shell
results or S-matrix theory results. Ideally the
basic axioms should be immediate translations of our
experience. A very attractive set would be Lorentz
invariance, causality, and unitarity. The trouble
is that the only tractable form of causality up to
recently was through locality, which had to be for-
mulated in terms of fields. Hence the very promi-
nent role of field theory up to this day in our under-
standing of the microscopic world. May I stress
also the importance of the success of quantum electro-
dynamics as a reason to stick to field theory. How-
ever, in view of the very singular nature of fields,
it has been thought wise to dismiss the idea of fields
and to consider only integrals of fields, over regions
of space time. This led to the theory of local
observables.

Most experimentalists are really interested only
in knowing what happens on the mass shell. This
has put a heavy burden on the theorists. Field theory
gave the dispersion relations, and a small domain of
analyticity in momentum transfer (Lehmann ellipse).
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Fig. 1-1. Logical map of ""Fundamental"
concepts.
Continuous lines represent inferences,
broken lines indications. Topics sur-
veyed in this report are indicated by
double lines.

When combined with unitarity, these results fur-
nished bounds and relations on the asymptotic behav-
ior of the amplitude. From then on, everything was
until recently a matter of sophisticated guess.
Mandelstam started the game by proposing a certain
domain of analyticity compatible with perturbation
theory to fourth order and dispersion theory. Then
came different hypotheses: maximal analyticity,
Regge behavior, bootstrap.

Field Theory

The main effort in field theory has been devoted
to a study of the mathematical structure involved, 1
It is interesting to note that a number of tools have
been developed, which are useful both for field
theory and for statistical mechanics. The reason
for this is clear: in both cases one has to do with
systems with an infinite number of degrees of free-
dom. A very interesting example of the mathemati-
cal complications involved in the simplest cases has
been discussed by Prof. Thirring“ in connection with
the B. C.S. theory of superconductivity. Although
the model used is excessively simple and explicitly
solvable in the case of a finite number of degrees of
freedom, the passage to the limit exhibits a number
of unexpected features, among which is the fact that
some products of operators have a limit different
from the product of the limits.

To study this kind of mathematical trouble,
Jaffe and Lanford® have built model field theories
with an artificially limited number of degrees of
freedom. The object is to see which quantities have
any likelihood of keeping a meaning as the cutoffs are
removed. In an effort to remove the limitations
imposed by the assumption of the existence of fields,
and considering that the phenomena of ultraviolet
divergence might make the fields more singular than
they are usually assumed to be, Jaffe™ has also de-
veloped a formalism capable of accommodating some
nonrenormalizable theories. It appears thatall
results obtained up to date in conventional field theory
hold true in this new version, except for the asymp-
totic behavior at high energy. Conventional disper-
sion relations may be proved, but might need an
infinite number of subtractions if it were not for the
results of Martin, which we shall discuss.

Much work has been devoted to the structure of
the theory of local observables.? I understand that
only technical difficulties prevent Borchers from
deriving a concept very close to that of fields, even
unobservable charged fields, from the theory of
local observables. Epsteiné has already proved the
TCP theorem in this theory.

Analyticity on the Mass Shell

A sequence of very important results has
broadened considerably the bridge between field
theory and S-matrix theory. The papers of Bros,
Epstein, and Glaser? have generalized the concept
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of crossing to all two-body amplitudes, whether dis-
persion relations are proved or not. Also, they have
shown that the two-body amplitudes are all analytic
in some small neighborhood of the physical region,
this analyticity being in both variables s (energy
variable) and t (momentum-transfer variable).

Using this information, the known dispersion
relations, and unitarity, Martin® has been able to
prove a very large number of results. In view of the
importance of this work, let me goa little into the
scheme of the proof.

We start from a conventional dispersion relation,
N A (s',t)ds’
A(s,t) = 51?— | -

s' (s'-s)
N A (u',t)du’
+ u"_ [ +— + subtractions.

u'"(u' -u)
Unitarity is used then under the form

t
A (s,t) = Z(214+1) Ima,(s) P, (1 + ),
s pletrt) Imay(e) Py (1 + ~7

with Imaj(s)>0, and with all derivatives of Pj(Z) posi-
tive for Z>1., This allows one to expand As(s,t)

in a Taylor series in t and to show that the radius

of convergence is the same for all s, by interchange
of the order of integration and summation of the
series. Then the dispersion relation is valid for all
values of t for which analyticity has been proved for
fixed s. Typical values are?

T [tl <4m.,2,,
Km ltl <4m121',
KK |t] <4 m2,
TN lt] <1.83 mZ.

That the dispersion relation stays valid as it is writ-
ten leads to the consequence that, in these regions,
the asymptotic behavior is nearly the same as in the
forward direction. Hence, by an almost circular
argument, using unitarity, one deduces that, even
with dispersion relations a la Jaffe--with an infinite
number of subtractions=-to start with, the behavior
of the amplitude is s In“ s, therefore the dispersion
relations are valid with two subtractions. An inter-

MUB13235

Fig. 1-2. Values of the momentum trans-
fer variable t for which dispersion
relations are proved in m-m scattering.
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esting feature is that the reasoning can be started
again from the domain of analyticity just found, and
a larger domain is obtained. The result for mm scat-
tering is represented on Fig. 1-2. The same opera-
tion can be performed for K and wN scattering. The
domain obtained in the latter case goes to larger
values of -t than was proved in the classical proofs
of dispersion relation. More work can undoubtedly
be done by using, in the mm case, the domains
obtained in the three channels, and finding their
holomorphy envelope. To date, the real part of the
analyticity domain is given approximately by the cuts
and the dashed region of Fig. 1-3. That is, it goes
to the double spectral region except for a few cases.
This gives a region of analyticity for the partial-
wave amplitudes indicated on Fig. 1-4. Possible
singularities are far enough away-- compared, say,
with the mass of the p meson--so that calculations
neglecting far-away singularities may be justified.

On-Mass-~Shell Causality

Much work is also devoted to getting rid of the cir-
cuitous--and not completed--logical path connecting
causality to analyticity. Many people think that an
axiom like that of locality is probably as unphysical
as an axiom of analyticity, in the sense that it can
be checked only indirectly through its consequences.
As Blokhintsev points out, 10, it is quite feasible
to build theories which are nonlocal on the microscop-
ic scale, but which exhibit gross causality. These
theories might perhaps only be distinguished by
additional singularities, The works of the "Cambridge
School" and others12-19 have shown that an assump-"
tion of analyticity of the amplitude in some neighbor-
hood of the physical region leads to uniquely deter-
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Fig. 1-3. The shaded region is the real
trace of the analyticity domain of the w-m
scattering amplitude. Within this region
the cuts are a la Mandelstam. The
dashed curves are the boundaries of the
Mandelstam double spectral regions.
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MUB 13236

Fig. 1-4. Analyticity domain for w-m scatter-
ing partial waves. The thin neighborhood of
the positive real axis is not drawn to scale.

mined singularities, and hence?0 to the usual de-
scription of successive interactions in multiple scat-
teringl These arguments use only postulates of
cluster decomposition“* and unitarity.

The work of S1:app22 assumes a weak condition
on asymptotic decrease of transition probabilities
when particles are taken away. The result is to
prove the infinite differentiability of amplitudes on
the physical region except at the points where singu-
larities are expected. A condition of exponential

Table 1-I.
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decrease of transition probabilities allows Omnes?3
to derive a finite domain of analyticity for the two-
body amplitudes in momentum transfer, apart from
some technical difficulties. Some other authors24-26
have also tried to attack this problem, but without
any decisive success.

Asymptotic Theorems

We can distinguish between bounds and other
theorems such as the Pomeranchuk theorem and the
connections between the phase and the modulus of
the amplitude. In the first field, no new result has
been obtained. However, many bounds are now
rigorously derived from field theory, and even from
the generalized version due to Jaffe. This is of
course due to the work of Martin. I would like to
mention specially the bound on form factors
|F(t)|>exp (-b N=t) derived by Jaffe 7 rigorously,
even for the cases for which no dispersion relations
have been proved for the form factor. Tables 1-I,
1-1I, and 1-III have been compiled by Martin, and
give an up-to-date account of the situation.“®~

In other asymptotic theorems, the situation is
still very confused. The Pomeranchuk theorem now
holds for all processes, due to BEG, U but, as pointed
out by Eden, ** no one has yet succeeded in removing
the extra hypothesis such as the existence of a limit
of the amplitude --or at least some control over pos-
sible oscillations--on the one hand, and some control
over the growth of the real part with respect to the
imaginary part. )

To obviate the need for these requirements,
Khuri and Kinoshita45; have found a number of
inequalities which, unlike ordinary dispersion rela-
tions, allow one to test these ideas with measure-

Upper bounds.

Forward scattering
|F (s, cos6=1)I<C s logz(s/s

o)

) 2 . ;
Utotal< C' log (s/so) (arbitrary spins);

c'< 41r/pz, u= pion mass for mm, wk, kk,

c'< 121’I’/p.2 for N

Fixed transfer

[F(s,t)|< s(log 5)3/2, t<-e<0;

2-€

[F(s,t)I < s , 0<t<4}12;

2

|F(s,t)] < const, 0<t<4p

if |F(s,0)l <s™€

Fixed angle

|F(s, cosf)l < C(s3/4(1og 5)3/2)/( Nsinf');

| F(s, cos8)| < C(log s)3/2/(sin26);
4o /< C(log s)°/ (sin0) s

(in this form valid for arbitrary spins)

Assumption References
Axiomatic 7

28

29
Axiomatic T 28

30
Axiomatic 29
Mandelstam 31

32 - 34
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Table 1-II. Diffraction peak.
Assumption References
2
(I
d 1 tot 1
= > = -
T log As(s,t) !t—O 9 I X kz None 35
4 1og A (s,t)._. < Clog s) Axiomatic 30
dat 98 “s'®r M=o g
1
fi | F(s, cosO lzd cos
- -0 Axiomatic 36 - 37

| F(s, cos = 1)|Z

if A (s,cosb = 1) >C/log s

ments of the forward amplitude on a finite real
interval. The information used on the behavior at
infinity is the positivity of the imaginary part, and
the established fact that there are at most two sub-
tractions needed.

I would like to end by expressing my apologies
to the many people who may have been treated
unfairly, or whose work I may have misrepresented.
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Table 1-III.

Lower bounds.

Elastic cross section

Forward amplitude (strict for complex s;

(a)
| F(s, t=0)|>1/s°
(no unphysical cut),
0 total >1/(s6logzs)

(b)
if F(threshold) < 0 or is small
compared with an integral over total
cross sections at low energies only,

| F(s,t=0)I> const >0,

o > 1/(szlogzs)

Fixed-angle amplitude

| F(s,cos0)| >exp [-Nslog s C(0)],

C(0) for small 6 ~\06

Form factors

[F(t)] >exp(-CNIt])

Fixed-t amplitude, t <0
|F(s,t)> s™N

Fixed-u amplitude, u <0
N

[F(s,u) | > 8~

if pole at u=M2

Assumption References
Axiomatic 38
average sense for real s)

Axiomatic 28

Axiomatic 28,39

Axiomatic

Mandelstam 40
41

Axiomatic 42, 27

Axiomatic

Slightly more than 43

axiomatic

Discussion

Nauenberg (Santa Cruz): Could you give some more
details on what results have been obtained about
Regge behavior from fundamental assumptions ?

Froissart: From the fundamental side I haven't
drawn any continuous arrow on the map. There are
some inequalities which have been proved to hold
asymptotically, and which are consistent with Regge
behavior, but I don't think that anything more de-
tailed has been proven.

Sudarshan (Syracuse): It was my impression that you
said that Borchers had proved something about the
connection between local observables and the exist-
ence of a vacuum,

Froissart: Yes, the proof suffers a little technical
difficulty now, but I don't think it's very essential.
He proves that in a theory of local observables there
exists a vacuum state which has all good properties.

Sudarshan: I must have been misunderstood. If you
took a Iree field, a Wick polynomial of second degree

as Wightman and other people have done, then the
states of this particular system split into two classes,
those corresponding to an odd number of particles of
the original field, and those corresponding to an even
number of particles. If you consider that particular
subset of states which consists only of odd numbers
of particles of the original free field, the new field
we have introduced seems to be able to connect only
to other odd numbers of particles. In such a theory
there seems to be no vacuum at all, and I don't quite
understand how one could have proved the existence
of avacuum. This is a free-field theory; there are
no divergences of any kind.

Froissart: The idea of Borchers is very simple.

You start by taking any state, and then you essentially
average out over the whole space; that is, if there
are any particles to start with, then these particles
should not contribute at all to the average state. That
is the essence of Borchers's proof. I do not know
which of the axioms the phenomena you are mention-
ing contradict.

Sudarshan: This assumes that that there exists a dis-
crete mass spectrum of the field?



Wightman (Princeton): May I comment on that? The
point is that Borchers is using a definition of physical
equivalence which is appreciably weaker than that to
which many people are accustomed, so that he would
not have to assume that there was, a priori, a dis-
crete point in the spectrum. He would count two
theories equivalent if they gave arbitrarily close
results for all measurements in bounded regions of
space time. Presumably he will take your example
and prove it equivalent to another example in which
there was a vacuum state, but only in this weak sense.
However, it has to be said that this weak sense is a
very physical sense, because it corresponds to
measurements in actual laboratories as best we know
how to describe them.

Todorov (Dubna): I would like to make the following
Temark, concerning the derivation of Pomeranchuk's
theorem.

It is not necessary to utilize the nontrivial
results of Bros, Epstein, and Glaser about the analy-
ticity domain of any two-body scattering amplitude in
order to prove a Pomeranchuk-type theorem for it.

It is sufficient to take into account the analyticity
properties of the so-called asymptotic amplitude,
introduced by Meiman (1964). (The exact conditions
under which the physical amplitude has the same high
energy behavior as the asymptotic one practically
coincide with the smoothness assumption needed for
the proof of Pomeranchuk’'s theorem.) The advan-
tage of such a method results from the fact that it
applies to production amplitudes too (cf. Logunov's
report at the 12thInternational Conference on High
Energy Physics, Dubna, 1964).

Sucher (Maryland): Could you extend the remarks
you made about going from the local observable theory
to field theory, that is, the possible existence of
fields once you have the local observable theory?

Froissart: This is not really a rigorous connection.
You have a number of stages of the theory. You

have first the theory of local observables. Then you
have fields a la Borchers, that is, things which are
defined in the whole space but which are not quite
local. They have some finite range, arbitrarily
small, but finite. Otherwise, they enjoy all the prop-
erties of fields. Then you have fields A la Jaffe,
where the fields are local but are not distributions.
They are generalized functions of a higher order.

And then you have fields a la Wightman, where the
fields are distributions. Now, the step which has
been accomplished is to show that local observables
imply the existence of fields a la Borchers. Also,
Jaffe has proved that fields & la Jaffe are just as good
as fields a la Wightman for all practical purposes.
So, we have only to cross now the gap between
Borchers and Jaffe.

Lichtenberg (Indiana): Could you write down some of
the asymptotic theorems that Martin has proved
recently?

Froissart. No new asymptotic theorems have been
proved since the Dubna Conference. The only refine-
ments which have been proved is that the total cross
sections _are bounded so that the constant in front of
the (log)” term is now known for mw, 7K, and KK
scattering:

0 yor<an/m? J1og%(s/s ).

We still don't know s . For 7N scattering the coef-
ficient is 12yx/m12r. Ske Tables 1-I through 1-III.

Logunov (Serpukhov): What behavior at infinity of the
form factor was assumed in the work of Jaffe in
order to get the lower bound?

Froissart: He did it using his theory, with general-
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ized functions of a higher order. See References 4
and 27.

Chew (Berkeley): Does the analyticity domain
established by Martin suffice to allow the definition
of the Froissart-Gribov continuation in angular mo-
mentum for large angular momentum ?

Froissart: No, it does not go to infinity.

Martin (CERN): The only result on the Froissart-
Gribov continuation is that you can do it for any s
which is inside the region of analyticity (see Fig. 1-2).
Of course, that is quite obvious because then you

have dispersion relations with two subtractions. But
for physical energies I have nothing at all.

Eden (Cambridge): Could you comment on what has
been done on the relation between spin and statistics
in S-matrix theory in the past two years?

Froissart: The relation between spin and statistics
in S-matrix theory is largely a matter of semantics,
because the arguments on analyticity are not very
well standardized. The question is better under-
stood now, in that we see better how this relation
comes about, but it is very hard to say what has been
derived and what has not been derived in S-matrix
theory, in the sense that some authors take as postu-
lates other authors' theorems, and conversely. The
connection between spin and statistics has been proved
now for four years by Stapp, using quite a number of
axioms. Now, one by one these axioms have been
removed, but the seam is not completely tight, I
would say.

Stapp (Berkeley): There has been important progress
in the last year on the S-matrix proof of the normal
connection between spin and statistics. In the first
place several technical assumptions that were impor-
tant in the original proof have now been replaced by
physical assumptions. In the second place the assump-
tion of the earlier proof that the usual types of cross-
ing relations are valid has now been shown to follow
from assumptions that the singularities of the mass=
shell scattering functions are Landau singularities
with Cutkosky-~type discontinuities. These improve-
ments are given in recent papers by Lu and Olive,
Froissart and Taylor,and myself.

Hepp (Princeton): I want to comment on the connec-
tion between spin and statistics for local observables.
It has not been proved, up to now, for the particles
connected with fields ''a la Borchers,' andit's a
challenge for everybody. The TCP theorem has
recently been proven by Epstein® under the frame-
work of local observables, but only for the S matrix.

Blokhintsev (Dubna): Professor Froissart included
in his diagram ''The Field Theory.'" This gives me
the opportunity to attract your attention to the work
concerning nonlinear field theory done by B.

Barbashev and N. Chernikov (Dubna). About thirty

"years ago M. Born and L. Infeld developed nonlinear

field theory. The scalar field of the Born-Infeld
Lagrangian is

L= N1o @82 4 o2

and coincides with the Lagrangian for the "'soap film'
in Minkowski space. They obtained an explicit and
rigorous solution of the quantized nonlinear equations
corresponding to this Lagrangian. Instead of x and
t, they use the variables a, B, which only asymp-
totically coincide with x-t and x+t; but— for small
X,t=—a and B are quantum operators, so that space
and time are automatically quantized in the region

of high nonlinearity. This result seems to be very
instructive from the mathematical point of view.
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Appendix A

Recent Progress in Axiomatic S-Matrix Theory

Henry P. Stapp

There has been important recent progress in
four areas: (a) S-matrix causality conditions and
their consequences, (b) proof of the spin-statistics
connection, (c) derivation of the crossing properties,
and (d) derivation of discontinuity equations,

The first topic is S-matrix causality conditions.
Here the aim is to formulate causality conditions
that refer only to mass-shell quantities, and then to
derive analyticity properties, Similar ideas have
been discussed by Wanders, - Stapp, © Iagolnitzer,
Peres, 4 Pham, 5’and Chandler and Stapp. 6 The
furthest development is by Pham and by the last two
authors, whose work I now describe.

The basic quantity is the transition amplitude
- 4
sle] =/ Slky) I d Ky (). (1)

Here S(k.) is the scattering matrix, and by is ¢, or
Y;" for initial or final particles. The support of

¢ (k ) lies on the mass shell. We shall take the

¢1(k ) to have small compact support and to be infi-
mtely differentiable in the mass shell. The important
property of these functions is given by Ruelle's
lemma, which states the following: Let the curve in
Fig. 1-A1 represent the mass shell andlet the small

Vi

Sup ¢;

Fig. 1-A1. The velocity cone Vi'

segment on it represent the small compact support
of ¢.. Let V; be the smallest cone from the origin
that contains the support of ¢;. The cone Vj is
called the velocity cone of ¢;, and it is considered to
be a cone also in space-time. Ruelle's lemma says
that if the space-time point x is not in V; then the
Fourier transform of ¢;(k;) satisfies the property

§;(x7)30. (2)

Here T 1is a scale parameter and the double arrow
means the limit is approached faster than any inverse
power of T as T becomes infinite. Ruelle's
lemma says that, in terms of the variable X = x/7'

the wave function collapses ''rapidly' into the veloc-
ity cone as T becomes infinite.

Using Ruelle's lemma, one easily proves that

the integral over all space of the absolute value of the
product of displaced wave functions satisfies

J d4x|¢»i(x-ui’r) ¢i(x-ui’r) =0 (3)

unless the displaced velocity cones overlap (see
Fig. 1-A2).

Fig. 1-A2. Displaced velocity cones.

Let U= {U.}be a set of displacements. The
quantity of interest is

1ku-r

sleU] = [ st T a¥ico, ) & (4)

The exponential factor e-lkiui-r displaces particle
i bg u.T. We are interested in the behavior of

7] 'as T becomes infinite. Our causality
requlrements will be statements that under certain
conditions

sleU" 1= s,[67"1, (5)

where S,.[¢] is the value that S[¢p] would have if
there were no scattering.

Two causality conditions have been formulated.
The first, called weak asymptotic causality (WAC),
says that Eq. 5 1is satisfied if,for some 7€ >0, the
displaced initial-particle velocity cones do not inter-
sectin t £ €7 and the displaced final-particle
velocity cones do not intersect in t = -e 1. See Fig.
1-A3. The set of U such that these conditions are

t-€T

X

t=-€t1T

Fig. 1-A3.
ity cones well-separated int < €T and
t > - €T respectively.

Initial and final displaced veloc-

satisfied is called the set of acausal displacements
A¢ (), and Eq. 5 is required to hold uniformly in U
on compact subsets of Ac(¢), for fixed ¢ and e.

The WAC condition is justified by proving that
it holds in any classical model with finite range
interactions. The quantum-mechanical ¢ of Eq. 5
is correlated to the statistical probability function of
the classical model.

The WAC condition is also very plausible
quantum- mechamcally If U isin A (¢), then it fol-
lows from Ruelle's lemma that

[€7 4 4 ¢, (x-u.7) q)j(x-uJ.T)I:)O (6a)

-0
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for all initial i # j, and

-]

- d4x‘¢i(x-ui'r) ¢j (x-u:j’7')|$ 0 (6b)

for all final i # j. That is, the initial-particle
overlap in t € €T and the final-particle overlap in

t 2 -€T both fall off rapidly. In factif U is in
A€(¢) , then the displaced initial-particle cones
become infinitely far apartin t< €7 as T becomes
infinite, and the displaced final-particle velocity
cones become infinitely far apartint> -€7. But if
the initial particles do not come close to each other
in t < €T then the initial particles should be well
represented near t = 0 by the unperturbed initial-
particle wave functions, And if the final particles

do not come close to each other in t > -€7 then the
final particles should be well represented near

t = 0 by the unperturbed final-particle wave functions.
Thus the transition amplitude should be well repre-
sented by the overlap of the unperturbed initial and
final wave functions, which is just S0 (o 1.

The WAC condition has important consequences.
If the two-body scattering function is analytic except
for singularities in the energy variable at normal
thresholds, then it follows from WAC that, apart
from an infinitely differentiable function, this function
is the limit of a function analytic in a strip lying in
the upper-half energy plane. It is not assumed
beforehand that the original functions in the various
intervals between the normal thresholds are parts of
a single analytic function. Thus what is proved is
first that the functions in the different intervals are
analytic continuations of each other, second that the
path of continuation connecting them moves through
the upper-half energy plane at the normal threshold
singularity, and third that the integral over the physi-
cal function is obtained by taking the contour to run
slightly above the threshold singularities. (Thus,
for example, the principal value integral is not used.)
Such rules for continuing around physical region
singularities are called i€ rules. These considera-
tions show how they can be derived from strictly
mass-shell arguments. Singularities that possess
finite derivatives of all orders with respect to real-
variations dE are not covered by the analysis, and
hence i€ rules are not deduced for them. However,
the usual pole, square root, and logarithmic singular-
ities arising from changes in the form of the unitarity
equations are covered.

It is worth noticing that the K matrix, like the
S matrix, is analytic in the various intervals between
the normal thresholds, but that these various functions
are not analytically connected, Thus some principle
is required to justify the assumption that it is S
that has the nice analyticity property. The weak
asymptotic causality condition serves this purpose,
for the two-body scattering function.

One would like to obtain similar i€ rules for
all physical region singularities of all (many-particle)
scattering functions. The WAC is not strong enough
for this. A stronger condition that is sufficient is
the strong asymptotic causality (SAC). This condi-
tion expresses the idea that interactions are carried
over infinite distances only by physical particles.
More accurately, interactions not carried by physi-
cal particles are required to fall off faster than any
inverse power of the Euclidian distance.

This condition is formulated as follows: Consid-
er a ¢ = {4’1} anda U = {u;}. The displaced veloc-
ity cones of certain initial particles may intersect
somewhere (Region A of Fig. 1-A4). And the dis-
placed velocity cones of certain final particles may
intersect somewhere (B of Fig. 1-A4). And the dis-
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placed velocity cones of certain initial and final
particles may intersect somewhere (C of Fig. 1-A4).

It may be possible that the initial particles hav-
ing momenta in the support of the wave functions
colliding at A can interact to produce particles that
travel to regions B and C. The particle traveling
to C may interact in C with particles having
momenta in the support of the wave functions of the
external particles that intersect at C to give a
particle that travels to B and hits there the particle
from A to give final particles with momenta in the
supports of the final particles that intersect at B.
The various particle momenta must satisfy the physi-
cal mass constraints, and the conservation laws must
be satisfied at the vertices. Furthermore the internal
particle velocities must be v;= k./mi. If one can find
a set of internal-particle trajectories that satisfy si-
multaneously both the space-time conditions and the
momentum-energy constraints, then U is said to be
causal with respect to ¢. Otherwise U is acausal
with respect to ¢. The set of U that are acausal with
respect to ¢ is denoted by A(¢). The condition of
strong asymptotic causality (SAC) asserts that Eq. 5
is satisfied uniformly on any compact subset of A(4).

From SAC it follows that, apart from an infinitely
differentiable function, the scattering functions are
analytic except on the closure of the positive-a
Landau surfaces. In the neighborhood of an isolated
Landau surface one obtains an i€ rule that is just
the same as the one obtained in perturbation theory.
Similar results have been obtained for points where
several Landau surfaces intersect. Thus we have
derived from a strictly mass-shell causality condi-
tion the result that, aside from singularities that have
finite derivatives of all orders with respect to real
variations, the analytic structure of each scattering
function is just that given by perturbation theory.

This supports the general idea of Landau that the
perturbation-theory singularities have a significance
that transcends that theory itself, and also provides
a justification for the assumption that the i€ rules
for continuing around singularities generated by the
unitarity equations should agree with the ie rules
obtained from perturbation theory.

Footnotes and References (Appendix A)

1. G. Wanders, Nuovo Cimento 14, 168 (1959)
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. H. P. Stapp, Phys. Rev. 139, B257 (1965).

. D. Iagolnitzer, J. Math. Phys. 6, 1576 (1956).
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Fig. 1-A4, Displaced velocity cones and
their intersection regions.
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fusion Multiple (CERN preprint).
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sality Conditions and Physical-Region Analyticity
Properties, in preparation.

7. This statement of the weak asymptotic causal-
ity condition is slightly oversimplified. We actually
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require the nonoverlap conditions to be satisfied also
for slightly larger cones that contain the supports of
the wave functions within their interiors.

8. Actually SAC asserts slightly less~--it asserts
falloff for wave functions ¢' with support confined
to the interior of the support of ¢.
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Appendix B

Proof of the Normal Connection Between Spin and Statistics in S-Matrix Theory

Henry P. Stapp

The original S-matrix proof of the normal con-
nection between spin and statistics given by this
author depended on an assumption that linear combina-
tions of particle-antiparticle amplitudes were in
principle observable. This assumption has no experi-
mental basis, at least in the case of charged particles,
and is therefore objectionable.

In that same paper the beginning of an alternative
proof not depending on this assumption was given.
This proof was based upon an apparent conflict
between abnormal statistics on the one hand and the
crossing and Hermitian analyticity properties of
scattering functions on the other. This argument h%s
recently been developed in papers by Lu and Olive,
Froissart and Taylor, ° and myself.

The analyticity property needed in these works
is indicated in Fig. 1-B1.

¢ ¢
KNC=Ch K Kt
c=0t*

Fig. 1-B4. The path c represents the
path connecting an original physical
point K [of a scattering function M (k)]
to the point K€ corresponding to a
crossed process, The path h represents
the path connecting K to the point Kb
corresponding to the Hermitian conju-
gate process. The path h is the path
from K€ to the point K®? correspond-
ing to the Hermitian conjugate of the
crossed process. The path ¢ is the

path that takes the Hermitian conjugate

function to the Hermitian conjugate func-
tion for the crossed reaction. This path

C is the complex conjugate of the path &

that takes the function representing the

transposed process into the function
representing the transpose of the cross
process.

The analyticity property needed for the new
proofs of normal connection between spin and statis-
tics is that the various (mass=-shell) paths of cross-
ing and Hermitian analytic do exist and that
c+h=h+<c., This last requirement is that the con-
tinuation of Mc(K) first to K2 and then to KhT take
one to the same point on the Rlemann surface of c}_{
MC(K) as the continuation first to K€ and then to K
A proof that these analyticity properties do in fact
hold if the singularities of the mass shell functions
are Landau singularities with Cutkosky-type discon-
tinuity formulas is given in Ref. 4.

Apart from this crucial analyticity question the
main difficulty in the new proofs concerns the phase
factor in the cluster decomposition equation. The
cluster decomposition equation is written

T S (Kpy) (1)
where the sum is over different ways of partitioning
the external particles into groups, and SC(K i) is the
connected part of the S matrix for the ith group of

S(K)= Z a
p P

pth partition. The phase factor o, is, in field
theory, the signature of the permutation of the order
of fermion variables on one side of the equation
relative to the order of these variables on the other
side.

In field theory this phase emerges from certain
manipulations with the field operators. The ques-
tion therefore arises how one establishes this phase
factor in an S-matrix theory. The point is that in an
S-matrix theory one has, originally, certain functions
that describe the scattering. A natural way to order
the variables of these functions is, for instance, to
write first the variables for the first type of particle,
next the variables of the second type of particle, and
so on. Under analytic continuation the order of two
variables representing the same type of particle can
become interchanged, and one may inquire into the
relationship between these two functions. This leads
to the spin-statistics question. But, from this stand-
point, the notion of interchange of variables of dif-
ference particles does not naturally arise; analytic
continuation does not interchange unlike variables.
So why must one deal at all with functions having
variables in other orders? Why is the phase in the
cluster decomposition equation given in terms of this
artificial idea of functions with variables in various
possible orders?

The fundamental question here is how to deter-
mine the phases a_ in S-matrix theory. The
simplest procedure is simply to borrow from field
theory the usual creation-annihilation operator
formalism for the free-particle states. If one does
this then the connection between spin and statistics
follows easily from the analyticity property described
above. But this procedure is clearly unsatisfactory,
for the question immediately arises whether it would
be possible, within a pure S-matrix framework, to
have an abnormal connection between spin and statis-
tics if one relaxed these special phase assumptions.
Since phase considerations are the essential part of
the spin-statistics question one must obviously derive
all important phases from physical considerations,
not simply fix them by fiat.

This question was considered, and essentially
resolved, in the recent work by Froissart and
Taylor. 5y show how certain ''almost physical'
requirements> allow the phases in the cluster decom-
position principle to be adjusted to the phases obtained
from the creation-annihilation operator formalism.
Once the phases are fixed in this way the spin-statis-
tics connection follows from the above-mentioned
analytlmzy properties in a quite straightforward
manner,

The proofs by Froissart and Taylor and by Lu
and Olive depend on the notion of interchanging vari-
ables of different types of particles. It is aestheti-
cally somewhat disagreeable that one should have to
bring into the spin-statistics question, which basi-
cally involves only the interchange of identical-particle
variables, this extraneous notion; it would be pref-
erable to avoid altogether the question of the phase
change under the interchange of unlike variables.
This can be done as follows.

One starts from unitarity, which can be written
in bubble notation’ as in Fig. 1-B2.
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The two pole terms displayed in Fig. 1-B2 have
§-function singularities at k4= m*, where k is the

Fig. 1-B2. A unitarity equation with two
pole terms exhibited. The external lines
have been omitted, but the two little
upper bubbles are both supposed to be
connected to the same subset of the exter-
nal lines and, similarly, the two little
lower bubbles are both to be connected to
the same subset of external lines. The
three dots represent the other terms in
the unitarity equation. The phases a and
o come from phases in the cluster decom-
position equations. In this notation the
plus bubbles represent the connected part
of the scattering functions whereas the
minus bubbles represent the complex con-
jugate of the connected part of the scatter-
ing function for the transposed (initial
— final) process.

"
o

sum of the momentum-energy vectors of the final
particles connected to the upper bubble, minus the
sum of momentum-energy vectors of the initial
particles connected to this bubble, and m is the
mass of the particle associated with the internal
line. The manifold k% = m2 intersects the physical
region of the larger process in two disjoint regions
corresponding to k’>0 and k® < 0, The arguments of
the M functions in these two regions are denoted K
and K, respectively,

The proof is carried through first for spinless
particles. The pole-factorization t eorem8 gives
for the residue of the pole at k= m*“ the result shown
in Fig. 1-B3,

ResK® =ia P
Resk® =ja P

Fig., 1-B3. The bubble notation representf-
tion of the residue of the pole at k&=
at points K and K in the physical
region of the larger diagram. Notice
that for these residue functions the two
bubbles are both plus bubbles. For the
residue of a minus bubble both little
bubbles would be minus bubbles. Notice
also that the phases a and a are just
the phases of the corresponding terms
in the original unitarity equation,

The equations represented in Fig. 1-B3 are

Res M(K) =ia M(Ki) M(K (2a)

)
2
and Res M(K) =i EM(KZ) m(K,). (2b)

The factors on the right are ordinary functions and
hence their ordering is immaterial. They have been
written down in the order of the corresponding bub -
bles of Fig. 1-B3.
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The crucial point of the argument is that the a
and a appearing in Eqs. 2 are precisely the factors
that multiply the corresponding terms in Fig. 1-B2.
This comes about because the minus bubbles on the
right in (2) are, in the course of calculating the resi-
due, *» ! converted to plus bubbles by means of the
unitarity equations

@ +®= RHS.

However, the relative phase of the plus and minus
bubbles in this equation is fixed.

In order to say something about the phases a and
a, consider first the contributions to unitarity indi-
cated in Fig. 1-B4.

b

a wo e —
P a
P
Fig. 1-B4. Two contributions to the for-

ward-scattering unitarity equation for
at+b—a+b. The intermediate parti-
cles in the first case consist of the sets
2b + p and in the second case of the
sets 2a + p. The a and b represent
any two sets of two or more particles
such that b + p = a.

Because the terms represented in Fig. 1-B4 are
just the absolute-value-squared contributions to
unitarity, the phases of these contributions are neces-
sarily unity. This is a key point.

The intermediate lines of the first diagram of
Fig. 1-B4 represent the initial particles of the reac-
tion 2b + p—>a + b. If one interchanges the particles
of the two identical sets of initial-particle variables
b of this reaction, and also does the analogous inter-
change for the second diagram, one obtains Fig. 1-B5.

.ol

Fig. 1-B5. The result of interchanging
identical initial particles of the reactions
represented by the left-hand parts of the
diagrams of Fig. 1-B4. The minus bub-
bles have been changed to plus bubbles,
so that the diagrams represent the cor-
responding residues, apart from phase
factors.

The residue equations corresponding to Fig. 1-B5
are

Res M(K) =i 0, M(K,) M(Kit), (52)

Res M(R) =10 MR, ME,),  (5b)

where Ob = I Gi
ieb
and o =1 o0..
a . i
1€a
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Here 0, is the sign change9 induced by interchang-
ing two variables corresponding to particles of type
i . Equation 5 incorporates also the fact that the
two factors of the residue correspond to transposed
processes., This is a consequence of the special

nature of the original terms shown in Fig. 1-B4, which

involve scattering functions together with the complex
conjugates of the scattering functions for the trans-
pose reactions.

Now the crossing argument is introduced. In
S-matrix theory the crossing property is deduced as
follows. The two parts of the manifold k& = m? lying
in the physical region of the larger process a +b =
a +b are disjoint, as indicated in Fig. 1-B6.

Fig, 1-B6. A diagram indicating that the
manifold k2= m? intersects the physical
regionof a +b = a + b in two disjoint
regions, in which lie K and K, respec-
tively. Also shown is a path in the physi-
cal region of a + b = a + b that leads

from K to K.

If the path in the physical region of a +b—=>a +b
from K to K can be distorted into the manifold
k“= m*, without cutting across singularities having
discontinuities that contribute to the residue function,
then one can continue the residue function 5a to the
residue function 5b, This would give

c tc —= t —
o, MK, ) M(K,") =0 M(E,") M(R,), (6)

where c and € are the paths of continuations in the
variables of the smaller processes. (The path of
continuation for the process a + b—>a + b originally
depends on the variables of this larger reaction. But
it must evidently reduce to a product of paths for the
two individual functions, for the residue function of
Eq. 5.

It was shown in Ref. 4 that, under reasonable
assumptions about the mass-shell singularity struc-
ture, the distortions into the manifold k2= m? are
possible, and that the paths ¢ and € are defined.
The paths of Hermitian analyticity h and k are also
defined, and the property ¢ + K = h + T holds true.
Admitting these results, one proceeds as follows:
The sets of external variables K, and K'l in Eq. 5
are the same sets of variables. The function M(K, )
in Eq. 6 represents the continuation of M(K,) from
K, to Ky¢. The function M(K,), on the other hand,
represents the actual physical function that describes
the crossed process. This function M(K4) does not
necessarily have to be identical to M(K1C). All that
is established by the crossing argument is Eg. 6,
which allows one to conclude only that

M(K1c) = X M(Ry) (7a)
1t6) = oan

for some constant factor N, which is still to be
determined.

and M(K IMg (7b)
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Continuation along the path h takes Eq. 6 into

o, M(K1CH) M(K, ") = o, M(E,") M(Rfi)

_ 7t t
= -0 ME,NH MRS, (8)

where we have used t}>l;§e_fact that continuation along
h takes M(K,) to -M (K,lt). This is the Hermitian
analyticity property. The important point is that
apart from the factor -0 _ the right-hand side is an
absolute value squared. %sing the analyticity prop-
erty c + E = h + ¢, one obtains

M(Kic-E) = M(Kihc). (9)
But Hermitian analyticity gives
MK, = -MY (K, (10)
from which it follows that
M(Kihg) - - M*(Kita), (11)

since ¢ = &1 Substituting into Eq. § one obtains

H
te
1

from which one concludes that either M(Kitc) and
M(Kit) are both zero or

o, M) MK, ) =0 MRAHMIR ), (12)

g 0, = n o,=1. (13)
a b b

Multiplying by 0 _, the sign induced by an interchange
of variables of tyﬁ)e p, one gets

F; o, = cp, (14)

where the product now runs over all particles of the
original process b+ p—>a.

The point now is that this argument can be car-
ried out with any one of the particles of b + p > a
singled out as p. (Or p for a final particle.) Thus
the product of all the 0, is equal to any single one
of them. This means either that the 0, are all posi-
tive, or that they are all negative and that the total
number of particles in the reactionb + p—a is odd.

The possibility that certain particles participate
only in reactions involving odd numbers of particles
is incompatible with unitarity. For such reactions
would give contributions to the unitarity equations for
forward scattering amplitudes, which involve even
numbers of particles altogether. And all contributions
to the forward scattering are of the same sign. Thus
a particle cannot participate only in reactions involv-
ing odd numbers of particles, and hence

(Tp 1 (15)
for any particle p that scatters. [The argument
given above requires a and b to consist of at least
two particles. The possibility that the only connected
parts involving p have single particles for a or b
is ruled out by showing a conflict with the pole factori-
zation property plus unitarity. (Unitarity guarantees
the existence of a nonvanishing transpose process,
which is needed to ensure a nonvanishing pole contri-
bution to a process with more particles.)

The extension of this result to particles having
spin is trivial in the M-~function formalism. 1,47
In place of Eq. 8 one obtains

B &%) Mk,

[}
UR M(K1 1 )
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= o, MR, EE MRS (16)

where a(p) is a Hermitian relativistic spin matrix
that satisfies

&(-p) = (-1)°° &(p). (17)

Since the continued value pC is the negative of the
physical value p one obtains, in place of Eq, 14,
the equation

no, = (-1)%%0_,
it P

which can be written as
l? Gi' =0, (14")
i

where o) = (-1)%%a,, (18)

To get 14' we have used the fact that the total number
of noninteger spin particles is conserved mod 2.
From 14' one obtains in place of 15 the result

Up' = 1, (15")
which is the normal connection between spin and
statistics.
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