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S e s s i o n 1 

FUNDAMENTAL THEORETICAL QUESTIONS 

M. Froissart, Rapporteur 

Introduction 

Before reviewing for you the main fields of activ 
ity regarding the fundaments of theory, let me show 
you a map (Fig. 1-1) of the different logical connec­
tions among these fields, because, judging from the 
attendance at the discussion sessions, I presume 
that many of you are not quite as up to date as you 
perhaps might be. 

I have drawn a boundary separating the results 
relevant to off-mass-she 11 theories or field theories 
in a generalized sense, and the on-mass-shell 
results or S-matrix theory results. Ideally the 
basic axioms should be immediate translations of our 
experience. A very attractive set would be Lorentz 
invariance, causality, and unitarity. The trouble 
is that the only tractable form of causality up to 
recently was through locality, which had to be for­
mulated in terms of fields. Hence the very promi­
nent role of field theory up to this day in our under­
standing of the microscopic world. May I stress 
also the importance of the success of quantum electrc 
dynamics as a reason to stick to field theory. How­
ever , in view of the very singular nature of fields, 
it has been thought wise to dismiss the idea of fields 
and to consider only integrals of fields, over regions 
of space time. This led to the theory of local 
observables. 

Most experimentalists are really interested only 
in knowing what happens on the mass shell. This 
has put a heavy burden on the theorists. Field theory 
gave the dispersion relations, and a small domain of 
analyticity in momentum transfer (Lehmann ell ipse). 

When combined with unitarity, these results fur­
nished bounds and relations on the asymptotic behav­
ior of the amplitude. From then on, everything was 
until recently a matter of sophisticated guess. 
Mandelstam started the game by proposing a certain 
domain of analyticity compatible with perturbation 
theory to fourth order and dispersion theory. Then 
came different hypotheses: maximal analyticity, 
Regge behavior, bootstrap. 

Field Theory 

The main effort in field theory has been devoted 
to a study of the mathematical structure involved. * 
It is interesting to note that a number of tools have 
been developed, which are useful both for field 
theory and for statistical mechanics. The reason 
for this is clear: in both cases one has to do with 
systems with an infinite number of degrees of f ree­
dom. A very interesting example of the mathemati­
cal complications involved in the simplest cases has 
been discussed by Prof. Thirr ing 2 in connection with 
the B . C . S . theory of superconductivity. Although 
the model used is excessively simple and explicitly 
solvable in the case of a finite number of degrees of 
freedom, the passage to the limit exhibits a number 
of unexpected features, among which is the fact that 
some products of operators have a limit different 
from the product of the limits. 

To study this kind of mathematical trouble, 
Jaffe and Lanford^ have built model field theories 
with an artificially limited number of degrees of 
freedom. The object is to see which quantities have 
any likelihood of keeping a meaning as the cutoffs are 
removed. In an effort to remove the limitations 
imposed by the assumption of the existence of fields, 
and considering that the phenomena of ultraviolet 
divergence might make the fields more singular than 
they are usually assumed to be, Jaffe^ has also de­
veloped a formalism capable of accommodating some 
nonrenormalizable theories. It appears that all 
results obtained up to date in conventional field theory 
hold true in this new version, except for the asymp­
totic behavior at high energy. Conventional disper­
sion relations may be proved, but might need an 
infinite number of subtractions if it were not for the 
results of Martin, which we shall discuss. 

Much work has been devoted to the structure of 
the theory of local observables. ^ I understand that 
only technical difficulties prevent Borchers from 
deriving a concept very close to that of fields, even 
unobservable charged fields, from the theory of 
local observables. Epstein" has already proved the 
TCP theorem in this theory. 

Fig . 1-1. Logical map of "Fundamental" 
concepts. 
Continuous lines represent inferences, 
broken lines indications. Topics sur­
veyed in this report are indicated by 
double lines. 

Analyticity on the Mass Shell 

A sequence of very important results has 
broadened considerably the bridge between field 
theory and S-matrix theory. The papers of Bros, 
Epstein, and Glaser^ have generalized the concept 
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of crossing to all two-body amplitudes, whether dis­
persion relations are proved or not. Al so , they have 
shown that the two-body amplitudes are all analytic 
in some small neighborhood of the physical region, 
this analyticity being in both variables s (energy 
variable) and t (momentum-transfer variable). 

Using this information, the known dispersion 
relations, and unitarity, Martin** has been able to 
prove a very large number of results. In view of the 
importance of this work, let me go a little into the 
scheme of the proof. 

We start from a conventional dispersion relation, 
N A (s ' , t )ds ' 

A ( s , t ) = 5—J. 

+ subtractions. 

Unitarity is used then under the form 

with l m a i ( s ) > 0 , and with all derivatives of P l ( Z ) posi­
tive for Z> 1. This allows one to expand A g ( s , t ) 
in a Taylor series in t and to show that the radius 
of convergence is the same for all s, by interchange 
of the order of integration and summation of the 
series. Then the dispersion relation is valid for all 
values of t for which analyticity has been proved for 
fixed s. Typical values are9 

That the dispersion relation stays valid as it is wr i t ­
ten leads to the consequence that, in these regions, 
the asymptotic behavior is nearly the same as in the 
forward direction. Hence, by an almost circular 
argument, using unitarity, one deduces that, even 
with dispersion relations a la Jaffe--with an infinite 
number of subtractions--to start with, the behavior 
of the amplitude is s In s, therefore the dispersion 
relations are valid with two subtractions. An inter-

Fig. 1-2. Values of the momentum trans­
fer variable t for which dispersion 
relations are proved in TT-TT scattering. 

esting feature is that the reasoning can be started 
again from the domain of analyticity just found, and 
a larger domain is obtained. The result for TTTT scat­
tering is represented on Fig . 1-2. The same opera­
tion can be performed for TTK and TTN scattering. The 
domain obtained in the latter case goes to larger 
values of -t than was proved in the classical proofs 
of dispersion relation. More work can undoubtedly 
be done by using, in the TTTT case, the domains 
obtained in the three channels, and finding their 
holomorphy envelope. To date, the real part of the 
analyticity domain is given approximately by the cuts 
and the dashed region of Fig. 1-3. That is , it goes 
to the double spectral region except for a few cases. 
This gives a region of analyticity for the partial-
wave amplitudes indicated on Fig . 1-4. Possible 
singularities are far enough away—compared, say, 
with the mass of the p meson—so that calculations 
neglecting far-away singularities may be justified. 

On-Mass-rShell Causality 

Much work is also devoted to getting rid of the c i r ­
cuitous--and not completed--logical path connecting 
causality to analyticity. Many people think that an 
axiom like that of locality is probably as unphysical 
as an axiom of analyticity, in the sense that it can 
be checked only indirectly through its consequences. 
As Blokhintsev points out, ^ it is quite feasible 
to build theories which are nonlocal on the microscop­
ic scale, but which exhibit gross causality. These 
theories might perhaps only be distinguished by 
additional singularities. The works of the "Cambridge 
School" and others^^-19 have shown that an assump- 1 

tion of analyticity of the amplitude in some neighbor­
hood of the physical region leads to uniquely deter-

Fig . 1-3. The shaded region is the real 
trace of the analyticity domain of the TT-TT 
scattering amplitude. Within this region 
the cuts are a la Mandelstam. The 
dashed curves are the boundaries of the 
Mandelstam double spectral regions. 
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Fig . 1-4. Analyticity domain for IT-IT scatter­
ing partial waves. The thin neighborhood of 
the positive real axis is not drawn to scale. 

mined singularities, and hence^ u to the usual de­
scription of successive interactions in multiple scat­
terings These arguments use only postulates of 
clustejr decomposition 21 and unitarity. 

22 
The work of Stapp assumes a weak condition 

on asymptotic decrease of transition probabilities 
when particles are taken away. The result is to 
prove the infinite differentiability of amplitudes on 
the physical region except at the points where singu­
larities are expected. A condition of exponential 

decrease of transition probabilities allows Omnes 
to derive a finite domain of analyticity for the two-
body amplitudes in momentum transfer, apart from 
some technical difficulties. Some other au thors 2 4 " 2 ^ 
have also tried to attack this problem, but without 
any decisive success. 

Asymptotic Theorems 

We can distinguish between bounds and other 
theorems such as the Pomeranchuk theorem and the 
connections between the phase and the modulus of 
the amplitude. In the first field, no new result has 
been obtained. However, many bounds are now 
rigorously derived from field theory, and even from 
the generalized version due to Jaffe. This is of 
course due to the work of Martin. I would like to 
mention specially the bound on form factors 
| F ( t ) l > e x p (-b V-t) derived by Jaffe 2^ rigorously, 
even for the cases for which no dispersion relations 
have been proved for the form factor. Tables 1-1, 
1 - I I , and 1 -II I have been compiled by Martin, and 
give an up-to-date account of the situation. 28-43 

In other asymptotic theorems, the situation is 
still very confused. The Pomeranchuk theorem now 
holds for all processes, due to BEG, ^ but, as pointed 
out by Eden, 4 4 no one has yet succeeded in removing 
the extra hypothesis such as the existence of a limit 
of the amplitude--or at least some control over pos­
sible oscillations--on the one hand, and some control 
over the growth of the real part with respect to the 
imaginary part. 

To obviate the need for these requirements, 
Khuri and Kino shita 4 5> 4 6 have found a number of 
inequalities which, unlike ordinary dispersion rela­
tions, allow one to test these ideas with measure-

Table 1-1. Upper bounds. 

Forward scattering 

Assumption 

Axiomatic 

References 

Fixed transfer 

Axiomatic 

Fixed angle 

| F ( s , cos0)l < C ( s 3 / 4 ( l o g s ) 3 / 2 ) / ^ ^ ! ^ ) ; 

| F ( s , cos0) I < C(log s ) 3 / 2 / ( s i n 2 0 ) ; 

da/dfl< C(log s ) 3 / (s in 4 0) s 

Axiomatic 

Mandelstam 

29 

31 

(in this form valid for arbitrary spins) 32 - 34 



16 

Table 1 - I I . Diffraction peak. 

Session 1 

d < < C T t o / 1 

Assumption References 

dt log A B ( s , t ) l t = 0 > ^ -j None 35 

^r- log A g ( s , t ) l t _ Q < C(log s) Axiomatic 30 

/ 1 I F(s , cos0 | d cos 0 
_ - > o Axiomatic 36 - 37 

I F(s , cos = 1)1 

if A (s, cosO = 1) > C/log s 

ments of the forward amplitude on a finite real 
interval. The information used on the behavior at 
infinity is the positivity of the imaginary part, and 
the established fact that there are at most two sub­
tractions needed. 

I would like to end by expressing my apologies 
to the many people who may have been treated 
unfairly, or whose work I may have misrepresented. 
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Table 1 -II I . Lower bounds. 

Elastic cross section Assumption References 

(a ) 2 

tot' g > C — . Axiomatic 38 el / -i / (log s) 

Forward amplitude (strict for complex s; average sense for real s) 

( a ) , 2 I F(s, t=0) |> l / s^ 

(no unphysical cut), 
6 2 

0" total > l / ( s log s) Axiomatic 28 

(b) 
if F(threshold) < 0 or is small 
compared with an integral over total 

cross sections at low energies only, Axiomatic 28,39 

|F(s , t=0) |> const >0 , Axiomatic 

atotal > V ( S

2 l o g 2 s ) 

Fixed-angle amplitude 

| F ( s , c o s 0 ) | >exp [ - * / ? l o g s C ( 0 ) ] , Mandelstam 40 

C(0) for small 6 ~ 41 

Form factors 

I F(t) I >exp(-C NTTT) Axiomatic 42,27 

Fixed-t amplitude, t < 0 

| F ( s , t ) | > S " N Axiomatic 

Fixed-u amplitude, u < 0 
| F ( s , u ) I > S " N Slightly more than 43 

^ axiomatic 
if pole at u=M 

Discussion 

Nauenberg (Santa Cruz): Could you give some more 
details on what results have been obtained about 
Regge behavior from fundamental assumptions? 

Froissart: From the fundamental side I haven't 
cTrawn any continuous arrow on the map. There are 
some inequalities which have been proved to hold 
asymptotically, and which are consistent with Regge 
behavior, but I don't think that anything more de­
tailed has been proven. 

Sudarshan (Syracuse): It was my impression that you 
said that Borchers had proved something about the 
connection between local observables and the exist­
ence of a vacuum. 

Froissart: Yes , the proof suffers a little technical 
difficulty now, but I don't think it's very essential. 
He proves that in a theory of local observables there 
exists a vacuum state which has all good properties. 

Sudarshan: I must have been misunderstood. If you 
took a free field, a Wick polynomial of second degree 

as Wightman and other people have done, then the 
states of this particular system split into two classes, 
those corresponding to an odd number of particles of 
the original field, and those corresponding to an even 
number of particles. If you consider that particular 
subset of states which consists only of odd numbers 
of particles of the original free field, the new field 
we have introduced seems to be able to connect only 
to other odd numbers of particles. In such a theory 
there seems to be no vacuum at all, and I don't quite 
understand how one could have proved the existence 
of avacuum. This is a free-field theory; there are 
no divergences of any kind. 

Froissart: The idea of Borchers is very simple. 
You start by taking any state, and then you essentially 
average out over the whole space; that is, if there 
are any particles to start with, then these particles 
should not contribute at all to the average state. That 
is the essence of Borchers's proof. I do not know 
which of the axioms the phenomena you are mention­
ing contradict. 

Sudarshan: This assumes that that there exists a dis­
crete mass spectrum of the field? 
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Wightman (Princeton): May I comment on that? The 
point is that Borchers is using a definition of physical 
equivalence which is appreciably weaker than that to 
which many people are accustomed, so that he would 
not have to assume that there was, a priori , a dis­
crete point in the spectrum. He would count two 
theories equivalent if they gave arbitrarily close 
results for all measurements in bounded regions of 
space time. Presumably he wil l take your example 
and prove it equivalent to another example in which 
there was a vacuum state, but only in this weak sense. 
However, it has to be said that this weak sense is a 
very physical sense, because it corresponds to 
measurements in actual laboratories as best we know 
how to describe them. 

Todorov (Dubna): I would like to make the following 
remark, concerning the derivation of Pomeranchuk's 
theorem. 

It is not necessary to utilize the nontrivial 
results of Bros , Epstein, and Glaser about the analy­
ticity domain of any two-body scattering amplitude in 
order to prove a Pomeranchuk-type theorem for it. 
It is sufficient to take into account the analyticity 
properties of the so-called asymptotic amplitude, 
introduced by Meiman (1964). (The exact conditions 
under which the physical amplitude has the same high 
energy behavior as the asymptotic one practically 
coincide with the smoothness assumption needed for 
the proof of Pomeranchuk's theorem. ) The advan­
tage of such a method results from the fact that it 
applies to production amplitudes too (cf. Logunov's 
report at the 12thInternational Conference on High 
Energy Physics, Dubna, 1964). 

Sucher (Maryland): Could you extend the remarks 
you made about going from the local observable theory 
to field theory, that is , the possible existence of 
fields once you have the local observable theory? 

Froissart: This is not really a rigorous connection. 
You have a number of stages of the theory. You 
have first the theory of local observables. Then you 
have fields a la Borchers, that is , things which are 
defined in the whole space but which are not quite 
local. They have some finite range, arbitrarily 
small, but finite. Otherwise, they enjoy all the prop­
erties of fields. Then you have fields a la Jaffe, 
where the fields are local but are not distributions. 
They are generalized functions of a higher order. 
And then you have fields a la Wightman, where the 
fields are distributions. Now, the step which has 
been accomplished is to show that local observables 
imply the existence of fields a la Borchers. Also , 
Jaffe has proved that fields a la Jaffe are just as good 
as fields a la Wightman for all practical purposes. 
So, we have only to cross now the gap between 
Borchers and Jaffe. 

Lichtenberg (Indiana): Could you write down some of 
the asymptotic theorems that Martin has proved 
recently? 

Froissart . No new asymptotic theorems have been 
proved since the Dubna Conference. The only refine­
ments which have been proved is that the total cross 
sections are bounded so that the constant in front of 
the (log) term is now known for TTTT, TTK , and K K 
scattering: 

a t o t < ( 4 T r / m ^ r ) l o g 2 ( s / s

0 ) -
We still don't know s . For TTN scattering the coef­
ficient is 12Tp/m^. sfee Tables 1-1 through 1 - I I I . 

Logunov (Serpukhov): What behavior at infinity of the 
form factor was assumed in the work of Jaffe in 
order to get the lower bound? 

Froissart: He did it using his theory, with general­

ized functions of a higher order. See References 4 
and 27. 

Chew (Berkeley): Does the analyticity domain 
established by Martin suffice to allow the definition 
of the Froissart-Gribov continuation in angular mo­
mentum for large angular momentum? 

Froissart: No, it does not go to infinity. 

Martin (CERN): The only result on the Froissar t -
Gribov continuation is that you can do it for any s 
which is inside the region of analyticity (see Fig . 1-2). 
Of course, that is quite obvious because then you 
have dispersion relations with two subtractions. But 
for physical energies I have nothing at all. 

Eden (Cambridge): Could you comment on what has 
been done on the relation between spin and statistics 
in S-matrix theory in the past two years? 

Froissart: The relation between spin and statistics 
in S-matrix theory is largely a matter of semantics, 
because the arguments on analyticity are not very 
well standardized. The question is better under­
stood now, in that we see better how this relation 
comes about, but it is very hard to say what has been 
derived and what has not been derived in S-matrix 
theory, in the sense that some authors take as postu­
lates other authors1 theorems, and conversely. The 
connection between spin and statistics has been proved 
now for four years by Stapp, using quite a number of 
axioms. Now, one by one these axioms have been 
removed, but the seam is not completely tight, I 
would say. 

Stapp (Berkeley): There has been important progress 
in the last year on the S-matrix proof of the normal 
connection between spin and statistics. In the first 
place several technical assumptions that were impor­
tant in the original proof have now been replaced by 
physical assumptions. In the second place the assump­
tion of the earlier proof that the usual types of cross­
ing relations are valid has now been shown to follow 
from assumptions that the singularities of the mas:s~= 
shell scattering functions are .Landau singularities 
with Cutkosky-type discontinuities. These improve­
ments are given in recent papers by Lu and Olive, 
Froissart and Taylor, and myself. 

Hepp (Princeton): I want to comment on the connec-
tion between spin and statistics for local observables. 
It has not been proved, up to now, for the particles 
connected with fields "a la Borchers, " and it's a 
challenge for everybody. The T C P theorem has 
recently been proven by Epstein^ under the frame­
work of local observables, but only for the S matrix. 

Blokhintsev (Dubna): Professor Froissart included 
in his diagram "The Field Theory. " This gives me 
the opportunity to attract your attention to the work 
concerning nonlinear field theory done by B. 
Barbashev and N . Chernikov (Dubna). About thirty 
years ago M. Born and L . Infeld developed nonlinear 
field theory. The scalar field of the Born-Infeld 
Lagrangian is 

L = -Nil - <jg>2 + ( § | ) 2 ' 

and coincides with the Lagrangian for the "soap fi lm" 
in Minkowski space. They obtained an explicit and 
rigorous solution of the quantized nonlinear equations 
corresponding to this Lagrangian. Instead of x and 
t, they use the variables a, (3, which only asymp­
totically coincide with x-t and x+t; but—for small 
x, t—a and p are quantum operators, so that space 
and time are automatically quantized in the region 
of high nonlinearity. This result seems to be very 
instructive from the mathematical point of view. 
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Appendix A 

Recent Progress in Axiomatic S-Matrix Theory 

Henry P. Stapp 

There has been important recent progress in 
four areas: (a) S-matrix causality conditions and 
their consequences, (b) proof of the spin-statistics 
connection, (c) derivation of the crossing properties, 
and (d) derivation of discontinuity equations. 

The first topic is S-matrix causality conditions. 
Here the aim is to formulate causality conditions 
that refer only to mass-shell quantities, and then to 
derive analyticity properties. Similar ideas have 
been discussed by Wanders, ^ Stapp, Iagolnitzer, 
Peres , 4 Pham, ^ and Chandler and Stapp. ^ The 
furthest development is by Pham and by the last two 
authors, whose work I now describe. 

The basic quantity is the transition amplitude 

s[<|>] s J S ( k . ) p A . + . f c . ) . ( i ) 

Here S(k.) is the scattering matrix, and ^ is ^ . or 
ty* for initial or final particles. The support ol 
4>.(k.) lies on the mass shell. We shall take the 
c]>i(ki) to have small compact support and to be infi­
nitely differentiable in the mass shell. The important 
property of these functions is given by Ruelle's 
lemma, which states the following: Let the curve in 
Fig. 1-A1 represent the mass shell and let the small 

Fig. 1-A1. The velocity cone V . . 

segment on it represent the small compact support 
of cj>.. Let be the smallest cone from the origin 
that contains the support of cj)̂ . The cone Vi is 
called the velocity cone of cj>̂ , and it is considered to 
be a cone also in space-time. Ruelle's lemma says 
that if the space-time point x is not in then the 
Fourier transform of ^ ( k ^ ) satisfies the property 

? i ( x T ) ^ 0 . (2) 

Here T is a scale parameter and the double arrow 
means the limit is approached faster than any inverse 
power of T as T becomes infinite. Ruelle's 
lemma says that, in terms of the variable x = X / T , 
the wave function collapses "rapidly" into the ve loc ­
ity cone as T becomes infinite. 

Using Ruelle's lemma, one easily proves that 
the integral over all space of the absolute value of the 
product of displaced wave functions satisfies 

/ d 4 x l < | > . ( x . u i T ) c | ) i ( x - u i T ) | = ^ 0 (3) 

unless the displaced velocity cones overlap (see 
Fig . 1-A2). 

F ig . 1-A2. Displaced velocity cones. 

Let U = { u . } b e a set of displacements. The 
quantity of interest is 

S ^ ] - / S ( k . ) n d 4 k A ( k . ) e - i k i V . (4) 

The exponential factor e ^ i u i T displaces particle 
i bv U . T . We are interested in the behavior of 
S[c])^T] as T becomes infinite. Our causality 
requirements wil l be statements that under certain 
conditions 

S t ^ l ^ S ^ ] , (5) 

where SQ[4>] is the value that S[cf>] would have if 
there were no scattering. 

Two causality conditions have been formulated. 
The first, called weak asymptotic causality (WAC) , 
says that Eq. 5 is satisfied if,for some re > 0, the 
displaced initial-particle velocity cones do not inter­
sect in t ^ € T and the displaced final-particle 
velocity cones do not intersect in t ^ - e T . See Fig. 
1-A3_. The set of U such that these conditions are 

Fig . 1-A3. Initial and final displaced veloc­
ity cones well-separated in t < €T and 
t ^ - € T respectively. 

satisfied is called the set of acausal displacements 
A e(cj)), and Eq. 5 is required to hold uniformly in U 
on compact subsets of A e { § ) , for fixed <|> and e. ̂  

The WAC condition is justified by proving that 
it holds in any classical model with finite range 
interactions. The quantum-mechanical <(> of Eq. 5 
is correlated to the statistical probability function of 
the classical model. 

The WAC condition is also very plausible 
quantum-mechanically. If U is in A^fc])), then it fo l ­
lows from Ruelle's lemma that 

/ € T d 4 x I cj) ( x - u .T ) 6 . ( X - U T ) | ^ 0 (6a) 
-00 J J 
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for all initial i -f j , and 

00 

for all final i ^ j . That is , the initial-particle 
overlap in t ^ er and the final-particle overlap in 
t > - € T both fall off rapidly. In fact if U is in 
A ^ ( c j ) ) , then the displaced initial-particle cones 
become infinitely far apart in t < er as t becomes 
infinite, and the displaced final-particle velocity 
cones become infinitely far apart in t > - € T . But if 
the initial particles do not come close to each other 
in t < 6 T then the initial particles should be well 
represented near t = 0 by the unperturbed initial-
particle wave functions. And if the final particles 
do not come close to each other in t > -er then the 
final particles should be well represented near 
t = 0 by the unperturbed final-particle wave functions. 
Thus the transition amplitude should be well repre­
sented by the overlap of the unperturbed initial and 
final wave functions, which is just SQ [cf> T ] . 

The WAC condition has important consequences. 
If the two-body scattering function is analytic except 
for singularities in the energy variable at normal 
thresholds, then it follows from WAC that, apart 
from an infinitely differentiable function, this function 
is the limit of a function analytic in a strip lying in 
the upper-half energy plane. It is not assumed 
beforehand that the original functions in the various 
intervals between the normal thresholds are parts of 
a single analytic function. Thus what is proved is 
first that the functions in the different intervals are 
analytic continuations of each other, second that the 
path of continuation connecting them moves through 
the upper-half energy plane at the normal threshold 
singularity, and third that the integral over the physi­
cal function is obtained by taking the contour to run 
slightly above the threshold singularities. (Thus, 
for example, the principal value integral is not used. ) 
Such rules for continuing around physical region 
singularities are called i€ rules. These considera­
tions show how they can be derived from str ict ly 
mass-shell arguments. Singularities that possess 
finite derivatives of all orders with respect to real 
variations dE are not covered by the analysis, and 
hence ie rules are not deduced for them. However, 
the usual pole, square root, and logarithmic singular­
ities arising from changes in the form of the unitarity 
equations are covered. 

It is worth noticing that the K matrix, like the 
S matrix, is analytic in the various intervals between 
the normal thresholds, but that these various functions 
are not analytically connected. Thus some principle 
is required to justify the assumption that it is S 
that has the nice analyticity property. The weak 
asymptotic causality condition serves this purpose, 
for the two-body scattering function. 

One would like to obtain similar ie rules for 
all physical region singularities of all (many-particle) 
scattering functions. The WAC is not strong enough 
for this. A stronger condition that is sufficient is 
the strong asymptotic causality (SAC). This condi­
tion expresses the idea that interactions are carried 
over infinite distances only by physical particles. 
More accurately, interactions not carried by physi­
cal particles are required to fall off faster than any 
inverse power of the Euclidian distance. 

This condition is formulated as follows: Consid­
er a $ = { c ^ } and a U = { u ^ . The displaced ve loc­
ity cones of certain initial particles may intersect 
somewhere (Region A of Fig. 1-A4). And the dis­
placed velocity cones of certain final particles may 
intersect somewhere (B of Fig. 1-A4). And the dis­

placed velocity cones of certain initial and final 
particles may intersect somewhere (C of Fig. 1-A4). 

It may be possible that the initial particles hav­
ing momenta in the support of the wave functions 
colliding at A can interact to produce particles that 
travel to regions B and C. The particle traveling 
to C may interact in C with particles having 
momenta in the support of the wave functions of the 
external particles that intersect at C to give a 
particle that travels to B and hits there the particle 
from A to give final particles with momenta in the 
supports of the final particles that intersect at B. 
The various particle momenta must satisfy the physi­
cal mass constraints, and the conservation laws must 
be satisfied at the vert ices . Furthermore the internal 
particle velocities must be v^= k^/m^. If one can find 
a set of internal-particle trajectories that satisfy si­
multaneously both the space-time conditions and the 
momentum-energy constraints, then U is said to be 
causal with respect to cf>. Otherwise U is acausal 
with respect to c|>. The set of U that are acausal with 
respect to cf> is denoted by A(c|>). The condition of 
strong asymptotic causality (SAC) asserts that Eq. 5 
is satisfied uniformly on any compact subset of A(cf>).^ 

From SAC it follows that, apart from an infinitely 
differentiable function, the scattering functions are 
analytic except on the closure of the positive-a 
Landau surfaces. In the neighborhood of an isolated 
Landau surface one obtains an ie rule that is just 
the same as the one obtained in perturbation theory. 
Similar results have been obtained for points where 
several Landau surfaces intersect. Thus we have 
derived from a strictly mass-shell causality condi­
tion the result that, aside from singularities that have 
finite derivatives of all orders with respect to real 
variations, the analytic structure of each scattering 
function is just that given by perturbation theory. 
This supports the general idea of Landau that the 
perturbation-theory singularities have a significance 
that transcends that theory itself, and also provides 
a justification for the assumption that the ie rules 
for continuing around singularities generated by the 
unitarity equations should agree with the ie rules 
obtained from perturbation theory. 
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Session 1 21 

fusion Multiple (CERN preprint). 
6. C. Chandler and H. P. Stapp, S-Matrix Cau­

sality Conditions and Physical-Region Analyticity 
Properties, in preparation. 

7. This statement of the weak asymptotic causal­
ity condition is slightly oversimplif ied. We actually 

require the nonoverlap conditions to be satisfied also 
for slightly larger cones that contain the supports of 
the wave functions within their interiors. 

8. Actually SAC asserts slightly less-- i t asserts 
falloff for wave functions $ ] with support confined 
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Appendix B 

Proof of the Normal Connection Between Spin and Statistics in S-Matrix Theory 

Henry P. 

The original S-matrix proof of the normal con­
nection between spin and statistics given by this 
author depended on an assumption that linear combina­
tions of particle-antiparticle amplitudes were in 
principle observable. This assumption has no experi­
mental basis, at least in the case of charged particles, 
and is therefore objectionable. 

In that same paper the beginning of an alternative 
proof not depending on this assumption was given. 
This proof was based upon an apparent conflict 
between abnormal statistics on the one hand and the 
crossing and Hermitian analyticity properties of 
scattering functions on the other. This argument has 
recently been developed in papers by Lu and Olive, 
Froissart and Taylor, ^ and myself. 

The analyticity property needed in these works 
is indicated in Fig. 1-B1. 

Fig. 1-B1. The path c represents the 
path connecting an original physical 
point K [of a scattering function M (k)] 
to the point K c corresponding to a 
crossed process. The path h represents 
the path connecting K to the point 
corresponding to the Hermitian conju­
gate process. The path h is the path 
from K c to the point K c ^ correspond­
ing to the Hermitian conjugate of the 
crossed process. The path c is the 
path that takes the Hermitian conjugate 
function to the Hermitian conjugate func­
tion for the crossed reaction. This path 
c is the complex conjugate of the path c 
that takes the function representing the 
transposed process into the function 
representing the transpose of the cross 
process. 

The analyticity property needed for the new 
proofs of normal connection between spin and statis­
tics is that the various (mass-shell) paths of cross­
ing and Hermitian analytic do exist and that 
c + FT = h + c . This last requirement is that the con­
tinuation of M C ( K ) first to K*1 and then to K n c take 
one to the same point on the Riemann surface of ^ 
M c ( K ) as the continuation first to K c and then to K 
A proof that these analyticity properties do in fact 
hold if the singularities of the mass shell functions 
are Landau singularities with Cutkosky-type discon­
tinuity formulas is given in Ref. 4. 

Apart from this crucial analyticity question the 
main difficulty in the new proofs concerns the phase 
factor in the cluster decomposition equation. The 
cluster decomposition equation is written 

S(K) = s Q n S (K . ) , (1) 
p P i C pi 

where the sum is over different ways of partitioning 
the external particles into groups, and S c (Kp^) is the 
connected part of the S matrix for the i th group of 

Stapp 

pth partition. The phase factor cip i s , in field 
theory, the signature of the permutation of the order 
of fermion variables on one side of the equation 
relative to the order of these variables on the other 
side. 

In field theory this phase emerges from certain 
manipulations with the field operators. The ques­
tion therefore arises how one establishes this phase 
factor in an S-matrix theory. The point is that in an 
S-matrix theory one has, originally, certain functions 
that describe the scattering. A natural way to order 
the variables of these functions is , for instance, to 
write first the variables for the first type of particle, 
next the variables of the second type of particle, and 
so on. Under analytic continuation the order of two 
variables representing the same type of particle can 
become interchanged, and one may inquire into the 
relationship between these two functions. This leads 
to the spin-statistics question. But, from this stand­
point, the notion of interchange of variables of dif­
ference particles does not naturally arise; analytic 
continuation does not interchange unlike variables. 
So why must one deal at all with functions having 
variables in other orders? Why is the phase in the 
cluster decomposition equation given in terms of this 
artificial idea of functions with variables in various 
possible orders? 

The fundamental question here is how to deter­
mine the phases a in S-matrix theory. The 
simplest procedure is simply to borrow from field 
theory the usual creation-annihilation operator 
formalism for the free-particle states. If one does 
this then the connection between spin and statistics 
follows easily from the analyticity property described 
above. But this procedure is clearly unsatisfactory, 
for the question immediately arises whether it would 
be possible, within a pure S-matrix framework, to 
have an abnormal connection between spin and statis­
tics if one relaxed these special phase assumptions. 
Since phase considerations are the essential part of 
the spin-statistics question one must obviously derive 
all important phases from physical considerations, 
not simply fix them by fiat. 

This question was considered, and essentially 
resolved, in the recent work by Froissart and 
Taylor. They show how certain "almost physical" 
requirements^ allow the phases in the cluster decom­
position principle to be adjusted to the phases obtained 
from the creation-annihilation operator formalism. 
Once the phases are fixed in this way the spin-statis­
tics connection follows from the above-mentioned 
analyticity properties in a quite straightforward 
manner. 

The proofs by Froissart and Taylor and by Lu 
and Olive depend on the notion of interchanging var i ­
ables of different types of particles. It is aestheti­
cally somewhat disagreeable that one should have to 
bring into the spin-statistics question, which basi­
cally involves only the interchange of identical-particle 
variables, this extraneous notion; it would be pref­
erable to avoid altogether the question of the phase 
change under the interchange of unlike variables. 
This can be done as follows. 

One starts from unitarity, which can be written 
in bubble notation^ as in Fig, 1-B2, 
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The two pole terms displayed in Fig. 1-BZ have 
6-function singularities at m , where k is the 

+ = 0 

Fig. 1-B2. A unitarity equation with two 
pole terms exhibited. The external lines 
have been omitted, but the two little 
upper bubbles are both supposed to be 
connected to the same subset of the exter­
nal lines and, similarly, the two little 
lower bubbles are both to be connected to 
the same subset of external lines. The 
three dots represent the other terms in 
the unitarity equation. The phases a and 
a come from phases in the cluster decom­
position equations. In this notation the 
plus bubbles represent the connected part 
of the scattering functions whereas the 
minus bubbles represent the complex con­
jugate of the connected part of the scatter­
ing function for the transposed (initial 

> final) process. 

sum of the momentum-energy vectors of the final 
particles connected to the upper bubble, minus the 
sum of momentum-energy vectors of the initial 
particles connected to this bubble, and m is the 
mass of the particle p associated with the internal 
line. The manifold k^ = intersects the physical 
region of the larger process in two disjoint regions 
corresponding to k°>0 and k° < 0. The arguments of 
the M_functions in these two regions are denoted K 
and K , respectively. 

The proof is carried through first for spinless 
particles. The pole-factorization theorem^ gives 
for the residue of the pole at k^= m the result shown 
in Fig. 1-B3. 

Res 

R 0 = 

i a %+) 

The crucial point of the argument is that the a 
and a appearing in Eqs. 2 are precisely the factors 
that multiply the corresponding terms in Fig. 1-B2. 
This comes about because the minus bubbles on the 
right in (2) are, in the course of calculating the res i ­
due, 4> 7 converted to plus bubbles by means of the 
unitarity equations 

0 RHS. 

However, the relative phase of the plus and minus 
bubbles in this equation is fixed. 

In order to say something about the phases a and 
a, consider first the contributions to unitarity indi­
cated in Fig. 1-B4. 

b 

Fig. 1-B4. Two contributions to the for­
ward-scattering unitarity equation for 
a + b a + b. The intermediate parti­
cles in the first case consist of the sets 
2b + p and in the second case of the 
sets 2a + p. The a and b represent 
any two sets of two or more particles 
such that b + p a. 

Because the terms represented in Fig. 1-B4 are 
just the absolute-value-squared contributions to 
unitarity, the phases of these contributions are neces­
sarily unity. This is a key point. 

The intermediate lines of the first diagram of 
Fig. 1-B4 represent the initial particles of the reac­
tion 2b + p-*a + b. If one interchanges the particles 
of the two identical sets of initial-particle variables 
b of this reaction, and also does the analogous inter­
change for the second diagram, one obtains Fig. 1-B5, 

Fig, 1-B3, The bubble notation representa­
tion of the residue of the pole at k^= m 
at points K and K in the physical 
region of the larger diagram. Notice 
that for these residue functions the two 
bubbles are both plus bubbles. For the 
residue of a minus bubble both little 
bubbles would be minus bubbles. Notice 
also that the phases a and a are just 
the phases of the corresponding terms 
in the original unitarity equation. 

Fig. 1-B5. The result of interchanging 
identical initial particles of the reactions 
represented by the left-hand parts of the 
diagrams of Fig. 1-B4. The minus bub­
bles have been changed to plus bubbles, 
so that the diagrams represent the cor­
responding residues, apart from phase 
factors. 

The residue equations corresponding to Fig. 1-B5 

The equations represented in Fig. 1-B3 are 

Res M(K) = i a M ( K 1 ) M ( K 2 ) (2a) 

and Res M(K) = i a M ( K 2 ) m ( K 1 ) . (2b) 

The factors on the right are ordinary functions and 
hence their ordering is immaterial. They have been 
written down in the order of the corresponding bub­
bles of Fig. 1-B3. 

where 

and 

Res M(K) = i a f o M ( K 1 ) M f K ^ ) , (5a) 

Res M(K) = i a a M f K ^ ) M(K±), (5b) 

n a. 
ieb 1 

a - n a.. 
iea 
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Here ON is the sign change induced by interchang­
ing two variables corresponding to particles of type 
i . Equation 5 incorporates also the fact that the 
two factors of the residue correspond to transposed 
processes. This is a consequence of the special 
nature of the original terms shown in Fig. 1-B4, which 
involve scattering functions together with the complex 
conjugates of the scattering functions for the trans­
pose reactions. 

Now the crossing argument is introduced. In 
S-matrix theory the crossing property is deduced as 
follows. The two parts of the manifold k 2 = m 2 lying 
in the physical region of the larger process a + b 
a + b are disjoint, as indicated in Fig. 1-B6. 

k 2 = m 2 

Fig. 1-B6. A diagram indicating that the 
manifold k2 = m 2 intersects the physical 
region o f a + b - » a + b i n twojdisjoint 
regions, in which lie K and K, respec­
tively. Also shown is a path in the physi­
cal region o f a + b a + b that leads 
from K to K. 

Continuation along the path R" takes Eq. 6 into 

M ( K d

c i r ) M(K^ t C ) = 0" a M ( K l t ) M(K 

- a a M ( K 1

t ) M * ( K 1

t ) f (8) 

where we have used tlje fact that continuation along 
h takes M(K^) to - M ' ^ K ^ ) . This is the Hermitian 
analyticity property. The important point is that 
apart from the factor -0" the right-hand side is an 
absolute value squared. Using the analyticity prop­
erty c + h = h + c, one obtains 

M(K 1 ' 

But Hermitian analyticity gives 

M ( K 4

h ) = - M * ( K ^ * ) , 

from which it follows that 

(9) 

(10) 

(11) 

since c = c'. Substituting into Eq. 8, o n e obtains 

a b M ( K 1

t S ) M * ( K 1

t g ) = ffaM(R1

t)M*(K1

t), (12) 
tc 

from which one concludes that either M(K^ ) and 
M(K^) are both zero or 

a b . , I lea, b 
(13) 

Multiplying by 0" , the sign induced by an interchange 
of variables of tyj?e p, one gets 

If the path in the physical region of a + b -*a + b 
from K to K can be distorted into the manifold 
k 2 = m 2 , without cutting across singularities having 
discontinuities that contribute to the residue function, 
then one can continue the residue function 5a to the 
residue function 5b, This would give 

M ( K 4

t c ) M ( K 4 ) , (6) 

where c and c are the paths of continuations in the 
variables of the smaller processes. (The path of 
continuation for the process a + b-*a + b originally 
depends on the variables of this larger reaction. But 
it must evidently reduce to a product of paths for the 
two individual functions, for the residue function of 
Eq. 5 . 

It was shown in Ref. 4 that, under reasonable 
assumptions about the mass-shell singularity struc­
ture, the distortions into the manifold k^= m 2 are 
possible, and that the paths c and c are defined. 
The paths of Hermitian analyticity h and h are also 
defined, and the property c + h = h + c" holds true. 
Admitting these results, one proceeds as follows: 
The sets of external variables and in Eq. 5 
are the same sets of variables. The function M ( K ^ C ) 
in Eq. 6 represents the continuation of M(K^) from 

to K ^ c . The function M ( K ^ ) , on the other hand, 
represents the actual physical function that describes 
the crossed process. This function M(K^) does not 
necessarily have to be identical to M ( K ^ C ) . A l l that 
is established by the crossing argument is Eq. 6 , 
which allows one to conclude only that 

M ( K p = X M(K d ) (7a) 

and M ( K l t £ ) = a a ° b X " l M { K l t ) ( 7 b ) 

for some constant factor \ , which is still to be 
determined. 

(14) 

where the product now runs over all particles of the 
original process b+ p-*a. 

The point now is that this argument can be car­
ried out with any one of the particles of b + p -* a 
singled out as p. (Or p for a final particle. ) Thus 
the product of all the 0". is equal to any single one 
of them. This means either that the ON are all posi­
tive, or that they are all negative and that the total 
number of particles in the reaction b + p -* a is odd. 

The possibility that certain particles participate 
only in reactions involving odd numbers of particles 
is incompatible with unitarity. For such reactions 
would give contributions to the unitarity equations for 
forward scattering amplitudes, which involve even 
numbers of particles altogether. And all contributions 
to the forward scattering are of the same sign. Thus 
a particle cannot participate only in reactions involv­
ing odd numbers of particles, and hence 

= 1 (15) 

for any particle p that scatters. [The argument 
given above requires a and b to consist of at least 
two particles. The possibility that the only connected 
parts involving p have single particles for a or b 
is ruled out by showing a conflict with the pole factori­
zation property plus unitarity. (Unitarity guarantees 
the existence of a nonvanishing transpose process, 
which is needed to ensure a nonvanishing pole contri 
bution to a process with more particles 

The extension of this result to particles having 
spin is trivial in the M-function formalism. 4, 7 
In place of Eq. 8 one obtains 

cK" ~ 
rb M ( K 1 ) G(p") M ( K 1 

tc, 
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a a MiK*) G(p) M(R*) , (16) 

where G(p) is a Hermitian relativistic spin matrix 
that satisfies 

G(-p) = ( - l ) Z s G(p). (17) 

Since the continued value p c is the negative of the 
physical value p one obtains, in place of Eq. 14 , 
the equation 

n j = ( - i ) Z s p a 
i 1 p 

which can be written as 

n a.' = a ' , (14') 
1 p 7 

1 R 

where a.' = ( - l ) 2 s i a.. (18) 

To get 14' we have used the fact that the total number 
of noninteger spin particles is conserved mod 2. 
From 14' one obtains in place of 15 the result 

a ' = 1, (15') p 

which is the normal connection between spin and 
statistics. 
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