

High resolution $^{148}\text{Nd}(\text{He},\text{ny})$ two proton stripping reaction and the structure of the 0_2^+ state in ^{150}Sm

J. F. Sharpey-Schafer^{1,a}, P. Papka^{2,3}, S. P. Bvumbi⁴, P. M Jones³, P. Vymers², T. D. Bucher³, T. S. Dinoko¹, J. L. Easton^{1,3}, M. S. Herbert¹, B. V. Kheswa^{2,3}, N. Khumalo⁵, E. A. Lawrie³, J. J. Lawrie³, S. N. T. Majola^{3,6}, J. Ndayishimye^{2,3}, D. Negi³, S. P. Noncolela^{1,3}, J. N. Orce¹, O. Shirinda³, P. Sithole^{1,3}, M. A. Stankiewicz^{3,6} and M. Wiedeking³

¹University of Western Cape, Department of Physics, P/B X17, Bellville 7535, South Africa

²Stellenbosch University, Department of Physics, P/B X1, Matieland 7602, South Africa

³iThemba LABS, National Research Foundation, PO Box 722, Somerset-West 7129, South Africa

⁴University of Johannesburg, Department of Physics, PO Box 524, Auckland Park 2006, South Africa

⁵University of Zululand, Department of Physics, P/B X1001, Kwa Dlangezwa 3886, South Africa

⁶University of Cape Town, Department of Physics, P/B X3, Rondebosch 7701, South Africa

^aCorresponding author: jfss@tlabs.ac.za

Abstract. The challenge of achieving high resolution in binary reactions involving an outgoing high energy neutron is solved by detecting the γ -ray decay of populated excited states in an array of escape suppressed HPGe detectors in coincidence with fast neutrons detected in a wall of scintillator detectors 2m down beam of the target. The selectivity of the arrangement is of the order of 1 in 1000. The time-of-flight difference is sufficient to separate fast neutrons from direct reactions from a large background of statistical neutrons from fusion-evaporation reactions. Our interest is in the wavefunction of the 0_2^+ state at 740 keV in the N=88 nucleus ^{150}Sm which, with the 0_2^+ state in ^{100}Ru , are the only two excited states observed in $2\beta 2\nu$ double β -decay.

The 0_2^+ state at 740 keV in the N=88 nucleus ^{150}Sm is one of only two excited states observed [1] in $2\beta 2\nu$ double β -decay. The other state is the 1130 keV 0_2^+ state in ^{100}Mo . The importance of understanding the microscopic configurations of these 0_2^+ states, and of the ground 0_1^+ states of the parent and daughter nuclei, has been stressed in a recent review article [2]. The better the transition matrix elements can be calculated, the more accurately an effective neutrino mass can be extracted. There is also the ambition of using the double γ -ray decay from the 0_2^+ states to give a four-fold coincidence with the two electrons to improve the sensitivity of experiments so that the level of $\approx 10^{24}$ γ partial half-life can be achieved. This is the estimated sensitivity required to detect $2\beta 0\nu$ neutrinoless double decay to determine the Majorana/Dirac nature of neutrinos.

The N=88 nuclei have remarkable features; they are at a peak in the $|\mathcal{M}(\text{E3})|^2$ strength of $0_1^+ \rightarrow 3_1^-$ transitions for even-even nuclei as a function of neutron number [3]; they also have very strong E0 transitions from the band built on the 0_2^+ states to the ground state bands [4,5]. It has been established [6,7] that the 0_2^+ states in N=88 and 90 nuclei are not β -vibrations [8] but 2p-2h neutron states lowered into the pairing gap by configuration dependent pairing. They are classic examples of ‘pairing isomers’ forming a ‘second vacuum’ [6] on which a complete set of excited deformed states are built that are congruent to those built on the 0_1^+ ground state. We have made extensive spectroscopic

measurements in the nucleus ^{150}Sm [9] reporting on the first observation of consistent E1 transitions in deformed nuclei from the levels in the first excited 0_2^+ band to the lowest negative parity band (Fig. 1). Our contention is that these 0_2^+ states have a predominantly paired, seniority zero, neutron configuration. We wished to establish the paired proton content of this state in ^{150}Sm by populating it in a high resolution two proton stripping ($^3\text{He},\text{n}$) direct reaction.

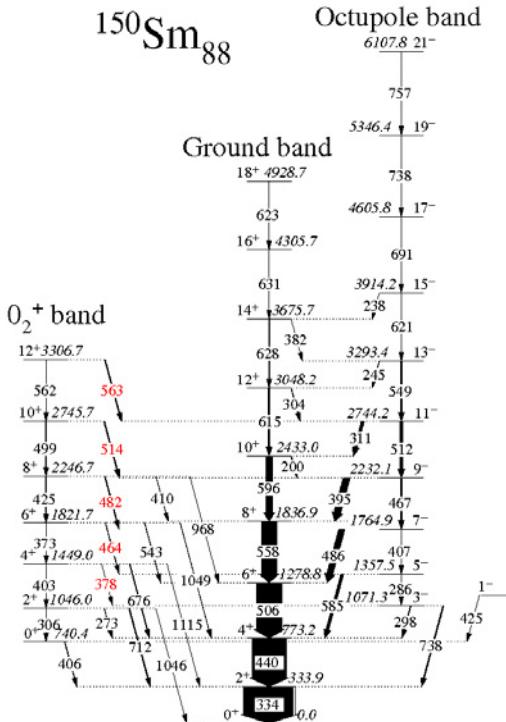


Figure 1. Partial decay scheme of ^{150}Sm from [9].

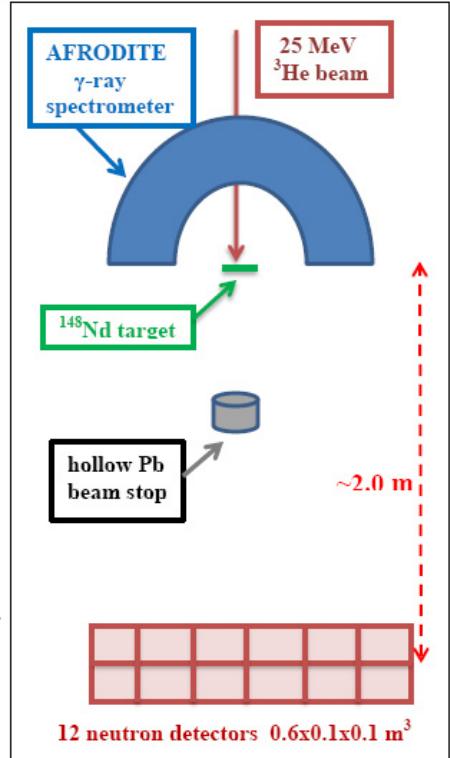
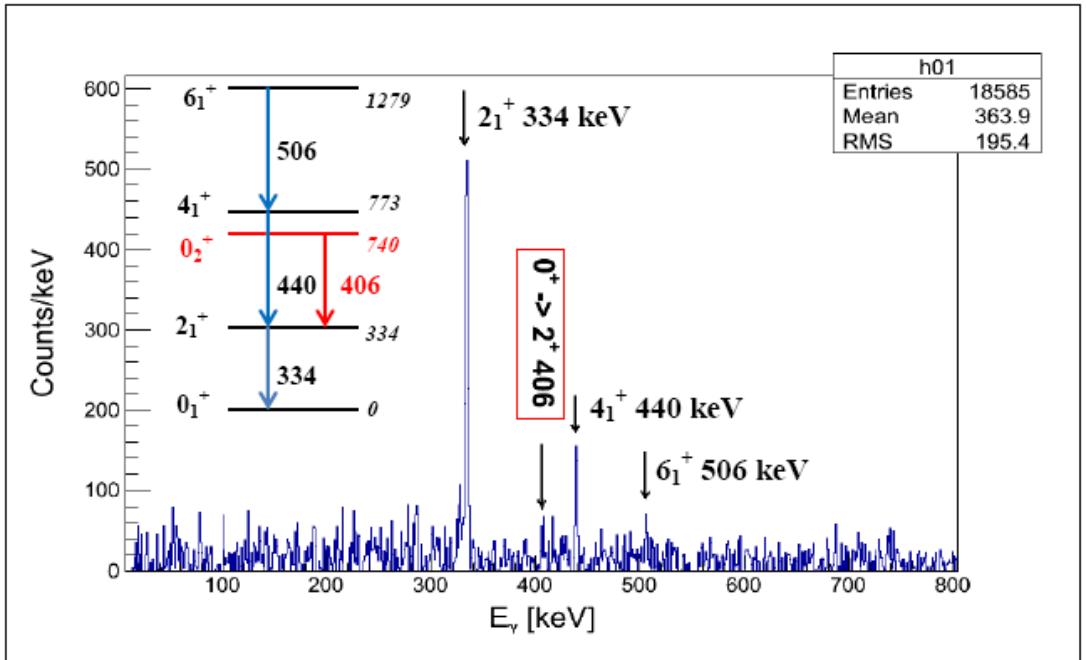
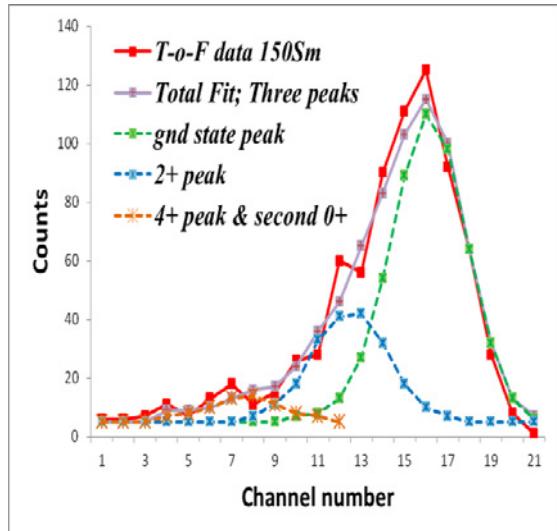



Figure 2. Schematic diagram of the apparatus.

A schematic diagram of the experimental set-up is shown in Fig. 2. We used 25 MeV beams of ^3He ions from the iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) separated sector cyclotron (SSC) to bombard a 5.2 mg cm^{-2} target of ^{148}Nd . Neutrons were detected in a double wall of twelve $0.6 \times 0.1 \times 0.1 \text{ m}^3$ NE102A plastic scintillators subtending scattering angles to the target between 0° and 10° . These scintillators have no $n-\gamma$ discrimination so some shielding may be used to reduce the γ -ray flash from the target. Otherwise the residual γ -rays were separated from the neutrons by time-of-flight (T-o-F) over the 2.0 m flight path from the target to the scintillation neutron detectors. The $^{148}\text{Nd}(^3\text{He},\text{n})^{150}\text{Sm}$ direct reaction has a Q-value of +6.512 MeV so that these direct reaction neutrons had an energy of about 30 MeV, a velocity of 69 mm/ns ($v/c = 23\%$) taking ~ 30 ns to travel 2.0 m. The main fusion evaporation channels are $(^3\text{He},3\text{n})^{148}\text{Sm}$ and $(^3\text{He},4\text{n})^{147}\text{Sm}$, in the ratio 2:1, and are at least 10^3 stronger than the $(^3\text{He},\text{n})^{150}\text{Sm}$ channel. Evaporation neutron yields peak below 2 MeV and took ~ 130 ns to travel a distance of 2.0 m. The statistical neutrons are emitted isotropically, whereas the $L=0$ neutrons from $(^3\text{He},\text{n})$ direct reactions have most of their cross-section peaked within $\theta_{\text{lab}} = 10^\circ$ of 0° [10]. The γ -rays from excited states were detected in the iThemba LABS escape suppressed γ -ray spectrometer array AFRODITE [11] consisting of 9 HPGe clover detectors in bismuth germanate (BGO) shields.


The γ -rays that we observe in coincidence with fast neutrons are shown in Fig. 3. A background has been subtracted of γ -rays in coincidence with slower neutrons. The spectrum contains only a few γ -

rays belonging to the ground-state band in ^{150}Sm and the 0_2^+ state which is only very weakly populated. We are surprised to see the yrast states so clearly. The neutron detectors are strongly selecting $L=0$ states and the only way the yrast 2^+ , 4^+ and 6^+ states should be populated is by $L = 2$, 4 and 6 transitions respectively. The experimental data suggest that the incoming ^3He must Coulomb or inelastically excite the target nucleus to the yrast 2^+ , 4^+ and 6^+ states in ^{148}Nd and then subsequently have $L=0$ two proton transfer to the yrast 2^+ , 4^+ and 6^+ states in ^{150}Sm . Inelastic excitations in direct reactions have been studied extensively by Ascuitto and colleagues [12-14] but have otherwise been largely ignored.

Figure 3. A spectrum of γ -rays from ^{150}Sm in coincidence with direct reaction fast neutrons from $^{148}\text{Nd}(^3\text{He},\text{n})^{150}\text{Sm}$ at $E_{lab} = 25$ MeV. A background spectrum in coincidence with slower neutrons has been subtracted.

A problem with our experimental technique is that we do not detect the two proton stripping to the ground state as it does not decay by γ -rays. However, a way of estimating the absolute yields is to fit our relative yields of excited states to the line shapes of the low resolution T-o-F data in Ref. [10]. In Fig. 4 we show such a fit to the ground state transition seen in the $^{148}\text{Nd}(^3\text{He},\text{n})^{150}\text{Sm}$ reaction at $E_{lab} = 25.4$ MeV and zero degrees using a 9 m flight path and a time resolution of 1 ns ≈ 450 keV (figure 1 of Ref. [10]). The transitions to the ground 0_1^+ state and the first excited 2_1^+ state at 334 keV are barely resolved in the data of [10]. In the fit we have combined the intensities of the transitions from the 0_2^+ and 4_1^+ states decaying by γ -rays with energies of 406 and 440 keV respectively. In Table 1 we compare the relative intensities of the transition strengths to the lowest states in ^{150}Sm where we have normalised them to 100 for the 2_1^+ state. The data for the 4_1^+ state is in reasonable agreement for both the γ -ray data and the T-o-F data, considering the resolution of the latter and the difficulties in fitting such data. We conclude that the population of the 0_2^+ state is less than about 5% of the transition strength to the ground state. This supports the view that the 0_2^+ state is a neutron pairing isomer and nothing to do with the mixing of coexisting shapes [15].

Figure 4. Fits to the Time-of-Flight $^{148}\text{Nd}({}^3\text{He},\text{n})^{150}\text{Sm}$ data of Ref. [10]. See text for details.

We would like to thank the crew of the Separated Sector Cyclotron for the excellent beam delivery. iThemba LABS is a South African National Facility funded by the National Research Foundation.

1. A. S. Barabash *et al.*, Phys. Rev. **C79**, 045501 (2009)
2. Frank T. Avignone III *et al.*, Rev. Mod. Phys. **80**, 481 (2008)
3. R. H. Spear and W. N. Catford, Phys. Rev. **C41**, R1351 (1990)
4. A. Passoja *et al.*, J. Phys. **G12**, 1047 (1986)
5. J. L. Wood *et al.*, Nucl. Phys. **A651**, 323 (1999)
6. J. F. Sharpey-Schafer *et al.*, Eur. Phys. J. **A47**, 5 (2011)
7. J. F. Sharpey-Schafer *et al.*, Eur. Phys. J. **A47**, 6 (2011)
8. W. D. Kulp *et al.*, Phys. Rev. **C77**, 061301(R) (2008)
9. S. P. Bvumbi *et al.*, Phys. Rev. **C81**, 044333 (2013)
10. W. P. Alford *et al.*, Nucl. Phys. **A321**, 45 (1979)
11. J. F. Sharpey-Schafer, Nucl. Phys. News. Int. **14**, 5 (2004)
12. R. J. Ascuitto and Norman K. Glendenning, Phys. Rev. **C2**, 1260 (1970)
13. R. J. Ascuitto and Bent Sørensen, Nucl. Phys. **A190**, 297 (1972)
14. R. J. Ascuitto, C. H. King and L. J. McVay, Phys. Rev. Lett. **29**, 1106 (1972)
15. Kris Heyde and John L. Wood, Rev. Mod. Phys. **83**, 1467 (2011)

Table 1. Comparison between the gamma-ray intensities observed in our experiment and the intensities deduced for the corresponding transitions from the fit to the data of Ref. [10] shown in Fig. 4.

Level	E_γ (keV)	γ -ray data	Fit to T-o-F
0_1^+	0	--	271(19)
2_1^+	334	100(5)	100
$4_1^+ \& 0_2^+$	440	34(4)	22(6)
6_1^+	506	13(2)	--