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1 Introduction

Despite our detailed understanding of the holographic principle in asymptotically AdS
spacetimes, flat space holography remains an underdeveloped subject. In asymptotically
flat spacetimes, the black hole entropy still scales like the area and the gravitational Hamil-
tonian is still a boundary term. It is natural to expect that some form of holography applies
to quantum gravity with flat asymptotics, but the precise statement of the correspondence
has so far remained elusive. The sheer number of open questions makes the subject ripe
for exploration, but so far progress has been slow.

Most attempts at flat holography to date seek to use null infinity (I±) as the gravita-
tional hologram (see [1–8] for some early attempts and representative perspectives). The
approaches with the most concrete results take an explicitly bottom-up approach, trans-
lating known bulk results into a seemingly holographic formalism. In this sense these
approaches cannot be wrong. The question is simply whether or not they are useful.
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Celestial CFT (CCFT) is one such bottom-up approach to quantum gravity in flat
space. In short, it seeks to construct an independent definition of the S-matrix intrinsic to
I±, with no reference to bulk propagation. It is close in spirit to the AdS/CFT correspon-
dence, whose conformal correlators provide an independent and nonperturbative definition
of boundary observables in AdS quantum gravity. The formalism relies on the fact that the
d+ 2 dimensional Lorentz group SO(d+ 1, 1) is isomorphic to the d-dimensional Euclidean
conformal group, which in turn guarantees that the S-matrix shares some, but certainly
not all, of the properties of a correlation function in CFTd. Since the geometric locus I
is also the momentum space locus of unbound null geodesics, the celestial correlators have
operator insertions where the particles enter or exit the spacetime

〈p1, · · · , pm|pm+1, · · · , pn〉 ∼ 〈O1(ω1, x1) · · · On(ωn, xn)〉 .

In a basis of boost eigenstates these matrix elements transform like conformal correlators in
CFTd, and ultimately one would like an intrinsically d-dimensional method for computing
them.

Certain structural results shared by all CCFT’s are available [9, 10], but they are lim-
ited in scope and primarily controlled by symmetries (although see [11]). Beyond these uni-
versal results, most work on the subject takes as input perturbative scattering amplitudes
and returns Mellin transformed correlators and OPE coefficients (see for example [12–30]
and references therein). These results are obtained order by order in perturbation theory,
and as a result, the non-perturbative defining properties of CCFT are not known. We lack
an axiomatic approach or intrinsic definition.

This gap in the foundations of CCFT stems in part from the lack of a complete set of
defining relations for the non-perturbative S-matrix in asymptotically flat space. Beyond
the standard inputs of locality and unitarity and the assumption of analyticity, most of
the known consistency conditions are derived from perturbation theory. The complete set
is simply unknown, and what to expect when gravity and black holes are included is even
less clear.

Given the extent of these uncertainties, a top-down construction with no question
marks is clearly desirable. Well-defined CCFTs are believed to arise from strings propa-
gating in asymptotically flat space, but the non-perturbative properties of those models
are still not understood and they are certainly not the simplest place to start. There has
been interesting recent work [31, 32] on somewhat exotic 4d models with explicit CCFT
duals, along with some work on self-dual gravity [33], which may prove to be the simplest
tractable model of celestial CFT. In this paper, we consider another class of S-matrices
which are known exactly and whose Mellin transforms we can compute explicitly: the
integrable S-matrices in two dimensions.

Integrable quantum field theories are completely non-generic, and it is reasonable to
question how much one might learn about CCFT by studying them. The existence of
infinitely many conserved quantities puts severe constraints on the form of the scattering
amplitudes in these theories, but many of the peculiar properties that distinguish CCFTd

from garden-variety Euclidean CFTd are still present in these dramatically simplified mod-
els. As we will see, the conformal correlators still exhibit complicated analytic structure
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as a function of the operator dimensions, and the theories can be coupled to gravity in a
simple but illuminating way. The calculations in this paper provide a rigorous glimpse into
the possible behaviors of CCFT correlation functions, but we make no claims regarding
genericity. It would certainly be worthwhile to extend the analysis to non-integrable two-
dimensional models in order to understand which conclusions hold more broadly, and we
hope to return to this question in the future.

Since the bulk S-matrix is two dimensional in our examples, the CCFT0 correlators
have no position dependence and the Mellin transform takes the same form for massive and
massless particles. In fact, the Mellin transform with conformal weights on the continuous
series simply reduces to a Fourier transform in rapidity space which can be evaluated
explicitly using standard techniques in complex analysis. This simplified setting allows us to
make very general statements regarding the analytic structure of the conformal correlators
as functions of the operator dimensions. In particular, we find that the correlators are
generally distributional, with asymptotics controlled by the mass spectrum and fusion
coefficients of the quantum field theory. Although gravity does not have propagating
degrees of freedom in two dimensions, we find that coupling these S-matrices to flat space
JT gravity alters the celestial correlators in interesting ways. For instance, the coupling to
gravity smooths out certain singular aspects of the non-gravitational correlators.

Although we obtain exact expressions for the CCFT0 “correlation numbers,” we stop
short of constructing a celestial dual in the sense that we lack a (zero-dimensional) path
integral from which the Mellin-space correlators can be derived. We hope to revisit this
question, as well as the decomposition of the correlators under operator exchange, in later
work. Since there is no guarantee that celestial correlators arise from a Lagrangian, the
complete list of correlators presented here is equivalent to a definition of the model.

While this paper was in preparation, a related work [34] appeared which also considers
the Mellin transform of a particular 2d S-matrix. This paper works perturbatively and has
minimal overlap with our results, but the model considered (Sinh-Gordon) is also integrable
and could be treated non-perturbatively within our more general framework.

The outline of this paper is as follows. In section 2 we review the celestial CFTd
formalism in the special case d = 0. Section 3 reviews relevant properties of integrable
theories and translates them into properties of the celestial dual. In section 4, we explicitly
compute the celestial amplitudes for a particular class of integrable theories solved via the
S-matrix bootstrap and discuss their general features. Section 5 considers the effect of
coupling these integrable field theories to a simple model of 2d gravity. We conclude with
a discussion of open questions and future work in section 6.

2 Two-dimensional kinematics and CCFT0

We will consider quantum field theories defined on R1,1. In two dimensions, the Lorentz
group SO(1, 1) consists only of boosts, and the only “celestial conformal generator” is the
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dilation operator D = M10. A generic massive momentum can be written1

pµ(ω) = ωp̂µ(ω) , p̂µ(ω) = q̂µ + (m2/ω2)nµ , (2.1)

where q̂ and n correspond to left and right moving branches of the null cone

q̂µ(x) = 1
2(1, 1) , nµ = 1

2(1,−1) , q̂ · n = −1
2 . (2.2)

Lorentz invariance fixes the transformation properties for both massless and massive par-
ticles

[O(ω), D] = −iω∂ωO(ω) . (2.3)

The Mellin transform is therefore the same for both gapped and gapless states (in contrast
to the higher dimensional case, where the Mellin transform for massive particles involves
an extra integral over a bulk-to-boundary propagator):

Ô(∆̂) =
∫
C
dωω∆̂−1O(ω) , [Ô(∆̂), D] = i∆̂Ô(∆̂) . (2.4)

There are different possible choices for the contour of integration and admissible values of
∆̂ in this formula. The most common choice is a non-compact contour with ∆̂’s on the
continuous series

Ô(∆̂) =
∫ ∞

0
dωω∆̂−1O(ω) , ∆̂ = d

2 + i∆ , (2.5)

which in the case at hand is simply
∆̂ = i∆ . (2.6)

This choice notably excludes the integer scaling dimensions of crucial operators like the
stress tensor and conserved currents, but these operators do not appear in CCFT0 (there
are no gravitons or gluons in two dimensions) so the distinction will not be important.
More importantly, the formula (2.5) depends on the behavior of scattering amplitudes
at arbitrarily large energies and its meaning is murky within the standard effective field
theory framework. In this paper we consider UV complete exact S-matrices, so this is not
a concern and we adopt the definition

Ô(∆) =
∫ ∞

0

dω

ω
ωi∆O(ω) . (2.7)

In two dimensions it is useful to change coordinates to rapidity space m/ω = e−θ, in which
case

p = m(cosh θ, sinh θ) = m(eθ q̂ + e−θn) . (2.8)

The variable θ is known as the rapidity, and it is the variable conjugate to dilations (boosts)

D = −i∂θ . (2.9)
1Since the null cone in two dimensions is disconnected, the parameterization for massless particles takes

a slightly different form. One would use p = ωRq̂ and p = ωLn for left and right moving momenta and
Mellin-transform with respect to those variables.
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The boost eigenstates are then simply Fourier transforms with respect to rapidity2

Ô(∆) =
∫ ∞
−∞

dθei∆θO(θ) . (2.10)

Due to the low dimensionality, the “celestial correlation functions” are just functions of ∆

S̃(∆1, · · ·∆n) = 〈Ô(∆1) · · · Ô(∆n)〉 . (2.11)

When d > 0, celestial CFTd correlators have complicated dependence both on ∆ and
on the transverse coordinates xa. The quantities (2.11) are of interest precisely because
they can be used to study the ∆ dependence of the celestial amplitudes while avoiding
the complicated analysis associated to position dependence. The simplification (2.11) is
similar in spirit to studying matrix integrals as toy models of gauge theory.

3 CCFT dual to integrable theories I: the general case

Integrable S-matrices enjoy a number of remarkable properties not shared by generic quan-
tum field theories. Here we review these properties and recast them as constraints on the
CCFT dual.

3.1 Elastic scattering

The existence of infinitely many conserved quantities in integrable theories places severe
constraints on the S-matrix. In more than two dimensions, higher-spin conserved charges
lead to a trivial S-matrix [35], but in two dimensions it is still possible to have nontrivial
scattering processes because of the restricted kinematics. In this case, integrability guaran-
tees that all scattering is elastic: there is no particle production and the sets of initial and
final momenta are the same. The number of particles with fixed mass also cannot change
during the scattering process, so the rapidities agree

{θi}in = {θ′i}out i = 1, . . . , n . (3.1)

In what follows primes denote out-state quantities and we suppress the in and out labels.
Lorentz (boost) invariance implies that the S-matrix only depends on differences of ra-
pidities θij = θi − θj , and we will choose θ12, θ13, . . . , θ1n as a basis for the kinematics.
Scattering amplitudes in these models can only be nonzero on the support of the con-
straint (3.1). They come with a product of delta functions that enforce the conservation
of individual rapidities (and masses)

Sb1···bna1···an(θ1, . . . , θn; θ′1, . . . , θ′n) = Sb1···bna1···an(θ12, . . . , θ1n)
n∏
i=1

δ(θi − θ′i) + permutations . (3.2)

The additional permutations are related to non-diagonal scattering and are only relevant
when there are degeneracies in the mass spectrum. To obtain the celestial correlator, we
take the Fourier transform of both sides of (3.2)

S̃b1···bna1···an(∆i; ∆′i) = δ
(
∆1 + ∆′1 + · · ·+ ∆n + ∆′n

)[
M̃ b1···bn
a1···an(∆i; ∆′i) + permutations

]
. (3.3)

2We normalize our operators without the conventional factor of mi∆.
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The celestial S-matrix is only supported on a delta function, δ
(∑n

i=1(∆i + ∆′i)
)
, which

arises from the integral over the collective mode
∑
i θi. The presence of this delta function

is simply the Ward identity associated to boost symmetry in the bulk (dilation symmetry in
the boundary).3 We will refer to M̃ b1···bn

a1···an(∆i; ∆′i) as the n→ n celestial amplitude, keeping
in mind that it is always accompanied by an overall boost-conserving delta function.

Note that for the celestial correlators obtained from integrable QFTs, it is crucial to
distinguish between conformal primaries associated to the in states versus those arising
from the out states. Because of the extra symmetries in these models, the S-matrix is
not analytic on the support of the overall momentum-conserving delta function. This
is apparent in (3.2), which has many more delta functions than required by momentum
conservation. This singular behavior means that naive applications of crossing symmetry
fail. For instance, the existence of a 3 → 3 amplitude does not imply the existence of
a 2 → 4 amplitude. Any non-vanishing celestial correlator with 2n operator insertions
involves n in-operators and n out-operators.

To simplify notation, it is convenient to define ∆̂i as the sum of the conformal weights
for ingoing and outgoing particles of the same rapidity

∆̂i = ∆i + ∆′i . (3.4)

In this notation, the celestial amplitude is simply an (n−1)-dimensional Fourier transform
of the rapidity space amplitude4

M̃ b1···bn
a1···an(∆̂2, . . . , ∆̂n) =

∫ ∞
−∞

dθ12 · · · dθ1n e
−i(∆̂2θ12+···+∆̂nθ1n)Sb1···bna1···an(θ12, . . . , θ1n) . (3.5)

3.2 Factorizability and the Yang-Baxter equation

Integrability imposes a second strong constraint on the S-matrix that allows one to con-
struct higher-point scattering amplitudes from lower-point matrix elements. In general,
n→ n scattering processes can be factorized into a sequence of n(n−1)/2 successive 2→ 2
scattering processes, so knowledge of the 2 → 2 amplitudes in the model amounts to a
solution of the theory.

There are many equivalent ways to factorize the higher-point amplitude on lower-point
processes, and their equality places strong constraints on the S-matrix when there is non-
diagonal scattering. This constraint takes the simplest form for the 3→ 3 amplitude, where
it is known as the Yang-Baxter equation. In terms of two-particle S-matrices it reads

Sb1b2a1a2(θ12)Sc1b3b1a3
(θ13)Sc2c3b2b3

(θ13−θ12)=Sc1c2c3a1a2a3(θ12,θ13)=Sb2b3a2a3(θ13−θ12)Sb1c3a1b3
(θ13)Sc1c2b1b2

(θ12) .
(3.6)

The Yang-Baxter equation can be thought of as an associativity condition that ensures
that the result for a higher-point amplitude doesn’t depend on the choice of factorization.

3In higher dimensions, [O(ω, x), D] = −i(ω∂ω − xa∂a), so the Ward identity for insertions of D involves
extra derivatives. In two dimensions there is no position derivative, so switching to the Mellin basis
completely diagonalizes the operator D and boost weight is automatically conserved.

4In non-integrable models there are additional branch-cuts in the rapidity plane associated to particle
production, and the definition of (3.5) may require the choice of a contour around the cuts.
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Since multiplication in rapidity space is convolution in Fourier space, the Yang-Baxter
equation imposes the following constraint on integrable celestial amplitudes

M̃ c1c2c3
a1a2a3(∆̂2, ∆̂3) =

∫ ∞
−∞

d∆ M̃ b1b2
a1a2(∆̂2 + ∆)M̃ c2c3

b2b3
(∆)M̃ c1b3

b1a3
(∆̂3 −∆)

=
∫ ∞
−∞

d∆′ M̃ c1c2
b1b2

(∆̂2 + ∆′)M̃ b2b3
a2a3(∆′)M̃ b1c3

a1b3
(∆̂3 −∆′) ,

(3.7)

where the top and bottom lines are the Fourier transform of the left hand side and right
hand side of the Yang-Baxter equation, respectively.

3.3 Real-analyticity, unitarity, and crossing symmetry

Factorization implies that the 2→ 2 S-matrix elements are the fundamental building blocks
of rapidity space amplitudes, which means that they are also the fundamental building
blocks of higher-point celestial correlators. In the context of integrable CCFT, solving the
model therefore amounts to calculating the celestial four-point function. In this section we
discuss its basic properties.

It is typically assumed that the 2-particle S-matrix in an integrable theory Sb1b2a1a2(θ12)
is a meromorphic function on the complex θ12 plane obeying the axioms of real-analyticity,
unitarity, and crossing symmetry [36, 37]. In rapidity space, real analyticity requires that
Sb1b2a1a2(θ∗12) = Sb1b2a1a2(−θ12)∗. It follows that the celestial four-point function has no imaginary
part. This in turn implies that the n→ n celestial correlator for integrable theories is real

Im M̃ b1···bn
a1···an(∆̂i) = 0 . (3.8)

Unitarity requires that for real rapidities

Sb1b2a1a2(θ12)Sc1c2b1b2
(−θ12) = δc1a1δ

c2
a2 . (3.9)

Fourier transforming both sides of (3.9) imposes the following constraint on celestial am-
plitudes

1
(2π)2

∫ ∞
−∞

d∆ M̃ b1b2
a1a2(∆)M̃ c1c2

b1b2
(∆− ∆̂2) = δc1a1δ

c2
a2 δ(∆̂2) . (3.10)

The third defining property of 2→ 2 rapidity space amplitudes is crossing symmetry which
states Sb1b2a1a2(θ12) = S

b1C(a2)
a1C(b2)(iπ− θ12) where C is the charge conjugation operator which re-

places an external particle with its antiparticle. One may take the Fourier transform of both
sides of this expression. However, the result depends non-trivially on the particles appear-
ing in the theory as bound states. A more thorough discussion is provided in appendix A.

3.4 Existence of the n-particle celestial S-matrix

As remarked in section 2, the Mellin transform as defined by (2.7) involves an integration
over all energy scales. Since the contour of integration is non-compact, the integral is not
guaranteed to converge and the resulting correlation functions might be singular or simply
not exist.

For the models considered in this paper, it turns out that the celestial correlator for
n→ n scattering always exists as a tempered distribution. To see this, we first note that an
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individual S-matrix element satisfies |Sb1b2a1a2(θ12)| ≤ 1 by unitarity. Using factorizability of
the n-particle S-matrix into 2-particle S-matrices and unitarity of the constituent 2-particle
S-matrices, we deduce that the n-particle S-matrix satisfies |Sb1···bna1...an(θ12, . . . , θ1n)| ≤ 1 as
well. Because its modulus is bounded, Sb1···bna1...an(θ12, . . . , θ1n) is a tempered distribution, so it
has a unique Fourier transform which is also a tempered distribution. According to equa-
tion (3.5), we identify this Fourier transform as the n→ n celestial amplitude M̃ b1···bn

a1...an(∆̂i).
In general, it is not possible to say more about the celestial correlator. We will see in

explicit examples that M̃ b1b2
a1a2(∆̂2) is generally not bounded and is distributional in nature.

Interestingly, coupling to gravity seems to improve this behavior, as we discuss in section 5.

4 CCFT dual to integrable theories II: diagonal scattering

Integrability obviously dramatically simplifies the form of the S-matrix, but there is still a
high level of complexity among this set of tightly constrained models. An extra simplifying
assumption often employed in the context of the S-matrix bootstrap is that of diagonal
scattering.

Elastic scattering guarantees that the masses and rapidities of ingoing particles match
those of the outgoing particles, but the S-matrix restricted to the n→ n sector can still have
non-diagonal components if the model exhibits flavor symmetries and mass degeneracies.
For example, particles a1 and a2 will generically scatter into particles b1 and b2 with ai 6= bi
provided that the mass of ai matches that of bi. When the S-matrix is diagonal, particles
a1 and a2 will only scatter into particles a1 and a2 and we can label the rapidity-space
S-matrices as Sij(θ12) = Sij(θ), where i, j now run over the particle species. Although
this extra condition is restrictive, it is satisfied by many important examples, including
the affine Toda theories [38], perturbed coset models [39], and certain limits of Ising field
theory [40–43]. Indeed, the S-matrix bootstrap is often carried out with the assumption
of diagonal scattering [36]. The assumption does exclude important models with global
symmetries, such as the O(N) models and Gross-Neveu models [44].

As we will see, the celestial dual to the diagonal theories can be worked out in complete
detail. The results exhibit many qualitative features that are likely to be relevant in more
general settings.

4.1 The 2 → 2 celestial amplitude

The most general diagonal 2-particle S-matrix satisfying real-analyticity, unitarity and
crossing symmetry obeys the periodicity condition Sij(θ) = Sij(θ+2πi). These S-matrices
have been shown to take the form [45]

Sij(θ) =
∏

α ∈ Ωij
fα(θ) fα(θ) =

sinh(1
2(θ + iπα))

sinh(1
2(θ − iπα))

, (4.1)

where Ωij ⊂ C is invariant under complex conjugation. We will generally take Ωij ⊂ R
to avoid discussing unstable particles. This S-matrix has poles at θ = iπα and one may
choose α ∈ (0, 2) by periodicity. For α ∈ (0, 1), the poles indicate the presence of a bound
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Figure 1. Analytic structure of the 2→ 2 rapidity-space S-matrix for purely elastic theories. S(θ)
is periodic with period 2πi, bound state poles appear on the physical strip 0 ≤ Im(θ) ≤ π while
resonance poles appear on the second sheet π ≤ Im(θ) ≤ 2π.

state B of particles i and j. If iRes
[
Sij(θ); θ = iπα

]
> 0, then this bound state occurs for

forward channel scattering (rather than a crossed channel) and the particle has mass

m2
B = m2

i +m2
j + 2mimj cos(πα) . (4.2)

Moreover, if the pole is simple, then the residue is related to the on-shell three-point
coupling constants fBij of the underlying QFT

(fBij)2 = i Res
[
S(θ); θ = iπα

]
. (4.3)

For α ∈ (1, 2), the poles indicate the presence of an unstable resonance [36].
In what follows, it will be useful to introduce an auxiliary parameter α̂ij and the

function gij(θ)

α̂ij =
∑

α∈Ωij
α , gij(θ) = cosh(θ + iπα̂ij)

cosh(θ) . (4.4)

The function gij(θ) captures the large-rapidity asymptotics of the S-matrix (4.1) in the
sense that

lim
Re(θ)→±∞

[Sij(θ)− gij(θ)] = 0 . (4.5)

Using linearity of the Fourier transform, the 2→ 2 celestial amplitude may be written

M̃ij(∆) =
∫ ∞
−∞

dθ e−i∆θSij(θ) =
∫ ∞
−∞

dθ e−i∆θgij(θ)+
∫ ∞
−∞

dθ e−i∆θ
[
Sij(θ)−gij(θ)

]
, (4.6)

where ∆ ≡ ∆̂2. Because gij(θ) is a relatively simple function, we can compute the first
Fourier transform with standard techniques. By contrast, we evaluate the second Fourier
transform via contour integration, choosing a rectangular contour encircling both the phys-
ical strip and second sheet with sides pushed out to infinity (figure 1). Due to (4.5), the
vertical sections of this contour do not contribute to the integral.
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Since gij(θ) captures the asymptotic behavior of the rapidity-space S-matrix at large
θ, we will refer to its Fourier transform as the asymptote term Aij(∆). By contrast, the
second Fourier transform is highly theory-dependent and can be expressed in terms of the
residues of the poles of Sij(θ); as such, we refer to it as the pole term Pij(∆). Altogether,
the 2→ 2 celestial amplitude is just the sum of these two terms

M̃ij(∆) = Aij(∆) + Pij(∆) (4.7)

which are given by the following explicit expressions

Aij(∆) = 2π cos(πα̂ij)δ(∆) + π sin(πα̂ij)csch
(
π∆
2

)
, (4.8)

Pij(∆) = 2πi
1− e2π∆

[ ∑
α∈Ωij

Res
[
e−i∆θSij(θ); θ = iπα

]
− 2ie∆π sin(πα̂ij)cosh

(
π∆
2

)]
.

Note that the second term in Pij(∆) cancels that of Aij(∆) in the final expression. Equa-
tions (4.7) and (4.8) are very useful since they apply to all theories with diagonal scattering
and reduce the Fourier transform computation to simple algebra.

4.2 Some examples: perturbed diagonal cosets and affine Toda theories

In this section, we will introduce two explicit examples of purely elastic S-matrices whose
properties are determined by a simply laced Lie algebra, g. These are the perturbed
ĝ1 ⊕ ĝ1/ĝ2 coset CFT and the g Affine Toda field theory. In both cases the root system
of the algebra informs the set Ωij from which the amplitude is constructed. We will not
describe the derivation of these S-matrices here, and instead refer interested readers to the
original papers [38, 39, 46–52]. While we focus on these two theories for simplicity, one can
use equation (4.7) to study the celestial S-matrices of arbitrary theories characterized by
purely elastic scattering.

The coset models have no tunable couplings, but the Affine Toda theories have a
continuous coupling constant β ∈ (0,∞), and their S-matrices depend non-trivially on the
parameter B(β) = 2β2/(β2 + 4π). They also exhibit S-duality under which β 7→ 4π/β (i.e.,
B 7→ 2−B).

For g = su(n), both models have particles labelled j = 1, . . . , n − 1 with masses
mj = 2M sin(πj/n). The 2-particle rapidity space S-matrices satisfy Sij(θ) = Sji(θ) and
are given by

Sij(θ) =
min(i,j)∏
p=1

{i+ j + 1− 2p}n (4.9)

where the unitary building blocks, {x}n, are defined according to

{x}n =

f(x−1)/n(θ)f(x+1)/n(θ) Perturbed Coset
f(x−1)/n(θ)f(x+1)/n(θ)f(−x+B−1)/n(θ)f(−x−B+1)/n(θ) Affine Toda

(4.10)
In table 1 we display the celestial amplitudes for the perturbed coset models with g =
su(2), su(3), and su(4). In figure 2, we plot the celestial amplitude for the Affine Toda
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Lie Algebra S-matrix Celestial Amplitude
su(2) S11(θ) = {1}2 M̃11(∆) = −2πδ(∆)
su(3) S11(θ) = {1}3 M̃11(∆) = −2

√
3π

1−e2π∆ e
2π∆/3 − πδ(∆)

S12(θ) = {2}3 M̃12(∆) = 2
√

3π
1−e2π∆ e

π∆/3 − πδ(∆)
su(4) S11(θ) = {1}4 M̃11(∆) = −4π

1−e2π∆ e
π∆/2

S22(θ) = {1}4{3}4 M̃22(∆) = 8π∆
1−e2π∆ e

π∆/2 + 2πδ(∆)
S12(θ) = {2}4 M̃12(∆) = 4π

1−e2π∆

(
eπ∆/4 − e3π∆/4

)
− 2πδ(∆)

S13(θ) = {3}4 M̃13(∆) = 4π
1−e2π∆ e

π∆/2

Table 1. Celestial amplitudes for the perturbed coset theories with g = su(2), su(3), and su(4).
There is an additional symmetry exchanging particles 1↔ 2 in the su(3) theory and 1↔ 3 in the
su(4) theory relating the amplitudes in the above table to the other possibilities.

theories as a function of ∆ for various choices of the coupling parameter B. While it is
possible to derive explicit closed form expressions for M̃ij(∆) in the Toda theories, the
results are complicated trigonometric functions of B whose explicit form is unenlightening.
Notice that in both cases, these expressions decay exponentially in ∆ as ∆ → ±∞. We
will demonstrate that this is a general feature of CCFT0 correlators in section 4.3.

Another important feature of the expressions in table 1 is the infinite set of poles in
the complex ∆ plane located at ∆ = in for n ∈ N (equivalently, ∆̂ ∈ N). This pole
structure has also appeared in higher-dimensional examples [19], where it was related to
the low-energy and high-energy expansions of the scattering amplitudes.

One may also use the techniques developed in section 4.1 to compute higher point
celestial amplitudes. For example, the 3 → 3 celestial amplitudes for the perturbed coset
model with g = su(3) are given by5

M̃111(∆̂2,∆̂3)=− 2
√

3π
1−e2π∆̂2

2
√

3π
1−e2π∆̂3

eπ(2∆̂2+2∆̂3)/3 + ···

M̃112(∆̂2,∆̂3)= 2
√

3π
1−e2π∆̂3

2
√

3π
1−e2π(∆̂2+∆̂3)

eπ(2∆̂2+3∆̂3)/3 + ··· (4.11)

M̃121(∆̂2,∆̂3)= 2
√

3π
1−e2π∆̂3

6π∆̂3

1−e2π(∆̂2+∆̂3)
eπ(∆̂2+2∆̂3)/3+···

M̃211(∆̂2,∆̂3)=− 2
√

3π
1−e2π∆̂2

2
√

3π
1−e2π∆̂3

eπ(∆̂2+∆̂3)/3+ 2
√

3π
1−e2π∆̂3

2
√

3π
1−e2π(∆̂2+∆̂3)

eπ(∆̂2+3∆̂3)/3+···

where we have suppressed terms which have δ(∆̂i) singularities in the ‘· · · ’ terms. The full
expression is given in appendix B, where we explain how to compute these amplitudes and
outline the inductive procedure to compute n → n celestial amplitudes for all integrable
theories with diagonal scattering.

5There is an additional symmetry swapping particles 1 ↔ 2 which relates the above 3 → 3 celestial
amplitudes to the other four possibilities.
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Figure 2. Plots of the Celestial S-matrices for the g = su(2), su(3), and su(4) affine Toda theories
suppressing the Aij(∆) = 2πδ(∆) term. The celestial S-matrices satisfy M̃ij(∆) = M̃ji(∆); more-
over, M̃11(∆) = M̃22(∆) for the su(3) theory while M̃11(∆) = M̃33(∆) and M̃12(∆) = M̃32(∆) for
the su(4) theory just as in the case of the deformed coset model.
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4.3 Properties of the 2-particle celestial amplitude

In this section, we will study the behavior of the celestial amplitude at large and small ∆.

Exponential decay of the celestial amplitude. In the previous section we noted that
the celestial amplitude decays exponentially as ∆→ ±∞ for the affine Toda and perturbed
coset models. This behavior actually holds for all models with diagonal scattering and
follows directly from (4.8). First, note that

M̃ij(∆) ∼ 2πi e−π(∆+|∆|) ∑
α∈Ωij

Res
[
e−i∆θSij(θ); θ = iπα

]
as ∆→ ±∞ . (4.12)

When Sij(θ) has only simple poles, the residue calculation is straightforward

M̃ij(∆) ∼ 2πi
∑

α∈Ωij
Res[Sij(θ); θ = iπα]×

e−π(2−α)∆ ∆→ +∞
eπα∆ ∆→ −∞

(4.13)

Since α ∈ (0, 2), the celestial amplitude is well approximated at large |∆| by a finite sum
of terms, each of which is exponentially suppressed. The celestial amplitude therefore
decays exponentially in |∆|, and the rate of decay is fixed by the parameter α which
encodes the positions of the poles (i.e., the dynamics of the model). Bound state poles
are typically not visible at any order in perturbation theory, so we conclude that the non-
perturbative behavior of the model controls crucial aspects of the analytic structure of the
celestial correlators. Indeed, note that when θ = iπα is a bound state pole corresponding to
forward-channel scattering, the value of α determines the mass of the bound state according
to equation (4.2). Moreover, the residue Res[Sij(θ); θ = iπα] is related to the three-
point coupling between the two external particles and the bound state, fijB, according to
equation (4.3). Therefore, the rate of exponential decay of the celestial amplitude encodes
highly non-trivial information about the spectrum and coupling constants of the underlying
QFT. It would be interesting to establish this relationship in non-integrable models, where
it could provide a non-perturbative axiom for the definition of CCFT.

This discussion assumed that all poles of Sij(θ) are simple, but the conclusions still
apply when the poles are of higher order. The only dependence of the residue on ∆ enters
through the e−i∆θ term. All others factors are bounded functions of α which do not affect
the asymptotics. However, the interpretation of the higher-order poles is not as direct in
this case (they are related to anomalous threshold singularities, which produce poles rather
than cuts in two dimensions).

Unboundedness of the celestial amplitude. Equation (4.8) indicates that the celes-
tial amplitude is ill-defined as a function when ∆ → 0. Indeed at ∆ = 0, the asymptote
term has a delta function singularity along with a term that blows up as 1

∆ . Both behaviors
have simple explanations. The δ(∆) term arises because the two-particle S-matrix is not
an integrable function, and the zero mode of the Fourier transform is simply the integral
of Sij(θ), which diverges. The 1

∆ behavior is a reflection of the fact that the θ → +∞ limit
of Sij(θ) differs from the θ → −∞ limit. For small ∆ (i.e., long wavelength), gij(θ) looks
like a step function whose Fourier transform has a 1

∆ pole. In non-integrable models, the
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large-rapidity behavior of Sij(θ) is dampened due to particle production, and this could
potentially soften the singular behavior of the Fourier transform. Unfortunately, there
is little rigorous information available for non-integrable S-matrices in the large-rapidity
regime, and it is an important open question to determine whether the singular behavior
we observe here persists in non-integrable models.

In contrast, the pole term Pij(∆) is finite as ∆→ 0 despite the (1− e2π∆)−1 prefactor.
Indeed, the expression inside of the parentheses actually vanishes as ∆→ 0, so the product
has a finite limit. The fact that Pij(∆) is a bounded function follows from the fact that it
is the Fourier transform of Sij(θ)− gij(θ). One can verify that Sij(θ)− gij(θ) is a Schwartz
class function, so its Fourier transform will be bounded.

The distributional nature of the celestial amplitude appears to be a generic feature of
local quantum field theory. However, as in AdS holography, we do not expect celestial CFTs
to be fully well-behaved without the inclusion of gravity. Of course, two-dimensional gravity
lacks many of the important features of higher-dimensional gravity, so the expectation is
less clear in our case. Nevertheless, in section 5.2 we will see that coupling these models
to even the simplest version of 2d gravity dramatically changes the analytic properties
of the celestial correlators. No matter how strong or weak the coupling to gravity is,
the full celestial amplitude immediately becomes a bounded function. Gravity tames the
divergences and smooths out the bad behavior.

5 CCFT dual to integrable theories III: gravitational dressing

Since gravity has no propagating degrees of freedom in two dimensions, its signature in the
S-matrix is slightly more subtle than in higher dimensions. Nonetheless, although there
are no gravitons to propagate in loops or appear in external states, the path integral over
metrics can still have interesting implications for observables. For instance, one generally
expects that local observables will cease to be sharply defined upon coupling to gravity.
Boundary observables like the S-matrix are still believed to make sense, and it is generally
hoped that they can be computed holographically.

Given that 2d quantum gravity really just means integration over the conformal mode
plus some boundary degrees of freedom, one does not expect coupling to gravity to dramat-
ically alter the spectrum of a QFT in flat space. At most one has an extra Liouville-like
degree of freedom to integrate over, but the simplest theories of gravity in 2d are quasi-
topological and do not even include that mode. Gravity is most often introduced through
the Lagrangian, but the authors of [53] discovered a general procedure for “dressing” non-
gravitational 2d S-matrices that exhibits many gravitational traits. The deformation pre-
serves the spectrum of particles (as well as integrability when it is present) but significantly
changes the UV behavior of amplitudes. Importantly, this dressing procedure is equivalent
to coupling the model to flat space JT gravity [54].

The dressing procedure takes a simple form for the 2 → 2 S-matrix of an integrable
model. One simply introduces a UV scale ls and dresses the 2-particle amplitude by a
rapidity-dependent phase

Sb1b2a1a2(θ)dressed = eil
2
smimj sinh(θ)Sb1b2a1a2(θ) . (5.1)
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The dressed n → n rapidity-space amplitude remains the product of 2 → 2 scattering
amplitudes; however, these constituent amplitudes are now all individually dressed. One
may verify that these dressed S-matrices also obey real-analyticity, unitarity, and crossing
symmetry, so the corresponding constraints on celestial amplitudes are unmodified in the
presence of gravity. Indeed, phases like (5.1) satisfy all the properties of local QFT except
for polynomial boundedness: the dressing has an essential singularity at s = (p1+p2)2 =∞
which distinguishes it from local QFT and which is responsible for the non-local properties
of the deformed model.

To simplify some technical aspects of the discussion, we will focus on diagonal scat-
tering. Nevertheless, the dressing procedure described in [54] can be applied to any two-
dimensional QFT and many of the following results probably hold more generally. We
hope to explore this in future work.

5.1 The celestial dressing

The dressed 2→ 2 celestial amplitude is given by the Fourier transform

M̃ij(∆)dressed =
∫ ∞
−∞

dθ e−i∆θeil
2
smimj sinh(θ)Sij(θ) . (5.2)

It can be computed by convolving the undressed celestial amplitude M̃ij(∆) with the
celestial dressing D̃ij(∆)

M̃ij(∆)dressed =
∫ ∞
−∞

d∆′ D̃ij(∆′)M̃ij(∆−∆′) , (5.3)

where D̃ij(∆) is the Fourier transform of the gravitational dressing

D̃ij(∆) =
∫ ∞
−∞

dθ e−i∆θeil
2
smimj sinh(θ) . (5.4)

We have already discussed the Fourier transform of the undressed amplitude extensively,
so it remains to compute this celestial dressing. The representation

D̃ij(∆) =
∫ ∞
−∞

dθ cos
(
∆θ − l2smimj sinh(θ)

)
(5.5)

makes clear that Im D̃ij(∆) = 0 as is necessary to be consistent with real analyticity.
Perhaps surprisingly, it is possible to do the integral (5.4) exactly. The Bessel function

of the first kind has an integral representation

Jν(x) = 1
2πi

∫ ∞+iπ

∞−iπ
ex sinh θ−νθdθ , (5.6)

from which it follows that

J−ν(−x) = 1
2πi

∫ −∞+iπ

−∞−iπ
ex sinh θ−νθdθ . (5.7)
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Figure 3. The celestial dressing, D̃ij(∆), for l2smimj = 0.01 (weak gravity, left hand panel), for
l2smimj = 1 (stronger gravity, right hand panel).

To evaluate (5.4), we consider the semi-infinite rectangular contour in the complex θ plane
with Im(θ) ∈ [−π, π] which encloses no poles:∫ ∞−iπ

−∞−iπ
e−x sinh θ−νθdθ +

∫ ∞+iπ

∞−iπ
e−x sinh θ−νθdθ (5.8)

−
∫ ∞+iπ

−∞+iπ
e−x sinh θ−νθdθ −

∫ −∞+iπ

−∞−iπ
e−x sinh θ−νθdθ = 0 .

From this one concludes that

(eiπν − e−iπν)
∫ ∞
−∞

ex sinh θ−νθdθ = 2πi [J−ν(x)− Jν(−x)] . (5.9)

The celestial dressing is therefore a sum of Bessel functions

D̃ij(∆) = iπ

[
Ji∆(−il2smimj)− J−i∆(il2smimj)

]
sinh π∆ . (5.10)

We plot this function for some representative values of l2smimj in figure 3. One can also
numerically integrate (5.4) and verify that it matches (5.10).

5.2 Boundedness of the dressed celestial amplitude

We saw in section 4.3 that the n→ n celestial amplitude generally only exists as a tempered
distribution in the absence of gravity. In particular, the celestial amplitude is generically
unbounded as ∆ → 0. These results all assumed the usual axioms of local quantum field
theory, in particular polynomial boundedness of the amplitudes in the Mandelstam vari-
ables. The rapidly oscillating phase (5.1) has the potential to dramatically effect these con-
clusions, and in this section we discuss to what extent these features are modified by gravity.

Rapidly varying phases in the Fourier transform often lead to better convergence prop-
erties. We would like to know if there exists a constant M̃max <∞ such that

|M̃ij(∆)| ≤ M̃max ∀ ∆ ∈ R . (5.11)
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This would demonstrate that the dressed celestial amplitude is a bounded function that
doesn’t display the singular distributional features of the undressed theory. We begin by
demonstrating that the following integral converges

M̃ij(0)dressed =
∫ ∞
−∞

dθ eil
2
smimj sinh(θ)Sij(θ)

= 1
il2smimj

∫ ∞
−∞

dθ
1

cosh(θ)
d

dθ

[
eil

2
smimj sinh(θ)

]
Sij(θ)

= − 1
il2smimj

∫ ∞
−∞

dθ eil
2
smimj sinh(θ)

[
S′ij(θ)

cosh(θ) −
Sij(θ) sinh(θ)

cosh(θ)2

]
<∞

(5.12)

where we integrated by parts and dropped the boundary term due to the rapid decay of
1/ cosh(θ) as θ → ±∞. In fact the same would hold if we restored the e−i∆θ term. Indeed,
if we insert the explicit expression for Sij(θ) from equation (4.1), we see that the integral
is absolutely convergent since the modulus of the integrand is exponentially decaying as
θ → ±∞. It is known that the Fourier transform of an integrable function is a uniformly
continuous function and is bounded by the value of the absolutely converging integral,
M̃max. It follows that M̃ij(∆)dressed is a bounded function.

6 Discussion

This paper contains some of the first exact results in the celestial CFT program, but we
have only scratched the surface of the set of interesting models in two dimensions. The
most straightforward generalization would be to study the 2d integrable S-matrices with
non-diagonal scattering. This class contains a variety of important quantum field theories,
including the nonlinear sigma models, the Gross-Neveu model, and the Sinh-Gordon model.
It would be considerably more interesting to study non-integrable models which nonetheless
admit some degree of analytic control, perhaps by utilizing the large-N expansion. The
t’Hooft model seems like a promising target in this regard. More generally, two-dimensional
gauge theory lacks propagating degrees of freedom but does produce important global
effects that would be interesting to explore in CCFT0. Theories with massless particles
present additional challenges due to the strong infrared divergences in low dimensions, but
results do exist [55] that could provide new insight into CCFT.

The characterization of the asymptotics of the celestial correlators in terms of the
bound state spectrum is the type of non-perturbative structural result we seek in higher
dimensions. In the presence of inelastic scattering, multiparticle cuts are expected and the
analytic structure of the 2→ 2 amplitude is much more complicated. Nonetheless, results
in this broader class of tractable models might provide important structural clues for the
higher dimensional case.

The most interesting aspect of this work is the dramatic effect of the gravitational
dressing. Many models of 2d quantum gravity can be solved exactly using matrix model
techniques and would be interesting to explore within CCFT0, but even the simplest model
of 2d gravity manages to smooth out the distributional nature of the celestial correlators.
It would be fascinating if this mechanism also operates in higher dimensions. Indeed, the
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phase shift eil2ss also occurs in higher-dimensional high-energy elastic scattering, where it
can be derived by summing ladder diagrams or performing a geodesic calculation using
shocks [56]. In these cases l2s ∼ GNb

d−2 is related to the impact parameter and there is
dependence on the transverse coordinates, but it seems likely that the basic mechanism
exhibited in this paper will also smooth out higher-dimensional celestial correlators (see [57,
58] for work in this direction). These phase shifts and time delays are also related to chaos
in the black hole S-matrix [59, 60] and it would be interesting to explore this connection
within the CCFT context.
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A Implications of crossing symmetry

In this appendix, we will derive the celestial analog of the crossing equation

Sb1b2a1a2(θ)dressed = S
b1C(a2)
a1C(b2)(iπ − θ)dressed , (A.1)

where C is the charge conjugation operator. The result holds for both integrable and non-
integrable quantum field theories and for any choice of the gravitational dressing l2s > 0.

To compute this Fourier transform we use the contour integration techniques of sec-
tion 4.1. For this calculation we choose a contour γ surrounding the physical strip but not
the second sheet∫

γ
dθ e−i∆θSb1b2a1a2(θ)dressed =

(∫ ∞
−∞

+
∫ ∞+iπ

∞
+
∫ −∞+iπ

∞+iπ
+
∫ −∞
−∞+iπ

)
e−i∆θSb1b2a1a2(θ)dressed

= M̃ b1b2
a1a2(∆)dressed − eπ∆M̃

b1C(a2)
a1C(b2) (−∆)dressed

+
(∫ ∞+iπ

∞
+
∫ −∞
−∞+iπ

)
e−i∆θSb1b2a1a2(θ)dressed . (A.2)

Next, we demonstrate that the remaining vertical sections of the contour vanish. Decom-
posing θ = x+ iy, the integrand on the right side of the contour takes the form

lim
x→∞

∫ π

0
dy e−i∆(x+iy)Sb1b2a1a2(x+ iy)eil2s sinh(x+iy) . (A.3)

To show that the integral vanishes, we bound the modulus of the three terms in the product
separately for both x→∞ and x→ −∞

|e−i∆(x+iy)| = e∆y , |Sb1b2a1a2(x+ iy)| ≤ eκ|x+y| , |eil2smimj sinh(x+iy)| = e−l
2
smimj sin y coshx .

(A.4)
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The second bound follows from the standard assumption in local quantum field theory of
polynomial boundedness in the Mandelstam invariant s. Since y ∈ (0, π) on the physical
strip, the vertical sections of the integral decay superexponentially and have vanishing
contribution to the full integral.

Evaluating the contour integral explicitly with residues gives the final result

M̃ b1b2
a1a2(∆)dressed− eπ∆M̃

b1C(a2)
a1C(b2) (−∆)dressed = 2πi

∑
α∈ΩBS

Res
[
e−i∆θSb1b2a1a2(θ)dressed; θ = iπα

]
,

(A.5)
where ΩBS is the set of bound state poles in the a1 + a2 → b1 + b2 scattering amplitude.
A similar calculation could be performed in the undressed theory by utilizing the function
gij(θ) to remove the vertical contributions.

B n → n celestial amplitudes

In this appendix we explicitly compute the 3 → 3 celestial amplitude for the deformed
coset model discussed in section 4.2 for g = su(3) and explain how this approach may
be generalized to compute the n → n celestial amplitude for all integrable models with
diagonal scattering.

The 3→ 3 celestial amplitude is given by equation (3.5)

M̃ijk(∆̂2, ∆̂3) =
∫ ∞
−∞

dθ12 e
−i∆̂2θ12Sij(θ12)

∫ ∞
−∞

dθ13 e
−i∆̂3θ13Sik(θ13)Sjk(θ13 − θ12) , (B.1)

where we have used factorizability of the rapidity-space S-matrix to write the 3 → 3
amplitude as a product of 2 → 2 amplitudes. The integral over θ13 may be evaluated
explicitly using the contour integration arguments of section 4.1. Concretely, we define

Iijk(θ12, ∆̂3) =
∫ ∞
−∞

dθ13 e
−i∆̂3θ13Sik(θ13)Sjk(θ13 − θ12) (B.2)

which may be computed by taking residues of the integrand at θ13 ∈ iπΩik and at θ13 ∈
θ12 + iπΩjk

I111 = −2
√

3π
1−e2π∆̂3

[
e2π∆̂3/3 sinh

(1
2(θ12− 4πi

3 )
)

sinh
(1

2θ12
) +e−i∆̂3θ12e2π∆̂3/3 sinh

(1
2(θ12+ 4πi

3 )
)

sinh
(1

2θ12
) ]

−πδ(∆̂3) ,

I112 = −2
√

3π
1−e2π∆̂3

[
eπ∆̂3/3 sinh

(1
2(θ12− 2πi

3 )
)

sinh
(1

2θ12
) +e−i∆̂3θ12eπ∆̂3/3 sinh

(1
2(θ12+ 2πi

3 )
)

sinh
(1

2θ12
) ]

−πδ(∆̂3) ,

I121 = −2
√

3π
1−e2π∆̂3

[
e2π∆̂3/3 sinh

(1
2(θ12+iπ)

)
sinh

(1
2(θ12− iπ

3 )
)−e−i∆̂3θ12eπ∆̂3/3 sinh

(1
2(θ12+iπ)

)
sinh

(1
2(θ12− iπ

3 )
)]+2πδ(∆̂3) ,

I211 = −2
√

3π
1−e2π∆̂3

[
eπ∆̂3/3 sinh

(1
2(θ12+iπ)

)
sinh

(1
2(θ12+ iπ

3 )
)−e−i∆̂3θ12e2π∆̂3/3 sinh

(1
2(θ12+iπ)

)
sinh

(1
2(θ12+ iπ

3 )
)]+2πδ(∆̂3) .

These integrals are also related by a 1 ↔ 2 symmetry inherent in the rapidity space
S-matrix. These expressions are very similar to the most general 2 → 2 rapidity-space
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scattering amplitude given by equation (4.1). Thus, one may evaluate the outer integral
by performing one more set of straightforward residue computations. The final result is

M̃111 = −m2(∆̂3)m2(∆̂2)

−m2(∆̂3) · 2πδ(∆̂2) +m2(∆̂3) · πδ(∆̂1) +m2(∆̂2) · πδ(∆̂3) + π2δ(∆̂2)δ(∆̂3) ,

M̃112 = −m1(∆̂3)m4(∆̂1)

−m1(∆̂3) · πδ(∆̂2) +m1(∆̂3) · 2πδ(∆̂1) +m2(∆̂2) · πδ(∆̂3) + π2δ(∆̂2)δ(∆̂3) ,

M̃121 = −
√

3∆̂2m2(∆̂3)m1(∆̂2) +
√

3∆̂1m1(∆̂3)m5(∆̂1) (B.3)

−m2(∆̂3) · 2πδ(∆̂2) +m1(∆̂3) · πδ(∆̂1) +m1(∆̂2) · 2πδ(∆̂3)− 2π2δ(∆̂2)δ(∆̂3) ,

M̃211 = −m1(∆̂3)m1(∆̂2)−m5(∆̂1)m2(∆̂3)

−m1(∆̂3) · πδ(∆̂2) +m2(∆̂3) · 2πδ(∆̂1) +m1(∆̂2) · 2πδ(∆̂3)− 2π2δ(∆̂2)δ(∆̂3) ,

where we have defined the following function to simplify our expressions

mα(∆) = 2
√

3π
1− e2π∆ e

πα∆/3 . (B.4)

In each case, the first line only includes terms without a δ(∆̂i) singularity (compare with
equation (4.11)), while the second line includes terms which have one or two such delta
functions. We have also set ∆̂1 = −∆̂2 − ∆̂3, which holds on the delta function support of
the celestial S-matrix as in equation (3.3).

Generalizing this approach to n → n scattering in an arbitrary integrable theory is a
straightforward task. One uses factorizability to write the n→ n rapidity space amplitude
as a product of 2→ 2 amplitudes. The celestial amplitude is an n− 1 dimensional Fourier
transform over the rapidity space variables. These Fourier transforms may be computed
successively through repeated residue computations at the poles of the constituent 2 → 2
amplitudes.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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References

[1] L. Susskind, Holography in the flat space limit, AIP Conf. Proc. 493 (1999) 98
[hep-th/9901079] [INSPIRE].

[2] J. de Boer and S.N. Solodukhin, A holographic reduction of Minkowski space-time, Nucl.
Phys. B 665 (2003) 545 [hep-th/0303006] [INSPIRE].

[3] R.B. Mann and D. Marolf, Holographic renormalization of asymptotically flat spacetimes,
Class. Quant. Grav. 23 (2006) 2927 [hep-th/0511096] [INSPIRE].

[4] C. Dappiaggi, V. Moretti and N. Pinamonti, Rigorous steps towards holography in
asymptotically flat spacetimes, Rev. Math. Phys. 18 (2006) 349 [gr-qc/0506069] [INSPIRE].

– 20 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/1.1301570
https://arxiv.org/abs/hep-th/9901079
https://inspirehep.net/literature/482388
https://doi.org/10.1016/S0550-3213(03)00494-2
https://doi.org/10.1016/S0550-3213(03)00494-2
https://arxiv.org/abs/hep-th/0303006
https://inspirehep.net/literature/614368
https://doi.org/10.1088/0264-9381/23/9/010
https://arxiv.org/abs/hep-th/0511096
https://inspirehep.net/literature/697250
https://doi.org/10.1142/S0129055X0600270X
https://arxiv.org/abs/gr-qc/0506069
https://inspirehep.net/literature/684808


J
H
E
P
0
2
(
2
0
2
3
)
1
2
8

[5] G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, JHEP 05 (2010)
062 [arXiv:1001.1541] [INSPIRE].

[6] A. Bagchi, Correspondence between asymptotically flat spacetimes and nonrelativistic
conformal field theories, Phys. Rev. Lett. 105 (2010) 171601 [arXiv:1006.3354] [INSPIRE].

[7] T. Banks, The super BMS algebra, scattering and holography, Tech. Rep.
RUNHETC-2014-06-SCIPP-14-05 (2014) [arXiv:1403.3420] [INSPIRE].

[8] S. Pasterski and S.-H. Shao, Conformal basis for flat space amplitudes, Phys. Rev. D 96
(2017) 065022 [arXiv:1705.01027] [INSPIRE].

[9] D. Kapec and P. Mitra, A d-dimensional stress tensor for Minkd+2 gravity, JHEP 05 (2018)
186 [arXiv:1711.04371] [INSPIRE].

[10] D. Kapec, Soft particles and infinite-dimensional geometry, arXiv:2210.00606 [INSPIRE].

[11] D. Kapec, Y.T.A. Law and S.A. Narayanan, Soft scalars and the geometry of the space of
celestial CFTs, arXiv:2205.10935 [INSPIRE].

[12] S. Pasterski, S.-H. Shao and A. Strominger, Gluon amplitudes as 2d conformal correlators,
Phys. Rev. D 96 (2017) 085006 [arXiv:1706.03917] [INSPIRE].

[13] A. Schreiber, A. Volovich and M. Zlotnikov, Tree-level gluon amplitudes on the celestial
sphere, Phys. Lett. B 781 (2018) 349 [arXiv:1711.08435] [INSPIRE].

[14] S. Stieberger and T.R. Taylor, Strings on celestial sphere, Nucl. Phys. B 935 (2018) 388
[arXiv:1806.05688] [INSPIRE].

[15] D. Nandan, A. Schreiber, A. Volovich and M. Zlotnikov, Celestial amplitudes: conformal
partial waves and soft limits, JHEP 10 (2019) 018 [arXiv:1904.10940] [INSPIRE].

[16] M. Pate, A.-M. Raclariu, A. Strominger and E.Y. Yuan, Celestial operator products of gluons
and gravitons, Rev. Math. Phys. 33 (2021) 2140003 [arXiv:1910.07424] [INSPIRE].

[17] H.A. González, A. Puhm and F. Rojas, Loop corrections to celestial amplitudes, Phys. Rev. D
102 (2020) 126027 [arXiv:2009.07290] [INSPIRE].

[18] S. Banerjee and S. Ghosh, MHV gluon scattering amplitudes from celestial current algebras,
JHEP 10 (2021) 111 [arXiv:2011.00017] [INSPIRE].

[19] N. Arkani-Hamed, M. Pate, A.-M. Raclariu and A. Strominger, Celestial amplitudes from
UV to IR, JHEP 08 (2021) 062 [arXiv:2012.04208] [INSPIRE].

[20] A. Guevara, E. Himwich, M. Pate and A. Strominger, Holographic symmetry algebras for
gauge theory and gravity, JHEP 11 (2021) 152 [arXiv:2103.03961] [INSPIRE].

[21] W. Fan, A. Fotopoulos, S. Stieberger, T.R. Taylor and B. Zhu, Conformal blocks from
celestial gluon amplitudes, JHEP 05 (2021) 170 [arXiv:2103.04420] [INSPIRE].

[22] A. Atanasov, W. Melton, A.-M. Raclariu and A. Strominger, Conformal block expansion in
celestial CFT, Phys. Rev. D 104 (2021) 126033 [arXiv:2104.13432] [INSPIRE].

[23] E. Himwich, M. Pate and K. Singh, Celestial operator product expansions and w1+∞
symmetry for all spins, JHEP 01 (2022) 080 [arXiv:2108.07763] [INSPIRE].

[24] W. Fan, A. Fotopoulos, S. Stieberger, T.R. Taylor and B. Zhu, Conformal blocks from
celestial gluon amplitudes. Part II. Single-valued correlators, JHEP 11 (2021) 179
[arXiv:2108.10337] [INSPIRE].

– 21 –

https://doi.org/10.1007/JHEP05(2010)062
https://doi.org/10.1007/JHEP05(2010)062
https://arxiv.org/abs/1001.1541
https://inspirehep.net/literature/842513
https://doi.org/10.1103/PhysRevLett.105.171601
https://arxiv.org/abs/1006.3354
https://inspirehep.net/literature/858576
https://arxiv.org/abs/1403.3420
https://inspirehep.net/literature/1285942
https://doi.org/10.1103/PhysRevD.96.065022
https://doi.org/10.1103/PhysRevD.96.065022
https://arxiv.org/abs/1705.01027
https://inspirehep.net/literature/1597599
https://doi.org/10.1007/JHEP05(2018)186
https://doi.org/10.1007/JHEP05(2018)186
https://arxiv.org/abs/1711.04371
https://inspirehep.net/literature/1635876
https://arxiv.org/abs/2210.00606
https://inspirehep.net/literature/2159457
https://arxiv.org/abs/2205.10935
https://inspirehep.net/literature/2086476
https://doi.org/10.1103/PhysRevD.96.085006
https://arxiv.org/abs/1706.03917
https://inspirehep.net/literature/1604922
https://doi.org/10.1016/j.physletb.2018.04.010
https://arxiv.org/abs/1711.08435
https://inspirehep.net/literature/1637617
https://doi.org/10.1016/j.nuclphysb.2018.08.019
https://arxiv.org/abs/1806.05688
https://inspirehep.net/literature/1678074
https://doi.org/10.1007/JHEP10(2019)018
https://arxiv.org/abs/1904.10940
https://inspirehep.net/literature/1731091
https://doi.org/10.1142/S0129055X21400031
https://arxiv.org/abs/1910.07424
https://inspirehep.net/literature/1759362
https://doi.org/10.1103/PhysRevD.102.126027
https://doi.org/10.1103/PhysRevD.102.126027
https://arxiv.org/abs/2009.07290
https://inspirehep.net/literature/1817493
https://doi.org/10.1007/JHEP10(2021)111
https://arxiv.org/abs/2011.00017
https://inspirehep.net/literature/1827518
https://doi.org/10.1007/JHEP08(2021)062
https://arxiv.org/abs/2012.04208
https://inspirehep.net/literature/1835363
https://doi.org/10.1007/JHEP11(2021)152
https://arxiv.org/abs/2103.03961
https://inspirehep.net/literature/1850558
https://doi.org/10.1007/JHEP05(2021)170
https://arxiv.org/abs/2103.04420
https://inspirehep.net/literature/1850584
https://doi.org/10.1103/PhysRevD.104.126033
https://arxiv.org/abs/2104.13432
https://inspirehep.net/literature/1861169
https://doi.org/10.1007/JHEP01(2022)080
https://arxiv.org/abs/2108.07763
https://inspirehep.net/literature/1906452
https://doi.org/10.1007/JHEP11(2021)179
https://arxiv.org/abs/2108.10337
https://inspirehep.net/literature/1909973


J
H
E
P
0
2
(
2
0
2
3
)
1
2
8

[25] T. Adamo, W. Bu, E. Casali and A. Sharma, Celestial operator products from the worldsheet,
JHEP 06 (2022) 052 [arXiv:2111.02279] [INSPIRE].

[26] Y. Hu, L. Lippstreu, M. Spradlin, A.Y. Srikant and A. Volovich, Four-point correlators of
light-ray operators in CCFT, JHEP 07 (2022) 104 [arXiv:2203.04255] [INSPIRE].

[27] D. García-Sepúlveda, A. Guevara, J. Kulp and J. Wu, Notes on resonances and unitarity
from celestial amplitudes, JHEP 09 (2022) 245 [arXiv:2205.14633] [INSPIRE].

[28] L. Ren, M. Spradlin, A. Yelleshpur Srikant and A. Volovich, On effective field theories with
celestial duals, JHEP 08 (2022) 251 [arXiv:2206.08322] [INSPIRE].

[29] R. Bhardwaj, L. Lippstreu, L. Ren, M. Spradlin, A. Yelleshpur Srikant and A. Volovich,
Loop-level gluon OPEs in celestial holography, JHEP 11 (2022) 171 [arXiv:2208.14416]
[INSPIRE].

[30] S. Stieberger, T.R. Taylor and B. Zhu, Celestial Liouville theory for Yang-Mills amplitudes,
Phys. Lett. B 836 (2023) 137588 [arXiv:2209.02724] [INSPIRE].

[31] K. Costello and N.M. Paquette, Celestial holography meets twisted holography: 4d amplitudes
from chiral correlators, JHEP 10 (2022) 193 [arXiv:2201.02595] [INSPIRE].

[32] K. Costello, N.M. Paquette and A. Sharma, Top-down holography in an asymptotically flat
spacetime, arXiv:2208.14233 [INSPIRE].

[33] A. Ball, S.A. Narayanan, J. Salzer and A. Strominger, Perturbatively exact w1+∞ asymptotic
symmetry of quantum self-dual gravity, JHEP 01 (2022) 114 [arXiv:2111.10392] [INSPIRE].

[34] S. Duary, Celestial amplitude for 2d theory, JHEP 12 (2022) 060 [arXiv:2209.02776]
[INSPIRE].

[35] S.R. Coleman and J. Mandula, All possible symmetries of the S matrix, Phys. Rev. 159
(1967) 1251 [INSPIRE].

[36] P. Dorey, Exact S matrices, in Eotvos summer school in physics: conformal field theories and
integrable models, (1996), p. 85 [hep-th/9810026] [INSPIRE].

[37] M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix bootstrap.
Part II. Two dimensional amplitudes, JHEP 11 (2017) 143 [arXiv:1607.06110] [INSPIRE].

[38] H.W. Braden, E. Corrigan, P.E. Dorey and R. Sasaki, Affine Toda field theory and exact S
matrices, Nucl. Phys. B 338 (1990) 689 [INSPIRE].

[39] V.A. Fateev and A.B. Zamolodchikov, Conformal field theory and purely elastic S matrices,
Int. J. Mod. Phys. A 5 (1990) 1025 [INSPIRE].

[40] A.B. Zamolodchikov, Integrals of motion and S matrix of the (scaled) T = Tc Ising model
with magnetic field, Int. J. Mod. Phys. A 4 (1989) 4235 [INSPIRE].

[41] A. Zamolodchikov, Ising spectroscopy II: particles and poles at T > Tc, Tech. Rep.
RUNHETC-2013-20 (2013) [arXiv:1310.4821] [INSPIRE].

[42] T.J. Hollowood and P. Mansfield, Rational conformal field theories at, and away from,
criticality as Toda field theories, Phys. Lett. B 226 (1989) 73 [INSPIRE].

[43] B. Gabai and X. Yin, On the S-matrix of Ising field theory in two dimensions, JHEP 10
(2022) 168 [arXiv:1905.00710] [INSPIRE].

– 22 –

https://doi.org/10.1007/JHEP06(2022)052
https://arxiv.org/abs/2111.02279
https://inspirehep.net/literature/1959685
https://doi.org/10.1007/JHEP07(2022)104
https://arxiv.org/abs/2203.04255
https://inspirehep.net/literature/2048378
https://doi.org/10.1007/JHEP09(2022)245
https://arxiv.org/abs/2205.14633
https://inspirehep.net/literature/2089042
https://doi.org/10.1007/JHEP08(2022)251
https://arxiv.org/abs/2206.08322
https://inspirehep.net/literature/2097120
https://doi.org/10.1007/JHEP11(2022)171
https://arxiv.org/abs/2208.14416
https://inspirehep.net/literature/2143907
https://doi.org/10.1016/j.physletb.2022.137588
https://arxiv.org/abs/2209.02724
https://inspirehep.net/literature/2148187
https://doi.org/10.1007/JHEP10(2022)193
https://arxiv.org/abs/2201.02595
https://inspirehep.net/literature/2005607
https://arxiv.org/abs/2208.14233
https://inspirehep.net/literature/2143709
https://doi.org/10.1007/JHEP01(2022)114
https://arxiv.org/abs/2111.10392
https://inspirehep.net/literature/1973157
https://doi.org/10.1007/JHEP12(2022)060
https://arxiv.org/abs/2209.02776
https://inspirehep.net/literature/2148206
https://doi.org/10.1103/PhysRev.159.1251
https://doi.org/10.1103/PhysRev.159.1251
https://inspirehep.net/literature/51353
https://arxiv.org/abs/hep-th/9810026
https://inspirehep.net/literature/434039
https://doi.org/10.1007/JHEP11(2017)143
https://arxiv.org/abs/1607.06110
https://inspirehep.net/literature/1477431
https://doi.org/10.1016/0550-3213(90)90648-W
https://inspirehep.net/literature/282615
https://doi.org/10.1142/S0217751X90000477
https://inspirehep.net/literature/305299
https://doi.org/10.1142/S0217751X8900176X
https://inspirehep.net/literature/276727
https://arxiv.org/abs/1310.4821
https://inspirehep.net/literature/1261052
https://doi.org/10.1016/0370-2693(89)90291-8
https://inspirehep.net/literature/279125
https://doi.org/10.1007/JHEP10(2022)168
https://doi.org/10.1007/JHEP10(2022)168
https://arxiv.org/abs/1905.00710
https://inspirehep.net/literature/1732939


J
H
E
P
0
2
(
2
0
2
3
)
1
2
8

[44] A.B. Zamolodchikov and A.B. Zamolodchikov, Factorized S matrices in two-dimensions as
the exact solutions of certain relativistic quantum field models, Annals Phys. 120 (1979) 253
[INSPIRE].

[45] T.R. Klassen and E. Melzer, Purely elastic scattering theories and their ultraviolet limits,
Nucl. Phys. B 338 (1990) 485 [INSPIRE].

[46] P. Dorey, Root systems and purely elastic S matrices, Nucl. Phys. B 358 (1991) 654
[INSPIRE].

[47] P. Dorey, Root systems and purely elastic S matrices. 2, Nucl. Phys. B 374 (1992) 741
[hep-th/9110058] [INSPIRE].

[48] A.B. Zamolodchikov, Integrable field theory from conformal field theory, Adv. Stud. Pure
Math. 19 (1989) 641 [INSPIRE].

[49] P. Christe and G. Mussardo, Elastic S matrices in (1 + 1)-dimensions and Toda field
theories, Int. J. Mod. Phys. A 5 (1990) 4581 [INSPIRE].

[50] P. Christe and G. Mussardo, Integrable systems away from criticality: the Toda field theory
and S matrix of the tricritical Ising model, Nucl. Phys. B 330 (1990) 465 [INSPIRE].

[51] G. Mussardo, Off critical statistical models: factorized scattering theories and bootstrap
program, Phys. Rept. 218 (1992) 215 [INSPIRE].

[52] G. Mussardo, Statistical field theory: an introduction to exactly solved models in statistical
physics, Oxford Univ. Press, New York, NY, U.S.A. (2010).

[53] S. Dubovsky, V. Gorbenko and M. Mirbabayi, Natural tuning: towards a proof of concept,
JHEP 09 (2013) 045 [arXiv:1305.6939] [INSPIRE].

[54] S. Dubovsky, V. Gorbenko and M. Mirbabayi, Asymptotic fragility, near AdS2 holography
and TT , JHEP 09 (2017) 136 [arXiv:1706.06604] [INSPIRE].

[55] P. Fendley and H. Saleur, Massless integrable quantum field theories and massless scattering
in (1 + 1)-dimensions, in Summer school in high-energy physics and cosmology (includes
workshop on strings, gravity, and related topics 29–30 July 1993), (1993), p. 301
[hep-th/9310058] [INSPIRE].

[56] T. Dray and G. ’t Hooft, The gravitational shock wave of a massless particle, Nucl. Phys. B
253 (1985) 173 [INSPIRE].

[57] L. Pipolode Gioia and A.-M. Raclariu, Eikonal approximation in celestial CFT,
arXiv:2206.10547 [INSPIRE].

[58] R. Gonzo, T. McLoughlin and A. Puhm, Celestial holography on Kerr-Schild backgrounds,
JHEP 10 (2022) 073 [arXiv:2207.13719] [INSPIRE].

[59] S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067
[arXiv:1306.0622] [INSPIRE].

[60] J. Polchinski, Chaos in the black hole S-matrix, arXiv:1505.08108 [INSPIRE].

– 23 –

https://doi.org/10.1016/0003-4916(79)90391-9
https://inspirehep.net/literature/131456
https://doi.org/10.1016/0550-3213(90)90643-R
https://inspirehep.net/literature/284214
https://doi.org/10.1016/0550-3213(91)90428-Z
https://inspirehep.net/literature/302019
https://doi.org/10.1016/0550-3213(92)90407-3
https://arxiv.org/abs/hep-th/9110058
https://inspirehep.net/literature/318389
https://inspirehep.net/literature/279986
https://doi.org/10.1142/S0217751X90001938
https://inspirehep.net/literature/282790
https://doi.org/10.1016/0550-3213(90)90119-X
https://inspirehep.net/literature/278676
https://doi.org/10.1016/0370-1573(92)90047-4
https://inspirehep.net/literature/31890
https://doi.org/10.1007/JHEP09(2013)045
https://arxiv.org/abs/1305.6939
https://inspirehep.net/literature/1236178
https://doi.org/10.1007/JHEP09(2017)136
https://arxiv.org/abs/1706.06604
https://inspirehep.net/literature/1606217
https://arxiv.org/abs/hep-th/9310058
https://inspirehep.net/literature/359007
https://doi.org/10.1016/0550-3213(85)90525-5
https://doi.org/10.1016/0550-3213(85)90525-5
https://inspirehep.net/literature/203743
https://arxiv.org/abs/2206.10547
https://inspirehep.net/literature/2098504
https://doi.org/10.1007/JHEP10(2022)073
https://arxiv.org/abs/2207.13719
https://inspirehep.net/literature/2127383
https://doi.org/10.1007/JHEP03(2014)067
https://arxiv.org/abs/1306.0622
https://inspirehep.net/literature/1236835
https://arxiv.org/abs/1505.08108
https://inspirehep.net/literature/1373738

	Introduction
	Two-dimensional kinematics and CCFT(0)
	CCFT dual to integrable theories I: the general case
	Elastic scattering
	Factorizability and the Yang-Baxter equation
	Real-analyticity, unitarity, and crossing symmetry
	Existence of the n-particle celestial S-matrix

	CCFT dual to integrable theories II: diagonal scattering
	The 2 -> 2 celestial amplitude
	Some examples: perturbed diagonal cosets and affine Toda theories
	Properties of the 2-particle celestial amplitude

	CCFT dual to integrable theories III: gravitational dressing
	The celestial dressing
	Boundedness of the dressed celestial amplitude

	Discussion
	Implications of crossing symmetry
	n -> n celestial amplitudes

