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Abstract
The 2D Orszag-Tang vortex magnetohydrodynamics

(MHD) problem is studied through the use of physics-
constrained convolutional neural networks (PCNNs). The
density, 𝜌, and the magnetic field, B, are forecasted, and we
also predict B given the velocity field, v, of the fluid. We ex-
amined the incorporation of various physics constraints into
the PCNNs: absence of magnetic monopoles, non-negativity
of 𝜌 and use of only relevant variables. Translation equivari-
ance was present from the convolutional architecture. The
use of a residual architecture and data augmentation was
found to increase performance greatly. The most accurate
models were incorporated into the simulation, with reason-
ably accurate results. For the prediction task, the PCNNs
were evaluated against a physics-informed neural network
(PINN), which had the ideal MHD induction equation as a
soft constraint. The use of PCNNs for MHD has the poten-
tial to produce physically consistent real-time simulations to
serve as virtual diagnostics in cases where inferences must
be made with limited observables.

INTRODUCTION
Magnetohydrodymaics (MHD) is a field that explores

the behavior of electrically conductive fluids, an interesting
intersection of fluid dynamics and electrodynamics. Phe-
nomena that can be described in terms of MHD includes the
iron core of the Earth and the corona of the Sun. The beam
dynamics inside an accelerator shares many characteristics
similar to MHD, thus can be of interest to the accelerator
community.

Simulations of MHD can be computationally demand-
ing. Although much work has been done in using surrogate
machine learning (ML) models to speed up fluid and elec-
trodynamics computations, relatively little has been done in
applying these techniques to MHD. Here, we use techniques
developed in a previous work to create physics-constrained
convolutional neural networks (PCNNs) which is a novel
recent method for incorporating hard physics constraints
within neural networks for electrodynamics [1]. Unlike
physics informed neural networks (PINNs), which do not
guarantee any hard constraints, PCNNs directly build hard
constraints into the ML architecture by generating vector and
scalar potentials from which the electromagnetic fields are
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generated according to Maxwell’s equations. In the PCNN
approach for 3D electromagnetism rather than modeling the
magnetic field with the NN and trying to impose Gauss’s
law for magnetism the magnetic vector potential is gener-
ated, A(r, 𝑡). Then the physical constraint is automatically
satisfied (i.e, ∇ · (∇ × A) = 0), up to numerical errors [1].
In this paper we implement the 2D version of that, with:

B(r, 𝑡) = ∇⊥𝐴(r, 𝑡), (1)

where 𝐴(r, 𝑡) is a scalar field.
For ideal MHD, where the fluid has perfect conductivity

and no viscosity, the equations of motions are:

𝐷𝜌

𝐷𝑡
= −𝜌∇ · v, 𝜌

𝐷v
𝐷𝑡

= ∇ ·
(
−𝑝I + BB𝑇

)
, (2)

𝜕B
𝜕𝑡

= ∇ ·
(
Bv𝑇 − vB𝑇

)
, ∇ · B = 0, (3)

where 𝐷
𝐷𝑡

= 𝜕
𝜕𝑡

+ v · ∇. These correspond to conservation of
mass, the force equation, the induction equation and Gauss’s
law for magnetism.

For computational MHD, the Orszag-Tang vortex [2] is a
2D problem commonly used to benchmark simulations[3–5].
It corresponds to the initial conditions of constant 𝑝 and 𝜌,
with initial velocity and magnetic fields of:

v(𝑥, 𝑦, 𝑡 = 0) = (− sin (2𝜋𝑦) , sin (2𝜋𝑥)) , (4)

B(𝑥, 𝑦, 𝑡 = 0) = ∇⊥
1

2𝜋
√

4𝜋

(
− sin (4𝜋𝑥)

2
+ cos (2𝜋𝑦)

)
,

(5)

where ∇⊥ =

(
𝜕
𝜕𝑦

,− 𝜕
𝜕𝑥

)
. These initial conditions end up

producing a vortex.
To test our ML models, we set forth the following three

tasks:

1. 𝜌 forecasting - given a density field, forecast it for the
next time step:

𝜌(𝑡) → 𝜌(𝑡 + Δ𝑡)

2. B forecasting - given a magnetic field, forecast it for
the next time step:

B(𝑡) → B(𝑡 + Δ𝑡)

3. B predictions - given the velocity field, predict the mag-
netic field at the same time step:

v(𝑡) → B(𝑡)
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Table 1: Physics Constraints with Neural Networks
Constraint Implementation Hard/Soft
Divergence-
free B(r, 𝑡) = ∇⊥𝐴(r, 𝑡) Hard
Translation
Equivariance CNN Architecture Hard
Non-negativity
(e.g., 𝜌 ≥ 0) Final Layer ReLU Hard
Periodic
BC’s Padding Soft
Partial
Differential
Equation

Term in
Cost Function Soft

Figure 1: Predictions of 𝜌 using a PCNN with only relevant
variables as input, 𝜌-PCNN-rel. Figure reproduced from
[7].

For each task, different models were tested and their perfor-
mances compared. The models differed by architecture, the
training procedure and the inclusion/absence of physics con-
straints (see Table 1). Note: a soft constraint is one where
the model is encouraged to follow a certain constraint. A
hard constraint is one that the network must follow. For
tasks 1. and 2. the models were fed their own predictions
for testing and compared to the actual evolution of 𝜌 and B.

DATA
The training and test data came from a conventional sim-

ulation based on constraint transport on a static mesh [4, 6].
We took the Orszag-Tang vortex from a time of 𝑡 = 0 to 𝑡 = 1,
which consisted of 1,250 time steps. The training set went
from 𝑡 = 0 to 𝑡 = 0.7488, while the test set was the rest of
the simulation. This corresponded to a 75/25 train/test split.
A spatial resolution of 128 × 128 with boundary conditions
was used.

RESULTS
Unless stated otherwise, the NN models have an encoder-

decoder convolutional neural networks architecture. All

Figure 2: Predictions of 𝜌 using a physics-constraint model
with only relevant variables. Figure reproduced from [7].

models were trained using the Adam optimizer, and Tensor-
flow was used for the creation and testing of the ML models.

𝜌 Forecasting
To enforce the non-negativity condition, 𝜌 ≥ 0, we in-

cluded a 𝑅𝑒𝐿𝑈 activation function in the final layer, where
𝑅𝑒𝐿𝑈 (𝑥) = max(0, 𝑥). Models with (without) this feature
were labelled PCNN (CNN).

Using Eq. 2, we know that 𝜌(𝑡 + Δ𝑡) should depend on
𝜌(𝑡) and v(𝑡), the only relevant variables. Models that used
for input relevant (all) variables were labelled -rel(-all)

The model that performed best was 𝜌-PCNN-rel, which
included the non-negativity constraint and only used relevant
variables. How its predictions compared to to actual test
data can be seen in Fig. 1 and the performance of the four
models evaluated by MSE can be seen in Fig. 2.

B Forecasting
To enforce the ∇ · B = 0 constraint, we had the network

predict the a potential and then used the 2D version of B =

∇ × A, which is: :

B = ∇⊥𝐴 (6)

where 𝐴 is a scalar field, and ∇ · (∇⊥𝐴) = 0 automatically
follows. Thus, this is a hard constraint.

For a single time step, we expect the magnetic field to
change by an amount, ΔB(𝑡,Δ𝑡):

B(𝑡 + Δ𝑡) = B(𝑡) + ΔB(𝑡,Δ𝑡). (7)

Given a small time step Δ𝑡, we expect that in general
|ΔB(𝑡,Δ𝑡) | ≪ |B(𝑡) |. Thus, having the network predict
ΔB(𝑡,Δ𝑡) is easier than predicting B(𝑡 + Δ𝑡). Alternatively,
you can view this as initiating the prediction of B(𝑡+Δ𝑡) with
B(𝑡), which is a good starting point since the field changes
only minorly in between successive time steps. Given this,
we turned to a Residual Network (ResNet) architecture, il-
lustrated in Fig. 3. We found this greatly improved results.
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Figure 3: Using a ResNet architecture to predict the next
time step for B.

Figure 4: Predictions of 𝐵𝑥 using a physics-constraint
ResNet model. Figure reproduced from [7].

The predictions using both physics constraints and a ResNet
architecture can be seen in Fig. 4

To further improve predictions, we used data augmen-
tation. Specifically, some NN’s were trained on 50 MHD
simulations beforehand. These simulations differed from
the Orszag-Tang Vortex by having random initial conditions
for the 𝑝 and 𝜌 fields. These were produced first by taking
random Gaussian noise and then smoothing it with a con-
volution with of a Gaussian. The inclusion of this data, in
addition to the Ozsang-Tang training data, greatly improved
results.

In addition to accurately reproducing the data, we tested
to see how accurate the divergeneless condition held using
the metric of relative divergence:

𝜖𝑟𝑑 =
|∇ · B|Δ𝑥√︁

2𝑝
(8)

where Δ𝑥 is the spatial spacing in the simulation. It was
found that generall PCNN’s had lower average 𝜖𝑟𝑑

We also tested replacing the magnetic field prediction part
of our constraint transport simulation with a neural network.
The result closely followed the full simulation.

B Predictions
Here, we tested CNN models against a physics-informed

neural network (PINN) [8]. This was a dense neural network
with input of spaces and time: 𝑥, 𝑦, 𝑡.

𝑥, 𝑦, 𝑡 → B(𝑥, 𝑦, 𝑡) (9)

Figure 5: MSE error of B prediction. The total MSE error
summed up is next to the model name in the legend. Figure
reproduced from [7].

The advantage of this architecture is that through auto-
matic differentiation, fast and accurate derivatives can be
taken with respect to space and time. This can be used to in-
clude a term in the loss function that encourages the network
to satisfy a partial differential equation, for here specifically
the induction equation, Eq. (3):

𝐿𝑃𝐷𝐸 =
∑︁
𝑖

����𝜕B𝑖

𝜕𝑡
− ∇ ·

(
B𝑖v𝑇𝑖 − v𝑖B𝑇

𝑖

)����2 (10)

where the sum is over all points in the training data. Unlike
CNN models, though, these type of models lack the hard
constraint of spatial translation equivariance.

Figure 5 shows the MSE of a CNN model with physics
constraints, a physics model without and the PINN.

CONCLUSION
The models that performed best generally contained

physics constraints. ML techniques like using a ResNet
architecture and data augmentation were also useful.

This work can be useful in speeding up computational
MHD, either as a supplement to computationally expensive
conventional simulations or through the hybridization of
conventional simulation and an ML surrogate model. Also,
it can be applied to inverse problems, which are often ill-
posed and traditional methods struggle.

One of the benefits of using ML to speed up otherwise
computationally expensive slow simulations is to provide
real-time virtual diagnostics, as in [9], which can be used for
real-time adaptive beam control. For example, in [10] the
first approach to adaptive ML was demonstrated combining
a deep learning with adaptive feedback [11] for automatic
control of the longitudinal phase space of the LCLS FEL
electron beam.
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