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Abstract. We performed an experiment using tritium and hydrogen cryogenic
gas targets at Thomas Jefferson National Accelerator Facility (JLab) in 2018
(E12-17-003)[1, 2]. In this article, we discuss the Λ/Σ0 hyperon electropro-
duction from hydrogen target. Elementary Λ/Σ0 hyperon production processes
are important not only for an absolute mass scale calibration in our experi-
ment, but also for the study of the electroproduction mechanisms themselves.
In this article, we reported the results of the differential cross section for the
p(e, e�K+)Λ/Σ0 reaction at Q2

∼ 0.5 (GeV/c)2.

1 Introduction

We have started and proceeded Λ hypernuclear experiments at JLab to understand the
hyperon-nucleon interaction from the binding energy measurements of hypernuclei. Our
experimental method enables us to investigate not only Λ hyperon but also Σ0 hyperon pro-
duction processes simultaneously as described later on. Λ/Σ0 photoproduction p(γ,K+)Λ/Σ0

and electroproduction p(e, e�K+)Λ/Σ0 have been studied over several decades. In both reac-
tions, protons are converted to hyperons. The only difference between them is that the photon
involved in the reaction is real or virtual.

Experimentally, hyperon photoproduction has been studied very well and an abundance
of data has been reported by many experimental groups[3–8]. Meanwhile, hyperon electro-
production can be associated with hyperon photoproduction and studied in a complementary
manner under the same theoretical framework. The contribution from the virtual photon can
be extracted by factorizing the triple differential cross section as follows[9]:

d3σ

dωdΩe�dΩc.m.
K

= Γ
dσγ∗

dΩc.m.
K

, (1)

where Γ is a so-called virtual photon flux. Through its definition, dσγ∗/dΩc.m.
K is regarded

as a differential cross section for the kaon-hyperon production from virtual photons. Four-
momentum of a virtual photon is denoted as qμ := (ω, q) = (Ee − Ee� , Pe − Pe� ).

In the case of hyperon electroproduction, data can be taken at forward angles along the
virtual photon direction, which are regions of interest for the photoproduction because it is
missing. Besides that, Q2 := −q2 dependency appears in the electroproduction and this is also
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interesting and promising. However, experimental data on electroproduction is less abundant
than that on photoproduction. Thus, providing the results of the differential cross section for
the hyperon electroproduction from experimental side is necessary.

2 Experiment

2.1 Missing mass method

We used 4.32-GeV electron beams provided by CEBAF (Continuous Electron Beam Accel-
erator Facility) at JLab and hydrogen gas as a fixed proton target. We measured momenta of
the scattered final electrons (∼ 2.10 GeV/c) and positively charged kaons (∼ 1.82 GeV/c) as-
sociated with the neutral charged hyperon production in coincidence by using large magnetic
spectrometers, HRS-L and HRS-R, respectively. Detailed descriptions of the experimental
setup can be found in following papers[1, 10, 11]. Eventually, missing mass is calculated
from the momentum-energy conservation for every coincidence event by

Missing Mass =
�

E2
miss − P2

miss =

�

�

Ee − Ee� + Mp − EK

�2
− (Pe − Pe� − PK)2. (2)

Radiative tail
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Figure 1. Missing mass spectrum obtained by the
p(e, e�K+)X reaction. It was fitted to estimate num-
ber of hyperons including radiative tails (see text).

With proton target, peaks at masses
of Λ and Σ0 are observed in the spectrum
as shown in figure 1. Backgrounds come
from the Al(e, e�K+)X reaction because
of the target cell made of Aluminum and
the p(e, e�π+)X reaction because of the
high rate of pions. Amount and distribu-
tion of these background source are esti-
mated and indicated by a yellow line in
figure 1 even though they are very small.
Therefore, remaining events are consid-
ered to be truly the hyperon production
events. The tail structure from each peak
is considered as a radiative tail. Radia-
tive tail is well-understood phenomenon
in the electron scattering experiment because electrons easily emit radiations. In this case, it
was mainly caused from the scattered electrons when they pass through the Aluminum target
cell obliquely. In order to derive the differential cross sections, radiative tail also needs to
be taken into account as a hyperon production events. Those estimations were performed by
fitting the distribution in some ways, combined with adequate simulation. The fluctuations of
the fitting results are included as systematic uncertainties.

2.2 Differential cross section derivation

Differential cross sections are deduced using a following formula,

�

dσγ∗p→K+Λ(Σ0)

dΩK+

�

HRS-R

=
1

NT
·

1
Nγ∗
·

1
ε̄
·

N
Λ(Σ0)
�

i=1

1

ε
DAQ
i
· ε

Decay
i

· ΔΩHRS-R,i

, (3)

where, NT is the number of proton targets per unit area, Nγ∗ is the number of virtual photons
contributing to the production, and ε̄ is the cut efficiency in the event selection. In particular,
data acquisition efficiency εDAQ

i
, K+’s survival ratio without any decay εDecay

i
, and solid angle

of HRS-R ΔΩHRS-R,i(pK, Z) as a function of momentum and reaction point are applied every
i-th event. Estimated quantities are summarized in table 1.
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Table 1. Estimated quantities with statistical errors for deriving the differential cross sections

Λ Σ
0

NT 0.0375 ± 0.0013 [b−1]
Nγ∗/1013 3.53 ± 0.01 4.95 ± 0.01
ε̄ 45.4 ± 1.2 [%] 44.3 ± 1.2 [%]

NHyperon/103 1.36 ± 0.04 0.37 ± 0.02
εDecay

∼ 14 [%] ∼ 14 [%]
εDAQ

∼ 96 [%] ∼ 96 [%]
ΔΩ

Lab
HRS-R ∼ 5.5 [msr]
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Figure 2. The Q2 dependency of the differen-
tial cross sections for the Λ hyperon electro-
production (see text).
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Figure 3. The Q2 dependency of the differen-
tial cross sections for the Σ0 hyperon electro-
production (see text).

3 Results

Using the dataset of our experiment (W ∼ 2.14 GeV,Q2
∼ 0.5 (GeV/c)2, θc.m.

γK ∼ 8 deg), we
deduced the differential cross sections. In next subsections, we discuss these results compar-
ing with other experimental data and theoretical calculations by showing the Q2 dependency
and angle dependency.

3.1 Q2 dependency

The obtained results are shown with Q2 dependency of the differential cross section in figure 2
and figure 3. Red points are the results using all data and blue points are the results with data
divided into 2 sets based on Q2 to see its dependency. Our results show the statistical error by
the solid lines and the dotted boxes include systematic error. The other experimental results
show only the statistical error[12–15]. Theoretical results are shown by curved lines[16–18].
As Q2 decreases, our results tend to increase, which are similar to the other results, but with
a higher slope.

3.2 Angle dependency

The obtained results are shown with angle dependency of the differential cross section in
figure 4 and figure 5. Experimental data and theoretical calculations for the photoproductions
are also shown without corrections[3–8, 16, 19, 20] . We deduced the differential cross section
in low-Q2 regions at forward angles which is missing data in the photoproductions. Our
results tend to decrease as they approach to the forward angles in both reactions, but almost
flat for Λ within statistical errors.
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Figure 4. The θc.m.
γK dependency of the differ-

ential cross sections for theΛ hyperon produc-
tion. Our data is at Q2

∼ 0.5 (GeV/c)2, the
others are at Q2 = 0 (see text).
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Figure 5. The θc.m.
γK dependency of the differ-

ential cross sections for the Σ0 hyperon pro-
duction. Our data is at Q2

∼ 0.5 (GeV/c)2, the
others are at Q2 = 0 (see text).

4 Summary

We performed E12-17-003 experiment at JLab in 2018. This article described the results of
the differential cross sections for the Λ/Σ0 hyperon electroproduction at forward angles in
low-Q2 region. This is a region of interest where there was no data in the photoproduction
so far. This work helps understanding hyperon photoproduction and electroproduction in the
same theoretical framework.
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