Nuclear cosmochronometers for supernova neutrinoprocess

Takehito Hayakawa^{1,2,*}, *Heamin* Ko³, *Myung-ki* Cheoun³, *Motohiko* Kusakabe⁴, *Toshitaka* Kajino^{4,5,6}, *Satoshi* Chiba⁷, *Ken'ichi* Nomoto⁸, *Masa-aki* Hashimoto⁹, *Masaomi* Ono¹⁰, *Toshihiko* Kawano¹¹, and *Grant J.* Mathews¹²

Abstract. The short-lived unstable isotopes with half-lives of 0.1-10 My have been used as nuclear cosmochronometers to evaluate from an astrophysical event such as supernova (SN) explosion or AGB s-process to the solar system formation. We have proposed shorted-lived radioisotopes of 92 Nb and 98 Tc as the nuclear cosmochronometers for supernova neutrino-process

1 Introduction

A huge number of neutrinos emitted in core-collapse supernova (SN) explosions (ν process) [1] play an important role in stellar nucleosyntheses of rare some nuclides such as ^7Li , ^{11}B , ^{19}F , ^{138}La , and ^{180}Ta [1–4]. When the high-energy neutrinos pass through the outer layers of the star they can induce nuclear reactions on pre-existing nuclei. Many nuclides are, in principle, generated by the ν process in SNe but the produced abundances are smaller than production by other major processes such as the s or r process by a few orders of magnitude. Thus, the ν process can only play a significant role in the synthesis of a rare isotope when the isotope is not produced by the major processes.

Short-lived unstable isotopes with half-lives of 10^6-10^8 y have been used as nuclear cosmochronometers to evaluate the time from an astrophysical event such as an AGB s-process or a SN explosion to the solar system formation (SSF) [5–8]. The unstable isotope 92 Nb decays to the daughter nucleus 92 Zr by β decay with a half-life of 3.47×10^7 y. Although 92 Nb does not naturally exist at the present solar system, its existence at the SSF has been

¹National Institutes for Quantum Science and Technology, Ibaraki 319-1106, Japan

²Institute of Laser Engineering, Osaka University, Osaka 567-0871, Japan

³Soongsil University, Seoul 156-743, Korea

⁴Beihang University, Beijing 100083, China

⁵National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan

⁶The University of Tokyo, Tokyo 113-0033, Japan

⁷Tokyo Institute of Technology, Tokyo 113-0033, Japan

⁸Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Chiba 277-8583, Japan

⁹Kyushu University, Fukuoka 812-8581, Japan

¹⁰RIKEN, Saitama 351-0198, Japan

¹¹Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

¹²University of Notre Dame, Notre Dame, IN 46556, USA

^{*}e-mail: hayakawa.takehito@qst.go.jp

found by analysis of primitive meteorites [9–13]. Thus, 92 Nb has the potential to be used as a nuclear cosmochronometer for a nucleosynthesis episode which produces 92 Nb. However, the astrophysical origin of 92 Nb has not been established. Hayakawa et al. [14] have proposed the ν process origin for 92 Nb. Furthermore, the radioisotope 98 Tc ($T_{1/2}=4.2\times10^6$ y) is another candidate for the ν -process cosmochronometer [15], although only an upper limit of 98 Tc/ 98 Ru $<6\times10^{-5}$ has been reported [16] for the 98 Tc initial abundance at the SSF.

2 Supernova *y*-process calculation

There are six species of neutrinos: electron neutrinos, muon neutrinos, tau neutrinos and their anti-neutrinos. The neutrino-induced reactions can be classified into three groups: the neutral current (NC) reaction with all six neutrinos, the charged current (CC) reaction with electron neutrinos, and the CC reaction with electron anti-neutrinos [15]. Previous studies for 92 Nb [14], 138 La, and 180 Ta [1, 2] have shown that individual ν -process isotopes are predominantly synthesized by the CC reaction with ν_e and the NC reaction. Figure 1 shows a partial nuclear

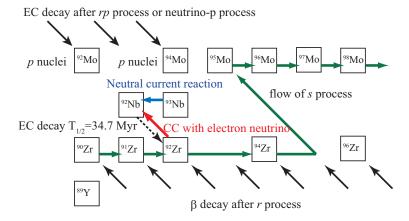


Figure 1. Nucleosynthesis flow and key nuclear reactions around 92Nb

chart and nucleosynthesis flows around ⁹²Nb. ⁹²Nb is predominantly generated by the CC reaction with v_e on 92 Zr and it is also produced by the NC reaction on 93 Nb. Figure 2 shows nucleosynthesis flows for 98 Tc. Among the CC reactions with ν_e , the 98 Mo(ν_e , e⁻) 98 Tc reaction is the dominant reaction. There are two NC reactions: 99 Ru $(\nu, \nu'p)^{98}$ Tc and 99 Tc $(\nu, \nu'n)^{98}$ Tc. One of the remarkable features for ⁹⁸Tc production is that ⁹⁸Tc is also produced by the CC reaction with $\overline{v_e}$ though the 99 Ru($\overline{v_e}$, e⁺n) 98 Tc and 100 Ru($\overline{v_e}$, e⁺2n) 98 Tc reactions. This suggests that the ⁹⁸Tc abundance may be sensitive to the average energy of the electron anti-neutrinos. We have performed calculations of the neutrino-induced reaction cross sections using a QRPA model [17] and the branching ratios are calculated using a Hauser-Feshbach calculation with a CCONE nuclear reaction calculation code [18]. We have calculated ν -process production rates using a core-collapse SN model for SN 1987A with an kinetic energy of 10⁵¹ erg [19]. We have used a 20 M_{\odot} progenitor with a 6 M_{\odot} He core with a metallicity of $Z_{\odot}/4$. Because the neutron-induced reaction cross sections in the proton rich-side have not been well studied, we have calculated the neutron capture cross sections in this mass region [21]. We have calculated evolution of the progenitor star including the weak s-processes [20] with the calculated neutron capture reactions. The neutrino flux decays exponentially with a time constant of 3 s. The six neutrino species can be treated as three groups: electron neutrino, electron EC decay after rp process or neutrino-p process

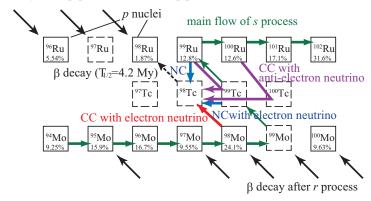
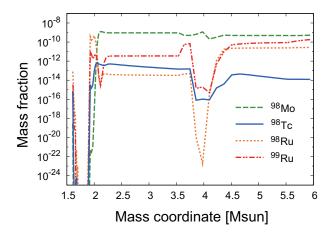



Figure 2. Nucleosynthesis flow and key nuclear reactions around 98Tc

anti-neutrino, and the other four neutrinos. Previous studies [22] for the energy spectra of the neutrinos have suggested the following energy hierarchy: $\langle \nu_e \rangle < \langle \overline{\nu}_e \rangle < \langle \nu_{\mu,\tau}, \overline{\nu}_{\mu,\tau} \rangle$. In the present calculation, we adopt average energies of kT = 3.2, 5.0, 6.0 MeV for $\langle \nu_e \rangle$, $\langle \overline{\nu}_e \rangle$, and $\langle \nu_{\mu,\tau}, \overline{\nu}_{\mu,\tau} \rangle$, respectively.

Figure 3. Calculated abundances. The solid line indicates the abundance of 98 Tc. The dashed, dotted, dashed double-dotted lines are 98 Mo, 98 Ru, and 99 Ru, respectively.

Figure 3 shows the calculated abundances. Integrating the layers within the mass range of 1.8 < M < 3.7, we obtain masses of 5.1×10^{-13} and 3.4×10^{-11} M_{\odot} for 98 Tc and 98 Ru, respectively. The contribution from the CC reactions with electron anti-neutrinos is relatively large compared to that of other heavy ν -process isotopes. The integrated mass fraction of 98 Tc decreases by approximately 20% compared to one with all six neutrino spices without

the CC reactions with electron anti-neutrinos. ⁹⁸Tc is the most sensitive to the temperature of the electron anti-neutrinos among heavy elements because the contribution of the CC reaction with electron anti-neutrinos to ⁹²Nb, ¹³⁸La, and ¹⁸⁰Ta was considered to be negligibly small in the previous studies.

3 Age from the last SN to SFF

It is assumed that short-lived unstable isotopes are produced by a nearby SN before the SSF and subsequently they are mixed with the collapsing protosolar cloud. The isotopic abundance ratio at the time of SSF can then be expressed as

$$\left[\frac{^{98}\text{Tc}}{^{98}\text{Ru}}\right]_{SSF} = \frac{fN(^{98}\text{Tc})_{SN}e^{-\Delta/\tau^{98}}}{N(^{98}\text{Ru})_{\odot} + fN(^{98}\text{Ru})_{SN}} , \qquad (1)$$

where $N(^{98}{\rm Tc})_{SN}$ and $N(^{98}{\rm Ru})_{SN}$ are the numbers of $^{98}{\rm Tc}$ and $^{98}{\rm Ru}$, respectively, in the SN ejecta, $N(^{98}{\rm Ru})_{\odot}$ is the number of the initial $^{98}{\rm Ru}$ nuclei in the collapsing cloud, Δ is the time from the SN to SSF, and f is the dilution fraction. The timescales Δ in the range of $3\times10^7-10^8$ y have been previously estimated from several short-lived radioisotopes [7]. The dilution factor has been estimated to the values from 7×10^5 to 2×10^3 . The initial solar abundance of $^{92}{\rm Nb}$ has been reproduced using the SN ν -process model with the parameters of $\Delta=10^6$ (or 3×10^7 y) and $f=3\times10^{-3}$ [14]. The $^{98}{\rm Tc}/^{98}{\rm Ru}$ ratios calculated using the ν -process model and $f=3\times10^{-3}$ are $^{98}{\rm Tc}/^{98}{\rm Ru}=1.3\times10^{-5}$ and 1.1×10^{-7} for $\Delta=10^6$ and 3×10^7 y, respectively. These calculated ratios are lower than the measured upper limit of $^{98}{\rm Tc}/^{98}{\rm Ru}<6\times10^{-5}$ [16]. Thus, it is possible to explain both the initial abundances of $^{92}{\rm Nb}$ and $^{98}{\rm Tc}$ by the contribution of a single SN ν -process.

References

- [1] S. E. Woosley, et al Astrophys. J. **356**, 272 (1990).
- [2] A. Heger, et al, Phys. Lett. B 606, 258 (2005).
- [3] T. Yoshida, T. Kajino, D. H. Hartmann, Phys. Rev. Lett. 94, 231101 (2005).
- [4] S. M. Austin, A. Heger, and C. Tur, Phys. Rev. Lett. 106, 152501 (2011).
- [5] G. J. Wasseerburg, M. Busso, R. Gallino, Astrophys. J. **466**, L109 (1996).
- [6] B. S. Meyer and D. D. Clayton, Space Sci. Rev. 92, 133 (2000).
- [7] N. Dauphas, T. Rauscher, B. Marty, L. Reisberg, Nucl. Phys. A **719**, 287c (2003).
- [8] M. Lugaro, et al, PNAS, 113, 907 (2016).
- [9] C. L. Jr., Harper, Astrophys. J. **466**, 437 (1996).
- [10] Q. Z., Yin, et al. Astrophys. J. **536**, L49 (2000).
- [11] M. Schönbächler, et al. Science **295**, 1705 (2002).
- [12] T. Iizuka, et al. Earth Plan. Sci. Lett. 439, 172 (2016).
- [13] M.L. Haba, et al. PNAS, 118 (8), e2017750118 (2021).
- [14] T. Hayakawa, et al. Astrophys. J. **779**, L9 (2013).
- [15] T. Hayakawa, et al. Phys. Rev. Lett. 121, 102701 (2018).
- [16] H. Becker, R. J. Walker, Chem. Geol. 196, 43 (2003).
- [17] M. -K. Cheoun, et al. Phys. Rev. C, 85, 065807 (2012).
- [18] O. Iwamoto, et al. Nucl. Data sheets, 131, 259 (2016).
- [19] T. Shigeyama, K. Nomoto, M. Hashimoto, Astrophys. Astronm. 196, 141 (1988).
- [20] Y. Kikuchi, et al. Prog. Theor. Exp. Phys. **2015**(6), 063E01 (2015).
- [21] T. Kawano, et al. J. Nucl. Sci. Technol., 47, 462 (2010).
- [22] T. Fischer, et al, Phys. Rev. D 85, 083003 (2012).