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Abstract. The short-lived unstable isotopes with half-lives of 0.1−10 My have
been used as nuclear cosmochronometers to evaluate from an astrophysical
event such as supernova (SN) explosion or AGB s-process to the solar system
formation. We have proposed shorted-lived radioisotopes of 92Nb and 98Tc as
the nuclear cosmochronometers for supernova neutrino-process

1 Introduction

A huge number of neutrinos emitted in core-collapse supernova (SN) explosions (ν process)
[1] play an important role in stellar nucleosyntheses of rare some nuclides such as 7Li, 11B,
19F, 138La, and 180Ta [1–4]. When the high-energy neutrinos pass through the outer layers
of the star they can induce nuclear reactions on pre-existing nuclei. Many nuclides are, in
principle, generated by the ν process in SNe but the produced abundances are smaller than
production by other major processes such as the s or r process by a few orders of magnitude.
Thus, the ν process can only play a significant role in the synthesis of a rare isotope when the
isotope is not produced by the major processes.

Short-lived unstable isotopes with half-lives of 106−108 y have been used as nuclear
cosmochronometers to evaluate the time from an astrophysical event such as an AGB s-
process or a SN explosion to the solar system formation (SSF) [5–8]. The unstable isotope
92Nb decays to the daughter nucleus 92Zr by β decay with a half-life of 3.47×107 y. Although
92Nb does not naturally exist at the present solar system, its existence at the SSF has been
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found by analysis of primitive meteorites [9–13]. Thus, 92Nb has the potential to be used as a
nuclear cosmochronometer for a nucleosynthesis episode which produces 92Nb. However, the
astrophysical origin of 92Nb has not been established. Hayakawa et al. [14] have proposed
the ν process origin for 92Nb. Furthermore, the radioisotope 98Tc (T1/2 = 4.2×106 y) is
another candidate for the ν-process cosmochronometer [15], although only an upper limit of
98Tc/98Ru < 6×10−5 has been reported [16] for the 98Tc initial abundance at the SSF.

2 Supernova ν-process calculation

There are six species of neutrinos: electron neutrinos, muon neutrinos, tau neutrinos and their
anti-neutrinos. The neutrino-induced reactions can be classified into three groups: the neutral
current (NC) reaction with all six neutrinos, the charged current (CC) reaction with electron
neutrinos, and the CC reaction with electron anti-neutrinos [15]. Previous studies for 92Nb
[14], 138La, and 180Ta [1, 2] have shown that individual ν-process isotopes are predominantly
synthesized by the CC reaction with νe and the NC reaction. Figure 1 shows a partial nuclear
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Figure 1. Nucleosynthesis flow and key nuclear reactions around 92Nb

chart and nucleosynthesis flows around 92Nb. 92Nb is predominantly generated by the CC re-
action with νe on 92Zr and it is also produced by the NC reaction on 93Nb. Figure 2 shows nu-
cleosynthesis flows for 98Tc. Among the CC reactions with νe, the 98Mo(νe, e−)98Tc reaction
is the dominant reaction. There are two NC reactions: 99Ru(ν, ν’p)98Tc and 99Tc(ν, ν’n)98Tc.
One of the remarkable features for 98Tc production is that 98Tc is also produced by the CC re-
action with νe though the 99Ru(νe, e+n)98Tc and 100Ru(νe, e+2n)98Tc reactions. This suggests
that the 98Tc abundance may be sensitive to the average energy of the electron anti-neutrinos.
We have performed calculations of the neutrino-induced reaction cross sections using a QRPA
model [17] and the branching ratios are calculated using a Hauser-Feshbach calculation with
a CCONE nuclear reaction calculation code [18]. We have calculated ν-process production
rates using a core-collapse SN model for SN 1987A with an kinetic energy of 1051 erg [19].
We have used a 20 M� progenitor with a 6 M� He core with a metallicity of Z�/4. Because
the neutron-induced reaction cross sections in the proton rich-side have not been well stud-
ied, we have calculated the neutron capture cross sections in this mass region [21]. We have
calculated evolution of the progenitor star including the weak s-processes [20] with the calcu-
lated neutron capture reactions. The neutrino flux decays exponentially with a time constant
of 3 s. The six neutrino species can be treated as three groups: electron neutrino, electron
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Figure 2. Nucleosynthesis flow and key nuclear reactions around 98Tc

anti-neutrino, and the other four neutrinos. Previous studies [22] for the energy spectra of
the neutrinos have suggested the following energy hierarchy: 〈νe〉 < 〈νe〉 < 〈νµ,τ, νµ,τ〉. In the
present calculation, we adopt average energies of kT = 3.2, 5.0, 6.0 MeV for 〈νe〉, 〈νe〉, and
〈νµ,τ, νµ,τ〉, respectively.
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Figure 3. Calculated abundances. The solid line indicates the abundance of 98Tc. The dashed, dotted,
dashed double-dotted lines are 98Mo, 98Ru, and 99Ru, respectively.

Figure 3 shows the calculated abundances. Integrating the layers within the mass range
of 1.8 < M < 3.7, we obtain masses of 5.1×10−13 and 3.4×10−11 M� for 98Tc and 98Ru,
respectively. The contribution from the CC reactions with electron anti-neutrinos is relatively
large compared to that of other heavy ν-process isotopes. The integrated mass fraction of
98Tc decreases by approximately 20% compared to one with all six neutrino spices without
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the CC reactions with electron anti-neutrinos. 98Tc is the most sensitive to the temperature of
the electron anti-neutrinos among heavy elements because the contribution of the CC reaction
with electron anti-neutrinos to 92Nb, 138La, and 180Ta was considered to be negligibly small
in the previous studies.

3 Age from the last SN to SFF
It is assumed that short-lived unstable isotopes are produced by a nearby SN before the SSF
and subsequently they are mixed with the collapsing protosolar cloud. The isotopic abun-
dance ratio at the time of SSF can then be expressed as[ 98Tc

98Ru

]
S S F

=
f N(98Tc)S Ne−∆/τ98

N(98Ru)� + f N(98Ru)S N
, (1)

where N(98Tc)S N and N(98Ru)S N are the numbers of 98Tc and 98Ru, respectively, in the SN
ejecta, N(98Ru)� is the number of the initial 98Ru nuclei in the collapsing cloud, ∆ is the time
from the SN to SSF, and f is the dilution fraction. The timescales ∆ in the range of 3×107−108

y have been previously estimated from several short-lived radioisotopes [7]. The dilution
factor has been estimated to the values from 7×105 to 2×103. The initial solar abundance of
92Nb has been reproduced using the SN ν-process model with the parameters of ∆ = 106 (or
3×107 y) and f = 3×10−3 [14]. The 98Tc/98Ru ratios calculated using the ν-process model and
f = 3×10−3 are 98Tc/98Ru = 1.3×10−5 and 1.1×10−7 for ∆ = 106 and 3×107 y, respectively.
These calculated ratios are lower than the measured upper limit of 98Tc/98Ru < 6×10−5 [16].
Thus, it is possible to explain both the initial abundances of 92Nb and 98Tc by the contribution
of a single SN ν-process.
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