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Introduction

The study of quantum field theory in curved space-time is currently an active topic
[1-16]. For physical phenomena where gravitational and quantum dynamics interplay,
this treatment is a first step towards quantum gravity with many interesting results.
Prominent examples are the spontaneous Hawking/Unruh radiation from black holes
[17-19], the possibility of gravitationally induced phase transitions in the early Universe
[20-22], and the amplification of cosmological perturbations during the inflation era [23].

This last phenomenon puts a great deal of attention on de Sitter space [24-27].
Because its symmetry is maximal, it is a preferred playground to understand the non-
trivial quantum effects that occur in a period of accelerated expansion [28,29]. For light
scalar fields relevant to inflation, the nontrivial kinematics in de Sitter space provides
a mechanism to generate the primordial power spectrum. At tree order, their quantum
fluctuations are enhanced on large scales, seeding the classical fluctuations in the CMB
and the formation of Large Scale Structures at later times [30, 31].

The gravitational enhancement of these superhorizon fluctuations is also problem-
atic when computing loop corrections. Infrared and secular divergences appear in the
quantum corrections to scalar field dynamics in de Sitter space [32,33], signaling gen-
uine nonperturbative effects which require resummations [13,34]. Dealing with these
divergences is a crucial issue in the context of quantum field theory on de Sitter space.
For instance, these have led some authors [35-37] to conjecture that dS space might
be unstable against quantum fluctuations. It has been argued in [33,38] that secular
divergences are very generic in cosmological space-times. In fact, they are a well-known
artifact of perturbative approaches in non-stationary (nonequilibrium) systems even in
flat space, where advanced resummation methods have been developed to treat them
consistently [39-41]. It is of utmost importance to develop similar tools in the cosmo-
logical case in order to get control on loop corrections at late times or, in the de Sitter
case, for superhorizon modes, relevant for inflationary cosmology.

Specific techniques beyond standard perturbation theory have already been devel-
oped to capture the dynamics of the relevant modes. This ranges from the effective
stochastic approach put forward in Ref. [42,43] to various quantum field theoretical
methods suitably adapted to de Sitter space; see Refs. [44-57] for a (non exhaustive) list
of examples. In particular, such methods allow one to study how an interacting scalar
theory cures its infrared and secular problems, e.g., with the dynamical generation of a
Nonzero mass.

Nonperturbative renormalization group (NPRG) methods are particularly adapted
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for dealing with nontrivial infrared physics in many instances, from critical phenomena
in statistical physics to the long distance dynamics of non-Abelian gauge fields [58-61].
Such techniques have recently been formulated in de Sitter space-time! in Refs. [65,66],
where they have been used to study the renormalization group (RG) flow of O(V) scalar
field theories at superhorizon scales. In the present thesis, we undertake a systematic
study of NPRG techniques in de Sitter space. We extend previous studies in the simplest
approximation (LPA) and obtain original results concerning the onset of gravitational
effects as one integrates out modes from sub to superhorizon scales. Finally, we develop
the formalism beyond the LPA and lay the basis for more general approximations. In
particular, we discuss the derivative expansion, widely used in statistical physics.

This manuscript is organized as follows. The first chapter is devoted to a general
overview of the inflationary era and the current interest for light scalar fields in de Sitter
space. We introduce the setup in which quantum field theory can be formulated as
a functional integral, and give a brief summary of the results of perturbative theory,
namely the ability to produce the desired near-invariant power spectrum at tree level as
well as the problematic infrared and secular divergences that appear in loop corrections
to massless field dynamics. We discuss a selection of resummation methods that have
been developed to address these issues: the stochastic approach, which has been most
widely used, as well as Schwinger-Dyson equations and large- N techniques. We conclude
this chapter with an introduction to the nonperturbative renormalization group, from
the concept of infrared regulation to the resulting flow equation for the effective action.

In the second chapter, we provide a complete analysis of the flow of the effective po-
tential in the local potential approximation (LPA), generalizing the findings of [65,66].
In particular, we study in detail the onset of gravitational effects as one integrates
out momentum modes from subhorizon scales, where the physics is essentially that of
Minkowski space, to superhorizon and deep superhorizon scales, where the space-time
curvature plays a predominant role and leads to dramatic effects. In this regime, the
strongly amplified field fluctuations lead to an effective dimensional reduction of the
flow, which becomes identical to that of a zero-dimensional theory. This phenomenon
has significant consequences which we investigate in detail. First and foremost is that
the effective potential of the resulting theory in the infrared can be described in terms of
a usual integral, as opposed to a functional one, which can be computed exactly (some-
times analytically). This analysis allows for nontrivial bridges with other approaches,
in particular, the widely used stochastic approach of [42] Starobinsky:1994bd and the
Euclidean de Sitter approach [64]. On the one hand, we show explicitly that the weight
of the integral defining the effective potential in the IR is identical to the late-time sta-
tionary probability distribution function of the stochastic approach. On the other hand,
we also show that the dimensionally reduced flow in Lorentzian de Sitter is identical
to the RG flow in Euclidean de Sitter which is eventually driven by a single degree of
freedom, the zero mode of the compact space. Finally, we discuss the phenomenon of
radiative symmetry restoration, previously advocated in [67-70] and first decribed in
this context in [66]. We find that no spontaneously broken symmetry is possible in the

1See also [62—64] for other recent applications in curved spaces.
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effective potential, in any dimension and regardless of the bare potential.

In the third chapter we develop the equivalent setup in Minkowski space. This serves
to prove that the de Sitter RG flow admits a proper flat space limit as we take H — 0. We
find indeed that this limit coincides with the Minkowskian calculation, which we compare
to usual flat space results from statistical physics. Because our regulator acts on spatial
momenta only, leaving frequencies unregulated, our flow equation is different from the
usual Euclidean one. A study of the critical properties around the Wilson-Fischer fixed
point shows a good agreement between the two methods, indicating that our regulation
scheme works appropriately in this limit. Finally, we introduce the derivative expansion
in the context of flat space and implement the LPA’ scheme as an improvement of the
LPA. This lays the groundwork for similar improvements in de Sitter space and provides
once again a point of comparison with the limit H — 0.

In the last chapter, we pave the way for NPRG techniques in de Sitter space beyond
the LPA. The derivative expansion is especially relevant to the physics of long wavelength
fluctuations which we are interested in, and a great deal of work is devoted to formal
questions concerning its very formulation in general curved space-times. Besides the
large range of possible couplings to gravity that are generated, the non-commutation of
the isometry generators poses peculiar problems which are absent in flat space. We solve
this issue in de Sitter space by considering spatially homogeneous but time dependent
field configurations. This allows us to define a prescription for the flow of each term
in the derivative expansion. To put the formalism at work, we consider the simplest
extension of the LPA, which includes a renormalization of the standard kinetic term
(field renormalization factor). A large part of this work is devoted to the computation
of its flow, the so-called running anomalous dimension. We are able to show that the
derivative expansion thus defined admits a proper flat space limit when we take H — 0.
In the opposite regime, for light infrared modes, a remarkable result is that the effective
potential remains the same as in the LPA, so that the field renormalization does not
bring any corrections to the stochastic approach.
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Conventions

e We work in D = d + 1 space-time dimensions with signature (—,+, ..., +, ).

e The Einstein summation convention is to be understood whenever Lorentz indices
are repeated.

e K denotes a comoving momentum, and &k the renormalization scale.

e x denotes a space-time point (x,7), where x is a spatial point and 7 (conformal)
time.

o The Fourier transform is defined as :

~ . d . ~
F(K) = / dize ®*P(x)  F(x) = / (C;WI){deleF(K) (1)

e We work in natural units 7 = ¢ = 1. Unless specified otherwise, we also set the de
Sitter curvature H = 1.

lifxz>0

e We denote the step function as 6(z) = { 0 othermi
otherwise

On the electronic version of this thesis

The table of contents contains links to each section. We have also added a link back
to the table of contents in the page number of each page to navigate back and forth
between sections.
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Chapter 1

General setup

In the beginning there was nothing, which exploded.

— Terry Pratchet, Lords and Ladies
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2 Chapter 1. General setup

1.1 Cosmology: from expansion to inflation

1.1.1 An expanding Universe

One of the fundamental consequences of general relativity is the possibility of a dynamical
space-time [71]: given a specific content of matter and energy, the Universe can be
expanding or contracting. Assuming spatial homogeneity and isotropy, one can follow
this expansion through a single function of time, the scale factor a(t). It encodes the time
evolution of spatial distances: a(t) > 0 for expansion, i.e. growing physical distances.
The time evolution of the scale factor is set by the matter-energy density through the
Friedmann equations. In the Big Bang scenario this density is successively dominated
by radiation, matter, and then dark energy corresponding respectively to a(t) o t%,tg
and eft [72].

The consistency of these theoretical predictions has been checked by measurement
of the galaxy redshift [73,74], proving that objects are receding from each other at large
scales. Other observations, such as the Cosmic Microwave Background [75] or Big Bang
Nucleosynthesis [76] confirm the hot dense state of the Universe some 13.6 billion years
ago.

1.1.2 The inflationary epoch

Several reasons motivate the alteration of this simplest model by adding another era [77].
Let us briefly discuss two such problems:

e Horizon problem: The CMB observations show an extremely homogeneous early
Universe where distant regions where at thermal equilibrium. Yet in the simplest
Big Bang model, the time between the primordial singularity and the CMB emis-
sion is not sufficient for these regions to be causally connected, let alone at the
same temperature.

e Flatness problem: The two first eras — radiation, and matter dominated — corre-
spond to decelerated expansion. From the Friedmann equations this implies that
the total density should depart from the critical density over time. Observations
however find the density to be very close to its critical value at present day.

Both these problems are not fundamental flaws of the model but consist in extreme fine
tuning: we could always assume that the Universe started at thermal equilibrium on very
large scales and with a density extremely close to criticality. This is quite uncomfortable
however and it would be preferable to have a dynamical explanation.

The simplest (and most elegant) way to overcome these fine tuning problems is to
introduce an early phase of accelerated expansion, as sketched in figure 1.1. The horizon
problem is solved because there is now more time' since the primordial singularity for all
regions of the observed Universe to achieve thermal equilibrium. The flatness problem
is also solved because the accelerated expansion brings the total density closer to its
critical value, explaining the observed value today in an natural way.

!Precisely, there is more conformal time. Inflationary models do not necessarily add cosmological
time. Figure 1.1 features cosmological time and is therefore nothing more than a sketch of inflation.
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Figure 1.1: Rough picture of the scale factor in the early Universe with
and without inflation. The inflation era consists in a primordial accelerated
expansion which explains the causal connection of the Universe on large scales.

The accelerated expansion must be sourced by some content of matter-energy. Ra-
diation and ordinary matter produce only decelerated expansion. Dark energy, in the
form of a cosmological constant, would dominate for all posterior times which doesn’t
allow for the rest of cosmology to take place. Models of inflation are therefore built with
some new kind of matter. The simplest one, called the slow-roll model, requires a single
scalar field called the inflaton [78,79]. Considering its action,

Slel = /d4wx/fg (;g’“@m@m - V(qﬁ)) : (1.1)

then the inflaton behaves as a perfect fluid when assuming isotropy and homogeneity.
Its density and pressure are:

p=5F+V(9) (12)

p= 38~ V(o) (13)

This field starts out of equilibrium, i.e. with a uniform value that does not minimise its
self-interaction potential. If this potential energy is large compared to the kinetic energy,
this results in a negative pressure, typically p = —p, sourcing an exponential expansion.
The above condition implies that the field density rolls slowly down the potential, which
puts some constraints on the shape of the potential (see Fig 1.2). The inflation epoch
ends when the kinetic and potential energies become comparable. Coupled to ordinary
matter, it then produces the classical content of matter-energy of the early Universe
during the phase of reheating.
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\/

pcmB Pend reheating
it !
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Figure 1.2: Self-interacting potential of the inflaton field. Inflation starts as
the field is out of its equilibrium value. The shape of the potential is designed
to generate a slow roll during which the pressure is negative, generating accel-
erated expansion. Inflation ends as the slope increases towards the minimum,
and the inflaton decays into ordinary fields to generate the hot universe of
the Big Bang scenario.

1.1.3 Primordial fluctuations

The slow-roll model has an excellent theoretical as well as observational success. The
scales involved are typically an expansion of some 60 e-folds in 10732 seconds in order to
match observations. The next step is to study cosmological perturbations, i.e. primordial
fluctuations in energy/density and their evolution by gravitational instability to form
the Large Scale Structures at present day.

At this point, a number of reasons point that these fluctuations should be of quantum
origin and not classical. On one hand, classical fluctuations pose a fine tuning problem in
order to both match observations and remain small with respect to the background value
during inflation [30]. On the other hand, tree level computation of quantum fluctuations
give remarkable predictions for the primordial power spectrum, from its flatness on large
scales to the coherence of all modes leading to the Baryonic Acoustic Oscillations. Our
current paradigm for inflation is therefore that a perfectly homogeneous quantum field
sources statistical fluctuations in the early cosmology.

Because the precision of observations is increasing, and for want of a consistent
quantum theory, it is necessary to understand and compute loops on an expanding
background. There some problems arise: the scalar and tensor modes built from the
fluctuations of the field and the metric behave as massless fields at tree order. This
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is responsible for non-trivial divergences in loops [32,33] which signal nonperturbative
physics and call for resummation techniques [34,68,80,81]. This is the issue we will
be adressing in this thesis. To simplify the complicated task of coupling a quantum
field to gravitational degrees of freedom, we consider a test field on a fixed expanding
background. In the next section, we define this background, illustrate the tree level and
loop computations, and give a brief review of some nonperturbative methods that have
been used so far.

1.2 Quantum field theory in de Sitter space

1.2.1 de Sitter space

de Sitter space is particularly adapted to study questions of QFT in an expanding
Universe, because of its simplicity and relevance to inflation. It is simple because it is
the unique maximally symmetric space-time with positive curvature. The D-dimensional
de Sitter space, dSp, can be visualised as the hyperboloid

1
embedded in a D + 1-dimensional Minkowski space
dsh,, = —dXg +X2,dX2. (1.5)

In this work, we will restrict ourselves to a causal patch of this manifold, the Poincaré
patch, which is half of the full de Sitter hyperboloid (see figure 1.3). See [72] for a
complete description. The metric on this patch can be written as

ds* = —dt* + a(t)?dx> with  a(t) = e, t €] — o005 00, (1.6)
— P +dx)  with a() =g wel-owl (LD

where x = (z1,...24) and D = d + 1. The conformal time 7 is defined by dn = dt/a(t).
The exponential growth of the scaling factor is a typical feature of slow-roll inflationary
models?.

Although we will not use them, we mention another set of useful coordinates for the
Poincaré patch, the Lemaitre-Painlevé-Gulstrand coordinates:

X = a(t)x. (1.8)
The metric in these coordinates writes
ds® = —(1 — H?>X?)dt? — 2HX.dXdt + dX?2, (1.9)

where it is made obvious that this space is stationary (although inhomogeneous). This
is a key feature in understanding the spectral accumulation for large wavelength modes
which we will discuss later. In what follows, unless specified otherwise we will set H = 1,
that is, work in units of H.

2More precisely, the growth is almost exponential with H varying slowly in time until the breakdown
of this regime and the end of inflation.
3Here7 X is not to be mistaken for the D + 1 Minkowski coordinates Xo..Xp.
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Figure 1.3: Representation of de Sitter space as a hyperboloid embedded in
D + 1 Minkowski space. The Poincaré patch in red corresponds to the region
Xo+Xp>0.

1.2.2 The in-in formalism

The success of functional approaches for quantum field theory in flat space-time has led
to the development of powerful tools. Starting from the action, the generating functional

Z[J) =Wl = /@cp exp (iS[g@] —i—i/ngD). (1.10)

The action of a scalar field typically writes

is defined as

st = [ (vie) + 5007), (111)

where V() is the self-interaction potential. From this functional, one can extract the
average value of any observable O in the presence of a source:

(0), = =] / P O[] exp (ism i /x Jgp). (1.12)

The difficulty is of course to compute a functional integral, for which we will introduce
the functional renormalization group. Before doing so, however, we must adapt this
formalism to the context of an expanding background. The first step for this is to

convariantize quantities in the following way:

e Space-time derivative d, must be replaced by covariant derivatives V.
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o 0
— 7]

Figure 1.4: Closed time path of the Schwinger-Keldish (in-in) formalism.
By defining the field on this time path C, one can construct the generating
functional for expectation values similarly to the generating functional for
matrix elements in the in-out formalism.

e Space-time integrals must have the covariant measure fI =/ dPz\/—g, where g is
the determinant of the metric g, .

0c® de
e Functional derivatives must be made covariant, e.g. = .
’ 0J(x)  /—goJ(x)
6P (z — ')

e Space-time delta functions must be made covariant* : §(x,z’) =
V=g

The second step is to provide a framework in which we can diagonalize the Laplace-
Beltrami operator. This is not as trivial as in flat space due to the noncommutation
of space and time translation operators. As a consequence, it is difficult to formulate
de Sitter symmetries in momentum space. A convenient choice is to diagonalize space
translations by going to comoving spatial Fourier space and to treat the time evolution
as a non equilibrium problem.

The issue of quantum fields is therefore more conveniently formulated as an initial-
value problem [54] rather than the usual in-out formalism. Instead of computing the
overlap between an initial and a final state, we are interested in evolving an initial state
in time and computing expectation values of products of fields. The Schwinger-Keldish
formalism [82,83] allows us to compute a generating functional for such quantities by
defining the fields on a closed time path going from the infinite past to the infinite future
and back (see Fig 1.4). Equations (1.10 - 1.12) remain valid where the time integrals are
now performed on this contour.

Let us introduce the two-point function which will intervene in most computations:

Gz,y) = (p(@)p(y)); — (p(@)); (p(y); = =W (z,y), (1.13)
where
52W1J)
@) =_—c 1.14
One can define G equivalently as a time-ordered product in the operator formalism:
G(z,y) = (QlTed(x)(y)2) — (Q1e(2)27) (] (m)I2) (1.15)

where [€27) is the appropriate state corresponding to the source J. This function and
the time ordering are defined on the contour C, and we may write

G(z,2') = F(z,2') — %signc(n —n)p(z,2'), (1.16)

4Because we are in the in-in formalism, the Dirac function takes values on the closed time path.
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where F' and p are the statistical and spectral two-point functions respectively. In the
operator formalism, they write

Fla,a') = 5 (s p@IH), o) = 1@l e]IRs) . (117

They are respectively symmetric and antisymmetric:

F(z,2') = F(2',2), p(z,2") = —p(2, x). (1.18)

1.2.3 Physical momentum representation

We will restrict ourselves to quantum states which respect the symmetries of de Sitter
space, allowing us to simplify the expression of the two-point correlators. Although they
depend on two space-time points, they can be expressed as a function of the de Sitter
invariant
o) = X7 x')? —/(77 - 77’)27 (1.19)
n

so that G(z,2") = G(z). As we have discussed previously, we take a different approach
here however since we wish to move to Fourier space for spatial variables. Exploiting
spatial translation invariance in comoving coordinates, we write

G(z,2") = G(x—x',n,7). (1.20)

Moving to spatial Fourier modes,
Gl o) = [ dae ™ *Gla ), (1.21)

where G depends only on K = |K| by isotropy. In general cosmological space-times,
the correlator depends separately on the comoving momentum K and the conformal
/

times 7,7'. The symmetries of the de Sitter space-time—in fact the affine subgroup
[84, 85]—constrain these dependences to be tied together by the gravitational redshift.
The correlation function is a nontrivial function of the physical momenta p = — K7 and

p = —Kn' only:

3 Ng
G(K,n,7') = %G(p,p/). (1.22)
Similarly, for the inverse correlator®,
LA, m,7) = (n) 5 KT (p,p). (1.23)

The time-evolution equation can be traded for a (physical) momentum evolution equa-
tion; see Refs. [54,84,85] for details. Since times are defined on the contour C, in the
p-representation the correlators and inverse correlators are functions of physical mo-
menta which also take value on a contour C (see figure 1.5).

SWe define this quantity properly in the following section.
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0 +00
f p

Figure 1.5: Closed path C of the momentum variable p = —Kn. It goes from
infinite past p = +o00 (UV) to infinite future p = 0 (IR) and back.

1.2.4 Loop expansion

The late time dynamics of light scalar fields in de Sitter, corresponding to infrared
(IR) physical momenta, exhibit some nonperturbative features. To discuss these, we
start by detailing the (rather successful) tree-level computation and the issues that arise
when computing loops. Working with the conformally rescaled field u = a7 ¢, the
quantization procedure leads to

i) = [ (wrelnine™ + uic(n)alee ™) (1.24)
with the canonical commutation relation
lax, al) = (2m) %6 D (K - K') (1.25)
ensured by the normalization condition:
uhoul — ufug = —i. (1.26)

For a free massless scalar ¢ = 0, and therefore the mode functions in D = 3+ 1 de
Sitter space are solution of

2
(—8,3 + i K2) ug(n) = 0. (1.27)
The general solution writes
m=as = (1= ) o (1+1) (1.25)
u = —— |+ + =, .
V) e Ky) "M VRR T Ky

where ag and Bx must be set by initial conditions. The de Sitter isometries imply that
these coefficients are independent of K [86]. This is obvious in the p-representation,

i(p) = VEKug(n), (1.29)

where @ must be a function of p = —Kn only. The normalization condition (1.26)
translates to

o)* =8> =1, (1.30)

which is not sufficient to constrain these parameters fully. Transformations of the pa-
rameters («, ) respecting (1.30) are called Bogolyubov transformations; they select a
vacuum state among the so-called a-vacua [87]. Indeed, unlike in Minkowski space where
the vacuum is defined uniquely by selecting positive frequencies, this condition cannot
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be fulfilled at all times in de Sitter space. Selecting an initial vacuum state in the infinite
past results in particle creation with respect to this vacuum at later times.

The physical choice is to impose positive frequency for all modes in the infinite past,
that is when p = —K#n > 1. This means that modes of short wavelength are not sen-
sitive to the space-time curvature. This, in particular, satisfies the so-called Hadamard
conditions [88], that is, the short distance behavior of correlators is independent of the
curvature and identical to that in Minkowski space. This can be seen as a statement
of the equivalence principle for quantum fields. In this regime, the mode function must
have the same expression as in flat space:

e—iKn
urc(n) T

This fixes a = 1 and 5 = 0. This choice corresponds to the Bunch-Davies vacuum [89],

(1.31)

for which the mode function writes

wc(n) = 6\;; (1 _ én) . (1.32)

The power spectrum is then computed as

2
(brclmdrer () = (205 (K + K') T (14 K2P), (1.3

which can be directly related to scalar fluctuations in the CMB. Extending this analysis
to quasi-de Sitter space allows us to link features of the spectrum to the shape of the slow-
roll potential. Although observations are very well matched to the tree level analysis,
there are open questions in this field that require resummation techniques. Indeed,
it is clear from (1.32) that the mode function receives a strong enhancement at low
momentum p < 1, so that loop corrections are infrared divergent. For example, the
tadpole in a A\¢* theory writes:

Qm /K y (dxm)dr(m)) ~ iff (1.34)

which is logarithmically divergent in the IR. It is interesting to note that the same issue
arises in D = 2 in flat space-time, where nontrivial physics occur [59]. Here, infrared
problems occur in any dimension because the power spectrum (1.33) behaves as K~% in
D = d + 1 space-time dimensions.

To regulate these divergences in de Sitter space, an infrared cutoff —Kn > u must
be introduced. It must act on physical momenta in order to conserve the symmetries
of de Sitter space. This generates time-dependent corrections to non-local contributions
~ In (a(n)) which also diverge at late times.

Infrared and secular divergences signal the nonperturbative aspect of light fields in
de Sitter space. A number of resummation techniques have already been applied to
treat them. We give a brief (and incomplete) review of these techniques with some main
results.
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Figure 1.6: One point function of a free field in D = 3 4+ 1 dimensions. In
the UV (p > 1) the behavior is the same as in flat space (¢ = const in the
p-representation). The IR regime (p < 1) exhibits a strong spectral accumu-
lation. The massless case corresponds to @ ~ p~3/2, leading to the infrared
divergences discussed in the main text. A non-vanishing mass dampens this

spectral accumulation as p~ where v = /9/4 — m2.

1.2.5 Resummation techniques

Similar nonperturbative issues arise in various instances of QFT, from bosonic fields
at high temperature (e.g. quark gluon plasma [90]) to condensed matter systems at a
second order phase transition [59] or genuine non equilibrium quantum fields [39-41].
Various nonperturbative or resumption techniques have been developed to tackle IR
issues in flat space. In recent years, some efforts have been dedicated to adapting some
of these methods to de Sitter space physics. Here, we review some of them. We start
with the stochastic approach, which has been developed specifically to de Sitter. We
then illustrate large-N and Schwinger-Dyson techniques.

Stochastic approach

The stochastic approach proposed by Starobinsky and Yokoyama in Ref. [43] is based
on exploiting the specific aspects of the de Sitter kinematics to write down an effective
theory for light fields on superhorizon scales. The idea is to separate the field operator
as

o(x) = p(z) + /K G(K - ea(t)) [&KQSK(t)e_iK'X + qubf((t)eiK'x], (1.35)

where € is a small constant. ¢ contains the long-wavelength contributions, which can be
treated as a stochastic variable sourced by the short wavelength modes. The Langevin
equation it obeys is derived from the equation of motion Dgfg + V’(QAS) = 0 after several
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simplifications. First, the large-wavelength modes are considered spatially homogenous,
so that they depend only on time. Second, this time evolution is slow enough to neglect

6

second order time derivatives®. Finally, the UV modes are treated as noninteracting

massless fields in the Bunch-Davies vacuum. The evolution of ¢ is then given by [43,50]

plt) + 5V (p(1)) = (1), (1.36)

where £(t) is a stochastic sourcing of IR modes by UV modes. Its correlation properties
are given by the massless free mode function, so that it is gaussian with

(EDEWN) = 700t~ ). (1.37)

Using standard manipulations, Eq. (1.36) can be turned into the following Focker-Planck
equation for the probability distribution P(¢p,t) of the stochastic process

10 {0‘/50&73 1 673}7

=05\ 00 T T u0w

(1.38)

where €4 = 872/3 is the volume of the 4—sphere. The latter admits a stationary
attractor solution at late times (i.e., in the deep infrared), given by

P(p) xexp{ —QuV(p)}. (1.39)

Equal-time correlation functions on superhorizon scales can then be computed as mo-
ments of this distribution. For instance, one has

[ de*P(yp)
S [dpPlp)
4

A particularly interesting case is when the field is massless and interacting, V(@) = Ap®.
At late times,

(*(t)) (1.40)

T AD(5/4) VN

so that a squared mass o v/ is generated. In particular, this non-analytic result illus-

(1.41)

trates the nonperturbative nature of infrared modes in de Sitter space.

Large-N resummation

O(N) scalar theories generalize the single field case by considering N fields ¢ ... ¢N
with rotational invariance. Of particular interest is the large N limit N — oo where a
number of approximations become exact. It is possible, for example, to resum all the
contributions to the mass in a A\¢* theory [70]. We start with the bare action

A

Sle] = —/x{%(m+m2)¢a+ AN

(¢a¢a)2} : (1.42)

5This can be generalized to take into account the field derivative ¢ as a second independent degree
of freedom; see Ref. [91].
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where summation over repeated indices is to be understood. The self-consistent mass
M is then given by the implicit relation
A A

M?(¢%) =m? + EQZ)Q +5F (1.43)
where ¢, = (pa) /V N, and F is the free statistical correlation function at equal points
with self-consistent mass M. This effectively resums all tadpole loops which are referred
to as super daisy diagrams. In the large-N limit, there are no other contributions to
the mass. After appropriate UV renormalization and for weak coupling, this equation
becomes:

M) — (@) + (144
- M?(¢?) '
where a is an affine function and b is a positive constant. We thus get the ¢-dependent

M*(6°) = a(¢?) + Va?(¢?) + b (1.45)

which is always positive. Since we have kept the dependency on the average field, this
result gives the effective potential through the relation OVig/0¢, = M?(¢?)ps. The
fact that this curvature is always positive indicates the the effective potential is strictly
convex, forbidding any spontaneously broken symmetry. Furthermore, a and b are both
proportional to A, so that we recover the same result as in the stochastic approach
M? ~ /X for a vanishing bare mass.

The stochastic approach and large N techniques illustrate how to resum the infrared
divergences in local contributions. We now introduce the Schwinger-Dyson equations as
a means to resum non-local contributions with secular divergences.

Schwinger-Dyson equations

The Schwinger-Dyson equations are a set of relations between the Green’s functions of
a quantum field theory [92,93]. We summarize here their application to IR dynamics in
de Sitter space [55,94]. The inverse propagator can be written as:

Gl=Gyt -3, (1.46)

where iGy ' (z,2") = (O — M?)5(x,2') is the free propagator with resummed mass, and
>’ is the non-local self-energy. Convoluting with the full propagator on the right, we get

(0= MY)G(z, o) — /E(x, DGy, ') = 8z, a). (1.47)

This essentially resums the infinite series of self energy insertions. In [55], the authors
compute the self-energy at leading order in a A¢* theory. It is given by the sunset

! 2
N(z, ') = x*@l; = —%Gg(x,x’) (1.48)

diagram:
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This is injected in (1.47) and solved exactly in the infrared limit p,p’ < 1. Another
possibility is the 1/N expansion, where it is possible to resum the infinite series of
bubble diagrams [94]:

S(z,2') = C’L@ﬁ/ + @’/ +... (1.49)

In both cases, the secular divergences of previous perturbative calculations are resummed
in a non trivial momentum dependence: the statistical correlator in the p-representation
writes

F(p,p') = et Fi(p,p) + - F_(p,p"), (1.50)
where F, are free propagators associated to different masses, and ¢y +c_ = 1. Since the
free propagator is a power law dependent on the mass (see Fig 1.6), only the contribution
F, with the lightest mass contributes deep in the infrared. The difference ¢, — ¢_ can
be seen as a measurement of the non-local corrections to the propagator. For instance,
in the limit of weak coupling c_ ~ A.

1.3 Non Perturbative Renormalization Group

We now introduce the method that we will be using in this thesis. The Nonperturba-
tive renormalization group (NPRG), also called Functional or Exact RG, is designed
to address infrared issues e.g. for statistical systems close to criticality [95]. Because
such issues also arise with light scalar fields in de Sitter space, it is of great interest
to investigate what information can be obtained by this method. Recent works apply-
ing this method have come up with some interesting first results [65,66]. We make a
short presentation here, see [59] for a review and [96-98] for NPRG methods applied to
nonequilibrium systems.

1.3.1 Regulated effective action

The NPRG procedure consists in regulating the problematic infrared modes by giving
them a large effective mass. This is done by defining the modified action Sy = S + ASy,
with

ASlel =5 [ o) Rue e, (1.51)
T,y

Here, Ry is an IR regulator function that depends on the renormalisation scale k, as well
as the momentum p of the modes: this added quadratic term in the action behaves as a
large mass term for modes p < k, and essentially vanishes for modes above k.

We will give a specific meaning to Ry(p) below. Before, we present the properties
that the regulator function must have (see figure 1.7):

o Ri(p) —>k 0 : the infrared regulator leaves the UV modes unaffected.
P>
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Ry (p)

k2

p

Figure 1.7: Litim [99] regulator Ry (p) = (k* — p?)0(k* — p?) as a function of
the momentum p. Its purpose is to behave as a large mass m ~ k for modes
p < k, effectively freezing quantum fluctuations at these scales. The modes
p > k are unregulated: these fluctuations are integrated over in the effective
action.

e Ri(p) o k? : the infrared regulator behaves as a large mass that freezes
JASS

IR fluctuations.

e Ri(p) k—> oo : all fluctuation modes are frozen by a large mass when the scale
—00

is sufficiently large. We will consider this to be effective for k of
the order of the UV scale A at which the bare action is defined”.

e Rir(p) — 0 : the regulator identically vanishes when the RG scale reaches 0,
k—0

allowing us to retrieve the full quantum theory.

The goal is to work on the regulated theory, and to lower the RG scale k from A
to zero in order to progressively integrate out low momentum modes and build the full
quantum action of the theory. The generating functional is therefore redefined using the
modified action and now also depends on the scale k:

Z[J] = Vel = /@cp exp <i5’k[g0] +i/zJ<p). (1.52)

We could study the variation of this functional with the scale k, but it is preferable to
work on the effective action which contains as much information but proves better suited

"In statistical physics A would typically be related to the microscopic scale of the lattice. In this
context however, this scale doesn’t necessarily have any meaning other than the initial point of our flow.
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for approximation schemes [100]. We define the mean field as

o) = lpla))s = 3575

(1.53)

One constructs the regulated effective action by taking the (modified) Legendre trans-
form

elo] = Wild] = [ 76 - A8 (1.54)

X
where, as usual, the source J; must be seen as a functional® of the mean field ¢:

5C(Fk + ASk)

(1.55)

1.3.2 Boundary condition for the effective action

I'y, is shifted by ASj from the usual effective action for the following purpose: in the UV
limit k& ~ A, all fluctuation modes are frozen and I' is just the classical action S. Let
us demonstrate this by taking (1.54) in Eq. (1.52)

exp (irkm +insiol+i | ka) = [ 76 e (ism +insilel +i [ Jk[qﬂso).
(1.56)

It is tempting to take ¢ = ¢ and cancel the functional integral on the right hand side.
This is the mean field approximation, in which the fluctuations of the field are neglected.
Let us rearrange the previous relation as

Tlg] _ / P ST (60) e ( / (¢ — @) (@) Ri(, ) (6 — sa><y>), (1.57)

Y

where (1.55) has been used. Since the regulator behaves like a large mass at k ~ A, all
fluctuations are effectively frozen. The second exponential on the right hand side then
behaves as a functional Dirac delta

e (i [ (0= D@Re 0= 0W) =, A=l (158)

)

hence the desired result : Ty 5[] — S[¢]. The mean field approximation is exact in
this limit.

On the other hand, when k& — 0, the regulator function identically vanishes and
S — 5. T'g is then exactly the Legendre transform of the generating functional W,
which is indeed the full quantum action.

8Note that as a consequence J depends on k.
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1.3.3 Flow of the effective action

As we lower k, we take the large modes into account and in the kK — 0 limit one retrieves
the full quantum action. The transition for k from A to 0 is done by computing the
variation of I'y, with k and integrating. The remarkable observation of Wilson [101] is
that the variation from k& — k — 0k can be given in a simple exact form which allows
to derive nonperturbative approximation schemes; see also [102]. To find the functional
flow equation we derive Eq. (1.54) with respect to k at constant field ¢:

OxLk[9lg = OcWi[Ji]ls + /x Okl oWy [Ji] — /xaﬁka — 0xASk[gle].  (1.59)
The second and third terms cancel out. The first term writes
O Wi Ji]|s = e WelJi] /%P O0xASk|,[p] exp (iSk[SO] +i/Jk<P>
=3 | ochite.p) (e@rew) (1.60)

by swapping the functional integral with the two space-time integrals. Notice that the
fourth term is simply

08Skalo) = 5 [ BuRule)o@)otw) (1.61)
T,y

=5 | 0uRite) ) (o). (162)

By gathering (1.60) and (1.62) we build the regulated connected two-point function.
This gives the functional flow equation known as the Wetterich equation [100]:

T,y

It is more convenient to introduce the flow time ¢ = In k, and note derivatives with

respect to t by A = k0, A, all other arguments being implicitly held constant. Further-
more, the right hand side can be seen as a trace, leading to the more compact notation:

Tild] = %Tr (RG] (1.64)

.
I, =~
L)

Figure 1.8: Diagrammatic representation of the Wetterich equation (1.63).
The full line represents the exact propagator, the cross is Ry and the loop
stands for the trace integral. This representation leads to flow equations
for the complete set of 1PI correlation functions by taking successive field
derivatives.
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Let us write this equation in a third way by writing the relation between Gy and I'j.
Deriving (1.53) with respect to ¢(y) we obtain

5
90— y) = [ SHD WP a2, (1.65)
which is to say
/ T2 (2, 2) + Ri(x, 2)] Gi(z, ) = i07 (. y) (1.66)

because of (1.13) and (1.55). This standard result of Legendre transformation sim-
ply means that —i[Ff) + Ry] is the inverse of the regulated two point correlator in
the meaning precised above. Thanks to this and by using the functional property

§(Trln M) = Tr(M~16M) we can write

_ (2)
=t—— Tr|{In(T . 1.
Gua.y) = iz (Y + ) (167
Replacing in (1.63) we get

'] = %& Te[In(T® + Ry)], (1.68)
where

5.—/ e, y) =22 (1.69)

g T,y kY 5Rk(xay) '

is a total derivative consisting in deriving with respect to k at fixed F,(CZ), i.e. only in

the explicit regulator dependencies. This last expression is reminiscent of first order
quantum corrections to the effective action in perturbation theory. We will use this
form of the Wetterich equation to compute the flow of the inverse correlator later on.

It is also interesting to read the complexity of this flow: it is a nonlinear functional,
integral and partial differential equation! The good news is that it is an exact equation,
with a diagrammatic representation as a one-loop structure (see Fig 3.1). There are no
known exact solutions however, and we will resort to truncations schemes.

1.3.4 Choosing the regulator

Strictly speaking, the choice of the regulator does not affect the effective action at the

end of the flow, but only the path by which we interpolate from I'y—y = S to I'y—g (see

fig. 1.9). That is, the effective action depends on the regulator for intermediate values

of k only. In practice, however, we will perform approximations to solve the flow that

will result in a dependence of the effective action I'y—g in the choice of our regulator.
Following [65,66], we choose an infrared regulator of the form

o d . ,
o) = =S50 [ e Rl K

= —5(t—t’)/ (;lil;deip'(x_xl)Rk(p). (1.70)
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r(m)

Figure 1.9: RG flow in the theory space of action functionals. Different
regulators (red or blue) take the same initial condition to the same effective
action through different paths (full lines). Approximations schemes spoil this
result and lead to a regulator dependent effective action (dashed lines).

When plugged in Eq. (1.51), one checks that this indeed leads to a momentum-dependent
mass term. An important remark is that this only regulates spatial momenta and thus
breaks the local Lorentz symmetry of de Sitter space-time. The difficulty of choosing a
fully invariant regulator is related to the fact that the distinction between high and low
momentum modes is ambiguous in a space with Lorentzian signature. We emphasize
though that it is important to regulate physical momenta p = —K1n in order to keep as
many of the de Sitter symmetries as possible [66]. In particular, this guarantees that the
affine subgroup of the de Sitter group is left unbroken [84,85] which leads to a consistent”
truncation of both sides of the flow equation.

We still have to choose the function Ry(p), for which we have much freedom as long
as it satisfies the conditions described earlier. It would be optimal to choose a regulator
which leads to a least biased effective action in a given approximation scheme. This
would require an extensive analysis. Here, our aim is to develop the basis of NPRG
methods in de Sitter space and we make the choice of simplicity instead with the Litim-
like regulator [99]

Ry(p) = (k* — p*)0(k* — p*), (1.71)

which allow us to perform many computations analytically.

9For instance, a regulator on comoving momenta spoils the stationarity of de Sitter space; see Ref. [65].
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Conclusion

The early and late universe are characterized by an accelerated expansion. Because to
our best knowledge, nature is intrinsically quantum, we are led to study quantum fields
in such backgrounds. This is particularly rewarding concerning the inflation era, where
light scalar fields can not only source the expansion for a finite time, but also seed the
primordial fluctuations that are observed. Unfortunately, the same enhancement of the
large scale fluctuations is responsible for infrared and secular divergences in quantum
corrections. This signals a breakdown of the perturbative expansion, and requires specific
attention.

The topic of quantum fields in de Sitter space can be set up as an out-of-equilibrium
problem using the in-in formalism. This enables a formulation in terms of a functional
integral, to which we can apply the nonperturbative renormalization group. The first
difficulty is to choose a representation for our regulation scheme. Indeed, the time and
space-like Killing vectors do not commute in de Sitter space, so that we cannot diag-
onalize both simultaneously. We have chosen the p-representation, regulating physical
momenta and leaving the time-direction unregulated. This breaks part of the de Sitter
isometries, with some consequences to be discussed later on.

The resulting flow equation for the effective action admits a universal representation,
the Wetterich equation. It is a functional, partial derivative and integral equation. This
complexity reflects that of the functional integral encoding the theory, and to extract
some information out of it, we must resort to an approximation scheme. In the following
chapter, we implement the local potential approximation, which efficiently captures the
large scale properties of the theory. This first approximation reproduces a number of
results obtained by other methods, and provides some new insights on the physics at
hand.
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Flow of the effective potential

Alice: How long is forever? White Rabbit: Sometimes, just one second.

— Lewis Carroll, Alice in Wonderland

Contents
2.1 The Local Potential Approximation . ... ........... 22
2.1.1 Two-point correlators . . . . . . .. .. ... ... ... 22
2.1.2 Flow of the potential . . . . . . ... ... ... ... ...... 24
2.2 From subhorizon to superhorizon scales . . . . . ... ... .. 26
2.2.1 Minkowski regime . . ... .. ... oL 26
2.2.2 Infrared regime and dimensional reduction . . . . . . . ... .. 29
2.3 Equivalent approaches . .. ... .. ... ..., 30
2.3.1 zero-dimensional field theory . . . . ... ... ... .. .... 30
2.3.2 Relation to the stochastic approach . . . . .. ... ... ... 31
2.3.3 Relation to Euclidean de Sitter space. . . . . . ... ... ... 32
2.4 Thelarge-N limit . ... ... ... ... oo, 33
2.4.1 Generalizing to O(N) theories. . . . . .. ... ... ... ... 34
2.4.2 Flowofa ¢* theory . ... .. ... ... .. .. ........ 35
2.4.3 Symmetry restoration . . . ... ... L Lo 36
2.4.4 Mass (re)generation . . . . . . ... ..o 40
2.4.5 Correlation length . . . . .. .. ... 0oL 43
2.5 Finite N . . . . . . o i e e e 44
2.5.1 Goldstone contributions . . . . . ... ... 44
2.5.2 Convexification . . . . . . ... ... 45

Conclusion . . . . . . i i i i i e e e e e e e e e e e e e e e e e e e e e 48




22 Chapter 2. Flow of the effective potential

2.1 The Local Potential Approximation

The functional approach described in the previous chapter is efficient in that the entire
information on the physics of the system is encoded in the effective action I'y—y. The
drawback of this is the cost to retrieve this amount of information : we have already
discussed the complexity of the functional flow equation. In the following we shall
restrict ourselves to extracting only part of this information, thereby simplifying the
flow equation considerably. Specifically, only the infrared sector is interesting!, the large
scale fluctuations being the only ones sensitive to the curvature effects of interest. The
modes of wavelength smaller than the curvature radius 1/H essentially see a flat space-
time and will behave as in Minkowski.

This focus on large wavelength modes means that we are interested in computing
the effective action around constant field configurations. As a consequence, the complex
structure of this functional may be simplified by dropping space-time derivatives of the
field. Furthermore, non-localities can be developed in gradients of the field which can
also be dropped at lowest order. The simplest ansatz we can write is therefore

T4 e) = - / <Vk<¢>) + ;¢D¢> . (2.1)

This is the Local Potential Approximation (LPA). Note that we have kept a kinetic term
to maintain the boundary condition I'y[¢] o S[¢p]. At this order in the derivative
—00

expansion, we should in principle allow this term to depend on the field and RG scale.
We will discuss these improvements in Chapters 3 and 4.
The problem is now to find the flow for V, with boundary condition

Vi(¢) — V(9) (2.2)

k—A

To do this, we must compute both sides of equation (1.63) using the ansatz (2.1) at
constant field configuration. The left hand side is simply —QVj,(¢), where Q = [, is a
space-time volume factor. Using the p-representation (1.22), (1.70), the right hand side
can be written

~

1 e 1 d'p . . Fi(p,p)
5T (RG] —QQ/(27T)de(p) e (2.3)

and the volume factors €2 simplify on both sides as they should. The right-hand side

requires the computation of the correlation function, which is defined as the inverse of
F;f) + R} in the LPA ansatz.

2.1.1 Two-point correlators

By taking two covariant derivatives in (2.1) and evaluating at constant field, we get

TP (p,2,2") = —(V{'(¢) + 0a)é(x,2'), (2.4)

IThis is also the case in statistical physics close to criticality, where the focus is on macroscopic
physics, e.g. macroscopic magnetization. We shall use it as a guide in devising efficient approximation
schemes for our present purposes.
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where O, = (— 7728% + (D — 2)ndy + n*V2). After taking a spatial Fourier transform,
and with our choice of regulator function, it is straightforward to show that:

(= V() + Ok = RI-K) O f) =51 (25)

where O, = ( — 172(9% + (D — 2)n0, — K2n2) and the dependency in ¢ is implicit for
correlation functions. Moving to the p-representation, we have
1

v2— R — =\ .
<a§ +1-— ’“;2@)4> Gr(p,p') = ids(p — 1), (2.6)

d2
ve =17~ Vi (2.7)

The delta function on the right hand side is directly related to the time ordering in G,

where

while the spectral and statistical correlators (1.16) solve the corresponding homogeneous
equation. It is convenient to express the correlators in terms of the mode function:

~

Grp, ') = Tpliw(p) iy ()], (2.8)
Fy(p.p') = Re[t(p)ag(p')],
pr(p,p') = —2Im[ay,(p)ay(p')], (2.10)

where 4y, is solution of the homogeneous equation associated to (2.6). For the Litim
regulator Ry (p) = (k% — p?)0(k® — p?), this reduces to [65,66]:

=2 1

521
p<k, [ag - kpZ 4}%(1}) —0, (2.11)
p2 1
p>k, [a§+1— kp2 4}ak(p) —0, (2.12)
with
i =v -k (2.13)

The boundary conditions are imposed by the renormalizability condition, which selects
the Bunch-Davies vacuum as the state in the infinite past [89]. For an interacting theory,
this state can be quite complicated. To avoid this issue, we define the interacting theory
by switching on interactions adiabatically from the infinite past. In this case, we can
consider the free Bunch-Davies vacuum as the state in the infinite past p — oco. It is
characterized by the boundary conditions

S 1
Fk’(pap/)’:p/%oo = 5, (214)
OpEr(p 1) | =pt 00 = 0, (2.15)

~ 1
8P8P’Fk‘(pap,)’:p’—>oo = §a (2.16)
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and the solution in terms of the mode function then reads

. 2 PPk B\
iy (p) = 4 /Ze P [CZ (%) + ¢ <p> ] for p < k,
ix(p) = \/%ewkmk (p) for p > k, (2.17)

where ¢ = 5 (v +1/2), H,(p) is the Hankel function of the first kind, and where the

coefficients "

1
+
& =5 [Hl,k(k) + %H;k(k)] (2.18)
ensure the continuity of ux(p) and of its first derivative at p = k. Because we have
chosen the Litim regulator, which has a discontinuous first derivative, we see that there
is a sharp transition from the unregulated modes (p > k) to the regulated ones. This is

shown in figure 2.1.
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Figure 2.1: Regulated one point function of a massless field? in D = 3 + 1
dimensions. In the UV (p > k, H) the behavior is the same as in flat space
(p° in the p-representation). In the IR (p < H) the unregulated function (in
blue) exhibits a strong spectral accumulation. In the presence of a regulator,
however, there is a change of power law effective as soon as p = k. For large
values of the RG scale (in red), 73 € iR and 4y, is the sum of two imaginary
power laws. The dampening saturates and oscillations appear.

2.1.2 Flow of the potential

The potential flow in terms of the one point function is

. dy . i 2
Vk:;/(gﬂz;de(p)‘ ’“;p)‘ . (2.19)

2we have set V}/ = 0 for all these curves. This should not be read as a flow of the one-point function,

as we expect mass to be generated as k — 0.
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Figure 2.2: The function By(v,k) [see Eq. (2.21)] in D = 3 + 1 dimensions
versus k for various (real and imaginary) values of v. In the UV regime k£ > 1
the function By(v, k) ~ k, which reproduces the Minkowski beta function for
the potential. Imaginary values of v correspond to regions of field space where
the curvature of the potential V}/ > d?/4. In that case, the function By(v, k)
shows a bounded oscillatory behavior for k£ < 1 and it is essentially constant
for large field curvatures, V' > d?/4. For v = 0, this turns into a logarith-
mic behavior, which reflects the gravitational enhancement of superhorizon
fluctuations. Finally, real positive values of v correspond to regions of field
space where the curvature of the potential V;” < d?/4 and are most sensitive
to space-time curvature effects. The logarithmic enhancement is turned into
a power law k~2V.

The momentum integral in Eq. (2.19) can be computed explicitly with the Litim regu-
lator using the expressions (2.17). Indeed, Ry, ensures that the momenta in the integral
are strictly below the RG scale, where the integrand is simply a combination of power
laws. In agreement with previous results [65], we obtain the functional beta function for
the potential (see appendix B):

. C g kd+2

_ 1" -

Vie=B(Vy, k) = de(Vk, k), (2.20)
where Cy = 7Qq/[16d(27)4], with Q4 = 27%2/T'(d/2), and where we have defined the
function (see Fig. 2.2)

(d2—202428k2) | H, (k) |* + 282 |H (k)|* — 2dk Re [H (k) H, (k)]

Bd(Va k) = emIm(v)

(2.21)

We stress that we keep the full field dependency on both sides of (2.20), although not
written explicitly for simplicity. This is therefore a functional flow.

Let us discuss the structure of the S-function (2.20). We have purposefully expressed
it as a product involving By(v, k), because setting By to a constant allows us to retrieve
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the d-dimensional flat space flow3. This is a remarkable fact which deserves some atten-
tion.

First of all, the de Sitter S-function has the same denominator k* + V/” as the
Euclidean flow, although the reason is quite different. In flat space, it is simply the
value of the inverse propagator at momentum p < k. In de Sitter space, it is the result
of integrating a growing and a decaying mode and is therefore a feature of the space-time
expansion. This denominator plays a crucial role in the convexification of the potential
which we will discuss later.

Second, the dimension of the flow appears to be d instead of D = d + 1. This also
signals the influence of the external scale H and can be traced back to our choice of
regulator (1.70). Indeed, by embracing the p-representation we effectively work with d
variables, having absorbed all time dependencies in physical momenta. This is flagrant
in Eq. (2.19) where the trace integral is d-dimensional.

With these remarks in mind, we can perceive the factorization of the d-Euclidean
flow as a "standard provision” of NPRG. The function By(v, k) then encodes the non-
trivial gravitational modifications to this flow. In the following, we will therefore study
the asymptotic regimes of this function and the consequences on the flow.

2.2 From subhorizon to superhorizon scales: The onset of
gravitational effects

There are two flowing scales in the game, k and V/”, along with the constant Hubble

scale H. This allows for a number of asymptotic regimes depending on their relative

values. We distinguish essentially a Minkowskian regime, where no curvature effects are
observed, and a light infrared regime where these effects are maximal.

2.2.1 Minkowski regime

The first case of interest is when all fluctuating modes are effectively heavy in units of
the space-time curvature. The latter then ceases to play a role in the flow equation and
one expects to find the Minkowski limit. There are several ways to realize this.

Large RG scale

First, the RG scale can be greater than all other scales. Using the asymptotic behavior
of the Hankel functions in Eq. (2.21), one finds

2 , N 8k
H, (k) ~ 1/ s exp{ik — Z§(V +1/2)} and Bi(v, k) ~ g (2.22)
The beta function (2.20) takes the following form:
kD
B k) ~ SO (2.23)
s

3Numerical prefactors are irrelevant to the discussion here, and can be absorbed by a rescaling of the
potential and the field which is equivalent to a change of initial conditions.



2.2. From subhorizon to superhorizon scales 27

InV}/

In k2

Figure 2.3: Different regimes of the S-function, depending on the relative
values of V) and k? in units of H. Whenever one of those two scales is large,
we observe a flat-space behavior. It can correspond to either a light scenario
k2> V! or a heavy scenario k? < V. On the other hand, if both scales are
small with respect to H then we fall in the light IR regime where gravitational
effects are maximal.

which is identical to that obtained by deriving the flow equation directly in Minkowski
space in the limit k% > V) (see chapter 3).

Large potential curvature

The second possibility is for the potential curvature V; to be greater than all other
scales®. In this case, the index v? ~ —V}”. We then have, for m > k,

2 k m
Hip (k) ~ ]/ — (—) exp{im — zg(zm +1/2)} and By(im,k) ~ 8_m, (2.24)

™m \ 2m T

so that the flow function reduces to

D+1
BV k) ~ SOdL,,,
T/ V,

which is the Minkowski beta function in the limit V}” > k2.

(2.25)

4In this discussion we consider only convex regions of the potential V' > 0 for simplicity.
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Figure 2.4: The beta function S(V}/, k) of the effective potential as a func-
tion of Ink for different values of the potential curvature V} in Minkowski
(left) and de Sitter (right) space-times in D = 3 4+ 1. The de Sitter beta
function coincides with the Minkowski one for all values of V}” in the regime
of subhorizon scales k > 1 and for all values of k£ when V/” > 1. Curvature
effects become sizable on superhorizon scales for V! ~ d?/4 [see Eq. (2.7)]
and the de Sitter beta function is qualitatively different from the Minkowski
one for small curvatures of the potential V;/ < d*/4. In particular, its slope
is dramatically reduced and even turns to zero for V! < k? < 1 as a result of
the gravitationally induced amplification of infrared fluctuations. This corre-
sponds to the phenomenon of effective dimensional reduction described in the
main text. Also shown is the case of negative potential curvature, for which
the beta function diverges as k? — V}”. In such regions of field space, the
potential undergoes a strong RG flow which lowers the absolute value of the

negative curvature.

General case

The general case can be obtained, when either k or V) are large, using the mixed
asymptotic behavior for m, k > 1:

2 1 m mm T
) ~alZ ; 2 2 _; inh—1 _ =
Him (k) \/;(kQ N mQ)i exp (zvk +m? — ¢msinh (k:) + { ) ,  (2.26)

leading to

8 /2L V7
Buv k) ~ VTV (2.27)

~

EVI>1 s
The beta function (2.20) thus reads, in the UV regime,

" ~ 87% kd+2
6 (Vk 7k) ~ T \/m?

which is identical to the Minkowski beta function. The right-hand side of (2.28) is plotted
as a function of the RG scale k for various values of V}” in the left panel of Fig. 2.4.

(2.28)
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Figure 2.5: The same as Fig. 2.4 but for k9 In 8(V/”, k). This shows the vari-
ous power law behaviors in the different regimes of interest for the Minkowski
(left) and the de Sitter (right) beta functions. In the former case, one has
B ~ kP for k* > V" and B ~ kP+! for k? < V/”. In the latter case, there
is an extra dimensionful parameter and the structure is more complex. The
Minkowski scaling is reproduced either for k% > 1 or for V}/ > 1 but there
are strong modifications in the infrared regime k < 1 for V” < d?/4. The
gravitationally induced logarithmic and power law enhancements (2.29) and
(2.31) are clearly visible. The modified power law behavior in the infrared
as compared to the flat space-time case results in an effective dimensional
reduction up to the zero-dimensional scaling for V" < 1.

2.2.2 Infrared regime and dimensional reduction

The Minkowski beta function (2.28) receives sizable corrections at superhorizon scales
k < 1 when the curvature of the potential V' < d?/4. This corresponds to 1/,3 increasing
from (large) negative to positive values. For instance, for V” = d?/4 (v, = 0), one has

4d? kN 8. (k

This shows a (double) logarithmic enhancement as compared to the Minkowski case in
the corresponding regime. This effect gets more dramatic as V}” is further decreased (v,
is further increased to positive values). For v € RT and k < 1, the Hankel functions

behave as
r
#,(k) ~ " 2y, (2:30)
i
and we obtain
I?(v)

B k ~ dd+2
AR o)

2v
- (i) [1+ 0] . (2.31)

The logarithmic enhancement of Eq. (2.29) is turned into a power law k2, which
reflects the strong gravitational amplification of infrared fluctuations. In the case of
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small potential curvature |V}”| < 1, one has v}, ~ d/2, and the beta function reads

1 k2

PO 2.32
Qpi1 k2 + V[ ( )

B (V”, k)
where we used Qp, 1 = 47%?+1/[dT(d/2)]. The various regimes of the beta function in
de Sitter space are illustrated in Fig. 2.4 together with their Minkowski counterparts.

Equation (2.32) reproduces the result of Ref. [66] obtained directly in the infrared
limit. As pointed out there, the beta function (2.32) describes an effective Euclidean RG
flow in zero space-time dimension.” For instance, in the regime V}’ < k? < 1, the flow
function S(V, k) ~ k%, to be compared to the canonical scaling in D dimensions ~ k7.
Below we shall make this statement more precise by showing that the beta function
(2.32) describes a RG flow on the D-dimensional sphere Sp, that is, the Euclidean de
Sitter space. As a measure of the effective dimensional reduction we show the logarithmic
slope of the beta function in the various regimes of interest in Fig. 2.5.

IR: k< 1land V' < 1 general case UV:k>1lorV/>1
1 k2 C kd+2 8C kd+2
Pv = Qpo k2 +V/ v/ k2 + V//B (Vi k) - L2+ 7
D+1 T \REH VL
Iite tatio 0-dimensional modified Minkowskian flow
nterpretation
P Euclidean Flow d-dimensional flow | (unregulated frequencies)

Table 2.1: S-function in the different regimes.

2.3 Equivalent approaches

The light infrared regime highlights the effects of space-time curvature on the flow.
Several other approaches reproduce the same features, and are worth describing.

2.3.1 zero-dimensional field theory

This effective dimensional reduction signals the fact that the solution of the flow equation
governed by the beta function (2.32) can be written as an effective zero-dimensional field
theory®. Indeed, we introduce the following ordinary integral

€QD+1Wk(J):/d(p e_QD“ [VCH(LP)+J¢+§@2] , (2.33)

where Veg(p) is a function to be specified below. Repeating the steps leading to the
Wetterich equation, it is easy to check that the modified Legendre transform

Wi (J)
oJ

5 . . . . . . . .
°A similar dimensional reduction phenomenon has been observed for fermionic degrees of freedom in

2
V(@) = WalJ) = J6 = 6%, with -5, (2.39)

spaces with constant negative curvature [62,103].
5We thank T. Morris for bringing this to our attention.
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satisfies the flow equation (2.32). One can adjust the function Veg(¢) so as to produce
the appropriate initial conditions’ for the infrared flow at a scale ky ~ 1. All solutions
of the flow equation in the deep de Sitter regime can thus be written as Eq. (2.33). In
particular, it is remarkable that, in this regime, the original D-dimensional Lorentzian
theory, with complex weight exp(iS) eventually flows to a zero-dimensional Euclidean-
like integral, with real weight exp(—Qp+1Ves)-

2.3.2 Relation to the stochastic approach

The phenomenon of dimensional reduction described above is deeply related with the
stochastic approach proposed by Starobinsky and Yokoyama in Ref. [43]. We have
described in chapter 1 how the superhorizon modes are described by a single degree of
freedom with an effective Langevin equation [43, 50]

Oun(®) + 32 6,00, (2.35)

where Vo () is the potential seen by the long wavelength modes (see below). The short
wavelength modes are responsible for the stochastic sourcing which is delta correlated:

I'(d/2

Eaa(t) = 2550 - 1), (2.36)
orztl

Using standard manipulations, Eq. (2.35) can be turned into the following Focker-Planck

equation® for the probability distribution P(i,t) of the stochastic process
1 0 [9Vy 1 0
== { tp 4 P } .
agpa QD—H 0 Pa

The latter admits an O(N)-symmetric stationary attractor solution at late times (i.e.,

(2.37)

in the deep infrared), given by
P(p) x exp { — Qp11Veort () }- (2.38)

Equal-time correlation functions on superhorizon scales can then be computed as mo-

ments of this distribution. This coincides with the outcome (2.33) of the above RG

analysis in the limit & — 0, provided one identifies Vo (¢) = Verr(¢) =~ Vi, (¢). For
instance, one has

(Pupy) = J dV o papy P(p) _ 1 PPWi—o(J) '

deQO'P((p) QD—H 8Ja&fb J=0

The relevant potential to be used in the stochastic approach is thus not the microscopic

(2.39)

one (at the UV scale A) but the one evolved down to the horizon scale kg, which makes
perfect physical sense.

The present NPRG approach thus sheds a new light on the basic principles under-
lying the stochastic approach. Moreover, it clarifies the relation between the stochastic
approach and the Euclidean de Sitter approach, as we now discuss.

"In the case N = 1, one can show that Veg(p) = Vi, (p) if V() < k3. For arbitrary N, the
inequality should be satisfied by the largest eigenvalue of the curvature matrix 82Veg(0)/00a0ps.

8 A correspondance between the Focker-Planck equation and the renormalization group has also been
discussed in [104]. There, the authors consider the time evolution as an RG flow, so that the late-time
equilibrium corresponds to a fixed point solution.
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2.3.3 Relation to Euclidean de Sitter space

Another interesting consequence of the dimensional reduction concerns the relation be-
tween Lorentzian and Euclidean de Sitter spaces, the latter being nothing but the D-
dimensional sphere Sp. It has been pointed out in [50] that, for what concerns the
calculation of static quantities (e.g., equal-time correlators) on superhorizon scales, the
nonperturbative physics of the zero mode on the sphere reproduces the results of the
stochastic approach. However, the origin of this result has remained unclear.

The present NPRG approach allows us to clarify this point. As we have discussed
above, the stochastic approach emerges as the result of the effective dimensional re-
duction of the RG flow due to the strong enhancement of infrared fluctuations in the
Lorentzian case. A similar dimensional reduction takes place in the Euclidean case for
more obvious reasons since the sphere is compact.? The spectrum of the theory is thus
discrete and all heavy modes decouple for scales below the first excited level, leaving the
zero mode as the only fluctuating degree of freedom.

The effective dimensional reduction for a scalar field theory (N = 1) on the sphere
has been studied in detail by means of NPRG techniques in Ref. [64]. There the author
finds, employing the LPA and a Litim regulator, that the beta function for the effective
potential on length scales larger than the sphere radius exactly reproduces the one ob-
tained in [66] for the Lorentzian theory on superhorizon scales, Eq. (2.32). Below, we
provide a short alternative description of the origin of the dimensional reduction on the
sphere.

The regularized generating functional for connected correlation functions is given by

W — [Dpexp (=5l - Asulel - [ duga ) (2.40)
where we denote Euclidean quantities by an overall bar (we do not need to be more

specific here) and fx is the invariant integration on the unit sphere Sp. One decomposes
the fields on the discrete basis of eigenfunctions of the corresponding Laplacian operator

pe) = erVr(@), (2.41)
L

where L = (L,Lp_1,...,L1) is a vector of integer numbers with L > Lp_1 > ... > |L|
and where the spherical harmonics satisfy

Os,, V() = —ALYz (), (2.42)

with A\, = L(L 4+ D — 1), and are normalized as

9Dimensional reduction is spaces with compact dimension has been discussed in [105]. The number
of effective dimension is simply given by the number of noncompact dimensions.
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The zero mode is the constant Yy = 1/1/Qpy1, with Qp41 the volume of the unit sphere
Sp. The infrared regulator in Eq. (2.40) can be written as

A8l = 5 3 Rl gl (2.44)
L

where the function Ry (L) provides a large effective mass for modes such that \;, < k2.
Because the spectrum is discrete, it is essentially constant for scales below the first
nonzero mode k% < D. For a potential curvature lower than the first level, V" < D, and
for scales k2 < D, the nonzero modes effectively behave as heavy modes and decouple in
the flow equation. The physics of the zero mode is nonperturbative and must be treated
separately [49,50]. For instance, employing the following regulator!®

Ri(L) = (k2 . )\L) 0(k2 - )\L), (2.45)
one has Ry (L) = k?0 0 for k* < D. Writing the field as

p(r) = ¢+ ¢(z), (2.46)

with @ = oYy = [ ¢(x)/Qp11, we define the generating function for the fluctuations
of the zero mode as Wy[J = const.] = Qp 1 W (J), which reads

J— Y/ = 2 = A
e~ Wk(J) _ / g o0 [Ver (2 + 4762475 | (2.47)
Here we wrote Dy = d@pD¢ and we defined the effective potential for the zero mode as
o211 Verr(®) _ / D=5l (2.48)

Equation (2.47) coincides with the Lorentzian result Eq. (2.33)—and thus with the
stochastic approach as discussed above—provided one identifies the respective effective
potentials Vog and Vig.

2.4 The large-N limit

We now discuss the actual RG flow from subhorizon to superhorizon scales. We first
consider the limit of a large number of field components, N — oo, for which the flow
equation for the potential is exactly given by the LPA [106] and can be solved analytically
in the interesting infrared regime. Furthermore, as we shall see later, the large-N limit
correctly captures the qualitative behavior of the finite IV case.

ONote that, in contrast with the p-represented regulator (1.70) used in Lorentzian signature, the
regulator (2.45) respects all the symmetries of Sp.
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2.4.1 Generalizing to O(N) theories

It is straightforward to generalize this analysis to N scalar fields with rotational invari-
ance. The two-point functions now have a tensorial structure in the field indices, for
example the statistical correlator is

1 ..
Fop = 5 (Q{@a; Pp}S2s) - (2.49)

In our case there will be no explicit symmetry breaking, so that this tensorial structure
can be decomposed as

Fu, = FLPL + PrPL (2.50)

a

where PET are the longitudinal and transverse projectors with repost to the background
field:

Pats
¢

We have noted ¢? = ¢op, and summation over repeated indices is to be understood.

PL _ ¢a¢b

@ =g PL =6, — (2.51)

The two statistical correlators F, 1 are constructed with the same one-point function
(2.17) where V;/ must be replaced by the longitudinal and transverse components of V;”
respectively. Defining

2
Ve(6) = NU(p) with p= 2o (2.52)
we find that
4(6) = Ulda + 22201 (o). (2.53)

The longitudinal and transverse curvatures are therefore

mi(p) = Ui(p) +2pUy (p) and mi ;. (p) = Uy (p). (2.54)

The same generalization concerns of course p, and Gj. To generalize the flow equation,
the trace on the right hand side of the Wetterich equation must now also be understood
on the field indices, so that

1/ d'p ()Fhabp(np), (2.55)

NUk(p) = 5 4(27_[_)(1 k,ab

Choosing a regulator which preserves the symmetry : Ry, . = Rrdqp, we obtain the trace
of F}, qp in the integrand:

1 dip .

oL 2 —DlaT (v)2
NOp) = 5 [ (o ) S )

(2.56)

=B (mig. k) + (N = 1)B (mi,. k), (2.57)
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with 8 given by (2.20). The flow of the potential is simply the sum of one longitudinal
and N — 1 transverse components.

Notice that in Eq. (2.52) we have chosen specific scalings in N for the field and the
potential. These allow us to properly discuss the large N limit. For N — oo, only the
transverse modes contribute to the flow equation (2.57), which becomes

Uk(p) =p (U;/C(p), k) ) (2.58)

with the beta function given by Egs. (2.20) and (2.21). A standard trick [107, 108]
is to rewrite this equation in terms of the function pi(W) defined by the relation!!
U,.(pe(W)) = W. One thus has

p(W) = Ui (p) /UL (P) | p=pyw) (2.59)
as well as U} (p(W)) p,(W) = 1 and the flow takes the following explicit expression
Pe(W) = —0w B(W, k). (2.60)

An important property of this flow equation is that, because the k-dependence of the
right-hand side is explicit, the coefficients of the Taylor expansion of pg(W) in W, e.g.,
around W = 0, all have independent RG flows.

2.4.2 Flow of a ¢* theory

A typical initial condition at the UV scale k = A is Ur(p) = m3p + Aap?/2, that is,
pr(W) = (W —m3)/Aa. Here, the parameter m% can be of any sign and Ay > 0. The
flow in the UV regime k 2 1 is described by the Minkowski beta function (2.28) and one
gets
4Cd A udJrl
W) = pa (W) = 22 [T (2.61)
T Ik (w2 w)?

For theories deep in the symmetric phase, where U (p) > 1 Vp > 0, the flow eventually
freezes out in the Minkowski regime at a scale k% ~ U} (0). More interesting are the
cases of theories either close to criticality or deep in the broken phase, for which there
exists a significant region in field space where!? |U] (p)| < 1 down to scales k ~ 1. This

is the case where we expect important gravitational effects. In the region W <« 1, the
Minkowski flow (2.61) reads

2

v O (w?), (2.62)

pr(W)

" This assumes that the function Uj,(p) or, equivalently, px (W), is invertible. It is easy to check that
(W) in Eq. (2.60) is a decreasing function of W: p;, (W) < 0. Here, we shall consider cases where the
initial condition at the scale k = A is a monotonous—thus invertible—function with p (W) > 0V W. It
follows that pj<, (W) > 0 VW and hence the function pg (W) is invertible for all k < A.

2This stems from the fact that, unlike the interpolating potential Ug(p), the regulated potential
Ui (p) + Ri(0)p is a convex function of ¢, [58,59]. Indeed, it is the Legendre transform of the generating
functional (1.52) for constant sources W[J = const.], which is a convex function of J,. Note that this
assumes that the infrared regulator Ry (p) indeed completely regulates the theory at all scales k. With
the regulator (1.71), this implies that a possibly concave region is such that the negative curvature never
exceeds the TR cutoff scale: k? 4 U} (p) > 0.
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where

2 2 D-2 _ 1.D-2
my _ma y AC AT - kT (2.63)
A AA T D -2

1 1 60y AP—4— D1
- = . 2.64
A A + T D—4 ( )

For infrared scales k < 1, the flow of the part of the potential where U (p)| < 1 is
described by the dimensionally reduced beta function (2.32) and one gets

1 1 1
W) = w — , 2.65
pk( ) pko( )+2QD+1 {k%+W k2+W} ( )
where kg ~ 1 denotes the horizon scale. Using the approximate UV flow (2.62) down to
the scale ko, we have Uy, (p) ~ mﬁop + Ak p?/2 and Eq. (2.65) can be rewritten as
ko

(Up + k3) (U + k) (U, — Up,) = T (k§ — k%) . (2.66)

Under the above assumptions, we have Uj (p) < k2 in the relevant region of the potential
and Eq. (2.66) becomes a second order polynomial equation for Uj, with positive solution

Ui(p) =

2
M ¥ Mop T (7 F A TR A ()R
2 2 20p11 k3) '

After integrating over p, we find

M;l(p) — M (0) 1 ( k2>1 Mi(p)

2k T\ K)oy

Ur(p) + k*p = Ux(0) + (2.68)

where the curvature term M7?(p) = U} (p) + k? is, as expected, positive all along the

infrared flow!?

. This is directly related to the zero-dimensional Euclidean functional,
whose Legendre transform Uy (p) + k?p is convex.

For k = 0, this reproduces the result of Ref. [70], obtained by a direct calculation
of the effective potential in the limit N — oco. We mention that the above result for
the running potential in the infrared regime can equivalently be obtained by a direct

calculation of the integral (2.33) using standard large-N techniques (see appendix D).

2.4.3 Symmetry restoration

Let us discuss some consequences of the findings from the previous sections. As pointed
out in Ref. [66], an important consequence of the effective dimensional reduction of the
RG flow in the infrared regime is the fact that any spontaneously broken symmetry gets
radiatively restored. This is easily understood from the fact that the generating function
of the effective zero-dimensional field theory given by the ordinary integral Eq. (2.33) is
analytic and cannot present a spontaneously broken phase. In the limit N — oo, this

13we recall that the expressions (2.67) and (2.68) are valid provided M7 (p) < 1.
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Figure 2.6: The effective potential Ug(p) in the limit N — oo [see Eq. (2.67)]
in D =3+ 1 as a function of the radial variable 1/2p in field space for (from
bottom to top) k = 1,0.1,0. The parameters at the horizon scale kg = 1 are
taken as mio = —0.01, and Az, = 0.001.

phenomenon of symmetry restoration along the flow in the infrared regime can be seen
on the exact solution, Egs. (2.67) and (2.68), as illustrated on Fig. 2.6.

The analysis of Ref. [66] was restricted to the deep infrared regime, where the flow
is already dimensionally reduced. Here, we extend this discussion and we consider the
complete flow from subhorizon to superhorizon scales. This allows us to study how a
possible broken phase in the Minkowski regime gets restored once gravitational effects
become important in the infrared regime. We follow the flow of the minimum pj of
the potential, defined as U} (py) = 0 or, equivalently, as pr = pp(W = 0). As explained
above, the RG flow of p; is independent of that of other couplings. We have, from
Eq. (2.60),

pr = — OwBW,E)|yw_o (2.69)
o Qd i d B(V7 k) }
- Gt ( 5 + <0, B(v,k) o (2.70)

The right-hand side can be evaluated in closed form for each dimension d. For this, we
give the following result:

dyBy(v, k) = 2d|H,|* — 4kRe[H, H_] + 4(d* + k*)Re[H,0, H;]
+ 4k*Re[0, H, H?_,| — 4kdRe[0, H, H} | + H,0,H’_], (2.71)

where all Hankel functions are evaluated at k.
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Case d=1

The relevant funcions are:

. 2 ik
Hy (k) = —iH_y (k) = —iy| =™,
9 ) [ee) eit T
Z/HI/ _ _ stk ik
0 (k‘)|l,:2 — ( ie /% T dt 5 ) ,

from which we get the flow of the potential minimum:

p= i {3+ % +2g(2k) — 4l<:f(2k:)}

where the real functions g and f are defined as

u

for x> 0.

o(@) + if(z) = /0 T du

u

Case d =2
The relevant functions to compute are:

Ho(k)
k b

Oy Hy () |yer = —ing(k) n By H, (k)]0 = —igHg(k),

from which we get

b= 312{ (22 + 4) |H1(k))* - kQ]HO(k)\Q}.

Case d =3

The relevant functions to compute are:

and

from which we get

14472 | k2

p= 1 {54 + 30 — 2k* + g(2k) (36 — 64k*) + f(2k)( — 72k + 16k3)} :

(2.72)
(2.73)

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)

(2.81)
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General case

The functions (2.75, 2.78, 2.81) are plotted in Fig. 2.7 along with their equivalents in
Minkowski space. As before, the subhorizon regime is governed by the Minkowski beta
function (2.28), which yields, in arbitrary dimension,

5. o L%ksz

P R for k> 1. (2.82)

With the asymptotic behaviours

vooor f@)~ o, @)~ g [H@~y o WER, (2.83)

xT T

one easily checks that the functions (2.75, 2.78, 2.81) are indeed given by the above for-
mula in this regime. One sees in Fig. 2.7 that gravitational corrections become significant
for k ~ 1 and dramatically modify the flow for k& < 1, where the functions (2.75)—(2.81)
acquire the same slope in all dimensions. This signals the effective dimensional reduction
discussed above. Indeed, inserting the beta function (2.32) in Eq. (2.69), we obtain

N 1
T Qppk?

Pk for k<1, (2.84)

which reproduces the small k£ behavior of Eqgs. (2.75, 2.78, 2.81), given the asymptotic

behaviours
fl@) ~ 3, g(z) ~ —Inz,
z—0: . ) (2.85)
@) ~ 2w )~
In the Minkowski regime, the flow (2.82) integrates to
bh— gy AN R k< (2.86)

T D -2

and we recover the following known facts. First, in D = 2, the minimum of the potential
would reach zero at a finite scale k = Aexp(—4npp) for any initial condition and the
Minkowski theory has no phase of spontaneously broken symmetry. In contrast, in
D > 2, the Minkowski theory reaches a phase of broken symmetry in the limit & — 0 if
pA > pe = 4CyAP~2/[r(D — 2)]. For pp = pe, the Minkowski theory is critical.

These matters are drastically changed in de Sitter space for k£ < 1. In that regime,
the flow (2.84) integrates to

1 1 1

Ok =P — |5 - = for k<ky<1. 2.87

Pr=Pro + 50— (k:g k2> <ko S (2.87)
One sees that the minimum of the potential reaches zero at a finite scale so the theory
always ends up in the symmetric phase at & = 0. The flow of the minimum of the
potential is shown in Fig. 2.8 in various dimensions for an initial condition which would
result in a broken phase in Minkowski space in both D = 3 and D = 4. The plain curves
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Figure 2.7: The beta functions for the minimum of the potential in the large-
N limit in de Sitter (plain lines) and Minkowski (dashed lines) space-times in
D = d+ 1 dimensions. The de Sitter and Minkowski beta functions coincide
in the regime of subhorizon scales k > 1, where they behave as a power law
kP2, Significant deviations occur for scales close to the horizon, k ~ 1. As
a result of the strong gravitational enhancement of infrared fluctuations, the
de Sitter beta functions switch to a common k=2 behavior for superhorizon
scales, which signals an effective zero-dimensional flow.

are obtained by integrating the complete flow equations (2.75)—(2.81) and are compared
to the corresponding flow in Minkowski space. We see that, even in the case D = 2,
where the Minkowski flow would eventually reach the symmetric phase logarithmically,
gravitational effects make a qualitative difference and dramatically speed up symmetry
restoration due to the negative power law. Finally, we mention that the result of the
numerical integration of Eqgs. (2.75)—(2.81) in that case is quantitatively well described
by Egs. (2.86) and (2.87) with a matching point at ko = 1.

2.4.4 Mass (re)generation

As we have seen previously, a theory with a large mass gap in units of the space-time
curvature does not feel any de Sitter effects and is essentially described by the Minkowski
flow all the way to the deep infrared. Space-time curvature plays a nontrivial role when
there are light excitations myg, < ko at the horizon scale kg ~ 1. This is the case
for theories which are nearly critical (pp =~ p.) or in the broken phase (ppn = pc) at
subhorizon scales.

We thus consider initial conditions at the UV scale A such that pp > p.. The flow
of the minimum of the potential has been described in the previous subsection. As
long as it is nonzero, the mass of the transverse Goldstone modes vanish identically
mik = U(pr) = 0 whereas the mass of the longitudinal mode is given by ml%k = 2\ Pk,
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Figure 2.8: The flow of the minimum of the potential in de Sitter (plain lines)
and Minkowski (dashed lines) space-times obtained by a direct integration of
the beta functions shown in Fig. 2.7. The initial condition pp at the scale
A = 10? is chosen such that the Minkowski theories in D > 2 are in the
broken phase. We clearly see the effects of gravitationally amplified infrared
modes in de Sitter space which quickly restore the symmetry as soon as k < 1.
In the case D = 2, the Minkowski flow slowly restores the symmetry with a
logarithmic flow. Infrared de Sitter effects lead to a much faster (power law)
symmetry restoration.

where A\ = U}J/(pr). Once the symmetry gets restored, the minimum of the potential
stays at pr = 0 and the transverse and longitudinal masses become degenerate: m?k =
m%k = UL(0) = m3.

The flow of the coupling A in the UV regime is given by Eq. (2.64). In the infrared
regime, it can be obtained directly from Eq. (2.65) using Ayp) (W = mfk) =1

11 1 1 1
— = - . (2.88)

N M 20pn (8 +m§k)2 G +m§k>2

Alternatively, it can be computed by evaluating the second derivative of the approximate

solution (2.67) for the potential at the minimum. As recalled above, the transverse mass
is zero as long as pr # 0. Once the symmetry is restored, the flow of the degenerate
mass is obtained from Eq. (2.68) as mi = U} (0) = M?(0) — k?, that is,

2 12 2 2\ 2 2
5 My, k mi, +k ko k
= — 1—-— . 2.

In particular, these converge to the final values for k — 0

2 4
9 M, mko )‘ko
= 2.90
M=o 5 + 1 + 2011 (2.90)
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Figure 2.9: Flow of the (would-be) critical theory in D = 3 4+ 1 in the
large-N limit (see text). The initial conditions at the scale A = 10% are
pA = pe = 625/(37%) ~ 21 and Ay = 1073, The left panel shows the flow of
longitudinal and transverse masses. The transverse Goldstone mass is zero
and the longitudinal mass decreases until symmetry restoration at k = kg ~ 1.
For lower scales both masses agree and a nontrivial infrared gap is gener-
ated (blue curve). The right panel shows the flow of the coupling constant
X = Ul (pr). The UV flow is very slow (logarithmic) while we see a rapid
transition to the final value A\y—p = Ag,/2 &~ Aa/2 in the infrared. In both
panels, the dashed lines show the corresponding flows in Minkowski space.
The Minkowski theory is critical in that case: the longitudinal and transverse
mass vanish at k£ = 0.

and

i -1
A = A 1+ —-"0 . 2.91
o= e, ( ; QQDHmiZO) (2.01)

Equation (2.90) reproduces the result of Ref. [70]. The nonanalytic expression of the
generated mass and coupling at the scale £ = 0 in terms of the coupling A, is a signature
of the nontrivial infrared physics at work here.

Two cases are of interest. The first one is that of a theory which would be close
to critical in Minkowski space, i.e., pp = p.. In that case, the symmetry gets almost
restored already at the horizon scale and the whole infrared flow takes place in the
restored symmetry phase. The infrared generated mass and coupling are given by

kO ko
0~ A / nd Mg~ —. 2.92
my 0 ‘ E 1 a k=0 ) ( )

This reproduces the result of the stochastic approach in the large-N limit for the so-

called dynamical mass [94]. To quantify the nonperturbative character of the dynamics,
we introduce the dimensionless coupling of the dimensionally reduced theory at scale k,

Ak
aff=___ 28 2.93
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Figure 2.10: Similar to Fig. 2.9 with a UV theory in the broken phase. Here,
we chose pp = 25 > p. and Ay = 1073, The symmetry gets restored deeper in
the infrared and the generated mass is thus smaller than in the critical case.
The smaller infrared mass implies a smaller infrared coupling as can be seen
from Eq. (2.91). The dashed lines show the corresponding flows in Minkowski
space. We see that the Minkowski theory is in the broken phase at k = 0,
with massless Goldstone modes and a massive longitudinal mode.

It is very large at the horizon scale kg, and of order unity at the end of the flow:

eff )\kzo ~ 1

N = 2QD+1mé:0 ~ (2.94)
The other interesting limit is that of a theory which would be deeply in the broken
phase in Minkowski space (ppy > p.). In that case, part of the infrared de Sitter flow
takes place in the broken phase and the symmetry gets restored in the deep infrared.
There remains less RG time to build up a mass and the latter is thus smaller than in
the previous critical case. Here, one has mzo < 0 and, in the limit where )\zif < 1, we

obtain, for the infrared mass and coupling,

mi_g ~ Ao im, | and  Ap—o & AfE Ay, (2.95)

We note that despite the fact that the effective coupling at the horizon scale )\Zg < 1,
the resulting zero-dimensional theory is, again, strongly coupled in the deep infrared:

)\zﬁ? Ak:()
=0 —

= — & 1. 2.96
QQD-Hmé:() ( )

We show in Fig. 2.9 the flow of the longitudinal and transverse masses as well as
that of the coupling for the would-be critical theory in D = 3 + 1. The case of a theory
in the would-be broken phase is shown in Fig. 2.10.

2.4.5 Correlation length

A crucial concept in field theories is the correlation length, which describes the scale
at which the system is correlated. In flat space, it is accessed through the exponential
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decay of the correlation function, and corresponds to the inverse mass. For a critical
theory, the mass is zero and the system is correlated on (infinitely) large scales.

In de Sitter space, it is not obvious that we could generalize this concept; the cor-
relators on large scales are power laws depending on the mass and do not exhibit any
exponential decay. We can still define it as the inverse mass by analogy to flat space,
and find that it is always finite as we have discussed in the previous section. For a theory
which remains in the broken phase in the IR, we have the large N result from (2.95):

= /10D 11Dk, - (2.97)

There is another empirical approach that we may borrow from NPRG in statistical

1
Mk=0

physics: the correlation length should also corresponds to the RG scale at which the
symmetry restoration takes place. The idea is that the system finds that it is in the
symmetric phase once all fluctuations of scale larger than the correlation length have
been integrated on. Indeed, demanding that pg+ = 0 from (2.87), we find that in the
large N limit

1
L, (299)

which is the same as (2.97) up to a factor of order unity. This is quite remarkable and
nurses the idea that concepts of flat space physics can be extended in de Sitter space.

The transition from a Minkowskian regime to a dimensionally reduced flow also tells a
story regarding the correlation length. For theories where the symmetry is restored in the
Minkowskian regime, everything happens as in flat space; in particular, the correlation
length is smaller than the Hubble scale, and the system presents disorder on such scales.
For theories that reach the IR regime in the broken phase, the restoration is purely
due to the expansion; at the scale of a causal patch, the system is correlated, but at
superhorizon scales each patch is uncorrelated from the others, effectively restoring the
symmetry. This is illustrated in fig. 2.11.

2.5 Finite N

We now discuss the flow equation (2.57) for N finite. The longitudinal mode plays an
increasingly important role as N decreases down to N = 1, where there are no transverse
modes left. As already discussed, nontrivial gravitational effects occur when the local
curvature of the potential at the horizon scale kg ~ 1 is small, namely, mIQ,ko (p) < k%
and /or mf ko (P) S k2. This is the case for theories which are close to critical or in the
broken phase in the UV sense (i.e., theories which would flow toward a critical theory

or a broken phase in Minkowski space).

2.5.1 Goldstone contributions

For N > 2 the condition of small potential curvature in the broken phase is guaranteed
by the presence of Goldstone modes, for which mfk = UL(px) = 0. Indeed, the potential
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Figure 2.11: Schematic representation of the symmetry restoration on super

horizon scales. Even for theories such that the field has an average value on
causal (subhorizon) scales, the preferred direction in field space is uncorrelated
from one causal patch to another. The symmetry is therefore restored at
sufficiently large scale.

minimum defined by this relation has the following flow:

s Uy (1)
Pk = U (1)’ (2.99)

This can be computed directly by deriving the flow function with respect to p. In the

infrared regime, we find'*:

. 2 S4gr  N-1
D = 2.100
P Nopm <(k2 I + =0 (2.100)

where g = QﬁkU,§3) (pr)/U} (pr) and m3 = m?k(ﬁk) We see that for N > 1, there is
still a k=2 contribution from the Goldstone modes which ensures symmetry restoration
as discussed previously.

2.5.2 Convexification

For N =1, there are no Goldstone contributions and it is not obvious that the potential
minimum follows a negative power law. In fact, even for a small mass the flow (2.100)

14Here, we have written the flow of the minimum in the case of a small mass mir < 1. This is
not necessary for this discussion, where we focus on Goldstone contributions, but will be useful in the
following section.
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Figure 2.12: The effective potential for the N = 1 theory in D = 3 + 1 ob-
tained from the complete functional flow equation (2.20) with initial condition
Ua(p) = A(p — pa)?/2 at the ultraviolet scale A = 10, with Ay = 0.01 and
pa = 1.5. Curves from bottom to top correspond to k = 10,1,0.1 One clearly
observes the convexification of the potential in the Minkowski regime k£ 2 1
and the symmetry restoration in the infrared regime k < 1.

describes a non-trivial phase structure for any order in Taylor expansion of the potential.
Appendix E shows how taking a polynomial ansatz (g = 0) results in a line of fixed
points. This is an artifact of the Taylor expansion however, and we argue that the
dimensional reduction always regenerates the symmetry.

Indeed, there is another mechanism (besides Goldstones modes) which drives the
system into the interesting infrared regime, namely the convexification of the potential
along the flow [58,59]. This simply stems from the fact that, if the theory is properly
regulated, one has k% + ml?k(p) > 0 and k% + m?k(p) > 0 for all scales. In particular,
starting the flow in the broken phase at a given ultraviolet scale, the inner region of
negative potential curvature between the minima of the potential is brought to a nearly
flat profile at the horizon scale, with a (negative) curvature at most of the order of k3.
This is a sufficient condition for the flow at superhorizon scales to enter the dimensionally
reduced regime mentioned above. We can now conclude by comparing the flow of the
inner and outer parts of the potential. The outer part of the potential is by definition
convex, its flow is frozen by a positive power law!'® which is at least o< k2. The inner
part necessarily contains an inflection point where the potential flows as oc k. Since it
will never freeze out, specifically because of the dimensional reduction, there must come
a finite flow time where the inner region is below the outer region and therefore strict
convexity is achieved, meaning that the symmetry is restored. A similar discussion can
be found in [109], where finite volume/temperature effects also result in a dimensional
reduction with the same flow equation.

For N =1, this second convexification mechanism is the only one at work. This is

158pecifically, if the local curvature in this region is not small in units of H, but smaller than d/2,
then the power law is k272" If the mass is larger than d/2 then it is as k972



2.5. Finite N 47

illustrated by numerical integration in Fig. 2.12, where we show the convexification of
the potential along the flow in the UV regime and the subsequent symmetry restoration
(complete convexification) due to the effective dimensional reduction in the infrared
regime!S.

We conclude that the qualitative discussion of the large-N case goes over to finite
N: for initial conditions corresponding to the would-be critical or broken phase cases,
the flow enters the dimensionally reduced regime in the infrared. It follows that the
symmetry gets restored at a finite RG scale and that a nonzero mass is generated. The
latter can be exactly computed from the equivalent integral (2.33); see Appendix C. As
before, we parametrize the effective potential at the horizon scale as Uy, (p) = mio p+

Mo p?/2 and we define )\zg = )\ko/(2QD+1m;‘;O).

e For the critical case (mj, ~ 0 and /\igf > 1), we get

9 Ao Ak=0 NA%(N) B A2%(N)
mi—o = AN Mpi and Ny 5 1 Tr2/N ) (2.101)
where we defined!” N
(N
A(N) = VN T'(3) (2.102)

5 TNz
2 T(%%)
In that case, the effective coupling of the dimensionally reduced theory in the

infrared is

N A%(N)
MNEy=—(1- 4] >0.135. 2.103
F=0T 2 < 1+2/N)~ (2.103)
Eq. (2.101) is consistent with the perturbative expansion on Euclidean de Sitter

[115].
e In the broken symmetry case (mi0 < 0 and Azgf < 1), we obtain

N i
Y (2.104)

2 ~ eff|, 2 ~
Mi—g = Ay Mg, and  A\p—o =

and the effective coupling is

N

1
Aff - 5 2.1
=0~ N 1o >3 (2.105)

%1t is to be mentioned that some studies [110-113] find a possible (de Sitter invariant) broken sym-
metry phase for finite N. However, for continuous symmetries (N > 2), the Goldstone modes acquire a
nonzero mass, which is rather unphysical. We believe these are artifacts of the various approximation
schemes employed in these works. For instance, the Hartree approximation used in Refs. [110-112] is
known to produce similar spurious solutions in flat space-time at finite temperature [114].

"The large-N results of the previous section are recovered using A(N) =14 1/(2N) + O(N~2).
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Conclusion

We have studied the RG flow of O(N) scalar theories in de Sitter space-time in the Lo-
cal Potential Approximation. Gravitational effects come into play as one progressively
integrates over degrees of freedom from subhorizon to superhorizon momentum scales.
At the level of the effective potential, the gravitational enhancement of superhorizon
fluctuations results in an effective dimensional reduction of the original D-dimensional
Lorentzian action to an effective zero-dimensional Euclidean theory. The latter is equiv-
alent to the late-time equilibrium state of the stochastic approach and to the nonper-
turbative description of the zero mode on the compact Euclidean de Sitter space. The
phenomenon of dimensional reduction thus provides a unifying description of these two
approaches and explains their identical results for what concerns the calculation of the
effective potential.

This framework provides a number of handles to compute the effective potential, from
large N techniques to the equivalent zero-dimensional functional. Using those, we were
able to argue that any theory with spontaneous symmetry breaking exhibits radiative
restoration in the infrared. Furthermore, we related the effective mass and coupling to
the ”soft” potential defined at the horizon scale. This is a correction to the stochastic
approach, and makes perfect physical sense: the potential for the superhorizon modes
in the Langevin equation should already have integrated out the subhorizon modes.

Besides the light infrared regime, we have discussed the heavy UV regime and stated
that the flow is then Minkowskian. In the following chapter, we prove this claim by
performing a complete flat space analysis. Beyond the de Sitter/Minkowski comparison,
this provides a reflexion on the regularization scheme that we have used. To this end, we
compute some critical properties of scalar theories and compare them to fully regularized
results. Finally, we take this opportunity to introduce the derivative expansion, which
generalizes the local potential approximation. We compute the renormalization of the
field in a simplified version of the first order derivative expansion, the LPA’. This will
serve as a guideline and point of comparison for the same analysis in de Sitter space.
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NPRG in Minkowski space

Normal is an illusion. What is normal for the spider is chaos for the fly.
— Charles Addams, Drawn and Quartered
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The NPRG has been extensively studied in flat Euclidean space with numerous ap-
plications to statistical physics, see e.g. [95,116,117]. Usual studies employ a regulator
which respects all isometries for lack of a reason not to. In this chapter, we are inter-
ested in reproducing the limit H — 0 of our de Sitter flow with regulation of spatial
momenta only. The Minkowskian analysis we perform is therefore an original one, with
prime motivation to complete the discussion on de Sitter space physics. An added value
is that this formulation allows us to study flat space RG in Lorentzian signature, which
has been little studied in the literature.

This chapter is also an opportunity to improve our approximation scheme. The local
potential approximation is placed back in the context of the derivative expansion. We
generalize the flow of the potential to include a renormalization of the field, meanwhile
reproducing de Sitter results in the limit H — 0. The running of the field raises the
issue of broken isometries. As a result, its flow can be computed in two different ways.

With this setup, we study the Wilson-Fischer fixed point in various dimensions.
While properties such as the fixed point position depend on the regularization scheme,
the value of critical exponents at one loop is universal in some situations. In particular,
our approach reproduces these results in the e-expansion. Finally, we discuss the value of
the anomalous dimension obtained by our regularization scheme as compared to results
in other approaches.

3.1 Derivative expansion

3.1.1 LPA’

The Local Potential Approximation introduced in the previous chapter was based on
an expansion of the effective action around constant field configurations. In Minkowsi
space, this derivative expansion writes:

rufol = - [ (o) + 25206+ 0c), (3.1)
x

where the Laplace-Beltrami operator acting on the field is a small parameter. We stress
that all the coefficients of the expansion generally depend both on the RG scale k£ and
the field ¢. This infinite series must of course be truncated at a finite order. At lowest
order, the Local Potential Approximation considers only V. and a kinetic term to match
the bare action at high energy. This is equivalent to setting Zx(¢) = 1 in the above
expression.

To go beyond this approximation, it is necessary to allow for a running of the ki-
netic term. A frequent approximation scheme is to consider Zj as a field-independent
renormalization parameter. This upgrade of the LPA is often referred to as the LPA’. It
captures some interesting features of statistical systems close to criticality at a reduced
analytical cost. Indeed, the anomalous dimension

B Oln Zy,
olnk |,_,

(3.2)
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contains some information on the correlation properties of such theories, namely that
the propagator is a modified power law [95]

G(p) ~1/p*7". (3.3)

The anomalous dimension is usually small and positive, therefore playing a crucial role
in regulating the IR behaviour in this case. Another remarkable case is the Ising model
ind =2, N = 2. Although the Mermin-Wagner theorem [118] forbids any broken phase
for continuous symmetries (N > 2) with a local order parameter, it is known that there
is a phase transition for N = 2 governed by topological (non-local) excitations [119].
The LPA’ is able to capture the qualitative difference between the N = 2 and N > 2
cases, the former being characterized by a large anomalous dimension.

3.1.2 Flow of the potential

To reproduce the de Sitter flow in the limit H — 0, we derive the LPA’ flow equation
for the effective potential in D = d + 1 Minkowski space-time using a regulator (on the
closed time contour) of the form Ry(t,t',p) = d(t — t')Ri(p). Following the procedure
outlined in the previous chapter, we get, for N = 1 and leaving the field dependence

implicit,
2
1 fdp o xa(pt)]
_ A4
where the mode function xy is now solution of
R + VI/
(0t 42+ DL ) =0 (3.5)
k

The Litim regulator (1.71) must be adapted to the LPA’ in order to perform the same
advantageous simplifications:

Ri(p) = Zp(K* — p?)o(k? — p?), (3.6)

leading to the following mode function:

e—iwk(k)t f k
) = —— or < , 3.7
Xk(p,t) 2o h) p (3.7)
e—iwk(P)t
Xe(p,t) = ———= for p>k, (3.8)
2w (p)

where wy,(p) = \/p? + V) /Z},, and where we have selected positive frequency solutions in
the infinite past corresponding to the Minkowski vacuum. Defining the running anoma-

lous dimension! as

_ _8ank
M= ok

(3.9)

The denomination anomalous dimension in statistical physics refers to the value of the quantity
(3.9) at the end of the flow and at criticality. We use it somewhat loosely here to refer to 7.
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we get
Ri(p) = Z1[(2 — m)k* + mp® |6 (k> — p°). (3.10)

The integrand (3.4) is then a sum of power laws on a finite volume, and the Minkowski

flow equation reads
Vg kd+2

K+ V] /Z,
where vg = Qg/[2d(27)%). This result agrees with Eq. (2.28) when 7, = 0, that is, in the
LPA. The flow of the potential is modified by the presence of the anomalous dimension,

(3.11)

S Nk
Ve=(-75)

for which we must find an expression.

3.2 Anomalous dimension

As for the potential, we must provide a prescription for the flow of the field renormal-

ization. In Euclidean signature, the usual prescription writes

e = 9,1 (p) (3.12)

p*=0

The matter will be slightly different in Lorentzian signature, especially since we have
broken the full symmetry due to our choice our regulator. Let us follow this line of
thought nonetheless.

3.2.1 Flow of the inverse propagator

Using the LPA’ ansatz for the effective action and taking two field derivatives,
r®(p,w) = / dt’ e IT@ (F — 1 p) = — [V + Zi(—w® + p?)]. (3.13)
C

The flow of this quantity can be directly derived from the Wetterich equation:

Fk[¢] % L (Trin(T? + Ry)), (3.14)
)= 10 / )4 R a, 0D (b, a,2)), (3.15)
( ;5/ab[Gkab (baxy)

/ Gi(a, )T (b, ¢, 2)Gi(c, )T (d,a, )| (3.16)
The three- and four-point vertex functions in the LPA’ are:

T3 (2,9, 2) = =V ($)5(2, )y, 2),
T (w, 2,9, 2) = =V (6)8(x, )5y, 2)6(w, ),

—~

3.17)
3.18)

—~
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Figure 3.1: Diagrammatic representation for the flow if the inverse correla-
tor. It is governed by 1PI one-loop diagrams, namely the tadpole and sunset
contributions. The full line represents the exact propagator, the cross is Ry
and the loop stands for the trace integral.

After moving to spatial Fourier modes, we get
d d

. 1= d 2 d
@ (p, t—t') = 50k [—V(“)/ (27T§dG(q,t—t’)5(t—t’)+zV(3)/(2:)dG(q,t—t')G(p—q,t—t’)}
(3.19)

Frequency modes are obtained by taking the Fourier transform on the closed time path,
which gives:

. _ t ' ,
£ (p,w) = 50 / [—v<4>F<q,t = 0)+2v®” / et >F(q,t—t’>p<p—q,t—t’>]

q

(3.20)
Defining the advanced propagator as G4(p,t —t') = p(p,t —t')0(t — t') we can complete
the time integral and identify the Fourier transform

L 1= - 2 ~ ~
I (p,w) = 2(’%/@ [~ VWE(q,q) + 2V F(q,q0)Galp — q,w — q)],  (3.21)

d%qd
where [, = [ ¢ a%do The correlators involved are computed from the mode function
N (2m)P

(3.7-3.8) and found to be:

~ o 0w —wg) 6w + wy) ~ 1 1
F(qaw) - 27T 4kaq ’

where
(3.23)

and the limit ¢ — 07 is understood. There are two remarks concerning this flow in the
LPA’ ansatz. First, the tadpole contribution oc V¥ in (3.21) does not depend on the
external 4-momentum and therefore does not contribute to the anomalous dimension.

Second, the remaining diagram is o V)2

and therefore vanishes exactly in the symmet-
ric phase. As a consequence, the LPA’ is only suited to compute the field renormalization

in the broken phase. A better approximation involves Zi(¢) as already mentioned.

Isometry breaking

We must now extract the running anomalous dimension from this flow. Notice that
the left hand side of (3.21) depends only on the combination w? — p?, but our choice of
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regulator breaks this invariance on the right hand side. An ansatz more suited would
lead to

I (p,w) = — [V — 2w? + Z2Pp?, (3.24)

with a regulator Ry(p) = Z ]gp )(k2 —p?)0(k? — p?) in order to perform the desired cancel-
lations. Following the same steps to get the flow of the potential, we find that

(w) () d+2
. Z
v, = 2 <1_ i ) vak (3.25)

Zlip) d+2 /k2+Vk///Z’(€p)'

There are two remarks here. First, the occurrences of Z; and n; have been replaced

by their momentum representant. This suggests that the proper prescription for the
anomalous dimension involves the derivation of F,(f) with respect to p? and not w?. The
second remark, however, is that a prefactor appears which is the ratio between the two
field renormalization. This means that the isometry breaking will have an influence on
the LPA’ potential flow if these two quantities evolve differently. We should therefore
also track the running of Z,iw).

In what follows, we will compute both runnings, although we will not differentiate
between Z,gw) and Zlip ) in the equations. As we will see, it is reasonable to assume
that the two quantities are close to each other. Furthermore, we do not wish to focus
on the momentum derivative (as suggested above) because it is the least relevant to
de Sitter physics. Indeed, as shown in chapter 4, taking a momentum derivative in the
equivalent de Sitter space setup fails to isolate the anomalous dimension in the derivative
expansion, while it is possible to define a frequency derivative that does so. Computing
the frequency derivative of the inverse correlator is therefore also motivated by providing
a point of comparison for the H — 0 de Sitter results, as we have done for the flow of
the potential.

3.2.2 Flow of Z; through frequency derivative

Evaluating I'(?) (p,w) at p = 0 yields

. . 1~ 2
V! — Zpw? = 2a,€/Q [~ VWF(g,q) +2V® F(q,90)Gp(g,w — )] (3.26)

Let us compute the relevant integrand:

/dqu(q, 90)Gp(g,w — qo) : ( : z : )

27 B A7%wq \ (W —wg —i€)? — w2 (w+wy —i€)? — w?
o 1
2wy Z2 (w—i€)? — w2’

(3.27)

Therefore, after derivation with respect to w? and taking the frequency (as well as €) to
zero, we get

2

. 174G 1
Zp = — . / . (3.28)
z2 " ), 3203
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Recalling that

- . de
Op® = / R(q ) 3.29
the general expression for any regulator reads
: 5Ve? R
Zpy=———= | —. 3.30
T 6z} /qwg (3.30)

The running anomalous dimension with the Litim regulator is therefore

me (VY g k2
= (1- —= | == . 3.31
== 2272 ) 16 B2+ V] /2 (3:31)

¢=¢min

3.2.3 Flow of 7, through momentum derivative

Evaluating I'® (p,w) at w = 0 yields
o 1~ 5
Vi + Zyp® = 20/ [— VW E(q,q0) +2V® F(q,90)Gplp — ¢,9)]. (3.32)
Q
Let us compute the relevant integrand:

2 b4 q0)Go(l qo) = 5 —— : :
/ 2m (4:90)G(l q0) Z2 4w, <(w3 —i€)? — w? * (w2 +i€)? — wf)

or 1 02
= 3.33
Z,% 2w, Q4 + 46%}3’ ( )

2
q

the following identity:

where Q2 = w? — wl2 — €2 and | = |p —q|. The derivative with respect to p? is done using

2q2 "

00 [ ar@oip—a)| = [dar@(d@+ o' @), (3

p=0

where prime denotes a derivative with respect to a momentum squared. We obtain the
following expression:
R A R 22 1 204
=" 522111 / [ B AV Rkl
FT 2@ / 2%y {( et gt )
2¢% 20°(1 4 74)*

y 3 (—3A + 494)} , (3.35)

where A = Q* + 462603 and r, = Ry/Z). Having taken p? = 0 we get that Q2 = —€2,
and it is easy to see that terms in red behave as e 2. Let us check that they cancel out
at leading order (that is, taking A = 4€*w?):

_ dd 202 302(1 /\2 [l sd 24° o0
a/wf?(_(1+r;€+qr%)—l—q( + i) >:8[Tq 4 } =0. (3.36)
q 0

2 3 3
d dwq wy dwq
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0

1 1 1
These terms contain e” contributions nonetheless, developing 1 ~

- 4€2w? a (4w2)?
Taking ¢ — 0, Eq. (3.35) becomes

. 2V ®® . radg [ 3 2¢° 2¢* 20(1 + r})?
Zp= 5 L 2 gy Sy AT TR 3.37
"7 Z22(2n) /2wq ng( MG (423 ] (3:37)

Integrating by parts we find

@i%r’/ = @i —r! LQQM (3.38)
2wy 16wl d F 2wg 16wt \ T d 2w ' '
After rearranging the terms,
2V radg [ 3 22 [ 15(1+47)) | 5(1+7)?
Z =2 da/q[ 4+q<_ ( Gk)+( 6’“))] (3.39)
Z;(2m) 2wy [ 16wy d 32wy 16wy
~ qd
The first two terms can be rewritten together as oc 9 [ d(q2)(9q2—5 = 0. Finally, we get
w
q

the general expression for any regulator

. 10nV®? (142
Iy = ——— 2k 4
F T T 16dz2 8/qq w7 (3.40)
_ 107rv(3)2/ o (2R (1+7))  SRp(1+7p)? (3.41)
16dz3 J, wy 2w ’ '

and the running anomalous dimension with the Litim regulator is

v \? i +2
me= (1— -y 2k 5vg (3.42)
d+47\ 732 | Ad+2) (K2 +V}'/Z,)7)

¢=Gmin

3.2.4 Critical exponents at the Wilson-Fischer fixed point

As we have mentioned several times, the NPRG is a powerful tool to capture critical
properties. We illustrate this here by reproducing some properties of the Wilson-Fischer
fixed point. The generalization to N > 1 of the flow of the potential is straightforward;
see section 2.4.1. Introducing the O(N) invariant potential

: Zy¢?
Vi(d) = NU(p), with p= 20" (3.43)
2N
the flow V(¢) = B(k, V}) given by (3.11) generalizes as
Vi = N(Uy — moU) = Bk, UL+ 20U0) + (N~ DB UL, (3.44)

To capture the features of the fixed point, it is sufficient to consider a polynomial ansatz

Ak

Uk(p) =5 (p = pk)" (3.45)
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In the broken phase (pr > 0), the parameters py and A, are defined as
Ui(pr) =0, U (pr) = M, (3.46)

and, therefore, have the following flows:

= Ul:;(ﬁ) \ T (=
E= — —, X =Uy(pr). 3.47
p Ul/c/(p) k (p ) ( )
Using Eq. (3.44), we find
. _ Mk Vd d+-2 3 N — ].
= —mpr + (1 — Ll + : 3.48
Pk Nk Pk ( d+ 2) 2N (k2 + 2>\kﬁk)% k3 ( )
: Nk 3’Ud d4+212 9 N -1
Ak =2m Ak + (1 — — kYN + , 3.49
k Nk Ak ( d+2)4N k (k‘2+2>\kﬁk)g 5 ( )
where vy = Q4/[2d(27)%). Introducing the dimensionless parameters
T = [—)ka—D and /¢ = )\kkD_4, (3.50)
we get the autonomous flows
: M\ Vd 3
e =(2—D — )+ (1 — 2 A N-1], (3.51)
( d+ 2)an (1 + 20,) 3
Iy = (D — 4+ 2m)lp + (1 - 1Tk )?ﬂi LA S (3.52)

along with the expression for the anomalous dimension given either by frequency or by
momentum derivative, respectively,

Nk 45’Udli7’k

0 = mp=(1- 3.53

w ==y i 7) 8(1 + 20yry)7/2 (3:53)
Mk 45vdlzrk

O — m=(1- 3.54

= = (= )00 4 2 (3.54)

These expressions are only valid for N = 1. We do not generalize the anomalous dimen-
sion for N > 1 here because it is not straightforward and unnecessary to this discussion.

Fixed points are solutions of I, =7, = 0. At a fixed point, the theory is critical and
the minimum of the potential is a power law kP2 that reaches zero only at the end of
the flow. An obvious solution to Iy = 0 is [, = 0, corresponding to the Gaussian fixed
point?. We now study the non-trivial Wilson-Fischer fixed point in various dimensions.

2The expression (3.51) is incorrect for a Gaussian theory. In this case, 7, = (2 — D)rg, and the
Gaussian fixed point corresponds to [ =7 = 0.
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Dimension 4 — ¢

It is interesting to study the Wilson-Fischer fixed point in dimension D = 4 — € for €
small. Asis well known, the coupling is of order ¢;, ~ O(e), and the anomalous dimension
nk ~ O(€?) does not contribute at leading order. We can therefore study this fixed point
for any N in perturbation theory. Expanding the flow equations (3.51), (3.52) at leading
order in € close to the Wilson-Fisher fixed point, we have

. 9’Ud ’Ud(N+ 2) 9
T = <2 €+ 2N€k> rE + ON + O(e%) (3.55)
. 3vg(N + 8
b, = —€ely, + Mﬁz + (’)(63). (3.56)
4N
The fixed point is located at
« V(N +2) . 4Ne
e A d = —— .
r i an 302 (N +8) (3.57)

Critical exponents are obtained from the linearized flow around the fixed point. For in-

stance, the correlation-length exponent v is obtained as minus the inverse of the smallest

(negative) eigenvalue of the Jacobian matrix of the linearized flow [59]. It is particu-

larly interesting to compute since the leading and next-to-leading (one-loop) orders are
universal and therefore regulator independent. Here, we get

1 eN+2

= 4+ -— =4+ 0(), 3.58

V=3t an+s 1O (3.58)

which reproduces the well-known perturbative result [95]. For N = 1, the fixed point

solution (3.57) gives the following results for the anomalous dimension at leading order

freCIZEQ mom:i2 359

M 546 M 546 (3.59)

It is possible to perform the same analysis in other dimensions, this time including

the anomalous dimension in the computation of the fixed point. Table 3.1 sums our
findings in dimensions 2,3 and 4 — e.

3.2.5 Concerning regulators

The ability to produce a viable flow without regulating frequencies is a remarkable fact
which raises some questions. It is obvious that the usual denominator k2 + V', which
is crucial to the convexification and symmetry restoration, is affected by unregulated
directions. To see this clearly it is interesting to work in the LPA with Euclidean
signature and unregulate directions one by one. For any regulator, the general form of
the potential flow is

. 1 qu Rk(q)
Vi= > 3.60
g 2/kmﬂDf+J@@)+mf (3.60)
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D=2 D=3 D=4-—¢
4
momentum derivative 0.508 0.1053 ag
. . 5 ,
frequency derivative no fixed point | 0.1047 ﬁe
1
best known 0.25(®) 0.0362(" an (©)

Table 3.1: Anomalous dimension 7 for the phase transition of the Z5 Ising
model in dimensions 2,3 and e-expansion. We compare our results with the
two expressions for the anomalous dimension (frequency or momentum deriva-
tive) to best known results. Our approach systematically overestimates by a
factor of 2 to 5. While this is not very quantitative, it is still a correct quan-
titative picture. The only case where we fail to capture the fixed point is in
D = 2 using the frequency derivative prescription. In this case, the anoma-
lous dimension plays a crucial role in finding a fixed point and is quite large.
It is therefore not surprising that the frequency prescription, whose short-
comings we have discussed, could fail. (a) : exact value (b) : Monte Carlo
simulation [120] (¢) : e-expansion [95].

so that taking Ri(q) = (k% — ¢%)0(k? — ¢?) yields the usual result:

. QD k qD—l
Vi=—% dq—5— 3.61
£ enP /0 vy (3.61)

QD kD+2

“ DNV (3.62)

To leave one direction unregulated, we replace ¢* = g3 + - - - + qg by ¢+ -+ qczl in the
regulator. Using the same Litim-like regulator, we now get

P = -1 /kd D—2/+Ood B (3.63)
b d(2m)P J, 449 . 1 @+E2+ V) '
_ ™pa kP (3.64)

d2m)P /K2 + V]
which is precisely the result obtained in Minkowski, see (3.11). This is no surprise as it
is possible to pass from one computation to the other by a Wick rotation.

What happens when we leave more directions unregulated? If the same regulator
actson ¢ + -+ qg, the computation becomes

. Qp_o k D_3 /+Oo /+oo k2
Vi =—= d d d 3.65
k (27_‘_)[) /0 qq - qo - q1 q(Q) T q% T L2 + Vki/ ( )
. ﬂ'QD_QkD /OO du
CoemP Jo utk2+VY

(3.66)
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which is divergent, as could have been expected from dimensional arguments. This result
is not specific to the Litim-like regulator; this divergence appears for any form of the
regulator function because its asymptotic behaviour is to vanish at large momentum.
This result can also be generalized to more unregulated directions, and we conclude that
it is not possible to leave more than one space-time direction unregulated.

3.3 Conclusion

Our formalism in de Sitter space has led us to consider an unusual regulation scheme, for
which frequencies are unregulated. It is important to study such a scheme in flat space,
both to understand the H — 0 limit of our de Sitter expressions and to check wether
this indeed regulates the theory in known situations. We have demonstrated here that
this scheme admits a valid flat space limit, capable of reproducing qualitative results of
scalar theories.

Anticipating on the next chapter of this thesis, we have introduced an extension of
the Local Potential Approximation that captures the renormalization of the field. In
what follows, we will adapt the derivative expansion to curved space-time and discuss
the role of the anomalous dimension in the flow of the potential.
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You’'re not thinking four-dimensionaly, Marty!
— Christopher Lloyd as Emett Brown, Back to the future I11
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4.1 Derivative expansion in de Sitter space

In Chapter 3 we described the derivative expansion as an approximation scheme to
compute large scale physics. In flat Euclidean space, it writes

Culd] = / (Ve(é) + Zu(6)6Ad + O(A%)). (4.1)

The point of course is to truncate this series at a finite order. Inserting this ansatz in the
Wetterich equation (1.63) we get a closed system of flow equations for our parameters.
The zero order term is the local potential, whose flow is defined as

Th(6) = 5T4(0), (4.2

where () is the volume factor. The second term is the field renormalisation. The flow
of its logarithm, referred to as the running anomalous dimension®, is defined from the
two-point vertex function in momentum space as follows:

1 .
70T 6p)] (4.3)
p==0

(9) = —Z(0)/Zr(¢) =

Our goal in this chapter is to formulate the derivative expansion in curved space-time
and adapt the prescription for the running anomalous dimension.
4.1.1 Derivative couplings in curved space-time

A derivative expansion in curved space-time contains many more terms because of pos-
sible couplings to the Riemann tensor. The simple ansatz we wish to write is:

riidl = - [ () - %5%00+..). (4.4
x

where we remind that [ =[dPz\/=g and O = V,V* is the Laplace-Beltrami operator.
The first point we wish to stress is that all coefficients Vi, Z,... now depend also on
the local curvature R. This non-trivial result can lead to large contributions that could
possibly alter the hierarchy of terms in this expansion. We remind that the effective
potential is saturated with such contributions: for example, the generated mass of a ¢*
theory is m? oc HPV/.

Furthermore, at the same order in the expansion we should also consider terms
such as fi(¢) R, V#*V"¢ which has the same number of derivatives acting on the field,
and g5(¢)V,RV#¢ which has one derivative fewer. To make matters even more com-
plicated, an apparently fourth order term such as V,V,VFV¥¢ is in fact equal to
0%¢ + %VMRV“(;S + RMV,V,¢, and thus appears to contain second and first order
contributions.

This serves to show that successive covariant derivatives acting on the field may not
build powers of our desired small parameter if we are not careful. In a general curved

'The denomination anomalous dimension in statistical physics refers to the value of the quantity
(4.3) at the end of the flow and at criticality. We use it somewhat loosely here to refer to 7.
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background, it is not surprising that it would prove difficult (if not impossible) to define
large scale physics, given the presence of a local curvature scale at every point in space-
time. In de Sitter space, this scale is constant and the derivative expansion is not only
meaningful but also quite simple. Due to the maximal degree of symmetry, the Riemann
tensor is trivially expressed in terms of the metric:

R" = dH*¢" and R =d(d+ 1)H. (4.5)

The derivative expansion indeed contains only powers of the Laplace-Beltrami operator.
For example,

V.V, V¢ = Pp + dH*0, (4.6)

which justifies the use of the ansatz (4.4). Even so, since the generators of the space-time
isometries do not commute, we will have to build a limit of constant field configurations
such that the derivative expansion coincides with a small parameter expansion.

4.1.2 Prescription for the anomalous dimension

To derive a flow equation for the field renormalization generalizing the flat space pre-
scription (4.3), we compute the two point vertex function by taking two covariant field
derivatives on the effective action:

TP [¢](x, ') =—[V{($)— Zi(¢) D + O(C2)]6(, 2"). (4.7)

After evaluating at constant field and exploiting spatial translation invariance in comov-
ing Fourier space,

d(n—n')
al(n) ’

where we have noted Uk, = —77263 +(d—1)no, — K 2n%. A procedure similar to that

I (6, K,mn) = = (V(6) = Z(6)0yx + 0Tk (4.8)

in flat space would be to derive this quantity with respect to K? and evaluate at K = 0,
since Zj, is the coefficient in front of the second order term in the derivative expansion. In
de Sitter space, however, we have yet to choose a representation which diagonalizes the
Laplace-Beltrami operator. Indeed, because the isometry generators do not commute,
we see that

0% = (=07 + doy)* — {0} + doy; p*} +p' (4.9)

contains p? = K?n? terms, where t = —In(—n) is the cosmological time. Deriving with
respect to K? at K = 0 will therefore fail to isolate the coefficient of ¢[J¢, capturing
instead contributions from all the [0 terms. Our approach is therefore to focus on the
time direction; taking spatial modes K = 0, 0 = —9? + dd; is now diagonalized by
(complex) power laws in conformal time

Og—omn* = w(d —w)n®. (4.10)
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We therefore define the Laplace-like transform along the time contour:

o= |

I\ W
dn/a® () (”) PO (K = 0,m,17), (4.11)
C n

with w € iR. A number of comments are in order:

e This operation is directly related to the Fourier transform in Minkowski space in the
limit H — 0. Indeed, adding back H explicitly, we have that

w

/ ! H /
n=—e M o =_e " and <77> = (=), (4.12)
n

The flat space limit then writes
I (¢,w) = / dt'e*ITE (K = 0,1,1), (4.13)
C

which is exactly the time Fourier transform (at vanishing spatial momentum) for
w € iR.

e The left hand side of Eq. (4.11) does not depend on the time 7 due to the de Sitter
symmetries?. Let us check this with the scaling relation®

I (aK,n,7) = a~ TP (K, an, arf). (4.14)
Injecting it in (4.11), we get that
Dy I\ W
' (6, w) = / a0 (”) r® (K =0,an, on) (4.15)
c o n
7\ W
= [P (”) (K = 0,an, ) (4.16)
c an

by change of variable ” — 7' /a. Tt is therefore obvious that rescaling 1 does not affect
this quantity.

e This approach is related to the mode functions constructed in [84]. There, the authors
present an alternative to the physical momentum representation by working with the
Lemaitre-Painlevé-Gulstrand coordinates X = a(t)x. Taking the Fourier transform
with respect to these coordinates, and to cosmological time, the mode function

d(@,P) = / e WP Xp(X 1) (4.17)
Xt

is governed by the equation
—(w—iP - 0p)(w —i0p - P)P(w,P) = 0. (4.18)
In particular, for P — 0,
(-2 + di@)®(@, P =0) =0 (4.19)

which is related to (4.10) with @w = iw. Indeed, both representations coincide for
K=P=0.

2This is obvious in the flat space limit (4.13) due to time translation invariance.
3This relation is a consequence of the p-representation (1.23).
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e As we have discussed in chapter 3, a consequence of our regulation scheme is that flow
prescriptions involving frequency and momentum derivatives do not give the same
result. Although momentum derivatives seem more appropriate for a momentum-
regulated theory, we do not have an appropriate prescription and we must resort to
frequency derivatives. Again, we rely on the fact that both results should be very
close.

Applying this transformation to the ansatz of the derivative expansion, we obtain a
series in terms of the eigenvalue o, = w(w — d), which is indeed a small parameter as
w — 0:

2 (g,w) = — (Vé’(qﬁ) + Z(d)ow + O(ai)). (4.20)

We can now define a prescription for all terms of the derivative expansion. In particular,
the running anomalous dimension is defined as

1 di (6,w)

nk(9) = 7. dow,

(4.21)

w=0

As a first implementation of the derivative expansion, we will consider this additional
running quantity. For simplicity however, we discard its field dependency. This approx-
imation, referred to as the LPA’, provides an interesting extension of the local potential
approximation (see chapter 3). We must then specify the value of the field in the pre-
scription (4.21), for which we choose the minimum of the running potential.

4.1.3 Correlators in the LPA’

Generalizing the computation of the correlators from the LPA to the LPA’ is quite
straightforward. The ansatz

Z
T[] = — / (Vk(@ - ;¢D¢) (4.22)
defines the correlator through the inverse relation
~ de(n—1')
(= V"(¢) + Z0ky — R(—Kn))G(K,n,n) = iW7 (4.23)

which we can rewrite

V"(9) R(—Kn), ~ n_ dc(n—mn')
— O —)G(K,n,n) =i——s—. 4.24
( oG ) =i (1:24)
The regulator is divided by Zj, but is also conveniently redefined as Rypar = ZiRrpa
in order to perform the desired simplification, so that this term has not changed in the

equation. We must solve this modified equation with updated boundary conditions: the
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Bunch-Davies vacuum in the infinite past now selects?

- 1
Fk(p7p/)‘p:p’~>oo = E’ (4.25)
aka (pap,)|p=p’—>oo = 07 (4.26)
- 1
8p8p’Fk(p7p/)‘p:p’%oo = 55 - (427)
27,

The commutation relation also changes the normalization of the spectral correlator: In
the LPA, as in a free theory, Il = ¢ and the commutation relation

[6(2), II(2")] = id(z, ") (4.28)

implies that 9ppg(p,p’)|p=p = —1. In the presence of a field renormalization, II = Z,
so that

3,90 = 2 and 0yl = - (4.20)
In the end, the correlator in the LPA’ is related to its LPA equivalent by
1 %4
Grea (V) = 7. Cra (Z’Z> : (4.30)

Appendix F gives a summary on the correlation functions, as well as the relevant asymp-
totic behaviours. Before moving on, we say a word on the flow of the potential in the
LPA’. From the Wetterich equation,

. dpy . 0 2
=g [ oL (1.31)

where now Ry(p) = Zy, [(2 = mi)k? + mep?|0(k* — p?), and, as discussed above, V} now
appears divided by Zj, in the mode function. The resulting flow is

Vi(¢) = Aak™ 2 [(2—m) B(vy, k, &)+ B(vy, k, d+2)]. (4.32)
where
_L 2 _ 9,2 2 2 20712 _ * gyt
B(v,k,z) = 2(@2—172) (x* —2v° + 2k%)|H,|* + 2k°|H,,|* — 2xkRe[H  H, ]|, (4.33)

see appendix B for explicit calculation.

We are now set to compute the running anomalous dimension. In what follows, we
extract the expression (4.21) from the Wetterich equation and discuss the usual limits
of interest. We start with the case of a single scalar field, then extend the formalism to
O(N) theories. Finally, we discuss the physical implications, in particular concerning
the effective potential.

4We recall that this is a result of an adiabatic switch on of the interactions in the infinite past; see
the discussion in chapter 2.
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4.2 Anomalous dimension of a single field

4.2.1 General expression

To compute the flow of the inverse correlator, we must take two covariant derivatives of
the Wetterich equation:

T'[¢] = %5 (Tein(T? + Ry)), (4.34)
() = L4, / (' + Ry (0, )1 (0,0, 2)). (4.35)
( (z,y) ;5/1)[Gkab (baxy)

—H/ Gr(a, )T (b, ¢, 2)Gr(c, TP (d, 0, y) | (4.36)

In the LPA’ (4.22), the three and four-point vertex functions are simply

F](gg)(wvyvz) = _Vk(g)(gb)(s(l.ay)a(yaz)a (437)
T (w,2,y, 2) = =V (0)8(2, 1)3(y, 2)8(w, ), (4.38)
so that

Exploiting spatial homogeneity and moving to Fourier spatial coordinates,
(2 1z 4 - (3)2
02 (5, n,7) = 28k/Gk(q, 77777’)[— Vise(n ) + iV Gr(IK — q!,n,n’)}- (4.40)
q

We can now take the transform (4.11). Moving to the p-representation (1.22), it is
straightforward to show that

- Qi =~ [ 4 1) 92[*dp’ (p"\*; 5
1 (w) = da/d =2 _yWp 2V()/F / /
k (UJ) 2(27T)d k 0 pp k (p7p)+ k ) p/Q P (pup)p(p7p) ’
(4.41)
where we have omitted the field dependence for simplicity. We now explicit Ok, defined
by the functional derivative

Je
dRy(p)

Jpe = /0 " dpRu(p) (4.42)

For practical purposes, this operation consists in taking a derivative with respect to k
in Ry only, that is, at fixed F,(f). To do this, we consider the variation Ry — Ry + Ry
in the following relation:

(fg) + Rp)Gr =i = Gy, = iGr Gy, (4.43)
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This product relation reads, in its expanded form,

[ (f;?) )+ BB 5 —p“>> Gl p) = idolo—).  (444)
Therefore,
OhGr(p,p') =+ % / dp"signs(p — p")pr(p, p") é;f,i") (o)
/ dp" Ey(p, p") i s,z )Slgnc(p — )", p) (4.45)
% / dp"signs(p — p' )pk(np”)ék(pﬂ)mgn ;" =)ok, p)
=— / - dp” pr.(p, ") é‘“fi") F.(p".p)
P P
+ / /—l—oo dPHFk(Pyp//)R;Eg”)ﬁk(P//,P/) (4.46)
p

/

7: . R R /! R
— signa(p - P') ( - / dp” pr(p, p”)’;gg)pk(p”jp’o
p
= O (p.p) — 5signe(p — P)Okpr(p, 1) (4.47)

By identifying the statistical and spectral parts®,

Fk (pllap/) (448)

. +o0
OFr(p.p) =— / dp” p(p, p")
p

+oo R /!
- k(") .
+ / dp” Fi.(p,p") pf,g pe(p”,p")
D

/

/ X

~ D R R /! R
Opr(p,p') = — / dp” pi(p. p")— 5= o0, ') (4.49)
p
Taking this in the flow equation (4.41), we get
~(2) Vk(4)Qd > d—2 > 1" 7 1 é(p”) Al
L7 (¢, w) = y / dpp / dp"F(p,p")—5-p(p",p) (4.50)
(27‘-) 0 P p
Vk(?))sz o) R(pl/) R
_ d /! A~ /! /! /\ A /
“@m /pJ /p p"p(p,p") P (", p")p(p,p)

/

4 R Rp” . N
- / dp” p(p,p") JTE,,Z)p(p,p’)F (p,0")],
p

5These expressions are closely linked to the Schwinger-Dyson equations; see [121] and references
therein for a discussion on the link between 2PI and NPRG formalisms.
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/pp/ = /OOO dp/poo dp/ (p];f)Z <Z>w. (4.51)

).

where

This result is valid for any regulator of the form (1.70). Using the Litim regulator (3.6)
and after taking care of the integral domains, we get

) (g,0) — (szgj Vg4 ZI : (4.52)

where we have defined

k 3 k . 9 _ ]6‘2 + 32 .
Z/Odppd 2/ dSPk(pas)( nk)SQ ™ F(s,p) (4.53)
p
and
ko ook ok X
Iy=— /0 dp / dg / dr A (p, ¢,7) k(P ™) B (r, )Pk (01 0), (4.54)
p p
k 0 k .
—/Odp/kdq/ dr A(p, q,7)pr(p, ) EFx(r, @) pr(p, ), (4.55)
p
ko ook ok .
I = /0 dp / dg / dr A(p, ¢,7) Ex(p, 7). )k (02 0), (4.56)
p q
k k q ~
—/Odp/dq/ dr Ag(p, q,7)pr(p, 7) px (1, ) Fr (P, 9), (4.57)
p p
k o) k .
—/Odp/kdq/ dr Ai(p, q,7)pr(p, 7) pr(r, ¢) Fie(p, q), (4.58)
p
with the integration measure
Y2 = )R 4 mer®
Au(p, g, 1) = d(q> ( : 4.59
k(p,q,r) =p » (par)? (4.59)

There is much to discuss about these integrals in relation with de Sitter symmetries
and flat space limit. To this end, it is enlightening to move back to a representation in
terms of comoving momentum and cosmological time. For example®,

keHt t t
Iy=— [ dKK%! / dt’ | dt’ pp(K, t, ") F(K,t" ) pr(K, t, 1), (4.60)
0 —

T T
H H

where 7 = Ink/K, and we have made occurrences of H explicit.

e Each integration over a physical momentum in the p-representation stems from
either comoving momentum integration or time integration. Because in de Sit-
ter space the two are related through redshift, these integrals come to play an
equivalent role in the end. Furthermore, because physical momenta are regulated,
the time integrals end up being bounded as well: in a way, we find that the time
direction is also regulated in de Sitter space.

50f course, as is clear from the p-representation, this expression is independent of ¢.
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e In the flat space limit H — 0, time and momentum decouple. This translates into
a time-independent cutoff k£ for K, and the lower boundary in time moving to the
infinite past. The time direction is no longer "regulated” in the sense given above,
and by gathering Iy + I + I3 we recover the expression (3.20), where ), must be
made explicit.

e This leaves us with the terms I1+ 14, which have an unbounded physical momentum
q. In the (K,t) representation, this means that ' is integrated over in the range
] —oo;t — #[. This interval vanishes as H — 0, so that these terms do not
contribute to the flat space limit. Furthermore, they are also degligeable in the
light IR regime, see app. H for a proof.

As in flat space, an important remark is that by choosing Z; independent of ¢, only
the sunset diagram depends on the frequency w and contribute to 7. Furthermore,
because we are interested in evaluating Eq. (4.52) at the potential minimum, this con-
tribution is zero if the latter vanishes (symmetric phase). As a consequence, we will be
computing the anomalous dimension in the case of (UV) spontaneous symmetry break-
ing, and address the issue of symmetry restoration with this additional parameter in our
model.

4.2.2 Heavy UV regime

As in Chapter 2, it is interesting to study the regime where all dimensionful scales are
large in units of the space-time curvature H, because this effectively sends H — 0.
We thus recover the results from the equivalent analysis in Minkowski space. A subtle
point here is that, because w is in units of H, the limits H — 0 and w — 0 do not
commute. We must take the flat space limit first in order to recover the results from the
Minkowskian analysis. The details of this lengthy computation are shown in appendix
G. The resulting flow is

- 4.61
k d+2) 2 M} MP (w? +4MP)? (4.61)

~ ~ (3)2
PO = <1_ U >vdkd+2 V@ VT 2w? 4 24 M7
We have introduced the renormalized field ¢ = +/Zj¢ with Vi.(¢) = Vi(¢). The regulated
curvature is M ,?((5) = f/k” (gg) + k2. The behavior around w = 0 reproduces the flow for
V" and n, as in Minkowski space:

1 Nk Ud ; d+2 VI§4) 3VI§3)2
v/ = (1— >k: — k4 : (4.62)
d+2)2 ME T 2Mp
_ M\ ¢ (3)25va k42
= (1‘d+2>vk 6 M7 |, (4.63)

We remind that our prescription in the LPA’ is to define the running anomalous di-
mension at the minimum of the potential. The constant Cy = 7Q4/[16d(27)?] is the
same as in chapter 2. The fact that we recover flat space results (3.11) and (3.31) is
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an interesting check of our prescription (4.21). However, the effects of curvature on the
flow occur when k and my, are small in units of H. This is the light IR regime that we
consider now.

4.2.3 Light IR regime

Taking my, k < 1, the integrals (4.53-4.58) have the following leading behavior (see
appendix H):

_ T2(d/2)2% (2 - )kt

4.64
471'le3 (d — Qﬁk)2 ’ ( )
29T2(d/2) (2 — n, ) k> +d—20x 1 1
Iy+L+13= — 4.65
0ttt = e w <(d—21/,.€)2 (d—2uﬁ—w)2>’ (4.65)
L+, Iy+ I+ I3, (466)
so that the flow of the two-point function writes
. ~ (22
. Yl AL AL
F,?) (w) = (2=m)k k_ _ _k ¢ ,  where € du (4.67)

20p1 | MF T 2MP (1—e)? T oMY
It is an interesting check to evaluate these expressions at w = 0, since f‘,(f) (w=0) is the

flow of the potential curvature. We indeed retrieve the same IR limit as in Eq. (2.32),
generalized in the LPA’ ansatz [66]

= (4) ~(3)2
. 2—1p, ) k2 v 2V,
VI'(¢) = ( -k _ 4 Tk . 4.68
k (d)) QQD+1 Ml;l MS ( )

The anomalous dimension is similarly obtained by deriving once with respect to «, and
taking w =0, ® = dmin- One finds

~ (22
3(2 — ) VO k2
me = 22 Ve . (4.69)
4QD+1 Mk
¢:¢min

There is much to discuss about this result. Before doing so, we develop the analog
procedure for O(N) theories in order to have a more general discussion on all cases.

4.3 Anomalous dimension in N > 1

4.3.1 Generalizing to O(N) theories

In order to generalize the prescription (4.21) to O(NN) theories, we must recall that there
are more than one invariants at the first order derivative expansion:
Zi(9) Yi(9)

riol = - [ dntay/=g (Vito) + 242 (v )

<¢>av¢a>2) . @)
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so that after two covariant field derivatives and evaluation at constant field, we get

1?6, 2,9) = —(Vi'a(®) — Ze(@)Duduy— Vi (0)dudea)d(z ). (4.71)

As explained in section 2.4.1, the inverse correlator admits the following decomposition:

r® _r®ph 1@ pL (4.72)
where
Py = ¢;fb7 Py = 0ap — ¢(‘;§) . (4.73)
In this case’,
I'®) = —(V/1(9) = Zu(@)Do—Yi(0)6°0,)5(x, ), (4.74)
) = —(Vilp(6) — Zu(9)02)5(x, ). (4.75)

In the LPA’ scheme, we neglect this additional term®, so that we may follow the flow of
either component. For consistency however, we select the transverse part to isolate Zj
from Yj. The prescription for ny therefore becomes

dr(z) ’
() = 1 dlyp(9,w)

= 4.76
Zy, day, ( )

w=0

As for the N = 1 case, we get the following flow from the Wetterich equation

. 1~ ddq
Fl(cQ,z?j(K’ & 77,> - §8k { - Vk(jz)bij / WGk,ba(Qa n, 77/)5c(77 —1')

. d?
+ZVI<:(3))cin(,i)dj / (27r()]de,ab(q,mn’)Gk,cd(lK—q\,n, )|, (4.77)

where we have added the field indices and summation over repeated indices is understood.
Let us introduce the O(N) invariant potential and its derivatives as

Vi(¢) = NU(p) o= B (4.78)
M 2N )
Via(®) = ZkdaUy, (4.79)
Z2
Fan(®) = ZeUiday + S f GatUR, (4.80)
B Z2 ZS
Vicohe(#) = <§Ué’6ab¢c +2 ©> + LU budn (481)

Z} zZ} Zp
Viabed () = (N’fUz! andea+2 o) + <N’3U,§3>6ab¢c¢>d+5 o> + 35U dadhdeda. (4.82)

"We give Vi'1(¢) and Vy'(¢) below.
8Notice that if we write the same ansatz (4.70) for a single field, Y can be reabsorbed as field
dependencies of Zj which we neglect in the LPA’.
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Here, O indicates the non equivalent permutations of indices. Injecting this in the flow
(4.77) and taking a transverse projection,

. Z
P (K 1) = 2]'\“,(%/ [—{(N+1)U ‘Gl (g;m,1)

+ (U + 20U0)GE (g, m, n’)}&:(m ')

+ 4iZypUj* G (g, n, )G (K = al,m, 77’)] . (483)
Taking the transform (4.11) and with the Litim regulator,

. 730
P (6,w) = N&ﬂ“)’d ((N+1)U JT 4+ (U + 2002 JE + 223 //2ZI> (4.84)

= =2 (Uk(p) = m(UL + pUY) = s+ 0(02) ), (4.85)

JT7 L

where and I; have similar expressions as for NV = 1, explicitly

k k 2 2
. 2 — k® +
T.L _ / I 2/ I FTL( 7 )( k) Nk S A;‘:’L(s, ), (4.86)

52

B

dp / d / dr A(p, ¢,7)iF (0, 1) EX (r, @)k (9, 0)
P

k
dp/dq
P

B

dr A(p, q,7)pr (p, ) B (r, 05} (p, ), (4.87)

dr Ax(p, q,7)pE (p, ) EL (7, 9)pE (p, q)

o
I
\

o T
hs)

dr Ax(p, q,m)pE (p, ™) EE(r, @) pF (9, 9), (4.88)

%‘?T
— T

§8
w\f\w*@\

dr Ax(p, q,7) B (p,7)p1 (7, q) E (9, q)

oy
I
+
ol
S

+
ol
S

o\,o\,%%hhc\cxﬁﬁ

dr Ax(p, q,7)EF (p, ) pE (r, @) pt (9, q), (4.89)

dr Ax(p, a,7)pE (0, 7)pE (r,a) EE (p, q)

&
|
|

N
ks

S
i)

dr Ax(p, q,7)pE (p,7)pk (r,q) FE (p, q)

=

|

|
N
hS]

dr Ax(p, q,7)pk (p, ) pE (r, ) L (9, q). (4.91)

/
/
/
o [ 4wt 0.0k )k L 0.0, (4.90)
/
/

Taking the flat space limit H — 0 as in the NV = 1 case allows us to recover the flow of the
potential from the equivalent Minkowskian analysis. The running anomalous dimension
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has the following expression

(e vapUy k! 1,1 3 1 1
T = d+2) Mp(k+ Mo (\k " M,) k+ M, ¥ M

This result is expected to match the expression from the Minkowskian analysis of an

(4.92)

@=¢min

O(N) theory. We now move on to the light IR regime which is the one of interest to
discuss de Sitter physics.

4.3.2 Light IR regime

Taking all masses and the RG scale small in units of H, we find

P(z) (¢ ) _ Zk(2 - nk)k2 (N + 1)U]/€, U" + 2pU(3)
k, T\ 2NQD+1 Mé{ Mé
4pU]/€’2 4pU//2
(dw +2pU" ) M3 (dw — 2pU}" )M}

16pU""? 2dw (4.93)
(dw+M2+M?)? \ (dw)?—(M2—M3)? ’ '

where the longitudinal and transverse regulated curvatures are, respectively,
Mj =k +Uilp), Mi =k + Ui(p) + 2pUy (p)- (4.94)

From Eq. (4.93) we recover once again the flow of the transverse mass in the appropriate
regime. It writes

) _ Nk 3y 2/)(7(3) U
/ / 1" 2 k k k
Ul = U.+ pU;) — + (N -1 . 4.
k nk( ETP k:) NQD—H ((k‘2 U]; 20(%/)2 ( ) (/{2 U]/€)2 ( 95)

We also extract the expression of the anomalous dimension and find

_ (2= m)eUy, <’f4 + 4R M + Mﬁ) ‘ (4.96)
T NOp . \RMERE MR )|, |

In both the UV and light IR limits, we find an expression for the running anomalous
dimension that differs from the N = 1 calculation. This is because, having projected
on the transverse component of the inverse correlator, we compute an original quantity
which has no equivalent in N = 1.

Let us now discuss these infrared expressions, both in V =1 and N > 1, in relation
with our previous findings regarding the effective potential.

4.4 Influence on the flow of the potential

4.4.1 Dimensional reduction and modified RG scale

In chapter 2 we have made a number of remarks on the flow of the potential, chief of
which is the dimensional reduction which takes place in the light infrared regime. It is
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interesting to notice that this is still the case: the de Sitter flow

o2 k?
V= 4.97
20p 1 K2+ V! /2y (4.97)
has the same n;-dependency as the flow of a (fully regularized) Euclidean theory,
- 2 — 1k Mk vgk?
V= 4.98
( D +D+2> KV Zy (4.98)

in the limit where D — 0 (numerical prefactors aside). This is achieved in the de
Sitter calculation (4.32 - 4.33) because the 2 — 7 term is enhanced by a denominator
d?—4v? ~ M?, whereas the 7, term receives (d+2)?—4u7 ~ 1 and is therefore negligible.
Although it is odd to consider the LPA’ of a zero-dimensional theory, we can find a
generating functional for this regularized theory in the same spirit as (2.33):

eQD‘*‘lW’“(‘]):/dgo 6—QD+1[VeH(4P)+J§0+Zk§<P2]' (4.99)

One easily checks that the flow of the effective potential for this theory is indeed given
by (4.97). In the absence of a kinetic term, the only occurrence of Z is in front of the
regulator (as should be done in the LPA’). This shows that the field renormalization can
be reabsorbed in a redefinition of the RG scale, as we now discuss.

In computing the flow of the inverse correlator, we have introduced the renormalized
field <;~5 = /Zp$, or equivalently p = Zy$?/2N. This is the usual reparameterization
thanks to which Z; disappears from all low equations, though 7, remains of course. The
dimensional reduction offers us an alternative, stemming from the additional symmetry
of the S-function:

BV" k*) = B(aV”, ak?) (4.100)

for any number «. Choosing o = Zj, therefore also absorbs all occurrences of Zj, in the
flow of the potential. The truly remarkable point is that by introducing this new RG
scale k = v/ Zik, we have

kO Vi(9) = (1 — mi/2)k0 Vi (9), (4.101)
so that, for example, the N =1 flow

(2-m) K
k = 4.102
OuVi(9) 20p1 k2 + V]! /2y, (4.102)

can be traded for
1 k2

kO Vi(¢) = —— — 4.103

) = v (4.10)
and similarly for N > 1. This is precisely the LPA flow. Assuming we start the flow
with Z, = 1, both k and k have the same value. Therefore, the LPA and LPA’ flows

are the same in their respective scales k and k and will give the same effective potential
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(starting with the same initial condition) at the end of the flow when both scales are
equal again®.

The consequence of this rescaling is that the anomalous dimension has strictly no
influence on the effective potential. In particular, this means that the LPA’ brings no
corrections to stochastic results such as
) :

—. 4.104
t—o0 QD-HVOI;f ( )

This result is also true in the LPA. Because the effective potential is the same, using
Eq. (4.30), we find'? in the LPA’

1 1 1
% == .
t=oo Zy—o Qp1Vi/Zx—o  Qpp Vi

(6°(1)) (4.105)

At finite RG scale, however, the running potential is changed in the presence of ny.
Its effect is to slow the flow down or, in other words, to make the RG time tick faster.
This may be of interest if one is to interpret Vi (¢) as an approximation of the effective
potential relevant for dynamics at scale k. It is therefore necessary to quantify this
effect; to this end, we evaluate the expressions (4.69,4.96) along the flow using a field

expansion.

4.4.2 Field expansion

For N > 1, the Goldstone modes dominate and yield a somewhat simpler flow which is

well captured by an expansion in powers of the field around the minimum!!'. Here we
take the lowest nontrivial order
Y 0
Uilp) = o= p)* + ... (4.106)

The flow of these two parameters can be extracted from the flow of the potential (see
Eq. (3.47)). In the light IR regime, these are:

. o (2—mp)K? 3 N-1
_ 4.107
Pl = TPk N Qs \(R +m)? ki) (4.107)

: (2—ni) k22 9 N—-1
A = 2m\ : 4.108
TN TN O \ 2 mip Tk (4.108)

where mi = 2\;p. Figure (4.1) shows the numerical integration of these equations,
followed by the symmetric phase integration, as compared to their LPA equivalents. As
predicted, we find that the effective mass and coupling are the same.

To find when the slowing of the flow is maximal, we consider the regime where
m% > k2. Indeed, in the opposite case we are close to symmetry restoration where 7y,

9This argument requires that k is well defined: if n, = 2, k is infinitely slowed with respect to k. This
is never the case however, because the symmetry is eventually restored so that n, = 0.

10This is because <¢2 (t)> is the equal-time correlator function averaged on superhorizon modes.

1This is not the case for N=1 where such a truncation wrongly produces a phase transition, see
appendix E.
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Figure 4.1: flow of the squared mass (left) and coupling (right) in the LPA’
(full) and LPA (dashed) ansatz. The value at the end of the flow is the same
in both cases, though the anomalous dimension slows the flow. Plotting the
LPA’ flow as a function of k = v/Zk would coincide exactly with the dashed
line.

vanishes. The running anomalous dimension (4.96) therefore reduces to

2 — g

= ® 4.10
2NQpy1pkk?’ (4.109)

Nk

and (4.107) approximates to

’ (2_nk) [ <k2>]
=— = IN-240(—5|]|. 4.110
Pk QNQD_HkQ mz ( )

This has the same form as the contribution from Goldstone modes in (4.107), however,
with N—1 replaced by N—2 in the presence of the running anomalous dimension (4.109).
This is due to the 1/p in 7, and is reminiscent of the d = 2 XY model'2. This
suppression of the N = 2 flow is clear on figure (4.2) where this flow is frozen at first.

Exiting this regime is controlled by the flow of the coupling constant (or, equivalently,

the mass)
A 1
—_ = —. 4.111
X T Qpok! (4.111)
Integrating and neglecting initial values, we get
e = 4Qp 1k, (4.112)

from which we can extract the scale at which this regime breaks down, by demanding
that 2A\gpr = k2:
1

P=—
8Qpy1pk

(4.113)

2There, the same effect together with the appropriate dimensionality generates a line of fixed points.
This signals the Kosterlitz-Thouless transition [119]. This does not happen here because the effective
dimension is zero.
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Figure 4.2: Left : IR Flow of the potential minimum pj, in the LPA (dashed)
and LPA’ (full line) using the polynomial ansatz. We see that for N = 2 fields
the flow is suppressed at leading order, delaying the symmetry restoration.
For any N, the symmetry restoration is preceded by a spike of the anoma-
lous dimension (right). The anomalous dimension scales as 1/N, so that the
difference between LPA and LPA’ decreases with V.

This corresponds to n of order one, as we can see on figure (4.2), after which the
symmetry is rapidly restored.

We conclude by noting that the running anomalous dimension scales as 1/N, and
therefore vanishes at leading order of the large N approximation. This is already ob-
servable in figure (4.2). We illustrate it further by computing the renormalization of the
field with same initial conditions but different values of N. Figure (4.3) confirms this
expected behaviour.

Conclusion

In this last chapter we have aimed at going beyond the local potential approximation
by means of the derivative expansion. We have met a number of obstacles along the
way: first, such an expansion takes a much more complicated form in generally curved
space-time. Although this does not play a role for de Sitter space, which is maximally
symmetric, it is not excluded that difficulties may arise e.g. in considering quasi-de
Sitter or FRW space-times. Second, the formulation of the derivative expansion in
terms of a small parameter expansion is a complex task. This is by far the most tricky
part, and relates directly to the non-commutation of Killing vectors in de Sitter space.
As a consequence, we are unable to express this expansion in terms of the physical
momentum. The solution we construct is to focus on the time Killing instead, taking
the limit of homogeneous field configuration. We are then able to define a prescription
for the running parameters of the derivative expansion

As a means to test this formalism, we have implemented the LPA’ scheme. This
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leads to very interesting discussions; the dimensional reduction still occurs, and it is in
fact possible to define a zero-dimensional generating functional for this LPA’ flow. It
is a trivial modification of the LPA one, which consists only in changing the RG scale
k for k = \/Zyk. As a consequence, the effective potential is unaffected by the field
renormalization, and no corrections to the stochastic approach are found.

2.0

1.8}

1.6

Z!: =0

1.4}

1.2+

1.0

20 40 60 80 100

Figure 4.3: Renormalization of the field Zy_g from IR contributions as a
function of N. Starting at Zp=1 at the scale of the horizon, we find that
the end value can be as much as doubled in N = 2 with our choice of initial
conditions. As N grows larger, Zy— decreases as the empirical law ~ 1+1/N.
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Conclusion

The purpose of this thesis is to demonstrate the potential of NPRG techniques to study
de Sitter physics. Following the steps of Refs. [65,66], we have shown that a formalism can
be found that allows us to compute the effective potential on superhorizon scales. This
not only corroborates the results of other methods, in particular the stochastic approach,
but also provides an alternative mathematical approach (namely a flow equation) to
compute the quantitites of interest. We have implemented a number of methods to solve
this flow equation, from large N techniques to zero dimensional path integrals, that
contribute to the arsenal of resummation tools in de Sitter space.

It is worth discussing again the dimensional reduction that occurs for light fields in
the infrared flow. While this phenomenon is well understood in compact spaces, such
as the sphere [64], or in finite volume [122], its origin is clearly different in de Sitter
space. In particular, although the sphere is thought of as the Euclidean equivalent of
de Sitter, we obtain the same flow function using very different regulators in the two
cases. It seems that this asymptotic limit is somehow enforced in order to reproduce the
stochastic solution (and thus also the spherical flow). This begs the question as to what
would happen with a regulation scheme that respects all the de Sitter isometries.

The next step in this thesis was to go beyond the Local Potential Approximation.
This follows the same line of thought as in statistical physics, where the NPRG has been
largely implemented for many purposes. We have therefore discussed the derivative
expansion in the general context of curved-space time, where matters are greatly more
complicated. For instance, the meaning of large scale physics is unclear in the presence
of an unspecified local curvature scale. The maximal symmetry of de Sitter space makes
this matter simple enough to expand the effective action in terms of the Laplace-Beltrami
operator. As a first step beyond the LPA, we then introduced a field-independent running
of the kinetic term.

A challenge we faced was to extract a prescription for the flow of this field renor-
malization. In Euclidean theories, one can easily move to Fourier space and define this
parameter as the quadratic coefficient of the inverse correlator. The impossibility to
diagonalize time and spatial derivatives simultaneously in de Sitter space hinders this
task. In particular, it does not seem possible to access the flow of Z; through phys-
ical momentum dependencies. The solution we opted for was to focus on frequency
dependency by building time dependent, spatially homogeneous states. Because of our
regulation scheme, frequency and momentum dependencies are not equivalent. They
provide different flows for Z; In Minkowski space, however this effect is negligeable in
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all situations where the anomalous dimension is small.

The first interesting question related to the renormalization of the field is its influence
on the effective potential. There again, the equivalence with a zero-dimensional theory
simplifies the problem drastically. In this case, we have shown that, while slowing the
flow down, the running anomalous dimension leaves the effective potential (at the end
of the flow) exactly unchanged. This is consistent with the results of Ref. [55], and hints
that non-local contributions do not alter the result of the stochastic approach.

The role of the field renormalization, however restricted by this finding, is not nec-
essarily non-existent. In the NPRG approach, although physical observables are defined
at the end of the flow, it is generally understood that running quantities give an insight
on the physics at intermediate scales. Because the anomalous dimension slows the flow,
it could have nontrivial implications for inflationary models.

There are a number of prospects I have in mind following this thesis. The first one
is to further improve the approximation scheme by allowing a field dependency of Z.
It is the proper way of implementing the first order derivative expansion, and therefore
provides more robust results with potentially new physics. Furthermore, this provides
a handle on the field renormalization in the symmetric phase, which was not possible
until now. The underlying question is wether the effective potential remains unaffected
in this case or not, possibly bringing corrections to the stochastic approach.

The regulation of physical momenta, while providing an efficient formalism, raises
a number of issues. In the mindset of providing a solid basis for NPRG techniques in
de Sitter, it would be interesting to perform an analysis of the regulation scheme. This
could be done in the manner of Ref. [116], by considering a numerical prefactor to the
regulator function and analyzing the influence of this parameter on the results. The
optimal regulator is then expected to minimize this sensitivity. Another handle on the
shortcomings of the p-representation is to compute the modified Ward identities that fol-
low from the broken isometries. This would provide a measurement of the error induced.
Finally, it would be most interesting to bypass this question altogether by implementing
a de Sitter invariant regulation scheme. Heat kernel methods, in particular, are well
adapted to perform this. It would be interesting to adapt this tool to the problem at
hand. As mentioned above, it is of prime interest to see wether the same results appear
that corroborate the stochastic approach and other techniques.

In this thesis, it may seem to the unsuspecting reader that the NPRG is always
implemented with the derivative expansion. Although the Wetterich equation is indeed
complex enough that it requires some approximation scheme, there are many others ca-
pable of providing rich results. In particular, the derivative expansion does not resum
nonlocal contributions to the correlator functions. An efficient technique to perform
this is the Blaizot-Mendes-Wschebor method [117], which captures the full momentum
dependency of correlators. It would be very interesting to adapt this method in the
present out-of-equilibrium context!3. This is all the more valuable that few nonpertur-
bative methods exist to capture these physics.

13The BMW approximation has already been implemented for the out-of-equilibrium KPZ model [123].
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I would like to conclude with the physical motivations that bring so much attention
to quantum fields in de Sitter space. Inflationary physics and dark energy extend the
focus outside of scalar fields, to vector particles [124], gauge interactions'* [126] as well
as graviton loops. Realistic models also require a finite duration e.g. with slow-roll
parameters in quasi-de Sitter. The NPRG can be systematically implemented in these
scenarii to provide further insight on the early and late universe.

MNPRG has recently been applied to scalar QED [125].
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A Hankel functions cheat sheet

The Hankel function, being the free mode function in de Sitter space, appears in a great
number of the calculations along this thesis. We summarize here a number of useful
relations that we have used to obtain the various limits of interest. See [127] for more
details.

Let us start with the definition of the Hankel functions of first and second type from
the Bessel functions:

stl)(p) = Jz/(p) + iYI/(p)7 ngz)(p) = Jz/(p) - iYI/(p)7 (Al)
where
Vo 2)2k J,(p)cos(vm) — J_,
= (3) S s = PO

In what follows, as well as everywhere in the main text, we use only the Hankel function
of first kind and note ngl)(p) = H,(p).

A.1 General relations

When the order is an integer n € N,

i€~ i (n+ k)
The following identities hold for any order:
W{HD (p), HP (0)} = HYY), () HP (0) — BV (9)H, () (A4)
— H, () (p) ~ HL ) p) =~ (A.5)
Hyor(p) + Hyn(p) = 22 H, (p) (A.6)
H,_1(p) — Hy41(p) = 2H,,(p) (A7)
H,(p) = Hy—1(p) — “Hy(p) = —Hyu1(p) + “H,(p)  (A8)
H_,(p) = €™ H,(p) (A.9)
(A.10)
A.2 Infrared regime
For p < 1 and Re[v] >0 :
1 ey 1 2\ "
D)~ 5057 (5) +—T() (p) (A.11)
1 e™ p w 1 P —iv
Hiw(p) ~ sinh(mv) (F(l +iv) <§> CI(1—w) <§> ) (A-12)

Hiya(p) ~ 51— i) (B)" (A13)
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A.3 Ultraviolet regime

2 - s 1
H,(p) ~ ] —eP~i3(+3) A.l4
(1)~ it (A.14)
When m,p > 1,

Him(p) = \/2(11 exp (i\/pQ +m?2 —im sinh™! (2’;) + 5 - ’LZ) (A.15)

p*+m?)i

When p > 1,

im(p) (A.16)
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B Explicit calculation of B(v, k,x)

The flow of the potential is given by

1 dp o Ja(p)]?
V. == B.1
=3 [ ) (B.1)
where iy, is given by (F.3) and Ri(p) = Zi [(2 = me)k? + mp?]0(k* — p?). The LPA
corresponds to Zp = 1 and 7 = 0. Injecting this in the flow equation, we get

Vi(9) = Aak™2[(2—ng) B(vy, k, d) + i B (vk, k, d+2)] (B.2)

€y
8(2m)?

where A =

and B(v, k,x) is defined as

52
o k\Y

i (1) +ai (5)

We remind that c]f =1 [Hyk (k) + %H,’,k (k)] . The coefficients v and v are either real or

pure imaginary, and are related by 72 = 12 — k2. To simplify notations, we write

k
Bl ko) = [ dpp! (B.3)
0

v, = Re[v], v, = Relp], (B.4)

v; = ilm[v], v; = ilm[v], (B.5)
with the following properties:

viv, =0, viv, =0, (B.6)

vi + v = v, v+, =D. (B.7)

After direct integration,
e'mvi 2 42 _ k. 2 ) _ k., 2

B(v,k,z) = 122107 |:(:L‘ —4v7 ) (x—21,) Hv+5Hu + (2°—4v7) (z + 20,) HV_EH”

i i ] (B.8)

+ 22 —477) Re[(Hy + — H,)(Hy — = H,)" (2 —27:)]

eiTrVi 9 9 9 k , 2 - ) o k . )
= ) | 2@ T |G H ) = 8 (e = 4 RelZ H 1)

k: 2

+ 2x(x? — 472)(|H,|* - ’ﬂH;

k
) — 8i;(x* — 41/T2)Im[17H:H,//]] (B.9)
’i7TVZ‘
= m [(x2 —2v% + 2K)|H, |* + 2k*|H, |* - kaRe[HjHl’,]] . (B.10)
Alternatively, using (A.8) to express H, in terms of H,_1 or H, 41,

IV

e
B kt) = [(:ﬂ — 202 + 2[u)? + 2aw,) | H, |2 + 2K2|H,_y |2 (B.11)
— 9wkRe[H,H:_,] - 4kRe[uHVH;,1]} (B.12)
e’ 2 —2 2 2 2 2
= [(x — 202 + 2[v)? — 2aw,) | H, |2 + 2K2|H, 4|

+ 2wk Re[H, H}, | — AkRe[vH, H; +1ﬂ . (B.13)

v
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Notice that the symmetry v — —v is respected for any value of this parameter (real or
pure imaginary). This is clear at line (B.10) using H_,(p) = ¢"™ H,(p).
This computation is related to the notation of the main text (chapter ??) by

By(v, k) = d(d* — 49*)B(v, k, d). (B.14)

It has the following asymptotic behaviors:

veR" IR Uv
) r2(v) (2\* 8
By(v, k) ~ (d° + 2dv)—; () —Vk? =12, k>v
T k T

1 2(d? + 4v?%)
[\F(l n Z,V)Pcoth(ﬁy)

N

4d? k\? 8d, [k 8k

sinh(nv)

Bd(’ilj, k) ~ §\/ k2 + V2
T

+4nvRe
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C Dimensionally reduced RG flow

In this section we show how the flow of the parameters describing the effective potential
in the regime of dimensional reduction can be read off the equivalent zero-dimensional
theory, Eq. (2.33). For the sake of the discussion we focus on the symmetric phase and
we only consider the square mass and the quartic coupling, defined as

ms2 = U.(0) and X\, = U/(0). (C.1)

The discussion can easily be extended to any other coupling. At vanishing sources, the
first nontrivial correlators have the following O(N) structures

<90a90b> = 5aka (02)

and
<90a90b90090d> = (5ab55d + 5a05bd + 6ad5bC)C](g4)' (C3)

The two- and four-point functions Gy and 0124) are related to the parameters of the
effective potential Uy (p) through the Legendre transform (2.34) as

1
G, = C4
" Qp (k2 +m2) (C-4)

and 0 \
cW =gy - kgt (C.5)

N

For a potential at the horizon scale of the form Uy, (p) ~ miop—i— Ao P? /2, the various
correlators of the theory are obtained from the moments

_ _ 2_ 4
B fOOO dgogoN+2q Le—ap*—Bp

q
<(80a90a) > - fooo dSO(,ONileiai'OQi’B(le ’

(C.6)

where we introduced a = Qp.1(k? + mzo)/2 and 8 = Qpi1Ak,/(8N). For instance, one
has Gy = (paa)/N and 0154) = {(paa)?)/IN(N + 2)]. The moments (C.6) can easily
be computed. For instance, in the limit 3/a? > 1, which corresponds to the critical

case discussed in the main text, one has

((Papa)?) ~ B2 (C.7)

Putting Egs. (C.4)-(C.7) together, one obtains Egs. (2.101)—(2.102). The other limit of
interest is that of a would-be broken phase, corresponding to o < 0 and #/a? < 1. In
that case, one gets

(onen)) =~ (5) ()

from which Eq. (2.104) follows.
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D Dimensionally reduced integral for large N
The generating functional of the zero-dimensional theory,

oD Wi () — / dN e I+ Va4 15 7] (D.1)

can be computed exactly for a ¢* theory in the large N limit, reproducing the solution
to the flow presented in section 2.4.2. For simpler notations, and proper 1/N scalings,
let us compute

Nw() _ [ N B a2 ‘
e /d soeXp< 290 2N(w) +J 90)7 (D.2)

where a = QDH(sz + k%) and B = Qpi1)k, /4. Using the identity

| N N
6_%“02)2 = % /dxexp (2X2 + /L\/BXQO2> ) (D3)

\/7/dxd goexp[ (%—fo) Xt ‘/’}
:\/W N/Q/dxeXp< N[ ln (*_“/X) —jfx)D
\f V2 [ axesp (-NF(x.) (D-4)

with J, = vV Nj,. We can now use the saddle point technique to compute the N — oo

we write:

limit. Defining y as

OF _ VB VB
=0 <= X+t 7 7550, D.5
x |, 23— VB0 | 4§ — iBRP (05
the saddle point approximation gives
W(j) =—-F(x(4),7) + C(N), (D.6)

where C'(N) is a constant depending on N only. We discard it as it is irrelevant to the
computation of the effective potential. The average field is defined as

ow Ja ,
Vo= 7 = ; — <~ Ja = 2K(¢)¢aa (D7)
9ja  2(5 —iVBX)
where we have introduced K = ¢ — i1/Bx. To compute the effective potential, we take

the Legendre transform

V(g) =-W(j)+j¢

[ 2
z—(QZBK)+;1n/c+/c¢2. (D.8)
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To find K as a function of ¢, we write (D.5) as

_a, B g0
IC—2—|—2]C+5¢, (D.9)
which gives:
2
k() =5+ gqbz + \/<Z + gqb?) + g (D.10)

Mixing this properly into Eq. (D.8),

2 x2
V() — V(0) = W + ;m’%. (D.11)

This reproduces Eq. (2.67) and (2.68) with the substitutions

a = Qpyi(mi, + k), (D.12)
p— QD+1%, (D.13)
V(¢) = Qo1 [Uk(p) + Kp], (D.14)
K(0) = "2 MR(p). (D.15)

There is one subtlety here to identify both computations: we have integrated the flow
from kg to k and identified the potential at kg as the bare potential. Strictly speaking,
this is only true if kg > k. In this limit, both results are indeed identical.
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E Truncation effects for N =1

Although the dimensional reduction is responsible for symmetry restoration in the in-
frared for all NV, this behavior is not captured by a field expansion around the potential
minimum when there are no Goldstone modes. Indeed, using such an expansion in the
case N = 1, we find a spurious, nontrivial phase structure with a line of fixed points
that we now describe. Using the lowest order polynomial

Ak

Uk(p) = =5 (p = or)*, (E.1)

with the notation (2.52), we reduce the functional flow to that of two parameter defined
as

Up(pr) =0 and Uy (pr) = Ai- (E.2)

The corresponding flows are

. Ui(p o
Pk = _Ul’c’((ﬁii and A\, = UL (pk), (E.3)
k

where we have already neglected third order derivatives. In the light IR regime myg, k <
1, the flow function reduces to

. 1 k>
U, = E4
" Qpa K2+ UL+ 2pU] (E4)
and we get
. 3 k2 : 182 k2
Pk e = ——F (E.5)

T Qpyr (K2 + 2008 — Qpir (k2 4+ 2Xp1)3

When looking for critical properties, it is important to work with properly rescaled
quantities which have autonomous flows. This is necessary to obtain fixed point solutions
which, when they exist, describe critical regimes. In flat space, this scaling is directly
related to the dimensionality of each quantity, e.g. ppk?~ P and A\ kP4, and translates
the absence of any fixed scale in the critical flow. Here the dimension is effectively zero,
and performing this change of variables reveals no fixed points. However, the fact that
we appear to be in zero dimensions is the signature of a non-flowing scale, the Hubble
scale H. As a consequence, we are not as restricted as in flat space to build dimensionless
quantities and our search for fixed points must exhaust all possibilities before we are able
to conclude. As it turns out, exhausting all possibilities, we find the exotic dimensioning

A = k3, - (E.6)

for which we get the following flow equations:

. 2 3 . 2 9
Ty = —=TL + lp = —=l; +

— Y= S—— E.7
9 4QD+1Z2T2 3 4QD+1ZT3 ( )
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Figure E.1: Flow of the potential minimum (left) for two sets of initial con-
ditions close to criticality. A small variation in the initial coupling affects the
symmetry restoration. On the right, we plot uy versus vg. The green curve
corresponds to a flow in the broken phase characterized by vi, = const. On the
other side of the critical line ux = u* (in red), we find a flow which restores
the symmetry (in blue). A rapid exit of the regime where k? < mi means
that v is no longer a constant, and in fact diverges at the scale of restoration.

when we are sufficiently deep in the infrared for the regulator k2 to be small with respect
to the mass 2\;pr = 20.7:k%?. Fixed points are found by canceling both flows. Both
equations give the same condition:

27
12r3 = = Uy E.8
8Qpy1 (E8)
Defining uy, = I2r3 and vy, = I /73, we get
ﬂk = —2(uk - ’LL*) and i)k =0. (E9)

The line u = v* is composed of repulsive fixed points. These are indeed critical points,
since the mass goes to zero at the end of the flow and it separates a broken and a
symmetric phase (see figure E.1). For uy > u*, pp flows to a positive constant. For
up < u*, it reaches zero at a finite scale!®.

We therefore find a possible symmetry breaking in the effective potential. This is
inconsistent with the argument of convexification explained in the main text, and is an
artifact of the field expansion.

15Tn this case, the regulator can no longer be neglected with respect to the mass and must be reintro-
duced in the flow equations.
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F Correlator functions
For a single field, the two-point function is decomposed as
A ~ i, .
Gp,p) = F(p,p) = 5signe(p = p)p(p, 1) (F.1)
The statistical and spectral correlators are respectively
- 1 ~ ~x () ~ 2 ~ ~x
Fip = —- Reltg(p)ig(p')] and  pp = ——— Im[ig(p)tg(p)]- (F.2)
Zy, Zy
With the Litim regulator, the mode function writes
, v E\ 7k
uy(p) = \/%pew’“ [c;i (%) “ e (p) ] for p <k,
N ™
U (p) =/ €  Huy () for p > k, (F.3)
where
T T da v B
Pk = §Vk + 1 Vi = 1 Zilz,’ VI% = Vl% — k2, (F.4)
H, (p) is the Hankel function of the first kind, and the coefficients
+ 1 k !
o = 5 [Hulk) & - H, (k) (E.5)
have the following exact properties:
1
. Ty,
Imlefey ] = 12 (F.6)
i .
~Tom Re[H};, H], ] if not
.
;fk if 7, € iR
_ Vg
A (F.7)
HRe[H,’/k Hy ] if not
Correlators at p,p’ < k
/ /
Vg, pr(p,p)=— br sinh (7 (t — t)) t:ln%, t'=1n (F.8)
Vg,

If 7, € R,

~ ™ = ’ _ - / % —
Fre(p,p') = =o' <‘CZ|2€Vk(t+t ) + g e R(EH) 4 2Re[c,":ck | cosh (I/k(t - t’)))

4

(F.9)
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If v, € 4R,

n m —7Tm, — —
Fulpa!) = Vo™ (et + 16 ) eosh (- 1)
+ 2Re|c} ¢, ] cosh (T (t + t)) + 2iIm|cf e, ] sinh (3 (¢ + t’))) (F.10)

where we note

mi =V, M} =mj+k. (F.11)
Limit V/, k> 1 :
~ N AT AN A -
Fy(p,p') = = = ~ iM, F.12
k(p, 1) ot |\ + , U ~ i M, (F.12)
Limite V//, k < 1 :
. 2012(q/2 [
Fulpgf) = 22D ot (F.13)

47
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G Ultraviolet flow of the inverse correlator

In this appendix we detail the computation of the integrals (4.53-4.58) in the limit where
my, k> 1 for a single scalar field.

e The spectral and statistical correlators are given by (F.8) and (F.12) respectively,
which are combinations of (imaginary) power laws.

e As in the main text, we use the notation M,f = mi + k2. In this limit, 7, = iMj,.

e We remind that I; and Iy do not contribute in the flat space limit (see main text
discussion).

We start with the (easiest) tadpole contribution. It also serves as a pedagogical example
for insights on the computation of the other terms.

G.1 Tadpole contribution

We highlight in red the leading order contribution whenever there is a sum:

k k
dr X
7= [app™ [ Contor) 2 = 00k + nr) i) (G.1)
0 P
1

=g e [ [0 G) [5G
w2 [ (OGO e

g - [ 2 )™ - 1 (8)

b [ By {2_12%[18 ()" == 5 (

o |5 (5 1)

+ L LRI G LI (G-4)
M\ op 2 \d—20, " d+2f 242 \d—20p  d+2 '

To take the limit H — 0, we must replace explicit occurrences of H. In this case, it

means vy — U,/ H. We see that the terms in red are then dominant with respect to the
other terms. The resulting limit is

L 2= U
J_4ME< d +d+2> (G.5)

Let us stress in this simple case what becomes of the two terms that stem from Ry, (in
blue in (G.1)). The term proportional to 7 initially adds a 72 factor in the integrand
compared to the term proportionnal to 2 — 7. This results in the modification of a
number of denominators, e.g. +20;, — 2 + 27,. Because we take the limit H — 0, these
modifications are negligible everywhere except when d — d+2. This results in the above
factorization. The same discussion happens for the other integrals I;. We will therefore
compute the 2 — g contributions and conclude by factorizing.
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(.2 Sunset contributions

In the limit H — 0, each individual contribution Iy, Is, I3 has a dominant term o
H3/M,§’, which is not the expected H5/M]g’ These spurious terms cancel out with
each other, as can be expected, and we will therefore compute the sum Iy + Is + I3
directly to be as efficient in this calculation as possible.

As discussed above, we will compute the contribution oc 2 — 7 only. The reader can
convince himself, by repeating the same steps, that the term o 7 gives the same result
with the denominator d — d + 2. Noting I the term of interest,

d
I I I = (2 — I .
0o+ Ir+ I3 [( 77k)+d+2"7k] (G.6)

In a concise notation,

k k
dr . =~ . dr » . . Tdr . . -
Izkz/ [—/ kastPk‘f‘/ — kpkpk_/ QPkPka] (G.7)
P, p T g " p T

X o P p 4

)

where

and the arguments of the correlator functions are always (p, ), (1, q), (p, ¢) in this order.
The H3/M ,:j terms we discussed arise from [ dr/r terms. We gather these together by
breaking the first term as fpk = f; + qu:

9 Fdr, . . Y AN . Idr . . = A
Izk/ +/ Q(kak_pk:Fk)pk_/ — (PrpeFr + prFrpr) (G.9)
P, q T p T
k2 k dr P Pk r2 Vg p Uy, q Vg
=m0, TG -G | 1G) G
k J/pa q pq q p
a4 7 Vg Uy 2\ Yk
LEEENEE e
p T L\T D q pr
We have performed a number of cancellations here. Integrating over r,
kQ/ L [(p\™ (a\™ P\ g\ payTe K2\
{01 ) )
4Ml§ D,q {2yk q p q p (/{:2) pq
203 20
+ logg [(p) + (q) ]} (G.11)
p q p

We will now perform the integrals over p and g. It proves simpler to inverse the order of
integration by using the relation fok dp fpk dq = fok dq foq dp. The logarithm is integrated
using

Oqﬁ’m’; (2) =+ (G.12)
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After integration over p, we therefore obtain

I—M/kdq d{l[ 2 2
Ty ¢ o ld—wr 2 d-w- 25,

1 1
d—w+2%ﬁ+fd—w+2@ﬂ

1 } (G.13)

We have discarded negligible terms in the first line, owing to the fact that

k 5 k
— = < —q%, that — L —. G.14
/0 q 4 k 0o g q avis d—+ 20 d ( )

The last integration is straightforward, and only dominant contributions remain. Sub-
stituting 7, = ¢M}, in this limit, and gathering all terms, we find that
kA2 202 + 24M7

I =— ) G.15
1AM (@2 + AMD)? (G.15)

We do not compute the terms Iy and I4 in this limit. We refer to the main text where

it is demonstrated that these terms vanish at leading order in this limit.
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H Infrared flow of the inverse correlator

In this appendix we detail the computation of the integrals (4.53-4.58) in the limit where
my, k < 1 for a single scalar field. The spectral and statistical correlators are given by
(F.8) and (F.13) respectively, which are combinations of real power laws. To compute
the leading order contribution of these integrals, the smart way is to understand that it
is given by integration of power laws such as

[oEy=t o [Poytol (1.1

where € is a small parameter, either d—2v, w or a combination of the two. In other words,
we will always select terms which give either a small positive power law or a logarithm.
With this in mind, we start with the simplest integral, the tadpole contribution.

H.1 Tadpole contribution

We highlight in red the leading order contribution whenever there is a sum:

k k
v= [t [ Gl - + e it )
d 2 r yk r U )
- 2817_‘TV;:ZQ / dp d/ . [ _(p) :|[(2_T/k)k2+77k7'2](p3)’/k (H.3)
_ 20y b
g [t (1L4)

B 2dr2(d/2) (2 _ nk)kd725k+2
N 87TD]€Z’% (d - 217k:>2

which is indeed the result (4.64), keeping in mind that 7, = d/2 at leading order.

H.2 Sunset contributions

Just as for the tadpole contribution, we keep only terms for which the integration over
r produces a logarithm. We remind the expression of the integration measure

Wy 2 2
Ai(p,q,7r) = p* (Z) < n&);r)jnk ) (H.6)
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so that
I=- ‘Azp/zg/ZrAa@q,)mm%>ﬁurqmap,) (H.7)
S Y N R N e
b:/@/@/mm@@mﬂ@wmm@mm@ (H.9)
2@5(;1; 2= kz/ ~ d/ dq( > KQ)DZ (Z)Vk] (pql)”k hll; (H.10)
h——/@/@/mﬁuw,%@m%v@Fm> (H.11)

Qfﬁrj 5223 kQ/o /de d( > Kq)ﬁ:(zﬁ (pql)”k lnz% (12

Applying the same principle of keeping the dominant contribution, we see that we must
select the ”growing mode” which is the positive power law of (¢/p). It is the only
one which systematically produces integrals of the type (H.1). Discarding the other
(decaying) mode, we see that Is + I3 = Iy, simply by adding logarithms. As a result,
the leading order is simply

2912(d/2) o [Fdp 4 (Fdg [\ (q¢\* 1 k
IotIlh+ I =—""~""(9_ k‘/pd/() <> —In— (H.13
0T STi2Z} 2= m) o p Jp a\p) \p) (a)* p (.13)

2912(d/2) o [Fdp 4o op . kDY — K
_ 2 —mn)\k ot w—20 1 © H.14
87Tl7]%Z]‘Z’ ( 77k) /0 D p n D w ( )
- 8z} w (d—20)%2  (d—20 —w)2)’ ’

This reproduces the result in the main text.

Ii+14

We now compute the non dominant contributions, which are the integrals involving a
momentum above k. It is more convenient to compute the sum Iy + I4 rather than the
individual terms:

k k
L+, = —/0 dp/de/ dr Ay (p,q,7)pr(p,7) [Fk(ﬁ Q)pr(p. q) + pr(r,a) Fe(p, )| (H.16)
k 00 k
:Q/Odp/kdq/ dr Ay (p, q, ) pr(p, r)Im[ug (p)ug (r)ui(q)?], (H.17)
B < dq o
— 2t ) [ it (HL.18)

where we have used the decomposition in terms of the mode function (F.2) as well as

the complex identity Re(z1)Im(z2) + Im(z1)Re(z2) = Im(z122). The integrals over p and
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r are power laws and can be computed exactly:

k k
f(w) = /0 dp / dr Ay (p, 1,7)pu(p, r)us (p)us(r). (1.19)

The integral over r is

L0 0T () -

+ —C, = — — _
(2 - nk){ck:k (a:”’C — a:_”k) —Inzx (ch”’“ — c,;x_”’“) } (H.20)

+ — 2 ) )

where z = p/k. Integrating over z is straightforward as well. Interestingly, the result
can be factorized as

2

- 2i<pkkd+2—w + -
e cp Cp
= — 2 — H.21
f) 2(d — w) (2= m) <d+2vk—w+d—21/k—w) ’ ( )

where we remind that ¢ = Jvp, + 5. As a result,

2 —271'Im1/kkd+2—w [e's) d C+ P 2
me B .
Ii+1y = — (2 — ng)Im [yk/ ?qq“’Hl,(q)2 ( k + k > )
k

8(d —w) d+2vp—w  d—20p—w
(H.22)
In the light infrared,
1 2\" 1 (k)
e (B ae sy L (Y qa
ck iWF(V) k (17 Dk) + vI'(v) \ 2 (1 17;@)' (H.24)

In particular, ¢,; > c; Eq. (H.22) is the imaginary part of the product of four terms
with pure imaginary dominant contribution. To compute non-zero contributions, we
must consider the real part of one of the four terms. Exhausting all possibilities, we
find that there are no contributions of same order as the other integrals, so that it is an
m3 /H? type correction.

H.3 0(N) case

We now perform the equivalent computations in the case of an 0(N) symmetry. the
tadpole contribution J is trivially generalized (it is the same computation):

_T,L
JT,L B QdFQ(d/Q) (2 _ nk)kdfmjk +2

_ H.25
snvltz2 (d—20)h)2 (H.25)
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The sunset contributions now mix transverse and longitudinal modes in a nontrivial (and

symmetrize way):

k k k
Io=— /0 b [da [ ar Moo 0 EL i)+ T L (120
p p
k k k g T I
L= /0 dp / dg / dr Ap(p, g,V EL ()l )k (g) + T L, (H27)
p q
A L L AT
I3 = —/Odp/dq/ dr Ai(p,q,7)py (0, 7)oy (r, ) F; (p,q)  + T < L. (H.28)
P P

Following the same steps, Eq. (H.13) now becomes

A2 w+E 1
I+ L+ I3 = 2FL(d/2 k;2/ dp d/ dq( > 7T1nﬁ+THL
81 (pq)’/k P
(H.29)
_2902(d/2) (2 — my)kFT2 ( 1 1 >
S 8rotlZd ok -l +w \(d-vk-7l)?2  (d-20] —w)?

2dr2(d/2) (2 — mp ) k227 1 1
8rvtvlzy vF -k +w \(d-vf-0l)? (d-20f-w)?)’

This reproduces the result in the main text. The contributions I; and I are, as previ-

ously, negligible in this limit.
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Abstract

The study of cosmology draws us to the topic of quantum fields in curved space-time.
In particular, light scalar fields offer a simple mechanism for inflation and primordial
fluctuations. When computing loop corrections to these models however, infrared and
secular divergences appear which call for resummation techniques. To this end, we im-
plement the nonperturbative renormalization group for quantum scalar fields on a fixed
de Sitter background. First, the Local Potential Approximation (LPA) is applied. We
show that there is always symmetry restoration due to infrared effects, and that mass
is generated in agreement with the stochastic approach. Next, we study the flat space
limit of our formalism by taking the curvature H — 0, and we check that it reproduces
a number of known results. Finally, we discuss the derivative expansion, which goes
beyond the LPA. Its implementation seems too complex in general curved space-times,
but de Sitter symmetries allow for a simpler representation. We define a prescription
for all orders of the expansion, and discuss the flow of the first order term in the simple
case where we neglect the field dependency (LPA’).

Key words: quantum field theory, nonperturbative renormalization group, de Sitter
space

Résumé

La cosmologie moderne amene a étudier la théorie quantique des champs en espace-
temps courbe. Les champs scalaires 1égers, notamment, géneérent un mécanisme simple
pour l'inflation et les fluctuations primordiales. Cependant, les calculs de boucles de ces
modeles contiennent des divergences infrarouges et séculaires qui requierent des tech-
niques de resommation. Dans ce but, on implémente le groupe de renormalisation non
perturbatif pour des champs scalaires en espace-temps de De Sitter. Dans un premier
temps, on applique ’Approximation de Potentiel Local (APL). On démontre que les
effets infrarouges sont responsables d’une restauration de la symétrie, et qu’une masse
est générée en accord avec 'approche stochastique. On étudie ensuite la limite d’espace-
temps plat de notre formalisme en prenant la courbure H — 0, ce qui reproduit un
certain nombre de résultats connus. Enfin, on s’intéresse a l’expansion dérivative, qui
va au-dela de 'APL. Son implémentation semble trop complexe dans le cas général
d’un espace-temps courbe, mais les symétries de De Sitter permettent de trouver une
représentation simple. On définit une prescription pour tous les ordres de ’expansion,
puis on implémente le flot du terme de premier ordre dans le cas simple ou la dépendance
en champ est négligée.

Mots clés : théorie quantique des champs, groupe de renormalisation non perturbatif,
espace-temps de De sitter.
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