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Arguments against using 2~ ! Mpc units in observational cosmology
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It is common to express cosmological measurements in units of 2~' Mpc. Here, we review some of the
complications that originate from this practice. A crucial problem caused by these units is related to the
normalization of the matter power spectrum, which is commonly characterized in terms of the linear-theory

rms mass fluctuation in spheres of radius 8 2~' Mpc, og. This parameter does not correctly capture the
impact of & on the amplitude of density fluctuations. We show that the use of og has caused critical
misconceptions for both the so-called og tension regarding the consistency between low-redshift probes and
cosmic microwave background data and the way in which growth-rate estimates inferred from redshift-
space distortions are commonly expressed. We propose to abandon the use of 42~! Mpc units in cosmology
and to characterize the amplitude of the matter power spectrum in terms of oj,, defined as the mass
fluctuation in spheres of radius 12 Mpc, whose value is similar to the standard og for i ~ 0.67.
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I. INTRODUCTION

Most statistics used to analyze the large-scale structure of
the Universe require the assumption of a fiducial cosmol-
ogy to relate observable quantities such as galaxy angular
positions and redshifts to density fluctuations on a given
physical scale. To avoid adopting a specific value of the
Hubble parameter, it is common to express all scales in
units of 2~! Mpc, where / determines the present-day value
of the Hubble parameter as H, = 100 hkm s~ Mpc~'. At
low redshift, where the comoving distance, y(z), can be
approximated as

c

x(2) M E Y (1)

using ~~! Mpc units effectively yields a distance indepen-
dent of the fiducial cosmology. This approach was applied
to the analysis of the first galaxy redshift surveys [1,2],
which probed only small volumes. However, this practice
has continued until the analysis of present-day samples,
such as the Baryon Oscillation Spectroscopic Survey
(BOSS) [3], which covers a larger redshift range in which
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computing y(z) requires the assumption of a full set of
fiducial cosmological parameters.

As cosmological observations are expressed in 2~ Mpc
units, theoretical predictions follow the same approach.
These units obscure the dependence of the matter power
spectrum, P(k), on h. Moreover, the amplitude of P(k) is
often characterized in terms of the rms linear perturbation
theory variance in spheres of radius R =8 h~' Mpc,
commonly denoted as og. In this paper, we discuss the
misconceptions related with the use of 2~! Mpc units and
the normalization of model predictions in terms of g and
how they can be avoided.

II. IMPACT OF THE FIDUCIAL COSMOLOGY

Three-dimensional galaxy clustering measurements
depend on the cosmology used to transform the observed
redshifts into distances. Any difference between this
fiducial cosmology and the true one gives rise to the so-
called Alcock-Paczynski (AP) distortions [4]. This geo-
metric effect distorts the inferred components parallel and
perpendicular to the line of sight, s and s;, of the
separation vector s between any two galaxies as [5,6]

S| = 45| (2)
S| = CILSL (3)

where the primes denote the quantities in the fiducial
cosmology, and the scaling factors are given by
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where H(z) is the Hubble parameter, Dy(z) is the
comoving angular diameter distance, and z,,, is the effective
redshift of the galaxy sample. If the clustering measure-
ments are expressed in 4~! Mpc, the quantities appearing in
Egs. (4) and (5) must also be computed in these units.

Using A~' Mpc units or simply Mpc would lead to
identical parameter constraints, as the factors of £ in the
model and fiducial cosmologies that enter in g, | would
simply cancel out with those in s, | in Egs. (2) and (3). This
simply reflects that, when 4 is correctly taken into account
in the scaling parameters g |, the constraints derived from
clustering data are not sensitive to the units in which they
are expressed. The fact that clustering measurements can be
expressed in h~! Mpc without the explicit assumption of a
value of /& has no impact on the information content of these
data, and it does not imply that only quantities referred to
scales in 2~! Mpc units can be derived from them.
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FIG. 1.

III. THE NORMALIZATION OF THE
POWER SPECTRUM

Model predictions are often expressed in 2~ Mpc units
before AP distortions are taken into account. Using
h~! Mpc or Mpc units yields identical cosmological con-
straints. However, 4~! Mpc units obscure the response of
P(k) to changes in h.

Panel (a) of Fig. 1 shows the linear matter power spectra at
z = 0 of three ACDM models expressed in 4~! Mpc units,
computed using CAMB [7]. These models have identical
baryon, cold dark matter, and neutrino physical density
parameters, oy, ®., and @,, as well as scalar mode amplitude
and spectral index, A, and ng, and differ only in their values of
h. Panel (b) of Fig. 1 shows the same P(k) in units of Mpc,
which have the same shape and differ only in their amplitude.
Expressing these power spectra in 2~! Mpc units obscures
the fact that /4 only affects the overall clustering amplitude.

For a ACDM universe, the amplitude of P(k) is con-
trolled by both 4 and A;. The joint effect of these
parameters is usually described in terms of og. When h
varies, og changes due to two effects:

(i) the change in the amplitude of P(k) itself, and

(ii) the change in the reference scale R = 8 h~! Mpc,

which corresponds to a different scale in Mpc for
different values of h.
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Panel (a): Linear matter power spectra at z = 0 of three ACDM models defined by identical values of wy,, @, ®,, A, and ng,

and varying h, expressed in 42~! Mpc units. Panel (b): The same power spectra of panel a shown in Mpc units. Panel (c): The power
spectra of the same models of panel (b) but with their values of A, adapted to produce the same value of ,. Panel (d): Nonlinear matter

power spectra corresponding to the same models of panel (c).
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Point (ii) implies that 63 does not capture the impact of z on
the amplitude of P(k). For different values of h, oy
characterizes the amplitude of density fluctuations on
different scales. Normalizing the power spectra of Fig. 1
to the same value of o increases their amplitude mismatch.

A better choice to describe the degenerate effect of 4 and
A, is to normalize P(k) using a reference scale in Mpc. We
propose to use o,, defined as the rms linear theory variance
at R = 12 Mpc. For models with & ~ 0.67 as suggested by
current CMB data, 8 7~ Mpc ~ 12 Mpc, and ¢, has a
similar value to og. However, these parameters differ for
other values of h. Panel (c) of Fig. 1 shows P(k) for the
same models of panel (b) with their values of A, modified
to produce the same value of 6,. These power spectra are
identical, showing that the perfect degeneracy between &
and A is better described in terms of oy, than the
standard og.

Panel (d) of Fig. 1 shows the nonlinear P(k) of the same
models as panel (c), computed using HaloFit [8]. The
observed agreement, with differences of only a few percent
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at high k, shows that o, is a more adequate parameter to
characterize the nonlinear P(k) than oy.

IV. REVISING THE 63 TENSION

The value of oy preferred by Planck CMB data [9] under
the assumption that a ACDM universe is higher than the
estimates derived from all recent weak lensing (WL)
datasets [10-13] and the clustering measurements from
BOSS [14-17]. These discrepancies, dubbed the og ten-
sion, are illustrated in panel (a) of Fig. 2, which shows the
constraints on €, and og recovered from Planck [9], the
auto- and cross-correlations between the cosmic shear and
galaxy positions from the Dark Energy Survey (DES) [18],
and clustering measurements from BOSS [14,19]. These
results assume a ACDM cosmology with the same wide
uniform priors as in [14]. Panel (b) of Fig. 2 shows these
constraints expressed in terms of Sg = 63(Q,,/0.3)%>. For
the values of Q,, preferred by Planck, the low-redshift data
prefer lower values of Sg than the CMB.
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FIG. 2. Two-dimensional 68% and 95% constraints recovered from Planck (green), the 3 x 2pt analysis of DES (blue), and BOSS
(orange) under the assumption of a ACDM cosmology on the parameters Q, —cs [panel (a)], Q,-Ss = 65(Q,,/0.3)% [panel (b)],

on—01, [panel (©)], and @,—S; = 615 (@, /0.14)%* [panel (d)].
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A drawback of using oy to characterize the amplitude of
P(k) is that the reference scale R = 8 h~' Mpc depends on
h. Panel (a) of Fig. 3 shows the posterior distribution on /,
P(h), inferred from DES, Planck, and BOSS. Although
they are consistent, DES gives a wider posterior than
Planck or BOSS. The posterior P(h) impacts the con-
straints on og, which are given by

o3 = /G(R = (8/h) Mpc|h)P(h)dh; (6)

that is, they represent the average of o(R) over the range of
scales defined by the posterior distribution of R=(8/h)Mpc,
shown in panel (b) of Fig. 3. Averaging o(R) over different
scales will give different, not necessarily consistent, results.

This issue can be avoided by using o, which only
depends on & through its impact on the amplitude of P(k).
Panel (c) of Fig. 2 shows the constraints in the w,—o,
plane recovered from the same data. We use the physical
density w,, instead of Q,, as the former is the most relevant
quantity to characterize the shape of P(k). When expressed
in terms of o},, the constraints inferred from DES and
Planck are in excellent agreement. BOSS data prefer lower
values of o(,. Panel (d) of Fig. 2 shows these results in
terms of the parameter S, = 65(w,/0.14)%4, which
matches the degeneracy between w,, and oy, recovered
from DES data. Planck and DES imply S, = 0.815 &+
0.013 and S;, = 0.798 £ 0.043, respectively, while BOSS
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FIG. 3. Posterior distributions of the dimensionless Hubble
parameter & [panel (a)] and the reference scale (8/h) Mpc, where
og is measured [panel (b)] recovered from DES, BOSS, and
Planck under the assumption of a ACDM universe.

gives S, = 0.716 £ 0.047. A detailed assessment of the
consistency between Planck and low-redshift data is out of
the scope of this paper. However, such studies should
characterize the amplitude of density fluctuations in terms
of o 12-

V. THE GROWTH RATE OF
COSMIC STRUCTURES

The analysis of redshift-space distortions (RSD) on
clustering measurements is considered as one of the most
robust probes of the growth-rate of structures [20]. In linear
perturbation theory, the relation between the two-
dimensional galaxy power spectrum, P,(k,u,z), and the
real-space matter power spectrum can be written as [21]

Py(k,p,z) = (bog(z) + fos(z)u?)? P(zk’ J ’
o5(2)

where p represents the cosine of the angle between k and
the line-of-sight direction, b(z) is the galaxy bias factor,
and f(z) is the linear growth rate parameter. If o3(z)
described the amplitude of the power spectrum, the ratio
P(k,z)/6%(z) would only depend on the parameters that
control its shape. In this case, the anisotropies in P (k, u, )
would depend on the combination fog(z). For this reason,
the results of RSD analyses are usually expressed as
measurements of fog(z). However, this argument is flawed,
as the ratio P(k, z)/02(z) depends on h. Instead, the ratio
P(k)/0%,(z) is truly constant, independently of the values
of h or o,. Hence, the argument usually applied to justify
the use of fog actually implies that fo, is the most relevant
quantity to describe RSD.

In most RSD studies, fog(z) is constrained together with
the baryon acoustic oscillation (BAO) shift parameters,
which describe the impact of AP distortions on the sound
horizon scale, while the cosmological parameters that
determine the shape and amplitude of the matter P(k),
including 4, are kept fixed. We can then expect to obtain
different results depending on the assumed value of & or
when this parameter is marginalized over. To illustrate this
point, we used linear theory to compute the Legendre
multipoles P,_,4(k) of a galaxy sample roughly match-
ing the volume, bias, and number density of the BOSS
CMASS sample [22] and used a Gaussian prediction for
their covariance matrix [23]. We used these data to
constrain bog(z), fog(z), and the BAO shift parameters.
Panel (a) of Fig. 4 shows the constraints in the
bog(z)—fog(z) plane obtained when both A and & are
kept fixed to their true values (orange), when A, is varied
while £ is kept fixed (green), and when both A, and /h are
varied (blue). The dashed lines indicate the true values of
these parameters. When only A, is varied, the constraints
follow the degeneracies defined by constant values of
bog(z) and fog(z), leading to identical results to the ones
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FIG. 4. Panel (a): Constraints on bog(z) and fog(z) derived from synthetic Legendre multipoles P,_ , 4 (k). The contours correspond
to the cases in which A, and £ are fixed (h = 0.67 orange, i = 0.54 pink, and 4 = 0.8 gray), when A is varied and £ is fixed (green) and
when both are varied (blue). Panel (b): Same constraints as panel a but expressed in terms of bo,(z) and fo,(z).

obtained when it is fixed. However, when £ is also varied,
the constraints deviate significantly from those of the
standard case. The uncertainties on fog(z) derived under
a fixed & are significantly underestimated. Furthermore, the
results obtained when fixing 4 depend on the particular
value adopted. This is illustrated by the pink and gray
contours in Fig. 4, which show the results obtained
assuming values of & that differ by +20% from the true
value i = 0.67.

Panel (b) of Fig. 4 shows the same constraints as in panel
(a) but expressed in terms of bo,(z) and fo,(z). The
results are the same irrespective of whether A, or 4 are kept
fixed or marginalized over. This shows that fo,(z)
provides a more correct description of the information
retrieved from the standard RSD analyses.

VI. CONCLUSIONS

Although the use of A~! Mpc units has no impact on the
information content of cosmological data, they have
generated misconceptions related to the normalization of
the matter power spectrum in terms of og. This parameter
does not correctly capture the impact of /4 on the amplitude
of P(k), which is better described in terms of a reference
scale in Mpc. A convenient choice is 12 Mpc, which results

in a mass variance o1, with a similar value to the standard
og for h ~0.67.

The amplitude of density fluctuations inferred from low-
and high-redshift data should be characterized in terms of
015, eliminating the dependency of the reference scale R =
8 h~! Mpc on the constraints on 4. The results of standard
RSD analyses are more correctly described in terms of
fo12(z), which changes the cosmological implications of
most available growth-rate measurements. We propose to
abandon the traditional 4~' Mpc units in the analysis of
new surveys [24,25] and to replace g by o, to characterize
the amplitude of density fluctuations.
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