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Abstract
We aim to use quantum machine learning to detect various anomalies in image
inspection by using small size data. Assuming the possibility that the expressive
power of the quantum kernel space is superior to that of the classical kernel space,
we are studying a quantummachine learning model. Through trials of image
inspection processes not only for factory products but also for products including
agricultural products, the importance of trials on real data is recognized. In this study,
training was carried out on SVMs embedded with various quantum kernels on a small
number of agricultural product image data sets collected in the markets. The
quantum kernels prepared in this study consisted of a smaller number of rotating
gates and control gates. The F1 scores for each quantum kernel showed a significant
effect of using CNOT gates. After confirming the results with a quantum simulator, the
usefulness of the quantum kernels was confirmed on a quantum computer. Learning
with SVMs embedded with specific quantum kernels showed significantly higher
values of the AUC compared to classical kernels. The reason for the lack of learning in
quantum kernels is considered to be due to kernel concentration or exponential
concentration similar to the Baren plateau. The reason why the F1 score does not
increase as the number of features increases is suggested to be due to exponential
concentration, while at the same time it is possible that only certain features have
discriminative ability. Furthermore, it is suggested that controlled Toffoli gate may be
a promising quantum kernel component.

Keywords: Small size data; Quantum kernel; SVM; Anomaly detection; Controlled
gate

1 Introduction
In recent years, quantum computers that perform calculations using the principles of
quantum mechanics have been attracting attention. The development of quantum com-
puters based on various principles is accelerating. Such quantum computers are expected
to be used for the following problems: 1) quantum simulation [1–3], 2) quantum cryptog-
raphy [4–6], 3) mathematical optimization [7–9], and 4) machine learning [10–15]. Ma-
chine learning is calculated using linear algebra and matrices. Since quantum computing
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involves linear algebra and matrix calculations, it has the advantage of being compatible
with classical machine learning. Therefore, quantum machine learning is expected to have
great advantages, and we are currently conducting research for quantum machine learn-
ing.

In machine learning classification, the key is how to form a separation surface in the
quantum Hilbert space [15, 16]. The expressive power of the classification space is very
important to form a complex separation surface. The expressive power of the quantum
kernel space may be superior to that of the classical kernel space [13, 16]. Based on this
idea, we would like to effectively utilize the quantum kernel space to solve social issues.
One of the social issues is image inspection using machine learning. Image recognition al-
gorithms for such inspections include CNN (convolutional neural network) [17–19], VAE
(variational autoencoder) [20–22], GAN (generative adversarial network) [23–25], logis-
tic regression [26–28], random forest [29–31], boosting [32–34], SVM (support vector
machine) [35–37] and so on. CNN, VAE, and GAN need expensive computational costs
because they use GPUs. Compared to logistic regression, random forest, and boosting,
SVM is known to be able to build learning models with less data. Moreover, we can create
a complex separation surface by using the kernel trick. [38–40] In this time, we would like
to make full use of the expressive power of the quantum kernel space by using the quantum
kernel trick [38, 41].

Now, in image inspection, anomaly detection is a very important technology. Industrial
products are standardized, and image inspection is simple, but it is not easy to detect
various anomalies. In addition, anomaly images are not uniform and there are different
types. There have been several reports on the potential of quantum machine learning and
quantum kernel estimation to perform image classification.

In our previous work [41–43], we demonstrated high performance (accuracy and F1
score) at the learning model construction stage using small datasets compared to classical
machine learning. We conducted experiments by partially applying our learning model to
image inspection at factory production sites. As a result, we found that our quantum ma-
chine learning produced higher evaluation indices than classical machine learning. Since
the data of industrial products at the factory cannot be made public, a trial of constructing
a learning model using quantum machine learning was conducted using apples as agricul-
tural products with similar shape characteristics.

Industrial products are quality controlled and numerical data have performance within
3σ . As agricultural products are not standardized, complex separation surfaces are re-
quired to construct a learning model, unlike industrial products.

Our goal is to use quantum kernel tricks to build a system that can identify product
and equipment anomalies with small amounts of data rather than large amount of data.
Products include not only industrial products but also agricultural products. Products
must not be shipped with anomalies. Therefore, we believe that the quantum advantage
in this field is the ability to identify anomaliy and are conducting research in this area.

In this time, we prepared 11 types of quantum kernel to investigate the influence of each
two qubits gate. We use apple with internal vine cracks as an anomaly, and we created
our own new dataset. Using the dataset, we obtained image information through pre-
processing and feature values (attributes) from principal component analysis. Promising
quantum kernels were selected based on the relationship between the calculated features
(number of principal components) and the evaluation index using a quantum simulator.
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After screening with the quantum simulator, we confirmed the value of the evaluation
index with a quantum computer. We discuss the effects of the controlled rotation gate and
the CNOT gate in the quantum kernel we prepared. Furthermore, we discuss the impact
on the performance indicators as the number of features increases. Finally, we propose a
promising quantum kernel.

2 Related works
In recent developments of quantum-classical hybrid technologies, we present three signif-
icant studies demonstrating the superiority of quantum kernels. Liu Y et al. theoretically
demonstrated cases where quantum kernels outperform classical kernels [44]. Specifically,
they showed that quantum kernels can recognize particular patterns that classical ker-
nels cannot efficiently learn, and classifiers using kernel estimation with quantum feature
space mapping can achieve higher accuracy through richer feature space construction.
Hsin-Huang H et al. experimentally demonstrated that quantum kernels exhibit expo-
nentially superior performance compared to classical kernels for specific datasets [13].
Their work particularly showed that quantum kernels can efficiently extract features in
high-dimensional data and experimentally confirmed their ability to learn nonlinear pat-
terns that classical kernels cannot capture. Kübler J et al. analyzed the spectral properties
of quantum kernels and demonstrated that quantum advantage can be expected when
the reproducing kernel Hilbert space (RKHS) of quantum kernels is low-dimensional and
contains functions that are classically hard to compute [45]. However, they note that find-
ing appropriate quantum kernels is challenging and often requires exponentially many
measurements for kernel evaluation.

In the context of image classification tasks, which present computational challenges due
to increasing visual data processing demands in various industries, two significant studies
demonstrate the potential superiority of quantum kernels.

Senokosov A et al. proposed two quantum machine learning models [46]. The first,
HQNN-Parallel, a hybrid quantum-classical neural network with parallel quantum cir-
cuits, achieved high classification accuracy on the MNIST dataset in the noisy interme-
diate-scale quantum (NISQ) era, surpassing conventional hybrid models with eight times
fewer parameters than classical models. Their second proposal, HQNN-Quanv, intro-
duced Quanvolutional layers, achieving comparable performance to classical models with
only one-fourth of the learning parameters. Aswiga R et al. proposed a quantum ma-
chine learning pipeline for breast cancer diagnosis using quantum kernel support vector
machines (QKSVM) [47]. After applying six feature extraction methods and linear dis-
criminant analysis (LDA) dimensionality reduction, they compared four different quan-
tum kernel circuits. The combination of LDA-based 2D features with Angle embedding
QKSVM achieved the highest classification accuracy, with robustness verified on AWS’s
quantum simulator “SV1” and the actual QPU “Aspen-M-3”. Furthermore, Srikumar M et
al. proposed a quantum random forest (QRF) extending the linear quantum support vec-
tor machine (QSVM) using quantum kernel estimation (QKE) [48]. They analyzed finite
sampling errors using the Nyström-QKE (NQKE) strategy, reducing sampling complexity
compared to QKE. Experiments on real-world datasets, including images, demonstrated
that QRF achieves higher classification performance with fewer kernel estimations than
QSVM.
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While these studies demonstrate the potential and theoretical advantages of quantum
kernels, several challenges remain for practical implementation. The demonstrated advan-
tages are specific to particular problem settings and datasets, not universally applicable.
From a practical perspective, hardware limitations and quantum noise may prevent the
full realization of theoretical advantages in actual applications.

Meanwhile, the classical RBF kernel remains effective for many practical problems, with
the advantage of straightforward implementation. Based on several papers that show that
the quantum kernels are superior to conventional machine learning techniques (such as
the RBF kernel), we hypothesized that quantum advantage can also be demonstrated in
classifying normal or anomaly in apple. We aim to find quantum kernels that are effec-
tive for individual practical problems, similar to the RBF kernel, as well as to search for
quantum kernels that can be widely and generally used.

3 Small datasets
We explain the data sets we generated. We received 500 commercially available apples and
found 33 anomaly apples. We confirmed that 7% of the apples on the market are apples
with an invisible vine crack. A total of 66 normal and anomaly apples were used as a data
set, which is different from previous work [41]. We have a lot of normal data (467 pieces).
Therefore, we randomly obtained normal data from the 467 pieces and selected 24 pieces
as training data and 9 pieces as test data. The number of anomaly data is limited to 33
pieces. We randomly selected 24 pieces as training data and 9 pieces as test data.

The judgement of normal or invisible anomaly apples is predicted using equipment
shown in Fig. 1. We get these apples from the market. We take pictures after illuminating
the LED from the bottom of the apple. Then, after image processing, we obtain binary im-
ages. To know the internal situation, we cut them in half with a knife. As invisible anomaly,
there are apples with browning inside and apples with vine cracks. There are two types of
normal apples: normal apples with nothing inside (0) and browning apples (0∗). There are
also two types of anomaly apples: apples with vine cracks only (1) and apples with vine
cracks and browning (1∗). In other words, there are four types. Each speech bubble is an
enlarged view.

The resolution of the photographed image is 4032 x 3024 and it is necessary to detect
patterns other than the vine that appear in an area of 120 x 80. The judgement must be
made in an area of about 3% of the total image. The 4032 x 3024 resolution is too large
to create a learning model. The image size is reduced to 1/10. The learning model is built
using the image size (403 x302). The image is used to distinguish between normal and
anomaly for training.

4 Quantum kernel and step of classification
By means of a nonlinear mapping ϕ(x) embedding the data into the quantum feature space,
it can be expressed in the feature space as follows.

κ
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)︁
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First, we prepare quantum state ϕ (x) = U (0) |0⟩ as a data encoding from classical to quan-
tum data. Second, we prepare U

(︁
xj

)︁† U (x) |0⟩ as the initial state of the quantum circuit
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Figure 1 The process of acquiring datasets (binary images) after illumination of LED light. After visual
inspection, we obtain these apples. We take pictures after illumination of LEDs from bottom of apple using
equipment. Then, we acquire binary images after image processing. To know the internal situation, we cut
them in half with a knife. As invisible anomaly apple, there are apples with browning inside and apples with
vine cracks. The green and blue circles show a part of browning and vine cracks. There are two types of
normal apples: normal apples with nothing inside (0), and browning apples (0∗). The sign of ∗ shows
browning. There are also two types of anomaly apples: apples with only vine cracks (1), and apples with vine
cracks and browning (1∗). That is, there are a total of four types. Each speech bubble is an enlarged view
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Here U(x) is the inner product between the quantum encoded data using quantum kernel
estimation. Each feature map is then embedded into the inner product to optimize the
parameters. The matrix component of the entire Gram-matrix is obtained from a combi-
nation of the inner product. The parameters of the kernel estimation are optimized using
rotation gates with/without entanglement in Eq. (2). We use RBF as classical kernel of
SVM in this work.

Figure 2 shows quantum kernel circuits diagram when features volume is 4 (the number
of qubits is 4). Figure 2(a) shows quantum kernel circuits diagram. Figure 2(b) shows the
details of φ (xi) as equation (1) and (2).

QK0 and QK1 are circuits with only rotation gates (H and H Ry). QK2 to QK10 were
prepared to create efficient quantum kernels with fewer gates than hardware efficient em-
bedding (HEE) [49, 50]. QK2 and QK3 are circuits that place controlled Ry and Rx gates
between each qubit and the next qubit in a staircase pattern. QK4 is a circuit that places
a controlled Ry gate between each qubit and the bottom qubit. QK5 is a circuit in which
Rz is inserted between the Ry control gates of QK4. QK6 is a circuit in which CNOT gates
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Figure 2 Quantum circuit diagram. Fig. (a): Quantum kernel circuit (case of 4 qubits). Fig. (b): Circuit diagram
of Uk (xi) in Fig. (a). The number of qubits corresponds to the feature values. The features were changed from
3 to 7 when we do experiments. QK0 and QK1 are circuits with only rotation gates (H and H Ry). QK2 and QK3
are circuits with control rotation gates CRy and CRx arranged in a staircase between each qubit and the next
qubit. QK4 is a circuit with each qubit and the bottom qubit. QK5 is a circuit with a control Ry gate between
each control Ry gate of QK4. QK6 is a circuit with a CRy gate of QK2 replaced by a CNOT gate and Ry inserted
between each CNOT. QK7 is a circuit with a CRy gate of QK5 replaced by a CNOT gate and Rz is replaced by Ry.
QK8 is a circuit where the CRy gate of QK5 is replaced by a CNOT gate. QK9 is a circuit where the Rz rotation
gate is placed at the end of the QK7 circuit and QK10 is a circuit where controlled Toffoli is used instead of a
CNOT

are arranged in a staircase pattern with Ry inserted between each CNOT gate. QK7 is a
circuit in which each qubit and the lowermost qubit are connected by a CNOT gate and
Ry is inserted between each CNOT gate. QK8 is a circuit in which a Rz gate is inserted
instead of the Ry gate in QK7. QK9 is a circuit in which Rz is placed on each qubit at the
end of the quantum circuit in QK7. QK10 is a circuit in which controlled Toffoli gate, is
placed in place of each CNOT in QK9. The experiment was essentially carried out using
a quantum simulator (ibm_qasm_simulator). For final confirmation, we used a real quan-
tum computer (ibmq_Osaka of the IBM Quantum Platform).
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Figure 3 Step of classification. we prepare training data and test data. Using the datasets of apple we
created, we perform 1 preprocessing. Then, 2 principal component analysis is performed to extract features.
Then, 3-1 classical and 3-2 quantum kernels are generated using the features, and 4 SVM is embedded to
construct a learning model. The constructed learning model is used to predict the test data

Table 1 Principal Components (PC), Contribution Ratios (CR), and Cumulative Contribution Ratios
(CCR) obtained by performing principal component analysis on this image. PC stands for principal
components. CR stands for contribution ratios. CCR stands for cumulative contribution ratios

PC 1 2 3 4 5 6 7 8 9 10

CR 0.4390 0.1210 0.0593 0.0423 0.0337 0.0278 0.0210 0.0207 0.0176 0.0168
CCR 0.4390 0.5600 0.6193 0.6616 0.6953 0.7231 0.7441 0.7648 0.7824 0.7992

Figure 3 shows step of classification. we prepare training data and test data. Using the
datasets of apple we created, we perform 1 preprocessing. Then, 2 principal component
analysis is performed to extract features. Then, 3-1 classical and 3-2 quantum kernels are
generated using the features, and 4 Classical SVM embedded kernel is performed to build
a learning model. The learning model is used to predict the test data.

5 F1 score on quantum simulator
Table 1 shows the contribution ratio (CR) and cumulative contribution ratio (CCR) ob-
tained by principal component analysis of the image. The first to tenth principal compo-
nents are obtained. Although there is no clear criterion for the cumulative contribution
ratio (CCR), a rough image can be reproduced if the CCR is 0.5 or higher; a CCR of 0.85
or higher is sufficient to reproduce the image. The cumulative contribution ratio (CCR)
of principal components 4, 7 and 10 are 0.662, 0.744 and 0.799 respectively. Confirming
the reproducibility of the anomaly apple images, it is considered that the first, second and
third principal components mainly represent the external shape, browning of the apple
and internal vine crack. Here, the number of principal components corresponds to fea-
tures value.

Figure 4 shows the relationship between the F1 scores for the principal components of
each quantum kernel and the conventional kernel RBF. Figure 4(a) shows the results for



Tomono and Tsujimura EPJ Quantum Technology           (2025) 12:36 Page 8 of 15

Figure 4 The relationship between Features and F1-score for each quantum kernel compared to classical
kernel RBF. Figure 4(a): the relation from QK0 to QK5 compared to classical kernel RBF. Figure 4(b): the relation
from QK6 to QK10 compared to classical kernel RBF

the classical kernel RBF and QK0-QK5. The horizontal axis is the feature corresponding
to the cumulative contribution of the principal components. The vertical axis is the F1
score. If the feature value is 3, it means the cumulative contribution of the first to the third
principal component. If the feature value is 7, it means the cumulative contribution of the
first to the seventh principal component. First, the F1 scores of each kernel are compared
when the feature value is 3, and then the trends in the F1 scores are compared as the feature
size increases.

QK0 and QK1 are quantum circuits with one H-gate, one H-gate and one rotating gate
Ry for each qubit. Their F1 value is 0.2 higher than the F1 score of the classical kernel RBF.
However, when the feature value increased from 3 to 7, the value of the F1 score increased
by 0.1.

QK2 and QK3 are quantum circuits with a staircase structure of control gates Ry and
Rx. The F1 score of QK2 and QK3 are more than 0.1 larger than the F1 score of RBF, but
0.05 smaller than the F1 score of QK0. QK4 is a quantum circuit with a controlled rotation
gate between each qubit and the bottom qubit. The F1 scores of QK4 and QK5 are more
than 0.1 larger than the F1 score of QK0, QK1, QK2 and QK3, but 0.1 smaller than the F1
score of QK2. The F1 scores for QK2, QK3, QK4 and QK5 remained almost constant as
feature value increased from 3 to 7.

From the above, it can be considered that the quantum kernel has greater discriminative
power than the classical kernel when the feature value is 3. However, the reason why the
F1 score remains almost constant even as the feature value increases is because the images
represented by the fourth to seventh principal components have little effect on the vine
crack, and therefore the value of the F1 score is considered to be unaffected.

Figure 4(b) compares the relationship of QK6 to QK10 with the classical kernel RBF. For
a feature value of 3, the F1 score of QK7 and QK8 are more than 0.15 larger than the RBF.
The QK6 is about 0.1 larger than QK7 and QK8. Furthermore, the F1 score of QK9 and
QK10 are more than 0.3 larger than the classical RBF. The F1 score of QK6 is almost the
same as that of QK1. The behavior of QK6 is similar to that of QK1.
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QK6 has a staircase CNOT gate. Except for the first qubit, it has a Ry rotation gate from
the second qubit onwards similar to QK1. Therefore, the effect of the CNOT gates on the
F1 score was not significant in the case of QK6. For QK7, QK8, QK9 and QK10, the F1
score becomes larger as the feature value increases, with the F1 score for QK7 and QK8
increasing by 0.2 and the F1 score for QK9 and QK10 increasing by 0.1. This increase could
be considered a dominant difference, but it was equal to or less than that of the classical
kernel.

From the above it can be concluded that the CNOT gate is dominant except for QK6.
Throughout the apple, including external shape, browning and internal vine crack, the
quantum kernel is considered to have a higher discriminative capacity for anomalies. The
F1 scores of QK9 and QK10 are the highest among these quantum kernels and are con-
sidered promising quantum kernel candidates.

6 Classical kernel vs quantum kernel
After obtaining the above results using the simulator, we use ibm_Osaka to confirm the
behavior of true quantum computer. Figure 5 shows the ROC-AUC curve (step-shaped
curve) of quantum computer compared to classical computer and quantum simulator.
Here, QC and QS means quantum computer and simulator. The left figure shows the
ROC-AUC curve of RBF, QS and QC on QK9, and the right figure shows the ROC-AUC
curve of RBF QS and QC on QK10. As reference data, we also draw the position of ran-
dom model (black dashed line) and ideal learning model (red dashed line). The dashed
line from False Positive Rate (FPR) = 0, True Positive Rate (TPR) = 0 to FPR = 1, TPR = 1
indicates the random model. Axis of FPR = 0 and TPR = 1 indicates ideal learning model.
The AUC of classical RBF is drawn near the random model and the numerical data is 0.62.
on the other hand, for QK9, the behavior of the AUC curve for the quantum computer
was the same as that for the quantum simulator. The numerical data of AUC at that time
were both 0.90, as shown in the figure.

For QK10, the behavior of the ROC-AUC curve for the quantum computer was lower
than that of the classical computer. As shown in the figure, the numerical data of AUC
value at that time was 0.89 for the quantum simulator and 0.59 for the quantum computer.

Figure 5 ROC-AUC curve. The horizontal axis is the False Positive Rate (FPR), and the vertical axis is the True
Positive Rate (TPR). The normal learning model construction process starts with learning from a random
model at the position of the black dashed line (position of the black dashed line) and moves towards the ideal
learning model (position of the red dashed line). Features (feature value, feature quantity) is 4



Tomono and Tsujimura EPJ Quantum Technology           (2025) 12:36 Page 10 of 15

Figure 6 Reproducibility of calculations using a quantum simulator and computer. The average, maximum,
and minimum values of 3-5 measurements are indicated. ∗ represents the results of calculations using a
quantum computer. Features (feature value, feature quantity) is 4

Table 2 The depth of circuits for QK0, QK1, QK9 and QK10. We use ibmq_Osaka as quantum
computer when feature value is 4

Quantum kernel QK0 QK1 QK9 QK10

Depth of circuits 4 4 32 273

For QK10, the behavior and numerical data on quantum computer were significantly dif-
ferent from those on the quantum simulator.

To confirm the reliability of the numerical data, measurements were performed at least
3 times on the quantum computer. In addition, when measurements were performed 5
times for classical computer, it was found that the error was within approximately 2 %.

Figure 6 shows reproducibility of calculations using a quantum simulator and computer.
We compare with the numerical data of AUC and the F1 score for the classical kernel RBF
and the quantum kernels QK0, QK9, and QK10. The quantum kernels QK0, QK9, and
QK10 were measured, and the maximum, minimum, and average values were calculated.
For quantum kernels other than QK10, there appears to be little difference in the values
of each evaluation index (AUC and F1-score) between the quantum simulator and the
quantum computer.

To investigate the cause of the difference between the quantum simulator and the quan-
tum computer in QK10, the circuit depth of the quantum circuit was investigated, and the
results are shown in Table 2. Since there was no difference between the quantum simulator
and the quantum computer in QK0, QK1, and QK9, it is believed that there is no problem
with a circuit depth of up to 32, but since a problem occurred at a circuit depth of 273, it is
believed that errors accumulated between 32 and 273. This confirmed that the quantum
circuit depth affected the generation of errors in the quantum computer.

Table 3 presents the performance metrics including precision, recall, F1-score, accu-
racy, and AUC for the RBF kernel and quantum kernels (QK0, QK9, and QK10). For the
quantum kernels, we show values obtained from both simulator (IBM_Qiskit) and quan-
tum computer (ibm_osaka) implementations. In this analysis, there are nine samples each
for normal and anomaly cases. When analyzing these performance metrics, it is crucial
to note that Recall and Precision have a complementary relationship. In our analysis, we
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Table 3 The performance metrics of QK0, QK9, QK10 and RBF. Here, 0 and 1 represent for normal and
anomaly in [0 (1)]. We use ibmq_Osaka as quantum computer when feature value is 4. Normal data:
24 training data, 9 test data. Anomaly data: 24 training data, 9 test data

Kernel RBF. QK0. QK0∗ . QK9. QK9∗ . QK10. QK10∗

Precision [0 (1)] 0.58 (0.58) 0.74 (0.74) 0.67 (0.67) 0.79 (0.79) 0.80 (0.80) 0.80 (0.88) 0.50 (0.50)
Recall [0 (1)] 0.58 (0.58) 0.74 (0.74) 0.67 (0.67) 0.79 (0.79) 0.80 (0.80) 0.89 (0.78) 0.44 (0.56)
F1-score [0 (1)] 0.58 (0.58) 0.74 (0.74) 0.67 (0.67) 0.79 (0.79) 0.80 (0.80) 0.84 (0.82) 0.47 (0.53)
Accuracy 0.58 0.74 0.67 0.79 0.80 0.83 0.50
AUC 0.62 0.82 0.80 0.90 0.90 0.89 0.59

observe that the values for normal and anomaly cases are identical across recall, preci-
sion, F1-score, and accuracy metrics for RBF, QK0, QK0∗, QK9, and QK9∗, indicating
balanced performance. While QK10 and QK10∗ show slight variations between normal
and anomaly cases, their average values remain consistent across all metrics, demonstrat-
ing maintained balance. These results confirms that balanced learning models were con-
structed across all kernel implementations, including the RBF kernel and quantum kernels
(QK0, QK9, and QK10).

From the above, we confirmed that the results of the quantum simulator and the quan-
tum computer are almost the same. We also confirmed that as the depth of the quantum
circuit increases, the quantum computer becomes noisy, and the calculation becomes dif-
ficult at the circuit depth of QK10. We also found that QK9 is a promising quantum kernel.

7 Discussion
Based on the experimental results, the features obtained after feature extraction by prin-
cipal component analysis correspond to each qubit. As we described already above, the
first principal component obtained by the principal component analysis is considered to
be the external shape of the apple, the second principal component is the browning, and
the third principal component is the internal vine crack. Here, we assume that overfitting
does not occur due to the small size of the data set.

When feature value is 3 (the cumulative contribution up to the third principal com-
ponent is integrated), the quantum kernel was larger by more than 0.3 compared to the
classical kernel. As shown in Figs. 4(a) and 5(b), when the feature value is 3, the difference
between the quantum and classical kernels is large, indicating that the quantum kernel is
larger than classical kernel. On the other hand, as the feature size increases, the difference
between the F1 scores of the quantum and classical kernels becomes smaller. This means
that the advantage of the quantum kernel is less as the feature value increases.

As shown in equation (1), the quantum kernel is represented by an inner product, and
from the inner product of vectors, a Gram matrix is generated. The space created by this
Gram matrix generates a complex separating boundary surface.

(︁
xi, xj

)︁
are the coordinates

of the Gram matrix and κ
(︁
xi, xj

)︁
are the measurements of the last individual quantum

bit calculated in depth. The number of matrices in the Gram matrix is determined by the
number of qubits in the quantum circuit. The gate operation (unitary called U) determines
the height, and κ

(︁
xi, xj

)︁
create energy gradients such as peaks, valleys and plains, and the

separation boundary is determined as the result. Usually, in principal component anal-
ysis, as the cumulative contribution increases (feature value increases) in classical kernel
learning, the image reproducibility improves, and the discriminative power become larger.

When the feature size is 3, the F1 score with the quantum kernel is sufficiently larger than
the F1 score with the classical kernel. On the other hand, as the feature size increases, the
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difference between the F1 score by the quantum kernel and the F1 score by the classical
kernel becomes smaller. This could be caused by a phenomenon similar to Barren Plateaus
(BPs) [51–56] due to exponential concentration. On the other hand, it is possible that,
perhaps, machine learning with quantum kernels may provide better discriminative power
with respect to certain anomalies.

Experimental results show that controlled Toffoli gates are promising gates for quan-
tum kernel circuits. The controlled Toffoli gate is a gate that can be decomposed into
Hadamard gates, phase gates and a control NOT gates. As shown in Table 2, the depth of
the QK9 circuit is 32, while that of the QK10 circuit is 273. the depth of the QK10 circuit is
8.5 times larger than that of the QK9 circuit. In this study we performed the calculations on
a superconducting quantum computer, but the calculations failed due to noise and other
factors. The reason for this is thought to be the topology of the superconducting quantum
computer, which utilizes many swap gates, which makes the depth of the circuit deeper.
However, an all-coupled ion-trap quantum computer could be computed without the use
of swap gates. This has the advantage that it is likely to be able to compute with reduced
errors. On the other hand, the size of the Gram matrix increases in learning (training) us-
ing data, which poses a challenge to the execution of calculations. In the case of ion-trap
quantum computers, the coherence time is long, so if the size of the Gram matrix can be
reduced in future calculations, the control Toffoli gate will be a promising gate with high
expectations.

In this application side to quantum computer, the F1 score of QK10 using controlled
Toffoli gate shows a sufficiently large F1 score in the quantum simulator, so it is thought
to be very promising in practical situations where error correction becomes possible.

8 Conclusion and outlook
We attempted to detect anomaly for apple with internal vine cracks, which are real data
with high similarity to image data from the factory. Using the quantum kernel trick, it was
demonstrated that a learning model could be built to detect a single anomaly (an internal
vine crack) from 24 training data. Ten different quantum kernels were used, and perfor-
mance index were evaluated according to feature value. We used a quantum simulator and
a computer to examine F1 scores and finally evaluate the construction of a learning model
using AUC. The results showed that the F1 score was greater with the CNOT gate than
with the control rotation gate. The SVM with quantum kernel has a larger F1 score and
better discriminative ability than the SVM with classical kernel. Therefore, in anomaly
detection, discriminative ability is considered a quantum advantage on SVM embedded
quantum kernel. As the feature value increases, the increase in the F1 score of the quantum
kernel was smaller than that of the classical kernel.

Within the quantum kernel, a quantum kernel circuit (QK9) with a CNOT gate con-
necting each qubit to the bottom qubit, a Ry rotation gate inserted between CNOTs and
an Rz gate at the end of each qubit of the quantum circuit was found to be promising. If
the memory cost of the Gram matrix is reduced and fault-tolerant quantum computers
are developed, controlled Toffoli gates would be a promising quantum circuit.

The practical application of these technologies is still in its early stages. In the agri-
cultural application, there are two reports. Amin J et al. reported on high-precision pest
localization using YOLOv5, pest classification using QCN, and achieved high accuracy
with reduced computational costs compared to existing CNN models [57]. Aasim M et al.
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conducted a detailed study on optimizing LED light intensity for in vitro propagation of
black mulberry [58]. SVC Quantum kernel showed promising results on some data, but
did not show consistent improvements over traditional SVC.

In the manufacturing application, there are two significant studies. Choi E et al. im-
plemented anomaly detection during processes using QSVM and QCNN [59]. Their re-
sults demonstrated that QML could achieve accuracy comparable to classical machine
learning while exponentially reducing the number of parameters. Tscharke K et al. pro-
posed a semi-supervised anomaly detection method using QSVR with quantum kernels
and compared it with classical Support Vector Regression [60]. Their experimental results
proved QSVR’s superiority by showing higher anomaly detection accuracy than both clas-
sical SVR and QAE.

Since production and inspection process costs are reflected in product prices, new
learning models must improve accuracy while maintaining or reducing computational
costs. Our research focuses on quantum kernels while exploring quantum algorithms that
achieve high accuracy with reduced computational cost. As previously mentioned, quan-
tum kernels are utilized not only in SVM but also in QSVR, QCN, QCNN, and other
applications. I would like to build a theory of quantum kernels while responding to actual
problems and build quantum algorithms that are useful for social implementation.
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