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Abstract: Extreme-mass-ratio inspirals (EMRIs) are promising gravitational-wave (GW)
sources for space-based GW detectors. EMRI signals typically have long durations, ranging
from several months to several years, necessitating highly accurate GW signal templates for
detection. In most waveform models, compact objects in EMRIs are treated as test particles
without accounting for their spin, mass quadrupole, or tidal deformation. In this study,
we simulate GW signals from EMRIs by incorporating the spin and mass quadrupole mo-
ments of the compact objects. We evaluate the accuracy of parameter estimation for these
simulated waveforms using the Fisher Information Matrix (FIM) and find that the spin,
tidal-induced quadruple, and spin-induced quadruple can all be measured with precision
ranging from 10−2 to 10−1, particularly for a mass ratio of ∼10−4. Assuming the “true” GW
signals originate from an extended body inspiraling into a supermassive black hole, we
compute the signal-to-noise ratio (SNR) and Bayes factors between a test-particle waveform
template and our model, which includes the spin and quadrupole of the compact object.
Our results show that the spin of compact objects can produce detectable deviations in the
waveforms across all object types, while tidal-induced quadrupoles are only significant for
white dwarfs, especially in cases approaching an intermediate-mass ratio. Spin-induced
quadrupoles, however, have negligible effects on the waveforms. Therefore, our find-
ings suggest that it is possible to distinguish primordial black holes from white dwarfs,
and, under certain conditions, neutron stars can also be differentiated from primordial
black holes.

Keywords: gravitational waves; extreme-mass-ratio inspirals; compact object

1. Introduction

The observations of GWs from compact binary coalescences since 2015 have ushered
in a new era of astronomy [1,2]. There are abundant sources that emit GWs in the low-
frequency band, which can be observed by future space-borne GW detectors such as the
Laser Interferometer Space Antenna (LISA) [3]. EMRIs, which consist of central massive
black holes (MBHs) and orbiting compact objects, are important GW sources for space-
borne GW detectors [3,4].

The small object in an EMRI could be a stellar-mass black hole, a neutron star, a white
dwarf, or another compact object. EMRIs emit gravitational waves (GWs) as the secondary
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objects orbit the central massive black holes (MBHs). Furthermore, in certain scenarios,
such as when the compact objects interact with the matter in the MBH accretion disc, EMRIs
can also produce high-energy electromagnetic (EM) emissions [5]. Such emissions typically
arise from cases where the compact objects are either captured by the accretion disc in an
active galactic nucleus (AGN) and migrate inwards or form directly within the disc and
evolve as they move toward the MBH. Such EMRI sources, capable of emitting both GWs
and EM signals, hold significant potential for multi-messenger detections. However, this
study focuses exclusively on gravitational wave signals. In this context, understanding the
dynamical behavior of compact objects in EMRIs is crucial for advancing low-frequency
GW astronomy.

Presently, the spin interaction of relativistic systems has become an important subject.
For this reason, it is a real concern to properly understand the dynamics of extended
bodies in curved space–time that includes classical spin. The dynamics is simple when one
considers the point-particle approximation. Nevertheless, once considering the structure,
the problem is hard to solve. In Newtonian mechanics, a solution to the problem of the
motion of N isolated bodies with internal structure was first proposed by F. Tisserand [6].
In his work, Tisserand was able to separate the external and internal motion of the body
by considering the linearity of the equations. In this way, it was possible to describe the
dynamics of one of the bodies with high precision. However, in contrast to Newtonian
gravity, the field equations of general relativity are coupled and nonlinear. Therefore, it is
not possible to apply the same methods as in Newtonian mechanics. In general relativity,
it is well known that a point-particle follows a geodesic. However, when considering
extended bodies, it is necessary to take into account the effect of the body in the space–time
metric, an effect known as the self-field [7].

The first approach to solving the extended body problem in general relativity goes
back to 1937 with the work of M. Mathisson [8], who demonstrated the existence of an
interaction between the Riemann curvature tensor and the spin of the moving particle
in the equations of motion. Mathisson showed that it is possible to define force, center-
of-mass, torque, and mass in a relativistic theory. The problem of extended bodies in
general relativity was also considered by Papapetrou [9–11], where he uses a similar
approach. Later, B. Tulczyjew and W. Tulzcyjew improved and developed the methods of
Mathisson [12,13]. On the other hand, improvements in the definition of the center-of-mass
were made by Moller and others in refs. [14–19]. Today, the equations that describe the
motion of extended bodies with spin and mass are known as the Mathisson-Papapetrou-
Dixon equations (MPD).

When considering the inspiral orbital motion of an equal-mass spinning binary system,
it is crucial to consider the higher-order multipole moment contributions [20]. Nevertheless,
in the case of EMRIs, it makes sense to truncate the multipole expansion and focus mainly
on the pole-dipole approximation. In general, calculations involving spinning objects with
dimensions sufficiently small compared to the background space–time’s local curvature
radius can be performed with good approximation by employing the MPD equations of
motion. In the literature, there are a variety of astrophysical situations where the MPD
equations are used to show the impact of spin-curvature interactions between spinning
particles and black holes [21–24]. From the numerical point of view, it is possible to in-
vestigate the limits of stability for the MPD equations [24–27]. In the work of S. Suzuki
and K. Maeda [24], the authors studied the stability of circular orbits for spinning test
particles in Kerr space–time. They showed that orbits in the radial direction are stable,
while some circular orbits become unstable in the direction perpendicular to the equatorial
plane. Moreover, in the case of particles with higher spin, the innermost stable circu-
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lar orbit (ISCO) appears before the minimum of the effective potential in the equatorial
plane disappears.

Using the MPD equation, it is possible to derive predictions about the generation of
gravitational waves that are expected to occur from spin-induced deviations away from
geodesic motion. In ref. [28], Yasushi Mino et al. used Teukolsky, Sasaki, and Nakamura’s
formalisms to perturb the Kerr black hole and calculate the energy flux and the wave-
form induced by a spinning particle falling from infinity into a rotating black hole. Due
to the combination of Teukolsky formalism with the MPD equations, the authors found
two additional effects related to the particles’ spin: the first effect is due to the spin-spin
interaction force, and the other is due to the contribution of the energy-momentum ten-
sor of the spinning particle. According to the numerical calculations, the authors argue
that these effects are significant. In this sense, a deeper understanding of the relativis-
tic two-body problem requires accurate and general results from both numerical and
analytic computations.

Theoretically, it is possible to recognize the compact objects by their quadrupolar
deformation in EMRIs by GWs [29], and so is the spin of compact objects in EMRIs. While
this is controversial for spin, some researchers believe that the spin of compact objects
in EMRIs is not observable [30,31]. In the present work, we use the MPD equation to
simulate the GW signals of EMRIs that consider the compact objects’ spin and quadrupole
to study to what extent these parameters could influence the GW signals. It is worth
noting that before conducting a series of calculations and simulations, we clarify that
environmental effects, such as hydrodrag from interactions between compact objects and
an accretion disc [32], for simplicity, are not considered in this study. We find that for
the gravitational wave (GW) signals of EMRIs, both the spin and tidal effects of compact
objects are influential, particularly when the compact objects are white dwarfs. However,
spin-induced quadrupoles have no significant impact, even in EMRIs with small mass
ratios. Our results also demonstrate that primordial black holes (PBHs) with sub-solar
masses can be clearly distinguished from white dwarfs. In certain cases, neutron stars can
be differentiated from PBHs, specifically when the neutron star spin exceeds that of the
PBHs. Moreover, if we replace the MPD equation with the test particle approximation in
the waveform templates, the matched-filtering SNRs of GW signals, assuming really from
extended bodies, remain almost unchanged. Therefore, for the aim of detecting EMRIs, we
may omit the spin and quadrupole of the compact object in constructing the waveform
templates of EMRIs. This will greatly reduce the parameter space and the computation cost
for searching EMRIs in the data.

This paper is organized as follows: Section 2 starts with the equation of motion for
extended bodies. Then, we introduce the GW waveforms for EMRIs In Section 3. In
Section 4, we present our results in detail. Finally, we conclude Section 5. Through this
paper, we use the Einstein summation convention.

2. Characteristics of Compact Objects in EMRIs

The accuracy of the waveform templates is crucial in GW detection. Therefore,
we need to calculate accurate orbits of compact objects. The MPD equations describe
the motion of extended bodies in curved space–time with spin and mass multipole mo-
ments. The higher-order terms of the MPD equations (expanded by multipole moments)
show that the inner structure of compact objects slightly influences the orbit [33]. In the
present work, we considered the EMRI model that uses extended bodies with spin and
quadrupole moments, which fit the actual orbits better than the models that use test parti-
cles. In this case, the motion equations of the compact objects are (using natural units of
G = c = 1) [17]
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ṗµ = −1
2

SαβvρR
µ
ραβ −Fµ, (1)

Ṡαβ = 2p[αvβ] + Gαβ, (2)

where pµ is the four-momentum of small compact objects, defined as pµ = muµ, and m is
defined as the dynamical mass of compact objects, satisfying the condition m2 = −pµ pµ,
which depends on the four-momentum of compact objects, so m is not a constant. The dot
means the differential concerning proper time τ. uµ is the dynamical velocity of bodies,
satisfying the condition uµuµ = −1. Sαβ is a second-order anti-symmetrical spin tensor,
which satisfies the spin conservation condition S2 = SµSµ = 1

2 SµνSµν. The kinematical
four-velocity of extended bodies vρ = dzρ/dτ, and z(τ) is the world line of the extended
bodies’ mass center, which is determined by the supplementary condition uλSκλ = 0.
R

µ
ραβ is the Riemannian curvature tensor, Fµ and Gαβ are the coupling terms between the

quadrupole and background gravitational field:

Fµ =
1
6

Jαβγσ∇µRαβγσ, (3)

Gαβ =
4
3

Jγδϵ[αR
β]
δϵγ, (4)

where Jγδϵσ is the mass quadrupole tensor that has the same symmetry as Rαβγσ. The
relationship between the four-velocity and the four-momentum is [34]

m2vσ = mpσ −Fσρ pρ +
2mpρRµραβSσµSαβ − 2pδF ρδRµραβSσµSαβ + 4m2FµSσµ

4m2 + RµραβSσµSαβ
. (5)

When vµvµ = −1, τ is the proper time. Generally speaking, the kinematical mass m = pµvµ

is not equal to the dynamical mass m, but in the present work we use the orthogonal
condition uµvµ = −1, where m = m.

The mass quadrupole tensor takes the form [35]:

Jαβγδ =
3m

m3 p[αQβ][γ pδ], (6)

where the quadrupole of extended bodies is given by

Qαβ = CQSα
λSβλ +

1

m2 µ2Rαβγδuγuδ, (7)

where CQ is a dimensionless constant to measure the spin-induced quadrupole and is
related to the equation of state (EOS) of extended bodies. Providing the radius and mass of
a rotating compact object, CQ can be approximately expressed by the equation [36]:

CQ ≈ −25
8

Rc2

Gm
, (8)

where G is the gravitational constant, c is the speed of light in a vacuum, and R is the body’s
radius. CQ varies for different compact objects. For black holes, |CQ| = 1; for neutron
stars, |CQ| varies from 2 to 20 in different EOS [37–39]; for white dwarfs, |CQ| takes about
104 [40], and µ2 represents the quadrupole produced by the tidal effect, and it takes
the form [35]
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µ2 =
2k2

3
(R/

Gm

c2 )5ν4, (9)

where k2 is a dimensionless tidal love parameter determined by the EOS of compact objects.
ν is the symmetric mass ratio of EMRI (ν = mM/(m + M)2). Binnington and Poisson [41]
proposed a relativistic tidal parameter theory that applies to compact objects with
strong inner gravity, for black holes k2 = 0; for neutron stars k2∼0.1; for white dwarfs
k2∼0.01 [42]. According to Equation (9), for black holes, µ2 = 0; for neutron stars with
radius of 10–20 km, and mass of 1 − 2M⊙, µ2/ν4 is ∼102 to ∼103. for white dwarfs, as
show in Table 1, we calculate some values of CQ and µ2/ν4 for white dwarfs.

Table 1. CQ and µ2/ν4 of white dwarfs in different mass and radius.

Mass (M⊙) Radius (R⊙) |CQ| µ2/ν4

0.75 0.009 17,668 3.85 × 1016

1.003 0.0084 12,330 6.38 × 1015

1.1 0.0031 4149 2.75 × 1013

1.2 0.0055 6748 3.13 × 1014

1.28 0.0041 4716 5.22 × 1013

1.3 0.004 4530 4.27 × 1013

1.33 0.003 3321 9.04 × 1012

The spin angular momentum of the compact object s is another important parameter
in this work. For a stellar black hole, the maximum spin angular momentum s = m2

(using natural units of G = c = 1). However, for primordial black holes, research shows
that PBHs possess negligible spin at formation [43,44], and baryonic accretion can spin up
primordial black holes at masses larger than ∼10M⊙ [45]. Neutron stars and white dwarfs
can have spin magnitudes a little larger than m2. For convenience, we use dimensionless
ŝ = s/m2 in the following parts of this article, and for the calculation of orbits, we use the
spin parameter (using natural units of G = c = 1)

S =
s

mM
≈ ŝν. (10)

The S of compact objects in EMRIs is much less than one. As shown in Table 2, we
summarize several physical characteristics of the small compact object in EMRI [46], such
as stellar origin black holes(SOBHs), PBHs, neutron stars(NSs), and white dwarfs(WDs).

Table 2. Physical characteristics of compact objects.

Mass (M⊙) ŝ k2 µ2/ν4 |CQ|

SOBH 2∼5–50∼150 0–1 0 0 1
PBH ∼10−19–∼103 ∼0 1 0 0 1
NS 1.1–2.1 ≲1.3 ∼0.1 ∼102–∼103 2–20
WD 0.2–1.44 ≲10 ∼0.01 ∼1012–∼1016 ∼103–∼104

1 The specific spin values of PBHs still remain debatable. Since PBH spins reflect their cosmological origin, several
different scenarios have been proposed for the formation of PBHs. One of the earliest PBH formation mechanisms
was due to Chiba and Yokoyama [47], who found that PBHs can be generated in the early universe through
the collapse of sufficiently density perturbations and gave theoretical predictions of the probability distribution
of PBH spins, indicating that the PBHs tend to have low spins with as ≲ 0.4 at the radiation-dominated stage.
In contrast, Flores et al. [48]. discussed the PBH spins produced in different cosmological scenarios, one of
which is an intermediate matter-dominated epoch, where they found that PBHs formed from the merger of
particles or scalar fields in the absence of radiative cooling can have a large range of spins. Recently, using the
probability distribution of the spin amplitude of PBH spins given by Luca et al. [44,45] who computed it in a more
sophisticated way based on the standard results of peak theory, Chongchitan [49] statistically quantified the rarity
of extreme-spin PBHs, which means the existence of PBHs with spin exceeding astrophysical limits, such as the
Thorne limit as = 0.998, and they found that roughly one in a million PBHs was formed with spin as ≳ 0.8 and
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one in a hundred million formed with spin exceeding the Thorne limit. Thus, considering different cosmological

scenarios, we take a range of ŝ∼(0, 1) for the PBH spins in order to provide a more comprehensive approach to

our work in distinguishing compact objects.

When setting the orbit configuration and calculating the orbits of EMRIs, we consider
the innermost stable circular orbit (ISCO) and tidal radius as the restrictions. ISCO is the
smallest stable orbit for a test particle orbiting a massive object. For a rotating BH, the
radius of ISCO is as follows:

RISCO = M[3 + Z2 ±
√

(3 − Z1)(3 + Z1 + 2Z2)], (11)

where

Z1 = 1 + (1 − a2)1/3[(1 + a)1/3 + (1 − a)1/3], (12)

Z2 =
√

3a2 + Z2
1 . (13)

with a as the rotation parameter of the rotating black hole. Equation (11) takes a negative
sign when the orbit is prograde and takes a positive sign when the orbit is retrograde. For
an EMRI, inside the ISCO, no stable circular orbits exist. Another important concept is
tidal radius [50]

Rtidal = 21/3 R

m
ν2/3M. (14)

Inside the tidal radius, some compact objects, such as white dwarfs and neutron stars,
would be torn apart by the tidal force of the central black hole. According to Equation (14),
Figure 1 shows the tidal radius of EMRIs for different ν for different orbiting bodies (the
sun, a white dwarf, and a neutron star). For an EMRI with ν = 10−6, the tidal radius for the
sun is around 100M, and for white dwarf and neutron stars are less than 1M for an EMRI
with ν = 10−4, the tidal radius for the sun is 1278.88M, the tidal radius for white dwarf is
10.71M, the tidal radius for neutron star is 0.107M.

Figure 1. The tidal radius Rtidal of EMRIs varies with different ν for each orbiting body. Specifically,
the red curve represents the Sun, the green curve represents a white dwarf, and the blue curve
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represents a neutron star. Additionally, the black dotted curve corresponds to Rtidal of 6M, which
equals the RISCO for a non-rotating black hole.

3. The Gravitational Waves Signals of EMRIs

We first integrate the MPD equation to derive the trajectories and then calculate GW
signals. There are several conserved quantities for the MPD equations in Kerr space–time,
i.e., the energy E and the z component of angular momentum Lz [34]

E = −pt +
1
2

gtµ,νSµν, (15)

Lz = pϕ − 1
2

gϕµ,νSµν. (16)

In the case of the test particle, the Carter constant Q should be another conserved
quantity. While the Carter constant does not exist for an extended body endowed with both
spin and quadrupole. Fortunately, due to the tiny spin parameter S in EMRIs, it is possible
to find an approximate “Carter constant” at first order [51,52], so we can still assume the
following relationship:

Q = L2
z tan2 ι, (17)

where Q is the approximate “Carter constant” ι is the inclination angle of the orbit and can
be obtained by

ι =
π

2
− θmin, (18)

where θmin is the minimum of the θ coordinate along the trajectory. The semi-latus rectum
p and eccentricity e can be calculated by [53]

p =
2rarp

ra + rp
, e =

ra − rp

ra + rp
, (19)

where rp, ra is the periapsis and apoapsis of the EMRI orbits. Then, the EMRI orbits are
parameterized by e,p,ι.

When considering the effect of radiation reaction, we neglected the time derivative of
Sµν because it will involve a higher order of mass ratio in the calculation, and the radiation
reaction Fµ can be recovered from the adiabatic radiation fluxes [54]

Ėut = −gttF
t − gtϕFϕ, (20)

L̇zut = gtϕFt + gϕϕFϕ, (21)

Q̇ut = 2g2
θθuθ Fθ + 2 cos2 θa2EĖ + 2 cos2 θ

Lz L̇z

sin2 θ
, (22)

gµνuµFν = 0, (23)

For the fluxes of E, Lz, and Q, Glampedakis, Hughes, and Kennefick (GHK) [55] used
the lowest order Post-Newtonian (PN) fluxes which are modified from Ryan [56], and
proposed a scheme for computing approximate generic EMRI trajectories, then constructed
the inspirals by evolving E, Lz and Q. It is not accurate enough to evolve inspirals. To
adopt higher order PN fluxes to the GHK scheme and ensure accuracy, ref. [53] rewrote the
fluxes in terms of p and e and included higher order terms in e. In particular, we must have
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the factor (1 − e2)
3
2 to ensure the behavior is qualitatively correct in the high eccentricity

case. For generic orbits, following [53] we have

(

Ė
)

= −32
5

ν(
1
p̃
)5(1 − e2)3/2[g1(e)− a(

1
p̃
)3/2g2(e) cos ι − (

1
p̃
)g3(e) + π(

1
p̃
)3/2g4(e)− (

1
p̃
)2g5(e) + a2(

1
p̃
)2g6(e)

− 527
96

a2(
1
p̃
)2 sin2 ι],

(

L̇z

)

= −32
5

ν(
1
p̃
)7/2(1 − e2)3/2[g9(e) cos ι + a(

1
p̃
)3/2{ga

10(e)− cos2 ιgb
10(e)} − (

1
p̃
)g11(e) cos ι + π(

1
p̃
)3/2g12(e) cos ι

− (
1
p̃
)2g13(e) cos ι + a2(

1
p̃
)2 cos ι(g14(e)−

45
8

sin2 ι)].

(24)

To describe the orbits with high inclination, i.e., ι ≈ π/2 and avoid discontinuous
transition across the pole, evolving Q instead of ι is necessary [53]. A better expression for
Q̇ is derived from the high PN angular momentum flux (2, 2) so that we can ensure Q̇ is
finite at the pole:

(

Q̇
)

= −64
5

ν(
1
p̃
)7/2

√

Q sin ι(1 − e2)3/2[g9(e)− q(
1
p̃
)3/2 cos ιgb

10(e)− (
1
p̃
)g11(e) + π(

1
p̃
)3/2g12(e)

− (
1
p̃
)2g13(e) + q2(

1
p̃
)2(g14(e)−

45
8

sin2 ι)],
(25)

where q = a/M, ν = µ/M, p̃ = p/M and the expressions of coefficients g(e) are [53]

g1(e) = 1 +
73
24

e2 +
37
96

e4, g2(e)
73
12

+
823
24

e2 +
946
32

e4 +
491
192

e6, g3(e) =
1247
336

+
9181
672

e2,

g4(e) = 4 +
1375
48

e2, g5(e) =
44711
9072

+
172157
2592

e2, g6(e) =
33
16

+
359
32

e2,

g7(e) =
8191
672

+
44531
336

e2, g8(e) =
3749
336

− 5143
168

e2, g9(e) = 1 +
7
8

e2,

g10(e) =
61
12

+
119

8
e2 +

183
32

e4, g11(e) =
1247
336

+
425
336

e2, g12(e) = 4 +
97
8

e2,

g13(e) =
44711
9072

+
302893

6048
e2, g14(e) =

33
16

+
95
16

e2, g15(e) =
8191
672

+
48361
1344

e2,

g16(e) =
417
56

− 37241
672

e2, ga
10(e) =

61
24

+
63
8

e2 +
95
64

e4, gb
10(e) =

61
8

+
91
4

e2 +
461
64

e4,

(26)

With Ė, L̇z and Q̇ at hand, we can obtain the radiation reactions from
Equations (20)–(23)

Ft =
(gϕϕĖ + gtϕ L̇z)ut

g2
tϕ − gttgtϕ

, Fϕ =
(gtϕĖ + gtt L̇z)ut

gttgtϕ − g2
tϕ

, Fθ =
Q̇ut − 2 cos2 θa2EĖ − 2 cos2 θ Lz L̇z

sin2 θ

2g2
θθuθ

,

Fr = − 1
grrur

(
Q̇ut − 2 cos2 θa2EĖ − 2 cos2 θ Lz L̇z

sin2 θ

2gθθ
+

(gttgϕϕ − g2
tϕ)L̇zutuϕ

gttgtϕ − g2
tϕ

+
(g2

tϕ − gttgϕϕ)Ėutut

gttgtϕ − g2
tϕ

).

(27)

Now we can rewrite the MPD equation with the radiation reactions

ṗµ = −1
2

SαβvρR
µ
ραβ −Fµ + Fµ . (28)

In this way, the orbits of the compact objects will evolve under gravitational radiation
with the above equation. Note that here, we use the test particle’s fluxes and relation-
ships to calculate the radiation reactions. Due to the extreme mass ratio, the influence
of spin and quadrupole will be at the second order of mass ratio, which can be omitted
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here. After obtaining the orbit, we calculate the gravitational waveform of EMRIs by the
quadrupole approximation [57]

h
jk
(t, x) =

2
r

[

Ï jk(t′)
]

t′=t−r
, (29)

I jk = µx
′j
p x′kp , (30)

where h
µν

= hµν − 1
2 ηµνηρσhρσ is the trace-reversed metric perturbation [54]. We trans-

form the waveform into a transverse–traceless gauge, and we obtain the plus and cross
components of the waveform observed at latitudinal angle Θ and azimuthal angle Φ:

h+ = hΘΘ − hΦΦ (31)

= [cos2
Θ(hxx cos2

Φ + hxy sin 2Φhyy sin2
Φ) + hzz sin2

Θ − sin 2Θ(hxz cos Φ + hyz cos Φ)]

− (hxx sin2
Φ − hxy sin 2Φ + hyy cos Φ),

h× = 2hΘΦ (32)

= 2[cos Θ(−1
2

hxx sin 2Φ + hxy cos 2Φ +
1
2

hyy sin 2Φ) + sin Θ(hxz sin Φ − hyz cos Φ)].

4. Data Analysis and Results

As shown in Table 2, the compact object within the mass range 1–1.44 M⊙ could be a
PBH, a neutron star, or a white dwarf. If we could obtain the spin or quadrupole moment
information for the compact object in the EMRI, we may distinguish its constitution. The
following calculations set the mass of compact objects to 1M⊙ for convenience. Then, we
focus on the spin and tidal effects and analyze if we can recognize the small objects using
GW signals from EMRIs.

In Figure 2, we plot GW signals(h+) of different EMRI configurations in the time
domain(left panel) and frequency domain(right panel). In the frequency domain, the grey
curve represents the sensitivity curve of LISA. We show the influence on waveform phase
by spin ŝ, tidal-induced quadrupole µ2, and spin-induced quadrupole CQ of compact
objects. The duration of signals is one year, the mass of central black hole Mbh = 106M⊙,
the mass of compact object Mco = 1.0M⊙, the Kerr parameter a = 0.9, the inclination angle
of orbit ι0 = 0.0, the eccentricity e = 0.2, the semi latus rectum p = 5. The black curve is
the initial GW signal without the influence of ŝ, µ2, and CQ. The influence of ŝ, µ2, and CQ

are added successively in the red, green, and blue curves.
In the frequency domain of Figure 2, the GW signals almost overlap, suggesting their

SNRs are almost the same. We need to calculate the SNRs of GW signals to ensure that. The
SNR of the signals can be defined as [58]

ρ :=
√

(h|h), (33)

where (h|h) is the inner product of signal h(t) itself. The inner product between signal a(t)

and template b(t) is as follows:

(a|b) = 2
∫

∞

0

ã∗( f )b̃( f ) + ã( f )b̃∗( f )

Sn( f )
d f , (34)

where ã( f ) is the Fourier transform of a(t), ã∗( f ) is the complex conjugate of ã( f ), and
Sn( f ) is the power spectral density(PSD) of the GW detectors’ noise. Throughout this
paper, the PSD is taken to be the noise level of LISA. We first calculate the SNRs of several
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GW signals for EMRIs with ŝ = 0, µ2 = 0, and CQ = 0, and then we calculate the SNRs of
GW signals for EMRIs with different configurations of ŝ, µ2, and CQ. Figure 3 shows the
relative difference between the former and latter signals’ SNRs. We can see the influence
of ŝ, µ2, and CQ on the GW signal of EMRIs is about 10−4 to 10−6, so we may say the spin
and quadrupole of the compact object are not important in constructing the gravitational
waveform models of EMRIs.

Figure 2. The GW signals (h+) of EMRIs in different configurations for ŝ, µ2 and CQ. The duration
of signals is one year, Mbh = 106M⊙, Mco = 1.0M⊙, a = 0.9, ι0 = 0.0, e = 0.2 and p = 5. The
(left) panel displays the GW signals in the time domain, and the (right) panel displays them in the
frequency domain. In the frequency domain, the grey curve represents the sensitivity curve of LISA.

Figure 3. The relative difference of SNR (∆ SNR/SNR) between EMRIs consider or not consider ŝ,
µ2, and CQ. The black squares represent the EMRIs with Mco of tens of solar mass. The red squares,
green triangles, and blue circles represent the EMRIs with Mco of one solar mass around.

In the time domain of Figure 2, during the last seconds of the orbit evolution, we can
see the influence of ŝ and µ2 is significant, while the influence of CQ is tiny. For further
discussion of the quantified difference between the GW signals and the templates, we adopt
the well-known matched-filtering technology. We use maximized fitting factor(overlap)

FF(a, b) = max
ts ,ϕs

(a(t)|b(t + ts)eiϕs)
√

(a|a)(b|b)
, (35)
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where ts is the time shift ts and ϕs is the phase shift. We use overlap to quantify the
differences between the GW signals and the templates, and the results of overlap are
calculated by PyCBC [59].

The result of overlaps between the GW signals and templates are shown in Figures 4–6.
In this work, we set a criteria value of 0.97 for overlap as ref. [60]. If the overlap value
is greater than 0.97, then we say the difference between the GW signals and templates
is insignificant, and we could use this template in searching for GW signals of this kind.
Figure 4 shows the overlaps between the GW templates (ŝ = 0) and the GW signals that
changed with the compact object’s spin ŝ. We can see that for all GW signals, the overlaps
decrease when ŝ goes up. The overlaps down to 0.97 for most cases. Therefore, we may
distinguish PBH (ŝ ∼ 0) from compact objects with higher spin. Moreover, providing the
information of redshift and eccentricity of the binary, there is a more systematic way for
distinguishing PBH [61]. The tidal-induced quadrupole of the central black holes can be
measured with great accuracy by LISA [62,63]. For compact objects, Figure 5 shows the
overlaps between the GW templates (µ2 = 0) and the GW signals that changed with the
compact object’s tidal-induced quadrupole µ2. Figure 5 shows that the overlaps decrease
when µ2 goes up for all GW signals. However, for EMRIs of different ν, only µ2 in the
corresponding region is valid. There are only the µ2 ranges of white dwarfs shown in
Figure 5, and the µ2 ranges of black holes and neutron stars are too small to be shown. For
the ν = 10−6 case (red curve), the valid overlaps keep greater than 0.97, and we cannot
identify µ2 of white dwarfs. For EMRIs with ν = 10−5 and ν = 10−4, especially ν = 10−4

case, it is possible to identify µ2 of white dwarfs. Figure 6 shows the overlaps between
the GW templates (CQ = 0) and the GW signals that changed with the compact object’s
spin-induced quadrupole CQ. We can see that for most GW signals, the overlaps remain
unchanged when CQ goes up. In the case of ν = 10−4, the overlaps decrease a little for
CQ ∼ 104. Therefore, considering the results of Figures 5 and 6, for the compact object
in the EMRIs with ∼1 M⊙ mass and ν of 10−4–10−5, we could distinguish white dwarfs
from other compact objects. Meanwhile, the quadrupole of black holes and neutron stars in
EMRIs do not influence the GW signals.

Figure 4. Overlaps between the GW templates (ŝ = 0) and the GW signals that changed with compact
object’s spin ŝ. Mbh = 106M⊙, a = 0.9, ι0 = 0.0, µ2 = 0 and CQ = 0.0. The red, green, and blue
curves mark the mass ratio 10−6, 10−5 and 10−5, respectively.
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Figure 5. Overlaps between the GW templates (µ2 = 0) and the GW signals that changed with
compact object’s tidal-induced quadrupole µ2. Mco = 1M⊙, a = 0.9, ι0 = 0.0, ŝ = 0.0 and CQ = 0.0.
The red, green, and blue curves mark the EMRIs with ν of 10−6, 10−5, and 10−5, respectively. The
red, green, and blue regions mark the rough range of µ2 for white dwarfs in EMRIs with different ν.

Figure 6. Overlaps between the GW templates (CQ = 0) and the GW signals that changed with
compact object’s spin-induced quadrupole CQ. Mco = 1M⊙, a = 0.9, ι0 = 0.0, ŝ = 1.0 and µ2 = 0.
The red, green, and blue curves mark the EMRIs with ν of 10−6, 10−5, and 10−4, respectively. The
red, green, and blue regions mark the CQ range for black holes, neutron stars, and white dwarfs.

We use the Fisher information matrix to discuss further the parameter estimation
accuracy for m1, m2, a, ŝ, µ2, CQ, θ, ϕ, DL. Additionally, we provide a visual representation
of the posterior probability distributions and correlations among these parameters, as
illustrated in Figures 7 and 8. Fisher information matrix Γ is an important method for
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parameter analysis and estimation [64]. The matrix for a GW signal h parameterized by λ

is given by

Γi,j =<
∂h

∂λi
| ∂h

∂λj
>, (36)

where λ = (m1, m2, a, ŝ, µ2, CQ, θ, ϕ, DL) for EMRIs. The parameter estimation errors ∆λ

due to Gaussian noise have the normal distribution N (0, Γ−1) in the case of high SNR, and
the root-mean-square errors in the general case can be approximated as

∆λi =
√

(Γ−1)i,i. (37)

To assess the parameter estimation precision, we calculate the relative errors (∆λ/λ)

for m1, m2, a, ŝ, µ2, CQ, θ, ϕ, and DL. As shown in Table 3, the accuracy improves as the
mass ratio approaches the intermediate range, ν = 10−4∼10−5. For the ν = 10−6 case,
we cannot obtain valid results of ∆ŝ/ŝ, ∆µ2/µ2 and ∆CQ/CQ since they are greater than
one. For the ν = 10−5 case, ∆ŝ/ŝ achieves the accuracy of ∼10−1, and ∆µ2/µ2 obtains the
accuracy of ∼10−1. For the ν = 10−4 case, ∆ŝ/ŝ achieves the accuracy of ∼10−2, ∆µ2/µ2

reaches the accuracy of ∼10−1, and similarly, even though in this case we have a larger
mass ratio, we still unable to obtain the valid accuracy of ∆CQ/CQ at those waveforms
with ŝ = 0.8.

In particular, according to Table 2, we can see that since the spin of WDs can reach up
to 10, we made another evaluation on the parameter estimation for WDs with higher spin
values, and the results are shown in Table 4. It can be noted that the higher spin is positively
influential in improving the accuracy of the evaluation on the parameter estimation, and
in comparison to ŝ = 0.8, the spin-induced quadrupole CQ also shows a sizable overlap,
with the accuracy even reached 10−2 at the ν = 10−4 case. However, it is worth mentioning
that the spin-induced quadrupole CQ, in general, does not show any measurable overlaps,
although it probably works in the situation of higher spins and higher mass rations, which
means that it has a negligible impact on our method of distinguishing compact objects.

Table 3. Fisher Matrix Results.

ν ∆m1/m1 ∆m2/m2 ∆a/a ∆ŝ/ŝ ∆µ2/µ2 ∆CQ/CQ ∆DL/DL

10−4 9.20 × 10−6 8.85 × 10−4 9.27 × 10−5 4.69 × 10−2 1.49 × 10−1 − 1.44 × 10−2

10−5 6.28 × 10−5 6.39 × 10−4 6.69 × 10−5 6.08 × 10−1 2.90 × 10−1 − 7.16 × 10−2

10−6 7.10 × 10−5 7.71 × 10−4 8.31 × 10−5 − − − 6.92 × 10−2

Table 4. Fisher Matrix Results for White Dwarfs.

ν ∆m1/m1 ∆m2/m2 ∆a/a ∆ŝ/ŝ ∆µ2/µ2 ∆CQ/CQ ∆DL/DL

10−4 2.64 × 10−5 2.68 × 10−4 2.85 × 10−5 3.40 × 10−2 6.13 × 10−3 7.71 × 10−2 3.69 × 10−2

10−5 6.27 × 10−5 6.41 × 10−4 6.68 × 10−5 4.03 × 10−2 3.18 × 10−1 7.24 × 10−1 7.30 × 10−2

10−6 1.20 × 10−5 1.21 × 10−4 1.19 × 10−5 1.15 × 10−2 − − 1.21 × 10−2

In order to provide a lucid explanation, we have produced a flowchart to describe how
we go about our method of distinguishing compact objects. Since our primary concern
is how to distinguish WDs and NSs from PBHs, rather than SOBHs from PBHs, we only
consider the mass range from 0.2M⊙ to 2.1M⊙. Based on Table 2 and the results of Fisher
Information Matrix exhibited above, our method can be divided into three steps which
rely mainly on three physical characteristics m2, ŝ, CQ, respectively, where CQ is not taken
into account as it does not have a significant effect on our waveforms. In the first step, we
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roughly divide them into three parts corresponding to their respective mass ranges. The
second step is crucial because we use the different spin ranges to further constrain them,
which enables us to directly distinguish WDs from other compact objects when their spins
exceed 1.3, and even NSs from PBHs when 1.0 < ŝ ≲ 1.3. To confirm the identity of an
object, the decisive step is that whether it exhibits an observable tidal effect, which requires
µ2 ≳ 10−9, as indicated by the results of Fisher Information Matrix in Table 4. Figure 9
shows that the vast majority of scenarios can be distinguished successfully, except in
one scenario where ŝ < 1.0 and both NSs and PBHs have negligible tidal effects, making it
hard to separate them. Nevertheless, when the spins of NSs are larger than those of PBHs,
they can be distinguished even when their spins are both below 1.0. This is consistent with
our result of the Bayes factor, which is given in Table 5.

Figure 7. For the case of ν = 10−5, the corner plot illustrates the probability distributions and
correlations among the parameters m1, m2, a, ŝ, µ2, CQ, θ, ϕ, and DL. The diagonal panels display
the marginalized one-dimensional posterior probability distributions for each parameter, while the
off-diagonal panels represent the two-dimensional marginalized posterior distributions for parameter
pairs. The contours denote the 11.8%, 39.3%, 67.5%, and 86.4% credible intervals.
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Figure 8. For the case of ν = 10−4, the lcorner plot illustrates the probability distributions and
correlations among the parameters m1, m2, a, ŝ, µ2, CQ, θ, ϕ, and DL. The diagonal panels display
the marginalized one-dimensional posterior probability distributions for each parameter, while the
off-diagonal panels represent the two-dimensional marginalized posterior distributions for parameter
pairs. The contours denote the 11.8%, 39.3%, 67.5%, and 86.4% credible intervals.

To quantify the extent to which our waveforms show that WDs and NSs can be
distinguished from BHs, we introduce a simple linearized equation of the Bayes factor from
Moore et al. [65]:

lnB = ln
(

Π

A

√

2π

ρ

)

+
(z + ρ

√

2(1 −M) cos ι)2

2
, (38)

where Π is the prior odds ratio, A = αmax − αmin is the prior range on α, ι is defined as the
angle between signals, typically we consider setting cos ι = ±1 and it is a random choice of
sign associated with model error ∆ĥ. Similarly, z ∼ N (0, 1) is a random number associated
with the noise realization. For mismatch with the small angle approximation, we have
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1 −M ≈ |∆ĥ|2
2 . Based on Ye Jiang’s work [66], we set Π = A = 1, z = 0, cos ι = 1 and

finally obtain the simplified expression of Bayes factor:

lnB = ln

(√
2π

ρ

)

+ ρ2(1 −M). (39)

Figure 9. The flowchart for our method of distinguishing Compact Objects.

To validate the effectiveness of our distinguishing mechanism and quantify the differ-
ences among waveform data, we calculated and compared the Bayes factors of all possible
COs waveforms with three types of PBHs waveform templates (ŝ = 0, µ2 = 0, CQ = 1),
(ŝ = 0.8, µ2 = 0, CQ = 1) and (ŝ = 1.0, µ2 = 0, CQ = 1), as displayed in Table 5. Fol-
lowing the workflow depicted in the previous diagram, our distinguishing mechanism
primarily involves segregating by the mass m2, then distinguishing various spin ranges,
and subsequently assessing whether there is tidal deformation to discern different types of
COs, where the corresponding parameters are ŝ, µ2, CQ. During the calculation of lnB, to
understand more precisely the effect of these three parameters ŝ, µ2 and CQ on the extent to
which waveforms of Compact Objects can be distinguished from templates of PBHs, we set
different values for ŝ, µ2 and CQ of NSs and WDs according to their physical characteristics,
and meanwhile set parallel values for different mass ratios, which allowed us to distinguish
WDs and NSs from PBHs under different SNRs.

Therefore, we listed 22 waveforms of COs, comparing them with both PBHs without
spin and those with different spins. It is noteworthy that when the spin of COs is ŝ ≲ 0.8,
we compared it with PBHs with ŝ = 0.8, whereas when the spin of COs exceeds 1.0, a
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comparison was made with PBHs with ŝ = 1.0. Table 5 presents lnB results compared to
PBHs templates with ŝ = 0.8 or ŝ = 1.0, as well as several key data points highlighted,
indicating extra significant findings.

Table 5. Bayes factors (lnB) between the waveforms for PBH and waveforms with different ŝ, µ2, CQ

for NS and WD.

ν ŝ µ2 CQ SNR 1 −M lnB

NS 10−4 0.8 0.0 2.0 91.9 0 −1.3 a

NS 10−4 0.8 0.0 10.0 91.9 0 −2.7 b

NS 10−4 1.3 0.0 10.0 91.9 0.128 1079.6
NS 10−5 0.8 0.0 10.0 31.8 0 −2.5 c

NS 10−5 1.3 0.0 10.0 31.8 0.009 6.5
NS 10−6 0.8 0.0 10.0 16.6 0 −1.9 d

NS 10−6 1.3 0.0 10.0 16.6 0.012 1.4
WD 10−4 0.2 1.0 × 10−3 1.0 × 104 91.7 0.589 4950.9
WD 10−4 0.4 1.0 × 10−3 1.0 × 104 91.7 0.603 5066.7
WD 10−4 0.8 1.0 × 10−3 1.0 × 104 91.7 0.591 4968.5
WD 10−4 0.8 0.0 † 1.0 × 104 91.9 0 −2.7 e

WD 10−4 1.0 1.0 × 10−3 1.0 × 104 91.7 0.593 4978.2
WD 10−4 1.3 1.0 × 10−3 1.0 × 104 91.7 0.591 4965.4
WD 10−4 1.8 1.0 × 10−3 1.0 × 104 91.7 0.603 5071.1
WD 10−4 4.0 1.0 × 10−3 1.0 × 104 91.7 0.600 5039.9
WD 10−5 0.4 1.0 × 10−5 1.0 × 104 31.8 0.004 2.3
WD 10−5 0.8 1.0 × 10−5 1.0 × 104 31.8 0.020 17.6
WD 10−5 1.3 1.0 × 10−5 1.0 × 104 31.8 0.034 32.0
WD 10−5 2.7 1.0 × 10−5 1.0 × 104 31.8 0.055 53.0
WD 10−6 0.8 1.0 × 10−9 1.0 × 104 16.6 0.141 36.9
WD 10−6 1.3 1.0 × 10−9 1.0 × 104 16.6 0.005 −0.6 f

WD 10−6 3.6 1.0 × 10−9 1.0 × 104 16.6 0.040 9.1
a, b When these two NSs in ν = 10−4 compared with PBHs (ŝ = 0, µ2 = 0, CQ = 1), both lnB ∼ 9.0 × 102.

c When this NS in ν = 10−5 compared with PBHs (ŝ = 0, µ2 = 0, CQ = 1), lnB = 35.7. d When this NS in ν = 10−6

compared with PBHs (ŝ = 0, µ2 = 0, CQ = 1), lnB = 10.3. e, † When this WD in ν = 10−4 compared with PBHs

(ŝ = 0, µ2 = 0, CQ = 1), lnB ∼ 1.0 × 103. The purpose of setting µ2 = 0 here is to contrast with other sets of WDs

and, therefore, validate the crucial role of tidal deformation in distinguishing COs from PBHs. Under normal

circumstances, the tidal deformation of WDs is observable. f When this WD in ν = 10−6 compared with PBHs

(ŝ = 0, µ2 = 0, CQ = 1), lnB = 27.1.

Our data reveal that effective differentiation primarily depends on whether COs
exhibit significant tidal deformation (µ2 ≳ 10−9), followed by substantial spin (ŝ ≳ 0.8).
This implies that even with considerable spin, distinguishing between COs and PBHs
with large spin becomes challenging in the absence of tidal effects, as demonstrated by
the data row WD (ŝ = 0.8, µ2 = 0, CQ = 3.0 × 103) in ν = 10−4 v.s. other WDs data.
This also elucidates the difficulty in distinguishing NSs from the PBHs with large spin,
which is evident in all the NS waveforms with ŝ = 0.8 and µ2 = 0. Furthermore, the
negligible impact of spin-induced quadrupole CQ on the waveforms differentiation aligns
with our Fisher information matrix results, further validating the reliability and efficacy of
our distinguishing mechanism. Additionally, we observed a significant increase in lnB in
scenarios with higher mass ratios (ν = 10−4 and ν = 10−5), indicating that there is a certain
positive correlation between lnB and mass ratio, and our distinguishing effectiveness
becomes more pronounced at a mass ratio of ν = 10−4.

Based on our distinguishing mechanism and the supporting data presented in Table 5,
our primary conclusions are as follows: our waveform templates can effectively distinguish
between WDs and PBHs; NSs and PBHs can also be differentiated under certain conditions,
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particularly when the spin of PBHs is lower than that of NSs. This encompasses two
scenarios: (1) when the PBHs spin is zero (ŝ = 0, µ2 = 0, CQ = 1), as demonstrated in the
details of the annotation of the seven NSs data; and (2) when the PBHs have spin, but the
NSs have spin exceeding 1.0, as demonstrated by the three sets of NSs data with ŝ = 1.3.

5. Conclusions

In the current work, we employ the MPD equation as an alternative to the test particle
approximation to solve the orbits of the compact object and then simulate GW signals
from EMRIs that include the spin and quadrupoles of the compact object. In this instance,
the compact object in the EMRIs is characterized as an extended body, as opposed to a
test particle.

In order to investigate the influence of spin and quadrupoles of compact objects on
GW signals and explore the potential for revealing the structure of compact objects in
extreme mass ratio inspirals, we consider the case where the mass of the compact object is
approximately one solar mass. We examine three scenarios where the compact object could
be a primordial black hole (PBH), a neutron star (NS), or a white dwarf (WD).

Initially, for all potential compact object types, we evaluate the accuracy of parameter
estimation for EMRIs over a mass ratio range of 10−6 to 10−4, employing the Fisher
Information Matrix (FIM). The results are summarized in Table 3. Due to the wide range of
spin values exhibited by WDs, we present the FIM results for high spin values separately
in Table 4. In general, the results indicate that the precision for spin estimation can reach
approximately 10−2, while the accuracy for µ2 can reach 10−1 for mass ratios between
10−4 and 10−5. Notably, in scenarios with higher spin values, the detection accuracy for
both Cq and µ2 significantly improves, reaching a precision of 10−2 at a mass ratio of
10−4 and 10−1 at a mass ratio of 10−5. This suggests that higher spin values enhance the
detectability of the quadrupole effects, including both tidal-induced and spin-induced
quadrupoles. Additionally, we present the probability distributions and correlations for all
estimated parameters.

Subsequently, for each scenario, we calculate the overlap between the gravitational
wave (GW) signals generated with varying spin values (ŝ), spin-induced quadrupoles (Cq),
and tidal-induced quadrupoles (µ2), and templates with ŝ, Cq, and µ2 set to zero. The over-
lap results are depicted in Figures 4–6, from which we obtain the following findings: the
spin of all types of compact objects induces detectable variations in the GW signals, partic-
ularly for mass ratios in the range of 10−5 to 10−4, aligning with previous studies [67]. The
tidal-induced quadrupoles only influence the GW signals when the compact object is a WD,
especially in cases where the mass ratio approaches ν = 10−4. Spin-induced quadrupoles,
on the other hand, have a negligible effect on EMRI waveforms. The overlap analysis
reveals that spin and tidal-induced quadrupoles serve as key factors in differentiating PBHs
from WDs and NSs, forming the basis of our distinguishing mechanism.

Accordingly, based on the extended body model and the distinguishing mechanism
involving the parameters ŝ, µ2, and CQ, we calculate the Bayes factor for 22 different com-
pact objects (COs), including WDs and NSs, and compare these results with various PBH
cases (ŝ = 0, µ2 = 0, CQ = 1), (ŝ = 0.8, µ2 = 0, CQ = 1), and (ŝ = 1.0, µ2 = 0, CQ = 1). Our
results indicate that detectable tidal deformations lead to higher Bayes factors, highlighting
the crucial role of µ2 in distinguishing compact objects. While spin also plays a role, partic-
ularly in the absence of tidal effects, spin alone can be effective in distinguishing COs from
PBHs. Consequently, PBHs can be reliably distinguished from WDs due to the strong tidal
effects inherent to WDs, regardless of whether PBHs possess spin. Similarly, NSs can also
be differentiated from PBHs in cases where the NS spin exceeds that of PBHs.
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This study primarily investigates the distinction between PBHs, WDs, and NSs. How-
ever, it is worth noting that many other types of compact objects, such as exotic compact
objects (ECOs) and other BH mimickers, have not been considered here. The works pre-
sented in [68,69] provide valuable insights into distinguishing black holes (BHs) from
exotic compact objects (ECOs) by employing tidal heating and tidal deformability as key
mechanisms. Their results demonstrate that tidal heating is absent in ECOs due to the
lack of a horizon, whereas BHs exhibit nonzero tidal heating. Additionally, the tidal Love
numbers (TLNs) for BHs are exactly zero, while those for ECOs are small but finite.

Building upon these studies, future work could focus on developing similar techniques
to distinguish PBHs from ECOs and other BH mimickers inspired by quantum gravity
models. Such efforts would contribute to a deeper understanding of the diverse compact
object populations and their fundamental physical characteristics, further advancing the
fields of gravitational wave detection and multi-messenger astrophysics.
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Abbreviations

The following abbreviations are used in this manuscript:

EMRI Extreme mass-ratio inspirals

GW Gravitational wave

FIM Fisher information matrix

SNR signal-to-noise ratio

MBH Massive black hole

LISA Laser Interferometer Space Antenna

MPD Mathisson-Papapetrou-Dixon

ISCO Innermost stable circular orbit

PBH Primordial black hole

NS Neutron star

WD White dwarf

EOS Equation of state
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