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Abstract

To meet the supergravity requirements of a black hole without a singularity, we propose
some possible finite-sized core structures to avoid the confusing singularity problem. This
research first studies the Coulomb repulsion between electrons at a distance of 10−15 m,
where the inverse square of the distance is still workable, revealing that the energy of the
entire observable universe is required to form a charged region with a radius of 50 m,
including 1.4 × 1031 Coulomb electrons. Therefore, the existence of a singularity at the
center of a black hole becomes physically unreasonable in this case. To avoid the singularity
problem, we propose a finite-sized black hole core in which the inner core is composed of
the vast majority of neutrons and a very small amount of 56Fe. Under the conditions of
a total charge of 1.648824 × 1020 C and a total mass equivalent to the Sun, a finite-sized
black hole is constructed through this finite-sized core model. We use this non-rotating
but charged, compact, star-like structure, surrounded by counter-rotating and co-rotating
electrons, to construct a Kerr–Newman black hole with a finite-sized core structure. Based
on this model, we can obtain the same spacetime as that of a traditional Kerr–Newman
black hole.

Keywords: black hole; Schwarzschild radius; Kerr–Newman metric; geodesic; finite-sized
core structure

PACS: 95.30.-k; 98.80.JK

1. Introduction

Some candidate black holes have been known for many years [1–3]. Although we do
not know what the structure inside the black hole is like, we can make sure that mass is
gathered in a small space with an invisible boundary, which is so-called the event horizon
of the black hole. For a long time, the center of a black hole has been thought of as a
singularity, where all mass and all charges gather. Massive particles, or light, are thought
to be unable to escape the black hole due to ultra-strong gravity. But is this true for a
photon or a massless particle? As we know, recent observation shows that a black hole
moves quickly in one direction and leaves a trajectory including many stars in formation in
space [4], revealing that such a black hole has a heavy, finite inner structure that generates
super-gravitational fields around it. The zero dimension of the singularity inside a black
hole seems to be unable to explain such a phenomenon.

Recently, gravitational waves from the mergers of binary black holes have been re-
vealed using LIGO and VIRGO on several occassions [5–8]. Because the mass of each black
hole exists within each event horizon, a merger means that two event horizons have to
intersect with each other. Finally, their mass merged and energy equivalent to several solar
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masses was released into space. The mass of the new black hole is less than the summation
of the two original black holes. This raises a question: where does the lost mass go? The
merger causes a collision between the two black holes, resulting in mass loss. The lost
mass is transferred to other forms, such as gravitational waves and electromagnetic waves.
These mergers seem to reveal that gravitational waves originate from the collisions of the
inner structures of two black holes. Due to the variation in the total mass, the spacetime
structure outside the new black hole is also different from that of the two black holes
before the merger. If the gravitational waves are really confined in the black hole, the black
hole behaves like a closed system, and the spacetime structure outside it does not change
without the gravitational wave delivering some information about the variation in mass
inside the black hole. In addition, another observation from a binary neutron star showed
both receiving signals of gravitational waves and electromagnetic waves at almost the
same time [9]. Since gravitational waves and electromagnetic waves originate from the
same black hole and both follow the null geodesic in the same spacetime structure, we are
curious about whether both gravitational waves and light can leave a black hole.

On the one hand, the singularity has a nonphysical infinite density in mass, charge,
and energy; on the other hand, the merger of two black holes also implies the inner structure
of the black hole to be a very high-density nucleus. This gives rise to another question
about whether such a singularity is reasonable in a black hole or not. We have roughly
discussed this problem in the past without rigorous physics [10]. In this research study, we
first discuss this topic with respect to the characteristics of light in the black hole. Then,
we consider energy conservation applied to a black hole and its previous star to propose a
finite-sized nucleus in the black hole and discuss the limitations of core size. We reduce the
inner structure of a black hole to a level that can be explained by standard physics. Finally,
a Kerr–Newman black hole with a finite-sized core is proposed.

2. The Physical Finite-Sized Nucleus Model in the Black Hole

2.1. Introduction of the Schwarzschild Black Hole

Before obtaining a deeper understanding about the structure of the black hole, we
first consider a non-rotating and uncharged black hole with a Schwarzschild radius
RS = 2GM/c2, where M is the mass of the black hole, c is the speed of light in free space, and
G is the gravitational constant. Its spacetime structure is described by the Schwarzschild
metric, and there is one event horizon for this kind of black hole. The Schwarzschild met-
ric [11–16] in the spherical polar coordinate (r, θ, ϕ) and the coordinate time t is expressed
as follows:

ds2 = eν(r)c2dt2 − eλ(r)dt2 − dθ2 − r2sin2θdϕ2

= c2
(

1 − RS
r

)

dt2 −
(

1 − RS
r

)−1
dr2 − dθ2 − r2sin2θdϕ2,

(1)

where the coordinate time t in a gravitational field is the time read by the clock stationed at
infinity, because the proper time and coordinate time become identical there [15]. Then,
we derive the propagation equation of light in this metric. Light propagates along the
null geodesic with ds2 = 0, and the velocity of light in the Schwarzschild metric has been
obtained [11–14], which is

1
(

1 − RS
r

)2

(

dr

dt

)2

+
1

1 − RS
r

(

r
dθ

dt

)2

+
1

1 − RS
r

(

rsinθ
dϕ

dt

)2

= c2. (2)
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Considering light propagating along the radial direction with the radial velocity
vr [11,12,14,15], that is,

v2
r =

(

dr

dt

)2

=

(

1 −
RS

r

)2

c2. (3)

This yields vr = 0 at r = RS, where light has to spend infinite time passing through or
leaving away from the event horizon. Because all our observations are made on the Earth,
we have to use the viewpoint of a far observer to predict what we should “see” on the
Earth according to the Schwarzschild metric or the black hole theory. Then, considering a
massive test particle, the time spent from r0 to RS observed by a far observer on the Earth is
as follows [14]:

∫ RS

r0

dt =
A

c

∫ Rs

r0

1
(

1 − RS
r

)

√

A2 −
(

1 − RS
r

)

dr = ∞, (4)

where A is a constant between 0 and c. The integral in Equation (4) gives the infinite
spending time from a finite distance r0 to RS. Therefore, the Schwarzschild metric or the
black hole theory predicts that from the viewpoint of a far observer on Earth, nothing can
enter the black hole, even if someone could wait 30 billion years, which is predicted by
the black hole theory. Clearly speaking, this results in nothing passing through the event
horizon into the black hole in finite time from the viewpoint of observations on Earth, far
away from the black hole. Furthermore, according to the infinite redshift of light rays at
the event horizon, it would even be unlikely to see any variation in the black hole, because
no light information can be detected from the event horizon. However, this might create a
problem. Recently, the Event Horizon Telescope (EHT) has shown images of the accretion
disk of the M87 black hole [17]. The expansion and seeds of black holes have also been
reported [18–20]. Therefore, the issue of whether the current black hole theory can explain
the expansion of a black hole or not is pertinent. Following these ideas, we tried to use
another metric to solve the problems outlined in this paper.

2.2. A Charged Sphere with a Radius of Fifty Meters and the Observable Universal Energy

In the following section, we propose a new perspective for a black hole to start
solving the above problems. We begin by discussing the physical viewpoint of the struc-
ture of a black hole based on electrons and nuclear physics. All the above-mentioned
research [21–29] was deduced from a mathematical viewpoint without any physical as-
sumptions of material structures. If we review the evolution of a star in the final stage,
we know that a star can become a white dwarf star, a neutron star, or a black hole, de-
pending on its initial mass. In 1931, Chandrasekhar used special relativity and quantum
statistical thermodynamics to find a non-rotating star with a mass limit of 1.4 M⊙ (Chan-
drasekhar limit) due to electron-gas degenerate pressure [30,31]. Such a star is called
a white dwarf star, which can collapse into a neutron star if its mass is slightly bigger
than the Chandrasekhar limit [32]. This kind of neutron star was predicted to collapse
further when its mass exceeds this limit. However, in 1939 and later, Oppenheimer and
others, only based on the Pauli exclusion principle and neutron-neutron repulsion, first
predicted that neutron stars would have another mass limit of approximately 0.7 M⊙

(the Tolman–Oppenheimer–Volkoff limit) [32–34]. However, at that time, nuclear physics
only considered Coulomb’s and nuclear forces between neutrons, protons, and electrons,
without strong interaction and any internal structures such as quarks and gluons. Until
now, the collapse of a star to a black hole still follows the thoughts of one century ago.
Before collapsing into a smaller size, the physical laws remain useful, and therefore, we
have to consider energy conservation to see whether the collapse can be continuous to a
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singularity or eventually stop at a certain size. Due to new physics, such as strong inter-
action, developed after the 1940s, we propose another way to emphasize the finite-sized
core structure inside a black hole. The real material structure allows us to consider this
viewpoint. Recently, proton experiments [35] showed that the inside pressure of a proton is
as high as 1035 Pascals, and it is almost 10 times greater than the core pressure of a tradi-
tional neutron star. Such strong pressure indicates a great ability for the proton to bear a
gravitational squeeze. Therefore, gravitational collapse is so unlikely that the internal struc-
ture of the black hole should be reconsidered. A recent report revealed that the equivalent
mass-energy of the observable universe is about 1.3 × 1070 J [36]. Theoretically speaking,
Coulomb’s interaction shows a lot of necessary work completed or charges form a charged
sphere [10]. Let us consider a case where pure 1.4 × 1031 Coulomb (C) electrons form a
sphere. This many electrons have a mass of 7.96 × 1019 kg, and the Schwarzschild radius is
RS = 1.18 × 10−7 m. If these electrons are gathered from infinity to form a sphere with a
radius of 50 m, as shown in Figure 1a,b, then the mass density is 1.52 × 1014 kg/m3, which
is within the density range of a white dwarf star, in which the inside pressure is supported
by the degenerate pressure of the Fermi electron gas. According to the description in the
Feynman Lectures Volume II [37], the inverse-square law of the Coulomb force is still a
good approximation when the average distance between two charges is as small as 10−15 m.
In our case, the average distance between two electrons is 2.25 × 10−15 m, which is larger
than the criterion of 10−15 m. Thus, the self-energy of our case can still be appropriately
calculated by classical electrodynamics. Here, we consider the additional charged case
where Coulomb’s interaction is calculated. The Reissner–Nordström metric for the exterior
geometry is defined by [38–41]

ds2 = c2
(

1 −
2GM

c2r
+

KGQ2

c4r2

)

dt2 −

(

1 −
2GM

c2r
+

KGQ2

c4r2

)−1

dr2 − dθ2 − r2sin2θdϕ2. (5)

(a) (b) 

Figure 1. (a) A lot of electrons are moved together from infinity. (b) Pure 1.4 × 1031 Coulomb electrons
gathering to form a sphere with a radius of 50 m. It needs energy more than 1070 J, which is the total
energy in the observable universe.

By adopting the gravitational mass function M of a homogeneous star in the Reissner–
Nordström metric, the equation yields the following [39,42,43]:

2GM

c2r
= 1 − eν +

KGQ2

c4r2 , (6)
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where Q is the total charge, and eν is a metric potential similar to that in Equation (1).
Therefore, to move pure 1.4 × 1031 Coulomb electrons into a fifty-meter-radius sphere
from infinity, one needs to complete the work against Coulomb’s repulsive interaction to
establish self-energy, which approximates the following [44]:

Esel f =
(

K
G

)1/2∫ R
0 4πc2ρe(r)

[

eν(r)−1+
(

2GM
c2r

)]1/2

2 dr

∼=
∫ R

0
K[4πr2ρe(r)dr]

r

∫ r
0 4πr′2ρe(r′)dr′

∼= 3
5
(8.987×109)(1.4×1031)

2

50 = 2.114 × 1070 J,

(7)

where the mass term can be ignored, and the charge density ρe is constant throughout the
charged sphere. Thus, even if we use all the observable energy of the universe, theoretically
speaking, we cannot shrink pure 1.4 × 1031 Coulomb electrons to a smaller space, even a
single point. As we know, a black hole cannot obtain so much energy before collapsing
or compressing everything into a singularity. Thus, in this case, the black hole has a
finite-sized nucleus. The result is possibly used for the charged star.

2.3. A Charged White Dwarf Star Consisting of an Interacting Fermi Electron Gas

Since a lot of black holes evolve from stars with finite energy, the initial black hole
should also have finite energy. Theoretically speaking, the black hole should have a finite-
sized nucleus in it. Here, we adopt the part of the charged white dwarf model at absolute
zero temperature where ϵN interacting Fermi electrons with ϵ ≫ 1 and N/2 helium nuclei
coexist at the final stage of a superstar to prove it [45,46]. The volume of the star with a
radius of R0 is

V0 =
4
3

πR3
0, (8)

and the total mass of the star is

M ≈ (ϵme + 2mn)N ≈ 2mnN, (9)

where me is the electron mass, and mn is the neutron mass. Then, at temperature
T = 0 K, the total kinetic energy of the Fermi electron gas in the ultra-relativistic condition
is as follows [46]:

Ue ≈
2πV0m4

e c5

h3

(

p f

mec

)4

=
2πV0 p4

f c

h3 =
3ϵNhc

4

(

3ϵN

8πV0

)1/3

=
3
4

ϵNcp f , (10)

where the momentum of the Fermi electron is

p f = h

(

3ϵN

8πV0

)1/3

. (11)

The total kinetic energy of helium nuclei is almost zero, because they are Boson gas
able to occupy the same lowest-energy state. The total energy of the star without Coulomb’s
energy at the final stage is

Utotal ≈ Ue + ϵNmec2 + 2Nmnc2 + Ug

≈ 3ϵNhc
4

(

3ϵN
8πV0

)1/3
+ ϵNmec2 + 2Nmnc2 + Ug,

(12)

where the gravitational mass function M of a homogeneous star is as follows [39,42,43]:

2GM

c2r
= 1 − e−λ +

KGQ2

c4r2 , (13)
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where e−λ is one metric potential in the Reissner–Nordström metric. Therefore, for the
uncharged case of Q = 0, the self-energy calculated by considering an inhomogeneous star
with a radius of R is

Ug =
∫ R

0
4πc2ρ(r)

[

1 − e−λ(r)
]

2
dr =

∫ R

0

G
[

4πr2ρ(r)dr
]

r

∫ r

0
4πr′2ρ

(

r′
)

dr′. (14)

For the homogeneous white dwarf star, the above equation gives

Ug =
3GM2

5R
≈

3G(2mnN)2

5

(

4π

3V0

)1/3

. (15)

Later, we will use energy conservation to discuss whether the singularity model in the
black hole is reasonable or not.

2.4. The Possible Black Hole Solutions of the Core Matter

Next, we consider one negatively charged case again, where some interacting Fermi
electron gas exists at the center of the black hole, to check whether there could be a
singularity at the center or not. This means negative charges are more prevalent than
positive ones, and the center consists of a neutral part and the interacting Fermi electron
gas. Equation (10) tells us that Ue has infinite energy when V0 is close to zero. However,
electron gas cannot become a singularity point because it needs infinite energy, as shown
in Equation (6). When discussing gravitational collapse [11,12,14], the interacting Fermi
electron gas serves as a good example to check whether gravitational collapse is reasonable
or not [47].

Then, we use a neutron star to discuss another possibility—forming a black hole.
General Relativity is important in the high-density regions of white dwarfs and neutron
stars. Considering the spherically symmetric metric, the general relativistic equations of
hydrostatic equilibrium include the Tolman–Oppenheimer–Volkoff (TOV) form [31,48–53]:

dp(r)

dr
= −

G

r2

[

ρ(r) +
p(r)

c2

][

m(r) + 4πr3 p(r)

c2

][

1 −
2Gm(r)

rc2

]−1

, (16)

and
dm(r)

dr
= 4πr2ρ(r). (17)

When discussing a neutron star, neutrons play a main role. Theoretical studies of pure
neutron matter derived from the nuclear many-body problem using two- and three-body
potentials fitted to laboratory measurements of nuclear properties by experimental nucleon–
nucleon (NN) scattering data indicate the density of nuclear matter inside a large nucleus
as 208Pb~ns = 0.16 nucleon/fm3 or ρs = 2.7 × 1014 g/cm3 (=2.7 × 1017 kg/m3) [33,51–53].
Based on these values, neutron stars are estimated to have densities up to ~7ρs [33]. How-
ever, this reveals the prediction of the central pressure close to 625 MeV/fm3 when the
central density approximates 8.5ρs, calculated by the hadronic equation of state (EOS) [33].
This central pressure value is equal to 1035 Pascals, which is the same as the inside pressure
of the proton experimentally reported [35]. Therefore, we can expect the central density
of a neutron star to be at least 8.5ρs when considering the pressure equilibrium. On the
other hand, it is reported that one demonstration of the hadronic EOS consists of two poly
-tropes (i.e., p = p0ργ) [33], where γ is the polytropic exponent, also called the adiabatic
index [54]. The two exponents, γ1 = 4/3, valid for the nuclear matter at densities below
ρs/3, and γ2 = 3, are connected at the transition pressure pt = pn/8 and baryon density
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ρs/2, where the pressure pn = 250 MeV/fm3 = 1035.8 dyne/cm2 [33]. These best-fit EOS
parameters results in scaling between radius R and mass M as follows:

R ∝ p
1/(3γ−4)
0 M(γ−2)/(3γ−4) (18)

or
M ∝ p

1/(2−γ)
0 R(3γ−4)/(γ−2). (19)

If the proportional constant K is considered in Equation (19), mathematically speaking,
it will give possible conditions under which this neutron star becomes a black hole at
R = RS. Then, the R equation satisfying R = RS is given by

RS =
2GKp

1/(γ−2)
0 R

(3γ−4)/(γ−2)
S

c2 (20)

or

RS = p
−(2γ−2)
0

(

c2

2GK

)(γ−2)/(2γ−2)

. (21)

Explicitly, this expression reveals RS is dependent on the proportionality of K and γ

and has a singularity at γ = 2, which should be avoided and unused. When γ is determined,
the smaller K is, the larger RS. Besides this, there is another division using three-polytropic
pieces to fit a fixed-region EOS [52–54]. In this piecewise–polytropic EOS, each piece
is specified by two parameters, including the density ρi and the polytropic exponents
γi for I = 1, 2, and 3 [52–54]. These six parameters, plus the core–crust transition density ρ0,
create a total of seven parameters used in this fitting EOS [52]. In these pieces, the pressure
p and energy density ε are continuous everywhere, and the pressure and energy density
within ρi ≥ ρ ≥ ρi-1, for i = 1–2, and ρ ≥ ρi-1, for i = 3, satisfy the following [52–54]:

p(ρ) = pi

(

ρ

ρi

)γi

(22)

and

ε =
p

γi − 1
+

(

εi−1 −
pi−1

γi − 1

)

ρ

ρi−1
, (23)

where

γi =
ln(pi/pi−1)

ln(ρi/ρi−1)
. (24)

A good fit is found for three polytropic pieces with fixed divisions at ρ1 = 1.85ρs and
ρ2 = 2ρ1 = 3.70ρs [54]. The third density boundary ρ3 is chosen to be 2ρ2 [52,54]. Because
ρ0 < ρ1 is required in this polytropic–piecewise EOS, the value ρ0 = 2 × 1014 g/cm3 is chosen
as the first density parameter in the same study [53]. There is another choice of ρ0 as ρs/2.7
or 1014 g/cm3 [52]. The corresponding p1, p2, and p3 for the EOS FPS are 1034.283, 1035.142,
and 1035.925 dyne/cm2, respectively [53]. The other parameters for the EOS AP3 are 1034.392,
1035.464, and 1036.452 dyne/cm2, respectively [53]. Using these parameters, three polytropic
exponents can be calculated for three polytropic pieces by applying Equation (24). Actually,
not only npeµ matter has been discussed, but also hyperons, pions, Kaon condensate, and
quark matter have also been shown the parametrized EOSs [53]. All the candidate EOSs
perform very close to trends, and some of them even crisscross each other, as shown in
Figure 2. Because the central pressure can be as high as 1035 Pascals or 625 MeV/fm3, the
corresponding central mass density is at least 8.5ρs. The three-polytropic EOS is bound by
ρ3 = 2ρ2 = 7.4ρs, which is below our requirement. The ρ-p relation is even considered the
central density of 20ρs [51]. Therefore, for simplicity, we adopt a unified model to describe
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the polytropic EOS for the neutron star as the red line plotted in Figure 2, and it can extend
to ρ > 9ρs = 2.43 × 1015 g/cm3. This polytropic EOS has the form

log p − log p0 =
4.2
1.5

(log ρ − log ρ0) (25)

or

p = p0

(

ρ

ρ0

)2.8

, (26)

where ρ0 = ρs/2.7 = 1014 g/cm3 and p0 = 1032.7 dyne/cm2 = 0.2485 MeV/fm3. In addition,
the γ = 3 polytropic EOS is denoted by the yellow line [51].

Figure 2. Pressure versus rest mass density for the set of candidate EOSs containing npeµ matter,
hyperons, pion, Kaon condensates, and quark matter [54]. All these EOSs are performed close to each
other, and some EOSs are even crisscrossed. For simplicity, we adopt a unified model to represent the
p-ρ relation for the neutron star, which is drawn using a red line. The yellow line indicates the γ = 3
polytropic EOS (reuse and permissions license from the American Physics Society, 2025).

Then, Equation (26) gives

dρ(r)

dr
= −

(

dp

dρ

)−1 G

r2

[

ρ(r) +
p(r)
c2

][

m(r) + 4πr3 p(r)
c2

]

[

1 − 2Gm(r)
rc2

] . (27)

Equation (27) can be solved numerically as long as the central density is given. On the
other hand, substituting Equation (26) into Equation (16) directly gives the m-ρ relation

m(r) =



























[

ρ(r)+
p0
c2

(

ρ(r)
ρ0

)γ

γ
p0
ρ0

(

ρ(r)
ρ0

)γ−1( dρ(r)
dr

)

]

4πr
p0
c2

(

ρ(r)
ρ0

)γ
+ 1

G

2r
c2 −

[

ρ(r)+
p0
c2

(

ρ(r)
ρ0

)γ

γ
p0
ρ0

(

ρ(r)
ρ0

)γ−1( dρ(r)
dr

)

]



























r2, (28)

where γ = 2.8. Because (dρ/dr)< 0 in the neutron star, the denominator is positive. Once
dρ/dr in Equation (27) is obtained, then m(r) in Equation (28) can be calculated, where
ρ(r) is evaluated by iteration based on the finite-difference method. In our simulations, the
radial difference ∆r of 10−3 m is used for calculations. This ∆r is sufficiently convergent
that the calculations of ∆r = 10−1 are almost the same as those of ∆r = 10−3. If the condition
is satisfied, then the neutron star can be treated as a non-rotating and uncharged black
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hole with a radius of r. Here, the Schwarzschild radius RS is dependent on mass m(r) and
radius r. When equality in Equation (29) is considered, substituting Equation (28) into
Equation (28) yields

r ≤
2Gm(r)

c2 = RS (29)

which, when satisfied, the neutron star can be treated as a non-rotating and uncharged
black hole with a radius of r. Here, the Schwarzschild radius RS is dependent on mass m(r)
and radius r. When equality in Equation (29) is considered, substituting Equation (28) into
Equation (27) gives









ρ(RS) +
p0
c2

(

ρ(RS)
ρ0

)γ

γ
p0
ρ0

(

ρ(RS)
ρ0

)γ−1
(

dρ(r)
dr

∣

∣

∣

r=RS

)









[

1 + 8GπR2
S

p0

c4

(

ρ(RS)

ρ0

)γ]

= 0, (30)

If only the p-ρ relation like Equation (22) or Equation (26) is used, there is no solution
of ρ(RS) = 0 for the black hole for γ ≥ 2, which is revealed in Equation (30). A reachable
situation of ρ(RS) = 0 at r = RS is given for γ < 2. One possibility for fixing this situation
is to correct the expression of P(r) by adding one or more terms of order n with n < γ. A
simple correction is to add a term of −kc2ρ(r), where k is a positive constant, and then
Equation (30) becomes















(1 − k)ρ(RS) +
p0
c2

(

ρ(RS)
ρ0

)γ

[

γ
p0
ρ0

(

ρ(RS)
ρ0

)γ−1
− kc2

](

dρ(r)
dr

∣

∣

∣

r=RS

)















[

1 −
8GπR2

S

c2 kρ(RS) + 8GπR2
S

p0

c4

(

ρ(RS)

ρ0

)γ
]

= 0, (31)

and, mathematically speaking, it gives a few possible solutions, including one at ρ(RS) = 0.
Then, the m-ρ relation becomes

m(r) =































[

(1−k)ρ(r)+
p0
c2

(

ρ(r)
ρ0

)γ]

(4πr)
(

γ
p0
ρ0

(

ρ(r)
ρ0

)γ−1
−kc2

)

(

dρ(r)
dr

)

[

p0
c2

(

ρ(r)
ρ0

)γ
− kρ(r)

]

+ 1
G

2r
c2 −





(1−k)ρ(r)+
p0
c2

(

ρ(r)
ρ0

)γ

(

γ
p0
ρ0

(

ρ(r)
ρ0

)γ−1
−kc2

)

(

dρ(r)
dr

)



































r2. (32)

Except for ρ(r) = 0, the other possible zero solution in Equation (31) obeys

[

1 −
8GπR2

S

c2 kρ(RS) + 8GπR2
S

p0

c4

(

ρ(RS)

ρ0

)γ
]

= 0, (33)

or

(1 − k)ρ(RS) +
p0

c2

(

ρ(RS)

ρ0

)γ

= 0 (k > 1), (34)

which can present the possibility of m(RS) = 0 in Equation (32). Equation (34) gives a
solution of a Schwarzschild black hole if we can find the mass density such that

ρ(RS) =

[

(k − 1)
c2

p0

]

1
γ−1

ρ
γ

γ−1
0 . (35)

According to [55], a similar ad hoc term also appears in the MIT bag model, which
would be a precedent and also a proof that our proposal is not groundless.

On the other hand, some demonstrations using Equation (33) are shown in Figure 3.
One γ case is calculated and shown in Figure 3, where the central density ρc is between
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2.0 × 1018.0 and 1.1 × 1019.0 kg/m3. When m(r) in Equation (28) is applied, it is easy to
accomplish by changing the value of γ. In this γ case, γ = 2.80 in Figure 3. The green
line represents the star’s radius where r = RS. Since Equation (16) or (27) describes a non-
rotating and uncharged star, r = RS is the limit of possible solutions due to the denominator.
In Figure 3, ρc = 8.0 × 1019.0 kg/m3 is exhibited, which corresponds to the furthest left
curve, and ρc = 1.1 × 1019 kg/m3 corresponds to the furthest right curve, so that the radius
of the black hole at ρc = 8.0 × 1019.0 kg/m3 is smaller than that at ρc = 1.1 × 1019.0 kg/m3.
In our calculations, the ratio of the star’s radius to RS is 1.14365 at ρc = 1.1 × 1019.0 kg/m3

and 1.12547 at ρc = 8.0 × 1019.0 kg/m3, and the ratio limitation is convergent to 9/8 = 1.125,
as shown in the previous report [39].

 

Figure 3. The calculations of the Schwarzschild radius RS at different radii r according to the TOV
equation, where ρc is 1.1 × 1019.0 and 8.0 × 1019.0 kg/m3, respectively. The green line represents the
black hole criterion, where the star’s radius r = RS. The two r-RS relations consider the parameters of
p0 = 1032.7 dyne/cm2, ρ0 = ρs/2.7 = 1014.0 g/cm3, and γ = 2.8.

2.5. Proposing a Possible Black Hole with a Finite-Sized Core Structure

When considering the charged effect, the exterior spacetime of a charged star can be
described by the Reissner–Nordström metric [38–43,56–60]. The Einstein–Maxwell stress
tensor of the isotropic fluid and electromagnetic field in terms of the Faraday–Maxwell
tensor Fµν = ∂µAν − ∂νAµ is as follows [39,41,42,56,57,59,60]:

T
µ
ν =

(

P + ρc2
)

uµuν + Pδ
µ
ν +

1
4π

(

FµαFαν −
1
4

δ
µ
ν FαβFαβ

)

, (36)

where Aµ is an electromagnetic four potential, uµ is the contravariant four-velocity of the
fluid, ρc2 is the energy density of the fluid, and P is the isotropic pressure in the fluid. With
the electric charge density ρe in the matter, the total charge is as follows [40–43,56,57]:

Q(r) = r2E(r)
∫ r

0
4πr′2ρe

(

r′
)

[

1 −
2Gm(r′)

c2r′
+

KGQ2(r′)

c4r′2

]−1/2

dr′. (37)

The above gravitational mass m(r) inside the sphere of radius r represents the energy
conservation measured in the star’s frame. One can find that another of Einstein’s equations
gives a differential equation for m(r) [38,39,56,59,60]:

dm(r)

dr
= 4πρ(r)r2 +

KQ(r)

c2r

dQ(r)

dr
. (38)

Since m(r) represents the gravitational mass inside the sphere of radius r, Equation (38)
represents the energy conservation measured in the star’s frame [39]. Using the covariant
conservation of the mass–energy stress tensor, Tν

µ
;µ = 0, one gets the hydrostatic equilib-
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rium equation that determines the global structure of electrically charged stars. Then, we
obtain the modified TOV equation as follows [39,41–43,56,59,60]:

dP(r)

dr
= −

2G

r2

(

ρ(r) +
P(r)

c2

)

[

m(r) + 4πr3

c2

(

P(r)−
KQ2(r)
4πc2r4

)]

[

1 − 2Gm(r)
c2r

+ KGQ2(r)
c4r2

] +
KQ(r)

4πr4

dQ(r)

dr
. (39)

Furthermore, if an incompressible fluid is considered, ρ(r) is a constant throughout
the body. Therefore, the energy density is also constant in the whole star. Based on this, the
small electric-charge effect on mass is discussed next. As mentioned before, the zero-charge
case in the Reissner–Nordström metric corresponds to the interior Schwarzschild structure.
When a few electric charges exist in the star, the mass distribution is perturbed according
to Equation (38). Then, the charge Q(r) is treated as a small perturbation, and mass and
charge take the following forms [39]:

Q(r) = Q1(r) (40)

and
m(r) = m0(r) + m1(r), (41)

where m0(r) is the mass of the uncharged star, and Q1(r) and m1(r) are the perturbed small
charge and mass distributions to be determined. Equation (41) reveals that the total mass
in the electric-charge case is more than in the uncharged case. Thus, the increasing mass
can improve the optimized ratio of r to RS when a few electric charges are in the neutron
star. Next, we can define a characteristic length, Rc, as follows [39]:

R2
c =

3c2

8πGρ
, (42)

then, the r-dependent mass within the sphere of radius r is

m0(r) =
c2r3

2GR2
c
=

c2Rc

2G

(

r

Rc

)3

=
c2Rc

2G
x3, (43)

where a dimensionless variable x = r/Rc is introduced. It has been proved that the so-called
Schwarzschild limit in an uncharged and non-rotating star yields the following [39]:

c2R

GM
=

2R

RS
=

9
4

, (44)

which is the same as the limit of our simulations that R/RS = 1.125. Even more, a
similar upper-ratio limit for the charged and non-rotating star has been given by the
following [41,61]:

RS

2R
≤





2R2 + 3
(

KGq2

c4

)

9R2 +
2

9R

√

√

√

√R2 + 3

(

KGQ(R)2

c4

)



, (45)

where Q(R) is the total charge of the star. Suppose the electric charge density is proportional
to the energy density in the small-charged effect, that is,

ρe = α

√

G

K
ρ, (46)
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where α is a proportional constant. Then, the electric-charge distribution is given by the
following [39]:

Q1(x) =
3
4

α
(

sin−1 x − x
√

1 − x2
)

, (47)

and the mass distribution is as follows [39]:

m1(x) =
3
8

α2
(

3x − x3 − 3
√

1 − x2sin−1 x
)

, (48)

if natural units K = G = c = 1 are used. Finally, Equation (44) becomes

Rc2

GM
=

9
4
− 1.529α2. (49)

In Equation (49), it seems that α = 0.4044 gives the value on the right side equal
to 2.00 but is out of the small-charge range. Actually, it has been pointed out that this
quasiblack hole configuration is given by the extremal charged case where α is as high
as 0.99 [38]. On the other hand, a smaller value has been reported for a similar case, a
charged perfect fluid model with high compactness [55]. In this model, the minimum value
in Equation (45) gives

1
umax

=
c2Rmin

GM
=

2Rmin

RS
=

1
0.5337972212

= 1.87337 < 2, (50)

in which the radius of the compact star is smaller than the Schwarzschild radius. In this
minimum condition, the total charge is Q(Rmin) = 1.648824 × 1020 C, and the larger event
horizon is

r+ =
GM

c2 +

√

G2M2

c4 −
KGQ(Rmin)

2

c4 ≈ 1.194
GM

c2 = 0.597RS, (51)

where M = M⊙. In this reported case, r+ < Rmin < RS. According to this, a double-
characteristic structure, based on the perfect fluids, is proposed to explain the existence of
the black hole, as shown in Figure 4. This kind of black hole has a total charge of zero or
nonzero and may have three regions or more. In this structure, the inner region, denoted
by I, is a positively charged region, and almost the whole mass of the black hole exists
here. The middle region, denoted by II, is a region including negative charges, such as
electrons. The outermost region, denoted by III, is another negatively charged layer, and
both Region II and Region III can balance the positive charges in Region I. The advantage of
the composition of Region II and Region III in forming a black hole is the electron, because
its mass is only about 9.1 × 10−31 kg. However, there is a very strong Coulomb attraction
between Region I and Region II and Region III. If electrons in Region II and Region III
are initially at rest, they will be quickly attracted toward Region I. Therefore, electrons
of Region II and Region III aim to move ultra-relativistically around Region I and move
corotating or counter-rotating, respectively. This situation is similar to the M87 black hole
surrounded by a hot disk accretion [17].

On the other hand, the possible constitutions in Region I are mostly neutrons with a
few Fe nuclei, 56Fe. The appropriate metric used in Region I, Region II, and Region III is
the Kerr–Newman metric [62] for all possible cases in the three regions. On the other hand,
the appropriate metric outside Region III is also the Kerr–Newman metric [63] because
all charges enclosed by the outer dashed circle could be zero or nonzero, and the total
angular momentum could also be zero or nonzero. Therefore, the charged term RQ,new

and the rotation term anew of the finite-size core structure are zero or nonzero, depending
on the conditions of Region II and Region III. The whole negative charges in Region II
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and Region III are supposed to move in circular orbitals, corotating and counter-rotating,
respectively. Because the minimum radius is Rmin = 0.9367RS for the case of the total
charge Q = 1.648824 × 1020 C [55], these negatively charged regions have to exist between
Rmin and RS to ensure that the whole structure is within the Schwarzschild radius RS and
satisfies the requirement of a Schwarzschild black hole, where RQ,new and anew are both zero.
The equatorial motions of charged test particles in the Kerr–Newman metric have been
studied [63–67], in which the case of l = 0 in the Kerr–Newman–Taub–NUT metric is also
used in our research here. Based on these reports [63–67], our model has strong support.

 

Figure 4. The cross-section structure of a double-characteristic black hole with a total charge of
zero or nonzero. This kind of black hole has a positively charged Region I, possibly consisting of
neutrons with a few Fe nuclei specially marked by red frame, which is surrounded by negative
charges corotating or counter-rotating, such as electrons, denoted by Region II. Their outermost thin
layer consists of negative charges, denoted by Region III. These negative charges, such as electrons,
may move corotating or counter-rotating around Region I and Region II. If electrons move corotating
in Region II, then they move counter-rotating in Region III, and vice versa. The total negative charges
in Region II and Region III balance the total positive charges in Region I. The appropriate metric used
in all space, including Region I, Region II, and Region III, is the Kerr–Newman metric for all possible
cases in three regions. Both Region II and Region III exist between 0.9367RS and RS, in which the
minimum radius Rmin = 0.9367 RS of Region II and the total positive charge Q = 1.648824 × 1020 C

in Region I are considered here [55]. Due to this structure of the black hole, the radius of Region

III is required to be smaller than the outer event horizon r+ =
(

RS +
√

R2
S − 4a2

new − 4R2
Q,new

)

/2,
which is one of the criteria of a Kerr–Newman black hole. Therefore, a black hole of a finite-size core
structure is reached by our model.

Then, we start with the Kerr–Newman metric to discuss the model mentioned above.
This starting point is chosen because Region III includes rotating charges, so it is better
to describe the spacetime using the Kerr–Newman metric than the Reissner–Nordström
metric. The Kerr–Newman metric is as follows [25,44,68]:

ds2 = ∆−a2sin2θ
ρ2 c2dt2 −

ρ2

∆
dr2 − ρ2dθ2 + 2acsin2θ

(

1 − ∆−a2sin2θ
ρ2

)

dtdϕ

−
[

ρ2 + a2sin2θ
(

2 − ∆−a2sin2θ
ρ2

)]

sin2θdϕ
2
,

(52)

where
ρ2 = r2 + a2cos2θ, (53)

∆ = r2 − rRS + a2 + R2
Q, (54)
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and

R2
Q =

KGQ2

c4 . (55)

The term related to angular momentum is a = J/Mc. Three conservation constants of
motions for a test particle of mass m and electric charge q can be obtained using Hamiltonian
theory [65,66], which are

gµνdxµdxν = −m2c2, (56)

E = −πt = −gtt

.
t − gtϕ

.
ϕ + qAt, (57)

and
L = πϕ = gϕt

.
t + gϕϕ

.
ϕ − eAϕ, (58)

where the vector potential for electromagnetic fields is as follows [65–67,69]:

A = Aµdxµ =
Qr

ρ2

(

dt − asin2θdϕ
)

. (59)

The equation of motion is

m
Duµ

Dτ
= eF

µ
ν uν, (60)

where F
µ
ν = ∂ν Aµ − ∂µ Aν. Using the general form of the Hamilton–Jacobi equation, the

following differential equations governing the motion of the charged test particle can be
deduced [63–67,70]:

ρ2 dr

dλ
= ±PR(r)

1/2, (61)

ρ2 dθ

dλ
= ±V1/2, (62)

ρ2 dϕ

dλ
= −

(

aEsin2θ − cL
)

sin2θ
+

a
[

E
(

r2 + a2
)

− acL + KqQr
]

∆
, (63)

and

ρ2 dt

dλ
=
(

r2 + a2
)[

E
(

r2 + a2
)

− acL + KqQr
]

−
(

a2Esin2θ − acL
)

, (64)

where λ is the affine parameter related to the proper time τ of the particle divided by its
mass m [63,67,70,71]; the Carter constant is zero here [63–65,70]:

PR(r) =
[

E
(

r2 + a2
)

− acL − KqQr
]2

− ∆

[

m2c4r2 + (cL − aE)2
]

, (65)

and

V =
[

(cL − aE)2 − m2c4a2sin2θ
]

−

(

aEsin2θ − cL

sin θ

)2

. (66)

We consider the circular orbits in Figure 4, where the satisfied conditions are

PR(r) = 0 (67)

and
dPR(r)

dr
= 0. (68)

Three orbital configurations have been discussed at θ = 0, π, θ = π/2, and
θ = ±

√

K/a2, where K and a are defined in [65]. Given the latitudinal equation of motion,
it follows that the circular orbit passing through θ = 0 and π only exists when Q = 0 [63,65].
Therefore, in our case of Q ̸= 0, we simply consider the circular motion in the equatorial
plane. In the case of particles with nonzero mass and a high specific charge, the above two
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conditions for the circular orbitals give two good approximate solutions for E and L, which
are shown below [63,65]:

E± =

(

−
KqQ

r

) RSr − 2a2 − 2R2
Q ± 2a

√

r2 − RSr + a2 + R2
Q

2r2 − 3RSr + 4a2 + 4R2
Q ± 4a

√

r2 − RSr + a2 + R2
Q

(69)

and

L± =

(

−
KqQ

cr

) a
(

RSr − 2a2 − 2R2
Q

)

± 2
(

r2 − a2
)

√

r2 − RSr + a2 + R2
Q

2r2 − 3RSr + 4a2 + 4R2
Q ± 4a

√

r2 − RSr + a2 + R2
Q

. (70)

If the rotation of the charged test particle on the equatorial plane is counter-rotating,
then the energy and angular momentum of the charged test particle are calculated with the
sign “−” in the above two equations. Otherwise, the sign “+” is chosen if the charged test
particle is corotating. In this metric, the frame-dragging effect is

Ω =
uϕ

ut
= −

gϕt

gtt
. (71)

Although it exists in the Kerr–Newman source, the circular orbital can be corotating
(prograde) and counter-rotating (retrograde) in the locally nonrotating frame [63,65,67,71].
Then, we can calculate the energy E and L by using the known a and RQ. According to [55],
the total charge Q = 1.648824 × 1020 C gives

RQ =

√

KGQ2

c4 = 0.4808 RS. (72)

In our model, we consider electrons moving in circular orbitals on the equatorial plane,
surrounding Region I at radius r between 0.9367 RS and RS. When Region I is static, the
rotation term is a = 0, and the charged term is RQ = 0.4808 RS are used in the E and L

calculations. The spacetime in Region I is described by the Kerr–Newman metric. Because
the negative charges in Region II and Region III move ultra-relativistically surrounding
Region I, the spacetime in and outside Region III is described by the Kerr–Newman metric.
Therefore, the nonzero new rotation term anew exists, which is produced by the surrounding
negative charges. A simple choice of the negative charge in Region II and Region III is the
electron, whose mass is very tiny and only 9.1 × 10−31 kg, so we consider electrons as the
negative charges in Region II and Region III.

Next, we discuss how to construct a finite-size structure to satisfy the criterion of a
Kerr–Newman black hole. The event horizons of the Kerr–Newman black hole, determined
by ∆ = 0, are

r± =
RS ±

√

R2
S − 4a2

new − 4R2
Q,new

2
, (73)

where r- is the inner event horizon, and r+ is the outer event horizon. If the Kerr–Newman
black hole is expected, then it needs r+ ≥ Rmin = 0.9367 RS at least. In order to reach this
criterion, small and small anew and RQ,new are better. Based on this, we use negative charges
in Region II and Region III to balance the positive charges in Region I, so the term RQ,new

can be reduced to zero. However, due to the surrounding electrons, the nonzero angular
momentum of electrons gives rise to a nonzero anew. For the purpose of decreasing the
new rotation term anew, both corotating and counter-rotating electrons are considered. The
simple situation is that the corotating and counter-rotating electrons are equal, and their
total charges are Qe = 1.648824 × 1020 C. When the rotation term a of Region I and Region
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II is zero, the angular momenta of the corotating and counter-rotating electrons are the
same in magnitude, which are

L±(a = 0) = ±

(

−
KqQ

cr

)2r2
√

r2 − RSr + R2
Q

2r2 − 3RSr + 4R2
Q

. (74)

Therefore, if these two kinds of electrons are equal in number and move in opposite
directions at very close orbitals, then the summation of their angular momenta is ~0. In the
simple situation, we have anew ∼ 0 and RQ,new ∼ 0, so

r+ =
RS +

√

R2
S − 4a2

new − 4R2
Q,new

2
∼= RS > 0.9367RS. (75)

In this case, the event horizon is larger than the radius of Region III and includes
Region I and Region II. The total number of electrons is N = 1.029 × 1039. As a result, a
Kerr–Newman black hole with anew = 0 and RQ,new = 0, or a Schwarzschild black hole,
is formed by using our model shown in Figure 4. In such a case, the radii of the counter-
rotating and corotating electrons are denoted by r1 and r2, respectively. The radii satisfying
r+ ≥ max(r1, r2) are drawn in Figure 5a, where the red points are the allowed radii for the
whole structure, including Region I, Region II, and Region III, which can be black holes.
More allowed radii are close to Rmin = 0.9367 RS, and the allowed radii decrease when
they are close to RS. On the other hand, the corresponding orbital energy and angular
momentum for the counter-rotating (red) and corotating (green) electrons are plotted in
Figure 5b,c, where the very small rotation term a ≤ 0.03 RS is considered with a constant
RQ = 0.48 RS, and the radii are between 0.938 RS and 1.007 RS. Because the surrounding
electrons are attracted by the positive charges, the orbital energy is negative, regardless
of whether it is a counter-rotating or corotating electron. Both kinds of electrons have the
same energy when a = 0. In Figure 5c, the angular momenta show that the counter-rotating
electron has positive angular momentum, and the corotating electron has negative angular
momentum by definition. When a = 0, both kinds of electrons have the same angular
momentum in magnitude.

Not only the Schwarzschild black hole but also the Kerr–Newman black hole can be
formed in our model. Next, we consider the occupation of the counter-rotating electrons is
α1N and the occupation of the corotating electrons is α2N, where α1 ≥ 0 and α2 ≥ 0, and
α1 + α2 is not necessarily equal to one. If α1 + α2 < 1, the finite-size structure, including
Region I, Region II, and Region III, is positively charged. Otherwise, if α1 + α2 > 1, the
finite-size structure is negatively charged. Therefore, if α1 + α2 ̸= 1, we have a nonzero total
charge Qnew = (1 − α1 − α2)Q and

R2
Q,new =

KG(1 − α1 − α2)
2Q2

c4 = (1 − α1 − α2)
2R2

Q. (76)

If L1 is the angular momentum of the counter-rotating electron and L2 is the angular
momentum of the corotating electron, then the total angular momenta are

L = α1NL1 + α2NL2, (77)

and the new corresponding rotation term of the finite-size structure is

anew =
L

[M + (α1 + α2)Nme]c
∼=

L

M⊙c
. (78)



Symmetry 2025, 17, 1431 17 of 24

  

(a) (b) 

  

(c) (d) 

Figure 5. (a) When α1 = α2 = 0.5, the radii of the counter-rotating and corotating electrons, denoted
by r1 and r2, respectively, satisfy r+ ≥ max(r1,r2) here. (b) The corresponding orbital energy for the
counter-rotating (red) and corotating (green) electrons, where the very small rotation term a ≤ 0.03 RS

is considered with a constant RQ = 0.48 RS, and the radii are between 0.938 RS and 1.007 RS, where
both are plotted from up to down. (c) The corresponding angular momentum for the counter-rotating
(red) and corotating (green) electrons are plotted in Figure 5b,c, where the very small rotation term
a ≤ 0.03 RS is considered with a constant RQ = 0.48 RS, and the radii are between 0.938 RS and
1.007 RS, where the red parts are plotted from down to up, and the green parts are plotted from up to
down. (d) When α1 = 0.5 and four α2 values, 0.28 (purple), 0.34 (cyan), 0.45 (green), and 0.62 (yellow),
are chosen, the allowed radii r1 and r2 satisfying r+ ≥ max(r1,r2) are plotted. As α2 increases, the
trend of the allowed r2 decreases at the same r1.

In order to have a small anew, the values of α1 and α2 are expected to be close to each
other. Some allowed radii of the counter-rotating and corotating electrons are plotted in
Figure 5d, where α1 is fixed at 0.50, and four different α2 values, 0.28 (purple), 0.34 (cyan),
0.45 (green), and 0.62 (yellow), are chosen. As α2 increases, the trend of the allowed
r2 decreases at the same r1. In this case, of α1 = 0.50, the minimum α2 is 0.277 by our
calculations. In conclusion, our model can construct a black hole, and the property of the
black hole is dominated by the corotating and counter-rotating electrons, which makes the
black hole charged or uncharged and rotating or non-rotating.

Furthermore, the Schwarzschild radius is linearly proportional to m(RS) = M, so the
average density of a black hole is

ρ =
3c6

32πG3M2 . (79)

This shows that the average density is inversely proportional to the total mass square.
Therefore, the higher the average density is, the lower the total mass and radius.
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2.6. Energy Conservation Between Different Energy Transformations

In the following section, we consider the possible size of a neutron star. Due to
the supernova producing ultra-high pressure, 2N neutrons are supposed to be produced.
Because of the supernova, in fact, αN neutrons transfer to the radiation energy and work
to compress the materials, and (2 − α)N neutrons are left there. The volume is changed
from V0 to V, and the radius from R to R’. Then, the total kinetic energy of the rest (2 − α)N
neutrons within the volume V in the ultra-relativistic condition is as follows [46]:

UN ≈
2πVm4

nc5

h3

(

p f

mnc

)4

=
2πVcp4

f

h3 =
3(2 − α)Nhc

4

[

3(2 − α)N

8πV

]1/3

, (80)

where the momentum of the Fermi energy for the neutron gas is

p f = h

[

3(2 − α)N

8πV

]1/3

. (81)

Finally, the total energy of these (1 − α)N and (2 − α)N neutrons approximates to

Urest
total ≈ UN + (1 − α)Nmec2 + (2 − α)Nmnc2 + Urest

g

≈
3(2−α)Nhc

4

[

3(2−α)N
8πV

]1/3
+ (1 − α)Nmec2 + (2 − α)Nmnc2 + Urest

g ,
(82)

where the self-energy of gravity forming those (2 − α)N neutrons in the homogeneous
density distribution is

Urest
g =

3G(2 − α)2m2
nN2

5

(

4π

3V

)1/3

. (83)

Similarly, when we consider the inhomogeneous case, then the gravitational self-
energy of the star with a radius of R’ is

Urest
g =

∫ R′

0
4πc2ρ(r)

[

1 − e−λ(r)
]

2
dr =

∫ R′

0

G4πr2ρ(r)dr

r

∫ r

0
4πr′

2
ρ
(

r′
)

dr′, (84)

where R′ < R, and e−λ(r) is the metric potential in Equation (1). Considering energy
conservation, it yields

Urest
total <

3(2N)hc

4

[

3(2N)

8πV0

]1/3

+ Nmec2 + 2Nmnc2 + Ug < ∞. (85)

Equation (85) clearly shows that V > 0 and V < V0, so the (2 − α)N neutrons form a
finite-size volume, and they cannot shrink to a point.

2.7. The Upper Limit of the Core Size in the Black Hole

In fact, it has been revealed that the upper-mass limit of the white dwarf star, calculated
using the homogeneous density model, is close to the inhomogeneous density model by
considering dp/dr and dm/dr [45,46]. The correction involves multiplying the self-energy
in the homogeneous density model by a constant of 1.124 [45,46]. In such a compact star,
the homogeneous density model is a good approximation. Therefore, we can adopt the
homogeneous density in both Equations (14) and (84) for the compact star. Furthermore,
by ignoring the total energy of the remaining electrons, Equation (85) yields

αNmnc2 +

[

2(2)1/3 − (2 − α)(2 − α)1/3
(

1
β

)1/3
]

3Nhc
4

(

3N
8πV0

)1/3

+ 3Gm2
n N2

5

[

4 − (2 − α)2
(

1
β

)1/3
]

(

4π
3V0

)1/3
> 0,

(86)
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where V = βV0 with 0 < β < 1. When α is small, and considering the Taylor expansion to
the linear term for (2 − α)1/3, Equation (86) becomes

αNmnc2 + 2(2)1/3
[

1 −
(

1 − α
2

)(

1 − α
6

)

(

1
β

)1/3
]

3Nhc
4

(

3N
8πV0

)1/3

+ 3Gm2
n N2

5

[

4 −
(

4 − 4α + α2
)

(

1
β

)1/3
]

(

4π
3V0

)1/3
> 0.

(87)

After arranging the above equation, it yields

αmnc2(β)1/3 + 2
[

(β)1/3 − 1 + 2
3 α − 1

12 α2
]

3hc
4

(

3N
4πV0

)1/3

+ 3
5 Gm2

nN
[

4(β)1/3 −
(

4 − 4α + α2
)

](

4π
3V0

)1/3
> 0.

(88)

Then, solving α, the range is

max







0,

{

−(square root term)+

[

mnc2(βV0)
1/3+hc( 3N

4π )
1/3

+ 12
5 Gm2

n N( 4π
3 )

1/3
]}

[

hc
4 (

3N
4π )

1/3
+ 6

5 Gm2
n N( 4π

3 )
1/3
]







< α

< min







2,

{

(square root term)+

[

mnc2(βV0)
1/3+hc( 3N

4π )
1/3

+ 12
5 Gm2

n N( 4π
3 )

1/3
]}

[

hc
4 (

3N
4π )

1/3
+ 6

5 Gm2
n N( 4π

3 )
1/3
]







,

(89)

where the square root term is

square root term

=

{

[

mnc2(βV0)
1/3 + hc

(

3N
4π

)1/3
+ 12

5 Gm2
nN
(

4π
3

)1/3
]2

− 4
[

hc
8

(

3N
4π

)1/3
+ 3

5 Gm2
nN
(

4π
3

)1/3
][

3hc
2

(

3N
4π

)1/3

+ 12
5 Gm2

nN
(

4π
3

)2/3
]

[

1 − (β)1/3
]}1/2

.

(90)

This square root term depends on N, β, and V0. All other parameters are well-known
constants. This α range approximately gives the exhaust of neutron particles in the event of
a supernova. Equation (89) can estimate the mass of a black hole and its core volume by
considering the number of neutrons in the original star.

Then, according to Equation (90), we demonstrate two situations and theoretically
study the trend between the low limit α and β, as shown in Figure 6. The first situation is
the star radius r equal to R⊙, in which three cases of 2M⊙, 3M⊙, and 4M⊙ are considered
in this situation. In our calculations, three curves for the three cases of the first situation
are plotted in Figure 6—indigo (2M⊙), green (3M⊙), and red (4M⊙) curves from left to
right. These three cases are also circled and denoted by r = R⊙. The other three cases for
the second situation, circled and denoted by r = 0.1 R⊙ in Figure 6, are the indigo, green,
and red curves corresponding to 2M⊙, 3M⊙, and 4M⊙ from left to right. The radius of each
star in the first situation is 10 times larger than that of each star in the second situation.
Therefore, in the second situation, the density of the star is 1000 times larger than that of the
star with the same mass in the first situation. In both situations, the curves of the lightest
star (2M⊙) are leftmost, and the curves of the heaviest star (4M⊙) are rightmost. In these
curves, the low limit α means the minimum exhausting energy, and β represents the ratio
of the final volume to the initial volume for each star experiencing a supernova. If a smaller
final volume is expected after a supernova, the exhausting energy has to be greater than
that of the larger final volume because a lot of exhausting energy is used to compress the
initial volume to a smaller final one. In Figure 6, the low-limit α increases from 10% to 90%
when β decreases from about 10−13 to 10−19 for the 4-M⊙ case of the first situation, and
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from about 10−10 to 10−16 for the same case of the second situation. Theoretically speaking,
the denser star needs more energy to compress itself to a smaller volume than a less dense
star. For example, exhausting 10% mass or considering the low limit α= 0.2 can reach a
much smaller β of about 10−13 in the first situation than in the second situation, where β

is about 10−10, a much higher value. All these results are obtained by considering energy
conservation.

 

Figure 6. A comparison between α and β according to Equation (90). There are two groups plotted,
and the right group is 1000 times denser than the left group. Each group includes three cases where
the mass of the star is 2M⊙, 3M⊙, and 4M⊙ from left to right, and the radius of the star is the same in
each case. The results show that the denser star wastes more energy to reduce its size at the same
final volume.

Recently, the similarity between the neutron star and the black hole has been dis-
cussed [47]. The compression of neutrons and helium atoms under extreme pressure has
been studied [72,73]. Neutrons and protons are both baryons composed of quarks and
gluons. They have much ability to change their sizes, and the force inside them is a strong
interaction that is 1039 times larger than gravity. The experiment on the distribution of
pressure inside the proton also showed an average peak pressure of about 1035 Pascals near
the center of a proton [34]. This pressure greatly exceeds the pressure estimated by most
neutron stars. When we compress the remaining (2 − α)N neutrons, they become much
smaller, as shown in the quark-matter phase diagrams [74,75], and all the volume V is
within the event horizon of a black hole. In our discussions, we want to reveal the truth that
the so-called curvature singularity inside the black hole, such as r = 0 in the Schwarzschild
black hole, is a mathematical concept in the Schwarzschild metric that is not rooted in
a physical foundation. In traditional black hole theory, everything inside the black hole
inevitably reaches r = 0 due to strong gravity, without considering any physical reality, and
energy input and output. The evolution from a star to a black hole should follow energy
conservation, and the black hole reasonably has a finite-size nucleus in it, not a singularity.

3. Conclusions

In summary, the reasonableness of the singularity of the black hole is studied in this
paper. When we consider that everything in the black hole collects at a singularity, the
infinite density of mass, charge, gravitational energy, and electric energy is very nonphysical.
This gives rise to a question about why all masses, as well as all charges, gather at a point.
However, a black hole can evolve from a star with finite energy. Such a structure does not
obey energy conservation laws. If we believe in the singularity in the black hole, we believe
in the knowledge of the 1920s or 1930s, 100 years ago. At that time, people still did not
have deep ideas about neutrons, and they did not even know what a strong interaction and
quarks were. They just treated a mathematical solution as a real physical object without
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any believable proof of its physical truth. When we put the black hole and the Big Bang
together, we see very clearly that the singularity is a contradictory concept. The ultra-super
strong gravity of the singularity before the Big Bang affects the explosion and stops the
expansion of the universe.

Regarding singularity, an example of charged electrons is used to check whether
the singularity exists or not. The result clearly shows that regardless of how large the
energy of the charged electrons is, those electrons are very hard to shrink to a point,
physically speaking. They always have finite volumes discussed in statistical mechanics.
The singularity also tells us that gravitational energy and Coulomb’s energy are infinite
there. Since many black holes evolve from stars with finite energy, it is unreasonable to
have infinite energy for black holes. We also use a case of 1.4 × 1031 Coulomb electrons
at infinity to demonstrate that to collect those electrons in a sphere with a radius of 50 m
requires 2.114 × 1070 Joules, which is more than the energy in the observable universe. In
such a case, the distance between two electrons is larger than 10−15 m, whereas classical
electrodynamics is still useful. This case tells us that the traditional concept of gravitational
collapse cannot shrink those electrons to a singularity, and the process of the collection
is physical. We have to put in a lot of energy to gather those electrons in a small space.
Hence, the charged sources described by Kerr or Kerr–Newman metrics are not small in
terms of space because Coulomb’s force acts against the shrinking process. Thus, we use
neutron gases as the most likely constituents after a supernova to discuss their volume
based on energy conservation. The result is similar to what we already know about Fermi
electron gas. So, theoretically speaking, a black hole has a finite-size nucleus inside it,
not a singularity.

One important note for this paper is that a complex structure of a double-characteristic
black hole is proposed, where the total charge can be zero or nonzero. This kind of black
hole has a positively charged Region I, possibly consisting of neutrons with a few Fe nuclei,
which is surrounded by negative charges moving corotating or counter-rotating, denoted
by Region II and Region III. We follow the report with the finding that a charged and
non-rotating compact star with a mass of a solar mass and a radius of 0.9367 Rs can have
a charge as high as 1.648824 × 1020 Coulombs. Adopting these quantities in our model,
the spacetime in Region I is described by the Kerr–Newman metric. Within the outermost
layer, the spacetime is described by the Kerr–Newman metric, and the place outside the
outermost layer is also described by the Kerr–Newman metric. The counter-rotating and
corotating electrons in Region II and Region III can make the whole structure charged or
uncharged and rotating or non-rotating. Some allowed radii of the counter-rotating and
corotating electrons are given to reach the whole structure within the outer event horizon of
the Kerr–Newman black hole. Due to this structure, it reaches r+ ≥ max(r1,r2), so the black
hole is formed by our model. A simple case yields a Schwarzschild black hole when both
the counter-rotating and corotating electrons are equal, move on very close orbitals, and
the total charge of the whole structure is zero. In such a case, a finite-size structure in the
Kerr–Newman metric transforms into a Schwarzschild black hole. To sum up, our model
can construct black holes, and the properties of the black holes are dominated by corotating
and counter-rotating electrons, which make the black holes charged or uncharged and
rotating or non-rotating.
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