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We d iscuss the possibility of constructing out of par 

ABSTRACT 
" 

title creation 

and destruction operators local quantum fields which transform as repre- 

sentations of the homogeneous Lorentz group. Our immediate goal is to 

write down a consistent local quantum field theory which can simultan- 

eously describe many particles with different masses and spins. In the 

case that the field is a finite dimensional irreducible Iorentz tensor, 

we are able to carry through our program with no restrictions on the 

masses considered as functions of the spin, provided the usual connection 

between spin and statistics is satisfied. However, when the field trans- 

forms as a unitary irreducible representation of the homogeneous Lorentz 

group (an infinite dimensional representation), the requirement of local- 

ity, along with the physical assumption that the masses are bounded below, 

m(j) 2 m. > 0, leads to the restriction that the masses are independent 

of the spin. This property is shown to hold when the transformation law 

of the field is taken to be an irreducible finite dimensional represen- 

tation@) a unitary irreducible representation. The physical consequences 

of this result and possible methods for evading it are discussed. Finally 

an appendix is included where the related problem of orthogonality pro- 

perties of timelike solutions to infinite component wave equations is 

examined. In particular, we show that when the solutions of such wave 

equations transform as unitary irreducible representations of the homo- 

geneous Lorentz group, only the Majorana representations support a scalar 

product, which is orthogonal for different spins. 
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1. INTRODUCTORY REMARKS 

Conventional studies of quantum field theories' have been directed 

toward the construction of fields which describe one particle of definite 

mass and spin. One has proceeded by examining finite dimensional spinors 

having appropriate properties under Lorentz transformations and then 

hastened to eliminate, in an invariant manner, any "extra" field components 

thus introduced. The traditional description of spin one fields, for 

example, introduces a four-vector object AP(x) and immediately subtracts 

off one degree of freedom by asking that AP(x) be divergence free. A 

notable exception to this ritual is the work of Weinberg 
2 

, who constructs 

fields for any spin with the trcorrect" number of components and, thus, 

has none to throw away. 

The intriguingidea of Regge poles3, or more explicitly, the possi- 

bility that particles of different spins and masses may be connected, 

opens for our consideration quantum field theories where the fields des- 

cribe a variety of particles with various masses and spins. Success in 

such studies would provide a compact, field-theoretic framework in which 

to examine the properties of Regge trajectories 
4 

. In this paper we inves- 

tigate the structure of such field theories. 

We have in mind using these fields to calculate a Lorentz invariant 

S-matrix via the Dyson-Wick prescription, so we shall require that they 

have simple properties under Lorentz transformations and be local in the 

sense of commuting or anti-commuting at spacelike separations. In parti- 

cular we shall address ourselves to the question of whether it is pos- 

sible to find local fields which transform as Lorentz tensors and are 

linear combinations of (Fourier transforms of) particle creation and 
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destruction operators. The method we employ has been advocated by a 

number of authors 5 and avoids reference to Lagrangians and field equa- 

tions by concentrating on the Lorentz transformation properties of the 

fields and the particle states they are to describe. 

We will show below that in the case where the fields are finite 

dimensional irreducible tensors, we can answer the question posed in 

the affirmative with no restrictions on the masses as a function of spin. 

In the instances where the fields transform as unitary infinite dimen- 

sional irreducible representations of the homogeneous Lorentz group, we 

will show that locality is a non-trivial restriction on the theory and 

present arguments that when the masses are bounded below by some mO > 0 

for all spin, then locality forces them to be independent of the spin. 

This latter result is also shown to be true for the circumstance where 

the field transforms as the direct product of an irreducible finite 

dimensional and an irreducible unitary representation of the homogeneous 

Lorentz group. 

In the next section we review the procedure for building the fields 

from the physical creation and destruction operators. Section III is 

devoted to a discussion of finite dimensional fields, and in Section IV 

we direct our attention to the possibility of having local fields which 

transform according to unitary irreducible representations of the homo- 

geneous Lorentz group. In Section V we consider a direct product of a 

finite dimensional and a unitary representation as the transformation 

rule of the field. Some discussion of the physical implications of the 

results will be found in the final paragraph. In an appendix we examine 

the related question of orthogonality properties of solutions to infinite 
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component wave equations. In particular, we show that for the case of 

a unitary representation of the homogeneous Lorentz group, scalar pro- 

ducts which vanish for two solutions of different spin are defined only 

in the Majorana representations (those which support a four vector I? - 
I-1 

called the Majorana vector), only with the metric PO, and only when the 

mass depends on spin j as a constant / 2j + 1. This is independent of 

the wave equation. 

II. TRANSFORMATION PROPERTIES AND COMMUTATION RELATIONS 

We begin with a description of the physical states, their behavior 

under Lorentz transformations 6 , and the construction of field operators, 

which are irreducible Iorentz tensors, out of the creation and annihi- 

lation operators for these states. We follow here the authors of Ref. 5 

and adopt, fairly closely, the notation of Weinberg2. 

The physical states $ m(j) ja > are characterized by their three- I 

momentum 5, the spin j, its projection on the z axis 0, and the mass m(j), 

which we allow to be a function of j. They are, of course, the basis 

states of Wigner 
6 for a unitary irreducible representation of the Poincare 

group. The four-momentum of the state is such that p* = po(j)2- $*= m*(j >* 

These states can be obtained from the rest states m j 10 j0 > by a unitary 

transformation U[L(Z)], 

1; m(j) ja > = U[L(G)l 1 m(j) ii0 > , 

where : = $/m(j) is the "velocity" of the state and L(G) is the pure 

Lorentz transformation, the 'boost", which takes the four-vector (6, m(j)) 
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into G, p,(W Under a homogeneous Lorentz transformation A, we then 

have 

~[A]16 m(j) ja > = I& m(j) jo' > Dilcr [Rwl , 

with Rw = L-1(?&)&(t) the Wigner rotation and DJ[Rw] the usual rotation 

matrix for spin j. 

Now we introduce creation and annihilation operators a*(j$U) and 

a(j$) such that operating on the vacuum IO >, Ii: m(j)jo > = a*(j$)lO >, 

and 

[a(GjU),a*(G'j'U')] E = l?2(j)2u083(~-iIt)~jj,~~o, . 

E = f 1 for an anti-commutator (commutator), u. = po(j)/m(j), and F(j) 

is a normalization factor. Other commutators or anti-commutators vanish. 

The Lorentz transformation properties of these operators are immediate 

and 

U[A]a*($jcr)U[A]-1 = a*(zp jo')Dz,O [Rw] , 

U[A]a(cjG)U[A]-1 = DiO, [Ri']a(xp jo'). 

By introducing a charge conjugation matrix C (j> satisfying7 

we can make these transformation rules quite similar. Define l*($ja) by 

-1 
,-* +. a (PJO) = i I ,(j) 

then 

UIAl~*($ju)UIAl-l = Did, [~~l]~*@p ja'). 
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Thus far we have simply recounted the lessons of Wigner on the des- 

cription of the single particle physical states. Now we turn to the 

construction of quantum fields out of which one may build an interaction 

Hamiltonian which via Dyson's formula enables one to compute the S-matrix 

describing transitions between the original physical states. The simplest 

way to guarantee that the interaction Hamiltonian be a scalar and com- 

mute with itself at spacelike separations is to make it an invariant poly- 

nomial in local fields. The usual method for making this invariant poly- 

nomial, which we adopt, is to choose the fields to be Lorentz tensors and 

then couple them to an invariant8. We will, at least for the moment, even 

take them to be irreducible tensors. 

So now we construct from the a(j$O)'s field operators q(x), which 

transform covariantly under an irreducible representation of the homo- 

geneous Lorentz group'. Let (pj,(x) be the (j0) component of that field; 

(j(J) are sufficient to label the components within one irreducible repre- 

sentation. We insist that both particles and anti-particles be included 

in the field operator and write 10 

where rp Jo-) is the annihilation part for particles 

and cpj+(x) is the creation part for anti-particles 

mjL+)(x) = '1 
C’ 

& i_, Dj,,j,O,[L(~)]~*(~j'a')e+im(j')u'x . 
0 j'0' 
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Anti-particles are created and destroyed by operators b*($jo) and b($jO) 

which commute (anti-commute) among themselves as the a*'s and a's and commute 

or anti-commute with them. In general the particles and anti-particles 

are distinct; the case of self-conjugate particles does not change the 

results to follow. In the definition of the creation and annihilation 

parts of the field v is a phase factor 7 
I I 

= 1, and 

D jo, j ,u,[L(Z)] = < jUle-iz’i;e(;)/ j'U' > 

is the representation matrix for the boost along the direction c, of 

magnitude e(G) = sinh-'ftl , generated by the boost operator !k. "K com- 

mutes with itself and the generator of rotations ? in the usual way 

[Ja,Jbl = icabcJc9 

[J,,sl = icabcKc, 

and [Kay%1 = -ieabcJc. 

These fields transform covariantly under Iorentz transformations 

u[*lcpj~i+x)u~*l-~ = IiY j ,~, 
D ja , j ,,,[~-llrpj~~b+ 

The "wave functionlt for a particle state described by this field is just 

< o/qjL-) (x)1$ rn(&)%t3 > = DjG,tt [L(:)]e-im(')u'xF2(&), 
3 

and the & values run over all the spins contained in a given represen- 

tation of the Lorentz group. For a finite dimensional representation & 
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will have a certain restricted range, while for an infinite dimensional 

representation, &will begin from some minimum value j, and take the 

values j,, j,+ 1, j,l- 2, . . . . 

We have thus completed the task of building fields which describe 

particles of many masses and spins and have simple Lorentz transformation 

properties. It remains to discuss the local nature of our fields, before 

we can proceed to the computation of the S-matrix. Therefore, we ask 

whether they can be made to commute or anti-commute at spacelike separa- 

tions. Noting that the unitarity of the charge conjugation matrix leads 

to 

[L*(j6$), L(jfuf$')lE = E F2(j)2uoS3(~-~')Sjj,8~C, , 

we find for the commutation relations of the fields 

[cpj,(X), ~5,u, Y E 01 =\ 
d3u s 
2~- df-., Dj~,j~~,~~[L(:)ID;,~,,~,j~~~[L(')I . 0 j "u" 

F2(j1') 
i 

e-im(j")u.(x-y) + E e+im(j")u.(x-y) 

i 
, 

with all other commutators vanishing. By a change of integration vari- 

ables we can express this as 

bPj,(“)’ (i&p (Y 

where 

P ja, j'U t P C ‘)= z: F2(j") 
~~ Djo, j~~u&d~/m(j” 

p -t m (J ) 

I, 
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Our aim in the following sections will be to determine under what con- 

ditions this commutator vanishes for x-y spacelike for (p(x) transforming 

under various representations of the homogeneous Lorentz group. 

III. FINITE DIMENSIONAL REPRESENTATIONS 

The first case we are invited to address ourselves to is that where 

the quantum field transforms under the finite dimensional non-unitary 

representations of the homogeneous Lorentz group. These representations 

are most simply characterized by introducing the operators 1 = (S + i?)/2 

and 5 = (5 - iifK)/2 which decouple the commutation relations of the rota- 

tion operators (5) and the boosts (%). A and 5 now form two independent 

angular momenta, and an irreducible representation [a,b] is labeled by 

-+2 
A = a(a I- 1) and s2 = b(b I- 1) and has dimension (2a + 1)(2b + 1). The 

operators ? are anti-hermitian here and the function P j6,j,G,(G) from 

above becomes 

ju e-ip^.I'KS(j") 
I I 

jllu" > < j "u" e 
I 
-i$.&(j") 

I ja > 

where sinh @(j") = (iSl/m(j")o 

Consider now the quantity P (0) 

sentation [a,b]: 

jo(J)j'U' 
(p) for the irreducible repre- 
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f The sum L, Jar' > < JO" 
U" 

i I gives a projection operator on spin J 

which can be written as a certain integral over the rotation group. 

Using this form for the projection operator and the representation of 

homogeneous Lorentz transformations in terms of two by two complex 

matrices, it is straightforward to prove that P (ad-d 

11 
jd(J)j'D' (p) is a poly- 

nomial in the components of ph . Now we will show that when px-+ - px 

it picks up a phase (-1) 2(a+b) . This will enable us to take P(a'b) 
jU(J)j'U' 

(p 

out of the locality integral and show the commutator becomes a finite 

number of derivatives on the usual causal function LI(x-y) and, therefore, 

vanishes for x-y spacelike. 

To proceed, note that iz =j$ - g and insert two complete sets of 

states I$ ha\ > where Xa and Ib are the eigenvalues of A'.$ and $*p^. 

Also observe that to take px into -ph, set p^ 3-G and e(J) -tin - e(J). 

These two operations result in 

Since h' + A' = A" + 1" X' - Xb + 1" - 1" = 2[(X' f Xi) - (1; + AZ)], 
a b a b'a a b a 

and 
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so one has 

P jD(J)j'a' (-I?) = (-l)2(a+b)Pjn(J)j ,cT’ (p) . 

The commutator of a field transforming as Ca,b] and its adjoint can 

now be written as 

x ce-iP- b-d + E ,iP- (x-y)] 

x [,-iP- (x-Y> + E (_,)2(a+b),iP- (X-Y)] . 

Taking the usual connection between spin and statistics, E = - (-1) 2(a-t-b) 
I 

this commutator becomes 

~~~~)(y)]e = c h Pizi:{j,O,(ia )[i(2fi)3A(x-y;m(J)2)] , 
J m2(J) 

which vanishes for x-y spacelike and thus establishes locality for the 

finite dimensional case. 

Hence, covariance and locality lead to no constraints on the mass 

spectrum as a function of spin when the usual connection between spin 

and statistics is taken and the fields are irreducible finite dimen- 

sional Lorentz tensors. Such a field theory may now be used to describe 

the interactions of a set of particles with an arbitrary mass spectrum. 
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We shall see in the next section that in the case the fields are irre- 

ducible unitary Lore&z tensors strong restrictions on the masses will 

follow from locality. 

IV. UNITARY IRREDUCIBLE REF'RESENTATIONS 

Having tasted success in our attempts to build local fields which 

describe a finite number of particles of different mass and spin, we now 

turn to the unitary irreducible representations of the homogeneous Lorentz 

group as the transformation law of our quantum fields. These represen- 

tations contain all spins j,, j,+ 1, . . . greater than some minimum spin 

j,, so the llBorn approximation" written in terms of such a field would 

describe an infinite number of spins being exchanged and might then 

resemble a Regge pole 4 . We have made no secret of the fact that for 

local fields we find that the masses in such representations are required 

to be spin independent and, thus, this nice program loses its attrac- 

tiveness; but now to the demonstration. 

Naimark' shows that the irreducible representations of the homogeneous 

Lorentz group are determined by two numbers (j,,c) with j,, integer or 

half-integer, the minimum spin in the representation, and c complex. 

Each spin j 2 j, appears once and only once in an irreducible represen- 

tation. For unitary representations 

j, + 0 , c = ir, r real (Principal Series) 

or j, = 0 y o<c2<1 (Secondary Series). 

In any representation (j,, c) the action of IfK on the basis states \(jo,c)jm > 
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(called ) jm > below) is 

K+ljm > =fi-m)(j-m-l) bjlj-1, m+l> +?/wiT) cjlj, m+l > 

+l)(j+m+2) bj+'/j+l, m-t-1 > , 

K jm>= 
-I 

--&zj bjjj-1, m-l> 

j, m-l > +2dG)(j-m+2) bj+'\j+l, m-l > , 

and 

K3\jm > 1.2 
=iL/ J - m2 bj I j-1, m > f m cjjj, m > +//m bj+'lj+l, m > , 

with 

$ = ij,c/j(j+l) and bj = 

In the unitary representations 5 and "K are hermitian so the operator 

B -jD,j'D ,($) in the commutator of a field and its adjoint is now 

P F2(jt') < j. e-i$*Ze(j")/j,,O,, 
I > < j "0" I e 

m2(j" + m2(j") 

If all the masses were equal and F2(j) = F2 some constant, P 

becomes iF2/[m2ihi]l 'jj "6~' and we have local commutation relations 

only for e = -1, namely Bose statistics. This was observed some time 

12 
ago by Feldman and Matthews . We first investigate here what is the 

most general mass spectrum consistent with Bose commutation rules. Be- 

sides locality and covariance we make the physical assumption that the 

mass spectrum is bounded below: m(j) 2 m. > 0. Under these conditions 
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we will show that the only mass spectrum allowed is that of equal masses! 

Consider then the equal-time commutator 

J d3p sin c*(g-$)Pj, jrar $ - i (I--J d3p sin G*(z-"y) X 
,' 

x [p j~,j’~‘(~) - ‘jo,j’o’(-;;)l ’ 

Since this commutator is well-defined only in the sense of a distribution, 

its vanishing or non-vanishing depends on the space of test functions on 

which one is allowed to apply it. Within the usual framework of quantum 

field theory l3 P j,,j,,(~) - 'jo,jral (-G) must be a polynomial in the 

components of $. Jaffe14 has extended the notion of a local field to 

that of a strictly localizable field by introducing a cleverer set of 

test functions than is usually entertained. In this paper we shall restrict 

ourselves to the usual notion of a local field and return to Jaffe fields 

in the future. 

We are invited then to imagine that the anti-symmetric combination 

P ju,j’u,(~) - ‘jO,jlO’(-~) = ' F2(jt1) 

l i 
< j. e-iiSaij’Ke( j”) 1 j ,rut, > < j "a" e I 

i$*~@(j")j, ,u, > _ 

3 

is a polynomial in z of degree, say, 2N -t 1. The case where the expres- 

sion vanishes identically is included by N = -1, as will be clear in what 

follows. Now let c be infinitesimal and expand the right hand side in a 
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power series in the components of $. This expansion is certainly allowed 

for mass spectra bounded below and for F"(j)/m?(j) bounded by a poly- 

nomial in j, which we henceforth assume. We consider the coefficient of 

(;$N+3+a, which vanishes by assumption for n = 0,1,2,..., and choose 

. I J = j + 2(N+n) + 3. To take j to this value of j' one needs at least 

2(N+n) + 3 powers of 2, but then we have 2(N+n) -I- 3 powers of @(j") 

which give for infinitesimal p [+I , [iGl/m(j")lg(N'n)+3. Hence, in all 

other factors we may set G = 0. Combining all these steps results in 

-+ + 72(N+n)+3-r 
I j-l-2(N+n)+3 0' > - ($ +-c) 

i 

= 0 , 

for all n. The vector character of g means that for any r, only j" = j+r 

gives a non-vanishing contribution in the sum over j", so we may do the 

sum and get 

X < j,O (ip*K) I 
+ -+ 2(N+n)+3 Ij+2(N+n)+3, 0' > = 0 . 

Inspection of the matrix elements of "K given above shows that the given 

matrix element of Ef.2 does not vanish, therefore, the expression in curly 

brackets must be zero. This, however, is the 2(N+n)+yth difference of 

the function F2(j)/[m(j)]2(N-f-n+3), so that function must be a polynomial 
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in j of order L?.(N+n+l) 

2 (p+U 
F2(j)/[m(j)12(N+n+3) = L 

r=O 
a#j' y 

for all n. 

This means 

ar(djr . 

Our assumption that m(j) > m. > 0 leads to the requirement a,(n) = 0 

for n 2 1 and r 2 ~(NI-3); otherwise m(j)2n would go to zero for j --+m . 

With this observation we have 

2(N+l) 
i 
'2(N+l) 2(N+l) 

m(j) 
2n = :{i 

/2@+1) 

r=O 
ar(0)jr/ 

, . . 
z. ar(n)jr = c(n) J7, (J-J,(O))/ ,'=', (j-j,(n)) 

which implies for all n > 0 

2(N+l 

c!(l)n n' 
r=l 

2(N+l) 2(N+l) 

';"I' (j-j,(l))" = c(n) '71' (j- 
r=l r=l 

/2(N+l) 

j,(O)) 
1 

IT (j- 
r=l 

jr(n)>d 

From this it follows that 

J,(n) = j,(O) and c(n) = c(1)" , 

which immediately leads to m(j) = m and determines F2(j) to be a poly- 

nomial in j of maximum degree 2(N+l) 

2(N+l) 

F2(j) = c brjr , 
r=O 

which is the announced result. 
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In the case of Fermi statistics one has to consider the symmetric 

function P 
j,,jI~l(~) + 'j~,j*~l 

(-$) and require that it be a polynomial 

of degree, say, 2N for locality. This again leads to the conclusion that 

2 
all masses are equal and determines 3' (j)'to be a polynomial of degree 

2N-t.1. 

In general, then, for a field which transforms as a unitary irre- 

ducible representation of the homogeneous Lorentz group to also be a 

local field it must create only particles (and anti-particles) of equal 

mass, when the masses are bounded below. The wave function normalization 

functions F2(j) are also constrained to be polynomials in j. 

It is possible to give explicit examples of this behavior for any 

N which are generalizations of the examples considered in Ref. 10 for 

N = -1 for bosons and N = 0 for fermions. The examples are constructed 

in the Majorana representations 945: (. 

J~,c) = (l/2,0) or (0,1/2). These 

are the unitary irreducible representations which support a four vector 

lYx - the Majorana vector -, namely 

i[M pv, Jy = g r - g Pl lJ r a P 

with Jk = 1 E 2 kij"ij and K. = M 
J Oj' The action of TX on the basis states 

I jm > is given by 

Po/jm > = (j + 1/2)jjm>, 

l?+ljm > = $ 
C 
dE)ij-1, m-l-l> -t- ~(j+m+l)(j+m+2)1j+l, m+l> 

I 

P-/jm > = - $ 
[ 

\/(j+m)(j-l-m-l)ij-1, m-l > + Gq(z)/j+l, m-l >] , 
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and ,' 

r3i 
jm > = $[dm/j-l, m > - dmlj+l, m >] . 

L 

One may also show that 

i[Pv,Pvl = M 
PY * 

5.b 0, 

+2 r = E2 7 

and Pvl? = z2- a2+ l/4 = - l/2. 

NOW we choose F2(j) = (j + l/2)R. It f 

P ja, j ,,,(;) = 1: W + 1/21R . j -iiS@ 
j"U" m2&G < J" e 

110~s then for m(J) = m, 

j rratr > < j tratr 
i 
e ip^*"KQ 

I j'U' > 

1 
=- <jUe 2 I 

-i$*& $ 
0 

ei$.be 
1 j'a' > 

m PO 

R 
1 

I( !i 

P"Pv 
=-<jU 7 j'u' > z 1 R 

2 R+2 < ja pore- iP II J 1 
j'u' > . 

mp 0 Porn 

For R = 2(N+l), the anti-symmetric part in $ is a polynomial of degree 

2N+1, and for R = 2N-k1, the symmetric part is a polynomial of degree 2N. 

The former then yields local commutators, and the latter, local anti- 

commutators. Similar examples can be constructed in unitary represen- 

tations which support finite dimensional tensors I? . 
cl1 *'a c"N 
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v. A REDUCIBLE REPRESENTATION 

Irreducible representations of the homogeneous Iorentz group are 

interesting because they are the least complex structures in the repre- 

sentation theory of the group. It may happen, however, that certain 

reducible representations are as interesting because of their useful- 

ness in physics. For finite demensional representations this is the 

case, for example, with the Dirac representation [1/2,0]@[0,1/2] 

and the Rarita-Schwinger representation [l/2, l/2] ~[[1/2,0]@[0,1/2]] . 

For infinite dimensional representations it may be that the Dirac@ 

unitary: [[l/2,03 O[0,~/211C3(~o, c) representation is relevant to the 

problems of current algebra 16 . Both for its physical significance, then, 

and as an example of a 'simple" reducible representation we will treat 

here the case where the fields transform as the direct product of the 

finite dimensional representation [l/2,0] and the unitary representation 

(joyc)e The extension to the case Diracmunitary [(joye)] or the more 

general [[a,b]@[b,a]]~[(jO,c)~~(jO,-c)] - which includes parity - 

is straightforward. As we shall see again, only a trivial mass spectrum 

is consistent with locality, covariance, and boundedness of the masses 

from below. 

In general, in the representation (jo,c)@[a,b], the wave functions 

and field components may be labeled by the two pairs of indices (jlolj,~,), 

where (jlu,) refers to (j,,c) and (j,o,) to [a,b]. The wave function for 

a particle is characterized by three momentum G, spin J, spin projection 

JZ 

= C, and a parameter p which tells how J was made out of j, and j,. 

For a given J, the number of values of p is given by the number of different 
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p-.-s j,, j, such that kl- j,ls J < j, + j,. The mass of a particle is 

now a function of both J and p, m(Jp). 

The wave function $. Jl~lj2~2(~J~~) is given by 

X < ji"ijiob/JG > < jiji(J)/o > + 

< jlulj2u2 I JC > is the usual Wigner coefficient, and < j,j,(J)lp > is a 

coefficient which tells how to make J from j, and j, and which we take to 

form a unitary matrix 

js2 < p'ljlj2(J) >* < jlj2(J)/p > = zoo, , 

and 

1 < jij$(J)l 
P 

P >* < pljlj2(J) > = 8j,ji~j2j; . 

This form for the wave function is motivated by analogy with solutions 

of a Lorentz covariant wave equation, which at rest ($ = 0) reduces to 

an hermitian operator diagonalizable by a unitary transformation. 

The matrix P(G) appearing in the commutator of one of our fields 

and its adjoint is now 
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r 1 
J%b 

j ;lq j p; 

---- 
jlulj2u2 

X < JC j~U~j~u~ > < JC)~l~l~2U2 > X I 

X < p jyjs(J) > < o/jlT2(J) >* X 
I 

X < jlUl e I -i$*TfKB(Jp) 
I j;lUI;. > < j2U2 e I 

-i$*ifKB(Jp) 
I j:UJ-J > 

-- l -- 
X < jlul e i$.%(Jp) I jiui > < j2U2 e l -i$*&(Jo)' 

I j;ui > , 

where we have noted that E is hermitian for (joye) and anti-hermitian 

for [a,b]. B(Jp) is, of course, defined as 

@(Jo) = sinh -l[($l/m(J,dl . 

As promised we deal here with the simplest of our class of reducible 

representations: (j,,c)~[1/2,0]. Furthermore we present the argument 

only for Bose commutation relations, since the arguments and the conclu- 

sions are similar for Fermi statistics, namely, the masses m(J,p) must 

be independent of J. 

Suppose then that P(G) - P(-$) is a polynomial of degree 2N+1 in 

the components of $. As before, -t 2(~+1+-3 we study the coefficient of (p) 

in the expansion of the boost operators for n = 0,1,2, . . . . Also we 

choose ji = j, f 2(N+n+2). Since j: - Tli = 0,l the only non-zero 
I 

+ 2(N+n)i-3 contributions to the coefficient of (p) come from the terms with 

. 11 
Jl = 3, + r, j, = j, + r + 1 for 0 5 r 5 2(N-t-n)+3. We are thus lead to 
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the condition 

2(N+n)+3 2 
7 F F (JP) 
&II r& m3(Jp) 

< ajjl+r or,+ U2 > < JCIjl-l-r+l n,-$u; > 

< P jl+r 2 I '(J) > < pi jl+r+l i(J) 2" < jlul --$ I 

2(N+n)+3-r 

I jlf2(N+n-i-2) "i > = 0 . 

To proceed we choose G = p gz and u; = u2. This means U1= Ui, or the 

expression vanishes identically. Observing that 

< jlfr U1 K3,jl+r+l Ul > I ’ = l:'(jl+r+l)2- UF b 
j14r-t-1 

and that 

1 
< j,+r uly F a2 jl+r+ F, ulfu2 > < jlfrS F, I 1 1 

CJ 4-U fj 1211 -i-r+1 U 1, $u2>= 

($ - u2 
d- 

[(j,+r+l)2- aYl/[4(j,+r+l)2- 11 , 
I I I 

we can cast our requirement for locality into 

2(N+n)+3 
Y- r I :” 

(-I?- G(jl-J-r+ $, P) 

L 
P &ii?! r![2(N+n)+3-r]! [m(Jp)12n 

ZC 0 Y 

by defining 
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G(j -f- $5 P) E F2(j + $, P> < plj i$ (j + $) ><pj+l 
I $ (3 + $) P 

j-!-l 

~~~(j+l)2- c2~ x Cdj + i P)12(N+3) ' 

which we suppose is non-vanishing. This, of course, means that 
y-- 
L_, G(Jyp)/[m(Jyp)12n * 1s a polynomial in J of maximum degree 2(N+n+l): 
P 

2 

7 
;Igi 

G(J,p)/[m(J,p)12n = br(N+n)Jr . 

Some straightforward manipulations show that in order to implement the 

boundedness assumption on the masses m(J,p) 2 m. > 0, one requires 

br (n> = 0 for n > 2, r > 2(N-Q) f 1. 

This means 

;i 2@2) 

j.-, G(J,p)/[m(J~p)l~~ = i!- 
p=l -8 r- 

br(N+-n)Jr E P,(J); [bzN+)(N) = b2N+l(N) = o] . 

Now, by examining the expression for G(J,p), which is independent 

of n, one may solve for [m(J,l)m(J,2)]-2n and m(J,1)-2n -t- m(j,2)-'" with 

the results 

[m(J,l)m(J,2)l-2n = 
P3n(J)Pn(J) - p&(J) 

P2,(J)Po(J) - P:(J) ’ 
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and 

m(J,l > -2n + m(J,l)-2n = 
P,,(J&,(J) - P2,(J)Pn(J) 

- 

P,,(J&,(J) - P;(J) 

Thus the masses may be written as 

A,,(J) +d(J‘I 
m*n(J,l) = C (J) 9 

n 

and 
A,,(J) -‘b,(J) 

m2n(J,2) = c cJl 9 
n 

where A,(J) and Cn(J) are polynomials of degree 4(~-t-2) at most, and 

B,(J!, of degree 8(N-l-2) at most. This form for the masses implies 

A,(J) +\/B,(J) 
= 

Cn(J) 
7 

for all n = 0,1,2, . . . . If there is a zero of Cl(J) which is not a 

zero of Al(J) +-dg, we cannot have this equation, since this zero 

is raised, on the left hand side of the last expression, to an arbitrary 

power n, while the degree of the polynomials on the right is indepen- 

dent of n. Thus, every zero of Cl(J) is a zero of Al(J) + \IB1(J), which 

implies they are proportional, with a J-independent proportionality 

constant. This means the masses are independent of J: 

m(J,l) = CL I 

and 

m(J,2) = C2 , 
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whenever the G(J,p) are non-zero. The G(J,p) themselves are also found 

to be polynomials in J of maximum degree 2(N-i-2). 

If G(J,p) turns out to be zero, this implies that 

< pi j i$ (j + +) > < p/j -I- 1 f$ (j + -$) >* 

1 1 
or that the two ways of making j + 2 - from j and 2 or 

- - do not mix. 2 Again one examines the coefficient of 
-+ 

the matrix P (j,~,j,a,) (ji"ij$";) (I?) taking '1= ';J ‘;l= 

and j' = j, 1 
+ 2(N-f-n) + 3, and this time finds that the 

=o, 

from j + 1 and 

(;)2N+3+2n in 

-f 
$, P = P ez 

F2(J,p)/[m(J,p)]2(N+n)+3 

for both p = 1 and 2 are polynomials in J of the same degree. Familiar 

arguments now lead us to conclude that even in this case the m(J,p) are 

independent of J. F2(J,o) turn out to be polynomials of degree 2(N+l) 

at most. 

Once again we have found that the requirements of covariance, locality 

and boundedness of the mass spectrum from below are severe enough, in 

the case where the quantum field transforms as [1/2,0]@(jo,c), to imply 

a trivial mass spectrum, that is, masses independent of the spin J. We 

conjecture that this result holds for the more general case [a,bl @ (j,, c> 

also. 
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VI. SUMMARY AND OBSERVATIONS 

We have, following the lead of the authors in Ref. 5, constructed 

quantum fields with well-defined transformation properties under the 

Lorentz group out of the annihilation and creation operators for physical 

states. In the case where the field is a finite dimensional irreducible 

Lorentz tensor, we found that locality placed no restrictions on the 

masses, considered as a function of spin, of the particles described by 

the field. However, when we chose the field to transform as a unitary 

irreducible representation (j,, c) or a direct product [1/2,0]@(jo,c) 

and made the physical assumption that the masses were bounded below, 

m(J,p) > m. > 0, we were led to the conclusion that locality of the 

fields required that all the masses be independent of spin. This con- 

clusion means that in a local field theory one can describe an infinite 

number of particles of spin j,, j,+ 1, j,+ 2, . . . by an irreducible 

unitary Lorentz tensor or a Lorentz tensor of the type [l/2,0] @(j,,c) 

only in the physically uninteresting case where all those particles have 

the same mass. Such a field clearly has little to do with a Regge tra- 

jectory. 

It behooves us to inquire whether there is some way in which we can 

avoid this last conclusion, since the idea of describing an infinite 

number of particles by a single quantum field is not only attractive 

but may be imperative if field theory and hadron physics are to have 

anything to do with one another. There are at least two possible alter- 

nate paths which might lead us out of the limbo of equal masses; each 

requires an enlargement of our notion of a quantum field: (1) perhaps 

our requirement that the field be local is too restrictive. It might 
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well be that allowing it to be one of Jaffe's strictly localizable fields 14 

would give us sufficient extra freedom to have a physical mass spectrum 

again. (2) We have constructed our fields as linear combinations of 

{Fourier transforms of) particle creation and destruction operators. In 

so doing we have included only timelike momenta in the Fourier expansion 

of the field. Experience with infinite component wave equations 17 , es- 

pecially of the variety where the wave function transforms as a unitary 

irreducible representation (j,, c) or as Dirac@(jo,c), shows that solu- 

tions of these equations with spacelike frequencies are a general occur- 

rence. Our conclusions may demonstrate simply that we have been in error 

in omitting such Fourier components in the construction of our fields. 

These and other ways out are the subjects of future research. 
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APPENDIX 

The problem of local commutation rules is related to the question 

of completeness of the timelike solutions to some wave equation. To be 

more precise, suppose we are considering a covariant wave equation whose 

solutions transform as an irreducible unitary representation of the homo- 

geneous Lorentz group. In momentum space the wave functions, 

like momenta, are the D. JO, j ‘(5’ ~L(Sdj'))l~ Imagine that the 

tions with timelike p span the whole Hilbert space and that a 

duct exists such that 

7 v.w, DT Jlal, jo[L(G/m(j))I A. Jl~lj2~2Dj2~2, j ‘0’ CL(iS/m(j’ 111 
Vl 

j2O2 

for time- 

wave func- 

scalar pro- 

= ~jj' 6 CT~" d c2 4- m2(j)[m2(j)/F2(j)lJ 

with A the constant metric matrix. Then one finds 

and hence 

because of the completeness of the wave functions with timelike p. This 

implies 

P jo,j ,,,(~) = ("-l)j~,j 'CT' 
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and guarantees local commutation rules for Bose statistics and local 

anti-commutation rules for Fermions. Now we will demonstrate that such 

a scalar product is possible for unequal masses only in the Majorana 

representations, only with A = l?O/lc, only with a mass spectrum of the 

form m(j) = K/j + $-, and only with F(j) = m2(j). It is ironic that this 

is the best known case where there is a wave equations where the wave 

functions of timelike momenta are not complete 15 , namely, the Majorana 

equation (-ia"rQ: + K)@(x) = 0. 

We address ourselves, then, to the question whether it is possible 

to have an orthogonality relation of the form 

in a unitary irreducible representation (j,,c). First, note that it is 

immediate to obtain orthogonality for the case of equal world velocities, 

since if $/m(j) = $'/m(j'), then 

DY 
Jlal,ja ~~6/m(j > >lD. 

Jlal'j'" , D@/m W)>l = 6 ,Eaa, , Xi 

because of the unitarity of the representation. This is actually very 

natural since the solutions of whatever wave equation one has in mind are 

taken to be orthogonal for distinct j at rest. The orthogonality at equal 

world velocity is then simply a statement of the Lorentz covariance of the 

equations since the boost operation takes one to a system of new velocity, 

not momentum. However, for our considerations regarding the properties 
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of P ja,j'a'( ) s we need the orthogonality for equal $. This arose since 

the conjugate variable to space-time, in which we inquire about locality, 

is p = mu, not u. 

By taking p' = 0 the orthogonality relation under examination reads 

A jcfj'a' = B(O,j)'jj f'aaf J 

hence with B(O,j) z B(j) it becomes at momentum p: 

D* 
j “a” 

j~~art ja[L(~/m(j))lB(j’~)Djtla~l,j,a,[L(~/m(j’))l = B(($],j)6jj16aa, l 

, 

The right hand side is a function of I$[ only because of rotational in- 

variance of the orthogonality relation. 

One now expands the left hand side of this relation and examines it 

order by order in $. This expansion does not require a boundedness 

assumption on m(j) since the j's in the arguments of the boost matrices, 

are not summed over and may be fixed at an arbitrary finite value. The 

first order in $ tells us 

B(j) < ja/-$$ ]j'a' > - B(j') < jai i% I j'a' > = 0 , 

so 

B(j)/B(j + 1) = m(j + 1)/m(j) ., 

and implies we may choose 

B(j) = l/m(j) 

by fixing an arbitrary scale factor to be one. 
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$ < jal(ip'-8)21j1a' > ' -r 2 
[ 

1 1 

m*(j >m(j ') m W>mW i 

7 - .j < ja iG-2 j"a" > < jtrar' iG*Z j'a' > m j m i,, m j, 
I I I I = j;;-;;!f 

~ 2 f' d* 7 
1 
-y p, I I 

t dl;i2 
B([&j) 1 jljq=,"jj "aa" 

For j' = j f 2 we obtain 

which implies m(j) = l/(a+bj). For j' = j f 1 We get 

g < ja/(ic.??)"/j+l a' > [2a f b + 2bjl 

= C < ja\iG*$\j+l a" 
a" 

> < j+l a"\i$.ifKlj+l a' > [a-f-bj+b] 

-t. r] < ja/i$-g(ja" > < ja"\iG*g\j+l a’ > [a f bjl 
a" 

= (a + bj) < ja (i$*%)21j+l a' > I 

+ IT ,b<ja 
a" t j+1 a" > < j-l-l a" 

or if b f 0 18 
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< j0/(i~*Z)2]j+l a' > = 2 2 
a" 

< jali$*glj+l a' > < j+1 a"Ii$*zlj+l a' > , 

which in turn leads to 

C < jaliG*Elja" > < ja"/i$.Zlj+l a' > 
a" 

= 6: < jalic."K/j+l arr > < j-i-1 al'ii~*Zlj+l a' > . 
a" 

Take $ = p eZ, which requires a' = a and 

< ja K 
I i 3 

ja > = aCJ * = < j-l-1 a\K3ij+l a > = aCJ+l , 

which is satisfied only if CJ = 0, or j,c = 0. 

Finally choose j' = j in the second order of expansion 

- il: < jai ,:, 
i$.i+K j-t-1 a' > < j-l-1 a' I I 

remembering that since j,c = 0, K does not have matrix elements between 

states of the same j, This is equivalent to 



-35- 

+- 1 c < ja i$*IfK j-l a" > < j-l a" i$*S ja' > 
m (j) a” 

I I I I 

- Z: < jali$.Z/j+l a" > < j-l-1 a"/i$*ZJja' > 
a" i 

B"( ; = O,j)~aat l 

Again take 6 = p eZ, and choose a = a', then we find that 

I< jalK3(j-la>l* - I< jalK3/j+la>[2 is independent of a, which is 

.2 
satisfied only when j,c = 0 and ~~ I- c2 = 

l/4. This implies that only 

the Majorana representations are allowed. 

Armed with the knowledge that we need only consider the Majorana 

representations, we return to the orthogonality relation 

c D* j"a",ja [L@m(j) )I (a+bj")D 
j "a" 

j"~'f,j,,'[L(;;/m(j'))I = B((Gi,j)'jj'"aa' > 

and use our knowledge of the Majorana vector rol. Since 

r 
0 

= ei$OifKe(J) [cash e(J)ro -k $*?r sinh Q(J)] e-ii;'be(J) , 

we may write 

[cash @(j)ro + p^.? sinh e(j)] e-ip^*"Ke(j') I j'u' > 

Interchanging j and j' in the argument of Q(j), we can quickly find 
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[m(j)cosh B(j)-m(j')cosh @(j')] < jo e I i$itKe(j), e-ip^a"K6(j') 
0 I j,(s, > 

= [m(j)(j + $J-m(j' >( j't- $)I < ja e 1 -i~~~l3(j')-~(j)ll j rut 3 . 

The scalar product for j # j' can now'be set in the form 

=I- LJ <jae I 
3 "a" 

> [(a - $) + b(j"+ .&)I < jffa11\e-i8*b0(j')I j tat > 

which implies a = b/2, or 

m(j) = d(j f $) 

For j = j', the scalar product can be explicitly evaluated 

; < jD\cosh @(j)ro- sinh e(j)$.?/ju' > 

This is what we set out to prove. 
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