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We discuss the possibility of constructing out of particle creation
and destruction operators local quantum fields which transform as repre-
sentations of the homogeneous Iorentz group. Our immediate goal is to
write down a consistent local guantum field theory which can simultan-
eously describe many particles with different masses and spins. 1In the
case that the field is a finite dimensional irreducible Torentz tensor,
we are able to carry through our program with no restrictions on the
masses considered as functions of the spin, provided the usual connection
between spin and statistics is satisfied. However, when the field trans-
forms as a unitary irreducible representation of the homogeneous Lorentz
group (an infinite dimensional representation), the requirement of local~-
ity, along with the physical assumption that the masses are bounded below,
m(j) > ey > 0, leads to the restriction that the masses are independent
of the spin. This property is shown to hold when the transformation law
of the field is taken to be an irreducible finite dimensional represen-
tation(® a unitary irreducible representation. The physical consequences
of this result and possible methods for evading it are discussed. Finally
an appendix is included where the related problem of orthogonality pro-
perties of timelike solutions to infinite component wave equations is
examined. In particular, we show that when the solutions of such wave
equations transform as unitary irreducible representations of the homo-

geneous Lorentz group, only the Majorana representations support a scalar

product, which is orthogonal for different spins.



Conventional studies of quantum field theoriesl have been directed
toward the construction of fields which describe one particle of definite
mass and spin. One has proceeded by examining finite dimensional spinors
having appropriate properties under Iorentz transformations and then
hastened to eliminate, in an invariant manner, any "extra' field components
thus introduced. The traditional description of spin one fields, for
example, introduces a four-vector object AH(X) and immediately subtracts
off one degree of freedom by asking that Au(g) be divergence free. A
notable exception to this ritual is the work of Weinbergg, who constructs
fields for any spin with the "correct" number of components and, thus,
has none to throw away.

The intriguing idea of Regge polesB, or more explicitly, the possi-
bility that particles of different spins and masses may be connected,
opens for our consideration guantum field theories where the fields des-
cribe a variety of particles with various masses and spins. Success in
such studies would provide a compact, field-theoretic framework in which
to examine the properties of Regge trajectoriesu. In this paper we inves-~
tigate the structure of such field theories.

We have in mind using these fields to calculate a Lorentz invariant
g-matrix via the Dyson-Wick prescription, so we shall require that they
have simple properties under Lorentz transformations and be local in the
sense of commuting or anti-commuting at spacelike separations. In parti-
cular we shall address ourselves to the question of whether it is pos-
sible to find local fields which transform as Lorentz tensors and are

linear combinations of (Fourier transforms of ) particle creation and



destruction operators. The method we employ has been advocated by =a

5

number of authors” and avoids reference to lLagrangians and field equa-
tions by concentrating on the ILorentz transformation properties of the
fields and the particle states they are to describe.

We will show below that in the case where the fields are finite
dimensional irreducible tensors, we can answer the gquestion posed in
the affirmative with no restrictions on the masses as a function of spin.
In the instances where the fields transform as unitary infinite dimen-
sional irreducible representations of the homogeneous Lorentz group, we
will show that locality is a non-trivial restriction on the theory and
present arguments that when the masses are bounded below by some m >0
for all spin, then locality forces them to be independent of the spin.
This latter result is also shown to be true for the circumstance where
the field transforms as the direct product of an irreducible finite
dimensional and an irreducible unitary representation of the homogeneous
Lorentz group.

In the next section we review the procedure for building the fields
from the physical creation and destruction operators. Section III is
devoted to a discussion of finite dimensional fields, and in BSection IV
we direct our attention to the possibility of having local fields which
transform according to unitary irreducible representations of the homo-
geneous Ilorentz group. In Section V we consider a direct product of a
finite dimensional and a unitary representation as the transformation
rule of the field. Some discussion of the physical implications of the

results will be found in the final paragraph. In an appendix we examine

the related guestion of orthogonality properties of solutions to infinite



component wave equations. In particular, we show that for the case of
a unitary representation of the homogeneous ILorentz group, scalar pro-
ducts which vanish for two solutions of different spin are defined only
in the Majorana representations (those which support a four vector Pp -
called the Majorana vector), only with the metric PO’ and only when the
mass depends on spin J as a constant / 2j + 1. This is independent of

the wave equation.

II. TRANSFORMATION PROPERTIES AND COMMUTATION RELATIONS

We begin with a description of the physical states, their behavior
under Iorentz transformations6, and the construction of field operators,
which are irreducible Iorentz tensors, out of the creation and annihi-
lation operators for these states. We follow here the authors of Ref. 5
and adopt, fairly closely, the notation of Weinbergg.

The physical states [E m(j) jo > are characterized by their three-
momentum 5, the spin j, its projection on the z axis 0, and the mass m(j),
which we allow to be a function of j. They are, of course, the basis
states of Wigner6 for a unitary irreducible representation of the Poincare
group. The four-momentum of the state is such that p2 = po(j)g- §2= mg(j).
These states can be obtained from the rest states }m(j) jo > by a unitary
transformation U[L(3)],

B m(3) 39 > = UL | n(3) o>,
where u = p/m(j) is the "velocity" of the state and L(u) is the pure

>
Iorentz transformation, the "boost", which takes the four-vector (0, m(j))



>
into (p, po(j)), Under a homogeneous Lorentz transformation A, we then

have

ulal|? m(3) 30 > = [T m(3) do' > 0l (R,

with R = L_l(zu)AL(a) the Wigner rotation and DJ[Rw] the usual rotation
matrix for spin j.
Now we introduce creation and annihilation operators a*(jgo) and
> - >
a(jpo) such that operating on the vacuum lO >, lp m(j)joc > = a*(jpc)xo >,

and

. (Tt st gt - k2 . 3 >y
[a(pjo),a*(p'i'o")], = T (3)2uyd”(u-u')d 4000 -

e = + 1 for an anti-commutator (commutator), uy = po(j)/m(j), and F(J)
is a normalization factor. Other commutators or anti-commutators vanish.

The Lorentz transformation properties of these operators are immediate

Ul AJa* (3o )ulal ™t

it

ax(hp jo')pd, IR,

and
Ul Ala (B30 ul Al "t

]

j -1 = PR |
DUle [Rw la(Ap jo').

By introducing a charge conjugation matrix C(J> satisfying7

. R -1
we can make these transformation rules quite similar. Define g*(gjc) by
~emaoy = (7 E.
a*(pJG) =4C go? a*(pJG ))

then

Ul AJa* (B30 LAl = 0, [R1ax(Fp 3o).



Thus far we have simply recounted the lessons of Wigner on the des-
cription of the single particle physical states. Now we turn to the
construction of quantum fields out of which one may build an interaction
Hamiltonian which via Dyson's formula enables one to compute the S-matrix
describing transitions between the original physical states. The simplest
way to guarantee that the interaction Hamiltonian be a scalar and com-
mute with itself at spacelike separations is to make it an invariant poly-
nomial in local fields. The usual method for making this invariant poly-
nomial, which we adopt, is to choose the fields to be Lorentz tensors and
then couple them to an invariant8. We will, at least for the moment, even
take them to be irreducible tensors.

So now we construct from the a(jgc)’s field operators @(x), which
transform covariantly under an irreducible representation of the homo-
geneous ILorentz groupg. Iet ch(x) be the (jo) component of that field;
(jo) are sufficient to label the components within one irreducible repre-
sentation. We insist that both particles and anti-particles be included

in the field operator and writelo
- () (+)
CPJO(X) = CP:]O' (X) + cpjo- (X)

where @jé-)(x) is the annihilation part for particles

0 <‘><><>=§9-E ). D (L) ]a(s ot )e tm(d ux

ja O jhl'gl' jG)le'

3 N NN v
SRCER gi}i 5 ch,j'c'[L(u)]b*(pj'0')e+1m(3 Jox



which commute (anti-commute) among themselves as the a*'s and a's and commute
or anti-commute with them. In general the particles and anti-particles
are distinct; the case of self-conjugate particles does not change the
results to follow. In the definition of the creation and annihilation

parts of the field 1 1is a phase factor ‘ 1 ' = 1, and

L oA
—1K-u6(u)‘j,c, S

D L] = < jole

jo,3'o

is the representation matrix for the boost along the direction a, of
> ~1{~> > >
magnitude 6(u) = sinh ‘u‘ , generated by the boost operator K. K com-

mutes with itself and the generator of rotations } in the usual way
[Ja’Jb] = ieachc’
[Ja’Kb] = ieachc’

and [Ka,Kb] = _ieachc'

These fields transform covariantly under Iorentz transformations

() -1 -17, (£)
U[A]CPJO' (X)U[A] - Jz;' DjO’,j'O"[A ]CPJ-'O-I(AX>'

The 'wave function" for a particle state described by this field is just
- ; -3 .x 2
<op(>@y§m&a,>=u %jumklm““%(@,
: J0, 3

and the 4 values run over all the spins contained in a given represen-

tation of the Iorentz group. For a finite dimensional representation'%



will have a certain restricted range, while for an infinite dimensional
representation, £ will begin from some minimum value jO and take the
+ 1,

values jo, + 2,

J'O jO

We have thus completed the task of building fields which describe
particles of many masses and spins and have simple Lorentz transformation
properties. It remains to discuss the local nature of our fields, before
we can proceed to the computation of the S-matrix. Therefore, we ask
whether they can be made to commute or anti-commute at spacelike separa-
tions. Noting that the unitarity of the charge conjugation matrix leads
to

~oL L ~ . e 2,. 3, -
[b*(3op), b(3'a'p" )], = € F(§)2ud (u-u")®, 5851

we find for the commutation relations of the fields

3 S"‘
+ d u S "
[@jc(x)) @j'0’<y)]e = j 535 jﬁam DjG,j”G”[L<u>]Dj"0”,j'G'[L(u)]

25" %e—imu”)u. (x-y) , . Him(3")w (x—y)> ,

with all other commutators vanishing. By a change of integration vari-

ables we can express this as

[ch(x)’ @;:Gl(y>]€ = % §~d3p PjO,j'U'(g>[e—ip.(X—y)+ c e+ip-(x—y)])

where
< 2,.
) M

P. cr oy
JO;J o PIR 3 I} ] 2 2 2
J o m (j”))g + (j”)

DjU;j”U”[L(E/m<j”)>]Dj”O")j‘g'[L(E/m<j")>]
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OQur aim in the following sections will be to determine under what con-
ditions this commutator vanishes for x-y spacelike for ¢(x) transforming

under various representations of the homogeneous Lorentz group.

III. FINITE DIMENSIONAL REPRESENTATIONS

The first case we are invited to address ourselves to is that where
the quantum field transforms under the finite dimensional non-unitary
representations of the homogeneous Iorentz group. These representations
are most simply characterized by introducing the operators K = (3 + i%)/Q
and % = (3 - iﬁ)/E which decouple the commutation relations of the rota-

>y > > > .
tion operators (J) and the boosts (K). A and B now form two independent
angular momenta, and an irreducible representation [a,b] is labeled by
*2 >2 . .
A =ala + 1) and B~ = b(b + 1) and has dimension (2a + 1)(2b + 1). The
—
operators K are anti-hermitian here and the function ch J_,G,(p) from
2
above becomes

T\'"" 2
>

. Bt i, 11
(p) — L/ F (J ) < jdle 1p KQ(J >1jllo.n > < 'jno,n
o 2, s P2 2,.
J m (J ')\/P + m (JH)

N
15 (3")]
Fjo, 50" E 30>

where sinh 6(j") = {E\/m(j").

(a;b)

jG(J)j.U.(p) for the irreducible repre-

Consider now the guantity P
sentation [a,b]:

L

i

b ~.A._> ._../\.'>
P(a) ) (p> te ip KQ(J){JO,H > < JO’”le 1ip KQ(J>‘J-|0.1 > .

jo(s)te {;,: < Ja
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The sum E; Jo" > < Jo"| gives a projection operator on spin J
0_”

which can be written as a certain integral over the rotation group.
Using this form for the projection operator and the representation of

homogeneous ILorentz transformations in terms of two by two complex

—~

matrices, it is straightforward to prove that P , +(p) is a poly-

a,b)
Ty
JJ

2
el
YA

[

J
nomial in the components of pkll. Now we will show that when Py = Py

(a+b).

it picks up a phase (-1)° This will enable us to take P\®2P) (p)

jo(J)j'e!
out of the locality integral and show the commutator becomes a finite
number of derivatives on the usual causal function A(x-y) and, therefore,
vanishes for x-y spacelike.
> > > .
To proceed, note that 1K = A - B and insert two complete sets of
> oA

states ]ﬁ xaxb > where Ka and Kb are the eigenvalues of K-ﬁ and B-D.

Also observe that to take p, into -p,, set D —~P and 8(J) —in - 6(J).

These two operations result in

S iﬂ(lé— ')
p{0) (D) = Y < ofeniFEO, k 5 >

jG(J> Hy 14 1y I 1
T e
N 1 1 1" - 1 1. 1
<P xaxb‘Jc > < Jo )p A >

in(A- N LAz
<5 x;xg . a lb 1P K@(J)lj,a, S .

Since A" 4+ A = A" + A", AT - A+ A
a a

oA =20 (A" ) - (A + A"
i) b’ T a b a b [ a b) ( b )15

b

and
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e LI
SO0 one has

- (-1)2(Ep )

Pso(3)gr00 (P j0(5)3'0"

The commutator of a field transforming as [a,b] and its adjoint can

now be written as

(a,b) (a,b)t _ v @ (o (an)
x [eip (y) o ipe (x-7)y

( o(a,b) (1 1 4
J o (J) JU(J)J 0' ° )J EPOZJS *

x [P 0Ty ()PleR)de oy

it

Taking the usual connection between spin and statistics, € = - (-1)2<a+b),

this commutator becomes

[942°)6), ol 1, = 7, P () Pl L (334 (en) A0ey3m(3)7)]
7 mt(y) 990N
which vanishes for x-y spacelike and thus establishes locality for the
finite dimensional case.

Hence, covariance and locality lead to no constraints on the mass
spectrum as a function of spin when the usual connection between spin
and statistics is taken and the fields are irreducible finite dimen-
sional Iorentz tensors. Such a field theory may now be used to describe

the interactions of a set of particles with an arbitrary mass spectrum.
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We shall see in the next section that in the case the fields are irre-
ducible unitary Iorentz tensors strong restrictions on the masses will

follow from locality.

Iv. UNITARY IRREDUCIBLE REPRESENTATIONS

Having tasted success in our attempts to build local fields which
describe a finite number of particles of different mass and spin, we now
turn to the unitary irreducible representations of the homogeneous Lorentz
group as the transformation law of our quantum fields. These represen-
tations contain all spins jO’ jo+ 1, ... greater than some minimum spin
Jo» SO the "Born approximation" written in terms of such a field would
describe an infinite number of spins being exchanged and might then
resemble a Regge poleh. We have made no secret of the fact that for
local fields we find that the masses in such representations are required
to be spin independent and, thus, this nice program loses its attrac-
tiveness; but now to the demonstration.

Naimark9 shows that the irreducible representations of the homogeneous
Iorentz group are determined by two numbers (jo,c) with jo, integer or
half-integer, the minimum spin in the representation, and c complex.

Each spin j Z.jo appears once and only once in an irreducible represen-

tation. TFor unitary representations

Jo £#0, c=1ir, r real (Principal Series)

or Jop=0, 0< @ <1 (Secondary Series).

In any representation (jo,c) the action of K on the basis states'(jo,c)jm.>



—1h-

(called ’jm.> below) is

K, Jm > = V() (3m-1) ©%}5-1, mid > V() (3med) o5, mod >

—‘\,[(ij+m+l)(j+m+2) bj+l‘,j+l, m+l > ,

K_\jm > = - V(54m) (4m-1) bj}j-l, n-1 >

+ Y (34m) (§-m+1) c3§j, m-1 >-+Wgzj-m+1)(j-m+2) b3+l\j+1, m-1 >,
and

2 2 3 5 ./ 2 2 3+l
Slim > =% m balj-l, m>+m cagj, m > +\/(§+1)"- m~ b7 ‘j+l, m>,

with

K

2

)

2 2,.,2
1 (3730 ¢
IV (2541 (25-1)

¢d = 1j,/3(3%1) and pd =

In the unitary representations 3 and E are hermitian so the operator

B.G}j,c,(g) in the commutator of a field and its adjoint is now
> 5 72 (3") RN CICL) I ool 15-%6(3™)
Pjo j‘o'(p)= " e e— joke |j on><Jjo ]e Ij!g' >
) 2111t

2
3" G5\ 205"

2
If all the masses were equal and Fg(j) = ¥ some constant, Pjo j,g,(E)
J
2 2
becomes (F /{mg‘g + mg]) 633'500' and we have local commutation relations
only for € = -1, namely Bose statistics. This was observed some time

2
ago by Feldman and Matthewsl . We first investigate here what is the
most general mass spectrum consistent with Bose commutation rules. Be-
sides locality and covariance we make the physical assumption that the

mass spectrum is bounded below: m(J) > my > 0. Under these conditions
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we will show that the only mass spectrum allowed is that of equal masses!
Consider then the equal~time commutator
+

[mjc(;’o)’ ®jlgx(§)o)] = 1 J 3p sin p* (x y)P 50,30 (5) = % JﬂdBP sin E.(§_§) %

X [Pjg,jlgt(g) - !(_5)]

Fjo,gt0

Since this commutator is well-defined only in the sense of a distribution,
its vanishing or non-vanishing depends on the space of test functions on
which one is allowed to apply it. Within the usual framework of quantum

. 13 5 > i .
field theory (p) ,(-p) must be a polynomial in the

JG j'o JG;J“G

components of p. Jaffel has extended the notion of a local field to

that of a strictly localizable field by introducing a cleverer set of

test functions than is usually entertained. In this paper we shall restrict
ourselves to the usual notion of a local field and return to Jaffe fields
in the future.

We are invited then to imagine that the anti-symmetric combination

(- L —TQ

P (®) - P
jo,3'0" P07 Ty, 50 i RN
IO B (W w5

A T A 1
-iD- . 0
[< J.G!e ip-K6(J )iJan > < 3" ,,z 1B-%0 (3 )fa gt > -

zelﬁ.%0(3”>i "n_n n_n 1p KG(J )

< jo Jo ><jo ?e J ‘o' >]

is a polynomial in 5 of degree, say, 2N + 1. The case where the expres-
sion vanishes identically is included by N = -1, as will be clear in what

follows. Now let 5 be infinitesimal and expand the right hand side in a
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power series in the components of E. This expansion is certainly allowed
2

for mass spectra bounded below and for F (j)/mB(j) bounded by a poly-

nomial in j, which we henceforth assume. We consider the coefficient of

-, 2N+3+2n . . .
(p) , which vanishes by assumption for n = 0,1,2,..., and choose

j' = 3 + 2(N+n) + 3. To take j to this value of j' one needs at least
2(N+n) + 3 powers of %, but then we have 2(N+n) + 3 powers of 6(j")

03]/ 1P, ence, in el

which give for infinitesimal 'E

other factors we may set E = 0. Combining all these steps results in

- 2 s r+l
J r QJ ) . ! 1|ip. } Tl . u' ("'1)
L 0]~ ! o} o]

jno_n n (,j") < r! m(g )‘; J > <3 [2(N+n)+3—r].'

r

12 -
[ip-% (N+n)+3-1

a ‘j+2(N+n)+3 g' > - (5 —*-E) =0,
mZJ 5
for all n. The vector character of K means that for any r, only j" = j+r

gives a non-vanishing contribution in the sum over j", so we may do the

sum and get

2(N+n)+3) (_l)r Fg(j+r)
(317U

X < j,Gl(ig-E)Q(N+n>+3‘j+2(N+n)+3, 6! > =0 .

Inspection of the matrix elements of E given above shows that the given
matrix element of 5-% does not vanish, therefore, the expression in curly

h
brackets must be zero. This, however, is the 2(N+n)+3t difference of

j>]2(N+n+3)’

2
the function F~(3)/[m( so that function must be a polynomial
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in j of order 2(N+n+l)

2(§in+l)
2, 12 (N+n+3 ' )
P2 (3)/In(3) 1203 L) s )T
r=0
for all n.
This means
2(W+1) 2 (W+n+l)
\2n S T N )
m(3) = & (0)] VA M COR
r= r=0

Our assumption that m(j) > my > 0 leads to the requirement ar(n) =0

2
for n > 1 and r > 2(N+3); otherwise m(j) % would go to zero for j —rw .

With this observation we have

2(N+l) '2(N+1) 2(N+1) /2(N+1)
n() = L e (03 7 a ()it =cm) T (j—jr(o>>/ T (3-3,(n))
r=0 / r=0 r=1 r=1

which implies for all n > O

2(N+1) 2(N+1) 2(ﬁ+l) [2(N+1)

oW T (-3, 0 TC (3-5, 0% = e@) 7T (33,000 ] TC (5-3,(m).
r=1 r=1 r=1 r=1

From this i1t follows that

3,(0) =3.(0) and  c(n) = c(1)",

which immediately leads to m(j) = m and determines Fg(j) to be a poly-

nomial in j of maximum degree 2(N+l)
2(N+1)

2,. T .r
¥ (J ) = . bI‘J 3’
r=0

which is the announced result.
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In the case of Permi statistics one has to consider the symmetric

function ch j,c,(g) + P (-p) and require that it be a polynomial
2

jo,j'o
of degree, say, 2N for locality. This again leads to the conclusion that
all masses are equal and determines Fg(j)‘to be a polynomial of degree
2N+1.

In general, then, for a field which transforms as a unitary irre-
ducible representation of the homogeneous ILorentz group to also be &
local field it must create only particles (and anti-particles) of equal
mass, when the masses are bounded below. The wave function normalization
functions Fg(j) are also constrained to be polynomials in j.

It is possible to give explicit examples of this behavior for any
N which are generalizations of the examples considered in Ref. 10 for
N = -1 for bosons and N = O for fermions. The examples are constructed
in the Majorana representations9’15: (jo,c) = (1/2,0) or (0,1/2). These

are the unitary irreducible representations which support a four vector

Pk - the Majorana vector -, namely
l[MﬂV’ Fl] = guva - gVKPp
with J, = 1 €. ..M., and K. = M... The action of I on the basis states
k 2 "kij ij J 0j A

‘jm > is given by

Tolim > = (3 + 1/2)|3m >,
1"+‘jm > = —;- [\/ (j—m)(j-m-l)}j-l, mt+l > + \/(j+m+1)(j+m+2)]j+1, m+1 >]
P_|gm>= - %[\/(jm)(jm-l)ij-l, n-l > + V(§-mt1) (§-mi2) | 541, m-1 >} ,
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and
. i /.2 21. / 2 2
1—\3 Jm>=%l: J - ’J'l)m>' (j"'l) - lj+lJ m>:{

One may also show that

1[Pu’PV] = Mp.v .
> >
.t =0,
f2 - 32,
and FMP“ - o /b= - 1/2.

2
Now we choose F (j) = (J + l/E)R. It follows then for m(J) = m,

- >

?" (j" + 1 2)R }e—iﬁ’Kel TERY L1t nfeiﬁ'Ke

- < jo Jo ><jo
jlcn __>2 2
m\/p+m

lj!o-l >

1

>
Pjo-}jlgl(p>

AT A

= —%—— < jcienlp K8 PR elp'KQ[j'G' >

mp 0

0
9 R

_—__L_<G‘pr\p. i"0'>=‘“'!_‘—“' <.O_{( P_->.:_[>1)Rl.|o.|>
=73 i Rz %P0 o7 P ! '

m po pom

For R = 2(N+1), the anti-symmetric part in b is é polynomial of degree
2N+1, and for R = 2N+1, the symmetric part is a polynomial of degree 2N.
The former then yields local commutators, and the latter, local anti-
commutators. Similar examples can be constructed in unitary represen-

tations which support finite dimensional tensors T .

By oeee By
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V. A REDUCIBLE REPRESENTATION

Irreducible representations of the homogeneous Lorentz group are
interesting because they are the least complex structures in the repre-
sentation theory of the group. It may happen, however, that certain
reducible representations are as interesting because of their useful-
ness in physics. For finite demensional representations this is the
case, for example, with the Dirac representation [1/2,0] ®[0,1/2]
and the Rarita-Schwinger representation [1/2, 1/21®I[[1/2,01®[0,1/2]] .
For infinite dimensional representations it may be that the Dirac ()
unitary: [[l/E,O](:)[O,l/E]](:)(jo,c) representation is relevant to the
problems of current algebral6. Both for its physical significance, then,
and as an example of a 'simple" reducible representation we will treat
here the case where the fields transform as the direct product of the
finite dimensional representation [1/2,0] and the unitary representation
(jo,c). The extension to the case Dirac X unitary [(jo,c)] or the more
general [[a,b]GE)[b,a]]Cg)[(jo,c)ﬁf)(jo,—c)] - which includes parity -
is straightforward. As we shall see again, only a trivial mass spectrum
is consistent with locality, covariance, and boundedness of the masses

from below.

In general, in the representation (jo,c)(ﬁD[a,b], the wave functions
and field components may be labeled by the two pairs of indices (jlcljgcg),
where (jlol) refers to (jo,c) and (3202) to [a,b]. The wave function for
a particle is characterized by three momentum E, spin J, spin projection

JZ = 2, and a parameter p which tells how J was made out of jl and jg.

For a given J, the number of values of p i1s given by the number of different
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pairs ji, j, such that’jl- 3215 J <3, * Jp- The mass of a particle is

now a function of both J and p, m(Jp).

The wave function V, (pJZp) is given by
319192%
(J s¢)
0 ,b
Vs (pzp) = Ej D. CI.[L(p/m(J,p))]D(a ) i [L(B/m(J,0))]
19192% 3401340 319109191 21 %

X < jicijécélJZ > < jijé(J)‘p > .

< §10,3,05|75 > is the usual Wigner coefficient, and < jljg(J)ip > is a
coefficient which tells how to make J from jl and j2 and which we take to

form a unitary matrix

S—

/ *
2 ol s .. _
jljg <p &Jlﬂe(J) > < 3132(J>ip >

1
o

and
< 313aD)]e > < pliip(d) > =8, B, L.
o Jydy dodo
This form for the wave function is motivated by analogy with solutions
of a Lorentz covariant wave equation, which at rest (E = 0) reduces to
an hermitian operator diagonalizable by a unitary transformation.
The matrix P(E) appearing in the commutator of one of our fields

and its adjoint is now
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v ¥ (7p)
0
P,. . 'll'll<p)= L).».s
(3199359505 (31973595) Iop 2 2 2
Mg m<Jp>P +m(Jp)
J319732%

- pana o

J197d2%

LLIS | S ll 1"

X < JZlJl 132 o

> < JZ]Jl 1320'2 > X

1" ll

- — *
X < p]3135(9) > < p]3y3p(9) > X

'1P KQ(JQ)‘ il

X< jlcll 1> <30 2!

e KQ(JD)‘Jlgl > < 3,0 2§

X < chl‘
where we have noted that K is hermitian for (jo,c) and anti-hermitian

for [a,b]. O(Jp) is, of course, defined as
R I g
0(Jp) = sinh [{p‘/m(J,p)] .

As promised we deal here with the simplest of our class of reducible
representations: (jo,c)CED[l/Q,O]. Furthermore we present the argument
only for Bose commutation relations, since the arguments and the conclu-
sions are similar for Fermi statistics, namely, the masses m(J,p) must
be independent of J.

Suppose then that P(E) - P(—E) is a polynomial of degree 2N+l in
the components of E. As before, we study the coefficient of (5)2(N+n)+3
in the expansion of the boost operators for n = 0,1,2, ... . Also we
choose ji =J, + 2(N+n+2). Since }ji - Eil = 0,1 the only non-zero

2(N+n)+3

contributions to the coefficient of ( ) come from the terms with

jp =3y + 1 Ei =Jj,+r+1for0<rg 2(N+n)+3. We are thus lead to

‘1P KG(JQ>{ 1 n

>

A
-iP-KO(JIp)i.
13595 >
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the condition
2
(W43

N , _
Zd . 53§Jpl < JZEjl+r 0{,%-02 > < Jlel+r+l ol,%-aé ~
JZp =0 m”(Jp)

"o
911

-

> r
. 1 . 1 * . L lp'K . 1"
+ i — ——
< ptal T 2(J) > < p’gl+r+l 2(J) > < chl|r.' Lm——(—w ] |31+r o] >

<3y T | (2 (Wn )31

(_l>r+l { i3 ]2(N+n)+3—r

(7,0)

jl+2(N+n+2) o, >=0.

To proceed we choose E =D @Z and Gé = 02. This means 0. = , or the

o 1
1 1

expression vanishes identically. Observing that

jl+r+l

/ o 2
<3 > = V(jl+r+1) -0] b

+ .
T Gl!KS!Jl+r+l Ul

and that

. 1 . 1 . 1 .
< Jpr oo, 5 02I31+r+ 5 0,0, > < jiirt 5, 0,40 3T+l 0,

1 24

ol =

-a
(-1)" *F \/E(jl+r+l)2- oS1/[h (5 br41)7- 11,

we can cast our requirement for locality into

0 e ot b
L 5:6 rif2(Wn)+3-r]! [m(Jp)]2n

by defining
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~

Sl o 2.1 1,1 1 1, %
CG+m P =R rme)<oliz@+z) ><oli+15(+2) >

J+ 1 N 1 :
| . 1 2(N+3 s
Gy B gny- & G+ 5 o))

which we suppose is non-vanishing. This, of course, means that
iy
X o
2., &(3,0)/[m(3,0)17" is a polynomial in J of maximum degree 2(N+n+l):
(Y

<“2“’“' 2(N+n+1)
2«1 G(J’p>/[m(J,p)]gn = / br(N+n)Jr .
p=1 £

Some straightforward manipulations show that in order to implement the

boundedness assumption on the masses m(J,p) > My > 0, one requires

br(n) =0 for n>2, r>2(N2) + 1.

This means

(;‘2-1 2@&2)
S;i 6(,0)/In(s,0)1"" = é; b, ()3 =P (3); [oayss (M) = By, (1) = 0] .

Now, by examining the expression for G(J,p), which is independent
- -2 -2
of n, one may solve for [m(J,1)m(J,2)] 2n and m(J7,1)" " + m(3,2)" " with
the results
2
-2n PBn(J)Pn(J) ) PEn(J)

[m(J:l>m(J:2)] = 5
PEH(J)Pb(J) - Pn(J)
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and
PBn(J)PO(J) - Pgn(J)Pn(J)

B, (3)P,(J) - P (J)

2n

)—En _

m(J,1) + mn(J,l

Thus the masses may be written as

IWERRENE)

2
m n(J;l) = Cn(J) P
and
2n An(J) B ‘Bn(J)
m (J:E) = SNED) s
n

where An(J) and Cn(J) are polynomials of degree 4(N+2) at most, and

Bn(J), of degree 8(N+2) at most. This form for the masses implies

[Al(J) + Bl(J)jn i A_(3) +\/Bn(J)

cl(J) Cn(J) ’

for all n = 0,1,2, ... . If there is a zero of Cl(J) which is not a
zero of Al(J) +‘QB1(J), we cannot have this equation, since this zero

is raised, on the left hand side of the last expression, to an arbitrary
power n, while the degree of the polynomials on the right is indepen-
dent of n. Thus, every zero of Cl(J) is a zero of Al(J) + JBl(J), which
implies they are proportional, with a J-independent proportionality

constant. This means the masses are independent of J:

m(J,1l) =

l
Q

l 2

and

"
Q

m(J,2)
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whenever the G(J,p) are non-zero. The G(J,p) themselves are also found
to be polynomials in J of maximum degree 2(N+2).

If G(J,0) turns out to be zero, this implies that

1,1 : A N
<pliz(G+5) ><eli+lz (@ +5 > =0,

or that the two ways of making J + % - from j and % or from j + 1 and

% - do not mix. Again one examines the coefficient of (5)2N+3+2n in

the matrix P

- . _ ' _ ' > A
Gé)(p) taking 0= 01, 0,= 0, p =D €

o o
(31019p9) (319332

2(N+n)+3

2
and j = + 2(N+n) + 3, and this time finds that the ¥ (J,p)/[m(J,p)]

jl
for both p = 1 and 2 are polynomials in J of the same degree. Familiar
arguments now lead us to conclude that even in this case the m(J,p) are
independent of J. FE(J,p) turn out to be polynomials of degree 2(N+1)
at most.

Once again we have found that the requirements of covariance, locality
and boundedness of the mass spectrum from below are severe enough, in |
the case where the quantum field transforms as [1/2,0](:)(jo,c), to imply
a trivial mass spectrum, that is, masses independent of the spin J. We

conjecture that this result holds for the more general case [a,b]Cg)(jO,c)

also.



_27-

VI. SUMMARY AND OBSERVATIONS

We have, following the lead of the authors in Ref. 5, constructed
quantum fields with well-defined transformation properties under the
Iorentz group out of the annihilation and creation operators for physical
states. 1In the case where the field is a finite dimensional irreducible
Iorentz tensor, we found that locality placed no restrictions on the
masses, considered as a function of spin, of the particles described by
the field. However, when we chose the field to transform as a unitary
irreducible representation (jo,c) or a direct product [l/E,O]CK)(jO,c)
and made the physical assumption that the masses were bounded below,

m(J,p) > m, > 0, we were led to the conclusion that locality of the

0
fields required that all the masses be independent of spin. This con-
clusion means that in a local field theory one can describe an infinite
number of particles of spin jO’ jO+ 1, jo+ 2, ... by an irreducible
unitary Iorentz tensor or a Iorentz tensor of the type [1/2,0](:)(jo,c)
only in the physically uninteresting case where all those particles have
the same mass. Such a field clearly has little to do with a Regge tra-
jectory.

It behooves us to inquire whether there is some way in which we can
avoid this last conclusion, since the idea of describing an infinite
number of particles by a single quantum field is not only attractive
but may be imperative if field theory and hadron physics are to have
anything to do with one another. There are at least two possible alter-
nate paths which might lead us out of the limbo of equal masses; each

requires an enlargement of our notion of a quantum field: (1) perhaps

our requirement that the field be local is too restrictive. It might
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well be that allowing it to be one of Jaffe's strictly localizable fields
would give us sufficient extra freedom to have a physical mass spectrum
again. (2) We have constructed our fields as linear combinations of
(Fourier transforms of) particle creation and destruction operators. In
so doing we have included only timelike momenta in the Fourier expansion
of the field. Experience with infinite component wave equationsl7, es-
pecially of the wvariety where the wave function transforms as a unitary
irreducible representation (jo,c) or as Dirac(:)(jo,c), shows that solu-
tions of these equations with spacelike frequencies are a general occur-
rence. Our conclusions may demonstrate simply that we have been in error
in omitting such Fourier components in the construction of our fields.

These and other ways out are the subjects of future research.

1k
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APPENDIX

The problem of local commutation rules is related to the question
of completeness of the timelike solutions to some wave equation. To be
more precise, suppose we are considering a covariant wave equation whose
solutions transform as an irreducible unitary representation of the homo-
geneous Lorentz group. In momentum space the wave functions, for time-

>
like momenta, are the ch j,0,[L(p/m(j'))]. Tmagine that the wave func-
b4
tions with timelike p span the whole Hilbert space and that a scalar pro-

duct exists such that

D) 4 o lEG/mNT A, [1(B/n(3"))]

. D,
310, 3197 919722 32925

J2%

jvo-v

=5, By BT+ u (3 (3)/5° ()T,

with A the constant metric matrix. Then one finds

-
> > -
/ P. . _ (pA, . D, e G LL(p/m(3))] =D, ., L LL(p/m(3"))]
pa——
. I 30,J,0 349553 .05 Jn0ssd O Jo,J @
3,0,340 11 11’02 “2°2
171v2°2 :
and hence
->
P. . A, , =9d,,,0
JZJ JG’Jlgl(p) J]_Gl’J'O, 53 0g! s
11

because of the completeness of the wave functions with timelike p. This

implies

> -1
PjG,j'O"(p) = (A )jo-’jlo—l
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and guarantees local commutation rules for Bose statistics and local
anti-commutation rules for Fermions. Now we will demonstrate that such
a scalar product is possible for unequal masses only in the Majorana
representations, only with A = PO/K, only with a mass spectrum of the
form m(j) = k/j + %, and only with F(j) = mg(j). It is ironic that this
is the best known case where there is a wave equations where the wave

15

functions of timelike momenta are not complete ~, namely, the Majorana

equation (-iaofa + k)V(x) = 0.
We address ourselves, then, to the question whether it is possible
to have an orthogonality relation of the form

Z Da'e a G[L(E/m(J)HA o3 O'D' g
.o, 917179 d1972% Jdp%>
J1%1
Jp%

1 [LE/mGE N = B(,3)8,,:8,,,

in a unitary irreducible representation (jo,c). First, note that it is
immediate to obtain orthogonality for the case of equal world velocities,

since if p/m(j) = p'/m(j'), then

[L@/m(IID, o i (LR /m(3 )T = 0,8,

D, .
Jlol) JO l l) J

because of the unitarity of the representation. This is actually very
natural since the solutions of whatever wave equation one has in mind are
taken to be orthogonal for distinct j at rest. The orthogonality at equal
world velocity is then simply a statement of the lorentz covariance of the
equations since the boost operation takes one to a system of new velocity,

not momentum. However, for our considerations regarding the properties
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of ch j,c,(ﬁ) we need the orthogonality for equal b. This arose since
2
the conjugate variable to space-time, in which we inquire about locality,

is p = mu, not u.

By taking E = 0 the orthogonality relation under examination reads

Ajgjlcv = B(O,J)Sjjvﬁggl 2

hence with B(0,j) = B(j) it becomes at momentum p:

Z Dingn ol BB/m(3)IBG D g 1o LLG/m(3 NI = BB, 308, 800 -

J o

The right hand side 1s a function of lﬁl only because of rotational in-
variance of the orthogonality relation.

One now expands the left hand side of this relation and examines it
order by order in E. This expansion does not require a boundedness
assumption on m(j) since the j's in the arguments of the boost matrices
are not summed over and may be fixed at an arbitrary finite wvalue. The

first order in 5 tells us

B(j) < jo ]J c' >~ B(j') < jo jlo' >=0,
~7T—T7

(3)/B(3 + 1) =m(j + 1)/m(3) ,

and implies we may choose

B(j) = 1/m(3)

by fixing an arbitrary scale factor to be one.
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>
Second order in p is more interesting and has the form

1 s 21. ' 1 1
b <ol Rl |t
n~(JIm(3")  wm (G")m(3)

Sﬂ "on RTEINTE B g=-i DR 1 _
< g, < ool Rl > < g B R|e > s -
LR | 510
5 {P B( 1Y JJ) 8..10
2 dfgfg { ‘ ji§[=o jj oo
For j' = J + 2 we obtain

1 2

n(3) " w32y~ m(3+L)

which implies m(j) = 1/(a+bj). For j' = J + 1 we get

2

or if b £ 0

- jc\(ig.?{)gfjﬂ o' > [2a + b + 2bj]

5 . e 1 . ni.> . ' .
4 < JO"lp‘Kl:H'l g >< J+l o ;1p.K13+l o' > [a+bj+b]
"

c

Y, < jo\ig-'ﬁ\jc” > < jc“\igok’\jﬂ o' > [a + bj]

H

2
(a +b3) < 3o |(1p-K) 341 0" >

+ Z b < jc%(iﬁ-ﬁ)‘j—a—l o" > < j+L o 1p K‘3+l a' >,
O_H

18
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. 2y, . . .
< JU%(lE'E) !J+l g' >=2 EJ < Jcllg-§'3+l o" > < j+l c”'iﬁfﬁsj+l o' >,
o !

which in turn leads to

< . R4 BAENT RIS <2 O
L. < Jﬁllp'KlJU > < jo llp'K%J+l o' >
"

E—\ . a4 " . n{.">+ . '
=), < Jollp-K{J+1 o' > < g+l o"|ip-K|5Hl of > .

1

Take E =De, which requires o' = ¢ and
< jGiK3§jc >=o00d = < j+1 c§K313+1 6> = ocd™t s
which is satisfied only if ¢ = 0, or j,e = O.
Finally choose j' = j in the second order of expansion

1n?(5) (< 30](2-8)% )30 > Ty

e

y S B =1 B " . ni. > ;. ! 1
- . < JU;IP‘K‘J-]_ g >< j-10 }lp’KiJG > m

n

(o3
- g; < jo]iﬁ-%\j+1 o' > < 4L o"]iﬁ-ﬁijc' > E{%?IT
1 »q2{ & _— }
=5 B ) B
) lpl l_dlglg (‘pl,’«] [g‘ _ o gt

remembering that since jOc = 0, % does not have matrix elements between

states of the same j. This is equivalent to
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b 2. < 'c]iE—E[ -1 0" > < j-1 o”}f-ﬁl'c' >
RPN . J J J iy J
m(j)| o

. =<4 IR " . nh, > >t
- Ls < Jcllp'K]J+l g >< j+L o ?lp'K jo' >
0"

f+|2 N
= —%}— B'"(p =0,3)8

oo’

Again take 5 =D e and choose ¢ = ¢', then we find that

}< jo\KB‘j-lc>12 - [< jGiKB‘j+l c:>[2 is independent of o, which is
satisfied only when joc = 0 and jg + c2 = l/H. This implies that only
the Majorana representations are allowed.

Armed with the knowledge that we need only consider the Majorana

representations, we return to the orthogonality relation

}; Djncn’jo_[L(g/m(j))](a+b,j”>Dj”o—"’jtcr[L(g/m(j'))] = B(‘El’j)ajj’gco' b/

PAR R U §

J

and use our knowledge of the Majorana vector Pa' Since

AT
oo elp'KG(J)

-ip-K0(J)
O b

>
[ cosh G(J)PO + p.1' sinh 0(J)] e
we may write

ip-¥e(j) o -ip-Ko(3")
< jc‘e [cosh 9(j)PO + p-f sinh 6(3)] e 'j'c' >

618K -0

V

N T
=(j+3) <Jo

Interchanging j and j' in the argument of 6(j), we can quickly find
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A . LA .
1p-K9<J)F e-lﬁ-K@(J')'j,U,

[m(j)cosh 6(3)-m(j")ecosh 0(3")] < jcle o

>

= [m(J)(J + -é—)-m(j')(j% %)] < jG}e_iﬁ’K[e(j')—e(j)]lj'0' > .

The scalar product for j % j' can nowibe set in the form
AT . LA -
Z < jo‘e-l-lp K@(J)‘jncu > [(a - %) + b(j”"l‘ _]2-_)] < j”U"}e 1ip K@(J )lj,g, >

= (a - ..g.) < jo-}e"iﬁ'%(e(j!)'G(J'))&jxo-r ~

LA AL T
ER b < jG‘elp KQ(J)I‘OG 1p KQ(J );j'o" > - O

2
which implies a = b/2, or
. . 1
m(3) = «/(J +3)

Por j = ', the scalar product can be explicitly evaluated

AT .
ielp KO(3)pn

AT . .
Oe~lp'Ke<J)2j o' > = % < jUEcosh G(j)PO— sinh e(j)§~f§jo' >

!
NE% m2<j>/m2<j>} Bygt

1 .
- o
K <J

i

This is what we set out to prove.
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