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We present the analytical solutions of the Klein-Gordon equation for g-deformed equal vector and
scalar Eckart potential for arbitrary [-state. We obtain the energy spectrum and the corresponding
unnormalized wave function expressed in terms of the Jacobi polynomial. We also discussed the
special cases of the potential.

1. Introduction

The study of exactly solvable potentials has attracted much attention since the early develop-
ment of quantum mechanics. For example, the exact solutions of the Klein-Gordon equation
for an hydrogen atom and for a harmonic oscillator in 3D represent two typical examples [1-
3]. When a particle is in a strong potential field, the relativistic effect must be considered,
leading to the relativistic quantum mechanical description of such particle [4-7]. In the
relativistic limit, the particle motions are commonly described using either the Klein-Gordon
or the Dirac equations [4, 6] depending on the spin character of the particle. The spin-zero
particles like the mesons are described by the Klein-Gordon equation. On the other hand, the
spin-half particles such as electrons are described satisfactorily by the Dirac equation. One of
the interesting problems in nuclear and high energy physics is to obtain exact solution of the
Klein-Gordon and the Dirac equation. In recent years, many studies have been carried out
to explore the relativistic energy eigenvalues and the corresponding wave functions of the
Klein-Gordon and the Dirac equation [8-11].
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These relativistic equations contain two objects: the vector potential V(r) and the
scalar potential S(r). The Klein-Gordon equation with the vector and scalar potentials can
be written as follows:

.0 2 2 2
[—(z&—V(r)> - V2+(S(r) + M) ]<p(r,9,<p) =0, (1.1)

where M is the rest mass, i(0/0t) = E is the energy eigenvalues, and V(r) and S(r) are the
vector and scalar potentials, respectively.

Recently, some authors have assumed that the scalar potential is equal to the vector
potential and obtained the bound state of the Klein-Gordon and the Dirac equations with
some potentials of interest such as Woods-Saxon’s potential [12], Hartman's potential [13],
Coulomb-like potentials [14], ring-shape pseudoharmonic potential [15], Kratzer’s potential
[16, 17], and Poschl-Teller and Rosen Morse potential [18]. Different methods such as
the asymptotic iteration method (AIM) [19], supersymmetric quantum mechanics (SUSSY)
[20],and Nikiforov-Uvarov (NU) method [12, 21] have been used to solve the differential
equation arising from these considerations.

However, the analytical solutions of the Klein-Gordon equation are possible only in
the s-wave case with the angular momentum [ = 0 for some well-known potential models
[22,23]. Conversely, when I #0, one can only solve approximately the Klein-Gordon equation
and the Dirac equation for some potentials using a suitable approximation scheme [24].

The purpose of this work is to solve approximately the arbitrary I-state Klein-Gordon
equation with g-deformed equal scalar and vector Eckart potential. This paper is organized
as follows. In Section 2, we present the review of the NU method and its parametric form.
Section 3 is devoted to the factorization method for the Klein-Gordon equation. Solution to
the radial equation is presented in Section 4. Discussion of the result is given in Section 5.
Finally, a brief conclusion is presented in Section 6.

2. Review of the Nikiforov-Uvarov (NU) Method and
Its Parametric Form

The NU method [25] is based on the solution of a generalized second-order linear differential
equation into the equation of hypergeometric type. The Schrodinger equation

" (x) + (E-V(x)g(x) =0 (2.1)

can be solved by this method. This can be done by transforming this equation into equation
of hypergeometric type with appropriate transformation, s = s(x):

() + D yis) +

o(s)

o(s)

o?(s)

¥(s) =0. (2.2)

In order to find the exact solution to (2.2), we set the wave function as

w(s) = p(s)x(s), (2.3)
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and substituting (2.3) into (2.2) reduces (2.2) into hypergeometric-type equation:

a(s)y"(s) +7(s)y'(s) + Lx(s) = 0, (24)
where the wave function ¢(s) is defined as the logarithmic derivative [25]:

P(s) _ a(s)
P(s) ~ 0(s)’

(2.5)

where 7 (s) is at most first-order polynomials.
Likewise, the hypergeometric type function y(s) in (2.4) for a fixed n is given by the
Rodriques relation as

n

B, d"
Xn(s) = o(s) d5" [0"(s)p(s)], (2.6)

where B, is the normalization constant and the weight function p(s) must satisfy the condi-
tion

2 (0(5)p(s)) = 7(5)p(s) 27)
with
7(s) = T(s) + 27 (s). (2.8)

In order to accomplish the condition imposed on the weight function p(s), it is nec-
essary that the classical orthogonal polynomials 7(s) be equal to zero to some point of an
interval (a,b) and its derivative at this interval at o(s) > 0 will be negative; that is,

dr(s)
—o <0 (2.9)

Therefore, the function s (s) and the parameters A required for the NU method are defined as

follows:
o'-7 o -7\’
a(s) = > + < > > -0+ ko, (2.10)

A=k+a'(s). (2.11)

The k-values in (2.10) are possible to evaluate if the expression under the square root must
be square of polynomials. This is possible, if and only if its discriminant is zero. With this
condition, the new eigenvalues” equation becomes

ndr n(n-1)d*c
= - ——— — = 2.12
L= dy==—2 gz n=012... (2.12)
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On comparing (2.11) and (2.12), we obtain the energy eigenvalues.

The parametric generalization of the NU method is given by the generalized hyper-
geometric-type equation as [26]

- 1
(a1 — a2s) ¢'(s) + m [—§152 + &S — §3]‘P(S) =0. (2.13)

(P”(S) + —5(1 — C(SS) 52(

Comparing (2.13) with (2.2), the following polynomials are obtained:
T(s) = (a1 — a29), o(s) =s(1-azs), G(s) = —¢;8° + &5 — &. (2.14)

Now substituting (2.14) into (2.10), we find

) 1/2
a(s) =ay+ass+ [(oc(, —asky)s™ + (ay + ki)s + zxg] , (2.15)
where
1 1 ’
LX4=§(1—111), [X5=§(IX2—2[X3), tX6=tX5+§1,
(2.16)
ay = 26(4[15 - §2, ag = (Xﬁ + §3.

The resulting value of k in (2.15) is obtained from the condition that the function under
the square root must be square of a polynomials, and it yields

ki = —(a7 + 2a3a8) + 24/agay, (2.17)
where
a9 = azay + zx%ag + ag. (2.18)

The new o (s) for each k becomes

7 (s) = astass — [(v/ag + asy/as)s — v/as], (2.19)
for the k_ value
k- =-(azr +2azag) — 2/asao. (2.20)

Using (2.8), we obtain

T(8) = o + 204 — (a2 — 2a5)s — 2[(\/ag + az+/ag)s — \/ag]. (2.21)



ISRN High Energy Physics 5

The physical condition for the bound-state solution is 7’ < 0, and thus
7'(s) = —2a3 - 2(y/ag + az+/ag) < 0. (2.22)
With the aid of (2.11) and (2.12), we derive the energy equation as

(ay — az)n + azn® — 2n +Das + 2n + 1) (/a9 + az+/ag) + ay + 2azas + 2+/agag = 0.

(2.23)
The weight function p(s) is obtained from (2.7) as
p(s) = 5707 (1 — azs) @/ @) @0l (2.24)
and together with (2.6), we have
Xu(s) = pyootlan/@aoll g _ppg), (2.25)
where
ay = a1 +2ay +2+/ag,
(2.26)

a1 = ay — 2as + 2(y/ag + az+/ag),

and P\ )(s) are the Jacobi polynomials. The second part of the wave function is obtained
from (2.5) as

P(s) = s™2(1 - a3s)_a12_(a13/ﬂ3)’ (2.27)
where
a1y = g + \/t?g, a13 = a5 — (\/@+ a3\/£). (228)

Thus, the total wave function becomes
¢(5) = Nys™ (1 — azg) ™02 (@a/a) plao-llan/m)ao-l)q oy, q) (2.29)

whose N,; is the normalization constant.

3. Factorization Method for the Klein-Gordon Equation

The three-dimensional Klein-Gordon equation with mixed vector and scalar potentials can
be written as

[V2+ (V(r) = E) = (S(r) + M)*]¢s(r,6,) =0, (3.1)
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where M is the rest mass, E is the relativistic energy, and S(r) and V (r) are the scalar and
vector potentials, respectively. V2 is the Laplace operator, c is the speed of light, and # is the
reduced Planck’s constant which have been set to unity. In spherical coordinates, the Klein-
Gordon equation for a particle in the present of Eckart potential V (r) becomes

[l > ("5 ) * g ag (s )+ o O 2BV + MS(r))

ﬁ g a m @ 00 r2sin%0 a_(pz
(3.2)
+V2(r) - S*(r) + E* - M2:| ¢(r,0,¢) =0.
If one assigns the corresponding spherical total wave function as
R
(P'(T', 6/ (P) = #Ylm (6/ (P); (33)
where

Yim(6,9) =0(0)D(p), (3.4)

then the wave equation in (3.2) is separated into variables and the following equations are
obtained:

d’R(r)
dr?

+ |E* = M* - 2(EV(r) + MS(r)) + V2(r) - S*(r) - riz] R(r) =0, (3.5)

420(0) 40(0) m? )
W + cotO 40 <)L — Sln26>@(9) = 0,
(3.6)

D (p)

dy?

+m*®(p) =0,

where m? and A = (I + 1) are the separation constants.
Equation (3.6) are spherical harmonic functions whose solutions are well known [27].

4. Solution of the Radial Equation

The g-deformed Eckart potential is defined from [23, 28, 29] as

Vle—r/b .\ Vze—r/b
(1-ge*)  (1-ger/v)*

Vi(r) = (4.1)
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where Vi, V, are the potential depth, g is the deformation parameter, b = 1/2a is the param-
eter, and «a is the range of the potential. The radial part of the Klein-Gordon equation in (3.5)
for special case V (r) = S(r) is written as

d*R(r) + B2 M2 ~2(E+ M)V(r) - i R(r) = 0. (4.2)
dr? r2

Substituting (4.1) into (4.2), we obtain

d?R(r)
dr?

-r/b -r/b
Vie e Ve I+
(1-ger/?) (1-ge/?) r

+ I:EZ—M2+2(E+M) ]R(r) =0.

(4.3)

Obviously, this equation cannot be solved analytically for [#0 due to the centrifugal term.
Therefore, (4.3) can be evaluated by using a newly improved approximation scheme [30]:

1 1 (fle‘r/b (jze_zr/b
—=—| Co+ + , .
r2 bZ < 0 (1 _ qe—r/b) (1 _ qe_r/b)z (4 4)

where Cy, Cy, and C; are three adjustable parameters.
Substituting (4.4) into (4.3), we obtain

d’R(r)
dr?

-r/b -r/b
el a2
(1-ger/?) (1-ge/?)

-r/b -2r/b
e/ Ce . _Ge R = 0.
b2 (1-ge/*)  (1-ger/b)?

+ [EZ—M2+2(E+M)
(4.5)

Using a new variable s = ¢™"/®

ric equation:

and substituting in (4.5), we have the following hypergeomet-

d?R(r) . (1-gs) dR(s) .\ 1
ds>  s(l-gs) ds = g2(1-gs)’

[(826]2 + A>32 + <—252q + B>s + (52 + C)]R(s) =0,

(4.6)

where
&2 = b2<E2 _ M2>,
A =-2(E+ M)b*Vig-1(1+1)Coq* + (1 +1)C1g - I(I + 1)Cy, 47
B = 2(E + M)b*V; — 2b*(E + M)V, + 21(1 + 1)Coq — I(1 + 1)Cy,
C=-1(1+1)C,.
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Comparing (4.6) with (2.13), we obtain the parameter set

&b =-q-A,
§2:—2£2q+B,
§3:_€2_C/
ar =1, a =az =g, ay =0,
2
_ 1 _ 9 20
a5 = A=y —q¢€ A,

ay = Zezq— B, ag = —<52 + C>,
qZ - A-gB-4°C, (4.8)
ap =1+2iy/(e2+C),
an :2q+2<\/q£ - A—qB-g*C +ig\/(&? +C)>,
ap =1i\/(e2 + C),

2
zx13=—g— <\/qz—A—qB—q2C+iq\/(52+C)>.

dg =

Substituting (4.8) into (2.15), we obtain the polynomials 7 (s) as

2 1/2
_ 95 9 22 4 2 2 (2
x(s) = 5 [< 7 €4 A qki>s + <2£ q B+ki>s <£ +C>] ) (4.9)

Substituting (4.8) into (2.17), we obtain k. as

ki=B+2qC:|:2\/(52+C)<A+qB+q2<C—%)). (4.10)

Using (2.19), (2.20), and (4.8), we can obtain or(s) and k_ suitable for the NU method as
2
_ 45 9 . .
(s) = - - [<\/Z - A-gB-q*C+ig\/(€2 +C)>s—z\/(.€2 +C)],

k. =B+2qC—2\/(52+C)<A+qB+q2<C_ }L>>

(4.11)
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Substituting (4.8) into (2.22), we obtain

T'(s) =29 -2 q_2 -A-gB-g¢*C+ig\/(e2+C) ) <0, (4.12)
4

which is the essential condition for bound-state (real) solution.
Substituting (4.8) into (2.23), we obtain the energy eigenvalues of the g-deformed
Eckart potential as

2

1 2
|G ) ) | e
E?-M?= : e (4.13)
((n+2)+#)
where y = (-2(E + M)b*Vi/q) + (Il + 1)C1/q) - (I + 1)Cy/g*) and p =

\(174) + (1 +1)Ca/q?) + (2B2(E + M)Va/q).
The weight function p(s) in (2.24) is obtained as

p(s) =st(1- qs)ﬁ, (4.14)

where p = 2i\/(e2+C) and d = 2\/(1/4) - (A/q%) - (B/q) - C which gives the first part of
the wave function in (2.3) using (2.25) as

Xn(s) = p#® (1-2gs). (4.15)
The other wave function ¢(s) is obtained from (2.27) as
P(s) = s"2(1 - qs)(lﬂ”/z. (4.16)

The radial wave function R(r) expressed in terms of the Jacobi polynomials is obtained from
(2.29):

R(r) = Ny <e—r/b>!‘~/2 <1 B qe_r/b>(1+ﬂ)/2Pr(lﬂ,§) <1 _ 2q€—r/b>/ (4.17)

where N,; is the normalization constant.
Hence, the total wave function ¢(r,6,¢p) for the g-deformed Eckart potential is
obtained using (3.3) as

g (r,6,¢) = N,,I% (et)" /2 (1-ge7") (02 pley (1-29e77%) Y (0, 9). (4.18)
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5. Discussion

By setting some potential parameters into (4.1), we obtain some well-known potentials.

5.1. Hulthen’s Potential

If wesetV, =0, Vi = Vp, and g = 1in (4.1), we obtain the Hulthen potential [31]

(5.1)

Substituting these parameters into (4.13) and (4.18) we obtain the energy eigenvalues and
the corresponding wave function as

2
L [7+ (e @72+ VITZDFITEDR) | jganye,
— " ’

E2-M?>=— (5.2)
1 (e (1/2) + VAT 1T+ s ) b2
where ¥ = =2(E + M)b*Vy + (1 + 1)c; = I(I + 1)c; and
L e \H2 erp) /28 /b 53
qf(r)—an;<e ) <1—e ) P, <1—2€ >Y1m(9,(p), (5.3)
where
§=2\2-A-B-cC
=2\/3 ,
(5.4)

A=-2(E+M)b*Vy—1(I+1)co + (I + 1)cy - 1(1 + 1)ca,

B=2(E+M)b*Vy+2l(1+1)co—I(I+1)cy.

5.2. Modified Péschl-Teller Potential

Setting V1 =0, g = -1, and V, = -4V} in (4.1), we obtain the modified Poschl-Teller potential
of the form [32-35]

Vo

V) = st r/2b)

(5.5)
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Substituting these parameters into (4.13) and (4.18), we obtain the energy spectrum and the
corresponding eigen function as

2

[+ D@ e+ <(n +(1/2)) +\/(A/4) + 1(1+ 1) + SO2(E + M)VO)2

E? - M?

W ((n+ (1/2)) + A5 + [T+ Dea + SP(E + M)Vh)

11+ 1)Cy
e

w(r) = an% <€’r/b>#/2<1 + e’r/b>(l+ﬁl)/2pr(l”’al> <1 + 2e”/b> Yim (6, 9),

(5.6)

where

1 1

¥ =2 A_L_A1+B1_C'
1 (5.7)
A= —l(l + 1)(C0 +cC1 + Cz),
B! =8b*(E+ M)Vp — I(1 +1)(2¢co + c1),

respectively.

5.3. Morse’s Potential

If wesetq =0, Vs =0and V, = Vj into (4.1), we obtain the Morse potential of the form [36]

V(r) = Voe '’ (5.8)

Substituting these parameters into (4.13) and (4.18), we obtain energy eigenvalues and wave
function as

-1 I(1+1)Co
2 2 _ 2
E- - = @(7’1 + 1) + T,
(5.9)
1 W2 (e
g(r) = Nu— (") P (0,9),
r
where
c=nlt_c (5.10)
4 7

respectively.
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6. Conclusion

In this paper, we have studied the Klein-Gordon equation subject to equal g-deformed scalar
and vector Eckart potentials. The energy and wave functions for bound states have been
obtained by parametric form of the Nikiforov-Uvarov method. We also discussed some
special cases of the potential.
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